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Abstract 

The value of the stress intensity factor (SIF) range threshold (∆𝐾𝑡ℎ) for fatigue crack growth (FCG) depends 

highly on its experimental identification. The identification and application of ∆𝐾𝑡ℎ are not well established as 

its determination depends on various factors including experimental, numerical or analytical techniques used. 

A new analytical model which can fit the raw FCG experimental data is proposed. The analytical model proposed 

is suitable to fit with a high accuracy the experimental data and capable to estimate the threshold SIF range. The 

comparison between the threshold SIF range identified with the model proposed and those found in literature 

is also discussed. The ∆𝐾𝑡ℎ identified is found to be quite accurate and consistent when compared to the 

literature with a maximum deviation of 5.61%. The accuracy with which the analytical model is able to fit the 

raw data is also briefly discussed. 

Keywords: Damage tolerance, Fatigue thresholds, Long cracks, Threshold stress intensity factor, Linear Elastic 

Fracture Mechanics (LEFM), Fatigue crack growth. 

Nomenclature 

a = crack length (mm) 

af = final value of the experimental crack length (mm) 

B = specimen thickness (mm) 

C, p, q, m = Forman’s Constants 

da/dN = crack growth rate (mm/Cycle) 

h, τ, p, ath, α, β Nth = parameters of the model proposed in the present paper 

Kc = fracture toughness (MPa√mm) 

KMAX = maximum value of the stress intensity factor (MPa√mm) 

N = number of cycles 

Nf = final value of the experimental crack life 



Pmax = maximum value of the applied load (kN) 

Pmin = minimum value of the applied load (kN) 

R = load ratio 

R2 = coefficient of determination 

W = specimen width (mm) 

γ = material parameter for the Klensil and Lucas model 

ΔK = range of the stress intensity factor (MPa√mm) 

ΔKth = value of the stress intensity factor range threshold (MPa√mm) 

ΔKth0 = value of the stress intensity factor range threshold for R=0  (MPa√mm) 

1. Introduction 

FCG threshold (∆𝐾𝑡ℎ) is one of the key parameters representing material resistance to fatigue crack growth 

(FCG). Newman referred to the Federal Aviation Administration (FAA) by mentioning that traditionally, threshold 

is used as a limit for the damage tolerance design (DTD) [1, 2]. The  ∆𝐾𝑡ℎ has been used over the past 40 years 

in numerous FCG models available in literature [3-18]. However, the identification of ∆𝐾𝑡ℎ and its application in 

structures residual life prediction is not quite straightforward, as it varies both qualitatively and quantitatively 

due to various experimental, numerical and analytical methods and corresponding assumptions used [19]. 

Whilst FCG curves of physically small crack and microstructurally small crack have different shapes [20], FCG can 

be represented by the sigmoidal curve of the log (∆𝐾) – log(𝑑𝑎 𝑑𝑁⁄ ) for long cracks as shown in Fig 1 [21]. It 

depicts three regions, region I, region II and region III. Region I is taken as either very slow crack growth region 

or near threshold region since the SIF range of the sigmoidal curve in this region asymptotically approaches ∆𝐾𝑡ℎ. 

The Paris Law [22] is normally applicable to the crack growth in Region 2. There are several models available to 

represent the whole sigmoidal curve covering all three regions. One of the models developed by NASA and 

represented by Forman and Mettu [10, 21] is given in Eq. (1). 

𝑑𝑎

𝑑𝑁
= 𝐶∆𝐾𝑚

(1−
∆𝐾𝑡ℎ
∆𝐾

) 𝑝

(1−
𝐾𝑚𝑎𝑥
𝐾𝐶

) 𝑞
         (1) 



where, 𝐶, 𝑚, 𝑝 and 𝑞 are material constants, SIF range (∆𝐾) = maximum SIF (𝐾𝑚𝑎𝑥) − minimum SIF (𝐾𝑚𝑖𝑛) 

, 𝐾𝐶 = SIF at fracture and ∆𝐾𝑡ℎ = SIF range at threshold. 

 

Fig. 1 Typical sigmoidal curve of fatigue crack growth [21] 

Ideally, ∆𝐾𝑡ℎ is the value of SIF range (∆𝐾) below which fatigue crack will not grow [21]. However, it has been 

shown [23] that cracks propagate even below the large-crack threshold measured by ASTM test procedure [1, 

24]. Therefore, ∆𝐾𝑡ℎ is also defined to be a value of ∆𝐾 at which crack growth rate (𝑑𝑎 𝑑𝑁⁄ ) is below 10-10 

m/cycle [1, 25]. It is sometimes experimentally determined by extrapolation to 𝑑𝑎 𝑑𝑁⁄ = 0 from lower tail of 

the sigmoidal curve of raw data when linear-linear scale is considered [19]. Residual life of a structure can highly 

be influenced by a variation of the ∆𝐾𝑡ℎ. As reported by Molent [18] and mentioned by Zerbst and Vormwald 

[19, 26], a variation in the threshold SIF range of 1 MPa m0.5 can result in a variation about 18% in the residual 

life. This also provides important insights into how relevant and reasonable it is to determine ∆𝐾𝑡ℎ accurately in 

DTD approach. 

There are several experimental methods available to determine ∆𝐾𝑡ℎ. These are:  

 Load reduction method (LRM); 

 𝐾𝑚𝑎𝑥 constant method; 

 Far-field cyclic compression method [19]. 

Load reduction method is standardised by ASTM 647 [24] or ISO 12108 [27]. The load is reduced stepwise to find 

∆𝐾𝑡ℎ in a pre-cracked specimen at a constant 𝑅. In 𝐾𝑚𝑎𝑥 method the same stepwise reduction of the load range 

is followed but at the same time 𝑅 is increased by maintaining the same maximum SIF value. The far-field 

compression method can be divided into three sub-methods including: 



 Compression pre-cracking constant amplitude (CPCA); 

 Compression pre-cracking load reduction (CPLR) 

 Cyclic 𝑅 curve method. 

A detailed review of all these methods is given by Zerbst in [19]. 

The ∆𝐾𝑡ℎ values obtained with the mentioned methods can however be quite different due to the different 

mechanisms involved. These mechanisms are related to the plasticity induced ahead of the crack tip as well as 

the conditions of the fracture surfaces. Comparatively lower threshold values have been found using the far-

field cyclic compression method rather than using the load reduction method [1, 2, 28-30]. This is due to the fact 

that the far-field cyclic compression method is affected by the compressive yielding at the crack-starter notch 

and more “steady-state” constant amplitude data in near threshold regime is achieved with this method[29]. 

Crack surface roughness and grain size near the crack tip also influence the overall ∆𝐾𝑡ℎ [1, 31]. In general, 

greater size of grains promotes roughness induced crack closure (RICC) and oxide-induced crack closure (OICC) 

is enhanced simultaneously [32]. The above phenomena increase the ∆𝐾𝑡ℎ values when measured. 

Consequently, in LR Method crack-faces can produce rough-surface or fretting debris which contributes to the 

early crack closure and higher ∆𝐾𝑡ℎ. The ∆𝐾𝑡ℎ varies with mechanically short and long cracks. Linear-elastic 

fracture mechanics (LEFM) is normally only applicable in long cracks under small scale yielding conditions. 

Newman [33] has recently referred that ∆𝐾𝑡ℎ is not valid in giga-cycle fatigue region for short cracks as there is 

no continuous crack propagation below (𝑑𝑎 ⁄ 𝑑𝑁) = 10−7𝑚𝑚/𝑐𝑦𝑐𝑙𝑒, which is smaller than one lattice spacing 

per cycle [19]. In general terms, it is possible to find in literature [34] two different  ∆𝐾𝑡ℎ levels: microstructural 

threshold for short crack and mechanical threshold for long crack [35]. The difference is related to the 

advancement of a short crack at microstructural level and stable propagation of a longer crack having a plastic 

zone which covers several grains. Moreover, at low SIF the FCG rate is more sensitive to microstructure, load 

ratio and environment for long cracks [20]. However, there is a minimum value independent of R, which can be 

considered as material property and for this reason is called intrinsic threshold, also known as effective or true 

threshold [34]. Moreover, intrinsic threshold can be increased by the increase of stiffness and strength of the 

material [19, 36, 37]. Another important effect is related to the specimen geometry. ∆𝐾𝑡ℎ seems to be lower in 

M(T) specimen than C(T) specimen for the same ∆𝐾 condition [38, 39]. The justification should be related to the 

geometrical constraint or 𝑇 − 𝑠𝑡𝑟𝑒𝑠𝑠, which is found to be lower in M(T) specimen (𝑇 − 𝑠𝑡𝑟𝑒𝑠𝑠 < 0), compared 



to C(T) specimen (𝑇 − 𝑠𝑡𝑟𝑒𝑠𝑠 > 0) even though 𝑇 − 𝑠𝑡𝑟𝑒𝑠𝑠 has different effects (e.g. PICC) which might 

contradict this observation. However, the lowest stress triaxiality at the crack tip associated to the M(T) 

specimen, produces a much bigger plastic zone near the crack tip than the geometry with a high level of the 

constraint like the C(T) specimen [40]. 

Considering the fact that it is difficult to separate the extrinsic threshold from the intrinsic threshold using the 

crack growth data [34], the focus of this paper is to develop a model which can reliably predict the overall 

threshold of the material under certain loading conditions. In particular, since the model makes use of the raw 

data generated with a given specimen geometry under certain loading conditions, the analysis of the raw data 

includes both the load ratio and the T-stress effects. The value identified with the model can be an intrinsic or 

an extrinsic value depending on the testing conditions at which the data has been acquired. 

As discussed above, the ∆𝐾𝑡ℎ value usually decreases with the increase of 𝑅 [41]. Two types of R-dependency 

have been reported in literature [34]. In some cases, ∆𝐾𝑡ℎ decreases up-to a critical value of 𝑅 then it becomes 

constant beyond that value [19]. In other cases, ∆𝐾𝑡ℎ continues to decrease beyond the critical value of 𝑅 [42]. 

Klensil and Lucas [3] used the following equation to identify ∆𝐾𝑡ℎ in a steel alloy. 

∆𝑲𝒕𝒉 = ∆𝑲𝒕𝒉𝟎(𝟏 − 𝑹)
𝜸                (2) 

where, 𝑅 is the stress ratio, ∆𝐾𝑡ℎ0 is the fatigue threshold value at 𝑅 = 0 and 𝛾 is the material constant. 

However, other approaches [43] have been adopted like the one reported by Kwofie in which an equivalent 

stress approach based on 𝑅 ratio is used to identify fatigue threshold value. In general, it has been recognised 

that crack closure is found to be the controlling factor in this case [18, 44]. For this reason, a different parameter 

has been introduced ∆𝐾𝑡ℎ𝑟, which is a FCG threshold value that depends on 𝑅 and the crack length value. In 

literature the scatter in fatigue life was explained by the variation of ∆𝐾𝑡ℎ𝑟 values [18]. Further methods to 

experimentally identify the threshold condition have been recently developed using plain fretting crack arrest 

analysis. The dispersion between long crack ∆𝐾𝑡ℎ fretting estimations and conventional fatigue data was found 

to be less than 10% [45]. 

Due to the high variability of the ∆𝐾𝑡ℎ values, the determination of the FCG threshold cannot be certain [19]. 

Although several models have been proposed to experimentally identify the threshold values, all of them suffer 

with issues related to the plasticity induced closure effects. For this reason, threshold values reported in 



literature for the same material can vary in a wide range due to the different procedures that were followed. 

The aim of this paper is to present a new procedure to identify FCG threshold value for long crack which can 

overcome the problems related to the experimental procedures reported in literature. The analytical model 

proposed here makes use of FCG data obtained from K-increasing tests, which are used to derive the FCG 

properties of the material under the long crack condition, allowing to identify under the same testing conditions 

the three regions of the entire sigmoidal curve, from the threshold condition up to the final value of the crack 

length.  

2. Test results for model development 

Propagation models built on results obtained from a limited number of tests not only have a validity range closely 

linked to the particular experimentation carried out, but also are not suitable to fit all crack growth data with 

the same accuracy for the whole field of number of cycles for each test [46]. In order to overcome these 

drawbacks, several FCG data sets obtained with different materials, loading conditions and type of specimens 

have been collected from literature. These datasets have been used to verify the suitability of the model in fitting 

the experimental raw data as well as to identify the ∆𝐾𝑡ℎ values of the materials at the corresponding R values. 

A short description of the datasets collected from literature is as follows. 

Ghonem and Dore [47] 

Ghonem and Dore [47] carried out tests at room temperature using M(T) specimens made of aluminium alloy 

7075-T6 having a thickness of 3.175 mm. The crack direction was perpendicular to the rolling direction and the 

loading conditions are reported in Table 1. Sixty specimens were tested under each loading condition.  

Table 1 - Loading conditions related to Ghonem&Dore tests. 

 Pmax (kN) Pmin(kN) ΔP(kN) R 

Test I 22.79 13.68 9.11 0.6 

Test II 22.25 11.13 11.12 0.5 

Test III 15.19 6.08 9.11 0.4 

 

Virkler et al. data [48] 



The experimental activity reported by Virkler et al. [48] was aimed at determining which crack growth rate 

calculation method yields the least amount of error when the crack growth rate curve is integrated back to 

obtain the original ‘a’ versus ‘N’ curve data. Crack growth tests were carried out on 68 M(T) specimens, made of 

aluminium alloy 2024-T3 and having a thickness of 2.54 mm. All tests were conducted under the cyclic load with 

a maximum value of 5.25 kip/23.35 kN and a minimum load of 1.05 kip/4.67 kN at R=0.2.  

Wu and Ni data [49] 

The experimental work of Wu and Ni [49] was carried out on compact tension C(T) specimens made of aluminium 

alloy 2024-T351, having thickness B = 12 mm and width W = 50 mm. Tests were carried out with variable and 

constant amplitude loading. The two samples marked by the authors as CA1 and CA2 and composed of 30 and 

10 specimens respectively, were tested at constant amplitude loadings reported in Table 2. 

Table 2 - Loading conditions related to Wu&Ni tests. 

 Pmax (kN) Pmin(kN) ΔP(kN) R 

CA1 4.5 0.9 3.6 0.2 

CA2 6.118 3.882 2.236 0.63 

 

3. Model implementation 

The analysis of experimental data obtained from FCG test is quite complex due to the scatter nature in the raw 

data which is amplified by the derivation needed to compute the FCG rate. Several useful formulae to fit the 

experimental data with the aim of a better, smoother curve have been proposed and reported in literature. 

Among those, the use of a polynomial function to fit the raw data gives the possibility of obtaining a single 

numerical expression of the crack growth rate valid in the entire data range [46]. The choice of the most 

appropriate function can be made considering that the crack growth is exponential by nature. In mathematical 

terms an exponential correlation can be represented introducing logarithmic functions for the crack length [50-

52]. This linear correlation (log(a) vs N) can be represented on a semi-logarithmic plane as a straight line. There 

are models proposed in literature which are developed adopting an exponential structure [52]. However, the 

trend identified using the experimental FCG data changes as the crack length approaches the failure condition. 

This consideration is supported by the presence of three different regions in the sigmoidal curve with each of 



them following a different trend. On the basis of the aforementioned observations, the most suitable formula 

to fit the whole FCG experimental data points can be deduced by summating the individual effects of the 

different crack growth regions [53]. Therefore, the following model, on the basis of a trial and error method, 

could be established. 

𝒂(𝝉) = 𝐡 ∙ 𝛕𝒑 + 𝒂𝒕𝒉 ∙ 𝒆
(
𝝉𝜶

𝜷−𝝉𝜶
)
        (3) 

where 𝛼, 𝛽 𝑎𝑛𝑑 𝑝 are three parameters to be determined by the least-square method. The procedure to derive 

the values corresponding to h and ath is described in later parts of this paper. The proposed model makes use 

of a non-dimensional fatigue crack life, which makes it more general. Moreover the non-dimensional fatigue 

crack life allows decoupling the identification of the equation parameters, which are meant to be a material 

property, from the actual total life for the particular test. The non-dimensional fatigue life τ is defined as follows: 

𝛕 =
𝑵+𝑵𝒕𝒉

𝑵𝒇+𝑵𝒕𝒉
         (4) 

The parameter 𝑁𝑡ℎ, which is identified through best-fit curve together with three parameters (α, β and p) 

reported above, is related to the nucleation phase and hence to the threshold value.  𝑁𝑓 is the final value of the 

experimental crack life, which is the number of cycles counted from the initial crack length up to the final failure 

of the specimen, whilst 𝑁 is the generic value of the fatigue crack life. 

Useful formulae can be derived for other parameters in Eq. (3) by considering some specific data points of the 

crack growth curve. At 𝑁 =  𝑁𝑓, which corresponds to the last experimental data point of the test, the crack 

length is equal to the value of the crack length 𝑎𝑓 in the corresponding last front just before the failure condition 

of the specimen. This gives: 

𝐡 = 𝒂𝒇 − 𝒂𝒕𝒉 × 𝒆
(
𝟏

𝜷−𝟏
)
     (5) 

Similarly, considering the value of Eq. (3) at 𝑁 = 0, which corresponds to the first experimental data point, the 

crack length is equal to the value of the crack length 𝑎𝑡ℎ corresponding to the starting point of the test. This 

gives: 



𝒂𝒕𝒉 =
𝒂𝒕𝒉−𝒂𝒇×(

𝑵𝒕𝒉
𝒕𝒉+𝑵𝒇

)

𝒑

𝒆(

 
 
(

𝑵𝒕𝒉
𝑵𝒇+𝑵𝒕𝒉

)

𝜶

𝜷−(
𝑵𝒕𝒉

𝑵𝒇+𝑵𝒕𝒉
)

𝜶

)

 
 

−(
𝑵𝒕𝒉

𝑵𝒇+𝑵𝒕𝒉
)

𝒑

×𝒆
(
𝟏
𝜷−𝟏

)

   (6) 

As already stated, the parameter  𝑁𝑡ℎ is related to the threshold condition and represents the number of cycles 

needed by the crack to reach the crack length corresponding to the threshold condition. From Eq. (3) the crack 

length in correspondence to the threshold condition is equal to the value of the 𝑎𝑡ℎ parameter in 

correspondence of 𝑁 = −𝑁𝑡ℎ. 

Eq. (3) is a continuous differentiable function in the range 𝑁𝑡ℎ < 𝑁 <  𝑁𝑓. It is therefore possible to derive the 

analytical expression of the crack growth rate (𝑑𝑎 𝑑𝑁⁄ ) as a function of 𝑁. The function (Eq. (7)) can be used to 

represent the continuous propagation process from threshold region up to the final fast crack growth region.  
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The parameters in the crack growth rate function are identified by means of the linear regression using the FCG 

raw data. The analytical expression of the crack growth rate is equal to zero at 𝑁 = −𝑁𝑡ℎ according to the 

assumption that the crack length at this value corresponds to the threshold condition. 

The procedure of applying the formulae of the analytical model to derive the threshold SIF range is as follows: 

 The experimental raw data of crack length versus number of cycles are fitted using Eq. (3). The method 

adopted for the fitting is the linear regression to identify the four parameters of N0, α, β and p and 

minimize the error. In earlier paper [53] the model here presented was adopted to assess the accuracy 

in fitting the raw data produced during FCG tests. In the same paper [53], the normal distribution of the 

residuals as well as the distribution of the equation parameters have been included. In the present 

paper the discussion is focused on the identification of the threshold SIF range through the use of the 

analytical model proposed by the Authors. 



 After the identification of the four parameters  𝑁0, 𝛼, 𝛽 and 𝑝 the values of the other two parameters 

ℎ and 𝑎𝑡ℎcan be computed. 

 To identify the six parameters used in the analytical formula representing the crack length as a function 

of the fatigue crack life as well as the corresponding function of the crack growth rate. 

 A vector in the range [−𝑁𝑡ℎ; 𝑁𝑓] composed of n values is generated. For each value of the vector 

defined above, the corresponding values of the crack length and the crack growth rate are determined 

using Eqs. (3) and (7). The crack length values derived from Eq. (3) are used to deduce the SIF range 

values by means of the expressions in accordance with the international standards. It means that the 

method requires the knowledge of the closed form of the SIF for the tested specimen. In this paper the 

expressions reported by the ASTM E647 [24] have been used to compute the SIF values. 

 The value of the crack length corresponding to 𝑁 = −𝑁𝑡ℎ is used to derive the value of the threshold 

SIF range which corresponds to a crack growth rate equal to zero. 

The procedure described above has been implemented in a Matlab code to identify the FCG curves and the 

∆𝐾𝑡ℎ values using the datasets produced by Ghonem and Dore, Virkler and Wu and Ni. The detailed discussion 

about the capability of the model to properly fit the datasets used in this paper is given in an earlier paper [53]. 

Fig. 2 shows some examples of fitting results with the experimental points related to set I produced by Ghonem 

and Dore. 

 

Fig. 2 Four crack growth data from Ghonem and Dore dataset [47] - raw data (dots) analytical model (in lines) 

Moreover, normality of the residuals obtained from each curve has been verified by the χ2 normality tests and 

the corresponding residuals frequency histograms have also been evaluated. In Fig. 3, the means of residuals for 



Ghonem and Dore set I and set III are shown as an example to highlight that the mean value is equal to zero 

[53]. 

 

Fig. 3 Mean of residuals obtained by fitting Ghonem and Dore set I (left) and Ghonem and Dore set III (right) 

A further version of the Matlab code, which was already implemented for the fitting curves, was developed 

further in order to identify the values of the FCG rate as well as the SIF range values. In particular, the SIF values 

in correspondence of 𝑁 = −𝑁𝑡ℎ for each curve of all datasets have been computed in order to estimate the 

threshold values and compare these with those reported in literature. 

4. Results and analyses 

The interpolation of the raw experimental data represents the first step of the analysis. The suitability of the 

equation for fitting the data has been summarised in the above section. In particular, the raw data fitting has an 

average value of the R2 equal to 0.9998 for all dataset [53]. The values of the parameters identified for each 

dataset are shown in Table 3 

Table 3 - Parameter values for the five datasets 

 
α β Nth p h ath 

ΔKth 

MPa√m 

Ghonem&Dore-Set No. 1 1.91 1.34 914314 4.40 6.75 0.81 1.42 
Ghonem&Dore-Set No. 2 1.69 1.33 695502 3.43 6.33 0.72 1.63 
Ghonem&Dore-Set No. 3 4.73 1.53 1635716 4.58 6.38 1.57 1.90 

Virkler 2.93 1.28 2211197 6.59 19.84 0.75 2.79 
Wu&Ni 58.04 1.85 842999 6.45 21.25 3.65 3.61 

 

The values reported in Table 3 have been computed as an average of the values identified over the total number 

of tests for each dataset. 

The crack length as a function of the number of cycles derived in the range [−𝑁𝑡ℎ; 𝑁𝑓] is shown for each data 

set in Fig. 4. In particular, the curve fitting related to the three datasets produced by Ghonem and Dore is shown 



in the top row of the Fig. 4 (Set I - Set II - Set III), the curves related to the dataset produce by Virkler and the 

curves related to the datasets produced by Wu-Ni are shown bottom row of the Fig. 4. In each dataset all the 

fitting curves tend to the same asymptotic value as the number of cycles approaches −𝑁𝑡ℎ. Although, the values 

are different between the various datasets. . In order to make possible the comparison between the 

experimental data points and the curves identified with the analytical model, the logarithmic plot of the 

horizontal axis, which is the number of cycles, has been used. The logarithmic scale is only used for the sake of 

clarity of the graph whilst the equations adopted are not affected by this choise. 

 

Fig. 4 Comparison of raw (dots) and analytical (lines) crack length vs number of cycle for the 5 datasets 

In order to draw the FCG curve for the entire range, it is necessary to derive the crack growth rate together with 

the SIF range for the corresponding values. The curves shown in Fig. 5 correspond to all experimental data of 

the data sets considered in this paper. These graphs show clearly that the gradient approaching 𝑁 = −𝑁𝑡ℎ is 

equal to zero, which reflects the asymptotic behaviour in the a-N curves. As a consequence the FCG rate, as 

expected, approaches zero.  



 

Fig. 5 FCG curve for the five datasets. 

This observation can be used to extrapolate the crack growth curve from the lower part. The value of the 

threshold SIF range is found where 𝑁 = −𝑁𝑡ℎ. By means of Eq. (3), the value of the crack length at 𝑁 =

−𝑁𝑡ℎ can be derived. In Fig. 6, the values of the threshold SIF predicted by the model for each curve of the five 

data sets analysed in this paper are shown together with the corresponding values gathered from literature [44]. 

 

Fig. 6 Threshold SIF range for the five datasets. 



5. Discussions 

The crack length vs number of cycle curves found from the model correlate well with the raw data points. To 

relate the parameter values obtained by means of best-fit to the testing conditions, the contour plots shown in 

Fig. 7 have been created. The contour plots can be used to identify the range in which the optimal values of the 

model parameters should be identified by means of the best-fit of the experimental raw data in terms of crack 

length versus number of cycles. Nevertheless, the possibility of correlating the model parameters with the 

loading conditions by means of analytical expression can be adopted. This would allow to either reduce the 

number of parameters that can be identified through best-fit or to identify the FCG curve for a given material 

under certain loading conditions, which are usually defined in terms of maximum load and load ratio. For this 

reason the correlations between the 6 parameters of the proposed model and the maximum load Pmax, and the 

load ratio R have been investigated using the values obtained from the fitting analysis carried out with the 

datasets found in literature and already discussed in this paper. In the following figures (Fig. 7), Pmax is defined 

as the maximum value of the applied load in each cycle. 

 

Fig. 7 - Contour plot of the model parameter average values in function of the loading conditions. 

The two parameters α, β and ath depend on the load ratio for low values of the maximum applied load only. At 

higher values of the maximum applied load the range of the above parameters is the same whatever the load 

ratio is, which means they are independent of the load ratio. Moreover, their values decrease as the values of R 



and Pmax increase. A different trend can be observed from referring to the model parameters of Nth, p and h. The 

combined effect of the load ratio and the maximum applied load is always present for the investigated range 

values of the loading conditions. In addition, the values of the two parameters p and h decrease as the values of 

R and Pmax increase, whilst for Nth the trend is opposite with regard to Pmax. In the graphs shown in Fig. 8 the 

correlations identified between the model parameters and the loading conditions are shown. In some cases the 

combination of more than one parameter has been considered. 

 

Fig. 8 - Best fit of the model parameters values in function of loading conditions. 

In particular, for h, Nth and p three different expressions have been introduced: 

𝐶1 =
ℎ𝑃𝑚𝑖𝑛

𝑎0
           (8) 

𝐶2 =
𝑁𝑡ℎ

𝑁0
           (9) 

𝐶3 =
𝑝𝑎𝑓

𝑃𝑚𝑖𝑛
                       (10) 

Expression reported as Eqns. (8) and (10) have shown to be related to the maximum applied load, as shown in 

Fig. 8. Eq. (9) is related to the load ratio and it is shown in Fig. 8. In terms of the quality of fit, it can be assessed 

with the value of the coefficient of correlation (R2). A good fitting is achieved if the coefficient of correlation is 

between 0.8 and 1 for all the correlations identified [54]. The Nth in function of Pmax, as shown in Fig. 8 has the 



lower coefficient of determination of 0.8286 in current study. This value is however still within the acceptable 

range and the correlation between the considered parameters values is acceptable. 

The extrapolation of the curves as shown in Fig. 5 reaches 𝑁 = −𝑁𝑡ℎ asymptotically, which can be used to 

generate ∆𝐾𝑡ℎ values based on the theory of identifying threshold [19, 21]. The range between the maximum 

and minimum values of the predicted ∆𝐾𝑡ℎ  for each dataset is quite small so that the average value of the 

threshold is used. The reference values for materials considered in this paper have been taken from literature 

in order to verify the model. In the literature a range of threshold values are also mentioned for a particular 

material for a constant 𝑅 [18, 41, 55]. Fig. 10 shows the comparison between the threshold values obtained 

using the model and threshold values found in the literature for the same kind of material. The values considered 

as literature values are based on ESDU documents [41] for aluminium alloy 7075-T6 (at 𝑅 = 0.4, 0.5 and 0.6) and 

aluminium alloy 2024-T3 (at 𝑅 = 0.2). For 2024-T351 (at 𝑅 = 0.2) the literature value is taken based on ∆𝐾𝑡ℎ value 

provided by [44] and normalized threshold SIF range against 𝑅 curve provided by [43]. The average threshold 

value of the model is used for the comparison. In Ghonem (set I-III), Vilker, Wu and Ni datasets, the threshold 

values of the corresponding materials from the literature are 1.5 𝑀𝑃𝑎√𝑚, 1.7 𝑀𝑃𝑎√𝑚, 1.9 𝑀𝑃𝑎√𝑚, 

2.85 𝑀𝑃𝑎√𝑚 and 3.6 𝑀𝑃𝑎√𝑚. Comparing these values with those predicted by the proposed model, the 

percentages of error are approximately 5.3%, 4.1%, 0%, 2.1% and 0.3%, respectively.  

As shown earlier in Fig. 6, in all cases there is a band of threshold values predicted for the same material with 

the literatures showing the same trends. The threshold vs 𝑅 graph provided by [41] shows a small range of 

threshold values with upper and lower limit indicated for 2024-T3 aluminium alloy. Different investigations by 

Newman and Raschau [1, 2, 28-30] also found a range of threshold based on different experimental methods 

used e.g. load reduction (LR) methods, 𝐾𝑚𝑎𝑥 constant methods and far-field cyclic compression methods.  

Recently, Molent. et al [18] used a FCG threshold parameter ∆𝐾𝑡ℎ𝑟 to explain the scatter in the fatigue life 

prediction. The ∆𝐾𝑡ℎ𝑟 is used to explain the dependency of the threshold values on the material properties, 𝑅 

ratio, crack length and loading method used for the testing phase. From literature [45, 56], it was found that 

∆𝐾𝑡ℎ𝑟 = 0 produces conservative crack growth predictions for different aluminium alloys. The fact that different 

values of the threshold SIF were reported for the same material in literature can be treated as supporting 

evidence to the concept of cyclic stress intensity threshold. For the material used in generating Virkler dataset a 



range of ∆𝐾𝑡ℎ𝑟 (2.9 ÷ 4.2 MPa√m) it is reported whilst the material related to Wu and Ni dataset a range of 

∆𝐾𝑡ℎ𝑟(0 ÷ 4.2 MPa√m). Moreover, for 7075-T6 aluminium alloy material at a 𝑅 = -1 range of ∆𝐾𝑡ℎ𝑟(0.6 ÷ 

1.13 MPa√m) was found. In other published papers [55] it has been shown a threshold band ∆𝐾𝑡ℎ𝑟 (2.8 ÷ 

4 MPa√m) at 𝑅 = 0.33 for 2024-T351 aluminium alloy. All these values are in good agreement with those 

estimated by the proposed model. 

In order to investigate the variability of the threshold SIF range, the response surface reporting the correlation 

of this latter parameter as functions of the maximum applied load and the load ratio is shown in Fig. 9. The 

values shown in the graph related to the threshold SIF are those identified through the fitting analysis of the raw 

data. Although all the values identified in the analysis related to different aluminium alloys are shown on the 

same plot, the validity of the contour plot is limited to the R and Pmax ranges investigated in this paper and the 

alloys considered in the tests are referring to the datasets used for the analysis. However, the contour can 

represent a valid tool for a preliminary identification of the threshold SIF range. 

 

Fig. 9 - Contour plot of the ΔKth in function of the maximum applied load and the load ratio. 



 

Fig. 10 threshold vs load ratio data where thresholds of model and literature are compared 

Reporting all the results on the same graph in Fig. 10, it is possible to identify common trend useful to compare 

the results with the literature values. Firstly, the threshold line found with declined linear pattern or shape in 

relation to 𝑅 for the 7075-T6 aluminium alloy is qualitatively and quantitatively consistent with the line found in 

the literature [41]. The percentage of error ranges between 0.24% and 5.61%, which is quite low considering the 

scattering nature of the fatigue test data. They should converge at the higher value of 𝑅 but it was found that 

the scatter was getting bigger and reached 5.61% at 𝑅 = 0.6. This difference or scatter could be explained by 

different experimental methods used and the corresponding crack closure effects as referred by [1, 2, 28-30]. 

All the predicted threshold values of aluminium alloys (7075-T6 and 2024-T6) underestimate the values from 

literature (see for example [41]) except for the threshold value of 2024-T351 aluminium alloy which 

overestimates the literature value from [43, 44]. For 7076-T6 aluminium alloy, the threshold values from 

literature [3] at R = 0.2 is 2.3 MPa√m whilst the value derived using the analytical model here proposed is equal 

to 2.3651  MPa√m with an error less than 3%. 

In general, the yield strength of 7075-T6, 2024-T3 and 2024-T351 aluminium alloys are 510 MPa, 350 MPa and 

330 MPa, respectively. The threshold values found from the model for the three alloys at 𝑅 = 0.2 are 

3.6 MPa√m, 2.8 MPa√m and 2.4 MPa√m respectively. This indicates a correlation between the yield strength 



and threshold of these aluminium alloys: higher strength aluminium alloy possesses relatively higher threshold 

and vice versa. This supports the statement of the previous investigations which found the same type of 

correlation between the strength and threshold of materials [19, 36, 37]. 

It should be added that, the values of the 𝑎𝑡ℎ in Eq. (6) were found to influence the threshold value since it is 

the value of the crack length corresponding to the fatigue life value equal to 𝑁 = −𝑁𝑡ℎ. Therefore, 𝑎𝑡ℎ values 

can be further considered to correlate with the material properties, the load ratio as well as the geometry of the 

cracked component. It is possible to find in literature that the threshold value increases with the strength of the 

material [19, 36, 37]. Further research should be carried out to properly address this correlation, which could 

help in both identifying the parameter values and giving them a more physical understanding. 

Conclusions 

An analytical model for the interpolation of crack propagation data has been developed. The threshold SIF range 

has been derived for different materials and different specimen geometries. The new model has been shown to 

fit, with the needed accuracy, to a wide range of experimental data produced with different specimen 

geometries, different materials and different loading conditions. Moreover, it has been highlighted that it is 

possible to identify, by means of the above model, the value of the threshold SIF range with an error, as 

compared to the values reported in literature, of less than 6%. The relation between ∆𝐾𝑡ℎ and 𝑅 ratio predicted 

by the model agrees well with the literature results. The proposed model can therefore be valuable in identifying 

the threshold of stress intensity factor range for fatigue crack growth. 
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