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It is known that there exist non-local conserved charges which, together with the unbroken
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of the quantum group Uq(g), with g the Lie algebra of G. For a general Lie group G

with rank(G) > 1, we extend the previous result by constructing local and non-local

conserved charges satisfying all the defining relations of the infinite-dimensional Poisson

algebra Uq(Lg), the classical analogue of the quantum loop algebra Uq(Lg), where Lg is

the loop algebra of g. Quite unexpectedly, these defining relations are proved without

encountering any ambiguity related to the non-ultralocality of this integrable σ-model.
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1 Introduction

The Yang-Baxter σ-model is an integrable one-parameter deformation of the principal chiral

model on any real Lie group constructed by C. Klimč́ık nearly fifteen years ago [1, 2]. More

recently, this model was rederived within the hamiltonian framework by means of deforming

the integrable structure of the principal chiral model [3]. In particular, it was shown that

the Yang-Baxter σ-model belongs to a broader class of new integrable σ-models which have

now come to be known as η-deformations. Soon after, the list of known integrable σ-models

grew further still with the addition of the class of so-called λ-deformations introduced in [4].

New deformations of both types were successively defined in [1–12].

One of the hallmarks of an integrable field theory is having an infinite-dimensional

algebra of hidden symmetries. In this article we focus on such symmetries at the classical

level. In the case of the principal chiral model on a Lie group G, for instance, there is

an obvious global G × G symmetry corresponding to left and right multiplication of its

G-valued field. The conserved charges associated with the left and right G-symmetries

each combine with a tower of non-local charges to form classical analogues of the Yangian

Y (g) [13, 14]. Here we denote by g the Lie algebra of the Lie group G.

The purpose of the present article is to identify the classical symmetry algebra of

the Yang-Baxter σ-model. More precisely, we consider the inhomogenous Yang-Baxter σ-

model, meaning that the skew-symmetric R-matrix which appears in the action of this field

theory is the standard solution of the modified classical Yang-Baxter equation (mCYBE).

– 1 –



J
H
E
P
0
3
(
2
0
1
7
)
1
2
6

In this setting, the global G × G symmetry of the principal chiral model is broken to

U(1)rank(G) ×G once the deformation parameter η is switched on.

As in the undeformed case, the local charges associated with the right G-symmetry

combine with non-local charges to form a classical analogue of the Yangian Y (g). This was

shown in [15] for the Yang-Baxter model on SU(2). This result can also be deduced from

the analogous statement for a certain two-parameter deformation of the principal chiral

model established in [16] (see also [17–20] in the SU(2) case). From now on we shall no

longer be concerned with this part of the infinite-dimensional symmetry algebra.

It was shown in [3] that the left G-symmetry of the Yang-Baxter σ-model is q-deformed.

That is to say, there exist non-local conserved charges which, together with the unbroken

U(1)rank(G) local charges, form a Poisson algebra denoted Uq(g), the semiclassical limit of

the quantum group Uq(g) (see for instance [21]), where q is a function of the deformation

parameter η. This property generalises what was first shown to hold in the SU(2) case [22].

It is natural to expect that the classical analogue of the Yangian Y (g) associated with the

left G-symmetry of the principal chiral model should itself be deformed when η is switched

on. Specifically, one expects that the Poisson algebra Uq(g) is enlarged to an infinite-

dimensional Poisson algebra Uq(Lg), the classical analogue of the quantum loop algebra

Uq(Lg), where Lg is the loop algebra of g. This was indeed shown to be the case when

g = su(2) in [23, 24] and also when a Wess-Zumino term is present in [20].

In this article we consider a general Lie group G with rank(G) > 1 and construct

local and non-local conserved charges satisfying all the defining relations of the infinite-

dimensional Poisson algebra Uq(Lg) (see e.g. [25] for the defining relations of the quantum

affine algebra Uq(ĝ) of which Uq(Lg) is a quotient). The fact that this is possible is some-

what surprising. Indeed, Poisson brackets of generic non-local conserved charges in a

classical integrable field theory are known to be ill-defined due to the presence of non-

ultralocal terms in the Poisson brackets of the Lax matrix with itself [26, 27]. In fact, all

proofs of the defining relations of the classical analogue of Drinfeld’s first realization of

the Yangian are in some sense incomplete since they require dealing with such ambigui-

ties [13, 16, 28]. It is worth stressing that, in this context, ambiguities are in fact already

encountered when computing Poisson brackets of the level 0 charges! Furthermore, it was

observed in [23, 24] that ambiguities also appear in the SU(2) Yang-Baxter σ-model when

deriving the q-Poisson-Serre relations of Uq(L su(2)) involving the non-local charge associ-

ated with the affine root. As we shall see, the SU(2) case appears not to be representative

of the general situation. There is no need to use any regularisation prescription when con-

sidering the defining relations for higher rank cases. Note that there is also no ambiguity

for anisotropic SU(2) Landau-Lifshitz σ-models [29].

Let us summarise the method we shall use to establish the defining relations of Uq(Lg).

Following the analysis of [3], conserved charges are extracted from the monodromy T g(λ) of

the gauge transformation Lg(λ, x) of the Lax matrix by the G-valued field g of the model.

Here we denote by λ the spectral parameter and x is the spatial coordinate. A special role

is played by the two poles at ±iη of the twist function [3]. For these values of the spectral

parameter, Lg(±iη, x) belong to opposite Borel subalgebras of the complexification of g.

This enables, in particular, to define a set of conserved charges QE±αi and QHαi associated
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with every simple root αi, i = 1, . . . , rank(G) of g. The charges QE±αi are non-local whereas

the charges QHαi associated with the unbroken U(1)rank(G) symmetry are local. It was shown

in [3] that these charges satisfy the defining relations of Uq(g). Moreover, the Cartan-Weyl

basis of Uq(g) is obtained by taking q-Poisson brackets of the generating charges QE±αi and

QHαi . This complete basis of non-local charges encoded in the two monodromy matrices

T g(±iη) are schematically represented by the two halves of the middle line in figure 1.

Constructing conserved charges which satisfy the defining relations of the Poisson

algebra Uq(Lg) requires going to the next order in the expansion of the monodromy T g(λ)

at the points ±iη. More generally, the order in this expansion corresponds to the level of

the charges. For the purpose of describing the defining relations we only need two extra

conserved charges, which we will call Q̃E∓θ, associated with the affine simple root α0 = δ−θ
and −α0, where θ is the highest root of g and δ is the imaginary root of Lg. These will be

constructed from the coefficient of the generators E∓θ in the linear term of the expansion

of the monodromy T g(λ) around the point ±iη, respectively (see equation (3.12a)). These

are again depicted schematically at levels ±1 in figure 1. We proceed to show that together

with the level 0 charges QE±αi and QHαi they satisfy the following Poisson bracket relations

i{QHαi , Q̃
E
±θ} = ±d−1i (θ, αi) Q̃

E
±θ, (1.1a)

i{Q̃Eθ , Q̃E−θ} =
qdθQ

H
θ − q−dθQHθ
qdθ − q−dθ

, (1.1b)

i{QE±αi , Q̃
E
±θ} = 0, (1.1c)

where QHθ is a certain linear combination of the QHαi and, with (·, ·) denoting the inner

product on the set of roots of g, we define di = 1
2(αi, αi) and dθ = 1

2(θ, θ). Furthermore,

q = eγ and γ = −η/(1 + η2)2. Finally, we also prove the q-Poisson-Serre relations

{QEαi , {Q
E
αi , · · · , {Q

E
αi︸ ︷︷ ︸

q+1 times

, Q̃E−θ}q · · · }q}q = 0, (1.1d)

{{QEαi , Q̃
E
−θ}q, Q̃E−θ}q = 0, (1.1e)

where q is the smallest positive integer such that −θ + (q + 1)αi is not a root. Here

the q-Poisson bracket of any pair of charges Aα and Aβ associated with roots α and β is

defined as

{Aα, Aβ}q = {Aα, Aβ}+ iγ (α, β)AαAβ . (1.2)

The above relations (1.1) together with the ones already proved in [3] form the defining

relations of the Poisson algebra Uq(Lg).

2 The Yang-Baxter σ-model

Action. The action of the Yang-Baxter σ-model is given by [1–3]

S = −1

2

(
1 + η2

)2 ∫
dt dxκ

(
∂+gg

−1 ,
1

1− ηR
∂−gg

−1
)
. (2.1)
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Q̃E−θ
v

QE−α QE+α

v Q̃Eθ
Figure 1. The middle line depicts the level 0 conserved charges, namely those of the finite-

dimensional Poisson algebra Uq(g), with the red and green portions corresponding to charges coming

respectively from T g(±iη). The dots on the ends of the upper and lower lines correspond to two new

level ±1 conserved charges of the infinite-dimensional Poisson algebra Uq(Lg), coming respectively

from the linear terms in the expansion of T g(λ) around ±iη.

The field g(t, x) takes values in a real semi-simple Lie group G with Lie algebra g. We

denote by gC the complexification of g. In this expression, κ is the Killing form and

∂± = ∂t ± ∂x. This integrable σ-model is characterised by a skew-symmetric solution R of

the mCYBE. This means that the linear operator R satisfies

κ(M,RN) = −κ(RM,N), (2.2a)

[RM,RN ] = R
(
[RM,N ] + [M,RN ]

)
+ [M,N ] (2.2b)

for any M,N ∈ g. Following [1–3], we choose the standard R-matrix of Drinfeld-Jimbo

type [30–32] (see equations (2.8a) and (2.9) below). The real parameter η plays the role

of the deformation parameter with η = 0 corresponding to the principal chiral model.

Finally, we study the case when x belongs to R and the field g(t, x) tends to constants

when x→ ±∞.

Lax and monodromy matrices. The starting point is the Lax matrix Lg(λ, x) defined

in [3]. It takes values in gC and has the following expression

Lg(λ, x) =
1

1− λ2

(
−(λ2 + η2)∂xg(x)g−1(x) +

1

1 + η2
(λ− ηR)X(x)

)
. (2.3)

The field X(x) takes values in g and plays the role1 of the field conjugate to g(x) while λ is

the spectral parameter. The central object in our analysis of the symmetries of the Yang-

Baxter σ-model is the monodromy T g(λ), which is defined as the path ordered exponential

of Lg(λ, x),

T g(λ) = P←−exp

∫ ∞
−∞
dxLg(λ, x).

This monodromy is a conserved quantity, from which conserved charges will be extracted.

1More precisely, g(x) and X(x) parameterise the cotangent bundle T ∗LG with LG the loop group

associated with G.
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Fundamental Poisson brackets. The Poisson brackets of the fields g(x) and X(x) are

given by [3]

{g1(x), g2(y)} = 0 , (2.4a)

{X1(x), X2(y)} =
[
C12, X2(x)

]
δxy, (2.4b)

{X1(x), g2(y)} = C12 g2(x)δxy, (2.4c)

with δxy the Dirac distribution and C12 the tensor Casimir. The definition of the latter as

well as notations used in [3] and in the present article are recalled in the next paragraph.

Notations. Given a choice of a Cartan subalgebra of the complexification gC we let Φ

denote the associated root system. Let αi, i = 1, · · · , n = rk gC be a basis of simple roots,

and E±α for α ∈ Φ and H i = Hαi for i = 1, . . . , n be the corresponding Cartan-Weyl basis

of gC. The matrix

Bij = (αi, αj) = diAij (2.5)

is the symmetrised Cartan matrix where (·, ·) is the inner product on the set of roots and

di =
1

2
(αi, αi). (2.6)

For any roots α, β ∈ Φ, we have [
Eα, Eβ

]
= Nα,βE

α+β (2.7)

if α+ β is a root, that is α+ β ∈ Φ. The Casimir tensor may then be written as

C12 =

n∑
i,j=1

B−1ij H i ⊗Hj +
∑
α>0

(
Eα ⊗ E−α + E−α ⊗ Eα

)
.

For later purposes, we express X(x) and ∂xg(x)g−1(x) as

X(x) = i

n∑
j=1

hj(x)Hj +
i

2

∑
α>0

(
eα(x)Eα + e−α(x)E−α

)
, (2.8a)

∂xg(x)g−1(x) = i

n∑
j=1

JHj (x)Hj +
i

2

∑
α>0

(
Jα(x)Eα + J−α(x)E−α

)
. (2.8b)

Note that the R-operator acts on X as

RX(x) =
1

2

∑
α>0

(
eα(x)Eα − e−α(x)E−α

)
. (2.9)

3 Expansion around the poles of the twist function

In this section we expand the gauge-transformed monodromy matrix T g(λ) around the

poles ±iη of the twist function. We then recall how conserved charges appearing in the

defining relations of Uq(g) are obtained at these poles. Finally, we explain how the non-local

charges needed to establish the defining relations of Uq(Lg) are computed.
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3.1 Expansion of the Lax matrix

We first expand the Lax matrix Lg(λ, x) defined in (2.3) around the poles ±iη of the twist

function. We obtain

Lg(±iη + ε±, x) = − η

(1 + η2)2
(R∓ i)X(x) (3.1)

+
ε±

1 + η2

[
1− η2 ∓ 2iη2R

(1 + η2)2
X(x)∓ 2iη ∂xg(x)g−1(x)

]
+O

(
ε2±
)
.

By using the expressions (2.8), this can be rewritten as

Lg (±iη + ε±, x) = ±γ

 n∑
j=1

hj(x)Hj +
∑
α>0

e±α(x)E±α


+

ε±

(1 + η2)2

(
i

2

∑
α>0

ẽ∓α(x)E∓α + ψ±

)
+O

(
ε2±
)
, (3.2)

where ψ± contain terms proportional to generators Hj and E±α respectively. Such terms

will not play any role in establishing the defining relations of Uq(Lg). We have also intro-

duced the parameter

γ = − η

(1 + η2)2
,

and defined

ẽ±α(x) = e±α(x)± 2iη
(
1 + η2

)
J±α(x). (3.3)

Taking ε± = 0 in (3.2), we see that Lg(±iη) belong to opposite Borel subalgebras of gC.

3.2 Expansion of the monodromy matrix

To expand the monodromy matrix, we will apply the following identity

P←−exp

[∫ +∞

−∞
dx

(
n∑
i=1

∂xφi(x)H i +
∑
α

Lα(x)Eα

)]
=

exp

(
n∑
i=1

φi(+∞)H i

)
×

×P←−exp

[∫ +∞

−∞
dx
∑
α

e−
∑n
i=1(α,αi)φi(x)Lα(x)Eα

]
exp

(
−

n∑
i=1

φi(−∞)H i

)
(3.4)

to specific functions φi(x) and Lα(x). Firstly, to expand T g(λ) around iη we start from (3.2)

and choose, for α > 0,

φi(x) =

∫ x

−∞
dy γhi(y), Lα(x) = γeα(x), L−α(x) =

ε+
(1 + η2)2

i

2
ẽ−α(x).
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This leads to

T g(iη + ε+) = eγ
∑n
i=1

∫∞
−∞dxhi(x)H

i

P←−exp

[∫ ∞
−∞
dx

(
γ
∑
α>0

JEα (x)Eα+

+
ε+

(1 + η2)2

[
i

2

∑
α>0

J̃E−α(x)E−α + ψ̃+

]
+O

(
ε2+
))]

. (3.5a)

where ψ̃+ contains terms proportional to generators Hj and Eα with α > 0. The expres-

sions of JEα (x) and J̃E−α(x) will be given shortly. Secondly, to expand T g(λ) around −iη we

start from (3.2) and choose, for α > 0,

φi(x) =

∫ ∞
x

dy γhi(y), Lα(x) =
ε−

(1 + η2)2
i

2
ẽα(x), L−α(x) = −γe−α(x),

which leads to

T g(−iη + ε−) = P←−exp

[∫ ∞
−∞
dx

(
−γ
∑
α>0

JE−α(x)E−α+

+
ε−

(1 + η2)2

[
i

2

∑
α>0

J̃Eα (x)Eα + ψ̃−

]
+O

(
ε2−
))]

e−γ
∑n
i=1

∫∞
−∞dxhi(x)H

i

.

(3.5b)

In (3.5), we have introduced the following functions,

JE±α(x) = eγχα(∓∞) e−γ χα(x) e±α(x) and J̃E±α(x) = eγχα(∓∞) e+γ χα(x) ẽ±α(x),

(3.6)

where χα(x) is defined as

χα(x) =
1

2

n∑
i=1

(α, αi)

∫ ∞
−∞
dy εxy hi(y).

Here the signature function is defined as εxy ≡ θxy−θyx and θxy = θ(x−y) is the Heaviside

step function.

3.3 Defining relations of Uq(g)

Let us recall the result of the analysis carried out in [3], the starting point of which is the

limit ε± = 0 of (3.5). Making a choice of a normal ordering on the set of positive roots,

i.e. such that if α < β and α+ β is a root then α < α+ β < β, one can write T g(±iη) as

T g(iη) = exp

(
γ

∫ ∞
−∞
dx

n∑
i=1

hi(x)H i

)
<∏
α>0

exp

(
γ

∫ ∞
−∞
dxQE

α (x)Eα
)
, (3.7a)

T g(−iη) =

>∏
α>0

exp

(
−γ
∫ ∞
−∞
dxQE

−α(x)E−α
)

exp

(
−γ
∫ ∞
−∞
dx

n∑
i=1

hi(x)H i

)
. (3.7b)

The superscripts < and > refer to the choice of normal ordering of positive and negative

roots respectively. It is easy to see that for simple roots we have QE
±αi(x) = JE±αi(x), where

– 7 –
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the latter were defined in (3.6). The conserved charges associated with Cartan generators

and simple roots αi are then

QHαi = d−1i

∫ ∞
−∞
dx JHαi(x) and QE±αi = Di

∫ ∞
−∞
dx JE±αi(x). (3.8)

For the densities associated with Cartan generators, we have

JHαi(x) =
n∑
j=1

Bij hj(x) (3.9)

with

Di =

(
γ

4 sinh(diγ)

) 1
2

. (3.10)

The symmetrised Cartan matrix Bij and di are defined in (2.5) and (2.6), respectively.

The Poisson brackets of the charges (3.8) are then found to be

i{QHαi , Q
H
αj} = 0, (3.11a)

i{QHαi , Q
E
±αj} = ±Aij QE±αj , (3.11b)

i{QE+αi , Q
E
−αj} = δij

qdiQ
H
αi − q−diQ

H
αi

qdi − q−di
, (3.11c)

where q ∈ R is related to the deformation parameter η as q = eγ . We refer to [3] for the

statement and derivation of the q-Poisson-Serre relations.

3.4 The αi-string through −θ

To prove the defining relations of Uq(Lg), we shall study charges associated with the string

of roots −θ+rαi with r taking values from 0 to the smallest strictly positive integer q such

that −θ + (q + 1)αi is not a root. These roots are ordered as

−θ < −θ + αi < −θ + 2αi < . . . < −θ + qαi.

Expanding the path-ordered exponential appearing in (3.5a), we may write it as

T g(iη + ε+) = eγ
∫∞
−∞dx

∑n
i=1 hi(x)H

i

(
1 +

iε+
2(1 + η2)2

v+ +O
(
ε2+
)) <∏

α>0

eγ
∫∞
−∞dxQ

E
α (x)E

α

.

(3.12a)

We are only interested in terms from v+ which will contribute to the αi-string through −θ
defined above. We write such terms as

q∑
r=0

∫ ∞
−∞
dx Q̃E

−θ+rαi(x)E−θ+rαi . (3.12b)

This will be our definition of the charge densities Q̃E
−θ+rαi(x). We proceed in the same way

for T g(−iη + ε−).

– 8 –
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Charge densities Q̃E
∓θ(x) and Charges Q̃E∓θ. The simplest charge densities of interest

can be obtained directly from (3.5), namely we have

Q̃E
∓θ(x) = J̃E∓θ(x), (3.13)

where J̃E∓θ(x) were defined in (3.6). We also define the associated charges

Q̃E∓θ = Dθ

∫ ∞
−∞
dx Q̃E

∓θ(x), (3.14)

where

dθ =
1

2
(θ, θ) and Dθ =

(
γ

4 sinh(dθγ)

) 1
2

.

Charge densities Q̃E
−θ+rαi

(x) and Charges Q̃E−θ+rαi
. For completeness and to il-

lustrate the mechanism behind the expansion (3.12), we also indicate briefly how the other

charges would be computed. We stress, however, that we do not strictly need this deriva-

tion to prove the defining relations. Indeed, in the next section we shall obtain these

charges recursively as q-Poisson brackets of conserved charges. This ensures that they are

themselves conserved. In particular, we shall see later that the charge densities Q̃E
−θ+rαi(x)

with 0 < r ≤ q are expressed recursively as

Q̃E
−θ+rαi(x) = J̃E−θ+rαi(x)− γN−θ+(r−1)αi,αi J

E
αi(x)

∫ x

−∞
dy Q̃E

−θ+(r−1)αi(y), (3.15)

with N−θ+(r−1)αi,αi defined in (2.7). We define the associated charge2

Q̃E−θ+rαi = Dr
iDθ

∫ ∞
−∞
dx Q̃E

−θ+rαi(x). (3.16)

Consider the case r = 1. We see from the expression (3.12a), taking into account (3.12b),

that it contains terms in E−θ+αi and E−θEαi but no terms in EαiE−θ. On the other hand,

by expanding (3.5a) we would get∫ ∞
−∞
dx

[
J̃E−θ+αi(x)E−θ+αi + γ J̃E−θ(x)

∫ ∞
−∞
dy JEαi(y) θxy E

−θEαi+

+ γ JEαi(x)

∫ ∞
−∞
dy J̃E−θ(y) θxy E

αiE−θ
]
. (3.17)

Yet using the relation EαiE−θ = −[E−θ, Eαi ]+E−θEαi where [E−θ, Eαi ] = N−θ,αiE
−θ+αi ,

we may rewrite (3.17) as∫ ∞
−∞
dx
(
J̃E−θ+αi(x)− γN−θ,αi J

E
αi(x)

∫ x

−∞
dy J̃E−θ(y)

)
E−θ+αi

+ γ

∫ ∞
−∞
dx

∫ ∞
−∞
dy
(
JEαi(x)J̃E−θ(y) + JEαi(y)J̃E−θ(x)

)
θxy E

−θEαi .

The first line above allows us to identify Q̃E
−θ+αi(x) as in (3.15) while the term in the

second line gives γQEαiQ̃
E
−θE

−θEαi .

2The normalisations in (3.14) and (3.16) are fixed for later convenience.
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4 Defining relations of Uq(Lg)

In this section we prove that the defining relations of Uq(Lg) are satisfied. The computa-

tions are straightforward but quite lengthy. For this reason, intermediate Poisson brackets

have been collected in the appendix. Let us stress that no ambiguity is encountered when

proving these defining relations. We shall comment on this in the next section.

4.1 First set of defining relations

The first result concerns the Poisson brackets between the level ±1 charges Q̃E±θ introduced

in (3.14) and the level 0 charges (3.8). Since the derivation closely follows that of [3] we

omit the details. Starting from the definitions (3.6) and (3.9), we find, after some algebra

{JHαi(x), J̃E±θ(y)} = ∓i (θ, αi) J̃
E
±θ(x)δxy,

{J̃Eθ (x), J̃E−θ(y)} = −4i ∂xχθ(x)e2γχθ(x)δxy,

{JE±αi(x), J̃E±θ(y)} = 0.

This allows one to deduce the following Poisson brackets of conserved charges

i{QHαi , Q̃
E
±θ} = ±d−1i (θ, αi) Q̃

E
±θ, (4.1a)

i{Q̃Eθ , Q̃E−θ} =
qdθQ

H
θ − q−dθQHθ
qdθ − q−dθ

, (4.1b)

i{QE±αi , Q̃
E
±θ} = 0, (4.1c)

where the conserved charge QHθ is defined as

QHθ = d−1θ

∫ ∞
−∞
dx JHθ (x) with JHθ (x) =

n∑
i=1

(θ, αi)hi(x),

and hi(x) are defined by (2.8a). Note that the charge QHθ is not independent of the Cartan

charges QHαi since we have the linear relation

dθQ
H
θ =

n∑
i,j=1

B−1ij (θ, αi) djQ
H
αj .

The results (4.1) are among the defining relations of Uq(Lg).

4.2 q-Poisson-Serre relations

We now turn to the proof of the q-Poisson-Serre relations

{QEαi , {Q
E
αi , · · · , {Q

E
αi︸ ︷︷ ︸

q+1 times

, Q̃E−θ}q · · · }q}q = 0, (4.2a)

{{QEαi , Q̃
E
−θ}q, Q̃E−θ}q = 0. (4.2b)

Recall the definition of the q-Poisson bracket in (1.2) and of the relevant charge densities

in (3.13) and (3.15). We shall need the following properties of Nα,β defined in (2.7).
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Consider the α-string through β whose roots are β+ pα, . . . , β, . . . , β+ qα, with p ≤ 0 and

q ≥ 0. Then,

N2
α,β = q(1− p)

(α, α)

2
and

2(β, α)

(α, α)
= −(p + q). (4.3)

For the αi-string through −θ, since −θ − αi is not a root, we have

p = 0, q =
2(θ, αi)

(αi, αi)
, N2

−θ,αi = N2
αi,−θ = (θ, αi). (4.4)

For any r such that 0 ≤ r ≤ q, we then have the following identities

N2
−θ+rαi,αi = N2

−θ+(r−1)αi,αi + (θ − rαi, αi),

N2
−θ+rαi,αi =

(
(r + 1)θ − r(r + 1)

2
αi, αi

)
. (4.5)

We shall also need the identities for the step functions,

θyy′θxy′ = θyy′θxy + θxy′θyx, (4.6)

θyy′θy′x = θyy′θyx − θxy′θyx. (4.7)

q-Poisson bracket {QEαi
, Q̃E−θ}q. Consider the Poisson bracket {JEαi(x), J̃E−θ(y)} given

in (A.1b). Rewriting θxy = 1
2(εxy + 1) and using (4.4), we obtain the q-Poisson bracket

{JEαi(x), J̃E−θ(y)}q = 2iN−θ,αi

(
J̃E−θ+αi(x) δxy − γ N−θ,αiJ

E
αi(x)J̃E−θ(y) θxy

)
. (4.8)

Integrating (4.8) over x and y and using the definition (3.15) for r = 1, the q-Poisson

bracket between QEαi and Q̃E−θ is found to be

{QEαi , Q̃
E
−θ}q = 2iN−θ,αiQ̃

E
−θ+αi . (4.9)

q-Poisson-Serre relation (4.2a). Next, we compute the q-Poisson bracket between QEαi
and Q̃E−θ+αi in a similar way. Using the relations (A.1), the result for the Poisson bracket

between JEαi(x) and Q̃E
−θ+αi(x) can be expressed as

{JEαi(x), Q̃E
−θ+αi(y)}q = {JEαi(x), Q̃E

−θ+αi(y)}+ iγ(αi,−θ + αi)J
E
αi(x)Q̃E

−θ+αi(y)

= 2i
(
N−θ+αi,αi J̃

E
−θ+2αi

(x) δxy + γ(αi,−θ + αi)J
E
αi(x)Q̃E

−θ+αi(y) θxy

+γ(αi,−θ)JEαi(y)Q̃E
−θ+αi(x) θyx

)
. (4.10)

Here we have used the identity (4.6). Integrating (4.10) on x and y, the q-Poisson bracket

between QEαi and Q̃E−θ+αi is then given by

{QEαi , Q̃
E
−θ+αi}q = 2iDθD

2
i

∫ ∞
−∞
dx

(
N−θ+αi,αi J̃

E
−θ+2αi

(x)

+ γ(αi,−2θ + αi)J
E
αi(x)

∫ x

−∞
dy Q̃E

−θ+αi(y)

)
. (4.11)

– 11 –



J
H
E
P
0
3
(
2
0
1
7
)
1
2
6

Using the identity (αi,−2θ+αi) = −N2
−θ+αi,αi and the definition (3.15) for r = 2 to rewrite

the right hand side of (4.11), we obtain

{QEαi , Q̃
E
−θ+αi}q = 2iN−θ+αi,αiQ̃

E
−θ+2αi

. (4.12)

Finally, let us evaluate the q-Poisson bracket between QEαi and Q̃E−θ+2αi
. Using the rela-

tions (A.1) and the identities (4.6) and (4.7), we find

{JEαi(x), Q̃E
−θ+2αi

(y)}q

= 2i

[
N−θ+2αi,αi J̃

E
−θ+3αi

(x) δxy

+γ(αi,−θ + 2αi) J
E
αi(x) J̃E−θ+2αi

(y) θxy − γN2
−θ+αi,αi J

E
αi(y) J̃E−θ+2αi

(x) θyx

−γ2N−θ+αi,αi

(
(αi,−θ + αi) J

E
αi(x) JEαi(y)

∫ y

−∞
dy′ Q̃E

−θ+αi(y
′) θxy

+(αi,−θ + αi) J
E
αi(x) JEαi(y)

∫ x

−∞
dy′ Q̃E

−θ+αi(y
′) θyx

+(αi, αi) J
E
αi(x) JEαi(y)

∫ y

−∞
dy′ Q̃E

−θ+αi(y
′) θxy

+(αi,−θ) JEαi(y) Q̃E
−θ+αi(x)

∫ y

−∞
dy′ JEαi(y

′) θyx

−(αi,−θ) JEαi(y) Q̃E
−θ+αi(x)

∫ x

−∞
dy′ JEαi(y

′) θyx

)]
. (4.13)

Integrating (4.13) over x and y, using the relations (4.5) for r = 2 and the definition (3.15)

for with r = 3, we obtain

{QEαi , Q̃
E
−θ+2αi

}q = 2iN−θ+2αi,αiQ̃
E
−θ+3αi

. (4.14)

Hence we have shown that for 0 ≤ r ≤ 2,

{QEαi , Q̃
E
−θ+rαi}q = 2iN−θ+rαi,αiQ̃

E
−θ+(r+1)αi

. (4.15)

For the general untwisted affine Kac-Moody algebra, the αi-string through −θ has at most

q = 2 and N−θ+qαi,αi = 0. As a consequence, the q-Poisson-Serre relation (4.2a) is satisfied.

q-Poisson-Serre relation (4.2b). It follows from the q-Poisson bracket (4.9) that the

left hand side of the q-Poisson-Serre relation (4.2b) may be rewritten as 2iN−θ,αi{Q̃E−θ+αi , Q̃
E
−θ}q.

Using the Poisson brackets (A.1), the q-Poisson bracket for the charge densities Q̃E
−θ+αi(x)
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and Q̃E
−θ(y) is given by

{Q̃E
−θ+αi(x), Q̃E

−θ(y)}q = 2iγ

[
(−θ + αi,−θ)Q̃E

−θ+αi(x)J̃E−θ(y)θxy

+(αi,−θ)
(
J̃E−θ+αi(x)δxy−γN−θ,αiJ

E
αi(x)J̃E−θ(y)θxy

)∫ x

−∞
dx′J̃E−θ(x

′)

+γN−θ,αiJ
E
αi(x)

(
(−θ + αi,−θ)J̃E−θ(y)θxy

∫ y

−∞
dx′J̃E−θ(x

′)

+(αi,−θ)
∫ x

−∞
dx′J̃E−θ(x

′)J̃E−θ(y)θx′y

)]
. (4.16)

Integrating (4.16) over x and y, we obtain

{Q̃E−θ+αi , Q̃
E
−θ}q = D2

θDi(−θ, 2αi − θ)
∫ ∞
−∞
dx

[
Q̃E
−θ+αi(x)

∫ x

−∞
dy J̃E−θ(y)

− γNαi,−θ J
E
αi(x)

∫ x

−∞
dy J̃E−θ(y)

∫ y

−∞
dx′ J̃E−θ(x

′)

]
. (4.17)

Since (−θ, 2αi − θ) = −N2
αi−θ,−θ = 0, where the last equality is because αi − 2θ is not a

root, the q-Poisson bracket (4.17) vanishes. This proves the q-Poisson-Serre relation (4.2b).

5 Discussion

We have shown that the conserved local charges QHαi and non-local charges (QE±αi , Q̃
E
±θ)

of the Yang-Baxter σ-model satisfy the defining relations of the Poisson algebra Uq(Lg).

This result is valid when the rank of g is greater than or equal to two. We would like to

conclude by discussing a puzzle raised by this result.

The main observation is that, despite the non-utralocal nature of the model considered,

there are no ambiguities in the Poisson brackets entering the defining relations of the

Poisson algebra Uq(Lg). The reason for this is that the problematic terms in derivatives of

the Dirac δ-distribution from the Poisson bracket of Lax matrices never showed up in the

derivation. This is quite bewildering. Indeed, although the defining relations of Uq(Lg)

are unambiguous, the Poisson brackets of certain conserved charges are still ill-defined!

An example of this is given by the Poisson bracket between the charges QEθ and Q̃E−θ,

which does not appear in the defining relations. For concreteness, let us consider the case

g = su(3). The highest root is then θ = α1 +α2 (α1 < α2). The charge density QE
θ (x) and

charge QEθ are given by [3]

QE
θ (x) = JEθ (x)− γNα1,α2 J

E
α2

(x)

∫ x

−∞
dy JEα1

(y), (5.1)

QEθ = Dα1Dα2

∫ ∞
−∞
dxQE

θ (x).
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It is then clear that the Poisson bracket {QE
θ (x), Q̃E

−θ(y)} contains a derivative of the Dirac

δ-distribution. The value of this term follows directly from (A.1) and reads

− 8iη(1 + η2)e−γχθ(x) eγχθ(y) ∂xδxy. (5.2)

As a result, the Poisson bracket {QEθ , Q̃E−θ} is not well defined. Note that when g is of

higher rank, the expression for the charge density QE
θ (x) contains further non-local terms

than those in (5.1). However, the Poisson bracket of these terms with Q̃E
−θ(y) does not

generate any derivative of the Dirac δ-distribution. The result (5.2) therefore remains valid.

Although puzzling, the situation is slightly better than in the undeformed case for the

classical analogue of the Yangian Y (g). Indeed, in order to establish the defining relations

in this case one has to deal with such ambiguities which, as already pointed out, arise even

in the Poisson brackets of level 0 charges [13, 16, 28]. It is interesting here to recall why,

in the deformed case, not only the defining relations but in fact all the Poisson bracket

relations of Uq(g) are well defined. Indeed, all the conserved charges spanning the Poisson

algebra Uq(g) can be extracted from the monodromy matrix T g(λ) evaluated at the poles

of the twist function. It is then immediate from (3.1) that, for these values of the spectral

parameter, the Lax matrix only depends on the field X. In particular, no spatial derivatives

∂x ever appear and therefore all Poisson brackets are well defined.

The presence of ambiguities in the full set of relations of Uq(Lg) may also be understood

as follows. It was shown in [33] that (T g(iη), T g(−iη)) satisfies the Semenov-Tian-Shansky

Poisson bracket, which corresponds precisely to the full set of Poisson bracket relations of

the Poisson algebra Uq(g). As we have shown, enhancing the latter to an affine symmetry

algebra requires working in the vicinity of the poles at ±iη, and yet the Poisson bracket of

T g(λ) with T g(µ) for two arbitrary spectral parameters λ and µ is notoriously ill-defined!
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A Poisson brackets

In this appendix we collect a number of useful Poisson brackets used in the main text.

To begin with, we shall need the Poisson brackets between the coefficients of H i and

E±α in the expressions of X(x) and ∂xg(x)g−1(x), i.e. hi(x), e±α(x) defined in (2.8a) and

JHi (x), J±α(x) introduced in (2.8b). These are obtained by comparing terms appearing on

both sides of (2.4). We find

{hi(x), hj(y)} = 0,

{hi(x), eα(y)} = −i
n∑
j=1

B−1ij (α, αj) eα(x) δxy,
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{eα(x), e−β(y)} =

{
−4i ∂xχα(x) δxy δαβ ,

2iN−β,α eα−β(x) δxy, if α 6= β,

{hi(x), JHj (y)} = B−1ij ∂xδxy,

{hi(x), Jα(y)} = −i
n∑
j=1

B−1ij (α, αj) Jα(x) δxy.

{eα(x), JHi (y)} = i

n∑
j=1

B−1ij (α, αj) Jα(x) δxy,

{eα(x), J−β(y)} =


4i

− n∑
j=1

(α, αj)J
H
j (x) δxy − i∂xδxy

 δαβ ,

2iN−β,α Jα−β(x) δxy, if α 6= β,

{JHi (x), Jβ(y)} = 0,

{Jα(x), Jβ(y)} = 0.

For simple roots αi and αj , we then obtain

{hi(x), e±αj (y)} = ∓i e±αj (x)δijδxy,

{eαi(x), eαj (y)} = 2iNαj ,αi eαi+αj (x) δxy,

{e±αi(x), e∓αj (y)} = ∓4i∂xχαi(x)δijδxy,

{e±αi(x), JHj (y)} = ±i J±αj (x)δijδxy,

{e±αi(x), J±αj (y)} = 2iNαj ,αi Jαi+αj (x) δxy,

{e±αi(x), J∓αj (y)} = 4i

(
∓

n∑
k=1

BikJ
H
k (x)δxy − i∂xδxy

)
δij .

For the highest root θ and a positive root α ∈ Φ+, since θ + α is not a root, we find

{e±α(x), e±θ(y)} = 0,

{e±α(x), J±θ(y)} = 0,

{e±θ(x), J±α(y)} = 0.

Similarly, the Poisson brackets for ẽ±α(x) defined in (3.3) are computed as

{hi(x), ẽα(y)} = −i
n∑
j=1

B−1
ij (α, αj) ẽα(x) δxy,

{eα(x), ẽ−β(y)} =

−4i

[
∂xχα(x) δxy − ε(α) 2iη

(
1 + η2

)( n∑
i=1

(α, αi)J
H
i (x)δxy + i∂xδxy

)]
δαβ ,

2iN−β,α
[
eα−β(x)− ε(β) 2iη

(
1 + η2

)
Jα−β(x)

]
δxy, if α 6= β,

{ẽα(x), ẽ−β(y)} =

{
−4i ∂xχα(x) δxy δαβ ,

2iN−β,α
[
eα−β(x) + (ε(α)− ε(β)) 2iη

(
1 + η2

)
Jα−β(x)

]
δxy, if α 6= β,
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where ε(α) = sign(α). We also make use of the following results

{hi(x), ẽ±θ(y)} = ∓i
n∑
j=1

B−1ij (θ, αj) ẽ±θ(x) δxy,

{e±αi(x), ẽ±θ(y)} = 0,

{e±αi(x), ẽ∓θ(y)} = 2iN∓θ,±αi ẽ∓(θ−αi)(x) δxy,

{eθ(x), ẽ−θ(y)} = −4i

[
∂xχα(x) δxy − 2iη

(
1 + η2

)( n∑
i=1

(θ, αi)J
H
i (x)δxy + i∂xδxy

)]
,

{ẽθ(x), ẽ−θ(y)} = −4i ∂xχθ(x) δxy.

Finally, the following Poisson brackets between the densities JEα (x) and J̃Eβ (x) hold

{JEα (x), JEβ (y)} = 2iNβ,α J
E
α+β(x) δxy

+iγ(α, β) JEα (x) JEβ (y) εxy, if α+ β 6= 0, (A.1a)

{JEαi(x), J̃E−θ(y)} = 2iN−θ,αi J̃
E
−θ+αi(x) δxy + iγ(−θ, αi) JEαi(x) J̃E−θ(y) εxy, (A.1b)

{JEαi(x), J̃E−θ+αi(y)} = 2iN−θ+αi,αi J̃
E
−θ+2αi

(x) δxy

+iγ(−θ + αi, αi) J
E
αi(x) J̃E−θ+αi(y) εxy, (A.1c)

{JEαi(x), J̃E−θ+2αi
(y)} = 2iN−θ+2αi,αi J̃

E
−θ+3αi

(x) δxy

+iγ(−θ + 2αi, αi) J
E
αi(x) J̃E−θ+2αi

(y) εxy, (A.1d)

{J̃E−θ(x), J̃E−θ(y)} = iγ(−θ,−θ) J̃E−θ(x) J̃E−θ(y) εxy, (A.1e)

{J̃E−θ(x), J̃E−θ+αi(y)} = iγ(−θ,−θ + αi) J̃
E
−θ(x) J̃E−θ+αi(y) εxy, (A.1f)

{JEθ (x), J̃E−θ(y)} = iγ(θ,−θ) JEθ (x) J̃E−θ(y) εxy

−8iη
(
1 + η2

)
e−γχθ(x)eγχθ(y) ∂xδxy (A.1g)

−4i
n∑
i=1

(θ, αi)
[
hi(x)− 2iη

(
1 + η2

)
JHi (x)

]
δxy.
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