Assessing lidar-based classification schemes for polar stratospheric clouds based on 16 years of measurements at Esrange, Sweden

Achtert, P. and Tesche, Matthias (2014) Assessing lidar-based classification schemes for polar stratospheric clouds based on 16 years of measurements at Esrange, Sweden. pp. 1386-1405. ISSN 2169-897X
Copy

Lidar measurements of polar stratospheric clouds (PSCs) are commonly analyzed in classification schemes that apply the backscatter ratio and the particle depolarization ratio. This similarity of input data suggests comparable results of different classification schemes - despite measurements being performed with a variety of mostly custom-made instruments. Based on a time series of 16 years of lidar measurements at Esrange (68°N, 21°E), Sweden, we show that PSC classification differs substantially depending on the applied scheme. The discrepancies result from varying threshold values of lidar-derived parameters used to define certain PSC types. The resulting inconsistencies could impact the understanding of long-term PSC observations documented in the literature. We identify two out of seven considered classification schemes that are most likely to give reliable results and should be used in future lidar-based studies. Using polarized backscatter ratios gives the advantage of increased contrast for observations of weakly backscattering and weakly depolarizing particles. Improved confidence in PSC classification can be achieved by a more comprehensive consideration of the effect of measurement uncertainties. The particle depolarization ratio is the key to a reliable identification of different PSC types. Hence, detailed information on the calibration of the polarization-sensitive measurement channels should be provided to assess the findings of a study. Presently, most PSC measurements with lidar are performed at 532 nm only. The information from additional polarization-sensitive measurements in the near infrared could lead to an improved PSC classification. Coincident lidar-based temperature measurements at PSC level might provide useful information for an assessment of PSC classification. Key Points Assessment of PSC classification schemes Statistical analysis of PSC observations Recommendations for lidar-based PSC studies

picture_as_pdf

picture_as_pdf
907119.pdf
Available under Creative Commons: 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads