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ABSTRACT

This paper deals with a modified version of Newton’s method for unconstrained
minimization in which a search direction of the forms = −αg+ βp is obtained
by fitting a quadratic model to the objective function in the plane of the Newton
directionp and the steepest descent direction−g. This composite search direction
can be used as a fall-back option when the standard Newton step proves ineffective
– e.g., when the Hessian matrix is not positive definite andp represents a move
towards a saddle point or maximum.

The method proposed for determiningα and β resembles a two variable trust-
region approach. Two prototype algorithms are discussed: one usess in a trust-
region framework and the other performs a line search. In both methods the com-
putational overheads are comparable with those for a standard Newton method
because only one linear system needs to be solved per iteration.

223



1 Introduction

In this paper we consider the unconstrained minimization of a continuous and
twice-differentiable functionf (x) by Newton’s method. We use the notationG =
∇2 f (x) andg = ∇ f (x). WhenG is positive definite, the basic Newton iteration
generates a new point,x+, from the current one,x, by calculating

p =−G−1g; x+ = x+ γp

whereγ is chosen by a line search to satisfy the Wolfe conditions. This iteration
is usually quadratically convergent, provided the choiceγ = 1 is acceptable near
the solution. Practical difficulties arise, however, whenx is far from the solution
and the Hessian is not positive definite because, in this case,p may not be a de-
scent direction. This is just one of the reasons why the Newton method has often
been neglected in favour of quasi-Newton or conjugate-gradient approaches to the
unconstrained minimization problem. Other practical disadvantages are associated
(a) with the need to provide exact second derivatives and(b) with the costs of solv-
ing the linear systemGp= −g. The advent of efficient tools for automatic differ-
entiation (see, e.g. Christianson (1992)) has helped alleviate the labour of getting
second derivatives. It has also been noted that, for some problems at least, it is
possible to compute the Newton direction for ann-variable problem in much less
thanO(n3) operations. This can be seen, for instance, in the Pantoja algorithm for
optimal control (Pantoja (1988)). Hence it seems worthwhile to address, yet again,
the question of providing a fall-back option, within a Newton-like minimization
algorithm, for dealing with the situation when the Hessian matrix is not positive
definite. Some strategies that have already been used are listed below. Fuller dis-
cussion of these techniques (and others) for dealing with nonconvex and/or highly
non-quadratic problems is given by Fletcher(1980), Gill et al(1981) and Conn et
al(2000).

(i) The trust region approach uses a search direction that can be calculated from

(λI +G)p =−g

whereλ is sufficiently large to ensure that(λI + G) is positive definite. It is well
known that this givesp as the solution of

Minimize pTGp/2+gT p s.t. pT p≤ ∆ (1.1)

where∆ is a trust region radius (that depends nonlinearly onλ). In most trust
region method implementations, two or three trial values ofλ must be used to get
an acceptable approximation to a solution of (1.1). More details are given by, for
instance, Moŕe (1983), Dennis et al (1991).

(ii) The Truncated Newton approach (Dembo & Steihaug (1983)) determines its
search direction from apartial solution ofGp= −g using the conjugate gradient
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algorithm. The conjugate gradient iterations are terminated before the accurate
Newton direction has been found ifG is detected as having a direction of negative
curvature. Truncated Newton algorithms which include some trust-region features
are given by Steihaug (1983) and Dixon & Price (1986).

(iii) Modified Cholesky factorization is a technique which, ifG is not positive-
definite, obtains factorsL, LT corresponding to a perturbed matrix̃G = G+ E
which is positive definite. The search direction is then obtained as

p =−L−TL−1g =−G̃−1g.

More details of such techniques are given by Gill, Murray & Wright (1981) or
Schnabel & Eskow (1988).

(iv) An unsuitable Newton vector can be replaced by a composite search direction

s= αq+βp (1.2)

whereq is parallel to the steepest descent vector−g and the coefficientsα andβ
are found by considering the behaviour off in the plane defined byp andq. One
of the first proposals of this kind was the so-called “dog-leg” algorithm described
by Powell (1970) where the choice ofα andβ is based on satisfying a trust-region
limit on the size of||s||. Powell suggested (1.2) in the context of a quasi-Newton
approach involvingp = −H−1g whereH is only an updated estimate ofG; but
his method of calculatingα andβ could also be used ifp were the true Newton
direction. The idea that we describe in this paper differs from Powell’s in a number
of ways – not least in that it does not default simply to a steepest descent step when
gTGg< 0.

The algorithm of Dennis & Mei(1979) uses a search direction like (1.2) when mini-
mizing a convex function – although in this methodp is obtained as a quasi-Newton
direction. In the nonconvex case, however, the algorithm includes a third com-
ponent in the determination ofs (and hence it is known as the “double dog-leg”
technique).

Use of a composite search direction like (1.2) has also been proposed by Byrd et
al (1987) and by Zhang & Xu (1999). These proposals differ from the algorithms
described in this paper by virtue of sometimes takingp as a direction of negative
curvature, rather than the Newton step, whenG is indefinite. Furthermore they are
developed only as trust-region algorithms, whereas we shall also consider using
(1.2) in a line search context.

A search direction like (1.2) has been used for for nonlinear least-squares problems
(Bartholomew-Biggs & Forbes (2000)). In this caseα andβ are found by fitting
a quadratic model to the objective function in the plane of the Gauss-Newton and
steepest descent vectors. This composite search direction is used when the standard
Gauss-Newton direction proves ineffective. Experimental results have shown that

225



this can work well; and therefore the present paper considers an extension of a sim-
ilar idea for general function minimization. The situation here is a little different
from the least-squares case because the Gauss-Newton step is always downhill (ex-
cept in the singular case) whereas the Newton iteration may give an uphill direction
if the Hessian matrix is indefinite.

As a final note on the use of composite search directions, we mention briefly a sug-
gestion made by Scolnik(1999) which involves combining search directions gener-
ated during the inner iterations of a Truncated Newton method – i.e., a combination
of ideas from(ii) and(iv) of this section.

In the next section we shall show that the determination of suitable values ofα and
β can be viewed as a two variable trust region problem. In section three we outline
some algorithms using (1.2) and in section four we consider some questions of
convergence. A brief discussion of numerical experience and future work appears
in section five.

2 The Two Dimensional search direction

We wish to determine a search direction of the form

s= αq+βp (2.1)

wherep is the Newton correction obtained by solvingGp= −g andq is a scaled
steepest descent direction. Two possible choices are

q =−(
gTg
|gTGg|

)g. (2.2)

and

q =−||p||
||g||

g (2.3)

Scaling (2.2) implies that, whengTGg > 0, a unit step alongq will give a good
approximation to the one-dimensional minimum. Choice (2.3) gives||q||= ||p||.

The Newton stepp locates a stationary point of the local quadratic model off (x)

Q(p) = pTg+ pTGp/2≈ f (x+ p)− f (x).

WhenG is non-singular but not positive definite,p will either be uphill towards a
maximum ofQ or else it will be a direction (of ascent or descent) towards a saddle
point. Hence the composite direction (2.1) must be constructed in order to have
more desirable properties for use in a minimization algorithm.

We consider a two-dimensional quadratic model off in the plane defined byp and
q, namely

φ(α,β) = c1α+c2β+c3αβ+c4α2/2+c5β2/2 (2.4)
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It is easy to see, from a Taylor series expansion ofQ(x+αq+βp), that

c1 = qTg; c2 = pTg; c3 = pTGq; c4 = qTGq; c5 = pTGp

where the definition ofp implies

c5 =−c2 and c3 =−gTq =−c1. (2.5)

With the scaling (2.2) we have

c1 =− (gTg)2

|gTGg|
and c4 = (

(gTg)2

|gTGg|2
)gTGg

which implies

c4 =
{
−c1 if gTGg> 0
c1 if gTGg< 0

(2.6)

With the scaling (2.3) we get

c1 =−||p||
||g||

gTg =−||p||||g|| and c4 =
pT p
gTg

gTGg

Since we want to deal with the nonconvex case, we cannot assume thatφ(α,β)
has an unconstrained minimum with respect toα andβ. Hence our method for
calculatingα, β is based on solving

Minimize φ(α, β) subject to α2 +β2 = ρ2. (2.7)

The constraint in (2.7) means thatρ acts as a kind of trust-region radius in(p,q)-
space. The choice ofρ will be considered later; but we observe that whenρ = 1 the
trust region boundary is a curve which includes the Newton point (α = 0, β = 1).
In addition, if gTGg> 0 and scaling (2.2) is used then the trust-region boundary
also includes the Cauchy point (α = 1, β = 0).

2.1 Analytical solution of (2.7)

Values ofα andβ which solve (2.7) must satisfy

c1 +c4α+c3β+αλ = 0

c2 +c3α+c5β+βλ = 0

α2 +β2 = ρ2.

The first two equations are stationarity conditions for the Lagrangian

L(α, β) = φ(α, β)− λ
2
(ρ2−α2−β2)
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whereλ is the Lagrange multiplier for the constraint in (2.7). Using (2.5) we get

(λ+c4)α−c1β =−c1 (2.8)

−c1α+(λ−c2)β =−c2. (2.9)

Hence the solution to (2.7) is

α =
−c1λ

(λ−c2)(λ+c4)−c2
1

; β =
−c2

1−c2(λ+c4)
(λ−c2)(λ+c4)−c2

1

(2.10)

where the constraint in (2.7) meansλ must satisfy

c2
1λ2 +(c2

1 +c2(λ+c4))2

((λ−c2)(λ+c4)−c2
1)2

= ρ2. (2.11)

It is easy to see that (2.11) re-arranges into a quartic equation inλ.

A consequence of (2.11) is that (2.10) can be re-written to show the relation be-
tweenα, β andρ. Since (2.11) implies

(λ−c2)(λ+c4)−c2
1 =

±
√

(c2
1λ2 +(c2

1 +c2(λ+c4))2)
ρ

we get

α =
±ρc1λ√

(c2
1λ2 +(c2

1 +c2(λ+c4))2)
; β =

±ρ(c2
1 +c2(λ+c4))√

(c2
1λ2 +(c2

1 +c2(λ+c4))2)
(2.12)

It is worth noting that, ifλ = 0 then (2.12) gives

α = 0; β =±ρ.

Since (2.11) may have several roots, we need to consider the value ofλ more
carefully. The stationarity of the Lagrangian for (2.7) means that

∂φ/∂α =−λα; ∂φ/∂β =−λβ.

Hence the directional derivative along the outward unit normal to the trust region
constraint is

(α/ρ, β/ρ)
(
−λα
−λβ

)
=−λρ.

This implies that (to the first order) a changeε in the value ofρ in (2.7) will cause
the solution value ofφ to change by−λε. Now, in the nonconvex case (i.e. when
pTg > 0, pTGp< 0 and/orgTGg< 0) it is clear that the optimal value ofφ must
decrease as the radiusρ increases. Hence we must haveλ > 0 for all ρ. If, however,
the local quadratic model is convex (pTg< 0, pTGp> 0 andgTGg> 0) thenφ has
an unconstrained minimum on the trust region boundary at the Newton point when
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α = 0 andβ = ρ = 1. In this case,λ = 0 (and settingρ > 1 will cause an increase
in the optimalφ). However, ifρ < 1 and if scaling (2.2) is used then

φ(ρ,0) > φ(1,0) and φ(0,ρ) > φ(0,1)

and so, as in the nonconvex case, the optimal value ofφ will decrease asρ increases.
Summarising these observations we can say

λ > 0 for all ρ > 0 whenφ is nonconvex (2.13)

λ≥ 0 for 0< ρ≤ 1 whenφ is convex (2.14)

We can place another restriction on the value ofλ, using the second order optimal-
ity condition for (2.7), namely

zT∇2Lz> 0

wherez is the tangential vector(β, −α)T at the solution. Since∇2L is the coeffi-
cient matrix in (2.8), (2.9), it follows that

(λ+c4)β2−2c1αβ+(λ−c2)α2 > 0

which leads to

λ >
c2α2 +2c1αβ−c4β2

ρ2 . (2.15)

2.2 A variable transformation approach to (2.7)

By contrast with the above discussion, we can approach (2.7) in another, possibly
simpler, way by defining

α = ρsinθ; β = ρcosθ (2.16)

This ensures that the trust region constraint is automatically satisfied and therefore
we wish to findθ∗ as the unconstrained minimizer of

ψ(θ) = ρ(c1sinθ+c2cosθ)+
ρ2

2
(2c3sinθcosθ+c4sin2 θ+c5cos2 θ)

which is obtained by substituting (2.16) in (2.4). Using (2.5) this simplifies to

ψ(θ) = ρ(c1sinθ+c2cosθ)+
ρ2

2
(−c1sin2θ+c4sin2 θ−c2cos2 θ). (2.17)

It then follows, on differentiating (2.17) with respect toθ, thatθ∗ satisfies

ρ(c1cosθ∗−c2sinθ∗)+
ρ2

2
(−2c1cos2θ∗+(c2 +c4)sin2θ∗) = 0 (2.18)
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and

−ρ(c1sinθ∗+c2cosθ∗)+
ρ2

2
(4c1sin2θ∗+2(c2 +c4)cos2θ∗) > 0 (2.19)

In this paper we shall not pursue the question of gettingλ, α andβ by finding an
appropriate solution of (2.11) and substituting in (2.12); and neither shall we con-
sider the use of (2.18) and (2.19) to findθ∗. Instead, in the algorithms described in
the next section, we shall adopt the simpler expedient of determiningθ∗ iteratively
by applying the bisection technique to (2.17).

To conclude this section, we comment briefly on the relationship between our pro-
posal using (2.7) and (2.17) and the method of Powell (1970). This is most easily
done if we consider the case whenq is defined using the scaling (2.3). If∆ denotes
a trust-region radius on the steps then we simply setρ = ∆/||p|| in the subproblem
(2.7). If, however, the same value of∆ were to be imposed within the context of
the Powell “dogleg” algorithm thenα, β would be found as follows.
If gTGg≤ ||g||3/∆ then

β = 0, q =−g/||g||, α = ∆

otherwise

q =−g
gTg

gTGg
, α = 1−β

whereβ solves

Minimize
β2(p−q)TG(p−q)

2
+βgT(p−q)

subject to
√

(qTq+β2(p−q)T(p−q))≤ ∆

The first point to observe is that a pure steepest descent step is used whenevergTGg
is negative, which seems to be a much weaker strategy than the one we propose.
In the case where the Powell method does use a composite step, it is based upon
searching the line between the Cauchy and Newton points for the least value of the
local quadratic model (subject to being inside the trust region).

2.3 A worked example using search direction (2.1)

As an illustration of the behaviour of the optimally chosen search direction (2.1)
obtained by minimizing (2.17) we consider the simple function

f (x) = x1x2 +c(x)2 where c(x) = Min(0, 1−x2
1−x2

2) (2.20)

at the pointx = (−0.5, 0.25). Herec(x) = 0 and sof (x) =−0.125. Moreover,

g =
(

0.25
−0.5

)
and G =

(
0 1
1 0

)
.
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The Newton stepp= (0.5, −0.25)T is uphill towards the saddle point at the origin.
Using (2.2) we getq = (−0.3125, 0.625)T . After substituting forc1, ..,c5 and
takingρ = 1 in (2.17) we find, on applying the bisection method in the initial range
0≤ θ≤ π, thatθ∗ ≈ 2.221 andψ(θ∗)≈−0.82. Thus the steps (2.1) is

s≈ 0.796q−0.605p≈ (−0.5513, 0.6489)T .

Hence the new pointx+s≈ (−1.0513, 0.8989)T which givesc(x+s)≈−0.9132
and f (x+s)≈−0.1111. This does not agree with the quadratic prediction

f (x+s) = f (x)+ψ(θ∗)

and, moreover,f (x+ s) > f (x). Hence we need to consider a smaller step. If we
setρ = 0.5 in (2.17) thenψ is minimised atθ∗ ≈ 2.198 which leads to

s≈ 0.405q−0.294p≈ (−0.2733, 0.3263)T .

Now x+ s = (−0.7733, 0.5763)T and f (x+ s) = −0.4457. Hence we have ob-
tained an improved point by a reduced step along the composite direction (2.1).

Next we consider the function (2.20) atx = (0.5, 0.25)T , where f (x) = 0.125.
Now p = (−0.5, −0.25)T and the scaling (2.2) yieldsq = (−0.3125, −0.625)T .
When ρ = 1 the quadratic model (2.17) has a minimum value ofψ ≈ −0.2205
whenθ∗ ≈ 1.883. Thus the combined step (2.1) is

s≈ 0.952q−0.307p≈ (−0.1437, −0.5179)T .

Hencex+s= (0.3563, −0.2679)T and f (x+s) =−0.0955. It is important to note
that – unlike the pure Newton correction – the combined steps achieves descent
pastthe the saddle point atx1 = x2 = 0. Furthermore

f (x)+ψ(θ∗) = 0.125−0.2205=−0.0955= f (x+s)

and so the actual change inf agrees with the quadratic prediction. We can therefore
consider taking a larger step; and if we setρ = 1.5 in (2.17) we find thatψ is
minimized whenθ∗ ≈ 2.07 which gives

s≈ 1.32q−0.717p≈ (−0.0529, −0.6439)T

so thatx+ s= (0.4471, −0.3939)T and f (x+ s) = −0.1761. Hence the increase
in trust region radius produces a bigger decrease inf .

3 Algorithmic considerations

We now consider how the search direction (2.1) can be brought into the frame-
work of a Newton-like method for minimization. We shall in fact propose two
approaches: one which uses line searches and one which is of a trust-region type.
First, however, we mention some other algorithmic details.
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3.1 Scaling the steepest descent direction

We have mentioned two possible scalings for definingq in (2.1). Both these scal-
ings will be useful and in order to implement the ideas outlined in the previous
section we need to make a choice between them. This can be done by the follow-
ing simple algorithm, involving a small positive constantm.

If |gTGg| ≥mgTg then q =−(
gTg
|gTGg|

)g; else q =−||p||
||g||

g. (3.1)

Use of (3.1) will mean that a unit step alongqwill not overshoot the one-dimensional
minimum (if there is one). Hence the discussion preceding (2.14) about the posi-
tivity of the Lagrange multiplier for (2.7) will still be valid.

3.2 Minimizing (2.17)

We consider next the minimization of the local quadratic model (2.17) with respect
to θ. In order to use the bisection method we need to identify the range in which
we expectθ∗ to lie. If we evaluate

ψi = ψ(i
π
2
) for i = 0,3

thenψ0, ...,ψ3 will, respectively be quadratic predictions of

f (x+ p), f (x+q), f (x− p), f (x−q).

Now if ψk = Min(ψ0, ...,ψ3) then the optimal valueθ∗ lies in the range

(k−1)
π
2
≤ θ∗ ≤ (k+1)

π
2

which gives a suitable starting bracket for the bisection method.

3.3 Solving the Newton equation

The search direction (2.1) involves the calculation ofp = −G−1g even whenG
is indefinite. If, as is usual in Newton methods, we attempt the solution ofGp=
−g by the Cholesky method then we shall easily detect indefiniteness ofG by a
breakdown in the factorization. It will then, however, be necessary to start the
solution of the Newton equation again by a different method (such as standard
LU factorization). A better approach might be to compute theLBLT factors ofG
(whereB is a matrix with 1×1 or 2×2 blocks on the diagonal). We can then obtain

p =−L−TB−1L−1g (3.2)
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using forward and backward substitution. Non positive-definiteness ofG can be
detected by the presence of negative terms or negative eigenvalues in the 2× 2
blocks in the matrixB.

We must also consider the special case whenG is singular becauseGp=−g is then
not solvable by any standard technique. For dealing with this situation we suggest
the use of a modifiedLBLT factorization in which any diagonal element which is
zero (to within some tolerance based on the working precision) is replaced by a
prescribed small positive constant and any block with a zero eigenvalue is replaced
by one whose smallest eigenvalue is the same threshold constant. The resulting
factors will then correspond to some positive definiteG̃ = G+ E, whereE is a
correction matrix. The vectorp given by (3.2) can be regarded as an “almost-
Newton” direction which can be used in the calculation of (2.1).

3.4 A linesearch algorithm using (2.1)

We can now present a typical iteration of an algorithm which performs a line search
along the Newton direction wheneverG is positive definite. WhenG is indefinite
or singular, however, it calculates the composite directions and performs a line
search along this instead.

Algorithm 1

Perform a (possibly modified)LBLT factorization ofG
Obtainp from (3.2)
if G is positive definite then

obtain a new pointx+ = x+ γp to satisfy the Wolfe conditions
else

Calculateq from (3.1)
Calculate the coefficientsc1, ..,c5 appearing in (2.17)
setρ = 1 in (2.17)
find θ∗ to minimizeψ(θ) given by (2.17)
sets= sinθ∗q+cosθ∗p
obtain a new pointx+ = x+ γs to satisfy the Wolfe conditions

end if

3.5 A trust region algorithm using (2.1)

An alternative approach offers a more radical departure from a standard Newton
iteration. It replaces the line search with a 2D trust region strategyeven when
G is positive definite. The iteration described below features a step-size limit∆
which is revised on the basis of progress made along the previous search direction.
(∆ is set equal to||p|| at the start of the first iteration.) In what follows,η1, τ1

and τ2 are small positive constants used in comparing the behaviour off with
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its local quadratic model; andk1(> 1),k2(< 1) are scaling factors involved in the
adjustment of∆.

Algorithm 2

Find p by (modified)LBLT factorization ofG
Calculateq andc1, ..,c5 appearing in (2.17)
If G is positive definite

sets= p, θ∗ = 0, ρ = 1
if f (x+s)− f (x)≤ η1ψ(θ∗) then setx+ = x+s and exit

end if
if G is not positive definite orf (x+s)− f (x) > η1ψ(θ∗)

setρ = min(1, ∆/||p||)
Repeat

find θ∗ to minimizeψ(θ)
sets= ρsinθ∗q+ρcosθ∗p
setρ = ρ/2

until f (x+s)− f (x)≤ η1ψ(θ∗)
setx+ = x+s and exit

end if
computeσ = ( f (x+s)− f (x))/ψ(θ∗)

∆ =


k1||s|| if 1− τ1 ≤ σ≤ 1+ τ1

k2||s|| if σ≤ τ2

||s|| otherwise

4 Computational experience

We shall now compare Algorithms 1 and 2 from Section 3 with two other Newton-
type methods. In particular we consider a Truncated Newton method (optnhp,
Dixon & Price (1986)) and an implementation of theimpbot algorithm (Brown &
Bartholomew-Biggs (1985)) which can be viewed as a trust region approach.

The subroutineoptnhp uses conjugate gradient iterations to obtain an approximate
solution to the Newton equation, stopping when the norm of the residual vector
||Gp+ g|| is less than some tolerance which is initially quite large and decreases
on every iteration. The “inner” conjugate gradient iterations are also terminated if
G is found to be non-positive definite or if||p|| exceeds a limit (which is adjusted
at the end of each “outer” iteration).

The subroutineimpbot is based on following the solution trajectory of the contin-
uous steepest descent equation

dx
dt

=−g(x)
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and the step on each iteration is found by solving

(hG+ I)p =−hg.

This method of calculatingp comes from the application of the implicit Euler
method withh as the step size in terms of the parametert. Adjustment of this
step size is based on the progress on each iteration, in broadly the same way as in
Algorithm 2. We can see that the calculation ofp in impbot is essentially the same
form as the calculation ofp in a trust-region method, but withλ = h−1.

We consider the following test problems.

Problem 1is a generalisation of the example used in section 2.

Minimize xTGx+c(x)2 where c(x) = Min(0,n−1−
n

∑
i=1

x2
i )

whereG is then×n matrix with gii = 0, gi j = 1 wheni 6= j. The starting point is
x1 = 0.5,x2 = 0.25,x3 = ... = xn = 0.

Problem 2involves the extended Rosenbrock function

Minimize
n−1

∑
i=1

100(x2
i+1−xi)2 +(1−xi)2

The starting point is the non-standard one(0,2,0,2, ..)T .

Problem 3is another penalty function-like example

Minimize xTAx/2+bTx+c(x)2 where c(x) = Min [0,n−1−
n

∑
i=1

x2
i ]

where the elements ofA andb are given by

ai j = 1.0 when i 6= j; aii = 0.9i−1; bi = 0.1

The starting point is taken asxi = 1/n for i = 1, ...,n.

Problem 4is a barrier-function-like example

Minimize xTAx/2+bTx+0.001c(x)−1 where c(x) = 1−
n

∑
i=1

x2
i .

The elements ofA andb and the starting point are the same as for Problem 3.

Problem 5is the extended Wood function

Minimize
n−3

∑
i=1

[100(xi+1−x2
i )

2 +(1−xi)2 +90(xi+3−x2
i+2)

2
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+10.1{(xi+1−1)2 +(xi+1−1)2}+19.8(xi+1−1)(xi+3−1)]

The starting point isx = (−3,−1,−1,−1, ...)T

The following table shows the performance on these five test examples for vari-
ous values ofn. For all the methods we quote numbers of iterations and function
evaluations needed for convergence. In addition, for the new algorithms, we show
in brackets the number of iterations on which a non positive definite Hessian was
encountered.

Problem Alg 1 Alg 2 optnhp impbot
itns fns itns fns itns fns itns fns

1 n=2 5(2) 6 5(2) 6 6 44 9 14
1 n=4 6(3) 11 5(3) 6 6 45 10 16
1 n=8 7(4) 14 6(5) 11 7 79 11 20
2 n=2 14(1) 18 13(1) 18 16 27 16 22
2 n=12 37(7) 50 34(7) 45 20 73 37 53
2 n=24 59(13) 78 36(26) 42 19 34 62 87
3 n=5 27(9) 42 31(16) 48 18 98 37 53
3 n=10 33(11) 52 36(12) 52 27 118 41 66
3 n=20 59(12) 91 53(10) 80 49 201 53 79
4 n=15 46(11) 61 45(10) 52 37 101 42 54
4 n=20 50(10) 64 46(8) 53 46 198 45 55
4 n=25 59(10) 78 61(10) 75 63 454 55 70
5 n=4 40(3) 57 38(2) 53 *** 39 63
5 n=12 17(1) 29 14(2) 17 17 33 18 34
5 n=20 19(1) 32 18(6) 21 18 172 19 36

*** Method fails near a saddle point

These preliminary tests suggest that the new algorithms using the composite search
directions are competitive with existing techniques. We see from the bracketed
figures in the first two columns that the direction (2.1) is used on a significant
number of iterations. The new algorithms usually match or exceed the performance
of the better ofoptnhp andimpbot; and this remains true for the larger values ofn
even though the composite step can only explore a two-dimensional subspace. On
the whole, the trust region strategy in Algorithm 2 seems slightly more effective
than the linesearch-based Algorithm 1.

Generally speaking, the Truncated Newton method is very much less effcient in
terms of function evaluations — presumably because it frequently uses an approx-
imation to the Newton direction along which a unit step fails to produce an ac-
ceptable improvement. In terms of numbers of iterations, however, it often does
better than the other methods; and this is important because it implies that fewer
evaluations of the Hessian matrix will be needed. The performance of the two new
algorithms is often quite similar to that ofimpbot. However, it should be remem-
bered thatimpbot – unlike Algorithm 1 or Algorithm 2 – may have to solve more
than onen×n linear system on each iteration in order to control the step-size.
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5 Convergence issues

An intuitive justification of the algorithms has been outlined in section 3. When
they are applied sufficiently close to a strong local minimum off (x) then they
should both take pure Newton steps and have ultimately quadratic convergence.
Global convergence properties should follow fairly easily from the fact that, to
second order accuracy, the step (2.1) obtained by solving (2.7) is at least as effective
as a steepest descent step; and results about global convergence of steepest descent
methods are well-known.

We shall now put some flesh on the bones of the previous remarks, in the context
of Algorithm 2. In order to do this we need to make an assumption about the
non-singularity ofG.

Assumption 1 G is a nonsingular matrix whose eigenvalues are bounded away
from zero - i.e. there exist positive real numbersmandM such that any eigenvalue,
λ, of G satisfies either

M > λ > m or −m> λ >−M.

Notice that, without loss of generality, we shall assume thatm is the same small
positive constant that appears in (3.1).

Lemma 1Under Assumption 1 it follows that

gTg/m2 > pT p > gTg/M2; (5.1)

and ifq is defined by (3.1)

gTg/m2 > qTq > gTg/M2 (5.2)

Proof
The first result (5.1) follows from the definition ofp sincepT p = gTG−2g and all
the eigenvalues ofG2 must lie in the range[m2, M2].

If |gTGg| ≥mgTg thenq is given by (2.2) and so

qTq = (gTg)3/(gTGg)2

from which (5.2) follows becauseM2(gTg)2 > (gTGg)2 > m2(gTg)2.

If |gTGg|< mgTg so thatq is defined by (2.3) then

qTq =
pT p
gTg

gTg = pT p

and then (5.2) follows directly from (5.1).

Lemma 2Assumption 1 and scaling (3.1) imply that

gTg/m2 > pTq >−gTg/m2 (5.3)
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gTg/m> pTg >−gTg/m (5.4)

and
−gTg/M > qTg >−gTg/m (5.5)

Proof
Since

pTq =
√

(pT pqTq)cosξ

whereξ is the angle betweenp andq then√
(pT pqTq)≥ pTq≥−

√
(pT pqTq)

and (5.3) follows from the bounds in Lemma 1.

Similarly we can write√
(pT pgTg)≥ pTg≥−

√
(pT pgTg)

and (5.4) follows from the upper bound onpT p in Lemma 1.

If |gTGg| ≥m thenq is defined by (2.2) and

qTg =−(gTg)2/|gTGg|.

But Assumption 1 means thatMgtg > |gTGg| and so we get (5.5).
If, on the other hand,q is given by (2.3) then

qTg =−
√

(pT pgTg)

and now the bounds onpT p from Lemma 1 give (5.5).

Lemma 3 Assumption 1 and the scaling (3.1) imply that the two-norm of search
directions is bounded by

||s||<
√

2ρ
√

(gTg)/m (5.6)

Proof
Sinces= ρsinθq+ρcosθp we have

sTs= ρ2(sin2 θqTq+cos2 θpT p+sin2θpTq).

Hence, using Lemmas 1 and 2,

sTs< ρ2(sin2 θ+cos2 θ+sin2θ)gTg/m2

whose right hand side takes a maximum value of 2 whenθ = π/4, leading to (5.6).

We now consider the value the local quadratic model functionψ which gives the
predicted changef (x+ s)− f (x) in the objective function. We shall useψ∗ to
denoteψ(θ∗) whereθ∗ is the value that minimizes (2.17).
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Lemma 4Under Assumption 1 the optimal value ofψ satisfies the bound

ψ∗ <−CgTg/M (5.7)

where

C = (ρ− ρ2

2
) when gTg > 0; (5.8)

C = (ρ+
ρ2

2
) when gTGg≤−mgTg; (5.9)

C = ρ when 0≥ gTGg>−mgTg. (5.10)

Proof
We note first that, sinceψ∗ is the minimum value of (2.17),

ψ∗ ≤ ψ(
π
2
) = ρc1 +

ρ2

2
c4 (5.11)

We also observe that the coefficientc1 in ψ is bounded, becausec1 = qTg, and
hence, by Lemma 2,

−gTg/m< c1 <−gTg/M. (5.12)

We now need to consider several distinct cases.

Case 1:gTGg≥mgTg

In this caseq is defined by (2.2). Thus, by (2.6),c4 =−c1 and (5.11) becomes

ψ∗ ≤ ψ(
π
2
) = (ρ− ρ2

2
)c1.

Hence, using (5.12),

ψ∗ <−(ρ− ρ2

2
)gTg/M (5.13)

Case 2:gTGg≤−mgTg

As in case 1,q is given by (2.2), and so (2.6) givesc4 = c1. Hence

ψ(
π
2
) = (ρ+

ρ2

2
)c1;

and, using (5.11) and (5.12),

ψ∗ <−(ρ+
ρ2

2
)gTg/M (5.14)

Case 3:mgTg > gTGg>−mgTg

In this case we obtainq from (2.3) which gives

c1 = qTg =−
√

(qTqgTg) and c4 = qTGq=
qTq
gTg

gTGg.
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Hence

c4/c1 =−
√

(qTq)
gTg

√
(gTg)

gTGg (5.15)

Now if mgTg > gTGg> 0, (5.15) implies

0 > c4/c1 >−1

because of Lemma 1. Butc1 < 0 and hencec4 <−c1. Thus

ψ(
π
2
) = ρc1 +

ρ2

2
c4 < ρc1−

ρ2

2
c1.

Using (5.11) and (5.12), this meansψ∗ is bounded by

ψ∗ <−(ρ− ρ2

2
)
gTg
M

(5.16)

On the other hand, if 0> gTGg>−mgTg then (5.15) gives

0 < c4/c1 < 1;

and becausec1 < 0 it follows thatc4 < 0. Therefore

ψ(
π
2
) = ρc1 +

ρ2

2
c4 < ρc1;

and, using (5.11), (5.12),

ψ∗ <−ρ
gTg
M

(5.17)

Hence the Lemma is proved, with (5.8) obtained by combining (5.13) and (5.16)
and (5.9) and (5.10) coming from (5.14) and (5.17), respectively.

It is clear that the bound onψ∗ given by (5.7) and (5.8) is negative only ifρ < 2.
Hence, from now on, we shall follow Algorithm 2 and restrict allowable values of
ρ to the range 0< ρ≤ 1.

It is also clear that, for any particular value ofρ, (5.7) and (5.8) give the most
pessimistic bound onψ∗ and hence on the predicted reduction in the objective
function. For the purpose of the subsequent analysis it will be sufficient for us to
use this bound only.

Theorem 1 Under Assumption 1 and for a givenη1 (0 < η1 < 1) there exists a
constantρ̄, depending only onM, m andη1, such that the actual reduction inf
caused by the steps satisfies

f (x+s)− f (x) < η1ψ∗ (5.18)
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for all ρ satisfying 0< ρ < ρ̄.
Proof
By the mean value theorem

f (x+s)− f (x) = f (x)+sTg(x)+
sTG(x+ωs)s

2

for someω between 0 and 1. This can be rewritten as

f (x+s)− f (x) = f (x)+sTg(x)+
sTG(x)s

2
+

sTG(x+ωs)s−sTG(x)s
2

.

By the definition ofψ∗ it follows that

f (x+s)− f (x) = ψ∗+
sTG(x+ωs)s−sTG(x)s

2

Hence (5.18) follows if

sTG(x+ωs)s−sTG(x)s
2

<−(1−η1)ψ∗

Recalling from (5.7), (5.8) that

−ψ∗ > (ρ− ρ2

2
)gTg/M

it follows that (5.18) will hold if

sTG(x+ωs)s−sTG(x)s
2

< (1−η1)(ρ−
ρ2

2
)gTg/M.

Now, applying Assumption 1 to the left hand side of the above inequality, we get

sTG(x+ωs)s−sTG(x)s
2

<
2MsTs

2
;

and we also have, by Lemma 3,

2MsTs
2

<
2Mρ2gTg

m2 .

Hence (5.18) will be satisfied if

2Mρ2gTg
m2 < (1−η1)(ρ−

ρ2

2
)gTg/M.

Simplifying both sides we get

(2M2ρ)
m2 < (1−η1)(1−

ρ
2
)
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from which we see that (5.18) holds provided

ρ < ρ̄ =
2(1−η1)

(4M2/m2 +1−η1)
. (5.19)

Theorem 2 There exists a constantC such that the actual reduction produced by
an iteration of algorithm 2 is bounded by

f (x+s)− f (x) <−CgTg/(2M)

Proof
The inner iteration of Algorithm 2 proceeds by halvingρ until condition (5.18) is
satisfied. It follows thatat worstsome iterations may use the value valueρ = ρ̄/2,
whereρ̄ is given by (5.19). In this extreme case Lemma 4 implies the bound

ψ∗ <−(ρ̄− ρ̄2/4)gTg/(2M)

Combining this with (5.18) and recalling that̄ρ is a constant depending only on
M, m andη1, the theorem follows with

C = η1(ρ̄− ρ̄2/4)

We can now establish a global convergence result for Algorithm 2.
Theorem 3Suppose thatf (x) is a function which is bounded below and which has
a strong local minimum atx∗. Suppose also that its HessianG satisfies Assumption
1 for all x in a neighbourhood,N, which includesx∗. Then a sequence of steps
s produced by Algorithm 2 must terminate at a stationary point off (x) for any
starting point inN.
Proof
If the Theorem is false then there exists a positiveε such that each iteration ends
with gTg > ε. But the previous Theorem then implies thatf is reduced on each
iteration by at leastCε/(2M). For this to occur on an infinite number of iterations
contradicts the condition thatf (x) is bounded below and hence the Theorem must
be true.

We note that Theorem 3 only relates to convergence to a local stationary point of
f (x). We shall mention this point again in the discussion in the next section.

6 Discussion and Conclusions

We have described a method of obtaining search directions in a Newton algorithm
which can be used when the Hessian matrix is not positive definite. It can also
be used to provide an alternative correction when the Hessian is positive definite
but the usual Newton step does not provide a suitable decrease in the objective
function.

242



The derivation of the modified step is based on finding the minimum of a local
quadratic model of the objective function in the plane of the Newton and steepest
descent vectors. It extends the idea suggested for nonlinear least-squares prob-
lems by Bartholomew-Biggs & Forbes (2000) in using a two-dimensional trust
region constraint to deal with general (non-convex) unconstrained minimization.
The approach described in this paper differs from that suggested by Powell (1970)
because it finds an accurate minimum of the local quadratic model (subject to a
step size constraint). Our suggested Algorithm 1 differs from previous proposals
by Byrd et al (1987) and by Xhang & Xu (1999) in being a line-search, rather than
a trust-region, technique.

Some limited numerical testing has been done using prototype implementations of
the two algorithms given in section 3to solve a set of small non-convex problems.
Results are mildly encouraging but more development work is still needed, e.g. to
clarify the relative merits of the line search and trust region approaches (although
initial evidence seems to favour the latter.) A more fundamental point about the
algorithm and its implementation is that, in its present form, it does not deal very
effectively with singularity of the Hessian since then the vectorp does not exist
ands becomes a steepest descent direction. Moreover, Algorithms 1 and 2 would
both terminate at the saddle point of the function

f (x) = x2
1 +x2

2−x2
3 +10[max(0,(x3−1)]2

when started from any point withx3 = 0. This remark emphasises the limitations
of the convergence discussion in section 4 and indicates that we may need some-
times to consider buildings from a direction of negative curvature as suggested,
for instance, by Zhang & Xu (1999).

Alongside such practical investigation, there is scope for a closer look at the con-
vergence of the algorithms, since the analysis in section 4 has not made use of all
the optimal properties of the new search direction as expressed, for instance, in
(2.18) and (2.19).

Notwithstanding the reservations expressed in the preceding paragraphs, we feel
that the ideas discussed in this paper do have promise and potential for develop-
ment. It is worth recalling, for instance, that (2.1) could also be used in a quasi-
Newton context, possibly as a way of obtaining descent directions when an update
is used which does not guarantee to produce positive definite Hessian estimates.
The Symmetric Rank One update is one such update whose attractive properties
are often felt to be outweighed by this deficiency. One can also envisage appli-
cations in the context of constrained optimization. Many algorithms are based on
solving systems of KKT equations which involve the Hessian of the Lagrangian
function (or some estimate of it). From these equations a search directionp is ob-
tained which is supposed to be a Newton-like direction with respect to some penalty
functionP(x). In order for the KKT equations to yield a suitable search direction
we need the (estimated) Lagrangian to have positive curvature in the subspace tan-
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gential to the active constraints. In the event that this is not so (e.g. because the
correct set of constraints has not yet been identified) then an approach like the one
described in this paper could be used to combinep with the steepest descent vector
−∇P and hence obtain an effective descent direction. Such a strategy might prove
to be computationally less expensive than alternatives proposed by e.g., Forsgren &
Murray (1993) or Hernandez (1995) which involve special rules for pivot selection
and modification during the factorization of the KKT matrix.
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