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Abstract.
Goldstein or Wolfe conditions can be imposed on a linesearch to ensure convergence of an
iterative nonlinear optimization algorithm to a stationary point. However it is actually not
necessary to find a single step which satisfies both Goldstein (or both Wolfe) conditions
simultaneously in order to ensure global convergence. De-linking the conditions can make
it significantly easier to find an acceptable stepsize, which is neither too short nor too long.
Although this fact has been known for a long time, the practice seems to have fallen out of
fashion. However In this note we give a short, self-contained proof of global convergence
for de-linked Goldstein and Wolfe conditions, and advocate their use. In particular, we
argue that the increasingly widespread availability of second order adjoints via Automatic
Differentiation tools means that the cost of a conventional safe line search is often unac-
ceptably high for algorithms such as Truncated Newton. The de-linked approach advocated
here is used with the Goldstein conditions in the OPTIMA Truncated Newton code.
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1 The Goldstein Conditions

The Goldstein conditions [6] for a stepsizea are

(G1) f (xk +ask) < f (xk)+m1a(sk,gk)

(G2) f (xk +ask) > f (xk)+m2a(sk,gk)

Here f is the function being minimized,xk is the current search position,sk is
a search direction returned by the direction finder starting atxk, a is a stepsize
found by the linesearch,gk = f ′(xk), (sk,gk) denotes inner product, andm1,m2 are
constants with 0< m1 < m2 < 1. Usuallym1 < 0.5 andm2 = 1−m1. Note that
(sk,gk) < 0 iff sk is a descent direction. It is well known that, under suitable condi-
tions (for example, those set out below) choosingak to satisfy both G1 and G2 and
settingxk+1 = xk +aksk as the new search position suffices to ensure convergence
of ||gk|| to zero. However such global convergence results can also be established
without requiring the two conditions both to hold for a single value ofa. Results
of this kind were once extensively used, but seem to have fallen out of fashion in
recent decades.
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Theorem 1
Suppose thatf is bounded below and has Lipshitz continuous derivativef ′ on the
basiny : f (y)≤ f (x0). Let R> 1 be a positive constant.
At each optimization stepk suppose thatsk is chosen to be a descent direction, so
that(sk,gk) < 0, andak,bk are chosen with 0< bk < Rak and such that the stepsize
ak satisfies G1 and the stepsizebk satisfies G2. Setxk+1 = xk +aksk.
Then eithergk = 0 for somek or else

∞

∑
k=0

[cos2 θk · ||gk||2] < ∞

whereθk is the angle betweensk andgk.
Proof
Let m be min[m1,1−m2]. Then by G2 we have

f (xk +bksk)− f (xk) > (1−m)bk(sk,gk)

whence by the MVT we have, for somec with 0 < c < bk

sk · f ′(xk +csk) > (1−m)(sk,gk)

so
sk · [ f ′(xk +csk)− f ′(xk)] >−m||sk|| ||gk||cosθk.

Let K be a Lipshitz constant forf ′. Then|| f ′(xk+csk)− f ′(xk)||< cK ||sk|| and so

cK||sk||2 >−m||sk|| ||gk||cosθk.

Also c < bk < Rak so

ak||sk||>−(m/RK)||gk||cosθk.

Note that both sides are positive, becausesk is a descent direction so cosθk < 0.
Meanwhile from G1 we have

f (xk)− f (xk +aksk) >−mak(sk,gk) =−mak||sk||||gk||cosθk

> (m2/RK)||gk||2cos2 θk > 0

so the f (xk) are monotone decreasing and bounded below byL say (sincef is
bounded below by hypothesis) whence

f (x0)−L ≥
∞

∑
k=0

[ f (xk)− f (xk+1)] > (m2/RK)
∞

∑
k=0

[cos2 θk||gk||2].

QED
In particular, if thesk are chosen so that cosθk is bounded away from zero, then
∑ ||gk||2 converges, whence||gk|| tends to zero faster than

√
n.

Note that we have not proved thatxk converges in norm, but the basiny : f (y)≤ f (x0)
is compact, so a subsequence ofxk will be norm convergent tox∗ with f ′(x∗) = 0.
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2 The Wolfe Conditions

The Wolfe conditions [8] may be used with the linesearch instead of the Goldstein
conditions. The Wolfe conditions are:

(W1) f (xk +ask) < f (xk)+m1a(sk,gk)

(W2) sk · f ′(xk +ask) > m2(sk,gk)

As with the Goldstein conditions,m1,m2 are constants with 0< m1 < m2 < 1 and
usuallym1 < 0.5,m2 = 1−m1. Note that W1 is the same as G1.

Corollary 2
Under the conditions of Theorem 1, if we chooseak,bk to satisfy W1, W2 instead
of G1, G2 respectively then the same conclusion holds.
Proof
Let m be min[m1,1−m2] and proceed as in the proof of Theorem 1. Instead of
applying the MVT to G2 use W2 directly to get

sk · f ′(xk +bksk) > (1−m)(sk,gk)

then proceed as before withbk in place ofc.
QED

Note that although in practicebk is usually chosen so thatbk ≥ ak this condition is
not required by either proof.

3 A Simple Linesearch

Use of the de-linked Goldstein conditions allows a very simple and quick line-
search to be implemented.

Algorithm 3 (De-linked Goldstein).
Let a be the initial stepsize (usuallya = 1) and letR > 1 be a positive constant.
Now perform
b:=a;
while not G1(a) do b:=a; a := b/R enddo;
while not G2(b) do a:=b; b := R*a enddo;
The first iteration must terminate becausef is differentiable atxk. The second
iteration must terminate becausef is bounded below. Since if G1 is false then G2
is true, we have the postcondition thata satisfies G1 andb satisfies G2, and either
b = a or b = Ra. Note that the twowhile loops can be placed in either order, and
that at most one of them will ever be performed.
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The OPTIMA Truncated Newton code [5] has from its initial implementation used
this approach, withR= 2, to modify a suggested step, based on a quadratic model,
in such a way as to ensure that it is of appropriate length for the non-quadratic
objective functionf , while maintaining a guarantee of global convergence. We
now explain the arguments for preferring this linesearch approach for use with
Truncated Newton.

First, recall that it is not worthwhile for the linesearch to minimizef accurately
along the line in directionsk throughxk. To perform such anexact linesearch
would be computationally very expensive, and would not help to minimizef .

To see that the extra cost of an exact search may not be very beneficial in terms of
overall convergence, recall that if the quadratic approximation tof at xk is good
for the proposed stepsk then

f (xk +sk)≈ f (xk)+
1
2
(sk,gk)

so conditions G1 and G2 will both hold fora = 1. Thus, if we are adjusting the
stepsize at all, then the quadratic approximation is not good for the step we are
considering. Since Truncated Newton is a second order (i.e. quadratic) algorithm,
we therefore need to be prepared to move to a point where the Hessian, and hence
the directional Hessian in the search direction itself, may be significantly different.
Hence it is generally better, when we are far from the solution, to make the line
search satisfy a global convergence condition (such as de-linked Goldstein)with
as little computational effort as possibleand to invest the effort in subsequent TN
iterations.

The increasing availability of tools, such as the NAGWare Fortran compiler, which
support higher-order Automatic Differentiation has proved valuable in making ac-
curate and computationally inexpensive gradient and Hessian information more
readily available for use in calculating good search directions. However a side-
effect is that function calls in line searches become, in relative terms, much more
computationally expensive than before. With the use of second order reverse or
adjoint mode Automatic Differentiation [2, 7], a directional second derivative can
be accurately evaluated for the same computational cost as about six function eval-
uations, irrespective of the number of independent variables (i.e. regardless of the
size ofx.) Thus an exact linesearch may turn out to cost significantly more than
an entire inner TN iteration. Far away from the minimum, where gradients are not
small and quadratic models are not good, the number of inner iterations per outer
iteration is usually not great, even for large scale problems, and so linesearches
which require many function evaluations can easily become a significant propor-
tion of the total computational cost.

From these two considerations it follows that, if we cannot accept an initially pro-
posed step, it is desirable to find an acceptable steplength using as few trial points as
possible. Satisfying global convergence conditions rapidly and moving on allows
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computational effort to be invested in TN iterations rather than in linesearches.

The disadvantages of exact line searches are well-known and most minimization
algorithms rely on a version of Theorem 1 (or Corollary 2) withak = bk and use
a so-called weak search which seeks to satisfy both G1 and G2 (or W1 and W2).
Most of these weak searches are of the backtracking type, originally proposed by
Armijo for modified steepest descent [1, Corollary 2]. Armijo’s algorithm omits
any iteration to enforce G2, and instead ensures global convergence by imposing
ana priori condition upon the choice of initial step. The (often unmet) requirement
to prove that a particular direction finder satisfies such a condition thus represents
a theoretical obstacle to promiscuous use of a backtracking linesearch. Failure
to take a sufficiently long step when far from the solution is also a well-known
practical problem.

Use of the de-linked Goldstein conditions in the manner set out in Algorithm 3
resolves both of these problems. Furthermore it typically requires fewer trial points
than an approach that attempts to satisfy the Goldstein or Wolfe conditions jointly.
For example, compare Algorithm 3 with the following algorithm, taken from [4,
Section 3.4].

Algorithm 4 (Conventional Wolfe).
Let R> 1 and 0< r ≤ 0.5 be positive constants. Lett be the initial stepsize (usually
t = 1) and perform
a:=0; b:= ∞;
while not (a=b) do
if W1(t) then a:=t else b:=t endif;
if W1(t) and W2(t) then b:=t
else
choose a new t with a < t < b;
if b = ∞ then t := max (t, R*a)
else t:= max ((1-r)*a + r*b, min (t, r*a + (1-r)*b))
endif
endif

enddo
For the first iteration,t is chosen to be the initial stepsize. In later iterations,t may
be chosen by polynomial extrapolation or interpolation, but must be adjusted to
ensure first thatb eventually becomes finite, and subsequently thatb−a decreases
geometrically with each iteration. The lengthb−a decreases by a factor of 1− r
in the worst case, but even in the best case the factor is at leastr, which can be
unfortunate whent is close toa.

It can be shown [4, Theorem 3.7] that this iteration will always terminate after a
finite number of steps, so thata will satisfy both Wolfe conditions.

Remember that we are not seeking to minimize the function exactly along the line,
but merely to satisfy the Wolfe conditions jointly, and for this purpose Algorithm 4
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is about the most efficient that may be devised. The advantages of using a de-linked
test as in Algorithm 3 are clear.

We prefer de-linked Goldstein to de-linked Wolfe for use with Truncated Newton:
this is because G2 for somebk with bk < Rak implies W2 for someck with ck <
bk < Rak by the MVT. Far away from the minimum, it is usually better to err on
the side of taking a longer step which satisfies G1.

4 Conclusions

This paper re-states and clarifies a useful fact which seems to have been overlooked
in recent years – namely that the line search in a minimization algorithm need
not cause the new point to satisfy both Goldstein conditions G1 and G2 (or both
Wolfe conditions W1 and W2). Instead these conditions can be de-linked and
an acceptable step can be found using the simple and inexpensive Algorithm 3.
The possibility of using a de-linked stopping rule is implicit in the well-known
and often cited paper by Armijo [1]. However, although his linesearch algorithm
ensures that the stepsize is not too long, it relies upon the search direction finder to
ensure that the stepsize is not too short. This means that a backtracking linesearch
cannot be combined with an arbitrary direction finder, whereas Algorithm 3 can
be.

Algorithm 3 has been proposed several times before, the 1988 paper by Dixon &
Price [5] being just one example. However more recent texts such as [4] continue
to suggest more expensive searches (e.g. Algorithm 4 above) which require the
steplength to satisfy the conditions jointly. A simple line search similar to Algo-
rithm 3 is outlined in [3, Chapter 8]; but this is followed by the cautionary remark
that additional steps are needed to ensure that the final point satisfies stopping tests
for both loops.

For these reasons, it seems appropriate once again to draw the theoretical and prac-
tical attractions of using a de-linked approach to the attention of a wider readership.
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