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ABSTRACT

We present detections at 850µm of the Lyman Break Galaxy (LBG) population at z ≈ 3, 4 and
5 using data from the Submillimetre Common User Bolometer Array 2 Cosmology Legacy
Survey in the United Kingdom Infrared Deep Sky Survey “Ultra Deep Survey” field. We em-
ploy stacking to probe beneath the survey limit, measuring the average 850µm flux density of
LBGs at z ≈3, 4, and 5 with typical ultraviolet luminosities of L1700 ≈ 10

29 erg s−1 Hz−1.
We measure 850µm flux densities of (0.25±0.03), (0.41±0.06), and (0.88±0.23)mJy respec-
tively, finding that they contribute at most 20 per cent to the cosmic far-infrared background
at 850µm. Fitting an appropriate range of spectral energy distributions to the z ∼ 3, 4, and
5 LBG stacked 24–850µm fluxes, we derive infrared (IR) luminosities of L8−1000µm ≈ 3.2,

5.5, and 11.0×1011 L⊙ (and star formation rates of ≈ 50–200 M⊙ yr−1), respectively. We
find that the evolution in the IR luminosity density of LBGs is broadly consistent with model
predictions for the expected contribution of luminous-to-ultraluminous IR galaxies at these
epochs. We observe a positive correlation between stellar mass and IR luminosity and confirm
that, for a fixed mass, the reddest LBGs (UV slope β → 0) are redder due to dust extinction,
with SFR(IR)/SFR(UV) increasing by about an order of magnitude over −2 < β < 0 with
SFR(IR)/SFR(UV)∼20 for the reddest LBGs. Furthermore, the most massive LBGs tend to
have higher obscured-to-unobscured ratios, hinting at a variation in the obscuration properties
across the mass range.

Key words: galaxies: formation – galaxies: evolution – galaxies: high-redshift – galaxies:
star formation – submillimetre: galaxies
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1 INTRODUCTION

Lyman Break Galaxies (LBGs) are currently the largest population

of star-forming galaxies known to be at high redshift, z > 3, and

as such have provided valuable insights into the mass assembly of

galaxies during the first few Gyr of the Universe. From a practical

standpoint, this has been due, in part, to the efficiency of the sim-

ple selection of LBGs in broad-band colours that span the epony-

mous “Lyman break” as it is redshifted through the optical bands

at z > 3 (Steidel & Hamilton 1993). This has made it possible

to identify large samples of LBGs, and from this we have learned

that they are: massive (M⋆ ∼ 109−11M⊙; Sawicki & Yee 1998;

Reddy et al. 2006; Rigopoulou et al. 2006; Verma et al. 2007; Stark

et al. 2009; Magdis et al. 2008, 2010a), rapidly star-forming (10s–

100 M⊙ yr−1; e.g. Sawicki & Yee 1998; Shapley et al. 2001, 2005;

Magdis et al. 2010b; Rigopoulou et al. 2010; Chapman & Casey

2009) and numerous (φ∗ ∼ 0.005Mpc−3; e.g. Reddy & Steidel

2009). As such, they have been interpreted as a phase in the forma-

tion of “typical” galaxies (e.g. Somerville, Primack & Faber 2001;

Baugh et al. 2005) and are the progenitors of a reasonable fraction

of massive (L > L∗) galaxies today.

Despite this progress, there are still a number of open ques-

tions surrounding the nature and properties of typical LBGs. Some

LBGs have dust-corrected star formation rates (SFRs) of up to

100 M⊙ yr−1, which is enough to form present-day elliptical galax-

ies, and indeed LBGs at z > 3 are attractive progenitors for

the rather substantial population of passive red galaxies already in

place by z ∼ 2–3 (Stark et al. 2009; Kriek et al. 2006; van Dokkum

et al. 2006). Thus LBGs should contribute a significant portion of

the submm background at 850µm at high redshifts (Adelberger

& Steidel 2000). However, determining their contribution to the

submm background has been hampered by the large uncertainties

that go hand-in-hand with deriving dust-corrected UV luminosities.

The most reliable way of measuring their dust content and contri-

bution to the submm background is directly through submillime-

tre (submm) observations, which will reveal any dust-obscured star

formation activity.

Several attempts have been made to detect the rest-frame far-

IR emission in LBGs, with mixed success. There are only a hand-

ful of individual submm detections of LBGs, including Westphal-

MMD11 (Chapman et al. 2000) and Westphal-MM8 (Chapman &

Casey 2009), targetted as part of a sample of LBGs with high UV-

derived SFRs, as well as a highly magnified gravitationally lensed

LBG at z ∼ 3 (Baker et al. 2001). Two early SCUBA-based sta-

tistical studies of the submm flux of LBGs with high UV-derived

SFRs (Chapman et al. 2000) and of “typical” canonically-selected

z ∼ 3 LBGs (Webb et al. 2003) yielded no detection of the popu-

lation, with an average below 1 mJy. On the other hand, Peacock et

al. (2000) detected a mean flux of (0.2±0.04) mJy for 0 < z < 6
starburst galaxies with UV-SFRs of >2 M⊙ yr−1, with the mean

submm flux density increasing with UV-SFR. More recently with

Herschel, several authors have revisited LBG stacking. Lee et al.

(2012) find a marginal signal (∼ 3–4 σ level) in a single-band

(500µm) for a UV-bright subset of z ∼ 4 LBGs, and Rigopoulou et

al. (2010) and Magdis et al. (2010b) have reported statistical detec-

tions of mid-IR-selected LBGs with Herschel, but this latter sample

is clearly biased to the IR-brightest most massive and/or dustiest

subset of LBGs (Huang et al. 2005; Rigopoulou et al. 2010; see

also Oteo et al. 2013). As the available submm maps continue to

increase in size and depth (e.g. Weiss et al. 2009), stacking is now

able to sometimes yield successful statistical detections of specially

chosen subsets of LBGs at z ∼ 3 (split by stellar mass and UV-

estimated SFRs; Davies et al. 2013), which has helped to reliably

constrain the far-IR luminosities, obscured SFRs, dust masses and

dust temperatures in the most massive and UV-luminous z ∼ 3
LBGs. There have also been attempts to detect the dust emission

in a handful of LBGs at z ∼ 5 (e.g. Stanway et al. 2010; Davies

et al. 2012), although no detections were made, making it difficult

to say anything conclusive. Thus, the far-IR emission from typical

LBGs (i.e. those selected by the canonical UV/optical broadband

colour criteria), hence their dust content and contribution to the

submm background, as well as tracing their IR luminosity density

as a function of redshift all remain open questions.

Here we present a statistical (stacking) analysis of LBGs at

z ∼ 3, 4 and 5 in the United Kingdom Infrared Deep Sky Survey

“Ultra Deep Survey” (UKIDSS-UDS; Lawrence et al. 2007) field.

The UDS has been mapped with the Herschel Spectral and Photo-

metric Imaging Receiver (SPIRE) at 250, 350, and 500µm and at

850µm as part of the SCUBA–2 (Holland et al. 2013) Cosmology

Legacy Survey (S2CLS; e.g. Geach et al. 2013). The 850µm map

is the largest submm map yet obtained at this depth (1σ ≈ 2mJy

over 1 deg2, see §2.1). The availability of deep optical/near-infrared

(OIR) imaging in this field, combined with the new wide-area deep

850µm map makes this an ideal resource to study the submm prop-

erties of LBGs, without biasing the analysis to the most massive

and/or mid-IR or UV-brightest LBGs (e.g. Rigopoulou et al. 2010;

Davies et al. 2013). The goal of this work is to measure the average

submm flux density (which is a direct probe of obscured star for-

mation) of LBGs selected at z = 3, 4 and 5 in order to estimate the

bolometric luminosity of typical massive galaxies at these epochs

and to assess the LBG contribution to the IR luminosity density to

compare with models.

This paper is organized as follows. The data and LBG sample

selections are described in Section 2. In Section 3 we present the

main analysis and results of the LBG stacking in submm maps,

including the LBG contribution to the submm background, LBG

SEDs, and the evolution of the IR luminosity density of LBGs. In

Section 4 we discuss the implications of the results and, finally,

our conclusions are given in Section 5. Throughout the paper we

assume cosmological parameters of ΩΛ = 0.73, Ωm = 0.27, and

H0 = 71 km s−1 Mpc−1 (Spergel et al. 2003).

2 THE DATA

2.1 Optical and near-infrared imaging

Our samples are based on the deep K-band image from the United

Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey

(UKIDSS; Lawrence et al. 2007) Ultra Deep Survey (UDS1) data

release 8 (DR8; Almaini et al., in preparation) and co-incident

multi-wavelength data. The parent catalogue was extracted using

SEXTRACTOR (Bertin & Arnouts 1996) on the deep K-band im-

age (KAB 6 24.6) and after merging the source lists from two

independent extractions. The extraction parameters were designed

to recover both point-like and extended low-surface-brightness ob-

jects (see Hartley et al. 2013 for further details). In addition to

the three JHK UKIDSS bands, the UDS has been mapped by

the Canada-France-Hawaii Telescope (CFHT) Megacam u′ band

(u′
AB 6 26.75; Foucaud et al., in preparation), by Subaru Suprime-

cam in the optical (B = 27.6, V = 27.2, R = 27.0, i′ = 27.0 and

z′ = 26.0, 5-σ AB mags; Furusawa et al. 2008) and by the Spitzer

1 http://www.nottingham.ac.uk/astronomy/UDS/
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InfraRed Array Camera (IRAC; Fazio et al. 2004) in channels 1

(3.6µm; 5-σ depth of 24.2 AB mags), and 2 (4.5µm; 5-σ depth

of 24.0 AB mags) via the UDS Spitzer Legacy Program (SpUDS;

PI:Dunlop). The overlap of all these data sets (after masking bad re-

gions) is 0.62 deg2. In addition, available X-ray (Ueda et al. 2008)

and radio (Simpson et al. 2006) data were employed to remove

bright AGN. The matched multi-wavelength photometry was ex-

tracted using 3 arcsec apertures centred on the positions of the K-

band catalogue sources (see Simpson et al. 2012 for full details).

Point spread function (PSF) photometry corrections were required

and applied to three of the bands (the CFHT u′ band and the two

IRAC channels) in order to obtain correct colours (see Hartley et

al. 2013 for details). We use this final matched multi-wavelength

catalogue to perform our LBG selection.

2.1.1 Lyman Break Galaxy selection

The canonical LBG selection utilizes the UGR, or BVR, colour

space, with “drop-outs” in the bluest band efficiently isolating

galaxies at z ≈ 3 (Steidel et al. 1996). Since the selection requires

detection in G and R, as the Lyman break is redshifted through the

G or V band, the selection function falls off with redshift. The tech-

nique can be applied to higher redshift by simply moving the entire

colour space to longer wavelengths. Ouchi et al. (2004) show how

a similar selection in BRi, isolates LBGs at z ≈ 4, and Viz, or Riz,

extends the selection to z ≈ 5.

We adopt the following colour selections for LBGs at z ≈ 3
(eq. 1), z ≈ 4 (eq. 2) and z ≈ 5 (eqs. 3 and 4):

R < 27, (U − V ) > 1.2,
−1.0 < (V −R) < 0.6, (U − V ) > 3.8(V −R) + 1.2;

(1)

I < 27, (B −R) > 1.2,
(R − I) < 0.7, (B −R) > 1.6(R − I) + 1.9;

(2)

Z < 26, (V − I) > 1.2,
(I − Z) < 0.7, (V − I) > 1.8(I − Z) + 2.3;

(3)

Z < 26, (R− I) > 1.2,
(I − Z) < 0.7, (R− I) > (I − Z) + 1.0.

(4)

For the z = 5 selection, we require selection using either eq. 3 or

eq. 4, slightly improving our yield (see Ouchi et al. 2004), and for

all selections we also require that the source has not been identified

as a possible star.

Eleven-band photometric (UBVRIzJHK[3.6][4.5]) redshifts

have been estimated for all of the galaxies in the DR8 parent

sample. The overview of these redshifts and how they are calcu-

lated is discussed in more detail in Hartley et al. (2013) and Mort-

lock et al. (2013). In summary, the photometric redshifts are com-

puted using the EAZY template fitting code, adopting the six de-

fault EAZY spectral energy distribution (SED) templates (Bram-

mer, van Dokkum & Coppi 2008). In addition to this we further

include a template which is the bluest EAZY template, but with a

small amount of Small Magellanic Cloud (SMC) like extinction

added. Photometric redshifts are then computed from a maximum

likelihood analysis. To test how accurate these photometric red-

shifts are, we compare the values we calculate to spectroscopic

redshifts that are available in the UDS. A large fraction of these are

from the UDSz, an European Southern Observatory (ESO) large

spectroscopic survey (ID:180.A-0776; Almaini et al., in prepara-

tion) and also from previous published values (see Simpson et

al. 2012 and references therein). We have in total about 1500 se-

cure spectroscopic redshifts in the UDSz, and around 4000 red-

shifts from other sources, although this reduces to 2146 after the

removal of active galactic nuclei (AGN). Excluding catastrophic

outliers (|zphot − zspec|/(1 + zspec) > 0.15), we find an average

|zphot − zspec|/(1 + zspec) = 0.031 (Hartley et al. 2013).

To further improve the LBG colour selections described

above, we enforce a photometric redshift zphot > 2 selection to

eliminate any low-z interlopers (where zphot is the solution with

the minimum χ2 from the EAZY fitting). The photo-z fitting pro-

cedure evaluates a probability density distribution, P (z), for each

galaxy, with the peak of that distribution representing the best esti-

mate for the redshift. Apart from the zphot > 2 criterion, we do not

use the photometric redshifts further. However, we can make use of

P (z) to investigate the efficacy of the colour selections described

above. In Fig. 1 we show the (normalised) sum of the individual

P (z) for the galaxies in the selections defined in equations 1–4.

This clearly demonstrates the effectiveness of the colour selections,

and also provides us with an estimate of the widths of the redshift

distributions, reflecting both intrinsic spread (due to the “window”

where the redshifted Lyman break can be identified in each case),

and uncertainty in the photometric redshift estimates. The result-

ing LBG sample properties are summarized in Table 1. Note that

all three probability density distributions show a low-redshift tail,

with a slight peak at z ∼ 2.5. We emphasise that our samples are

constructed from colour selections described above, with a best-fit

zphot lower limit strictly enforced to eliminate obvious low-z in-

terlopers. We have verified that using a stricter zphot > 3 lower

limit for the z ∼ 4 and z ∼ 5 samples does not change the signifi-

cance of our results in the following analysis of statistical sub-mm

detections, showing that the low-z tails in Figure 1 do not represent

significant contamination of the samples.

An important point to note is that our LBG selection is pred-

icated on a K < 24.6 selected sample, that is the basis of the

UKIDSS-UDS catalogue described above. As a result, we will not

include, for example, z ≈ 3 LBGs with R < 27 and K > 24.6,

but these will be at the low stellar mass end of the distribution

(M⋆ < 109M⊙, see § 3.5). As we explore in § 3.5, the average

submm flux of LBGs is expected to be a function of mass, and

so we treat the K > 24.6 limit as a proxy mass limit for the

galaxies in the sample. Note also that the optical limits in equa-

tions 1–4 result in a slight bias in UV luminosity selection with

redshift. At z = 3 we are sensitive to galaxies more luminous than

M1700 ∼ −19mag, but only M1700 ∼ −20mag at z ∼ 5. There-

fore, when we examine trends with UV luminosity, we focus on the

z ∼ 3 sample.

2.2 SCUBA–2 observations and map making

As part of the S2CLS campaign, observations of UKIDSS-UDS

were conducted in Band 2/3 weather (0.05 < τ225GHz 6 0.1) be-

tween October 2011 and February 2013. The mapping centre of the

UDS field is α = 2h 18m 00s, δ =−05◦ 05′ 00′′, and a 3300 arcsec

diameter PONG mapping pattern was used, resulting in a circular

map that reaches a uniform depth over an area of ∼700 arcmin2.

The total mapping time was 130 hr, split into 195 scans of 40 min-

utes each. Individual scans are reduced using the dynamic iterative

map-maker (makemap) of the SMURF package (Chapin et al. 2013).

Geach et al. (2013) presented the reduction procedure for CLS data,

but in summary, we apply the following steps.

(i) Raw data are flat-fielded using ramps bracketing every sci-

ence observation, and the data are scaled to units of pW.

(ii) The signal each bolometer records is then assumed to be a

c© 2013 RAS, MNRAS 000, 1–??
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Figure 1. Stacked photometric redshift distributions from EAZY (see text)

of the sources selected in our three LBG samples (all normalised to a com-

mon integral), clearly showing the three distinct peaks in redshift space,

centred at z ∼ 3, 4, and 5.

linear combination of: (a) a common mode signal dominated by at-

mospheric water and ambient thermal emission; (b) the astronom-

ical signal (attenuated by atmospheric extinction, see Dempsey et

al. 2013); and finally (c) a noise term (including 1/f -type corre-

lations), taken to be the combination of any additional signal not

accounted for by (a) and (b). The dynamic iterative map maker at-

tempts to solve for these model components, refining the model un-

til convergence is met, or an acceptable tolerance has been reached.

The reduction also includes the usual filtering steps of spike re-

moval (>10σ deviations in a moving boxcar) and DC step correc-

tions. Throughout the iterative map-making process, bad bolome-

ters (those significantly deviating from the model) are flagged and

do not contribute to the final map.

(iii) Time streams are finally re-gridded into a map with 4 arcsec

pixels, with each bolometer weighted according to its time-domain

variance (which is also used to estimate the χ2 tolerance in the fit).

Maps made from individual scans are co-added in an op-

timal, noise-weighted manner, using the MOSAIC JCMT IMAGE

recipe in the PICARD environment (Jenness et al. 2008). Finally,

to improve the detectability of faint point sources, we apply a

beam-matched filter to improve their detectability using the PI-

CARD recipe SCUBA2 MATCHED FILTER. The average exposure

time over the nominal 3300 arcsec mapping region in the co-added

map is approximately 1.5 ksec per 4′′ pixel, and the r.m.s. noise

value is 1.9 mJy. Due to the scanning strategy, there are data be-

yond the 3300 arcsec perimeter, but because these receive less to-

tal exposure, the noise increases accordingly. The LBG catalogues

cover a 0.6 deg2 area within the central uniform noise region of the

SCUBA-2 map.

An important component of our stacking analysis is to create

a map with bright significantly-detected point sources near to an

LBG (but not near enough to be associated) removed. For this, we

run a peak-finding algorithm on the signal-to-noise ratio map down

to a level of 3.5σ, and this was done for each LBG-redshift sub-

sample separately. This signal-to-noise ratio threshold was chosen

to strike a balance between detecting the majority of real sources

in the map while maintaining a low contamination rate due to

false positives (5–10 per cent) expected from pure Gaussian noise

(e.g. Geach et al. 2013). Each time a peak is found further than

8 arcsec away (about half a SCUBA-2 beam), the flux of the con-

tributing source is removed by subtracting a model point response

function (PRF) at that position, scaled to the flux of the source. The

peak-normalised model PRF is generated from the data by stacking

the map at the positions of all >10σ peaks. This residual map still

contains astronomical signal, but with deemed LBG-unassociated

submm >3.5σ sources removed, so that we do not inadvertently

bias our stacking results high by including flux from nearby un-

related positive beams. This procedure is virtually identical to the

approach taken in the Webb et al. (2003) SCUBA LBG stacking

analysis paper. The remaining 36 submm sources2 may not be gen-

uine LBG-SCUBA-2 associations (and in fact the calculated Pois-

son probabilities that they are chance coincidences are not particu-

larly low), but because they could be genuine, we must not remove

these sources from the map. These candidate LBG-SCUBA-2 as-

sociations will be evaluated using a rigorous multi-wavelength ap-

proach in Coppin et al. (in preparation).

3 ANALYSIS & RESULTS

3.1 Statistical results

With the LBG samples defined, we measure the submm flux at each

LBG position in the 850µm beam-convolved, LBG-unassociated

>3.5σ submm source-subtracted flux map, weighted by the noise at

the corresponding positions in the noise map. For visualisation, we

simultaneously stack 80×80 arcsec cut-outs, again applying a sim-

ple inverse variance weighting scheme, obtaining the weights from

the noise maps (note that measuring the stacked flux directly from

these images necessarily gives the same result). The stacked thumb-

nail images for each sample are shown in Fig. 2, indicating the de-

tection of significant 850µm emission from LBGs at z ≈ 3, 4, and

5 (see Table 1). We repeat the exercise above on the original flux

map (i.e. including all >3.5σ sources which had been removed)

and list these results in Table 1. These stacked fluxes are statis-

tically indistinguishable from the stacked fluxes calculated previ-

ously on the source-subtracted maps. As an additional check, we

compare the radially averaged profiles of the stacks with the shape

of the beam (empirically derived by stacking many high signifi-

cance peaks in the detection image). The stacks are indistinguish-

able from the beam, and this indicates that if there is any significant

contribution to the observed signals from large scale structure cor-

related with the LBGs, it is on scales below ∼100 kpc.

To verify the significance of our results, we have stacked at the

same number of uniform random positions within the same map

area and repeated this 10,000 times for each LBG redshift slice

subset. We do not, however, remove any sources from the map; this

should provide a conservative estimate of the likelihood of measur-

ing the same (or greater) level of flux in the stack as observed for

the LBGs simply by chance. In these random realisations, we never

find a result as statistically significant as ours in the z ∼ 3 and 4

samples (the most significant stacked result we find at random in

the z ∼3 and 4 samples are at the 3.8 and 3.4σ levels, respectively,

occurring in each <0.02 per cent of the time), and less than 0.02

per cent of the time in the z ∼ 5 sample. Thus, in light of these

simulations our statistical detections appear to be robust.

2 We find 26, 9, and 1 candidate LBG-SMG counterparts for our LBG

redshift sub-samples at z ∼ 3, 4, and 5, respectively.

c© 2013 RAS, MNRAS 000, 1–??
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Figure 2. Thumbnail images of the stacked 850µm flux in the SCUBA-2 map, centred on the LBG positions in the z ∼ 3, 4, and 5 sub-samples (the mean

redshift of each LBG sub-sample is indicated on each image). The colour scale indicates the average flux density and the solid contours represent significance

levels of 0, 1, 2, 3-σ,..., and the dashed lines are the corresponding to negative deviations.

Table 1. Stacked mid-IR-to-submm photometry of Lyman Break Galaxies

〈zphot〉 N 850µma 850µmb 250µm 350µm 500µm 24µm

(mJy) (mJy) (mJy) (mJy) (mJy) (µJy)

3.35 4201 0.249±0.029 (8.5σ) 0.228±0.029 (7.8σ) 0.751±0.077 (9.8σ) 0.938±0.109 (8.6σ) 0.634±0.143 (4.4σ) 9.5±0.9 (10.5σ)

3.87 869 0.411±0.064 (6.4σ) 0.388±0.064 (6.0σ) 0.783±0.177 (4.4σ) 1.116±0.163 (6.8σ) 1.024±0.164 (6.2σ) 2.1±0.5 (4.2σ)

4.79 68 0.875±0.229 (3.8σ) 0.811±0.229 (3.5σ) 2.023±0.798 (2.5σ) 2.337±0.916 (2.6σ) 2.022±0.686 (2.9σ) 4.0±2.0 (2.0σ)

a Submm sources >3.5σ and further than 8 arcsec away from an LBG have been removed. We adopt this column for the SED fitting.
b No submm sources have been removed.

3.1.1 Assessing the level of bias in our statistical results

Our simple methodology implicity assumes that the galaxy popu-

lation we have stacked is uncorrelated (i.e. the LBGs are not clus-

tered). However, like most populations, LBGs are known to be clus-

tered (r0 ≃ 4h−1 Mpc; Adelberger et al. 2005). We investigate the

level of bias due to LBG clustering in our stacking results by fol-

lowing the formalism of Viero et al. (2013) for unbiased stacking

of galaxy catalogues on Herschel maps (see also Kurczynski & Ga-

wiser 2010 and Roseboom et al. 2010), which takes into account the

presence of multiple sources in the same beam. In brief, we create

a “hits” map (H) of the same size as the SCUBA-2 map for a given

LBG catalogue, where each pixel in the map contains the integer

number of sources that fall into it. The hits map is then convolved

with the actual PRF of the instrument (note that a different result,

yielding a non-negligible positive flux bias, occurs if the beam is

wrongly assumed to be a simplistic Gaussian). The convolved hits

map is then regressed against the 850µm flux map (S850) to find

the minimal flux residual |〈S〉H − S850|, where 〈S〉 is the average

flux density of the LBG population. The method safely assumes

that galaxies in different redshift slices are uncorrelated and we thus

treat each of our LBG lists independently. The fitting routine yields

minima at S850=(0.21±0.04), (0.39±0.07), and (0.86±0.26) mJy

for z ∼ 3, 4, and 5, respectively (with the error bars calculated

from Monte Carlo simulations). These results are indistinguishable

from the results in columns 3 and 4 of Table 1. It is reassuring that

our statistical detections do not appear to be dominated by an up-

wards bias in flux introduced by potentially “double counting” flux

for multiple sources falling in the same beam.

There is also the legitimate worry that LBGs are also cor-

related with some fainter (as yet undetected, and potentially nu-

merous) population that contributes to the observed submm flux

density, thus boosting our statistical detections (e.g. Chary & Pope

2010, Serjeant et al. 2010, and Kurczynski & Gawiser 2010). How-

ever, for the purposes of our analysis we would say this was flux

associated with the LBG. Whether or not the emission is always

physically within the LBG is beyond the scope of our current study.

3.2 The LBG contribution to the submm background at

850µm

The contribution to the submm background from LBGs is still

poorly constrained, however our data can finally address this ques-

tion, since we now have a robust detection of the average 850µm

flux density of LBGs at three epochs, at least those with ultra-

violet luminosities of L1700 ≈ 1029 erg s−1 Hz−1, characteristic

of galaxies in our sample (Table 2). Using our average stacked

850µm flux densities, we estimate surface brightness densities of

1700, 600, and 100 mJy deg−2 of LBGs at z ∼ 3, 4, and 5, re-

spectively. By comparison, the total background at 850µm inferred

from COBE-FIRAS is 3.1–4.4×104 mJy deg−2 (Puget et al. 1996;

Fixsen et al. 1998; Lagache, Puget & Dole 2005; Hauser & Dwek

2001). Summing these separate surface brightness densities to-

gether, we find that the LBGs with L1700 > 1029 erg s−1 Hz−1

in our z ∼ 3, 4 and 5 samples comprise around 6–8 per cent of

the submm background at 850µm (where the range of values sim-

ply reflects the uncertainty in the COBE-FIRAS result). However,

the true contribution from LBG-like galaxies to the submm back-

ground will come from a wider range in redshift, not just from the
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Table 2. Derived average IR and 1700Å luminosities and corresponding obscured (IR) and unobscured (UV) SFRs of z ∼ 3–5 Lyman Break Galaxies

〈zphot〉 LIR SFRIR L1700 SFRUV

(1011 L⊙) (M⊙ yr−1) (1029 erg s−1 Hz−1) (M⊙ yr−1)

3.35 3.2+0.8
−0.6 55+14

−10 0.9 18

3.87 5.5+0.3
−0.4

93+5
−7

1.7 33

4.79 11.0+4.2
−5.9 186+71

−101 1.7 33

rather narrow redshift slices we have sampled (see Fig. 1), and from

sources falling out of our samples due to incompleteness. To deter-

mine the total (corrected) contribution from LBGs over 3 < z < 5,

we assume that LBGs have a constant comoving number density

(which is a reasonable assumption since the bright end of the lumi-

nosity function for LBGs shows little evolution over 3 < z < 5;

Reddy & Steidel 2009; Bouwens et al. 2007; McLure et al. 2009).

Starting with the z ∼ 3 sample (which is our most complete sub-

sample of LBGs) we can integrate over the comoving volume ele-

ment for this redshift range, scaling the LBG submm background

contribution accordingly. We find that the total contribution to the

submm background from LBGs over the redshift range 3 < z < 5
is likely to be closer to 14–20 per cent. This result is consistent with

Webb et al. (2003), who estimated an upper limit to the contribu-

tion to the submm background from 1 < z < 5 of less than 20 per

cent.

3.3 The bolometric luminosities and total SFRs of LBGs

In order to put LBGs in context with other IR-luminous galaxy pop-

ulations we must determine some intrinsic properties, such as their

IR luminosities and obscured and unobscured SFRs. Our approach

is to make use of the full (rest-frame UV to submm) average spec-

tral energy distributions (SEDs) of LBGs at each epoch, where the

photometry are the average for the sample.

For the average rest-frame UV–near-IR SED of our LBGs, we

find that the best fitting Bruzual (2007) model for z = 3 LBGs se-

lected at 24µm-selected from Magdis et al. (2010b) provides a rea-

sonable model of the stellar emission in our non-IR selected sam-

ple. In Fig. 3 we show the average photometry of the three LBG

samples, with the Magdis et al. (2010b) SED redshifted and scaled

to the observed K-band flux. The template SED provides an ex-

cellent description of the observed average photometry, with only

a slight discrepancy in the UV emission at z = 4 and z = 5, most

likely due to increasing Lyα forest absorption at z > 3. We use

this template to calculate k-corrections in the UV–near-IR part of

the SED.

For the mid-IR-to-submm part of the SED we use the 185-

SED template library constructed by Swinbank et al. (2014), which

includes local galaxy templates from Chary & Elbaz (2001), Rieke

et al. (2009), and Draine et al. (2007), as well as the SEDs from well

studied high-redshift starburst galaxies SMMJ2135–0102 (z =
2.32) and GN20 (z = 4.05) from Ivison et al. (2010) and Carilli et

al. (2011), respectively. We note that the range of temperatures in

the templates is fairly broad; 19-60K. We fit these templates to our

observed far-IR stacked photometry of the LBGs using a χ2 min-

imisation approach, but allowing the redshift and normalisation of

the templates to vary. To improve the constraints and accuracy of

the SED fitting, we have also extracted stacked photometry for our

LBG sub-samples based on Herschel SPIRE maps of the UDS at

250, 350, and 500µm from the Herschel Multi-tiered Extragalac-

tic Survey (HerMES; Oliver et al. 2012). The Level 2 data prod-

ucts from the Herschel ESA archive were retrieved, aligned and

co-added to produce maps. For the stacking, we use the raw map

from Swinbank et al. (2014), which has had the mean flux of 1000

random positions subtracted, effectively removing any systematic

contribution from the background or confusion. In addition, this

map includes re-injected flux from any LBG identified in the 24µm

catalogue used to make a deblended version of the map3 in Swin-

bank et al. (2014) (including 142, 15, and 2 in the z ∼ 3, 4, and

5 samples, respectively). The stacked results are given in Table 1.

We note that significant (i.e. > 3-σ) stacked detections in all three

SPIRE bands are made at z ∼ 3 and z ∼ 4, but not at z ∼ 5.

To provide a constraint on the Wien side of the spectrum, we have

also stacked the LBGs in 24µm Multiband Imaging Photometer for

Spitzer (MIPS; Rieke et al. 2004) imaging using a 13 arcsec aper-

ture radius and apply the standard aperture corrections. This yields

stacked detections of the z ∼ 3 and 4 LBGs but not for z ∼ 5 LBG

sample, and the results are tabulated in Table 1. Thus we use the

stacked fluxes and errors from Table 1 for the z ∼ 3 and 4 samples

in the SED fitting, but convert the SPIRE and MIPS fluxes of the

z ∼ 5 sample to 3-σ upper limits. The best-fitting templates are

shown in Fig. 4, along with the range of models which lie within

1-σ of the best fit that are used to calculate uncertainties on our

SED-derived parameters. Note that our derived SED parameters do

not change appreciably (ie. are well within the 1-σ errors) when we

exclude the MIPS data from the fitting.

We use the best-fitting SEDs to compute the basic properties

LIR and SFR. To calculate the LIR values of our average LBG at

z ∼ 3, 4, and 5, we integrate under the best-fitting SEDs between

8 and 1000µm and tabulate the results in Table 2. We then cal-

culate the corresponding star formation rate (SFR) for our average

LBG (see Table 2) following Kennicutt (1998): SFR (M⊙ yr−1) =
1.7 × 10−10 LIR(L⊙). This relation assumes that the IR luminos-

ity is predominantly powered by star formation (i.e. a negligible

contribution from an AGN, which is assumed to be a good assump-

tion in general for LBGs; e.g. Shapley et al. 2005; Huang et al.

2007; Rigopoulou et al. 2010) and comes from a starburst less than

100 Myr old, with a Salpeter (1955) initial mass function (IMF).

We find that the best-fitting SED template for the z ∼ 3 sample has

a dust temperature of Tdust = 37K and the best-fitting SED tem-

plate for the z ∼ 4 and 5 samples has Tdust = 38K (although note

that the derived dust temperature for the z ∼ 5 LBG SED is not a

very reliable constraint since the photometry are all upper limits ex-

cept for 850µm flux density data point). For reference, we also fit

the SPIRE+SCUBA-2 photometry using a simple modified black-

body assuming a dust emissivity index of β = 1.5 (e.g. Blain et al.

2002) with the Wien side of the spectrum modified by a power law

3 The raw SPIRE maps, deblended model, catalogues

and residual maps used for this analysis are available at

http://astro.dur.ac.uk/∼ams/HSODeblend/UDS/
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Figure 3. Best-fitting Bruzual (2007) model for z = 3 LBGs selected at 24µm from Magdis et al. (2010b), normalised to the observed K-band flux of each

LBG sample at z = 3, 4, and 5. This simple SED scaling provides an overall excellent description of the observed average photometry, with only a slight

discrepancy in the UV emission at z = 4 and z = 5, most likely due to increasing Lyα forest absorption at z > 3 (see text).

Figure 4. Best-fitting far-IR SEDs of the LBG samples at z = 3, 4, and 5, with the shaded regions showing the range of acceptable solutions (see text). We

have used the stacked fluxes (or 3σ upper limits, where appropriate) at 24, 250, 350, 500 and 850µm in the SED fitting. Also overplotted (i.e. not fitted) are

the median stacked 1.4 GHz radio fluxes, which appear to lie mildly (1–3σ) higher than the best-fitting far-IR constrained SEDs would predict for the z ∼ 3

and 4 samples, hinting that either the radio emission in the template is not representative of z ∼ 3–4 star-forming galaxies and/or that there is some AGN

contribution to the radio fluxes of typical LBGs (see text).

of the form Sν ∝ ν−1.7. The derived dust temperatures from the

SED template fitting are lower (by 5–25 per cent, with the percent-

age difference increasing with redshift) compared to the modified

blackbody method, and the LIR values from the modified black-

body fits are a factor of ≈ 2–3 times higher than the SED templates,

demonstrating the additional systematic uncertainty involved in far-

IR SED fitting that should be taken into account.

For each LBG redshift subset, we also perform median stack-

ing4 of the LBG samples in the UDS Jansky Very Large Ar-

ray (JVLA) 1.4 GHz data. The median stacked radio fluxes are

4 A median stack minimizes any bias due to a few number of radio-loud

outliers

S1400 = (2.42± 0.30), (4.20 ± 0.65), and (5.06± 2.25) µJy, for

our z ∼ 3, 4, and 5 LBGs, respectively. The fluxes were obtained

using the JMFIT task within AIPS, where the width of the Gaus-

sian fit to the stack was fixed to be the full width at half maximum

(FWHM) of the corresponding stack at the positions of sources in

a K-band catalogue. The whole K-band catalogue was used to pro-

vide a high S/N image from which the Gaussian parameters could

be determined. This is used over the synthesised beam FWHM to

account for bandwith smearing effects. The radio flux extraction

will be described in more detail in Arumugam (in preparation). The

radio stacks are simply overplotted on the SEDs in Fig. 4 as detec-

tions (at z ∼ 3 and 4) or upper limits (z ∼ 5) using a nominal

> 3σ threshold. We note that the detected radio stacks at z ∼ 3

c© 2013 RAS, MNRAS 000, 1–??
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and 4 lie 1–3 σ higher than the best-fitting far-IR constrained SEDs

would predict, hinting that either the radio emission in the template

is not representative of z ∼ 3–4 star-forming galaxies and/or that

there is some AGN contribution to the radio fluxes of typical LBGs

(although, only ∼3 per cent of LBGs show any AGN activity; Stei-

del et al. 2002; Laird et al. 2006).

Nevertheless, the LBGs appear to be of the LIRG-to-ULIRG

class (LIR ∼1011–1012 L⊙), with corresponding SFRs of several

tens to hundreds of M⊙ yr−1. These results are consistent with

previous work within the photometric uncertainties and systematic

errors involved in SED fitting, but our deep stacked fluxes have

enabled us to provide physical constraints on the far-IR SEDs of

canonically-selected “typical” LBGs for the first time, and are not

limited to just the most massive or UV-brightest subsets (e.g. Lee

et al. 2012; Davies et al. 2013).

3.4 The evolution of the IR luminosity density of LBGs

We have shown that LBGs contribute a non-negligible fraction of

the submm background. Our stacking results provide a new suite of

constraints for models of luminosity density and galaxy formation

as they directly probe the far-IR density of the Universe from z ∼ 3
to 5 down to the LIRG level of energy output (≈ 1011 L⊙).

We can estimate the IR luminosity density of LBGs at z ∼ 3,

4, and 5 by multiplying the LBG volume densities by the corre-

sponding average LBG LIR. To calculate the volume densities,

we integrate the UV luminosity functions from Reddy & Steidel

(2009), Bouwens et al. (2007), and McLure et al. (2009) for z ∼3,

4, and 5, respectively, down to an absolute UV magnitude (M1700)

of M∗
1700 + 1 at each redshift. Our choice of UV luminosity limit

is motivated by the limitation that M∗
1700 + 1 is approaching the

limiting optical depth of the survey, with the R, I and z band sam-

pling the rest-frame 1700Å emission at z = 3–5. Integrating the

luminosity function to a lower luminosity introduces uncertainty

since we enter a regime where the infrared emission of low-(UV)-

luminosity LBGs is not well measured, and therefore their contri-

bution to the IR luminosity budget is uncertain. Limiting to M∗+1
ensures a reasonably conservative estimate of the LBGs’ contribu-

tion to the luminosity density, whilst sampling a representative pro-

portion of the population, below the knee in the luminosity func-

tion. Obviously, integrating further down the UV luminosity func-

tion whilst applying the same canonical average LIR, would result

in a higher luminosity density, but it is likely that generally LIR is

falling with decreasing LUV.

For LBGs with UV luminosities above M∗
1700+1, we find cor-

responding IR luminosity densities of (4.0+2.3
−1.5)×108, (5.0+2.9

−1.8)×
108, and (7.9+7.9

−4.0) × 108 L⊙ Mpc−3 for z ∼ 3, 4, and 5, re-

spectively. In Fig. 5, we have compared our results alongside the

models of the IR luminosity density from Béthermin et al. (2011)

and other available measurements from the literature (Pascale et al.

2009; Rodighiero et al. 2010). Pascale et al. (2009) stacked 24µm-

selected sources, limiting their study to z < 1.5–2, in the submm

using BLAST data (Devlin et al. 2009). Here, using the efficient

canonical LBG selection we are able to reliably extend the model

constraints to z ∼ 3 and beyond for the first time. It appears that our

measured IR luminosity densities for canonically-selected LBGs at

z ∼ 3–5 lie mildly high on average, but are broadly consistent with

the Béthermin et al. (2011) model predictions of LIRGs at z ∼ 3–4

and ULIRGs at z ∼ 5. It should be noted that the relative con-

tribution of different luminosity classes to the infrared luminosity

density predicted by Béthermin et al. (2011) is poorly constrained

at z > 1, especially for low-luminosity galaxies. The contribution

of LIRGs and sub-LIRGs, which is decreasing towards higher red-

shifts is a result of the evolving luminosity function in the Bether-

min model, which sees a steady increase in L⋆ to z ≈ 2 and a

sharp decline in φ⋆ across z ≈ 1–2, whilst the faint end slope is

held constant. The poor empirical constraints on the actual form of

the bolometric luminosity function, in particular the faint end slope,

at z > 2 should be taken into account when interpreting our results

in the context of models such as this.

Obviously the derived luminosity density depends on our

choice of luminosity limit when integrating the UV luminosity

function, since in this calculation we are assuming a fixed aver-

age LIR for all LBGs at each epoch. We have chosen M∗
1700 + 1

to roughly match the depth of our catalogue, however we show the

effect of integrating down to M∗
1700 in Fig. 5, which bring the lu-

minosity densities more in line with the predictions of Béthermin

et al. (2011) for galaxies of this luminosity class. Interpreting these

observations as a lower limit to the total infrared luminosity den-

sity at z ≈ 3–5, and assuming that the luminosity density peaks

at z ≈ 1–2, our observations are consistent with little, or slow,

evolution in the infrared luminosity density over z ≈ 3–5.

3.5 Variation of submm luminosity with stellar mass

Although the LBG approach is efficient at selecting relatively nor-

mal, massive galaxies at high-redshift, it is important to consider

that the ‘LBG’ population is rather a broad demographic. By defi-

nition, the rest-frame ultraviolet/optical colours of LBGs are quite

uniform, as enforced by the colour selection, but the lack of con-

straints on the observed near-infrared (and longer wavelength)

properties results, not surprisingly, in a rather large range of (rest-

frame) optical/near-IR colours in LBG samples (e.g. Rigopoulou et

al. 2006). As pointed out in Davies et al. (2013), there could be a

substantial variation in the average submm flux density within each

of the LBG samples that we calculated in Section 3.1. This can

be investigated directly by examining the individual submm flux

densities of the LBGs. Unfortunately, the 1-σ scatter in the flux

densities of individual sources in each LBG subset is similar to the

map noise (≈ 2.0mJy), indicating that we do not have sufficient

signal-to-noise to detect any real variation or intrinsic scatter in the

submm properties of the bulk of the LBG population. Neverthe-

less, a reasonable expectation is that the far-IR luminosity could be

a strong function of stellar mass (e.g. Davies et al. 2013), which we

now investigate.

The UV/OIR SEDs described above provide a means of select-

ing LBGs within each redshift bin by stellar mass, thus allowing us

to apply the appropriate k-correction to estimate the absolute rest-

frame K-band luminosity from the observed K-band magnitude.

Using UKIRT filters, the k-corrections are 2.6, 2.8, and 2.8 mag for

z = 3, 4, and 5, respectively. We have assumed a fixed template

for the LBGs to evaluate the k-corrections, however in reality the

galaxies will have a range of spectral shapes, due to (primarily)

variations in extinction and age. In the following analysis we ap-

ply the canonical factors above because we lack the information

to k-correct on a case-by-case basis, but as a guide to the likely

range in k-corrections due to varying spectral shapes, an additional

AV = 1mag of extinction on the templates correspond to approx-

imately 0.3 mag differences in the k-corrections. This ‘uncertainty’

should be kept in mind in the following analysis and interpretations.

Adopting MK as an empirical proxy for stellar mass (thus

allowing us freedom in the interpretation by assuming different

M⋆/LK ), we repeat the stacking procedure in bins of MK . The

results are shown in Fig. 6, which reveals a positive correlation be-
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Figure 5. Evolution of the bolometric IR luminosity density (solid line)

as a function of redshift from the parametric backward evolution model of

Béthermin et al. (2011). Also shown are the individual contributions in the

models from normal galaxies (LIR < 1011 L⊙), LIRGs (1011 < LIR <
1012 L⊙), ULIRGs (1012 < LIR < 1013 L⊙), and HyLIRGs (LIR >
1013 L⊙). Measurements from Pascale et al. (2009) and Rodighiero et al.

(2010) are overplotted, along with our results. To derive the IR luminosity

density, we have multiplied the space density of LBGs at each redshift by

the average LIR we have measured, which is obviously affected by the

choice of luminosity integration limit; we show the effect in integrating

down to M∗ and M∗ + 1. These results extend observational constraints

of the models from z = 3 to 5, showing that the observations of LBGs are

broadly consistent with the model predictions for the LIRG class of galaxies

for our z ∼ 3 and 4 LBGs and with the ULIRG class for the z ∼ 5 LBGs.

tween submm flux density and stellar mass at the highest redshifts,

with the most massive LBGs at ∼ 5 tending to be the most submm

luminous on average. There is also a mild hint of evolution in the

data – with the z ∼ 5 LBGs being more IR luminous than similarly

massive LBGs at z ∼ 3 and 4 – albeit not at a very significant level

(≃ 2σ). On closer inspection, we find that the stacked submm flux

result for the highest mass bin in the z ∼ 5 sample is dominated

by a single ∼ 4σ submm source in the map at one of the LBG lo-

cations. So to be conservative one could just consider the bins with

MK > −21mag and the overall trend persists. We discuss this

further in Section 4.

3.6 Comparison of submm-derived SFRs with UV-derived

SFRs

For star-forming galaxies, we expect that the rest-frame UV contin-

uum and the far-IR emission should be correlated if τ 6 1, since for

a given dust covering fraction, the UV continuum emission should

on average scale with the energy re-radiated in the far-IR. It also

follows that the dust absorption should be correlated with UV red-

dening, and this has been seen for local starburst galaxies (Meurer,

Heckman & Calzetti 1999) and at higher redshifts from z ∼1–3

(e.g. Reddy et al. 2006, 2012; Magdis et al. 2010a,b; Heinis et al.

2013). It is therefore difficult to distinguish between a galaxy with

a truly high SFR and one with an intrinsically low SFR and large

photometric errors. Correcting for dust attenuation using only opti-

cal data is inherently difficult and uncertain, given the degeneracy

between the average age of the stellar population and affect of red-

dening, and thus the need for excellent sampling of the UVOIR

spectral range. Submm observations provide a clean route to as-

z~3
z~4
z~5

Figure 6. Measured 850µm flux density (as a proxy for IR luminosity or

SFR, shown on right-hand axis, using an average approximate conversion

from our best-fitting SEDs of 1 mJy= 220M⊙ yr−1) as a function of ab-

solute rest-frame K-band magnitude (as a proxy for stellar mass, shown on

the top axis, assuming an average mass-to-light ratio here for illustration

purposes for the LBGs of 1.15, which assumes a Salpeter 1955 IMF). The

plot reveals a positive correlation between submm flux density and stellar

mass at z ∼ 5, with the most massive LBGs being more submm luminous

on average, although the first bin at MK ≈ −22mag is dominated by a

single ∼ 4σ source. However, to be conservative, one could just consider

the data at MK > −21mag, where we see the trend persist.

sessing the level of dust extinction, and hence the amount of star

formation that is “obscured” from view in the optical.

Shapley et al. (2001) discuss that the more intrinsically lumi-

nous LBGs appear to be dustier, with redder colours (and should

therefore be brighter in the submm). Chapman et al. (2000) re-

ported that submm-bright LBGs tended to have extremely red

colours compared to the average of the population. This was con-

firmed by Reddy et al. (2012) who showed using Herschel 100 and

160µm data that the reddest of their 146 LBGs at z ∼ 2 indeed

contain more dust, finding remarkable agreement between the local

and high-redshift UV attenuation curves (e.g. Meurer, Heckman &

Calzetti 1999). With our large LBG catalogues and deep SCUBA-

2 map, we can now explore these issues in more detail and with

greater statistical significance. Here we focus on our largest LBG

sample at z ∼ 3 since this is where we have sufficient S/N to split

up the sample further. To estimate the rest-frame UV (1700Å) lu-

minosities, we simply calculate the luminosity from the observed

flux in the observed R-band, with no k-correction. The associated

UV-derived SFRs are obtained by employing the relation in Ken-

nicutt (1998) to the absolute M1700 magnitudes of the LBGs (see

Table 2).

In Fig. 7, we plot measured 850µm flux (as a proxy for ob-

scured SFR) versus the UV-derived SFRs (uncorrected for dust) –

this provides a measure of the amount of “dust-obscured” versus

“unobscured” or “visible” star formation. We find an inverse cor-

relation of submm flux with UV SFR, that is, the LBGs that are

faintest in the UV are also the most submm bright on average. Are

the faint UV population intrinsically the dustiest or is this simply a

mass selection effect? To explore this, we split up our sample into

three bins of equal mass width across our range of stellar mass:

M⋆ < 5×109 M⊙ (least massive); 5×109 6 M⋆ 6 1×1010 M⊙

(intermediate mass); and M⋆ > 1 × 1010 M⊙ (most massive). At

a fixed mass, we again see that submm flux density increases with

decreasing UV SFR, but now also that the average submm flux in-

creases with the stellar mass.

c© 2013 RAS, MNRAS 000, 1–??
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What is the distribution of obscured-to-unobscured star for-

mation in the LBGs? We can explore this by plotting the aver-

age LIR/LUV ratio versus (observed) R − i colour for the LBGs,

using the same stellar mass binning as above (Fig. 7). This plot

demonstrates that on average, LBGs have LIR/LUV ∼ 5, but for

the reddest (β ≈ −0.3) LBGs in all mass subsets the obscured-

to-unobscured ratio is up to an order of magnitude larger than

this, with LIR/LUV ∼ 50. As Fig. 7 shows, for the population

as a whole, the increase in LIR/LUV scales with β in a manner

broadly in agreement with that expected if we assume an SMC-

like extinction curve and assume that all of the optical extinction

is caused by dust that is absorbing and re-emitting the UV radia-

tion field. However, we also see evidence that there is a variation

in the LIR/LUV–β trend with mass, with the most massive LBGs

showing the highest LIR/LUV for all colour bins. The combina-

tion of these two plots demonstrates that (a) at a fixed mass, we

can relate optical reddening, as parameterised by the UV contin-

uum slope β, to dust-reprocessed emission in the observed submm,

and (b) the most massive LBGs also tend to have higher obscured-

to-unobscured (LIR/LUV) ratios (are more extinguised) on aver-

age than the less massive LBGs, hinting at different dust proper-

ties/geometries across the mass range. We discuss this further be-

low.

4 DISCUSSION: EXPLORING THE LIRG POPULATION

AT Z >3–5

We detect a statistical signal in the submm for the LBG populations

at z ∼ 3, 4, and 5. These stacked fluxes tell us about the “average”

submm properties of LBGs at each epoch, and the mean submm

flux density tends to increase with redshift. A more careful analy-

sis reveals that it appears to be a simple mass-selection effect – at

higher redshifts lower-mass (and lower overall luminosity) objects

drop out of the sample, mimicking the trend that LBGs increase

in IR luminosity with redshift. When this is taken into account, by

splitting our redshift sub-samples further into stellar mass bins, the

data show no convincing evidence of strong redshift evolution in

submm flux (as a proxy for bolometric luminosity) with absolute

rest-frame K-band flux (as a proxy for stellar mass). For compari-

son to the well-established “main sequence” of star-forming galax-

ies, which is seen to evolve with redshift, we plot our z ∼ 3, 4,

and 5 LBG total (unobscured+obscured) SFRs versus stellar mass

in Fig. 8, alongside observed correlations from z = 0–3 (Noeske et

al. 2007; Elbaz et al. 2007; Daddi et al. 2008; Magdis et al. 2010a).

When plotted in this way, our data show that LBGs at z ∼ 3, 4,

and 5 might follow the so-called “main sequence” of star formation

activity, with the most massive LBGs tending to have the highest

overall SFRs. The current data are not strongly constraining on the

evolution of the scaling between stellar mass and SFR for LBGs

over redshifts 3–5, but hint that the ‘main sequence’ (for LBGs at

least) shows little evolution over this range.

Because we are not prone to dust obscuration effects in the

submm (in contrast to the UV/OIR), we can place strong and defini-

tive constraints on the submm background for the first time in this

luminosity and redshift regime. We have estimated that LBGs at

3 < z < 5 contribute 6–8 per cent of the 850µm background,

which rises to 14–20 per cent once we have corrected for our nar-

row redshift slices across this range. To put this in perspective,

the bright (S850 > 2mJy) SMG5 population makes up 20–30%

5 Here, we consider an SMG to be a galaxy with S850 >1 mJy, since for

ALL
Least massive
Intermediate mass
Most massive

ALL
Least massive
Intermediate mass
Most massive

Figure 7. Trends of submm flux, optical colours, and UV-estimated SFRs.

Top panel The weighted mean 850µm flux density as a function of UV-

estimated SFR for LBGs at z ∼ 3, showing an increase in submm flux

density with lower UV SFR. The error bars represent the standard error of

the mean. Approximate corresponding IR-SFRs are given on the right-hand

axis for reference and are calculated using an average approximate conver-

sion of 1 mJy=220 M⊙ yr−1 from our SED fitting results for the z ∼ 3

sample. Bottom panel The mean LIR/LUV as a function of R − i colour

for different mass bins (with the approximate corresponding UV slope, β,

given on the top axis for reference), showing that z ∼ 3 LBGs with the

reddest colours are also the most dust obscured, and that this trend scales

up with mass. The error bars represent the standard error of the mean. The

dotted curve shows the expected LIR/LUV as a function of optical redden-

ing, assuming an SMC-like extinction curve (for reference, the dot-dashed

curve of Meurer, Heckman & Calzetti 1999 is also shown). Taken together,

these plots show directly that for a fixed mass, the reddest LBGs are the

most submm luminous (i.e. are the most dust obscured), with the average

submm luminosity-to-UV luminosity ratio increasing with mass.

(e.g. Coppin et al. 2006; Weiss et al. 2009; Swinbank et al. 2014)

of 850µm background, and the contribution from > 1mJy SMGs

peaks at ∼ 50 per cent of the SFRD at z ∼ 2 (Wardlow et al. 2011).

It was thought that if SMGs and LBGs are essentially the same

population, but with LBGs just being fainter and more numerous,

then LBGs could make up the rest of the “missing” submm back-

ground at 850µm (75–80 per cent; Adelberger & Steidel 2000).

Our measurement shows that at 3 < z < 5 LBGs with (dust-

uncorrected) UV luminosities greater than M⋆

1700 + 1 contribute

at most 20 per cent of the 850µm submm background, implying

the bulk of these sources, SIR > SUV, which makes a natural dividing line

between whether the submm or UV is more important energetically.

c© 2013 RAS, MNRAS 000, 1–??
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Figure 8. The “main sequence” of star-forming galaxies predicts increasing

star formation activity with stellar mass, and the relation is known to evolve

with redshift. The observed correlations are plotted at z = 0 (Noeske et

al. 2007), z = 1 (Elbaz et al. 2007), z = 2 (Daddi et al. 2008), and z =

3 (from Magdis et al. 2010a, based on IRAC-detected LBGs). The blue

dashed lines simply represent the extent of the 1-σ spread in the Magdis et

al. 2010a data, to guide the eye to the likely range of values at z ∼ 3. This

plot has been adapted from Davies et al. (2013) and their limits for typical

z ∼ 3 LBGs are shown as blue arrows, as well as their submm detection of

IRAC-22.5 (high mass) sub-sample. All of the data points and correlations

shown take into account the total (obscured+unobscured) SFRs. Similar to

Fig. 6 (which only shows the trend for the obscured SFRs with stellar mass),

our new data hint that the SFRs of LBGs at z ∼ 3, 4, and 5 scale with mass,

with the most massive LBGs tending to have the highest overall SFRs.

that the majority of the background is emitted at z < 3. Of course

the remaining ∼50–60 per cent of the 850µm background, unac-

counted for by SMGs and LBGs, could be feasibly contributed by

star-forming galaxies at lower redshifts, e.g. BX/BMs at z ≈ 2,

or less UV/optically luminous “normal” galaxies (Smith et al. in

preparation).

Now that we know the average 850µm flux of the LBG popu-

lations at different epochs, we can test this conjecture by looking at

the amount of overlap of LBGs and SMGs in the 850µm number

counts. Turning to the deepest and most tightly constrained 850µm

number counts available from the cluster lensing fields of Zemcov

et al. (2010), at our average detected stacked flux of ≈ 0.25mJy

and surface density of z =3 LBGs suggests that LBGs comprise

≈ 35 per cent of the SMG population in this sub-mJy regime. We

find that the LBGs comprise increasingly smaller fractions of the

SMG population as we probe to higher 850µm fluxes, namely

≈ 15 per cent at ≈ 0.4mJy for the z ∼ 4 LBGs and ≈ 3 per

cent at ≈ 0.9mJy for the z ∼ 5 LBGs. It appears that we are fi-

nally starting to see a unifying link between the LBG and SMG

populations, with LBGs becoming increasingly important contrib-

utors to the submm background as we probe down into the sub-

mJy regime. Note that some classical SMGs are also LBGs, or at

least have UV/optical properties consistent with LBGs (Chapman

et al. 2005; Simpson et al. 2014), again indicating overlap between

the populations. Further progress in unifying the SMG and LBG

populations can be made by examining our candidate SMG-LBG

counterparts, which will appear in a future paper.

We also find that the submm flux increases with LBG optical

faintness and redness – that is to say, LBGs appear to be dustier and

redder on average as they become more optically faint. This may

seem at odds with Shapley et al. (2001), who claim that more intrin-

sically luminous LBGs appear to be dustier, with redder colours.

But recall that our UV-SFRs have not been corrected for dust at-

tenuation, so their intrinsic luminosities will be higher once the ob-

scured SFRs (as measured in the submm) have been factored in.

Submm flux can be taken as a proxy for the bolometric luminosity

of an LBG6. So in fact, we do see that the most bolometrically lu-

minous LBGs (as traced in the submm) contain the most dust (by

definition) and have redder optical colours on average, but these

are not the most optically luminous LBGs. Surveys trying to de-

tect LBGs in the submm individually should therefore focus on the

optically faintest and/or reddest LBGs.

5 CONCLUSIONS

We have presented an 850µm stacking analysis of LBG samples at

z = 3, 4, and 5, to measure the average rest-frame far-infrared

(∼150–200µm) luminosity of “normal” galaxies in the first 1–

2 Gyr after the Big Bang. We have several main findings:

(i) The average 850µm flux density of LBGs is 〈S850〉 ≈0.2–

0.9 mJy at z = 3–5 (increasing with redshift), and they contribute

up to 20 per cent of the submm background.

(ii) Assuming reasonable templates for the broad (8–1000 µm)

infrared spectrum, the results imply that LBGs straddle the

LIRG/ULIRG population, with LIR ∼ 3–11×1011 L⊙ (increasing

with redshift). Our observed evolution of the IR luminosity density

of LBGs is broadly consistent with model predictions.

(iii) We see a positive correlation between submm flux density

and stellar mass: the most massive LBGs at all three epochs are the

brightest at 850µm. But we do not see evidence in our data for a

continued strong evolution of the main sequence of star formation

from z = 3–5.

(iv) We have determined that for a fixed mass, the optically red-

dest LBGs are the most submm luminous (i.e. are the most dust-

obscured, by definition), and that the average submm luminosity-

to-UV luminosity ratio increases with mass.

These results provide an empirical baseline to motivate and

guide future direct detection and mapping experiments with the At-

acama Large Millimeter Array (ALMA). ALMA will achieve the

sensitivities required to detect the dust continuum in typical indi-

vidual LBGs in order to fully characterize these sources which are

contributing to the submm background.
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