A Comparative L-dwarf Sample Exploring the Interplay Between Atmospheric Assumptions and Data Properties
Comparisons of atmospheric retrievals can reveal powerful insights on the strengths and limitations of our data and modeling tools. In this paper, we examine a sample of 5 similar effective temperature (Teff) or spectral type L dwarfs to compare their pressure-temperature (P-T) profiles. Additionally, we explore the impact of an object's metallicity and the observations' signal-to-noise (SNR) on the parameters we can retrieve. We present the first atmospheric retrievals: 2MASS J15261405$+$2043414, 2MASS J05395200$-$0059019, 2MASS J15394189$-$0520428, and GD 165B increasing the small but growing number of L-dwarfs retrieved. When compared to atmospheric retrievals of SDSS J141624.08+134826.7, a low-metallicity d/sdL7 primary in a wide L+T binary, we find similar Teff sources have similar P-T profiles with metallicity differences impacting the relative offset between their P-T profiles in the photosphere. We also find that for near-infrared spectra, when the SNR is $\gtrsim80$ we are in a regime where model uncertainties dominate over data measurement uncertainties. As such, SNR does not play a role in the retrieval's ability to distinguish between a cloud-free and cloudless model, but may impact the confidence of the retrieved parameters. Lastly, we also discuss how to break cloud model degeneracies and the impact of extraneous gases in a retrieval model.
Item Type | Article |
---|---|
Uncontrolled Keywords | astro-ph.EP; astro-ph.SR |
Date Deposited | 14 Nov 2024 11:23 |
Last Modified | 14 Nov 2024 11:23 |