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The value of the stress intensity factor (SIF) range threshold (Δ𝐾th) for fatigue crack growth (FCG) depends highly on its
experimental identification. The identification and application of Δ𝐾th are not well established as its determination depends on
various factors including experimental, numerical, or analytical techniques used. A new analytical model which can fit the raw
FCG experimental data is proposed. The analytical model proposed is suitable to fit with high accuracy the experimental data
and is capable of estimating the threshold SIF range. The comparison between the threshold SIF range identified with the model
proposed and those found in the literature is also discussed. Δ𝐾th identified is found to be quite accurate and consistent when
compared to the literature with a maximum deviation of 5.61%. The accuracy with which the analytical model is able to fit the raw
data is also briefly discussed.

1. Introduction

FCG threshold (Δ𝐾th) is one of the key parameters repre-
senting material resistance to fatigue crack growth (FCG).
Newman Jr. referred to the Federal Aviation Administration
(FAA) by mentioning that, traditionally, threshold is used
as a limit for the damage tolerance design (DTD) [1, 2].Δ𝐾th has been used over the past 40 years in numerous
FCG models available in the literature [3–18]. However,
the identification of Δ𝐾th and its application in structures
residual life prediction are not quite straightforward, as it
varies both qualitatively and quantitatively due to various
experimental, numerical, and analytical methods and cor-
responding assumptions used [19]. Whilst FCG curves of
physically small crack and microstructurally small crack
have different shapes [20], FCG can be represented by the
sigmoidal curve of log(Δ𝐾) – log(𝑑𝑎/𝑑𝑁) for long cracks
as shown in Figure 1 [21]. This figure depicts three regions:
Region I, Region II, and Region III. Region I is taken
as either very slow crack growth region or near-threshold

region since the SIF range of the sigmoidal curve in this
region asymptotically approaches Δ𝐾th. The Paris Law [22]
is normally applicable to the crack growth in Region 2.There
are several models available to represent the whole sigmoidal
curve covering all three regions. One of themodels developed
by NASA and represented by Forman and Mettu [10, 21] is
given in

𝑑𝑎𝑑𝑁 = 𝐶Δ𝐾𝑚 (1 − Δ𝐾th/Δ𝐾)
𝑝

(1 − 𝐾max/𝐾𝐶)𝑞 , (1)

where𝐶,𝑚,𝑝, and 𝑞 arematerial constants, SIF range (Δ𝐾) =
maximum SIF (𝐾max) − minimum SIF (𝐾min), 𝐾𝐶 = SIF at
fracture, and Δ𝐾th = SIF range at threshold.

Ideally, Δ𝐾th is the value of SIF range (Δ𝐾) below
which fatigue crack will not grow [21]. However, it has been
shown [23] that cracks propagate even below the large-
crack threshold measured by ASTM test procedure [1, 24].
Therefore, Δ𝐾th is also defined to be a value of Δ𝐾 at which
crack growth rate (𝑑𝑎/𝑑𝑁) is below 10−10m/cycle [1, 25]. It
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Figure 1: Typical sigmoidal curve of fatigue crack growth [21].

is sometimes experimentally determined by extrapolation to𝑑𝑎/𝑑𝑁 = 0 from lower tail of the sigmoidal curve of raw data
when linear-linear scale is considered [19]. Residual life of a
structure can highly be influenced by a variation of Δ𝐾th. As
reported by Molent and Jones [18] and mentioned by Zerbst
and Vormwald [19, 26], a variation in the threshold SIF range
of 1MPam0.5 can result in a variation of about 18% in the
residual life. This also provides important insights into how
relevant and reasonable it is to determine Δ𝐾th accurately in
DTD approach.

There are several experimental methods available to
determine Δ𝐾th. These are

(i) load reduction method (LRM);
(ii) 𝐾max constant method;
(iii) far-field cyclic compression method [19].

Load reduction method is standardised by ASTM 647 [24]
or ISO 12108 [27]. The load is reduced stepwise to find Δ𝐾th
in a precracked specimen at a constant 𝑅. In 𝐾max method,
the same stepwise reduction of the load range is followed
but at the same time 𝑅 is increased by maintaining the same
maximum SIF value. The far-field compression method can
be divided into three submethods:

(i) Compression precracking constant amplitude (CPCA)
(ii) Compression precracking load reduction (CPLR)
(iii) Cyclic 𝑅 curve method

A detailed review of all these methods is given by Zerbst et al.
in [19].

The Δ𝐾th values obtained with the mentioned methods
can however be quite different due to the different mecha-
nisms involved.Thesemechanisms are related to the plasticity
induced ahead of the crack tip as well as the conditions of the
fracture surfaces. Comparatively lower threshold values have
been found using the far-field cyclic compression method

rather than using the load reduction method [1, 2, 28–30].
This is due to the fact that the far-field cyclic compression
method is affected by the compressive yielding at the crack-
starter notch and more “steady-state” constant amplitude
data in near-threshold regime is achieved with this method
[29]. Crack surface roughness and grain size near the crack
tip also influence the overall Δ𝐾th [1, 31]. In general, greater
size of grains promotes roughness induced crack closure
(RICC) and oxide-induced crack closure (OICC) is enhanced
simultaneously [32].The above phenomena increase theΔ𝐾th
values when measured. Consequently, in LR method, crack
faces can produce rough-surface or fretting debris which
contributes to the early crack closure and higher Δ𝐾th. Δ𝐾th
varies withmechanically short and long cracks. Linear-elastic
fracture mechanics (LEFM) is normally only applicable in
long cracks under small scale yielding conditions. Newman
[33] has recently referred that Δ𝐾th is not valid in gigacycle
fatigue region for short cracks as there is no continuous
crack propagation below (𝑑𝑎/𝑑𝑁) = 10−7mm/cycle, which
is smaller than one lattice spacing per cycle [19]. In general
terms, it is possible to find in the literature [34] two differentΔ𝐾th levels: microstructural threshold for short crack and
mechanical threshold for long crack [35]. The difference is
related to the advancement of a short crack atmicrostructural
level and stable propagation of a longer crack having a plastic
zone which covers several grains. Moreover, at low SIF, the
FCG rate is more sensitive to microstructure, load ratio,
and environment for long cracks [20]. However, there is a
minimum value independent of 𝑅, which can be considered
as material property and for this reason is called intrinsic
threshold, also known as effective or true threshold [34].
Moreover, intrinsic threshold can be increased by the increase
of stiffness and strength of the material [19, 36, 37]. Another
important effect is related to the specimen geometry. Δ𝐾th
seems to be lower in M(𝑇) specimen than in C(𝑇) specimen
for the same Δ𝐾 condition [38, 39]. The justification should
be related to the geometrical constraint or 𝑇-stress, which is
found to be lower in M(𝑇) specimen (𝑇-stress < 0), com-
pared to C(𝑇) specimen (𝑇-stress > 0) even though 𝑇-stress
has different effects (e.g., PICC) which might contradict this
observation. However, the lowest stress triaxiality at the crack
tip associated with the M(𝑇) specimen produces a much
bigger plastic zone near the crack tip than the geometry with
a high level of the constraint like the C(𝑇) specimen [40].

Considering the fact that it is difficult to separate the
extrinsic threshold from the intrinsic threshold using the
crack growth data [34], the focus of this paper is to develop
a model which can reliably predict the overall threshold of
the material under certain loading conditions. In particular,
since the model makes use of the raw data generated with a
given specimen geometry under certain loading conditions,
the analysis of the raw data includes both the load ratio and
the 𝑇-stress effects. The value identified with the model can
be an intrinsic or an extrinsic value depending on the testing
conditions at which the data has been acquired.

As discussed above, theΔ𝐾th value usually decreases with
the increase of 𝑅 [41]. Two types of 𝑅-dependency have been
reported in the literature [34]. In some cases, Δ𝐾th decreases
up to a critical value of 𝑅 and then it becomes constant
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beyond that value [19]. In other cases, Δ𝐾th continues to
decrease beyond the critical value of𝑅 [42]. Klesnil and Lukáš
[3] used the following equation to identify Δ𝐾th in a steel
alloy:

Δ𝐾th = Δ𝐾th0 (1 − 𝑅)𝛾 , (2)

where𝑅 is the stress ratio,Δ𝐾th0 is the fatigue threshold value
at 𝑅 = 0, and 𝛾 is the material constant. However, other
approaches [43] have been adopted like the one reported by
Kwofie in which an equivalent stress approach based on 𝑅
ratio is used to identify fatigue threshold value. In general,
it has been recognised that crack closure is found to be the
controlling factor in this case [18, 44]. For this reason, a
different parameter has been introduced Δ𝐾thr, which is a
FCG threshold value that depends on 𝑅 and the crack length
value. In the literature, the scatter in fatigue life was explained
by the variation of Δ𝐾thr values [18]. Further methods to
experimentally identify the threshold condition have been
recently developed using plain fretting crack arrest analysis.
The dispersion between long crack Δ𝐾th fretting estimations
and conventional fatigue data was found to be less than 10%
[45].

Due to the high variability of the Δ𝐾th values, the
determination of the FCG threshold cannot be certain [19].
Although several models have been proposed to experimen-
tally identify the threshold values, all of them suffer from
issues related to the plasticity induced closure effects. For
this reason, threshold values reported in the literature for the
same material can vary in a wide range due to the different
procedures that were followed. The aim of this paper is to
present a new procedure to identify FCG threshold value
for long crack which can overcome the problems related
to the experimental procedures reported in the literature.
The analytical model proposed here makes use of FCG data
obtained from 𝐾-increasing tests, which are used to derive
the FCG properties of the material under the long crack
condition, allowing us to identify under the same testing
conditions the three regions of the entire sigmoidal curve,
from the threshold condition up to the final value of the crack
length.

2. Test Results for Model Development

Propagation models built on results obtained from a limited
number of tests not only have a validity range closely linked
to the particular experimentation carried out, but also are not
suitable to fit all crack growth data with the same accuracy
for the whole field of number of cycles for each test [46].
In order to overcome these drawbacks, several FCG datasets
obtained with different materials, loading conditions, and
types of specimens have been collected from the literature.
These datasets have been used to verify the suitability of
the model in fitting the experimental raw data as well as
identify theΔ𝐾th values of the materials at the corresponding𝑅 values. A short description of the datasets collected from
the literature is as follows.

2.1. Ghonem and Dore [47]. Ghonem and Dore [47] carried
out tests at room temperature using M(𝑇) specimens made

Table 1: Loading conditions related to Ghonem and Dore tests.

𝑃max (kN) 𝑃min (kN) Δ𝑃 (kN) 𝑅
Test I 22.79 13.68 9.11 0.6
Test II 22.25 11.13 11.12 0.5
Test III 15.19 6.08 9.11 0.4

Table 2: Loading conditions related to Wu and Ni tests.

𝑃max (kN) 𝑃min (kN) Δ𝑃 (kN) 𝑅
CA1 4.5 0.9 3.6 0.2
CA2 6.118 3.882 2.236 0.63

of aluminium alloy 7075-T6 having a thickness of 3.175mm.
The crack directionwas perpendicular to the rolling direction
and the loading conditions are reported in Table 1. Sixty
specimens were tested under each loading condition.

2.2. Virkler et al.’s Data [48]. The experimental activity re-
ported by Virkler et al. [48] was aimed at determining which
crack growth rate calculation method yields the least amount
of error when the crack growth rate curve is integrated
back to obtain the original “𝑎” versus “𝑁” curve data.
Crack growth tests were carried out on 68M(𝑇) specimens,
made of aluminium alloy 2024-T3 and having a thickness of
2.54mm. All tests were conducted under the cyclic load with
a maximum value of 5.25 kip/23.35 kN and a minimum load
of 1.05 kip/4.67 kN at 𝑅 = 0.2.
2.3.WuandNi’s Data [49]. Theexperimental work ofWuand
Ni [49] was carried out on compact tension C(𝑇) specimens
made of aluminium alloy 2024-T351, having thickness 𝐵 =
12mm and width 𝑊 = 50mm. Tests were carried out with
variable and constant amplitude loading. The two samples
marked by the authors as CA1 and CA2 and composed of
30 and 10 specimens, respectively, were tested at constant
amplitude loadings reported in Table 2.

3. Model Implementation

The analysis of experimental data obtained from FCG test
is quite complex due to the scatter nature in the raw data
which is amplified by the derivation needed to compute the
FCG rate. Several useful formulae to fit the experimental data
with the aim of a better, smoother curve have been proposed
and reported in the literature. Among those, the use of a
polynomial function to fit the raw data gives the possibility of
obtaining a single numerical expression of the crack growth
rate valid in the entire data range [46].The choice of the most
appropriate function can be made considering that the crack
growth is exponential by nature. In mathematical terms,
an exponential correlation can be represented introducing
logarithmic functions for the crack length [50–52]. This
linear correlation (log(𝑎) versus 𝑁) can be represented on
a semilogarithmic plane as a straight line. There are models
proposed in the literature which are developed adopting
an exponential structure [52]. However, the trend identified
using the experimental FCG data changes as the crack
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length approaches the failure condition. This consideration
is supported by the presence of three different regions in
the sigmoidal curve with each of them following a different
trend. On the basis of the aforementioned observations, the
most suitable formula to fit the whole FCG experimental
data points can be deduced by summating the individual
effects of the different crack growth regions [53]. Therefore,
the followingmodel, on the basis of a trial-and-errormethod,
could be established:

𝑎 (𝜏) = ℎ ⋅ 𝜏𝑝 + 𝑎th ⋅ 𝑒(𝜏𝛼/(𝛽−𝜏𝛼)), (3)

where 𝛼, 𝛽, and 𝑝 are three parameters to be determined by
the least-square method. The procedure to derive the values
corresponding to ℎ and 𝑎th is described in later parts of this
paper. The proposed model makes use of nondimensional
fatigue crack life, which makes it more general. Moreover,
the nondimensional fatigue crack life allows decoupling the
identification of the equation parameters, which are meant
to be a material property, from the actual total life for the
particular test. The nondimensional fatigue life 𝜏 is defined
as follows:

𝜏 = 𝑁 + 𝑁th𝑁𝑓 + 𝑁th . (4)

The parameter𝑁th, which is identified through best-fit curve
together with three parameters (𝛼, 𝛽, and 𝑝) reported above,
is related to the nucleation phase and hence to the threshold
value. 𝑁𝑓 is the final value of the experimental crack life,
which is the number of cycles counted from the initial crack
length up to the final failure of the specimen, whilst𝑁 is the
generic value of the fatigue crack life.

Useful formulae can be derived for other parameters in
(3) by considering some specific data points of the crack
growth curve. At 𝑁 = 𝑁𝑓, which corresponds to the last
experimental data point of the test, the crack length is equal
to the value of the crack length 𝑎𝑓 in the corresponding last
front just before the failure condition of the specimen. This
gives

ℎ = 𝑎𝑓 − 𝑎th × 𝑒(1/(𝛽−1)). (5)

Similarly, considering the value of (3) at𝑁 = 0, which corre-
sponds to the first experimental data point, the crack length
is equal to the value of the crack length 𝑎th corresponding to
the starting point of the test. This gives

𝑎th = 𝑎th − 𝑎𝑓 × (𝑁th/ (th + 𝑁𝑓))𝑝𝑒(𝑁th/(𝑁𝑓+𝑁th))𝛼/(𝛽−(𝑁th/(𝑁𝑓+𝑁th))𝛼) − (𝑁th/ (𝑁𝑓 + 𝑁th))𝑝 × 𝑒(1/(𝛽−1)) . (6)

As already stated, the parameter𝑁th is related to the threshold
condition and represents the number of cycles needed by the
crack to reach the crack length corresponding to the thresh-
old condition. From (3), the crack length in correspondence
to the threshold condition is equal to the value of the 𝑎th
parameter in correspondence of𝑁 = −𝑁th.

Equation (3) is a continuous differentiable function in the
range 𝑁th < 𝑁 < 𝑁𝑓. It is therefore possible to derive the
analytical expression of the crack growth rate (𝑑𝑎/𝑑𝑁) as a
function of𝑁.The function (see (7)) can be used to represent
the continuous propagation process from threshold region up
to the final fast crack growth region

𝑑𝑎𝑑𝑁 (𝑁) = ℎ ((𝑁 + 𝑁th) / (𝑁𝑓 + 𝑁th))
𝑝 𝑝𝑁 +𝑁th

+ 𝑎th( ((𝑁 + 𝑁th) / (𝑁𝑓 + 𝑁th))𝛼 𝛼(𝑁 + 𝑁th) (𝛽 − ((𝑁 + 𝑁th) / (𝑁𝑓 + 𝑁th))𝛼)
+ (((𝑁 + 𝑁th) / (𝑁𝑓 + 𝑁th))𝛼)2 𝛼
(𝛽 − ((𝑁 + 𝑁th) / (𝑁𝑓 + 𝑁th))𝛼)2 (𝑁 + 𝑁th))
⋅ 𝑒((𝑁+𝑁th)/(𝑁𝑓+𝑁th))𝛼/(𝛽−((𝑁+𝑁th)/(𝑁𝑓+𝑁th))𝛼).

(7)

The parameters in the crack growth rate function are identi-
fied bymeans of the linear regression using the FCG raw data.
The analytical expression of the crack growth rate is equal to
zero at𝑁 = −𝑁th according to the assumption that the crack
length at this value corresponds to the threshold condition.

The procedure of applying the formulae of the analytical
model to derive the threshold SIF range is as follows:

(i) The experimental raw data of crack length versus
number of cycles are fitted using (3). The method
adopted for the fitting is the linear regression to
identify the four parameters of 𝑁0, 𝛼, 𝛽, and 𝑝 and
minimize the error. In an earlier paper [53], themodel
here presented was adopted to assess the accuracy in
fitting the raw data produced during FCG tests. In
the same paper [53], the normal distribution of the
residuals as well as the distribution of the equation
parameters has been included. In the present paper,
the discussion is focused on the identification of the
threshold SIF range through the use of the analytical
model proposed by the authors.

(ii) After the identification of the four parameters 𝑁0, 𝛼,𝛽, and 𝑝, the values of the other two parameters ℎ and𝑎th can be computed.

(iii) Identify the six parameters used in the analytical
formula representing the crack length as a function
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Figure 2: Four sets of crack growth data from Ghonem and Dore’s
dataset [47]: raw data (dots) and analytical model (lines).

of the fatigue crack life as well as the corresponding
function of the crack growth rate.

(iv) A vector in the range [−𝑁th; 𝑁𝑓] composed of 𝑛
values is generated. For each value of the vector
defined above, the corresponding values of the crack
length and the crack growth rate are determined using
(3) and (7). The crack length values derived from (3)
are used to deduce the SIF range values by means of
the expressions in accordance with the international
standards. This means that the method requires the
knowledge of the closed form of the SIF for the tested
specimen. In this paper, the expressions reported by
the ASTM E647 [24] have been used to compute the
SIF values.

(v) The value of the crack length corresponding to 𝑁 =−𝑁th is used to derive the value of the threshold SIF
range which corresponds to a crack growth rate equal
to zero.

The procedure described above has been implemented in a
Matlab code to identify the FCG curves and the Δ𝐾th values
using the datasets produced by Ghonem and Dore, Virkler,
and Wu and Ni. The detailed discussion about the capability
of the model to properly fit the datasets used in this paper is
given in an earlier paper [53]. Figure 2 shows some examples
of fitting results with the experimental points related to Set I
produced by Ghonem and Dore.

Moreover, normality of the residuals obtained from each
curve has been verified by the 𝜒2 normality tests and the
corresponding residuals frequency histograms have also been
evaluated. In Figure 3, themeans of residuals forGhonemand
Dore Set I and Set III are shown as an example to highlight
the notion that the mean value is equal to zero [53].

A further version of the Matlab code, which was already
implemented for the fitting curves, was developed further in
order to identify the values of the FCG rate as well as the SIF
range values. In particular, the SIF values in correspondence

to 𝑁 = −𝑁th for each curve of all datasets have been
computed in order to estimate the threshold values and
compare these with those reported in the literature.

4. Results and Analyses

The interpolation of the raw experimental data represents the
first step of the analysis. The suitability of the equation for
fitting the data has been summarised in the above section. In
particular, raw data fitting has an average value of 𝑅2 equal
to 0.9998 for all datasets [53]. The values of the parameters
identified for each dataset are shown in Table 3

The values reported in Table 3 have been computed as an
average of the values identified over the total number of tests
for each dataset.

The crack length as a function of the number of cycles
derived in the range [−𝑁th; 𝑁𝑓] is shown for each dataset
in Figure 4. In particular, the curve fitting related to the
three datasets produced by Ghonem and Dore is shown in
the top row of Figure 4 (Set I, Set II, and Set III), and
the curves related to the dataset produced by Virkler and
the curves related to the datasets produced by Wu and Ni
are shown in the bottom row of Figure 4. In each dataset,
all the fitting curves tend to the same asymptotic value as
the number of cycles approaches −𝑁th. However, the values
are different between the various datasets. In order to make
the comparison between the experimental data points and
the curves identified with the analytical model possible, the
logarithmic plot of the horizontal axis, which is the number
of cycles, has been used.The logarithmic scale is only used for
the sake of clarity of the graph whilst the equations adopted
are not affected by this choice.

In order to draw the FCG curve for the entire range, it is
necessary to derive the crack growth rate together with the
SIF range for the corresponding values. The curves shown in
Figure 5 correspond to all experimental data of the datasets
considered in this paper. These graphs show clearly that the
gradient approaching 𝑁 = −𝑁th is equal to zero, which
reflects the asymptotic behaviour in the 𝑎-𝑁 curves. As a
consequence, the FCG rate, as expected, approaches zero.

This observation can be used to extrapolate the crack
growth curve from the lower part. The value of the threshold
SIF range is found where 𝑁 = −𝑁th. By means of (3), the
value of the crack length at 𝑁 = −𝑁th can be derived. In
Figure 6, the values of the threshold SIF predicted by the
model for each curve of the five datasets analysed in this paper
are shown together with the corresponding values gathered
from the literature [44].

5. Discussions

The curves of crack length versus number of cycles found
from the model correlate well with the raw data points. To
relate the parameter values obtained by means of the best
fit to the testing conditions, the contour plots shown in
Figure 7 have been created. The contour plots can be used to
identify the range in which the optimal values of the model
parameters should be identified by means of the best fit of
the experimental raw data in terms of crack length versus
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Figure 3: Mean of residuals obtained by fitting Ghonem and Dore Set I (a) and Ghonem and Dore Set III (b).
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Figure 4: Comparison of raw (dots) and analytical (lines) crack length versus number of cycles for the 5 datasets.

Table 3: Parameter values for the five datasets.

𝛼 𝛽 𝑁th 𝑝 ℎ 𝑎th Δ𝐾th MPa√m
Ghonem and Dore Set I 1.91 1.34 914314 4.40 6.75 0.81 1.42
Ghonem and Dore Set II 1.69 1.33 695502 3.43 6.33 0.72 1.63
Ghonem and Dore Set III 4.73 1.53 1635716 4.58 6.38 1.57 1.90
Virkler 2.93 1.28 2211197 6.59 19.84 0.75 2.79
Wu and Ni 58.04 1.85 842999 6.45 21.25 3.65 3.61
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Figure 5: FCG curve for the five datasets.

number of cycles. Nevertheless, the possibility of correlating
the model parameters with the loading conditions by means
of analytical expression can be adopted. This would allow
us to either reduce the number of parameters that can be
identified through the best fit or identify the FCG curve for
a given material under certain loading conditions, which are
usually defined in terms ofmaximum load and load ratio. For
this reason, the correlations between the 6 parameters of the
proposed model and the maximum load 𝑃max and the load
ratio𝑅 have been investigated using the values obtained from
the fitting analysis carried out with the datasets found in the
literature and already discussed in this paper. In (Figures 7
and 8), 𝑃max is defined as the maximum value of the applied
load in each cycle.

The two parameters 𝛼 and 𝛽 and 𝑎th depend on the load
ratio for low values of the maximum applied load only. At
higher values of the maximum applied load, the range of the
above parameters is the samewhatever the load ratio is, which
means they are independent of the load ratio. Moreover,
their values decrease as the values of 𝑅 and 𝑃max increase. A
different trend can be observed from referring to the model
parameters of 𝑁th, p, and ℎ. The combined effect of the load
ratio and the maximum applied load is always present for
the investigated range values of the loading conditions. In
addition, the values of the two parameters 𝑝 and ℎ decrease
as the values of 𝑅 and 𝑃max increase, whilst for 𝑁th the
trend is opposite with regard to 𝑃max. In the graphs shown
in Figure 8, the correlations identified between the model
parameters and the loading conditions are shown. In some
cases, the combination of more than one parameter has been
considered.

In particular, for ℎ,𝑁th, and 𝑝, three different expressions
have been introduced:

𝐶1 = ℎ𝑃min𝑎0 , (8)

𝐶2 = 𝑁th𝑁0 , (9)

𝐶3 = 𝑝𝑎𝑓𝑃min
. (10)

Expressions reported as (8) and (10) have been shown to be
related to the maximum applied load, as shown in Figure 8.
Equation (9) is related to the load ratio and it is shown in
Figure 8. In terms of the quality of fit, it can be assessed with
the value of the coefficient of correlation (𝑅2). Good fitting is
achieved if the coefficient of correlation is between 0.8 and 1
for all the correlations identified [54].𝑁th in function of𝑃max,
as shown in Figure 8, has lower coefficient of determination
of 0.8286 in the current study. This value is however still
within the acceptable range and the correlation between the
considered parameters values is acceptable.

The extrapolation of the curves as shown in Figure 5
reaches 𝑁 = −𝑁th asymptotically, which can be used to
generate Δ𝐾th values based on the theory of identifying
threshold [19, 21]. The range between the maximum and
the minimum values of the predicted Δ𝐾th for each dataset
is quite small so that the average value of the threshold is
used. The reference values for materials considered in this
paper have been taken from the literature in order to verify
the model. In the literature, a range of threshold values are
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Figure 6: Threshold SIF range for the five datasets.

also mentioned for a particular material for a constant 𝑅
[18, 41, 55]. Figure 10 shows the comparison between the
threshold values obtained using the model and threshold
values found in the literature for the same kind of material.
The values considered as literature values are based on ESDU
documents [41] for aluminium alloy 7075-T6 (at 𝑅 = 0.4,
0.5, and 0.6) and aluminium alloy 2024-T3 (at 𝑅 = 0.2). For
2024-T351 (at 𝑅 = 0.2), the literature value is taken based
on Δ𝐾th value provided by [44] and normalized threshold
SIF range against 𝑅 curve provided by [43]. The average
threshold value of the model is used for the comparison.
In Ghonem and Dore (Sets I–III), Virkler, and Wu and Ni
datasets, the threshold values of the corresponding materials
from the literature are 1.5MPa√m, 1.7MPa√m, 1.9MPa√m,
2.85MPa√m, and 3.6MPa√m. Comparing these values with
those predicted by the proposed model, the percentages of
error are approximately 5.3%, 4.1%, 0%, 2.1%, and 0.3%,
respectively.

As shown earlier in Figure 6, in all cases, there is a band
of threshold values predicted for the same material with the
literatures showing the same trends. The threshold versus𝑅 graph provided by [41] shows a small range of threshold
values with upper and lower limit indicated for 2024-T3

aluminium alloy. Different investigations by Newman Jr. and
Ruschau [1, 2, 28–30] also found a range of thresholds based
on different experimental methods used, for example, load
reduction (LR) methods, 𝐾max constant methods, and far-
field cyclic compression methods.

Recently, Molent and Jones [18] used a FCG threshold
parameter Δ𝐾thr to explain the scatter in the fatigue life
prediction. Δ𝐾thr is used to explain the dependency of the
threshold values on the material properties, 𝑅 ratio, crack
length, and loading method used for the testing phase.
From the literature [45, 56], it was found that Δ𝐾thr =0 produces conservative crack growth predictions for dif-
ferent aluminium alloys. The fact that different values of
the threshold SIF were reported for the same material in
the literature can be treated as supporting evidence to the
concept of cyclic stress intensity threshold. For the material
with which the samples used by Virkler were made, a range
of Δ𝐾thr (2.9 ÷ 4.2MPa√m) is reported in the literature,
whilst, in the material used by Wu and Ni, a range ofΔ𝐾thr (0 ÷ 4.2MPa√m) is reported. Moreover, for 7075-T6
aluminium alloy material at 𝑅 = −1, the range of Δ𝐾thr (0.6 ÷
1.13MPa√m) was found in the literature. In other published
papers [55], a threshold band Δ𝐾thr (2.8 ÷ 4MPa√m) at
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𝑅 = 0.33 for 2024-T351 aluminium alloy has been shown. All
these values are in good agreement with those estimated by
the proposed model.

In order to investigate the variability of the threshold SIF
range, the response surface reporting the correlation of this
latter parameter as functions of the maximum applied load
and the load ratio is shown in Figure 9. The values shown
in the graph related to the threshold SIF are those identified
through the fitting analysis of the raw data. Although all the
values identified in the analysis related to different aluminium
alloys are shown on the same plot, the validity of the contour
plot is limited to the 𝑅 and 𝑃max ranges investigated in this
paper and the alloys considered in the tests are referring to
the datasets used for the analysis. However, the contour can
represent a valid tool for a preliminary identification of the
threshold SIF range.

Reporting all the results on the same graph in Figure 10,
it is possible to identify the common trend useful to compare
the results with the literature values. Firstly, the threshold
line found with declined linear pattern or shape in relation
to 𝑅 for the 7075-T6 aluminium alloy is qualitatively and
quantitatively consistent with the line found in the literature
[41]. The percentage of error ranges between 0.24% and
5.61%, which is quite low considering the scattering nature
of the fatigue test data.The threshold SIF range values should
converge at the higher value of 𝑅 but it was found that the
scatter was getting bigger and reached 5.61% at 𝑅 = 0.6.
This difference or scatter could be explained by different
experimental methods used and the corresponding crack
closure effects as referred by [1, 2, 28–30]. All the predicted
threshold values of aluminium alloys (7075-T6 and 2024-
T6) underestimate the values from the literature (see, e.g.,
[41]) except for the threshold value of 2024-T351 aluminium
alloy which overestimates the literature value from [43, 44].
For 7076-T6 aluminium alloy, the threshold value from the
literature [3] at 𝑅 = 0.2 is 2.3MPa√m whilst the value
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derived using the analytical model here proposed is equal to
2.3651MPa√m with an error less than 3%.

In general, the yield strength of 7075-T6, 2024-T3,
and 2024-T351 aluminium alloys is 510MPa, 350MPa, and
330MPa, respectively. The threshold values found from the
model for the three alloys at 𝑅 = 0.2 are 3.6MPa√m,
2.8MPa√m, and 2.4MPa√m, respectively. This indicates a
correlation between the yield strength and threshold of these
aluminium alloys: higher strength aluminium alloy possesses
relatively higher threshold and vice versa. This supports the
statement of the previous investigations which found the
same type of correlation between the strength and threshold
of materials [19, 36, 37].

It should be added that the values of 𝑎th in (6) were found
to influence the threshold value since it is the value of the
crack length corresponding to the fatigue life value equal to𝑁 = −𝑁th. Therefore, 𝑎th values can be further considered to
correlate with the material properties and the load ratio as
well as the geometry of the cracked component. It is possible
to find in the literature that the threshold value increases
with the strength of the material [19, 36, 37]. Further research
should be carried out to properly address this correlation,
which could help in both identifying the parameter values
and giving them a more physical meaning.

6. Conclusions

An analytical model for the interpolation of crack propa-
gation data has been developed. The threshold SIF range
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has been derived for different materials and different spec-
imen geometries. The new model has been shown to fit,
with the needed accuracy, to a wide range of experimental
data produced with different specimen geometries, different
materials, and different loading conditions. Moreover, it has
been highlighted that it is possible to identify, by means of
the above model, the value of the threshold SIF range with
an error, as compared to the values reported in the literature,
of less than 6%. The relation between Δ𝐾th and 𝑅 ratio
predicted by the model agrees well with the literature results.
The proposed model can therefore be valuable in identifying
the threshold of stress intensity factor range for fatigue crack
growth.

Nomenclature

𝑎: Crack length (mm)𝑎𝑓: Final value of the experimental
crack length (mm)𝐵: Specimen thickness (mm)𝐶, 𝑝, 𝑞,𝑚: Forman’s constants𝑑𝑎/𝑑𝑁: Crack growth rate (mm/cycle)ℎ, 𝜏, 𝑝, 𝑎th, 𝛼, 𝛽,𝑁th: Parameters of the model proposed
in the present paper𝐾𝐶: Fracture toughness (MPa√mm)𝐾max: Maximum value of the stress
intensity factor (MPa√mm)𝑁: Number of cycles𝑁𝑓: Final value of the experimental
crack life𝑃max: Maximum value of the applied load
(kN)𝑃min: Minimum value of the applied load
(kN)𝑅: Load ratio𝑅2: Coefficient of determination𝑊: Specimen width (mm)𝛾: Material parameter for Klesnil and
Lukáš’s modelΔ𝐾: Range of the stress intensity factor
(MPa√mm)Δ𝐾th: Value of the stress intensity factor
range threshold (MPa√mm)Δ𝐾th0: Value of the stress intensity factor
range threshold for 𝑅 = 0
(MPa√mm).
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