Entanglement and entangling power of the dynamics in light-harvesting complexes

Caruso, F., Chin, A.W., Datta, A., Huelga, S.F. and Plenio, M.B. (2010) Entanglement and entangling power of the dynamics in light-harvesting complexes. ISSN 1050-2947
Copy

We study the evolution of quantum entanglement during exciton energy transfer (EET) in a network model of the Fenna-Matthews-Olson (FMO) complex, a biological pigment-protein complex involved in the early steps of photosynthesis in sulfur bacteria. The influence of Markovian as well as spatially and temporally correlated (non-Markovian) noise on the generation of entanglement across distinct chromophores (site entanglement) and different excitonic eigenstates (mode entanglement) is studied for different injection mechanisms, including thermal and coherent laser excitation. Additionally, we study the entangling power of the FMO complex under natural operating conditions. While quantum information processing tends to favor maximal entanglement, near unit EET is achieved as the result of an intricate interplay between coherent and noisy processes where the initial part of the evolution displays intermediate values of both forms of entanglement.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads