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Survival of a brown dwarf after engulfment by a red 
giant star 

P.F.L. Maxted1, R. Napiwotzki2, P.D. Dobbie3, M.R. Burleigh3 

Many sub-stellar companions (usually planets but also some brown dwarfs) have 

been identified orbiting solar-type stars. These stars can engulf their sub-stellar 

companions when they become red giants. This interaction may explain several 

outstanding problems in astrophysics 1- 5 but is poorly understood, e.g., it is unclear 

under which conditions a low mass companion will evaporate, survive the 

interaction unchanged or gain mass. 1, 4, 5 Observational tests of models for this 

interaction have been hampered by a lack of  positively identified remnants, i.e.,  

white dwarf stars with close, sub-stellar companions. The companion to the pre-

white dwarf AA Doradus may be a brown dwarf, but the uncertain history of this 

star and the extreme luminosity difference between the components make it 

difficult to interpret the observations or to put strong constraints on the models. 6, 7 

The magnetic white dwarf SDSS J121209.31+013627.7 may have a close brown 

dwarf companion 8 but little is known about this binary at present. Here we report 

the discovery of a brown dwarf in a short period orbit around a white dwarf.  The 

properties of both stars in this binary can be directly observed and show that the 

brown dwarf was engulfed by a red giant but that this had little effect on it. 
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WD0137-349 (BPS CS 29504-0036) was first noted as an unremarkable faint, 

blue star in a survey for metal poor stars. 9 Improved spectroscopy showed it to be a 

white dwarf. 10 We obtained high resolution spectra of WD0137-349 as part of the SPY 

programme to identify the progenitors of Type Ia supernovae. 11 We noticed features in 

these spectra due to a low mass companion in a close orbit so we obtained further 

observations (shown in Figure 1) to measure the orbital period and mass ratio (Table 1). 

From the mass of the white dwarf (Table 2) and the mass ratio we derive a mass for the 

companion of (0.053±0.006)M  (solar masses). This mass is well below the limit of 

about 0.075M  commonly used to distinguish stars from brown dwarfs. 12 Brown 

dwarfs, by definition, are not massive enough to support core hydrogen burning but do 

undergo a brief phase of deuterium burning soon after  they form.  They then start to 

cool, so the spectral type of a brown dwarf, which is a measure of its temperature, is 

also a measure of its age. The observed infrared flux distribution of WD0137-349 

(Figure 2) is consistent with a model of an old brown dwarf companion with a mass of 

0.055M   but inconsistent with models for companions that are young brown dwarfs or 

stars. The orbital period of WD0137-349 is approximately 116 minutes and the stars are 

separated by only 0.65R  (solar radii). 

Brown dwarf companions to white dwarfs are rare – less than 0.5% of white 

dwarfs have a brown dwarf companion at any separation. 13 However, there are many 

white dwarfs that are known to have a low mass star as a companion in a short period 

orbit. In cataclysmic variable stars (CVs) mass transfer onto the white dwarf from the 

companion through the inner Lagrangian point produces strong emission lines in the 

optical spectrum. No such lines are seen in our data for WD0137-349 so we conclude 

that it is not a CV. There are several good candidates for sub-stellar companions in CVs, 

but the extra light due to accretion makes it difficult to confirm their masses. 14, 15
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Short period white dwarfs binaries with low mass companions that do not transfer 

mass are known as pre-CVs because the loss of orbital angular momentum by 

gravitational wave radiation (GWR) and other mechanisms will result in the shrinkage 

of the orbit, the initiation of mass transfer and the formation of a CV. 16  The timescale 

for WD0137-349 to become a CV through the loss of GWR is about 1.4Ga, at which 

time the orbit period will be 60 – 80 minutes. This is close to the minimum orbital 

period seen in CVs. This raises the possibility that some fraction of CVs with very low 

mass companions may have formed as the result of the evolution of binaries like 

WD0137-349, rather than by extensive mass loss from the companion. A simulation of 

the population of pre-CVs formed from binaries like WD0137-349 shows that most of 

these binaries will have evolved from a solar-type star with a brown dwarf companion 

separated by a few au. 17 Although a few such systems have been found 18, such binaries 

are known to be rare 19 so it is likely that the contribution of stars like WD0137-349 to 

the total CV population is a few percent or less.   

The simulation of the population of binaries like WD0137-349 assumes that white 

dwarfs with close, low mass companions are the result of “common envelope 

evolution”. In this scenario, the more massive star in a binary system becomes a red 

giant once it has exhausted hydrogen in its core. The red giant will interact with its 

companion when its radius becomes comparable to the separation of the binary. The 

details of the interaction are uncertain but some low mass companions will be engulfed 

by the red giant, i.e., the core of the red giant and the low mass companion share a 

common envelope. If the companion is not sufficiently massive to force the envelope to 

co-rotate with its orbit, the drag on the companion will cause it to quickly spiral in 

towards the core of the red giant. Some fraction of the orbital energy released, αCE, will 

be deposited as kinetic energy in the envelope, which is ejected from the binary system. 

The radius of a red giant is determined principally by the mass of its core. This is 

effectively the mass of the resulting white dwarf, so we can calculate the value of αCE 
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required to explain the formation of WD0137-349 assuming a range of red giant masses, 

Mg. The lowest possible value of Mg is 0.8 M  because stars less massive than this do 

not evolve to the red giant stage within the lifetime of the Galaxy. This provides a lower 

limit of αCE≈0.6. This value of αCE is similar to that derived for pre-CVs with more 

massive companions. 20 If the red giant was more massive than 1.25M  the value of  αCE 

required exceeds 1. These values can be compared directly to the results of simulations 

of the common envelope phase, although no such simulations for systems resembling 

WD0137-349 are available to us at present. Simple physical arguments suggest that low 

mass companions to red giants will be evaporated during the common envelope phase if 

they are less massive than some limit mcrit. The value of mcrit is uncertain, but is 

expected to be about 0.02M . 1, 4, 5 The properties of WD0137-349 show that mcrit is at 

most 0.05 – 0.06M . The mass of WD0137-349 (0.4M ) is lower than the typical mass 

of a single white dwarf (0.6M ), as is expected for systems in which a common 

envelope phase has prematurely removed the envelope of a red giant. 21 

Some models predict that planets may accrete a substantial fraction of the mass in 

the red giant envelope prior to a common envelope phase, resulting in the formation of a 

binary with similar properties to WD0137-349. 4 Since most of the current mass of the 

brown dwarf was accreted from the red giant in this scenario, its spectral type would 

imply an age similar to that of the white dwarf, i.e. about 250 Ma in the case of 

WD0137-349. The spectral type in this case is expected to be ≈L1-2 (Teff ≈ 2200K). In 

contrast, if the brown dwarf has always been close to its current mass, by the time the 

common-envelope phase occurs the brown dwarf will have been cooling for the lifetime 

of the solar-type star (giga-years). The common envelope phase proceeds on a 

dynamical timescale of a few years, which is negligible when compared to this thermal 

timescale so very little mass or heat can be gained by the brown dwarf in this phase. The 

spectral type of the brown dwarf is then expected to be in the much cooler T-dwarf 

range (Teff <1500K). The companion may appear to be slightly hotter than this because 
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it intercepts about 1% of the light from the white dwarf. The asymmetric heating and 

rotation of the brown dwarf will produce a small but detectable modulation of the 

brightness at infrared wavelengths of WD0137-349 on the orbital period (“reflection 

effect”). An accurate measurement of the intrinsic spectral type and luminosity of the 

brown dwarf will therefore require infrared spectroscopy and photometry at a range of 

orbital phases to determine and account for the irradiation from the white dwarf.  

Despite this complication, the existing infrared photometry (Figure 2) is more consistent 

with a spectral type for the brown dwarf slightly earlier (hotter) than T5, rather than 

with a spectral type of L1-2. Therefore, the existing data favour the scenario in which 

WD0137-349 formed by a common envelope phase which had little effect on the brown 

dwarf, rather than by accretion onto a planet. 
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Figure 1 Trailed spectrograms of WD0137-349. Spectra were obtained with 

the Ultraviolet–Visual Echelle Spectrograph (UVES) mounted on ESO's Kueyen 

telescope. The radial velocity is indicated assuming a rest wavelength of 

656.276nm. The time of observation is indicated on the y-axis. The exposure 

time are indicated by vertical extent of each spectrogram. The spectra have 

been normalized so the continuum value is 1. The grey-scale representation is 

a linear scale from 0.4 (black) to 1.4 (white). The sharp absorption feature is the 

Hα line due to absorption by hydrogen in the atmosphere of the white dwarf star. 

The sinusoidal change in wavelength is due to the Doppler shift of the white 

dwarf as it orbits in a binary system. The emission feature seen moving in anti-

phase to the absorption line arises in the atmosphere of the low mass 
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companion to the white dwarf. The variation in the strength and width of this line 

show that it is produced by irradiation of one hemisphere of the companion by 

the white dwarf. These observations are available from the ESO Science 

Archive Facility (http://archive.eso.org, programmes 276.D-5014 and 167.D-

0407). 
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Figure 2 Infrared flux distribution of WD0137-349. Measurements from the 

2MASS archive (solid circles, with 1σ error bars) are compared to a synthetic 

white dwarf spectrum from a pure-hydrogen model atmosphere normalized 

using the observed V band magnitude (black, solid line). Also shown are the 

synthetic white dwarf spectrum combined with spectra of known brown dwarf 

stars scaled to the appropriate distance as follows (top-to-bottom): L0 (dotted 

line), L4 (dashed line), T2 (dashed-dotted line). 22 The orbital phase at which 

these data were obtained is unknown, so no account has been made for 

heating of the companion by the white dwarf.  
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Table 1: Spectroscopic orbit of WD0137-349 

P (days) 0.0803 ± 0.0002  

T0 (Heliocentric Julian Date) 2453686.5276 ± 0.0001  

K1 (km/s) 27.9 ± 0.3  

K2(km/s) -187.5 ± 1.1 

γ1(km/s) 17.8 ± 0.3  

γ2(km/s) 3.4 ± 1.0 

Correction to K2 (km/s) 21 ± 7 

m1sin3i (M ) 0.097 ± 0.008 

m2sin3i (M ) 0.013 ±0.001  

a sin i  (R ) 0.375± 0.014 

Mass ratio (m2/m1 = K1/K2) 0.134 ± 0.006 

The measured radial velocities of the Hα absorption line at time T are given by 

γ1+ K1 sin(2π[T-T0]/P), and similarly for the emission line (P is orbital period, T0 

is reference time, γ1 and γ2 are the apparent mean radial velocities, K1 and K2 

are the semi-amplitudes of the spectroscopic orbits). A correction to the value of 

K2 has been applied because the light in the emission line we measured is 

offset from the centre of the companion towards the centre-of-mass of the 

binary. 23 Accounting for this effect will increase the value of K2 by some fraction 

of the projected rotational velocity of the brown dwarf, vrotsin i, where i is the 

inclination of the orbital plane to the plane of the sky. The mass of the white 

dwarf is m1 and the mass of the brown dwarf is m2. We estimate i≈35° from the 

mass of the white dwarf given in Table 1 and the value of m1sin3i. Strong tidal 

forces will ensure that the brown dwarf rotates synchronously so for a typical 
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brown dwarf radius of 0.1R  we obtain vrotsin i = 35 km/s. The minimum 

masses, m1 sin3i and m2 sin3i, and the projected separation (asin i) are 

calculated using Kepler’s Laws from K1, K2 and P including the correction to K2 

described above. The difference γ1- γ2 = (14.4 ± 1.1) km/s is due mainly to the 

gravitational redshift of the white dwarf and agrees well with the value of (13.3 ± 

1.1) km/s implied by the parameters in Table 1.  

 

Table 2: Properties of  the white dwarf WD0137-349 

Apparent visual magnitude, V 15.33 ± 0.02 9 

Effective temperature,Teff  (K) 16,500 ± 500 

Surface gravity , log g (c.g.s. units) 7.49 ± 0.08 

Mass (M ) 0.39 ± 0.035 

Age (Ma) 250 ± 80  

Luminosity (L ) 0.023  ± 0.004 

Radius (R ) 0.0186 ± 0.0012 

Distance (parsecs) 102 ± 3 

The effective temperature (Teff) and surface gravity (g) are derived from an 

analysis of the hydrogen absorption lines in the optical spectrum of WD0137-

349 using the technique described in ref.  24. The mass and age are inferred 

from Teff and log g using models of white dwarfs with a range of 

compositions. 25, 26 The age is the time since formation of the white dwarf by 

ejection of the red giant envelope. The distance is inferred from the luminosity, 

apparent visual magnitude and a model atmosphere for hydrogen rich white 

dwarfs. 27 The main factors that determine the white dwarf mass are well 
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understood and have been tested against observations, i.e., pure hydrogen 

model atmospheres for moderately hot white dwarfs and the mass-radius 

relation for degenerate stars. 28 


