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A B S T R A C T 

We introduce an empirical methodology to study how the spectral energy distribution (SED) and galaxy morphology constrain 

each other and implement this on ∼8000 galaxies from the HST CANDELS surv e y in the GOODS-South field. We show that the 
SED does constrain morphology and present a method that quantifies the strength of the link between these tw o quantities. Tw o 

galaxies with very similar SEDs are around three times more likely to also be morphologically similar, with SED constraining 

morphology most strongly for relatively massive red ellipticals. We apply our methodology to explore likely upper bounds on 

the efficacy of morphological selection using colour. We show that, under reasonable assumptions, colour selection is relatively 

inef fecti ve at separating homogeneous morphologies. Even with the use of up to six colours for morphological selection, the 
average purity in the resultant morphological classes is only around 60 per cent. While the results can be impro v ed by using the 
whole SED, the gains are not significant, with purity values remaining around 70 per cent or below. 

Key words: methods: data analysis – Galaxy: formation – galaxies: evolution – galaxies: stellar content – galaxies: structure. 
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 I N T RO D U C T I O N  

he visual appearance of galaxies – commonly referred to as galaxy 
orphology – correlates with their physical properties, such as 

tellar mass (e.g. Bundy, Ellis & Conselice 2005 ), star formation 
ate (SFR; e.g. Bluck et al. 2014 ; Kaviraj 2014 ; Smethurst et al.
015 ; Lofthouse et al. 2017 ), surface brightness (e.g. Martin et al.
019 ; Jackson et al. 2021 ), rest-frame colour (e.g. Strate v a et al.
001 ; Skibba et al. 2009 ), and local environment (e.g. Dressler et al.
997 ; Postman et al. 2005 ). It rev eals ke y information about the
rocesses that have shaped the evolution of galaxies o v er cosmic
ime (e.g. Martin et al. 2018 ; Jackson et al. 2020 ). The literature
ocuments many approaches to measuring galaxy morphology, with 
istorically the most popular being based on visual classification 
chemes (e.g. Hubble 1926 ; Lintott et al. 2011 ; Simmons et al. 2017 ;
aviraj, Martin & Silk 2019 ), light distribution based parametric 
ethods (e.g. de Vaucouleurs 1948 ; S ́ersic 1963 ; Odewahn et al.

002 ; Simard et al. 2002 ; Lackner & Gunn 2012 ; Ryan et al. 2012 ),
nd non-parametric approaches such as Concentration-Asymmetry- 
lumpiness (Abraham et al. 1994 ; Conselice 2003 ; Menanteau et al.
006 ; Mager et al. 2018 ) or Gini-M20 (e.g. Lotz, Primack & Madau
004 ; Scarlata et al. 2007 ; Peth et al. 2016 ). More recently improving
omputing power has introduced new empirical machine learning 
ethods (e.g. Huertas-Company et al. 2015 ; Ostrovski et al. 2017 ;
chawinski et al. 2017 ; Goulding et al. 2018 ; Hocking et al. 2018 ;
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heng et al. 2020 ; Martin et al. 2020 ) often applied to problems of
lassification or automated clustering in an attempt to make large 
urv e ys tractable for morphological analysis. 

Although estimating the physical parameters of a galaxy from 

ts spectral energy distribution (SED) is subject to confounders and 
mbiguity (e.g. Conroy 2013 ; Magris et al. 2015 ), the SED does trace
he stellar composition of the galaxy and relates to physical quantities
ike stellar mass, metallicity, ionized-gas properties, and star forma- 
ion history (e.g. Jones & Lambourne 2004 ). Several studies exist on
he subject of the spectral classification of galaxies, which show that
pectral types often have corresponding morphological biases (e.g. 
organ & Mayall 1957 ; Sodr ́e & Cue v as 1994 ; Connolly et al. 1995 ;
adgwick et al. 2003 ). In the same vein, deri v ati ves of the SED such

s colours are thought to correlate strongly with morphology and 
ave frequently been used by astronomers as a proxy thereof (see
asters et al. 2019 for an e xtensiv e list). Ho we ver, gi ven that the

hape of an SED is driven by the galaxy’s star formation history,
hile morphology depends on dynamical factors, it is not clear to
hat extent the SED and morphology can be expected to constrain

ach other. 
Results from the spectral classification literature show that mor- 

hologies associated with spectral types are impure to varying 
e grees. F or e xample, Masters et al. ( 2010 ) morphologically select
433 face-on spirals from the Sloan Digital Sk y Surv e y (SDSS) Data
elease 6 (Adelman-McCarthy et al. 2007 ) of which 6 per cent are

ed spirals, which runs contrary to the expectation that late-types 
hould have bluer colours than early-types. They also show that 
ed spirals primarily manifest themselves in the higher mass range, 
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nd moti v ate the claim that massive galaxies are red regardless of
orphology. Skibba et al. ( 2009 ) show that colour and morphology

ppear to be differently related to the local environment and are
ound to stray from a one-to-one mapping. Although these results
mply that the constraints of SED and morphology on each other
re asymmetrical, the question is yet to be explored directly and the
onstraint of morphology on the SED is yet to be properly considered.

In this work, we introduce an empirical methodology for the
nalysis of how SEDs and morphologies constrain each other. We
tilize the vector space building techniques for galaxy surveys laid
ut in Uzeirbe go vic, Geach & Kaviraj ( 2020 ). Galaxy cut-outs
re projected to points in a high-dimensional space in which the
uclidean distances between galaxies relate directly to the visual
orphological similarity between them. We likewise project galaxy
EDs as proxied by the catalogued rest-frame bands. We use these
ector spaces together to demonstrate the implications that the
tructure of one space has on the other. In contrast to classification
r morphological indicator-based methods, vector spaces enable us
o compare galaxy similarity on a continuous scale, and – as we
ill show – conduct analyses without having to commit to specific

eatures such as CAS or a particular typology (e.g. the Hubble
equence; Hubble 1936 ). 

From here, the paper is structured as follows. In Section 2, we
escribe the source data used, how it is prepared, how the key artefact
the dissimilarity matrices – are derived from it, and how they

re interpreted. In Section 3, we analyse the vector spaces to show
hat: (1) SEDs significantly constrain morphology and the extent to
hich it happens can be quantified, (2) the constraint is not uniform

nd some morphologies are especially well-constrained by the SED,
3) galaxy morphology constrains SEDs more than vice versa, (4)
here is a visually distinguishable group of galaxies for which the
ED and morphology are mutually constraining, and (5) there is
n upper bound on co v erage and purity when attempting to use
est-frame colours to select homogeneous morphologies, with direct
mplication on colour-based morphology selection methods. Finally,
n Section 4 we conclude by summarizing the main points of our
ork. 

 DATA  A N D  P R E PA R AT I O N  

.1 HST -CANDELS 

e use the HST -CANDELS (Grogin et al. 2011 ; Koekemoer et al.
011 ) surv e y because it offers a high-resolution probe of galaxy
volution. It is supplied with a corresponding catalogue (Guo et al.
013 ; Santini et al. 2015 ). The surv e y consists of optical and near-
nfrared (UVIS/IR) images from the Wide Field Camera 3 (WFC3)
nd optical images from the Advanced Camera for Surv e ys in five
ell-studied extragalactic survey fields. We focus on GOODS-S,
ne of the deep tier (at least four-orbit ef fecti ve depth) fields. In
rder to keep galaxies comparable to each other and minimize the
ffects of noise, we select only galaxies imaged in the WFC3 F 160 W
lter at z < 3 with signal-to-noise ratio > 20 and M � ≥ 10 8 M �.
he signal-to-noise ratio is provided per object in the catalogue and

s calculated as flux divided by flux error in the F 160 W band. This
ltering results in a sample of 7757 galaxies with images in the WFC3
 160 W filter. 
For each object after filtering, we take 31 × 31 (1.8 arcsec) pixel

ut-outs, using the catalogued sky coordinate as a centroid. We also
ake use of the photometric redshift, mass, SFR, and rest-frame
BVRIJK magnitudes provided in the catalogue. The photometric

edshifts have normalized median absolute de viation (NMAD) v alues
NRAS 510, 3849–3857 (2022) 
etter than 0.05 and 0.03 at z < 1.5 and z > 1.5 respectively and
utlier fractions of ∼5 per cent or better. From herein, we refer to
he total number of galaxies in our data set as N , where N = 7757,
nd the pixel width of square cut-outs as n , where n = 31. 

.2 The morphological dissimilarity matrix 

he representation of (visual) morphological similarity in our method
s based on the calculation of a ‘dissimilarity’ matrix, which encodes
 measure of the pairwise differences between galaxies. To create a
issimilarity matrix, we begin by projecting all galaxy cut-outs on
o a common vector space, in which the squared Euclidean distance
etween vectors is informative of morphological differences. We
all this the morphology space . We follow the vector space building
ethodology for galaxy surv e ys laid out in Uzeirbe go vic et al. ( 2020 )
ith the following cut-out standardization steps applied sequentially
rior to projection: 

(i) Masking – Many cut-outs contain background noise that can
ause spurious similarity. For each cut-out, we mask away the
ackground by robustly fitting a Gaussian using the median ( α) and
nterquartile range ( β) of the flux densities of the pixels in the cut-
ut, and clipping to zero all pixels below a threshold t given by the
olution to � ( X ≤ t | α, β) = 0.9, where � is a Gaussian CDF. Since
 majority of the pixels in most cut-outs are background dominated,
his has the effect of zeroing out the background. The process is not
 v erly sensitiv e to our chosen constant (0.9) and will produce much
he same results in the range 0.85–0.95. 

(ii) Rotation – The covariance of the coordinates of all the non-
ero pixels in F 160 W are used to find the major axis of the data. The
ut-out is then rotated so as to bring the galaxy in line with the major
xis. This step standardizes the orientation of all cut-outs. 

(iii) Flipping – All cut-outs are flipped as necessary horizontally
nd vertically to make sure that the brightest pixels are in the top left
and corner. This makes it more likely that bright spots in similar
alaxies line up. This is achieved by comparing the top/bottom,
eft/right sides of each cut-out respectively and flipping accordingly
o mo v e the brightest quadrant to the top left of each cut-out. 

(iv) Normalization – The scale of flux densities in individual
mages is remo v ed by normalizing each cut-out to the range [0,
]. 

e project the N standardized cut-outs by flattening each of them into
ow vectors and then stacking the vectors into a N × n 2 matrix. We
se principal component analysis (PCA) to decompose the matrix
nto orthogonal basis vectors. We test that PCA is not degenerate
y repeatedly leaving out 20 per cent of galaxies at random and
aking sure the fitting does not change substantially as described

n Uzeirbe go vic et al. ( 2020 ). We decide to retain k = 40 basis
ectors by trying each value of k in turn and picking the point at
hich additional dimensions stop making a difference to how the
issimilarities are distributed. 
A dissimilarity of zero implies that two galaxies are the same,

nd otherwise the closer to zero the more similar galaxies are.
hat is enough for our analysis as we are only interested in the

ank of a galaxy relative to another (detailed in Section 3), and not
he absolute distances. Ho we ver, for the astronomer in search of a

ore intuitive interpretation of dissimilarities it should be noted that
or( X, Y ) ∝ 1 − d 2 ( ̄X , Ȳ ) where X , Y are row vectors, X̄ , Ȳ are
 -scaled versions, and d 2 is the squared Euclidean distance function.
hat is, a dissimilarity may be interpreted as the correlation between

he pixels in two images. 
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Figure 1. A density plot of the distribution of the morphology space fraction 
for various stellar mass cuts. The areas represent the density between the 16th 
and 84th percentiles. All distributions are heavily skewed towards smaller 
fractions, peaking at x < 0.1. The skew can be seen to increase at the highest 
mass cut, which may be because larger galaxies are better resolved and 
therefore less ambiguous in morphology space. The o v erall median x value 
is 0.37, and the smallest sample size is 1222. The results are significant at a 
p -value approaching zero. 
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.3 The SED dissimilarity matrix 

e use rest-frame magnitudes in the UBVRIJK bands as a proxy 
or the SED of an y giv en galaxy. We shall refer to this proxy as
he SED for brevity. One objection may be that a 7D proxy of the
ED underestimates the variance available in a fuller sampling of the 
pectrum. To investigate, we conduct a principal component analysis 
f the UBVRIJK bands. The first component accounts for o v er 96 per
ent of explained variance, increasing to 99.9 per cent when a second
omponent is added. The e xtreme redundanc y suggests there would 
e limited benefit to a finer sampling of the spectrum between bands
 and K . Ho we ver, if the spectrum beyond U − K is discontinuous
ith U − K , then it could affect the results. 
The SEDs are treated as 7D vectors and the SED dissimilarity
atrix is calculated as the pairwise squared Euclidean distances 

etween all SEDs. We call this the SED space . Note further that
ince colour is just the magnitude in two bands subtracted from each
ther (e.g. U − R ), nearby SEDs imply similar bands which in turn
mply similar colours on average. It may thus help readers to think
bout SED distance as an indicator of how closely matched two 
alaxies are across all the colours implied by the rest-frame bands in
se. 

 ANA LY SIS  

n this section, we sho w ho w SED and morphological dissimilarity
atrices can be used together to produce insights regarding the 

elationship between the SED and morphology. We note that all 
he graphs featuring density plots are produced by resampling the 
riginal series 1000 times, calculating 1000 histograms and reporting 
ack the 16th–84th percentiles as an area to give the reader a clearer
ense of sample uncertainty. The densities per histogram are just the 
nderlying frequencies, normalized such that the integral over all the 
ins equals 1. 

.1 SED constraints on morphology 

o determine whether a galaxy’s SED constrains its morphology, 
t helps to consider the extreme cases wherein (1) the SED com-
letely determines the morphology and (2) the SED is completely 
ndependent of morphology. Suppose we draw a galaxy at random 

nd then find its nearest neighbour in SED space (that is, another
alaxy which has an SED most similar to its own). In case 1, we may
xpect the two galaxies to look very similar (that is, to have a small
orphological dissimilarity distance), while in case 2 we may expect 

hat the morphological dissimilarity distance could be anything 
t all. 

We generalize this intuition as follo ws. For e very galaxy g , we find
ts nearest neighbour in SED space, ḡ . We then order all the galaxies
n morphology space by distance to g and calculate the fraction x that
re closer to g than ḡ is. For example, if for some galaxy g , the nearest
eighbour in SED space ḡ has x = 0.1, it means that 10 per cent of
ther galaxies are more visually similar to g than ḡ is. We call x the
orphology space fraction . It should be noted that all comparisons 

nd nearest neighbour searches are restricted to be within 0.15 of the
hoto- z of g to keep comparisons within similar visual conditions. 
n case 1 we should expect x = 0. In case 2 – since ḡ might end
p ranked anywhere in the ordered set – we should expect x = 0.5
n average. We calculate x as above, for every galaxy. Fig. 1 shows
 density plot of the resultant distribution at various mass cuts. All
istrib utions are hea vily ske wed to wards smaller fractions, peaking
t x < 0.1. The skew can be seen to increase at the highest mass
ut, which may be because larger galaxies are better resolved and
herefore less ambiguous in morphology space. The o v erall median x
alue is 0.37 and the smallest sample size is 1222. For any given mass
ut, it is straightforward to show using the binomial distribution with
 = 

1 
m 

, where m is sample size, that the probability of these results
ccurring by chance is approximately zero. Thus, SED similarity 
etween galaxies implies a significantly greater likelihood of similar 
orphology. 
Another useful way to view the result is in terms of the probability

hat galaxies which are most similar to each other via the SED
re also most similar to each other via visual morphology. Let ε
e a morphology space fraction threshold below which a galaxy 
s considered suitably similar. For example, ε ≤ 0.01 implies that 
here are 1 per cent or fewer galaxies more similar to g than ḡ 
s. Under the null hypothesis that the SED and morphology are
ndependent, the probability that ḡ (the most SED similar galaxy 
o g ) is visually similar enough, is ε. In our data, at ε = 0.005,
he empirical probability is approximately 3 ε: an impro v ement by a
actor of 3. 

In the next section, we consider the group of galaxies at x < 0.1
herein the SED is particularly constraining. 

.2 The x < 0.1 group in morphology space 

n this section, we consider in more detail the galaxies for which
orphology appears particularly well constrained by the SED. Fig. 2 

hows group comparisons of redshift, mass, specific star formation 
ate (SSFR), and U − R colour. The x < 0.1 group is o v errepresented
n 0.25 < z < 1 and at higher masses but present throughout the
edshift and mass range of the population, which indicates that this
s not an artificial result brought about by the fact that more nearby
bjects are better resolved and therefore easier to differentiate. This 
roup has a lower SSFR and a significantly different rest-frame U − R
olour distribution that is bimodal, compared with the unimodal x ≥
.1 distribution. There are 1390 galaxies in the x < 0.1 group, which
omprises around 18 per cent of the data set. Thus, the galaxies for
hich morphology has the greatest link with the SED are typically

edder and more massive compared with more visually dissimilar 
bjects. 
MNRAS 510, 3849–3857 (2022) 
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Figure 2. Comparisons of redshift, stellar mass, SSFR, and rest-frame U − R 

colour for different groups. The areas represent the density between the 16th 
and 84th percentile. The x < 0.1 group is o v errepresented in the redshift range 
0.25 < z < 1 and at higher stellar masses but present throughout the redshift 
and mass range of the population. It has a lower SSFR and a significantly 
different U − R colour distribution wherein bimodality with peaks at 1 and 
2.1 is clearly present for the x < 0.1 group, in contrast to the unimodal 
distribution of the x ≥ 0.1 group. 

Figure 3. The e x emplars (prototypical galaxies) of the top 25 partitions 
ordered by size from left to right, top to bottom. The labels indicate the 
partition index and the number of galaxies in the partition. All partitions 
contain more than 50 members and together make up more than 90 per cent 
of the data set. 
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We next consider how this group differs from the rest of the
alaxies in terms of morphology. In order to investigate possible
atterns in morphology amongst the x < 0.1 group, we empirically
enerate a set of morphological classes and then cross tabulate these
gainst x < 0.1 group membership to see whether in-group galaxies
re o v er/underrepresented an ywhere. 

We first explain how the morphological classes are generated and
hen how they are used in our analysis. We use the morphology
pace to naturally partition galaxies around a set of e x emplars (i.e.
rototypical galaxies) such that galaxies in the same partition are all
lose to the same e x emplar. Let { d i , j } be our N × N dissimilarity
atrix in morphology space, the objective then is to choose a set of
 x emplars such that the sum of the distances between each galaxy
nd its closest e x emplar is minimized. F ormally, for some set of
alaxy vectors s ∈ S : 

min 
{ q i } m i= 1 

( ∑ 

s∈ S 
min 

i 
d s,q i + 

∑ 

d q i ,q i 

)
, (1) 

here q i ,..., q m ∈ S are m = | S | e x emplars. The diagonal d q i ,q i 
s set to the median distance. The optimization abo v e is usually
ntractable but the affinity propagation (AP; Frey & Dueck 2007 ,
ee Appendix A5 for a short o v ervie w) algorithm of fers a good
pproximation. A crucial advantage with AP is that the number of
artitions are automatically determined. We run AP on our data set
hat returns 68 partitions, of which 25 have at least 50 galaxies and
ubsume more than 90 per cent of the data set. Fig. 3 shows the top
5 partitions along with their indices and the number of galaxies in
hem. Full panels containing all the galaxies in each partition are
vailable as part of the supplementary material. 

We next produce a cross tabulation of all the galaxies, counting
ach into a partition and either in or out of group x < 0.1. We then
onduct a contingency table analysis, producing Pearson’s residuals
or each cell. A Pearson residual can be interpreted as the difference
measured in standard deviations) between the observed and expected
ounts in each cell, on the assumption (for the expected counts) that

art/stab3715_f2.eps
art/stab3715_f3.eps
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Table 1. The table shows the top 25 partitions by size along with the 
Pearson’s residuals for the x ≥ 0.1 and x < 0.1 groups where x is the 
morphology space fraction. Additionally, for the x < 0.1 group, the table 
shows the sample size, mean redshift, mean stellar mass, and the number 
of galaxies with a U − R > 2. Its noteworthy that the x < 0.1 group is 
significantly o v er/underrepresented in sev eral partitions, and that the redder 
peak in the colour distribution given in Fig. 2 is mostly accounted for by the 
o v errepresentation in Partition 1. 

Partition x ≥ 0.1 x < 0.1 # z Mass ( U − R ) > 2 

0 0 .86 − 1 .83 171 1 .02 1.64e + 09 40 
1 − 1 .3 2 .78 226 1 .16 7.58e + 09 103 
2 0 .72 − 1 .53 165 1 .41 1.04e + 09 35 
3 0 .73 − 1 .57 140 0 .93 1.70e + 09 9 
4 0 .52 − 1 .11 71 1 .03 6.64e + 09 21 
5 − 0 .06 0 .12 58 0 .86 5.07e + 09 3 
6 − 0 .37 0 .8 47 0 .93 4.68e + 09 5 
7 0 .69 − 1 .47 29 1 .47 1.33e + 09 7 
8 0 .74 − 1 .59 25 1 .57 9.74e + 08 1 
9 − 2 .55 5 .45 59 0 .5 1.28e + 09 31 
10 − 2 .11 4 .51 43 0 .87 6.82e + 09 4 
11 0 .21 − 0 .44 19 1 .41 1.22e + 09 1 
12 − 0 .2 0 .42 22 1 .09 4.44e + 09 2 
13 0 .35 − 0 .74 14 1 .51 1.33e + 09 0 
14 − 0 .29 0 .61 19 2 .03 3.89e + 08 2 
15 0 .02 − 0 .04 16 0 .95 4.17e + 08 0 
16 0 .9 − 1 .93 8 1 .97 4.46e + 09 1 
17 − 0 .52 1 .11 19 0 .74 6.64e + 09 2 
18 0 −0 14 1 .03 2.67e + 09 1 
19 0 .91 − 1 .95 5 1 .92 3.13e + 09 0 
20 − 1 .31 2 .8 21 0 .63 6.96e + 09 4 
21 0 .16 − 0 .34 10 1 .52 2.12e + 09 0 
22 − 0 .32 0 .68 13 0 .68 3.7e + 09 0 
23 − 0 .05 0 .1 10 1 .2 1.40e + 10 0 
24 0 .99 − 2 .11 3 1 .02 1.09e + 09 1 
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Figure 4. The SED space fraction density distribution at a selection of mass 
cuts. The areas represent the density between the 16th and 84th percentile. 
Unlike Fig. 1 , as the mass minimum increases, the left skew decreases, likely 
because more massive galaxies have less diverse SEDs therefore increasing 
ambiguity. Overall the median x value is 0.30, and the smallest sample size 
is 1222. 
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here is no dependence between the partitions and the x < 0.1, x ≥
.1 groups. For example, a residual of 2 or more could be interpreted
s a likely o v errepresentation of galaxies in that cell, and a residual
f −2 or less could be interpret as an under representation. 
Table 1 shows the top 25 partitions by size along with the Pearson’s

esiduals for the x ≥ 0.1 and x < 0.1 groups. Additionally, for the
 < 0.1 group, the table shows the sample size, mean redshift,
ean stellar mass, and the number of galaxies with rest-frame U 

R > 2. Its noteworthy that the x < 0.1 group is significantly
 v er/underrepresented in sev eral partitions, and that the redder peak
n the colour distribution from Fig. 2 is mostly accounted for by the
 v errepresentation in Partition 1. Thus, SED constrains morphology 
ost strongly for galaxies that are typically more massive, redder, 

nd morphologically elliptical. 

.3 Morphology constraints on SED 

e now consider how SEDs may constrain morphology. Just as 
efore, but in the opposite direction, for every galaxy g , we find
ts nearest neighbour in morphology space ḡ . We then order all the
alaxies in SED space by distance to g and calculate the fraction x that
re closer to g than ḡ is. We call this the SED space fraction . It should
e noted that all comparisons and nearest neighbour searches are 
estricted to be within 0.15 of the photo- z for g to keep comparisons
ithin similar visual conditions. Fig. 4 shows the distribution of the 
ED fraction at various mass cuts. Unlike Fig. 1 , as the minimum
ass increases, the left sk ew decreases, lik ely because more massive

alaxies have less diverse SEDs therefore increasing ambiguity. 
t should be noted that, as with the morphology space fraction
istribution, the SED space fraction distribution is most dense at 
 < 0.1. Overall the median x value is 0.30, and the smallest sample
ize is 1222. 

As before, another useful way to view the result is in terms of
he probability that galaxies which are most similar to each other
ia morphology are also most similar to each other via SED. Let
be an SED space fraction threshold below which a galaxy is

onsidered suitably similar. Under the null hypothesis that the SED 

nd morphology are independent, the probability that ḡ (the most 
orphologically similar galaxy to g ) is SED similar enough, is ε.

n our data, at ε = 0.005, the empirical probability is approximately
.75 ε: an impro v ement by a factor of 2.75. 
Fig. 5 shows the o v erall morphology fraction distribution and

ED fraction distribution. Both density series show a definitive 
ke w to wards the smaller fractions. Ho we ver, it is note worthy that
orphology constrains the SED significantly more than vice versa 

n average (0.30 versus 0.37 median fractions). The bottom plot 
hows the multiple of the gain in probability compared to the null
ypothesis [i.e. ( αε) of ḡ being within the ε threshold]. It shows that
ven though the SED constraint results in a higher peak probability,
orphological constraints are more limiting o v er all but the very

eginning of the ε range. 

.4 A mutually constrained group 

n this section, we investigate whether the galaxies that fall into the
 < 0.1 group in both the morphology and SED spaces are different
rom the rest. Fig. 6 shows the redshift, stellar mass, and colour
istributions for the x < 0.1 group in morphology space, SED space,
nd for galaxies that fall into both groups. Its noteworthy that the
Both’ subset is more massive and bluer, than the other two. This
uggests that the ‘Both’ group is not just a random sample from
he other two groups. Interestingly, the o v erlap between the two x
 0.1 groups (that is, the ‘Both’ group) is only about 24 per cent,

nderlining that an morphology heavily constrained by the SED does 
ot imply an SED heavily constrained by morphology, and vice versa. 
We produce a contingency table for the mutually constrained 

roup (MCG) but it does not reveal significant over indexing and
uggests instead a heterogeneous mix of galaxies. We instead search 
or common visual features by training a classifier to distinguish 
MNRAS 510, 3849–3857 (2022) 
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Figure 5. Density plot (top) of morphology fraction distribution and SED 

fraction distribution. The areas represent the density between the 16th 
and 84th percentile. Both series show a definiti ve ske w to wards smaller 
fractions. Ho we ver, it is noteworthy that on average morphology constrains 
the SED significantly more than vice versa: the median fractions are 0.30 
for morphology and 0.37 for SED. The bottom plot shows the relative gain 
in probability ( αε) of ḡ being within the ε threshold. It shows that even 
though the SED constraint results in a higher peak probability, morphology 
constraints are more limiting o v er all but the v ery be ginning of the threshold 
range. 
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Figure 6. The redshift, mass, and rest-frame U − R colour of galaxies in the 
x < 0.1 group by SED and morphology, and in both. The areas represent the 
density between the 16th and 84th percentile. Its noteworthy that the ‘Both’ 
subset contains galaxies that are more massive and bluer than the other two. 
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etween members of the MCG and the rest of the population. A
o v elty here is that we use the distances to the partition e x emplars
s features thus allowing feature importances to be interpreted in
erms of similarity of MCG members to particular e x emplars. We
se a ‘ridge’ classifier (Hoerl & Kennard 1970 , see Appendix A1 for
 short o v ervie w) with 100-fold cross-v alidation (see Appendix A4
or a short o v erview) to confirm an average classification accuracy 1 

f about 64 per cent, which suggests that some visual features are
ore abundant in the MCG than the general population. 
To further investigate which exemplars most affect the model,

e randomly shuffle each feature in turn and measure how much
he intervention affects coverage (the fraction of true positives
orrectly identified). This procedure is known as permutation feature
mportance (Breiman 1996 , see Appendix A2 for a short o v erview).
igger changes in co v erage indicate that the feature is more important

or picking out MCG members. Fig. 7 shows the partition e x emplars
rdered by effect on co v erage. Based on these results, there are
everal features that are particularly important in the MCG. Objects
ith the greatest effect typically fall into partitions containing fewer
 Since the MCG is small compared to the population, balanced classification 
ccuracy is used, which takes into account the class frequencies to produce 
n accuracy figure centred on 50 per cent. 

3

T  

c  

NRAS 510, 3849–3857 (2022) 
han 50 galaxies and appear more morphologically disturbed or
lumpy compared with later e x emplars. A plausible e xplanation
s that the MCG objects are affected by processes which have a
imultaneous effect on both the SED and morphological properties
f the galaxy, likely on short time-scales, for example mergers,
nteractions or clumpy star formation. This is particularly clear to
ee when comparing the e x emplars found in Fig. 2 to those found in
ig. 7 . We leave further analysis, classifier improvement and better
escription of the MCG for future work. 

.5 Implications for morphology selection by colour 

he classification of morphology using colour works by establishing
onstraints of the form a < y < b for one or more colours that best

art/stab3715_f5.eps
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Figure 7. The partition e x emplars ordered by effect size on a ridge classifier. 
The thumbnails are laid out left to right, top to bottom. The numbers indicate 
the difference in co v erage when the feature associated to the e x emplar is 
randomly permuted. Labels are omitted where they would be the same as the 
last label in the sequence. Objects with the greatest effect size typically 
fall into partitions containing fewer than 50 galaxies and appear more 
morphologically disturbed or clumpy compared with later e x emplars. 
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Table 2. The best redshift range, sample size, co v erage, and purity 
achieved by a decision tree classifier based on colour features, 
for each partition. Purity is notably below 64 per cent for most 
partitions implying an upper bound limit to colour-based methods. 

Partition Best redshift range # Co v erage Purity 

0 0.94–1.44 278 0 .6 0 .61 
1 0.53–1.03 336 0 .4 0 .64 
2 1.91–2.41 190 0 .47 0 .62 
3 0.78–1.28 239 0 .67 0 .59 
4 0.85–1.35 133 0 .55 0 .62 
5 0.05–0.55 73 0 .62 0 .61 
6 0.80–1.30 55 0 .71 0 .67 
7 2.24–2.74 50 0 .34 0 .56 
8 0.59–1.09 50 0 .76 0 .62 
9 0.23–0.73 96 0 .91 0 .92 
10 0.27–0.77 54 0 .57 0 .6 

Table 3. The best redshift range, sample size, co v erage, and purity 
achieved by a ridge classifier on rest-frame band features, for each 
partition. Both co v erage and purity are impro v ed for almost all 
partitions when compared to the decision tree classifier on colour 
features. 

Partition Best redshift range # Co v erage Purity 

0 0.00–0.50 60 0 .62 0 .61 
1 0.58–1.08 327 0 .54 0 .64 
2 0.16–0.66 73 0 .82 0 .73 
3 0.05–0.55 109 0 .7 0 .62 
4 0.87–1.37 134 0 .68 0 .68 
5 0.79–1.29 92 0 .74 0 .71 
6 0.71–1.21 63 0 .76 0 .73 
7 1.89–2.39 50 0 .46 0 .53 
8 0.57–1.07 50 0 .8 0 .68 
9 0.03–0.53 78 0 .98 0 .9 
10 0.33–0.83 50 0 .66 0 .65 
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eparate the target population from the rest. For example, Strate v a
t al. ( 2001 ) use rest-frame U − R ≥ 2.22 to separate early-type
alaxies from the rest with a claim of 80 per cent co v erage and 62 per
ent purity (the o v erall fraction correctly classified). The process of
lassifying by colour can be iterative, with each subsequent threshold 
ttempting to strike a balance between purity (the rate of true 
ositives) and coverage. This bears direct analogy to the operation of
 decision tree classifier (Breiman et al. 2017 , see Appendix A3 for a
hort o v erview) which on each iteration – in the binary case – picks
he best of its features according to some co v erage/purity criterion to
ake a threshold cut, repeating the process at every partition, until 

here are no more gains to be made or some limiting condition –
uch as maximum depth – has been reached. We can use the parallel
etween selection by colour as practiced by astronomers and the 
perations of a decision tree classifier, together with the empirical 
artitions and SED space derived above, to investigate whether we 
an establish an upper bound to the efficacy of methods that use
olour selection to classify morphology. 

For each empirical partition, we train a decision tree classifier 
ith a maximum depth of 6 using all the possible colours in the
BVRIJK bands as features: this equates to looking for an optimal 

et of thresholds on up to six colours. We repeat the fitting for every
edshift window with a width of 0.5, in which the partition has
t least 50 members. That is, for every partition, we try to find a
edshift slice in which some set of up to six colour constraints best
eparate galaxies belonging to that partition from the rest. We use 
0-fold cross-validation to establish the key metrics. Table 2 shows 
ptimal redshift, sample size, co v erage, and purity for all partitions
ig enough to test. With the exception of Partition 9, the purity of
lassifications is around the 60–70 per cent le vel. Se veral partitions
av e co v erage of at or abo v e 75 per cent but it is 60 per cent or below
or most partitions. The 11 partitions tested span more than 75 per
ent of the data so it appears that morphological classification using
olour results in generally poor efficacy as measured by co v erage
nd purity. 

Efficacy can be improved by abandoning colours in fa v our of any
inear combination of rest-frame bands. We fit a Ridge classifier using
he SEDs as features and repeat the fitting for every redshift window
ith a width of 0.5 in which the partition has at least 50 members.
hat is, for every partition, we try to find a redshift slice in which
ome combination of bands best separates galaxies belonging to that 
artition from the rest. As before, we use 10-fold cross-validation 
o establish the key metrics. Table 3 shows the optimal redshift
ange, sample size, co v erage, and purity for all partitions tested. Its
oteworthy that almost all co v erage and purity figures are impro v ed
y using all the bands, tipping purity for many partitions past the 70
er cent level. 

Since the empirical partitions are homogeneous morphologies 
hich together span the whole data set, one would expect that coarser
roupings (e.g. early versus late types) could be produced by pooling
artitions together into fewer morphological classes. Ho we ver, since 
he efficacy – as measured by co v erage and purity – is relatively
ow for both methods, it is unlikely that pooling would result in
etter morphological classification, and could make it worse by 
ecreasing in-class homogeneity. It should be further noted that the 
umbers for co v erage and purity presented here are ef fecti vely upper
ounds , since we report only the results for the optimal redshift
MNRAS 510, 3849–3857 (2022) 
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lice. Hence, significantly worse efficacy could be expected in other
edshift ranges. In general, therefore, pure morphological classes
annot be selected very ef fecti vely using colours. 

 SUMMARY  

n this work, we have introduced an empirical methodology for the
nalysis of how galaxy SEDs and morphologies constrain each other,
sing the vector space building techniques for galaxy surv e ys laid out
n Uzeirbe go vic et al. ( 2020 ). Our main results can be summarized
s follows: 

(i) Two galaxies with very similar SEDs are around three times
ore likely to also be most morphologically similar, compared to the

ull hypothesis that SED and morphology are independent. Massive
ed ellipticals are especially likely to be well-identified their SEDs. 

(ii) Two morphologically similar galaxies are slightly under
hree times more likely to be most SED similar, compared to the null
ypothesis that SED and morphology are independent. Ho we ver,
orphology constrains the SED more strongly than vice versa on

verage (with around a 7 per cent improvement in the space fraction).
(iii) Disturbed or interacting systems – systems that are expe-

iencing processes like mergers that affect both the SED and the
orphology simultaneously – are prominent amongst galaxies for
hich the SED and morphology are mutually constraining (i.e. in
hich the SED implies a relatively similar morphology and vice
ersa). 

(iv) No combination of colour cuts is able to strongly constrain
alaxy morphology. On average, purity is around 64 per cent, if up to
hree colours are used to try and select homogeneous morphological
lasses. While the results can be impro v ed by considering linear
ombinations of the whole SED, the impro v ements are not significant
nd purity levels for most morphological classes remain at the 70 per
ent or lower. 
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PPEN D IX  A  

1 Ridge classifier 

 ridge regression (Hoerl & Kennard 1970 ) is an alternative to
rdinary least-squares regression for fitting multiple regression 
odels which is particularly suitable when the independent variables 

re highly correlated. The regression is made into a binary classifier
y coding the dependent variable as either 1 (true) or −1 (false) and
hen conducting a re gression. Ridge re gression is well suited to the
ask at hand because (1) it out-performs more complex algorithms 
hat we have also tried, and (2) we are dealing with a large number
f correlated independent variables. 

2 Permutation feature importance 

he permutation feature importance (Breiman 1996 ) is the decrease 
n a metric used to score a model (co v erage in our case) when a
ingle independent variable is randomly permuted. The permutation 
reaks the relationship between the independent and the dependent 
 ariables, allo wing the drop in the scoring metric to be used as an
ndicator of the extent to which the model depends on the feature.
ince permutations are random, the processes must be repeated many 

imes per independent variable to calculate an average effect. 
3 Decision trees 

lassification and regression trees (Breiman et al. 2017 ) are an
mbrella term for various ways to construct decision trees for the
urposes of classification and regression. We utilize a relatively basic 
rocedure for our binary classification case, wherein independent 
ariables are evaluated one at a time, and the one which maximizes a
etric such as information gain (difference in information entropy) 

s selected as a splitting criteria. For each split the procedure is
ecursively repeated until some stopping criteria – such as maximum 

ree depth or too small a gain – is reached. 

4 K -fold cross validation 

 -fold cross validation refers to the splitting of the data into K pieces
herein each piece is used for testing in turn, while the K − 1
ther pieces are used for training. The individual evaluations may be
ombined together to produce an o v erall result. 

5 Affinity propagation 

ffinity propagation (Frey & Dueck 2007 ) is a clustering algorithm
hat partitions data around a set of ‘e x emplars’ by solving the
ptimization problem presented in equation (1). The problem is 
nown to be intractable, but affinity propagation uses a way of
eformulating the problem known as ‘message passing’, such that a 
olution can be approximated by iteration. More particularly, affinity 
ropagation makes e xtensiv e use of the sum-product rule (Pearl 1982 )
o minimize the number of computations required on each iteration 
n order to make the algorithm tractable. Key benefits of affinity
ropagation for our problem are that (1) it is e x emplar based, and (2)
hat it disco v ers the number of e x emplars. 
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