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We investigate the amount of noise required to turn a universal quantum gate set into one that can
be efficiently modelled classically. This question is useful for providing upper bounds on fault tolerant
thresholds, and for understanding the nature of the quantum/classical computational transition. We
refine some previously known upper bounds using two different strategies. The first one involves the
introduction of bi-entangling operations, a class of classically simulatable machines that can generate
at most bipartite entanglement. Using this class we show that it is possible to sharpen previously
obtained upper bounds in certain cases. As an example, we show that under depolarizing noise
on the controlled-not gate, the previously known upper bound of 74% can be sharpened to around
67%. Another interesting consequence is that measurement based schemes cannot work using only
2-qubit non-degenerate projections. In the second strand of the work we utilize the Gottesman-Knill
theorem on the classically efficient simulation of Clifford group operations. The bounds attained
using this approach for the π/8-gate can be as low as 15% for general single gate noise, and 30% for
dephasing noise.

PACS numbers: PACS numbers: 03.67.-a, 03.67.Hk

I. INTRODUCTION

The recent development of quantum information has
led to a great deal of interest in the classical simulation
of quantum systems. An understanding of this issue is
important in order to discern which resources are essen-
tial for an exponential quantum speedup. If we remove
certain resources from a particular model for universal
quantum computation, and find that the resulting ma-
chine can be efficiently simulated classically, then we can
infer that those resources are essential to any exponential
speedup that the original device may offer. For instance,
this approach has been used to show that quantum en-
tanglement is an essential ingredient for quantum com-
putation [1, 2, 3] while fermionic linear optics does not
allow for an exponential speedup [4].

In addition to questions of resources, an understanding
of classically tractable quantum evolution is also useful
for bounding the fault tolerance thresholds of universal
quantum machines. This connection becomes apparent
from another important question concerning any univer-
sal quantum machine: what is the minimal amount of

noise required before the device can be efficiently mod-
elled classically?. We loosely refer to this minimal noise
level as the classical tolerance of a particular physical
machine. We will also use the term tractable to describe
any form of quantum evolution that may be modelled
with polynomial classical resources. If it is true that
quantum computation is not tractable classically, then
upper bounds to the classical tolerance of the gates in
a universal quantum gate set are also upper bounds to
the fault tolerance of those gates. Aharonov and Ben-Or
were among the first to obtain upper bounds on the clas-
sical tolerance thresholds of quantum gates [2]. To obtain
their bounds they assumed that noise acts on every qubit

at every stage of the computation, and showed that for
noise above a certain amount the evolution becomes clas-
sically tractable (see also [3, 5] for related work).

In addition to bounding fault tolerance, there is per-
haps a more fundamental reason for investigating where
the classical/quantum computational transition lies [2,
6]. It may well be the case that noisy quantum devices
cannot be simulated efficiently classically, yet cannot be
used for fault tolerant quantum computation. This would
imply the existence of an ‘intermediate’ physical device
- such as a noisy quantum system controlled by a uni-
versal classical computer - which is clearly universal for
computation, is better-than-classical as it can simulate
itself efficiently, and yet is not as powerful as a full quan-
tum computer. Hence classical tolerance thresholds also
provide important (and perhaps easier) milestones for ex-
perimental efforts.

In this work, however, we will be more interested in the
recent approach taken by Harrow and Nielsen [3] where
they presented an algorithm for the efficient classical sim-
ulation of a quantum machine operating with separabil-
ity preserving quantum gate sets (‘SP machines’). The
term separability preserving refers to any set of opera-
tions that cannot entangle product inputs. They then de-
rived bounds on the minimal noise levels required to turn
certain universal quantum gate sets into SP machines,
thereby obtaining bounds on the classical tolerance of
those gates. Due to the lack of a simple characteriza-
tion of the SP machines, in most cases their calculations
proceeded not by considering the full set of SP machines,
but instead the set of separable machines, which are those
devices that only operate with separable quantum gates
[10]. Their approach has the advantage that one can
even consider weak noise models where the noise only
acts whenever multi-qubit gates are applied. Depend-
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ing upon the noise model, however, the upper bounds to
classical tolerance derived in this way were of the order
of 50% or more for interesting universal gate sets such as
CNOT+single qubit operations. In terms of depolarizing
noise only, Razborov has obtained the strongest bounds
that we are aware of - showing that for two-qubit gates
50% noise is an upper bound to fault tolerance [5]. How-
ever, his approach cannot be directly compared to that of
[3], as it does not consider efficient classical simulation,
and assumes a different noise model (where each qubit is
decohered at every timestep).

In this article we will consider efficient classical sim-
ulation, and we will extend the approach taken in [3]
along two different tracks. In the first track we define a
class of quantum machines that can generate entangle-
ment between product input states, but without addi-
tional resources can only generate at most two-particle
entanglement. We refer to any machines that operate
with our class of operations as bi-entangling machines,
or simply ‘B-machines’. A small extension of the algo-
rithm presented in [3] shows that such B-machines can
be efficiently simulated classically. We find that many of
the classical tolerance bounds derived in [3] are actually
also optimal with respect to B-machines. However, one
example of an improvement is the case of the CNOT un-
der individual depolarizing noise on the qubits, where we
show that a 67% noise rate leads to classical tractabil-
ity, which is stronger than the 74% bound derived in [3]
for the same model. Another interesting example comes
from 2-qubit measurement based quantum computation,
where we find that exponential speedup requires degener-
acy in at least one of the projections - a result that cannot
be directly derived from the approach in [3], and sug-
gests that for noise models in measurement based quan-
tum computation our approach could be more fruitful.
As an aside we also observe that there are separability
preserving gates that are not probabilistic mixtures of
separable/ separable+swap operations, thereby deciding
a conjecture made in [3].

In the second track we make use of the Gottesman-
Knill theorem [7]. All of the results discussed above are
derived by considering machines that create a limited
amount of entanglement, or are so noisy that they tend
to some form of equilibrium. However, the important
Gottesman-Knill theorem states that machines composed
of Clifford group unitaries [16] and computational basis
state preparation & measurement can be efficiently mod-
elled classically, despite the fact that such resources are
capable of generating many-particle entanglement (al-
though not all forms of entanglement [17]). It is hence
natural to ask whether such Clifford machines can lead
to better bounds on classical tolerance than bi-entangling
or SP machines. We calculate exactly the minimal noise
required to take a variety of single qubit gates into the
set of Clifford operations - those operations that may be
implemented by Clifford group unitaries, computational
ancillae, and measurements in the computational basis.
For the π/8 gate in particular [8], for generic single op-

eration noise, the bound obtained is approximately 15%,
thereby showing that the π/8 gate in the standard uni-
versal set {π/8,Clifford unitaries} cannot be made fault
tolerant to more than 15% general individual gate noise.
For dephasing noise the bound is approximately 30% for
the π/8-gate.

This paper is structured as follows. In the next section
we discuss the class of bi-entangling machines and the
reasons why they can be efficiently modelled classically
and discuss the classical algorithm. In section III we
discuss the way that we will choose to represent quantum
operations - via the Jamiolkowski isomorphism [9], and
derive some classical tolerance bounds with respect to
B-machines. In section IV we derive bounds for Clifford
operations based gate sets by using the Gottesman-Knill
theorem. In section V we discuss some subtleties in the
interpretation of results from section IV. Section VI is
the conclusion.

II. THE BI-ENTANGLING MACHINES

We define the term Bi-entangling machine according
to the following:

Definition: A Bi-entangling machine (‘B-machine’) is
one that consists of a supply of individual qubits ini-
tialised in some fixed state, augmented by the following
quantum operations:

1. an arbitrary set of single qubit quantum operations
(these may be unitary, or measuring, or anything
else),

2. an arbitrary set of 2-qubit operations that can be
expressed as convex combinations of (a) separable
operations [10] that do not entangle the two qubits,
(b) operations that swap the two qubits and then
apply a separable operation, and (c) entanglement
breaking (EB) [12] operations that break any en-
tanglement between the two qubits and the rest of
the qubits.

The fact that any machine consisting of (1), (2a,b) is
efficiently classically tractable was already shown in [3],
as such operations lie (strictly) within the set of separa-
bility preserving operations. The only new point added
here is the inclusion of operations from (2c), and the
resulting convex hull with the separable/separable with
swap operations. The heuristic explanation for the algo-
rithm is that a machine consisting of operations (1)-(2)
above only has the power to generate 2-particle entan-
glement. The technical details of the proof then involve
only small modifications to the algorithm presented by
Harrow and Nielsen [3].

Suppose that a quantum machine starts in an initial
state with the qubits in a product state, and that subse-
quent evolution is only via bi-entangling operations. We
will assume w.l.o.g. that there are 4N qubits involved in
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the machine, where N is an integer. In order to model
the system, we must do two things: (i) we must repre-
sent the state of the machine, and (ii) we must track the
evolution of the system.

(i) Firstly, let us consider how we will represent the
state. For reasons that will become apparent later, we
first partition the qubits into 2N pairs, such that each
qubit is allocated exactly one partner. If all the qubits are
initially unentangled, we may make an arbitrary choice.
We store a database of the pairs in the memory of our
classical device. As there are 2N pairs, the memory is
of the order of 2NlogN (the logN comes from the fact
that we need a label for each qubit). We refer to this
database as the pairing list. In addition to the pairing
list, we must also store the quantum state of the machine.
This is done using 2N vectors {r1, r2, .., r2N}, where each
ri is a 16-component vector that represents the (possibly
mixed) state of the 2-qubit couple i. We will restrict our-
selves to storing each ri to some fixed accuracy, and so
we only require a memory proportional to 2N to store all
of these vectors. In principle it will be necessary for us
to understand how this limited accuracy will affect our
simulation. This is a non-trivial point, however, the ap-
proach developed in pages 3-6 of [3] to tackle this problem
also applies here, and so we do not discuss the details.

(ii) We now need to understand how to track the evo-
lution. We need a way of representing each particular
quantum gate on the classical computer. The first gate
that we apply may be either a single qubit gate, or a 2-
qubit gate that is a convex combination of separable and
entanglement breaking operations. We deal with each
case separately:

(a) A single qubit gate. Suppose w.l.o.g. that the
first and second qubits are in a pair, and that the gate
is applied to the first qubit. Each single qubit gate can
be considered as a linear transformation on one particle
from a pair, and therefore represented as a 16×16 matrix
acting upon the vector r that describes the pair in ques-
tion. To track the changes due to single qubit gates, we
hence simply need perform a single linear transformation
of a single vector r in our memory.

(b) A two qubit gate. Suppose that we are imple-
menting a two qubit gate. There are two possibilities.
The two input particles are already in a pair, or they
are in separate pairs. If they are already in a pair, we
merely update the vector r of the pair according to the
whole gate. If the two input particles are not already
in a pair, we first must throw a dice to decide whether
we will perform (α) the separable part of the evolution,
(β) the separable+swap part of the evolution, or (γ) the
entanglement breaking part.

(α) If we choose to implement the separable part, each
particle remains in the same pair, and we merely proba-
bilistically update the state of each pair.

(β) If we choose the separable+swap part, we do the
same thing, except we first swap the particles in each pair
according to the swap operation.

(γ) If we choose to implement the entanglement break-

ing part, then the gate also enforces some partner-
swapping, but not quite so straightforwardly. Suppose
that particles (1,2) and (3,4) are in separate pairs, and
that we use an EB gate to act upon particles 2 and 3.
To simulate its effects, we note that any EB gate can be
represented as a measurement followed by a state prepa-
ration conditional upon the outcome. We hence calculate
the probability of the various outcomes corresponding to
the measurement, and with the correct probability follow
one particular outcome. Any particular outcome can re-
sult in the pairing to be changed to (1,4) and (2,3), such
that each new pair has its own vector r. So we both up-
date the pairing list to represent this fact, and compute
the new vectors. Performing this calculation corresponds
to performing linear calculations with vectors represent-
ing 4 qubits, and hence has a fixed upper cost per EB
gate being considered.

We iterate these techniques for every gate that we ap-
ply, such that at each stage we have a pairing list, and
a set of vectors representing the state of each pair. At
the end of the whole procedure we will need to simu-
late the outcomes of measurements on individual qubits,
which can be done using very similar methods to those
outlined above. Hence we can see that we have a classi-
cally efficient algorithm for tracking the evolution of our
device if our multiparty gates are bi-entangling channels
with fan-in ≤ 2 (the fan-in of a gate is the number of
particles that it acts upon non-trivially).

One might hope that the algorithm may be extended,
either to gates with higher fan-in, or by incorporating all
SP operations as well as separable/ separable+swap op-
erations. However, this cannot be done straightforwardly.
In the next section we will discuss why we cannot include
all SP operations.

To see why we cannot extend the fan-in of the gates ei-
ther, it is interesting to consider the connection between
the above algorithm and measurement based quantum
computation schemes [13, 14, 15]. This situation also
provides a simple first example of where consideration
of bi-entangling machines may yield more information
than consideration of SP machines alone. In measure-
ment based computation schemes it is known that two-
qubit measurements allow universal quantum computa-
tion [14]. However, our algorithm shows that we must
allow these measurements to be degenerate, because if
they are non-degenerate, then the resulting operations
will be EB, and the device cannot offer an exponential
speedup. This leads to a useful rule: any 2-qubit mea-
surement based scheme for quantum computation must

involve non-degenerate measurements.
Although this observation is quite simple, it applies

to gates that can generate some entanglement (e.g. Bell
measurements), and so it cannot be derived directly from
the approach in [3]. However, this limit on the capacity
to generate multi-particle entanglement is removed when
you allow EB channels with 3 or more inputs, and this is
one reason why universal quantum computation is pos-
sible using some forms of non-degenerate measurements
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on 3 or more particles (see e.g. the paper by Gottesman
& Chuang on teleportation based computation - they use
GHZ-like states and Bell measurements [15]). Therefore
it is difficult to extend the bi-entangling class to gates
acting on three or more parties.

III. REPRESENTATION OF QUANTUM

OPERATIONS BY STATES

In order to utilise the above algorithm to bound the
classical tolerance of quantum gates, it is important to
be able to decide when a given set of quantum opera-
tions falls into the class of B-machines. In general this
problem is extremely difficult. However, some important
operations such as the CNOT gate possess a great deal
of symmetry that makes the analysis tractable. In order
to perform this analysis, the Jamiolkowski isomorphism

[9] provides a convenient way of representing quantum
operations. To any trace preserving quantum operation
E on a single particle of d-levels, the Jamiolkowski iso-
morphism associates a two-party quantum state that we
will refer to as the Jamiolkowski state, ρ(E):

ρ(E) := IA ⊗ EB(|+〉〈+|) (1)

where |+〉 := (1/
√
d)
∑d

i=1
|ii〉 is the canonical maxi-

mally entangled state for two d-level systems A,B. It
is clear from the above definition that ρ(E) has a re-
duced density matrix (ρ(E))A that is maximally mixed.
It turns out that any density matrix with this property
(i.e. one with ρA maximally mixed) can be associated
with a quantum operation E . Moreover, a simple tele-
portation like argument can be used to show that this
association is one-to-one. Hence the Jamiolkowski iso-
morphism is a one-to-one mapping between the set of
trace preserving quantum operations E and two-party
quantum states with maximally mixed reduced density
matrix.

This isomorphism can be easily applied to multi-party
quantum operations in the following way. Suppose that
we have a two particle quantum operation E12 acting
upon two qubits 1, 2. To represent this operation we
must use a quantum state of four parties A1, A2, B1, B2
[11]:

ρ(E1,2) :=

IA1 ⊗ IA2 ⊗ EB1,B2 ((|+〉〈+|)A1,B1 ⊗ (|+〉〈+|)A2,B2)

This representation is particularly convenient because
various important properties of quantum operations E
may easily be translated into properties of the corre-
sponding state ρ(E). In this work we will consider three
such properties (see figure (1)):

(a) an operation is separable iff the Jamiolkowski state
is separable across the (A1A2)-(B1B2) split.

(b) an operation is equivalent to the swap operation,
preceded by and followed by separable operations, iff

FIG. 1: Entanglement breaking (EB), separable (S), and sep-
arable+swap (SS) operations have a simple connection to
Jamiolkowski state separability. For EB and separable op-
erations (S), the dashed line indicates the corresponding sep-
arable split. For separable+swap (SS) operations the dashed
ellipse indicates the splitting. In all diagrams the wavy lines
indicate entanglement between pairs 1 & 2.

the Jamiolkowski state is separable across the (A1B2)-
(A2B1) split.

(c) an operation is entanglement breaking iff the
Jamiolkowski state is separable across the (A1B1)-
(A2B2) split.

A set of operations is bi-entangling if every operation
lies within the convex hull of these three classes (a),(b)
and (c). An operation is hence bi-entangling iff the Jami-
olkowski state that represents it can be written as:

ρ = p
∑

i

piρ
i
A1A2 ⊗ ρi

B1B2 + q
∑

j

qjρ
j
A1B2

⊗ ρj
A2B1

+r
∑

k

qkρ
k
A1B1 ⊗ ρk

A2B2 (2)

where (p, q, r) is a probability distribution, the sets {pi},
{qj}, {rk} are also individual probability distributions,
and all ρ’s on the r.h.s. are valid density matrices.

This is a convenient point to discuss the relationship
between B-machines and SP-machines. It is clear from
the above definition that B-machines contain the convex
hull of the separable operations with separable+swap op-
erations. However, they do not contain all possible sep-
arability preserving operations. This becomes apparent
from consideration of the following Jamiolkowski state:

ω :=
1

2
|GHZ〉〈GHZ|A1,A2,B1 ⊗ |0〉〈0|B2

+
1

2
|GHZ ′〉〈GHZ ′|A1,A2,B1 ⊗ |1〉〈1|B2

where: |GHZ〉 :=
1√
2
(|000〉 + |111〉)

|GHZ ′〉 :=
1√
2
(|011〉+ |100〉) (3)

As ω is a valid density matrix with the reduced state of
parties A1-A2 maximally mixed, it corresponds to the



5

Jamiolkowski state of a valid quantum operation. When
viewed as a state of four parties, ω also has the prop-
erty that a GHZ-type state can be distilled from it by
LOCC operations - simply by measuring the particle
B2 in the computational basis. However, as the Jami-
olkowski states of bi-entangling operations contain only
two-particle entanglement, this means that ω cannot rep-
resent a bi-entangling operation. However, ω manifestly
represents an SP operation, because the output qubits
B1-B2 are always left in a separable state. Therefore
we can also conclude that the conjecture made in [3]
that that SP operations 6= convex hull{separable ops,
separable+swap}, is indeed true [19]. In the above def-
inition of B-machines, we have included the ability to
make separable operations, separable+swap operations,
and EB operations. One might be tempted to expand this
definition to include all SP operations as well. However,
operations such as ω have the capacity to probabilisti-
cally generate many-particle entanglement when accom-
panied by EB channels such as Bell-measurements, and
so in our definition of B-machines we are forced to include
the smaller classes of separable and separable+swap op-
erations, and not the larger class of SP operations.

We would now like to use the class of B-machines de-
fined above to obtain bounds on the classical tolerance
of important universal gate sets. Suppose for example
that we have a universal quantum computer consisting
of the CNOT gate and a sufficient set of single qubit op-
erations. If we add some noise to the CNOT such that it
is taken to a bi-entangling operation, then the whole set
is taken to a B-machine, and can be efficiently classically
simulated. Hence to bound the classical threshold of the
CNOT in our device, we would like to calculate the mini-
mal noise required to turn the CNOT into a bi-entangling
operation. In general such calculations are very difficult.

It is at this point that we must discuss the form of
the noise model that we consider. In the rest of this
article we adopt the standard probabilistic noise model,
where qubits are affected incoherently. In this model
whenever we would like to perform an ideal quantum
operation E , instead due to noise we are forced to perform
an operation E ′ that is related to E as follows:

E ′ = (1 − p)E + pN (4)

where p is a probability, and N is some other quantum
operation that represents the error. In this equation p is
measure of the error rate. Note that this is not the most
general model of error, and not necessarily the most phys-
ical model either. Consider the example where our ideal
operation is to simply preserve the state of a qubit, but
in fact it undergoes a spontaneous emission at a suffi-
ciently slow rate. This form of error cannot be written
in the form of equation (4) unless the error parameter is
set to p = 1 (see e.g. [8], page 442). For more generic
errors one would have to adopt some suitable metric ‖•‖
on the set of quantum operations and use ‖E ′ − E‖ as
a measure of error rate (see e.g. [18] for some possible
metrics). Although several authors have considered more

general models of error in relation to fault tolerance [20],
the only prior work on classical tolerance has been within
the framework of equation (4), and this is the model that
we will follow here. In the case of Markovian, identical,
and independent noise it should be possible to extend
many of the techniques presented here to metric based
noise quantification, although we will not pursue that av-
enue here. Within the probabilistic model, one can also
make further restrictions, and constrain the form of N
to interesting forms of noise such as depolarization or de-
phasing. As with [3], however, our analysis will initially
take N to be a general quantum operation.

Given that our error model is probabilistic, our task is
to find the minimal value p such that there is a valid N
taking our ideal gate into the set of bi-entangling opera-
tions. In general this is likely to be a difficult task. How-
ever, for the case of the CNOT a great deal of symmetry
is present that enables the calculation to be performed
exactly. In order to see how this proceeds, it will be first
helpful to consider the case that the two qubit gate is a
general unitary U , and examine some of the symmetry
possessed by the Jamiolkowski state that represents U .

For any 2-qubit unitary U we have the trivial identity:

(U(σi ⊗ σj)U
†)U(σi ⊗ σj) = U (5)

where {σi|i = 0, x, y, z} are the standard Pauli operators.
This identity, together with the fact that I ⊗ A|+〉 =
AT ⊗I|+〉 for any linear operator A, can be used to show
that the Jamiolkowski state representing U commutes
with all operators of the form:

WU
ij := (σT

i )A1 ⊗ (σT
j )A2 ⊗ (U(σi ⊗ σj)U

†)B1,B2. (6)

It is not hard to verify that as we vary over i, j the opera-
tors in equation (6) form a group (up to an unimportant
phase), and moreover from the commutation relation-
ships of the Pauli operators it follows that the group is
abelian. It hence follows from Schur’s lemma that any op-
erator that commutes with all operators of the form (6) is
diagonal in the eigenbasis formed by the one-dimensional
irreducible representations of the group (6). We can con-
struct these irreducible representations quite easily. In
fact, the group (6) is isomorphic to the group consisting
of elements

(σT
i )A1 ⊗ (σT

j )A2 ⊗ (σi)B1 ⊗ (σj)B2, (7)

as it is related to (6) by the unitary transformation
IA1 ⊗ IA2 ⊗ UB1,B2. Hence we can utilize the stabilizer
formalism for the Pauli group, and write the 16 common
eigenstates of the operators in (6) as:

|e, U〉〈e, U | :=

(

I + (−1)e0WU
0x

2

)(

I + (−1)e1WU
0z

2

)

×
(

I + (−1)e2WU
x0

2

)(

I + (−1)e3WU
z0

2

)

(8)

where e is a 4-bit string given by its components eα ∈
{0, 1}, α = 0, 1, 2, 3. It turns out that each of these
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eigen-projectors |e〉〈e| is a Jamiolkowski state for a valid
quantum operation - the normalization and positivity are
automatic, and the reduced density matrices over par-
ticles A1,A2 are all maximally mixed (this is in turn
because σi ⊗ σj is an irreducible representation). The
Jamiolkowski state representing U is in fact given by the
projector |e = 0, U〉〈e = 0, U | corresponding to e = 0:

(

I +WU
0x

2

)(

I +WU
0z

2

)(

I +WU
x0

2

)(

I +WU
z0

2

)

(9)

If we denote the Jamiolkowski state that represents U by
ρ(U) = |e = 0, U〉〈e = 0, U |, then our task is to find the
minimal probability p such that for some quantum noise
N :

E = (1 − p)ρ(U) + pρ(N ) (10)

is the Jamiolkowski state of a bi-entangling operation.
Now the properties of the CNOT allow us to make further
simplifications. The CNOT is a member of the Clifford
group, meaning that for any two Pauli operators σi, σj

we have that

CNOT (σi ⊗ σj)CNOT ∼ σk ⊗ σl (11)

where σk, σl are other Pauli operators, and the symbol ∼
means that the two sides of the equation are equal up to
an unimportant global phase. This means that the group
(6) corresponding to the CNOT is actually a local group,
where each element is a tensor product of Pauli operators
acting on individual qubits of the Jamiolkowski state.
We can therefore average (‘twirl’) over the group (6) any
valid solution (10) corresponding to the CNOT, and as
each WCNOT

ij is local, the bi-entangling properties of the
equation will not be changed. This means that without
loss of generality, for the CNOT we need only consider
‘twirled’ noise states ρ′(N ) that are also invariant under
the action of the group. This means that we can set

ρ′(N ) =
∑

e

λe(N )|e〉〈e| (12)

where {λe} is a probability distribution of eigenvalues. If
we have not constrained further the form of N , then the
form of the probability distribution {λe(N )} can be left
free. However, if we are restricting N to be of a specific
form such as depolarization or dephasing, then we will
have to restrict the distribution accordingly. Our task is
hence to find the minimal probability p such that there
exists a probability distribution {λe(N )} (consistent with
any further constraints upon the noise) such that the
state:

(1 − p)ρ(U) + p

(

∑

e

λe(N )|e〉〈e|
)

≡

((1 − p) + pλ0(N )) |e = 0〉〈e = 0| +
∑

e6=0

λe(N )|e〉〈e|(13)

is bi-entangling. Let us denote this optimal value of p by
pmin. We can now try to perform this optimization for
various possible constraints upon the noise:

(a) No constraints: In this case we need only restrict
the λes to be a probability distribution, and do not need
to further constrain them. Take λopt

0
(B) to be the max-

imal possible λ0 over all bi-entangling states invariant
under the symmetry group (6). Then we clearly have
that:

(1 − p) + pλ0(N ) ≤ λopt
0

(B) (14)

and hence as p, λ0 ≥ 0 we have that:

(1 − p) ≤ λopt
0

(B) ⇒ p ≥ 1 − λopt
0

(B) (15)

This lower bound can be attained as we are free to choose
the form of the noise as we wish. Hence pmin = 1−λopt

0
,

and our task is now to calculate λopt
0

. This is now an
easier problem, as the fact that the set of bi-entangling
states is the convex hull of separable, separable+swap,
and EB states means that:

λopt
0

(B) = max{λopt
0

(S), λopt
0

(SS), λopt
0

(EB)} (16)

where λopt
0

(S), λopt
0

(SS), λopt
0

(EB) are the maximal pos-
sible λ0’s over separable states, separable+swap states,
and EB states respectively. This means that to work out
the minimal generic noise required to turn the CNOT into
a bi-entangling gate, we simply need to separately calcu-
late the minimal noise required to take the CNOT into
the different classes of separable, separable+swap, and
EB, and take the lowest value. As each of these classes
separately corresponds to separability across a particular
partition of the parties in the Jamiolkowski state, we can
apply the techniques developed in [3]. Although we omit
the details, it turns out that the Jamiolkowksi state rep-
resenting the CNOT has only 1 ebit of maximal entangle-
ment across the (A1B1)-(A2B2) splitting or the (A1B2)-
(A2B1) splitting, but as with any two-qubit unitary has a
full 2 ebits of maximal entanglement across the (A1A2)-
(B1B2) splitting. Hence the CNOT is less robust to noise
across the separable/separable+swap splittings. Further-
more, the results of [3, 22] show that the minimal noise
that breaks the entanglement of the CNOT across the
relevant splitting can always be chosen to be separable
across that splitting. The result of all these observations
is that the bounds derived in [3] for generic noise are also
optimal when considering B-machines as the classically
tractable set. It is also interesting to note that if we do
not ask for the noise to take us into the bi-entangling set,
but instead ask to be taken into the entanglement break-
ing channels, then the above approach yields solutions
for all unitary gates, not just the CNOT [21].

(b) Separable noise, Separable+swap noise, Noise

that is a mixture of Separable & Separable+swap:

The previous paragraph points out that by the arguments
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of [3, 22], the minimal generic noise that turns the CNOT
into a bi-entangling gate can always be taken to be sep-
arable, or separable+swap. Hence the bounds derived in
[3] are also optimal w.r.t. these forms of noise, and where
the classically tractable set is the set of B-machines.

(c) Depolarizing noise: The case of depolarizing noise
on individual qubits is a little more tricky to handle than
two particle noise. This is primarily because the depo-
larization is assumed to act independently upon the two
qubits in the quantum gate. If we adopt the model in
equation (56) of [3], with an error parameter p the noisy
operation is in fact:

(1−p)2U+p(1−p)(D⊗I)U+p(1−p)(I⊗D)U+p2D⊗D
(17)

where D represents the single qubit depolarizing quan-
tum operation,

D : ρ→ I

2
, (18)

and U represents the ideal unitary quantum operation
(we often represent a unitary and the corresponding
quantum operation by the same letter - the meaning
should be clear from the context). In particular we will
take U to be the CNOT operation. In order to derive un
upper bound on the minimum value of p required to make
this noisy operation bi-entangling, we will first show that
the (unnormalised) quantum operation corresponding to
the central terms of equation (17):

p(1 − p)[(D ⊗ I)U + (I ⊗D)U ] (19)

is in fact a separable operation (not just SP) for any value
of p. Hence if the (unnormalised) operation correspond-
ing to the outer terms:

(1 − p)2U + p2D ⊗D (20)

is entanglement breaking, then the whole operation (17)
is bi-entangling. First we must show that the central
terms (19) correspond to a separable operation. Consider
the operation (D ⊗ I)U , where U is the CNOT. After a
little algebraic manipulation of the Jamiolkowski state
corresponding to the CNOT, it can be shown that the
Jamiolkowski state of (D ⊗ I)U is:

ρ((D ⊗ I)U) =

(

I + IA1 ⊗ IB1 ⊗XA2 ⊗XB2

2

)

×
(

I + ZA1 ⊗ IB1 ⊗ ZA2 ⊗ ZB2

2

)

.

Writing this out in the computational basis where |0〉
represents the +1 eigenstate of the Z operator, and |1〉
represents the -1 eigenstate of the Z operator, we find
that ρ((D⊗ I)U) may be written as an equal mixture of

the following four pure states:

(|0A10B1〉 ⊗
(

1√
2

)

(|0A20B2〉 + |1A21B2〉),

(|0A11B1〉 ⊗
(

1√
2

)

(|0A20B2〉 + |1A21B2〉),

(|1A10B1〉 ⊗
(

1√
2

)

(|0A21B2〉 + |1A20B2〉),

(|1A11B1〉 ⊗
(

1√
2

)

(|0A21B2〉 + |1A20B2〉).

As each of these pure states is separable across the
(A1B1)-(A2B2) split, it is clear that (D⊗ I)U is a sepa-
rable operation. Similarly, one can show that the Jami-
olkowski state representing the operation (I ⊗D)U is re-
lated to the state representing (D⊗ I)U in the following
way:

ρ((I ⊗D)U) = SWAP1↔2[H
⊗4ρ((D ⊗ I)U)H⊗4] (21)

where the H⊗4 is a Hadamard rotation on each qubit,
and SWAP1↔2 is the operation that interchanges A1
with A2 and B1 with B2. As ρ((I ⊗ D)U) is related to
ρ((D⊗ I)U) by local rotations followed by interchanging
the labels 1 ↔ 2, it is also separable across the (A1B1)-
(A2B2) split, and hence both central terms in equation
(17) correspond to separable operations.

It now remains for us to determine values of p for
which the outer terms (20) represent an entanglement
breaking operation. The CNOT, as with any unitary on
two-qubits, is represented by a Jamiolkowski state that
is maximally entangled across the (A1B1)-(A2B2) split-
ting. The depolarizing operation on both qubits D ⊗D,
on the other hand, is represented by a maximally mixed
state. Hence if we are only considering the (A1B1)-
(A2B2) splitting, the state representing the operation of
equation (20) is essentially a maximally entangled state
of two 4-level systems, mixed with a maximally mixed
state. The conditions for such a state to be separable
across the (A1B1)-(A2B2) splitting, and hence entangle-
ment breaking, are well known, and correspond to:

(1 − p)2 + p2/16

(1 − p)2 + p2
≤ 1

4
(22)

giving that (20) is entanglement breaking whenever:

p ≥ 2/3 ≃ 67%. (23)

This means that the noisy CNOT gate is definitely bi-
entangling whenever the depolarizing noise rate is greater
than 67%. This is an improvement over the 74% bound
derived in [3] for exactly the same noise model, and
hence shows that consideration of B-machines may lead
to tighter bounds than consideration of separable ma-
chines alone. Of course the calculation here is not a
full optimization over all bi-entangling gates - we have
only calculated the minimal p required to make the in-
ner terms separable, and the outer terms entanglement
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breaking. This hence only provides an upper bound to
the minimal p required to make the CNOT bi-entangling,
and hence there is a possibility that this calculation may
be improved. However, as such full optimization is likely
to be difficult, we leave it to another occasion.

It is also worth noting that the classical tolerance
bound of 67% derived here applies to any two-qubit uni-
tary W for which the operations (I⊗D)W and (D⊗I)W
are separable.

IV. BOUNDS FROM THE GOTTESMAN-KNILL

THEOREM

In order to apply the Gottesman-Knill theorem [7] to
calculate bounds on the classical tolerance of quantum
gates, we need to compute the minimal amounts of noise
required to take all the gates in a particular machine into
the Clifford class. Unfortunately this restricts severely
the possible situations in which this approach may be
applied. In previous examples we have calculated the
classical tolerance of certain two-qubit gates with only
very loose constraints on the other gates available to the
machine. In this section we will calculate the classical
tolerance of single qubit gates, assuming that the other
gates in the machine are Clifford operations, where we
define Clifford operations as follows:

Definition: Clifford operations. Those operations that
can be performed by probabilistic application of Clifford
group unitaries [16], (ancilla) state preparation, and mea-
surement in the computational basis.

We will ask how much noise is required to turn non-
Clifford single qubit gates into a Clifford operation. The
resulting bounds on the classical tolerance can be rela-
tively low. For general single qubit operations we will
show that the classical tolerance to generic noise is no
greater than 75%, although on a case-by-case basis this
can be made much stronger. For example for the π/8
gate, we find that 15% noise is minimal amount required
to turn the gate into a Clifford operation.

In order to perform these calculations, at first it seems
necessary to understand which single qubit operations
can be implemented using Clifford group unitaries and
ancillas prepared in the computational basis. However,
we will not characterize this set exactly here, as to obtain
optimal bounds for many interesting cases it turns out
that it is sufficient to consider the effect that Clifford
operations have upon a particular subset of single qubit
states.

We will consider the set of states that is given by the
convex hull of the Pauli operator eigenstates. This set is
an octahedron O that is shown in figure (2). Our choice
of this set is inspired by the recent work of Bravyi &
Kitaev [6], who consider which single qubit state supplies
may allow the Clifford operations to become universal.
We will first argue that the octahedron O can only be
mapped to within itself by Clifford operations, and use

FIG. 2: The accesible states via Clifford unitaries defines a
octahedron in the Bloch sphere. Note that the vertices of the
octahedron correspond to the Pauli eigenstates.

this fact to simplify the optimizations that we wish to
perform.

Observation 0: The octahedron O is closed under the
action of Clifford operations.

Proof: Let us consider a system s that is prepared in one
of {|x±〉〈x ± |, |y±〉〈y ± |, |z±〉〈z ± |}, where |a±〉 refers
to the up/down eigenstates of the corresponding Pauli
operator A. These states correspond to the vertices of
the octahedron O. Suppose also that there are n − 1
ancillae prepared in the computational basis, as can be
prepared by Clifford operations. We need to calculate
what possible final states of the system are possible given
Clifford group unitary evolution of the system+ancilla &
Clifford group measurements. As the entire input state is
a stabilizer state [7, 8], the final state of system+ancilla
will also be a stabilizer state that is uniquely specified by
its stabilizer generators

{g1, g2..gn}

where each gi is a product of Pauli operators. Hence
from the standard theory of stabilizers, the final state of
system+ancilla will be given by:

(

1

2n

)

∏

i=1..n

(I + gi)

This equation may be expanded, and each element of the
group that is generated by the stabilizer will contribute

exactly one term in this expansion (this follows from the
independence of the stabilizer generators [8]). As any
non-trivial Pauli operator is traceless, tracing out the
n − 1 ancilla qubits from each term will only lead to a
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contribution to the final reduced state of the system if
the term is of the form ( 1

2n
)As, where As := Asystem ⊗

I ⊗ I ⊗ I ⊗ ..., in which case the term will contribute
A/2 to the system density matrix. Our goal is hence to
find every group element of the form As in the stabilizer
group. As the identity I is an element in each stabilizer
group, we will at least have a contribution of I/2 (which
is of course a requirement in the Bloch expansion of any
single qubit state). However, we need to find all other
terms of the form As.

This task can be constrained as follows. Firstly, in
each stabilizer group each element is its own inverse.
This means that any non-trivial terms of the required
form must actually be one of the 6 possibilities ±Xs,±Ys

or ±Zs. Moreover, at most only one of these 6 possi-
bilities is present in each stabilizer group, as if two or
more are present, then repeated multiplication we would
force −I to be a member of the stabilizer group (e.g.
(XsYs)

2 = −I), and this is not possible. This means
that input system states taken from the vertices of the
octahedron will be taken either to the maximally mixed
state I/2, or one of the eigenstates of the X,Y,X opera-
tors (corresponding to (I/2 ±X/2), (I/2 ± Y/2)... etc.).
This means that the vertices will be taken either to the
maximally mixed state, or to another vertex. Then by
convexity the octahedron O can only be mapped onto or
within itself by Clifford operations.

This observation may be used to give lower bounds
on the amount of noise required to take any particular
unitary operation into a Clifford operation. Then by ex-
plicit construction we will be able to show that whenever
the unitary is diagonal in the computational basis, that
these lower bounds may be achieved, and are hence tight.
First let us see why the above arguments allow us to con-
struct lower bounds on the minimal noise level required.
Consider a unitary gate of the form:

U(θ) := |0〉〈0| + exp(iθ)|1〉〈1|. (24)

This gate acts upon the |x+〉 state to give:

|ψ(θ)〉 :=
1√
2
(|0〉 + exp(iθ)|1〉) (25)

We may visualize this by looking at the cross-section of
the Bloch sphere given by the x-y plane. This is shown
in figure (3), with the point A representing |ψ(π/4)〉 cor-
responding to the action of the π/8 gate. One can see
intuitively from the figure, and this can easily be shown
rigorously, that the minimal noise level required to take
the state |ψ(π/4)〉 into the octahedron is given by the
ratio |AB|/|AC| from the figure. In the case of the π/8
gate, the ratio |AB|/|AC| corresponds to a noise level of:

p =

√
2 − 1

2
√

2
= 0.1464 (26)

If a noise level less than this amount could be added to
the gate U(θ) to turn it into a Clifford operation, then

FIG. 3: Cross section of the Bloch sphere in the x-y plane.
Point A represents the state |ψ(π/4)〉, and the ratio |AB|/|AC|
represents the exact minimal possible noise level required to
take the π/8 gate into the set of Clifford operations.

this would mean that the |x+〉 state would be mapped to
outside the octahedron O by the noisy operation. As this
is not possible, we can assert that (26) is a lower bound
on the amount of noise required to take the operation
U(θ) into the Clifford operations.

The utility of pictures such as figure (3) is that they
may be used to show that bounds such as (26) are in fact
also upper bounds, and are hence tight. The argument
for this is strongly related to the construction presented
[6] for the programming of unitary operations in quantum
states. Every state on the circumference of the Bloch
sphere in the x-y plane corresponds to a pure state of the
form:

|ψ(θ)〉 :=
1√
2
(|0〉 + exp(iθ)|1〉) (27)

These states are clearly isomorphic to the Jamiolkowski
states representing each U(θ), simply by changing |0〉 →
|00〉 and |1〉 → |11〉:

|J(θ)〉 :=
1√
2
(|00〉 + exp(iθ)|11〉). (28)

Hence by using convexity every state in the x-y cross
section of the Bloch sphere represents a valid quantum
operation. From this isomorphism we see hence that each
of the vertices represents a Clifford unitary: |x+〉 repre-
sents the identity gate σ0, |x−〉 represents the Pauli Z
rotation, |y+〉 state represents the so called phase gate

[8], denoted by the letter S:

S :=

(

1 0
0 i

)

, (29)
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and |y−〉 represents its inverse, S−1. This mapping hence
shows that bounds such as (26) can indeed be attained,
as the x-y plane of the Bloch sphere maps directly into a
problem concerning quantum operations and a subset of
the Clifford operations. Hence for gates of the form U(θ)
we have the following statement:

Lemma 1: The minimal noise required to turn U(θ) into
a Clifford operation is equivalent to the minimal noise
required to take the state |ψ(θ)〉 into the octahedron O
in figure (3).

As shown above, in the case of the π/8 gate this lemma
returns a minimal noise level is approximately 15%. The
same procedure also yields sharp bounds for any unitary
gate that may be diagonalised by Clifford group unitaries,
as well as for any quantum operation that is a convex
mixture of such unitaries.

We may also apply the above arguments to some cases
where the noise is constrained to be of a specific form.
Suppose for example that we wish to know how much
dephasing noise is required to take the π/8 gate into the
set of Clifford operations. The dephasing operation takes
|x+〉 to the maximally mixed state, at the centre of the
Bloch sphere in figure (3). On the other hand, when
figure (3) is viewed as representing Jamiolkowski states
of quantum operations, the centre of the circle in figure
(3) also represents the dephasing operation. Hence the
above arguments also show that:

Lemma 2: The minimal dephasing noise required to
take any gate U(θ) into a Clifford operation is identical to
the minimal amount of maximally mixed state required
to take the corresponding state |ψ(θ)〉 into the octahe-
dron O in figure (3).

In the case of the π/8 gate this shows that approxi-
mately 30% dephasing noise is required to take the π/8
gate into the Clifford operations, or more precisely twice
the value in equation (26):

√
2 − 1√

2
= 0.2928 (30)

Although the bounds on the classical noise threshold ob-
tained in this way are quite low compared to bounds
obtained in references [2, 3, 5], the above procedure has
the disadvantage that it applies only to very specific gate
sets, whereas previous works have applied to much wider
classes of machine. At the expense of increasing the
bound, we can however, make the approach more gen-
eral. For instance, we can show that the universal gate
set consisting of Clifford operations augmented by any
trace-preserving single qubit operation have a classical
noise tolerance of no greater than 75 % on the additional
single qubit operation. The argument proceeds as fol-
lows. Given any single-qubit trace preserving operation
E , we can always turn it into an operation that is a con-
vex mixture of Clifford group operations by the following
method. Instead of performing E on an input state ρ, we

perform:

1

4
E(ρ) +

3

4

∑

i=x,y,z

1

3
σi(E(σT

i ρσ
∗
i ))σ†

i (31)

In the Jamiolkowski representation this quantum opera-
tion can be represented as:

1

4
(RE + ((σx ⊗ σx)RE(σx ⊗ σx)†) +

((σy ⊗ σy)RE (σy ⊗ σy)†) + ((σz ⊗ σz)RE(σz ⊗ σz)
†))

This corresponds to a ‘Bell twirling’, and the resultant
quantum operation is represented by a Bell diagonal
state, which is a mixture of the four Pauli transforma-
tions. Hence by adding 75 % noise, any trace preserving
single qubit operations may be taken to a probabilistic
mixture of Clifford group operations, and so any machine
consisting of {CNOT+single qubit gates} has a classical
noise tolerance of at most 75 % on the single qubit gates.

V. INTERPRETATION OF THE BOUNDS.

The bounds derived in the previous sections give
upper bounds to the fault tolerance of specific gates.
For example, in the case of the gate set {Clifford
unitaries, π/8−gate}, they show that no fault-tolerant
encoding can be found that protects against 15% general

single gate noise. However, this does not mean that spe-
cific forms of noise cannot be tolerated to greater than
15%, but one must construct protection methods that
specifically target that form of noise.

Furthermore, in the case of the approach based upon
the Clifford group, our results show that if the Clifford
gates in a gate set are noiseless, then the noise corre-
sponding to lemma 1 may not be tolerated on an ad-
ditional non-Clifford gate U(θ). However, it is possible
that by mixing noise in with the Clifford gates as well,
and not imposing that they be noiseless, one can recover
the power to do universal quantum computation. Indeed,
we have been able to construct examples where mixing
a certain type of noise to the gate U from a universal
set {Clifford unitaries, U} leads to classically tractable
evolution, but mixing the same noise [23] with the Clif-
ford gates as well as U restores the ability to perform
universal quantum computation. Although we do not
include the details here, the examples that we have are
all quite extreme, and work because noise that turns the
non-Clifford gate U into a Clifford operation can also take
the Clifford unitaries out of the Clifford group [24]. Nev-
ertheless, in these examples the fault tolerant encoding
methods that restore universality are very specific, and
cannot be used to tackle general noise of the same level.

VI. CONCLUSIONS

We have presented a class of operations - the bi-
entangling operations - that may be efficiently simulated
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classically, as they are only capable of generating two
party entanglement. In some situations this class of op-
erations may give tighter bounds than currently known
on the classical noise tolerance of quantum gates. One
example is the case of depolarizing noise on the CNOT,
for which we show that 67% noise is sufficient to make
the subsequent evolution efficiently tractable classically,
compared to the best previous bound of 74%. Another
extreme case is with measurement based computation,
where we observe that two-qubit non-degenerate mea-
surements cannot enable exponential speedup over clas-
sical computation. It may be difficult to extend the class
of bi-entangling operations and still generate a class that
is efficiently tractable. This is because any natural gen-
eralizations to higher numbers of input particles enable
perfect quantum computation, and any extensions that
still involve two-particle gates are hampered by the subtle
interplay between separability preserving and separable
gates.

In the second half of this work we turn to bounds
on classical tolerance that may be derived from the
Gottesman-Knill theorem. The subsequent bounds (e.g.
30% depolarizing noise on the π/8 gate, 15% for general
single-gate noise) can be relatively low for this kind of
approach.

In general it is quite likely that the bounds derived here
may be improved. One interesting possibility is that a
hybrid of the approaches used by [2] and [3] may be used
to understand when slightly non-separable gates may be
efficiently simulated classically, albeit with a noise model
more in the spirit of [2, 5], where noise is applied to every
qubit at every time step.

In terms of the Clifford gate based work, it seems quite
possible that if the recent conjecture of Bravyi & Kitaev
[6] is true, then the fault tolerant threshold gates of the
form U(θ) = |0〉〈0| + exp(iθ)|1〉〈1| can indeed be made
fault tolerant to the noise levels derived here (and implied
by their work). Their conjecture implies that a supply of

single qubit quantum states from outside the octahedron
O may be ‘purified’ to certain ‘magic’ pure states by the
use of Clifford operations only. As Clifford operations
may be made fault tolerant to some degree via encoding
schemes based on Clifford operations only (see e.g. [8]
and references therein), it may be possible that the 15%
noise level on the π/8 gate may indeed be tolerated as
long as the remaining Clifford operations act within their
own (potentially much tighter) fault tolerant threshold.

These results show the potential of analyzing classical
tractability with the aim of bounding from above fault
tolerance thresholds. Moreover, investigating the quan-
tum/classical computational transition for (noisy) quan-
tum evolution is important in its own right [2, 6], particu-
larly as there is the possibility of ‘intermediate’ quantum
computation. It may well be the case that noisy quan-
tum devices cannot be simulated efficiently classically,
yet cannot be used for fault tolerant quantum computa-
tion. This would imply the existence of an intermediate
physical device - such as a noisy quantum system con-
trolled by a universal classical computer - which is clearly
universal for computation, is better-than-classical as it
can simulate itself efficiently, and yet is not as powerful
as a full quantum computer. Such intermediate devices
may be easier to construct, and hence may provide a
more achievable experimental target.
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