
1

Field Programmable Gate Array-based Number Plate

Binarisation and Adjustment for ANPR Systems

Xiaojun Zhai, Faycal Bensaali and Reza Sotudeh

School of Engineering & Technology

University of Hertfordshire

Hatfield, UK

{x.zhai2, f.bensaali, r.sotudeh}@herts.ac.uk

Abstract

Number Plate (NP) binarisation and adjustment are very important pre-processing

stages in Automatic Number Plate Recognition (ANPR) systems and are used to link

the Number Plate Localisation (NPL) and Character segmentation (CS) stages.

Successfully linking these two stages will improve the performance of the entire

ANPR system. This paper presents two optimised low complexity NP binarisation and

adjustment algorithms. Efficient area/speed architectures based on the proposed

algorithms are also presented and have been successfully implemented and tested

using the Mentor Graphics RC240 FPGA development board, which together require

only 9% of the available on-chip resources of a Virtex-4 FPGA, run with a maximum

frequency of 95.8 MHz and are capable of processing one image in 0.07 0.17 .ms

1. Introduction

Automatic Number Plate Recognition (ANPR) systems have become a fundamental

part of many Intelligent Transportation Systems (ITSs) to improve transportation

safety and efficiency. Examples include electronic payment, access control, tracing of

stolen cars and identification of dangerous drivers [1-3]. A typical ANPR system

2

consists of three main stages: Number Plate Localisation (NPL), Character

Segmentation (CS) and Optical Character Recognition (OCR) [4]. NPL is the stage

where the Number Plates (NPs) are localised in the input image from the ANPR

camera. CS is the stage where each character from the detected NP is segmented

before recognition so that only useful information is retained for recognition. In the

last stage, optical character information will be converted into encoded text by pre-

defined transformation models [5].

Current ANPR systems use high performance workstations as processing units to

meet real-time requirements under real-world environments. As ANPR systems are

needed in different sections of a highway, the total cost and power consumption to

cover a single highway are significant. Recent improvements in low-power high-

performance Field Programmable Gate Arrays (FPGAs) and Digital Signal Processors

(DSPs) for image processing have motivated researchers to consider them as a low-

cost solution for accelerating such computationally intensive tasks [6]. By optimising

the ANPR algorithms to take specific advantage of technical features and innovations

available within new FPGAs, such as low power consumption and development time,

it will be possible to replace the 3GHz roadside computers within small in-camera

dedicated platforms.

Researchers normally focus on one aspect of ANPR system, such as NPL [7] [8] [9],

CS [10] [11] or OCR [12]. However, for a robust ANPR system, an exhaustive and

meticulous discussion of the pre-processing stages is desired. Two important pre-

processing stages in ANPR systems are NP binarisation and rotation. NP image

binarisation converts a 8-bit grey level NP image to a black and white image and the

simplest way to perform this is to choose a fixed threshold value and classify all

pixels in the image. However, brightness distribution in a NP image may cause some

3

parts of character to be missed and noise impact to be increased after performing

image binarisation due to the problem of uneven illumination. In such cases, there are

two main approaches to deal with this problem which are global and local threshold

based binary algorithms. One global threshold binary method is Otsu method [13],

where the target and background in a given image are separated by maximizing the

variances of the histogram. However, this method does not consider the correlation

between the pixels in an image such as the one in NP images [14]. In this type of

image, the correlation between pixels becomes more important than the grayscale

values and using the global threshold with this type of images it is difficult to separate

the NP characters from the background. The local binary method is often used to

solve this problem as it considers the correlation between the pixels in a NP image.

Adaptive local binary method is one of the local binary methods. In this method, an

image is first divided into sub-blocks and then each sub-block is processed with a

filter [15].

NP adjustment is also a very important pre-processing step in an ANPR system.

Slanted NPs are very likely to cause failure of character segmentation in the CS stage.

The main challenges in this step are how to correctly and efficiently calculate the

rotation angles and adjust the NP accordingly. The most common used approaches to

analyse the shape of the NP to calculate the rotation angles are pixel projection,

Hough transformation or CCA [15] [16]. The main disadvantage of these methods is

their computationally intensive nature to calculate the rotation angle, which could

slow down the entire ANPR system.

This paper presents a NP binarisation algorithm which uses local binarisation method

to solve the problem of uneven illumination and low complexity NP adjustment

algorithms to automatically adjust NPs horizontally and vertically, which could

4

improve the NPL result prior to CS stage. Two area/speed efficient architectures

based on the proposed NP binarisation and adjustment algorithms are also presented

and have been implemented and verified using a Mentor Graphics RC240 FPGA

development board equipped with a 4M-Gate Xilinx Virtex-4 LX40.

The remainder of this paper is organised as follows: Section 2 describes the proposed

NP binarisation and rotation algorithms. The proposed binarisation and rotation

architectures are then described in Section 3. Section 4 is concerned with FPGA

implementation and discussion of the experimental results. Section 5 concludes the

paper.

2. NP Pre-processing

In ANPR systems there are several pre-processing stages such as NP binarisation,

rotation and character resizing. In this paper, improved methods that take advantage

of the NP image characteristics are presented for NP binarisation and rotation. Due to

the fact of that NP images are taken from different lighting environments in real-

world conditions, fixed or Global threshold binarisation methods are very likely to fail

to separate the characters and background after NP binarisation. On the other hand,

due to the angle of NP orientation, the NP image may have a slant and distortion

which are very likely to cause failure of character segmentation in the CS stage. These

two problems can significantly affect the recognition rate of the entire ANPR system.

There is a need for efficient NP pre-processing algorithms and architectures to address

these problems. Figure 1 illustrates the main building blocks of an ANPR system.

5

Number Plate

Localisation (NPL)

NP Binarisation

NP Rotation

Character Segmentation

(CS)

Character Resizing

Optical Character

Recognition (OCR)

ANPR System

Pre-processingPre-processing

Figure 1: The building blocks of an ANPR system.

The inputs of the first pre-processing stage (i.e. NP binarisation) are the localised

grayscale NP images, where they will be binarised and then rotated in the next pre-

processing stage (i.e. NP rotation). The processed images must meet the input

requirements of the CS stage where the characters need to be clearly displayed in NP

image and the shape and positions of the characters need to be adjusted properly.

2.1 NP binarisation

In ANPR systems the NP images are taken under different lighting conditions which

give varying brightness distribution. If the well-known global threshold method is

applied for NP image binarisation, the resulting images will not meet the input

requirements mentioned above and are likely to fail the segmentation stage. Therefore,

a local threshold method is proposed to solve this problem, which divides the entire

NP image into many m n blocks. Different thresholds are then calculated for each

block and thus the entire NP image is binarised according to local illumination

information.

In the proposed NP binarisation algorithm, a square w w window is used to scan NP

images column by column from left to right where each pixel from the NP image is

the centre of the window. A mean filter is used to calculate the mean value for each

window, and the mean value is used to calculate the local threshold.

6

Suppose that (,)f x y denotes the grey value for pixel (x, y), which is always the centre

point of a square window B with size w w . The window mean value (,)meanf x y is

computed by equation 1:

(,)

2

(,)

(,)
x y B

mean

f x y

f x y
w





 (1)

The local threshold (,)T x y is then obtained by:

 (,) (,)meanT x y f x y t  (2)

Where t is an threshold offset which is used to adjust the threshold value.

The binary image is obtained by:

0, if (,) (,)

(,)
1, else

f x y T x y
b x y


 


 (3)

In this algorithm, w and t have significant impacts on the processing results, they

are both identified by experimental tests. In the proposed system, these tests have

shown that the constant value ‘6’ for t has given the best binarisation results. w is

determined by two other factors:

1) The size of characters in the NP image, for example, the stroke width of

each character is normally around 8 pixels.

2) As the main aim of this research is to implement the entire ANPR system

on one single FPGA [1] [17] [18], power of two numbers are used for w to

avoid the need of multiplications as they consume a lot of on-chip FPGA

resources and replace them with shifters.

Figure 2 shows a comparison between the use of global and local binarisation

methods with different window sizes.

7

(a) (b) (c)

(d) (e) (f)

Figure 2: Results of using global and local binarisation methods with different window sizes. (a)

Greyscale NP. (b) Global binarisation method. (c) Local binarisation method, 4.w  (d) Local

binarisation method, 8.w  (e) Local binarisation method, 16.w  (f) Local binarisation method,

32.w 

As it can be seen from Figure 2, global binarisation method has failed to separate the

NP image background and characters in the image, however, using local binarisation

method better results can be achieved compared to the global method. The higher the

value of w the better is the binarisation result, but high w value means more

computations and hardware usage. For the proposed system and based on the obtained

results from the experimental tests w has been chosen to be equal to 8.

2.2 NP Adjustment

In real-world scenarios, NP images can be slanted and distorted due to many factors

such as the car and ANPR camera positions. Thus, horizontal and vertical adjustments

are required after NP binarisation. In this section new algorithm for calculating the

horizontal and vertical rotation angles is presented. Once the angles are found, a 2-D

rotation method can be applied to adjust the NP image horizontally [19] followed by

applying a cropping method to crop the Non-NP pixels from the rotated NP image.

After cropping, the resulted image is vertically adjusted.

2.2.1 Horizontal Adjustment

The proposed algorithm calculates rotation angle by utilising the output image from

the NPL stage. Existing algorithms to calculate the rotation angles require some

8

characters analysis to obtain the angles. This affects significantly the computation

time which is a very important factor in such real-time application. The proposed

algorithm uses the output image from the NPL stage without the need to analyse the

characters in the NP region of the image. Figure 3 shows and example of an input

image to the NPL stage and the processed image.

NPL

(a) (b)

Figure 3: Input and output images of the NPL stage. (a) Input image. (b) Output image.

In Figure 3, the original colour image is processed in the NPL stage which produces a

binary output image. Connected Component Analysis (CCA) is used to localise the

NP region in the output image and once the NP is localised, the proposed rotation

algorithm will be used to calculate the rotation angle. An example of a localised NP

region that needs to be binarised and adjusted is shown in Figure 4.

a

b
c c

d1

d2∆d θ
θ

(c, 1) (b-c,1)

(a) (b)

Figure 4 (a) Localised NP region. (b) Binarised NP image.

Let a b be the size of the localised NP region and be the horizontal rotation angle.

As illustrated in Figure 4,  can be calculated by the proposed algorithm uses an

approach that consists of the following two steps:

9

1) Search vertically the first NP pixel with value ‘1’ in the localised NP region

from top to bottom at positions (1,1) and (1,)b c . Then obtain two vertical

distance values d1 and d2. c is an offset constant used to ensure that the first

NP pixel is found in the correct NP top boundary. According to experimental

tests, when c is close to b/4 the value of  is more precise.

2) Calculate the difference
2 1d d d   .

According to trigonometric relations,  is calculated using the following equation:

1tan

2

d

b c
  


 
 (4)

After obtaining  from the localised NP region, a 2-D rotation method will be applied

to rotate the binarised NP image. In this paper, the nearest neighbour interpolation

method has been chosen to perform the horizontal rotation which is based on the

following equations:

 2 1 1cos (/ 2) sin (/ 2) / 2x x b y a b        (5)

 2 1 1sin (/ 2) cos (/ 2) / 2y x b y a a        (6)

Where a and b are height and width of the binarised NP image respectively, 1 1(,)x y

and
2 2(,)x y are the old and new coordinates of a given pixel on the NP image

respectively.

The rotation operation produces output locations 2 2(,)x y which may not be within the

boundaries of the original NP image and they will be ignored. It is worth noting that

the size a b will be kept and as a result some pixels in the boundaries of the NP will

be filled with value ‘0’. Due to the fact of the rotation algorithm may produce

10

coordinates that are not integers, the proposed method uses the nearest integer

coordinate values. The binarised NP region after the rotation is shown in Figure 5.

b/2

Va θ

(a) (b)

θ
b/2

Va

Figure 5 (a) Binarised NP image. (b) Rotated NP image.

As it can be seen from Figure 5(b), there are many non-NP pixels in the boundaries

that are generated after rotation; therefore, a cropping process is needed to reduce the

height of NP image. A simple method has been proposed to perform this operation. In

this method, the rotated NP image will be cropped by
aV from the top and bottom of

the NP which leaves a new NP height of 2 aa V . The cropped NP image is shown in

Figure 6.

b

a-2Va

Figure 6: The cropped NP image.

From Figure 5(a), the following to trigonometric relation can be obtained:

/ 2

aV
tan

b
  (7)

Thus, the cropping parameter aV can be calculated using the following equation:

 / 2aV tan b  (8)

11

2.2.2 Vertical Adjustment

After horizontal rotation, NP images may still need vertical rotation to adjust the slant

as shown in Figure 7(a). Since there is a vertical slant, it is difficult to separate the

character with CCA or other projection techniques. For such cases, a vertical

adjustment method, which based on horizontal shifting of pixels, is proposed and

presented in this section to solve the problem.

θ

(a) (b)

θ

θ

∆S

a-2Va-y

pi, j

Figure 7 (a) NP image before vertical correction. (b) NP image after vertical correction.

In Figure 7(a), if an NP image was rotated horizontally with an angle  the resulted

NP image may have a vertical slant. To adjust this, the NP image must be shifted with

a value s that depends on the horizontal rotation angle and a variable y which is the

vertical coordinate of the pixel to be shifted. From Figure 7(a):

2 a

s
tan

a V y





 
 (9)

For a pixel Pi,j, y is equal j. Thus, the shifting value s for each pixel can be

calculated using the following equation:

 (2) tanas a V j      (10)

The shifted NP image after vertical adjustment is shown in Figure 7(b).

3. Proposed Pre-Processing Architectures

The proposed pre-processing architectures consist of the two main modules listed

below:

12

1) Binarisation: this module is used to convert the NP greyscale image to a

binary image and is based on the local threshold binarisation method presented

in Section 2.1.

2) Adjustment: this module is used to calculate the horizontal rotation angle,

perform 2-D horizontal image rotation, calculate the vertical shifting value and

perform the vertical shifting operation. The module is based on the methods

presented in section 2.2.

The block diagram of the proposed pre-processing modules is shown below in Figure

8.

Binarisation

Horizontal

Correction

Vertical

Correction

Pre-processing Adjusted Binary NP image

Greyscale Car Image

Figure 8: Block diagram of the pre-processing modules.

3.1 Binarisation Module

The Binarisation Module is the first module in the pre-processing stage which consists

in three blocks which are the memory reader, mean and local threshold filters. The

overall block diagram of the binarisation module is shown in Figure 9.

13

NP Reader

NPL

Mean Filter
To the Vertical

Correction Block

The Coordinates

of NP

Greyscale

Pixel Values
Local Threshold

Filter

NP Binarisation Module

Figure 9: The overall block diagram of the binarisation module.

The input images to the NPL stage are 640 480 colour car images from two UK [18]

and Greek databases [20]. During the NPL processing the input colour image is

converted to greyscale and stored in one external memory. The greyscale image is

used in further processing to generate the final outputs which consist of a binary car

image and the NP region coordinates (i.e. top left and bottom right corners). The

binary car image is stored in another external memory to be able to access it in

parallel with the greyscale image [18].

In Figure 9, the NP reader first obtains the coordinates of NP region from NPL stage,

and then uses them to calculate memory address of NP region. The greyscale pixel

values of NP region are read from the first external memory where the greyscale

image is stored and feed them to the mean filter block.

Let (,)x y denote the coordinates of a pixel in the NP rectangular region, 0 0(,)x y and

1 1(,)x y denote the left top and right bottom corner coordinates of the NP rectangular

region respectively. The memory address of any pixel in the NP rectangular region

can be calculated by:

(,) 0 1 0 1640 , &x yaddress y x x x x y y y       (11)

The pixels in the NP region are read column by column from left to right using the

addresses calculated using the equation 11.

14

3.1.1 Mean Filter

The mean filter is the block that performs the main process of binarisation, which

consists of a window shifter and an averaging filter.

Window Shifter

The window shifter is a 8 8 matrix used to buffer pixels from the NP image. This

window shifter scans the NP image column by column from left to right. Figure 10

shows the architecture of the window shifter.

0

2

1

a-2

a-1

a-3

From Memory

Reader

Y
...

+

<<8

Yout

8×8 Matrix

Buffer

8 8 64 64 64

8 8

64
LineBuffer

Figure 10: The window shifter.

In Figure 10, ‘Y’ is an 8-bit register used to temporarily store a pixel value from the

NP Reader block. ‘LineBuffer’ is an 64a dual-port RAM, where a is the height of

the NP image, used to store NP pixels from eight columns and each memory location

will contain eight pixels from the same row and to do this an eight-bit shifter and an

adder are used. Thus, the content of each memory location in the ‘LineBuffer’ 'Y is

calculated using the following equation:

 ' 8Y Y Yout   (12)

Following this process, the first eight pixels from the first row of the NP image will

be stored in the first memory location of ‘LineBuffer’ after 8a clock cycles. After

that the next eight-pixel rows will be stored in the corresponding location every clock

15

cycle. ‘Yout’ is a 64-bit temporary register used to store the content of one location

from ‘LineBuffer’ every clock cycle. Once all eight pixels from a row are saved in

‘Yout’ it will be transferred to the first row of the 8 8 matrix buffer which will be

propagated to the next row every clock cycle. This process is repeated until the 8 8

matrix is full and transferred to the next module (i.e. averaging filter).

All steps described in this section need to be repeated for all pixels in the NP image.

Averaging Filter

The averaging filter consists of 21 adders and one 8-bit right shifter and is used to

calculate the mean value of the 8 8 matrix buffer by simply adding all 8-bit values

and divide the result by 64. The division is performed using the 6-bit right shifter.

Figure 11 shows the architecture of the averaging filter.

+
+

+
+

+
+

+
+

+ +

…...

+

From the last

four rows

>>6
To Threshold

Filter

Figure 11: Architecture of the Average Filter.

To avoid long delay paths in the hardware implementation and as it can be seen from

Figure 11, to obtain the final sum every four elements of are added together. The

average value can then be calculated by right shifting the sum by eight bits.

16

Local Threshold Filter

The window shifter will be applied to the whole NP greyscale image pixel by pixel

and each greyscale pixel will be the centre of the window. Local threshold filter

module calculates a local threshold to be used to produce the binary value of the

corresponding greyscale value of a pixel to produce a binary NP image. According to

equation 2, the threshold can be calculated by applying the subtraction of average

value and a constant t . This threshold is used as a condition to decide whether the

current average value from the average filter should be set to ‘1’ or ‘0’. The binary

pixels will be stored in a 256 1 dual-port RAM, the adjustment module will read the

pixels from this RAM simultaneously. Figure 12 shows the architecture of local

threshold filter block.

Greyscale

value

fmean

0

1

M
u

x

From Averaging

Filter

-

6
0 21 254 255253...

To Adjustment

Module

C
o

m
p

ar
at

o
r

Figure 12: Architecture of the local threshold filter.

In Figure 12, the address of the 256 1 dual-port RAM is incremented by one every

clock cycle, when it reaches the last location it will be initialised to ‘0’.

3.2 Adjustment Module

The adjustment module consists of three blocks which are rotation angle calculator,

coordinates correction block and pixels reader block. The overall block diagram of the

rotation module is shown in Figure 13.

17

Rotation Angle

Calculator

NPL

Coordinates

Correction
To the Character

Segmentation stage

The Coordinates

of NP

Rotation

Angle
Pixels Reader

Binarisation

Binary

Pixels

Coordinates

Memory

Address

Adjustment Module

Figure 13: The overall block diagram of the rotation module.

3.2.1 Rotation Angle Calculator

Since the output image from NPL stage stored in the second external memory, the

rotation angle calculator uses the coordinates of NP and calculates the addresses to

read the binary pixels from the memory. According to Figure 4(a), the memory

addresses for pixels in columns
0x c and 0x b c  can be calculated as follows:

1 1 0 1 0() 640 (1)MA r y r x c      (13)

 2 2 0 2 0() 640 (1)MA r y r x b c       (14)

Where x0 and y0 are the coordinates of the pixel in the left corner of NP, r1 and r2 are

the NP row number, c is the offset constant and b is the width of the NP.

According to the proposed algorithm presented in section 2.2.1, the memory

addresses
1MA and

2MA are calculated separately, where r1 and r2 are incremented by

one until the first NP pixel with value ‘1’ is found, then their difference is calculated.

The rotation angle  can be calculated using equations 4. In order to reduce the

hardware usage and improve the performance 1/ tan  is calculated instead of the

rotation angle  as all needed calculations in the coordinates correction block are

based on .

2b c

d


 



 (15)

18

3.2.2 Coordinates Correction

The coordinates correction block performs horizontal and vertical adjustments. For

horizontal adjustment, the main task is based on equations 5 and 6. However, in order

to avoid the calculation of trigonometric functions and reduce hardware usage,

simplified equations are used in this block.

The slant angles of NP images used from UK and Greek databases are always less

than 10 . Therefore, the corresponding trigonometric functions sin and cos can be

replaced tan and value ‘1’ respectively as sin tan  and cos 1  when 10  .

Thus, equations 5 and 6 can be simplified as follows:

 1
2 1

(/ 2)y a
x x




  (16)

 1
2 1

(/ 2)x b
y y




  (17)

For vertical adjustment, the main task is based on equation 10. x2 needs to be shifted

horizontally by s in order to perform the vertical adjustment, thus, equation 16 can

be written as:

1

2 1

(/ 2)y a
x x s




   (18)

Figure 14 illustrates the architecture of horizontal and vertical adjustments.

19

Y1

a/2

-

X1

b/2

-

/

α

/

From Rotation

Angle Calculator

X1

Y1

-

+

a

-

/

T1

T2

T3

T4

T7

T6

∆s

T5

-

To Pixel

Reader

X2

Y2

Figure 14: The proposed architecture for horizontal and vertical adjustments.

In Figure 14, ‘ 1 2 7, ,...,T T T ’ are buffers that are used to temporarily store intermediate

results, which can efficiently reduce path delay and improve the throughput rate of the

architecture. ‘ 1 1,X Y ’ and ‘
2 2,X Y ’ are the registers used to store the original and new

coordinates respectively. Each operation in equations 17 and 18 requires one clock

cycle and data stored in the buffers are propagated from one buffer to the next every

clock cycle. The final results are passed to the pixel reader block.

3.2.3 Pixel Reader

The pixel reader block reads binary pixels from the dual-port RAM in the local

threshold filter block from the binarisation module. In this block two functions are

performed:

1) Checking the new coordinates from coordinates correction block. If new

coordinates exceed the boundary of the NP, they will be discarded.

2) Calculating the reading address and read the binary pixels from the dual-port

RAM in the binarisation module, then feed them to two dual-port RAMs with

sizes 256 1 and 2048 1 that will be used in CS stage.

The reading address of the dual-port RAM is calculated by:

 2 2() / 256readMA x a y   (19)

20

Where
2x and

2y are the new coordinates, a is the height of the NP.

Figure 15 shows the proposed architecture of the pixel reader.

X2

Y2

Coordinates

Cheker

×

a

+ >>8 address

0 21 254 255253...

P

0 21 254 255253...

0 21 2046 20472045...

To Vertical Segmentation Block

To Horizontal Segmentation Block

From Binarisation

Module

Figure 15: Architecture of the pixel reader.

In Figure 15, if the new coordinates stored in ‘X2’ and ‘Y2’ are valid coordinates, after

passing the coordinate checker block, the corresponding binary pixel is read from the

dual-port RAM in the binarisation module and stored the in the temporary buffer ‘P’.

The stored value in ‘P’ will be simultaneously saved in the two dual-port RAMs to be

used in the CS stage.

4. FPGA Implementation and Results

The proposed architectures for NP binarisation and adjustment have been simulated

using the PAL Virtual Platform (PALSim) [21]. After simulation, the architectures

have been successfully implemented and verified using the Mentor Graphics RC240

FPGA development board equipped with a 4M-Gate Xilinx Virtex-4 LX40 [22].

Handel-C has been used for hardware description of the proposed architecture, which

is a high-level language that is at the heart of a hardware compilation system known

as the Mentor Graphic DK Design Suite (DK). Handel-C has additional constructs to

support parallelism and pipelining [23] [24].

21

The binarisation and adjustment modules run in parallel and pipelining has also been

used in their implementation to achieve high throughput rate and an NP image can be

processed by both modules in (6)b C  clock cycles where:

- b is the width of the NP

- 6 is a constant delay that allows enough pixels to be stored in the dual-port

RAM from the binarisation module

- C is the number of clock cycles required to complete binarisation for one

column from the NP image

4.1 Proposed Environment for NP Binarisation and Rotation on FPGA

Figure 16 illustrates the proposed environment for NP binarisation and adjustment

implementation. It contains a host application (GUI), NP database and the RC240

FPGA development board. The host application was developed using Visual Studio

2010 and gives the user the ability to select a car image from the database, display and

send it to the FPGA for processing. Once processed, the localised, binarised and

adjusted NPs are processed on the FPGA and send back to the host to be displayed in

the same GUI.

RC240 FPGA Board

External

Memory

Xilinx Virtex-4

LX40 FPGA

NP Database

USB

Figure 16: Host application for NP binarisation and adjustment.

22

4.2 Hardware Usage, Running Frequency and Power Consumption

Due to the low complexity of the proposed algorithms, the binarisation and

adjustment architectures require only 9% of the on-chip FPGA resources. Table I

summarises the required on-chip resources.

Table I: Usage of FPGA on-chip Resources

 Used Available Utilisation

Occupied Slices 1,763 18,432 9%

LUTs 2,649 36,864 7%

Block Rams 3 96 3%

According to our previous work [1, 17, 18] where new algorithms and architectures

for NPL and CS stages were proposed and implemented on FPGA, the on-chip

resources usage was 28% for NPL and 11% for CS. Therefore, the total hardware

usage for NPL, pre-processing and character segmentation is 48%, leaving 52% of the

FPGA area to be used for the remaining part of an ANPR system (i.e. character

resizing and OCR).

The maximum running frequency is 95.8 MHz and the number of clock cycles needed

for one image to be processed is 6297-16519, which depends on the resolution of the

localised NP. The execution time for processing one frame can be calculated using the

following equation:

c

T
f

 (20)

Where T is the execution time; c is the number of clock cycles needed to process one

image; and f is the maximum running frequency.

Based on equation 20, the proposed architecture can process one image (18 99 -

60 300) and produce a result in 0.07 0.17 ms . The difference in the execution time

23

is due to the size of the images which affect the number of clock cycles. The smaller

the size of the image, the lower the number of clock cycles is required. The execution

times achieved mean that the proposed architecture satisfies the minimum

requirement for real-time processing. The results achieved in terms of maximum

running frequency and area used for implementing this part of the ANPR system

show that there is enough room to implement the whole ANPR system on a single

FPGA chip.

The power consumption of the designed circuit has also been analysed using Xilinx

XPower [25], and the results obtained are shown in Table II.

Table II: Estimation of Power Consumption

Name of Power Value of Power (mW)

Total Quiescent Power 446

Total Dynamic Power 236

Total Power 682

The total power consumption of FPGAs consists of quiescent and dynamic

components. Table II shows that the total power consumption of the proposed

architecture is 682 mW which is lower than the power consumption of a typical PC if

it is used as the processing unit in an ANPR system.

4.3 Experiment Results

MATLAB implementations of the proposed algorithms were used as a proof of

concept prior to the hardware implementation where floating-point arithmetic and

functions from the image processing toolbox were used. However, the FPGA

implementation uses a simplified integer based arithmetic. NP images from the Greek

24

and UK databases have been used for testing the MATLAB and FPGA

implementations.

In order to compare the similarity of output images from MATLAB and FPGA

implementations, the noise on the NP images is first removed using Gaussian filter

and then 2-D correlation coefficient of the processed NP images are used to estimate

the similarity of the two results [26]. As it can be seen from Table III the similarity of

MATLAB and FPGA is around 67.2%.

Table III: Similarity result for MATLAB/FPGA

 MATLAB FPGA Similarity

NP Example 1

72.1%

NP Example 2

63.8%

NP Example 3

64.8%

NP Example 4

68.0%

In order to compare the software and FPGA-based implementations in term of the

computation speed, the proposed algorithm has also been implemented in C using a

PC equipped with an Intel Core i7 2.8GHz and 8G RAM. Table IV shows the results

of the C and FPGA implementations in terms of computation time.

25

Table IV: C /FPGA result comparison

C Implementation FPGA Implementation

NP Image
Consumption

Time
NP Image

Consumption

Time

NP

Example

1

Original

greyscale

NP
N/A

N/A

Binarised

NP
 7 ms 0.11 ms

Adjusted

NP

NP

Example

2

Original

greyscale

NP
N/A

N/A

Binarised

NP 8 ms 0.12 ms
Adjusted

NP

The images have been successfully binarised and adjusted using the proposed

algorithms, where the characters are clearly isolated from each other and the vertical

and horizontal positions of the NPs are properly adjusted. The FPGA processes a NP

image 70 times faster than C implementation due to the low complexity of the

proposed algorithms, the arithmetic techniques used, parallelism and pipelining

exploited in the hardware implementation of the proposed architectures.

5. Conclusion

Current ANPR systems use high performance workstation as processing unit to meet

the real-time requirement, however, the cost and power consumption issues that come

with these systems have motivated researchers to look for other alternative platforms.

Recent FPGAs have become a viable candidate for performing computationally

intensive image processing task such as ANPR.

26

In this paper, two optimised low complexity NP binarisation and adjustment

algorithms have been proposed to successfully link NPL and CS stages. Efficient

area/speed architectures based on the proposed algorithms have also been presented

and successfully implemented and tested using the Mentor Graphics RC240 FPGA

development board, which together require only 9% of the available on-chip resources

of a Virtex-4 FPGA, run with a maximum frequency of 95.8 MHz and are capable of

processing one image in 0.07 0.17 .ms

The 91% remaining resources that allow the remainder of the ANPR system to be

implemented on the same FPGA that can be placed within an ANPR camera housing

to create a stand-alone unit which will remove the installation and cabling costs of

bulky PCs situated in expensive, cooled roadside cabinets.

27

References

[1] X. Zhai and F. Bensaali, "Improved Number Plate Character Segmentation Algorithm

and its Efficient FPGA Implementation," Journal of Real-Time Image Processing,

2012.

[2] S. Chang, Chen, L., Chung, Y. and Chen, S., "Automatic license plate recognition,"

IEEE Transaction on Intelligent Transpotation Systerms, 5, 42-53 (2004).

[3] C. N. E. Anagnostopoulos, I. E. Anagnostopoulos, V. Loumos, and E. Kayafas, "A

License Plate-Recognition Algorithm for Intelligent Transportation System

Applications," IEEE Transactions on Intelligent Transportation Systems, , 7, 377-392

(2006).

[4] C. N. E. Anagnostopoulos, I. E. Anagnostopoulos, I. D. Psoroulas, V. Loumos and E.

Kayafas "License plate recognition from still images and video sequences: A survey,"

IEEE Transaction Intelligent Transportation System, 9, 377-391 (2008).

[5] X. Zhai, F. Bensaali and S. Ramalingam, "License plate localisation based on

morphological operations," in 11th Int. Conf. Control Automation Robotics & Vision,

2010, pp. 1128-1132.

[6] C. Arth, C. Leistner and H.Bischof, "TRIcam: an embedded platform for remote

traffic surveillance," in Proceedings of IEEE Computer Vision and Pattern

Recognition Conference, 2006, pp. 125-134.

[7] D. Zheng, Y. Zhao, and J. Wang, "An efficient method of license plate location,"

Pattern Recognition Letters, 26, 2431-2438 (2005).

[8] B. R. Lee, K. Park, H. Kang, H. Kim, and C. Kim, "Adaptive Local Binarization

Method for Recognition of Vehicle License Plates," in Combinatorial Image Analysis.

vol. 3322, J. Žunic, Ed., ed: Springer Berlin / Heidelberg, 2004, pp. 646-655.

[9] W. Jia, H. Zhang, and X. He, "Region-based license plate detection," Journal of

Network and Computer Applications, 30, 1324-1333 (2006).

28

[10] M. Pan, J. Yan, and Z. Xiao, "Vehicle License Plate Character Segmentation,"

International Journal of Automation and Computing, 05, 425-432 (2008).

[11] X. Jia, X. Wang, W. Li, and H. Wang, "A Novel Algorithm for Character

Segmentation of Degraded License Plate Based on Prior Knowledge," in IEEE

International Conference on Automation and Logistics, 2007, pp. 249-253.

[12] X. Zhai, F. Bensaali, and R. Sotudeh, "OCR-Based Neural Network for ANPR," in

IEEE International Conference on Imaging Systems and Techniques, Manchester, UK,

2012, pp. 393-397.

[13] N. Otsu, "A Tlreshold Selection Method from Gray-Level Histograms," IEEE

Transactions on Systems, Man and Cybernetics, 9, 62-66 (1979).

[14] F. Yang, Z. Ma, and M. Xie, "A Novel Binarization Approach for License Plate," in

2006 1ST IEEE Industrial Electronics and Applications, 2006, pp. 1-4.

[15] Y. Wen, Y. Lu, J. Yan, Z. Zhou, von Deneen K.M. and P. Shi, "An Algorithm for

License Plate Recognition Applied to Intelligent Transportation System," IEEE

Transactions on Intelligent Transportation Systems, 12, 830-845 (2011).

[16] Y. Zhang and C. Zhang, "A new algorithm for character segmentation of license

plate," in IEEE Intelligent Vehicles Symposium, 2003, pp. 106 - 109.

[17] X. Zhai, F. Bensaali, and S. Ramalingam, "Real-Time License Plate Localisation on

FPGA," in 17th IEEE Workshop on Embedded Computer Vision and Pattern

Recognition, 2011, pp. 14-19.

[18] X. Zhai, F. Bensaali, and S. Ramalingam, "Improved Number Plate Localisation

Algorithm and its Efficient FPGA Implementation," IET Circuits, Devices & Systems,

2012.

[19] H. Goldstein, Classical Mechanics, 2nd ed.: Addison-Wesley, 1980.

[20] Multimedia Technology Laboratory. Medialab LPR Database. Available:

http://www.medialab.ntua.gr/research/LPRdatabase.html (Accessed on Jan, 2011)

[21] Mentor Graphics Corporation. PAL User Manual. Available:

http://www.mentor.com/ (Accessed on June, 2011)

29

[22] Mentor Graphics Corporation. RC240 Datasheet. Available: http://www.mentor.com/

(Accessed on June, 2011)

[23] Mentor Graphics Corporation. Handel-C User Manual. Available:

http://www.mentor.com/ (Accessed on June, 2011)

[24] F. Bensaali, A. Amira, and A. Bouridane, "Accelerating matrix product on

reconfigurable hardware for image processing applications," IET Circuits, Devices &

Systems, 152, 236-246 (2005).

[25] Xilinx, Inc. Xpower Tutorial: FPGA Design. Available: http://www.xilinx.com/

(Accessed on June, 2011)

[26] J. Cohen, P. Cohen, S. G. West, and L. S. Aiken, Applied Multiple

Regression/Correlation Analysis for the Behavioral Sciences: Psychology Press, 2002.

