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ABSTRACT 

In two experiments, we investigate the hypothesis that a strengthening of 

position –item associations underlies the improvement seen in performance 

on an immediate serial recall task, when a given in list is surreptitiously 

repeated every third trial. Having established a strong effect of repetition, 

performance was tested on transfer lists in which half the items held the same 

position as in the repeated list (S-items), the remainder moved (D-items). In 

Experiment 1, S-items showed a small advantage over control and D-items, in 

order errors. A second experiment tested whether a design element in 

Experiment 1 underlay this advantage. When the experimental design was 

better controlled, no improvement was shown for either S- or D-items over 

controls. These data were shown to be inconsistent with the results of 

computer simulations of a positional model. An alternative model is outlined. 
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INTRODUCTION 

Motivation 

The working memory (WM) theory, proposed by Baddeley and his colleagues 

(Baddeley, 1986; Baddeley, 1992; Baddeley & Hitch, 1974) has proved a 

productive qualitative framework within which to account for a great deal of 

data relating to short-term memory for serial order. The immediate serial 

recall (ISR) task in particular has been used extensively in research into the 

phonological loop component of WM. In ISR, participants are asked to recall a 

list of items such as letters or words in their correct order immediately after 

presentation. The WM framework gives a good qualitative account of many of 

the effects seen in ISR, such as the word-length effect (Baddeley, Thompson, 

& Buchanan, 1975), the list-length effect, the effect of articulatory suppression 

(Murray, 1968), and the phonological similarity effect (Conrad, 1964) (see 

Baddeley, 1986, for a review). 

 

There is growing evidence, both neuropsychological (e.g. Baddeley, Papagno, 

& Vallar, 1988; Papagno, 1996; Papagno, Valentine, & Baddeley, 1991; 

Papagno & Vallar, 1992; Trojano, Stanzione, & Grossi, 1992; Vallar & 

Baddeley, 1984a; Vallar & Baddeley, 1984b; Vallar, DeBetta, & Silveri, 1997; 

Vallar, Papagno, & Baddeley, 1991; Warrington & Shallice, 1969) and 

developmental (e.g. Baddeley, Gathercole, & Papagno, 1998; Gathercole, 1995; 

Gathercole, Service, Hitch, Adams, & Martin, 1999; Gathercole, Willis, & 

Baddeley, 1991), that phonological working memory plays an important role 

in the acquisition of novel phonological forms during vocabulary learning. It 

has been found that patients, such as PV and SC (Baddeley, 1993; Baddeley, 

Papagno, & Vallar, 1988; Papagno, Valentine, & Baddeley, 1991; Vallar & 

Baddeley, 1984a), who have a very low auditory span, around two or three 

items, have great difficulty learning new vocabulary. In terms of 

developmental evidence, Gathercole, Baddeley and colleagues (see above) 
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have found that, in children, the ability to repeat nonwords predicts later 

vocabulary size. Indeed, Baddeley, Papagno and Gathercole (1998) have 

suggested that vocabulary acquisition is one of the primary roles of 

phonological short-term memory.  

 

The working memory framework has two major shortcomings when it comes 

to addressing the issue of how long-term ordered phonological 

representations are formed. First, it does not deal directly with the problem of 

serial order (Lashley, 1951), in that it has no formal description of how the 

order of items is represented in phonological working memory. Second, it 

suggests no mechanism for learning the information it stores. Baddeley et al. 

(1998) have argued that the primary function of the phonological store is to 

permit the learning of new phonological representations.  They base this 

claim on evidence that children’s ability to repeat nonsense words, essentially 

lists of phonemes or syllables, is correlated with later vocabulary size. In 

order to repeat a nonsense word, the listener must be able to maintain an 

ordered representation of the phonological forms contained, and learning of 

this short-term representation is required for a long-term phonological 

representation to be formed. Given this claim, detailed models of these 

processes are required.  

 

There are now several computational models of performance in the ISR task, 

all of which have explicit ordering mechanisms. These provide fits of varying 

quantitative precision to empirical data from many aspects of ISR data. They 

include Lee and Estes's perturbation model (Lee & Estes, 1977; Lee & Estes, 

1981), the TODAM model (Lewandowsky & Murock, 1989; Li & 

Lewandowsky, 1995; Murdock, 1996; Murdock, 1992; Murdock, 1993; 

Murdock, 1995), ACT-R (Anderson, Bothell, Lebiere, & Matessa, 1998), 

Burgess and Hitch’s phonological loop model (Burgess & Hitch, 1992; Burgess 

& Hitch, 1996; Burgess & Hitch, 1999), the OSCAR model, (Brown, Preece, & 

Hulme, 2000), the Start-End model (Henson, 1998) and the Primacy Model 
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(Page & Norris, 1998). The implications of this research for some of these 

models will be discussed in more detail later. 

 

There is now considerable converging evidence that the phonological store 

plays an important role in establishing the long-term representations required 

for vocabulary learning. In the present paper, we attempt to discover whether 

the phonological store plays a more general role in long term learning of 

serial order. We do this by studying the Hebb effect (Hebb, 1961) which can 

be seen as a model of the acquisition of long-term representations of ordered 

phonological material. In the Hebb effect, memory for serial order develops 

gradually with repeated presentations of lists. The Hebb effect enables us to 

test the predictions of at least one current model of ordered memory. 

 

The Hebb effect 

 

Hebb presented subjects with 24 lists of nine digits, with every third list being 

identical without the participants’ prior knowledge of the repetition. The 

other lists were non-repeating. Contrary to his predictions (Hebb, 1949), 

participants showed significantly increased performance on the repeating list 

compared with the other lists. This recall advantage for the repeating lists 

over the non-repeating lists that are interleaved between them is known as 

the Hebb repetition effect. It has been replicated several times (Cunningham, 

Healy, & Williams, 1984; Fendrich, Healy, & Bourne, 1991; Melton, 1963; 

Schwartz & Bryden, 1971;  see Seger, 1994, for a review ). Although the 

primary task in the Hebb-effect paradigm is explicit recall, the Hebb effect 

itself is generally assumed to be an implicit learning task. Most participants 

typically report being unaware of the repetition of the critical list. In the 

original experiment by Hebb (1961), participants showed no non-specific 

practice effect; that is, there was no improvement in performance on the 

nonrepeating lists while the performance on the repeating list improved. 

Melton (1963), replicated the experiment, but used a larger set of lists (80 as 
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opposed to 24 lists), and showed a non-specific practice effect. In the 

experiments described below, close to 100 lists are shown, so some general 

improvement is expected over the course of an experiment. 

 

There are, however, some experimental conditions under which a Hebb-effect 

might be expected but none has been observed. For example, if at least two 

items at the start of the repeating list are changed on each repetition 

(Schwartz & Bryden, 1971), or if there are more than five intervening lists 

between each repetition of the critical list (Melton, 1963), no Hebb effect is 

found. Cohen & Johansson (1967) found that rehearsal without an overt 

response did not result in learning of the repeating sequence. This finding 

was replicated by Cunningham (1984), who used an experiment where 

subjects were told to rehearse the whole of an 8-item list, grouped into two 

four-item chunks, but to recall only one chunk. When it was not indicated 

which chunk was to be recalled until after presentation of the entire list, there 

was still no evidence of learning for the chunk which had not been repeatedly 

recalled, compared with the chunk which had been repeatedly recalled. 

 

Positional coding in models of serial order memory 

 

Several influential models of serial order memory use position-item 

associations to encode order (e.g. Brown et al., 2000; Burgess & Hitch, 1999, 

Henson, 1998; Lee and Estes, 1981). Learning is explained in these models in 

terms of the strengthening of these positional codes. Each time an item is 

presented in a certain position, the strength of the association between that 

item’s representation and a positional code is incremented slightly. The 

phonological loop model of Burgess and Hitch (1992; 1996; 1999) has 

implemented this concept most explicitly in terms of simulating the Hebb 

effect (Burgess and Hitch, 1999). It uses the strengthening of long-term 

weights between items and the state of a context, or timing, signal to simulate 

Hebb effect learning. The primary purpose of this research is to test the 
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predictions this model makes about the long-term representation of order, 

thereby constraining the types of model that should be used to simulate the 

operation of the phonological loop component of WM. 

 

Other types of models that use alternative means of representing order exist, 

some of which will be discussed later.  However, for the purposes of 

understanding the empirical work and simulations carried out, only the 

concept of the strengthening of position-to-item associations employed by 

positional models should be borne in mind. 

Experimental task 

 

In the two experiments described in this paper, there is a common structure to 

the procedure used. In both, Hebb-effect learning, as described above in 

relation to the Hebb (1961) experiment, is induced in the usual manner. Once 

a repeated Hebb list has undergone learning, performance is measured on a 

“transfer” list that is constructed from the Hebb list in a particular way. More 

specifically, the transfer list is derived from the learned Hebb list by keeping 

alternate list items in the same serial position while randomly re-arranging 

the remaining items. Figure 1 shows an example re-ordering of the Hebb list. 

Before experimental predictions regarding performance on the transfer list 

can be examined, the Hebb effect itself must be replicated. Performance must 

be shown to have increased for a repeated list relative to nonrepeated controls 

(henceforth called “filler” lists). The Hebb effect is indexed by a comparison 

between the repeating Hebb lists and the nonrepeating filler lists. Once this is 

done, the experimental design allows a comparison between four types of list 

item. The items from the final presentation of the Hebb list (H) can be 

compared with the items from filler lists matched for practice (F) as a check 

on the main result.  The transfer lists comprised of alternating items that 

either retained the position they occupied in the Hebb lists (S-items) and 

items that were randomly repositioned (D-items). In half of the experimental 

blocks, the transfer list started with an S-item and in the other half, it started 
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with a D-item.  To simplify statistical analysis, reconstructed “lists” of S-items 

(S) and D-items (D) are compared with performance on H and F when 

examining error patterns over the list as a whole.   

 

 

/* * * * * * * * * * * * * * * Insert figure 1 about here please * * * * * * * * * * * * / 

 

Predictions of positional models on the experimental task. 

 

A pure positional model would predict a recall advantage for the items that 

stay in the same position as they occupied in the repetition-learned list over 

items that have moved positions. More recent models, such as the Burgess 

and Hitch (1992; 1996; 1999) model, do not necessarily make such predictions. 

In the Burgess and Hitch model, items are not associated directly with a single 

position as such, but with the activation pattern of the time-based “context” 

layer described above. The slowly changing context layer is associated at 

presentation, through Hebbian learning, with the item nodes. Importantly, 

there is overlap in the context layer activation patterns corresponding to 

adjacent and near-adjacent positions. Thus, when the context layer is 

“replayed” at recall, the correct item is maximally activated, and the nearby 

item nodes activate to a lesser extent. As described earlier, the items compete 

for output selection through a noisy-choice procedure, resulting in some recall 

errors. These errors will therefore happen most often between adjacent items 

in the list. 

 

According to the Burgess and Hitch model, when a transfer list is presented in 

which alternate items have been repeated in the Hebb lists, these items have a 

large long-term weight component to the relevant pattern on the context 

layer. The items on either side of the strengthened item are therefore less 

likely to be selected in error. Thus, on transfer lists, one of two things might 
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be predicted: either the level of recall will be generally higher on alternating 

lists than on non-repeating lists because fewer one-apart transpositions are 

being made on both S- and D-items; or alternatively, items that stay at the 

same position will receive a large-enough activation boost from the long-term 

context-item weights that fewer errors will be made on the S-items than on 

the D-items. It is also possible that the strengthening of context-to-item 

weights for alternate items will cause these items to be recalled too early, due 

to their “inadvertently” strong connections with the overlapping context 

pattern corresponding to the position preceding that in which they have been 

learned. Because the balance of each of these effects is difficult to predict 

qualitatively, these issues are explored quantitatively in computational 

simulations presented later in the paper. First, however, we present the 

experimental findings. 

 

 

EXPERIMENT 1 

In this experiment, we examined the error patterns observed on a transfer list 

itself derived from a list that has been previously presented eight times under 

a traditional Hebb-repetition paradigm. The transfer list was presented on the 

trial immediately following the eighth presentation of the Hebb list, as 

illustrated in the top panel of Figure 2. Figure two illustrates the slight 

difference in design between the two experiments. The reasons for this minor 

difference will be explained in the discussion of this experiment. 

 

/* * * * * * * * * * * * * * *  Insert figure 2 around here please * * * * * * * * * * * */ 
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Method 

Participants 

 

Twenty-four members of the CBU panel of paid volunteers, 13 females and 11 

males aged between 17 and 42, took part in the experiment. 

 

Materials and design 

 

All lists were 10-item combinations of the digits 0 to 9, using no repeats and 

subject to the following constraints: there were no runs of three or more 

consecutive digits in ascending or descending order; there were no items in 

the filler lists that shared a serial position with the same digit in the current 

repeating Hebb list; no filler list was used twice. As in Hebb (1961), every 

third list in a given block was identical. Each block contained eight repetitions 

of the Hebb list and, hence, 24 lists in total. The first list of the second block 

was the transfer list derived from the first-block’s repeating Hebb list, and so 

on. 

 

Four blocks of trials were used, using one of two manipulations to derive the 

transfer list. In one manipulation, the items of the Hebb list at odd-numbered 

serial positions were presented at the same serial position in the transfer list, 

while the items at even-number serial positions were randomly re-assigned to 

a different even-numbered serial position in the transfer list. In the other, the 

items in even-numbered serial positions were presented at the same serial 

position in the transfer list, while the items at odd-number serial positions 

were randomly re-assigned to a different odd-numbered serial position in the 

transfer list (see Figure 1 for a possible construction of a transfer list). Thus, 

each participant received two Hebb-repetition blocks at the end of which the 

transfer list was constructed in an odd-same, even-different manner (SDSD), 
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and two where the construction was even-same, odd different (DSDS). The 

total number of lists presented to each subject was 97, comprising four Hebb 

blocks of 24 lists plus a transfer list for the final Hebb list. 

 

Procedure 

The lists were presented one digit at a time in large (72-point font) black type 

in the centre of a computer screen. Each digit was visible for 700ms, followed 

by a 180ms period where no digit was visible. The presentation of each list 

was initiated by the participant using a key-press. Response was manual; 

participants typed their responses into the computer number pad, the 

responses appearing in a horizontal array of boxes on the screen. Participants 

were told to omit a response rather than guess. They indicated an omission by 

pressing the enter key, and a dash appeared on the screen in the appropriate 

response-box. 

 

The participants’ responses were recorded. These were scored not only such 

that the number of correct responses was counted, but also so that when an 

error was made the type of error and the serial position of the error was 

recorded. This permitted a detailed analysis of error types across serial 

position. As the set of possible responses was limited to the digits 0 to 9 and 

all members of that set were presented in every trial, it was possible to classify 

all errors as one of two types, as follows: 

 

Omission errors: The subject pressed the enter key to indicate not knowing 

what the item was. 

 

Order errors: The participant made a non-omission response, but the digit 

was recalled in the wrong serial position. 
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Transfer lists were of the structure outlined in Figure 1 above, such that S-

items fell either on the odd-numbered serial positions, or on the even-

numbered serial positions. Each participant saw two of each type of transfer 

list, on alternate blocks in the experiment, and the type of transfer list seen 

first was counter-balanced across participants. Thus, performance for both S-

items and D-items could be calculated at all serial positions for all subjects. 

 

Results. 

The Hebb effect. 

 

As discussed in the introduction, it is necessary to determine whether or not 

there was a Hebb effect present in the data before proceeding with further 

analyses.  

 

Before analysing the transfer-list data, it is necessary to demonstrate that 

recall performance on Hebb lists improves above and beyond that observed in 

the filler-list data. To do this, the gradients of improvement in number of 

correct responses were calculated using least-squares linear regression for the 

Hebb lists (lists 3, 6, 9, etc., in each block) and the filler list immediately 

preceding each Hebb list (lists 2, 5, 8, etc.). This results in a data point for each 

condition, which can be expressed as an items-per-presentation change in 

recall performance. These data were analysed using a paired-sample t-test, 

which showed a greater mean improvement gradient across the presentations 

of the Hebb lists than the immediately preceding fillers, t (23) = 4.84, p < 

0.001. The Hebb lists showed a mean improvement of 0.3 items correct per 

presentation, compared with an improvement of 0.02 for the filler lists.1 

                                                 
1
 Learning gradient data were also analysed for differences in learning rates across experimental 

blocks, using a four (blocks) by two (list types) repeated measures ANOVA. This showed no main 

effect of block and a significant main effect of list type, F(1, 23) = 18.93, p < 0.001. 
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Error types during Hebb list learning 

 

The error types made during Hebb list learning were analysed using a two 

(list types) by two (error types) by eight (Hebb list repetitions) ANOVA. 

These data are shown in Figure 3.  As this shows, it appears that order errors 

and omission errors decrease at approximately the same rate in the Hebb 

condition, but remain relatively constant in the filler condition. 

As expected, there was a significant effect of list type, F(1, 23) = 29.67, p < 

0.001, such that Hebb lists were recalled significantly better than the filler lists 

(mean errors of each type per list were 1.83 and 2.42 respectively). There was 

a significant main effect of repetition of the Hebb list, F (7,161) = 10.18, p < 

0.001. There was no main effect of error type (but see experiment 2, where 

omission errors decreased more than order errors). There was a significant 

interaction between list type, i.e. Hebb lists vs. filler lists, and repetition of the 

Hebb list, F (7,161) = 5.71, p < 0.001, such that the number of errors of both 

types fell with repetition of the Hebb list, while the number of each type of 

error made per filler list stayed relatively constant over the same period of 

eight repetitions. There were no other significant effects or interactions.  

 

/* * * * * * * * * * * * * * * * *  Insert figure 3 about here please * * * * * * * * / 

 

Serial position curves 

 

Positional models predict that a list in which half the items retain the serial 

positions they held in a previously learned list, should show a recall 

advantage over a randomly-ordered list in which no items share serial 

positions with the learned list. The serial position curves of the final 

presentation of the Hebb list in each block, the immediately preceding filler 
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lists and the transfer lists were compared. A three (list types) by 10 (serial 

positions) repeated measures ANOVA was carried out on the proportion-

correct data.  

 

Mauchley’s test of sphericity showed a significant skew in error distribution 

on serial position, W(44) = 0.018, p <0.001, giving an epsilon value of 0.55 for 

the Huyn-Feldt correction. Thus the serial position degrees of freedom 

reported below are altered using this correction. 

There was a significant main effect of list type; F (1.96, 45) = 17.62, p< 0.001, a 

significant effect of serial position, showing a typical serial position curve 

with normal primacy and recency portions; F (4.96, 114) = 37.38, p < 0.001, 

and no interaction. 

Planned comparisons (multiple comparisons corrected for using Tukey’s 

studentized range statistic, q) showed that recall accuracy on the final Hebb 

lists was significantly greater than either filler lists (p < 0.001) or transfer lists 

(p < 0.01). 

Figure 4 shows that the serial position data displays the usual extended 

primacy portion and a small one-or-two item recency portion, and that 

performance on the final presentation of the Hebb list is higher across all 

serial positions than either the filler lists or the transfer lists.  Recall 

performance plots are shown separately in figure 4 for the two types of 

transfer lists; those starting with an S-item (SDSD) and those starting with a S-

item (DSDS).  As can be seen, the S-items seem to be more accurately recalled 

than filler items at early serial positions.  In order to investigate further, the 

types of errors made on the four item types outlined earlier. 

 

/* * * * * * * * * * *  Insert figure 4 about here please * * * * * * * * * * * * * */ 
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Transfer list error type comparison 

The error types made during transfer list recall were analysed.  The mean 

number of errors per list for each item type are shown in Table 1. A four (item 

types) by two (error types) repeated measures ANOVA was conducted on the 

data from the four transfer trials per subject, the final repetition of the Hebb 

list from each block and the immediately preceding filler list. The item-type 

data did not meet sphericity requirements, W(5) = 0.42, p < 0.01, therefore the 

degrees of freedom in this analysis were corrected using the Huyn-Feldt 

correction with an epsilon value of 0.8. There was a significant main effect of 

item type; F(2.4, 52.6) = 10.87, p < 0.001, but not of error type, and a significant 

interaction between the two, F(2.58, 56.7) = 4.14, p < 0.05.  Planned 

comparisons showed that there were significantly fewer errors made on 

Hebb-list items than on any other item type.   

 

/ * * * * * * * * * * * * * * *  Insert Table 1 about here please * * * * * * * * * * * * / 

 

Inspection reveals a rather different pattern of order errors for S-items than 

for D- or F-items that could be contributing to the interaction between item 

type and error type.  In order to investigate this further, the levels of the error 

type variable were analysed separately. Analyses of variance were carried out 

on the number of order errors and omission errors made for each item type.  

In the order errors analysis, using a Huyn-Feldt  correction for nonsphericity 

of variance where  = 0.811 there was a main effect of item type, F (2.43, 55.95) 

= 4.09, p = 0.01 and planned comparisons using Tukey’s studentized range 

statistic (q) show fewer errors made on the S-items than on the D-items (p < 

0.05) and a near-significant trend towards fewer order errors on the S-items 

than the filler items. There were also fewer order errors on the H-items than 

on either the D-items or F-items . In the omission errors analysis, using a 

Huyn-Feltd correction for nonsphericity of  = 0.725, there was a main effect 

of list type, F (2.41, 55.45) = 12.64, p < 0.001  
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Protrusion error analysis 

 

In order to test the hypothesis that the S-items show fewer order errors than 

D-items and F-items because of short-term positional protrusions of responses 

from one list to the next, protrusion distances were calculated for every order 

error.  These calculations were made separately for those filler trials that 

followed Hebb list trials and those that followed other filler trials. In other 

words, for each order error in a list, the position in which that digit appeared 

in the previous list was compared to the position in which the item was given 

as an erroneous response. For example, if the list “9,7,4,1,6,3,5,2,8,0” was 

presented and the previous list had been “6,2,0,4,9,1,7,8,3,5”  and the 

participant’s response was “9,7,1,4,6,5,–,2,8,0”, the order errors in the list are 

“1” in position 3, “4” in position 4 and “5” in position 6. These appeared in 

the previous list in positions 6, 4 and 10 respectively, giving protrusion 

distances of -3, zero and -4. The normalized distributions of these protrusion 

distances are shown in Figure 6. All these errors are normalized for the 

number of opportunities an error has to occur. That is, there are ten 

opportunities in a list for an erroneous response to have been in same serial 

position in the previous list, but only two for an item to have been eight items 

earlier in the list. Dividing the observed number of errors by the number of 

opportunities for that error to occur effectively controls for the triangular 

distribution that would occur by chance. As Figure 5 shows, there is a 

pronounced peak in the distribution at zero-distance, that is, the order error 

was most likely to have “come from” the same position in the previous list. In 

order to test the hypothesis that this zero-peak is significantly different from 

zero, a t-test was carried out on the distribution data, comparing the 

difference between the number of zero-distance protrusions with the average 

of all other protrusions. The peak is statistically reliable in both cases; after 

Hebb lists, t (23) = 3.33 p < 0.01, after filler lists t (23) = 2.64, p < 0.05, and there 

was no reliable difference in the size of the peaks when analysed using a two 

(filler after Hebb lists vs filler after filler lists) by two (peak vs average of the 

rest) repeated measures ANOVA, F (1,23) < 1.   
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What this peak shows is that if a similar proportion of protrusions occur 

between the final Hebb list and the transfer list (the immediately following 

list) then there will be a reduction in the overall number of  order errors made 

on the S-items, since a zero-distance protrusion in these circumstances 

happens to be a correct response. 

 

/ * * * * * * * * * * * * * * insert Figure 5 about here please * * * * * * * * / 

 

Discussion 

 

These data showed a strong Hebb effect; an average increase of around 2 

items correct per list over a block containing eight repetitions. It is interesting 

to note that the two error types identified seem to fall at roughly the same rate 

through learning. Obviously, the degree to which participants make omission 

errors is very dependent on the amount of freedom they have to omit 

responses. In many immediate serial recall experiments, the participant must 

make as many responses as there were items, guessing to fill in items they do 

not know. 

Although there are no differences found between the serial position curves of 

the S-item, D-item and F items, there was a difference found in the total 

numbers of order errors made between S-items and F- and D-items, with 

fewer order errors being made on S-items than either D-items or F-items. This 

result would appear to be supportive of the positional account of serial recall: 

It is one of the predictions of this type of model that the strengthening of a 

position-item association will result in fewer order errors than non-

strengthened position-item associations, such as those involving F-items or D-

items. However, the data collected here gave cause for scepticism.  The 

sources of this scepticism will now be outlined. 
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First, the number of omission errors made was the same for the S-items as 

both the D-items and F-items, and significantly greater than the number made 

on the H-items. This is not predicted by the Burgess and Hitch (1992; 1996; 

1999) model, or by the class of positional models in general. If the long-term 

component of the connection weight between context signal and list item has 

been strengthened, as it should have been in the case of S-items, the activation 

that item node receives should cause it to be omitted less often than either F-

items or D-items. F- and D-items will not receive as much activation as S-

items, hence F- and D- items should fall below the hypothesised omission 

threshold more frequently than S-items. This is made doubly clear when one 

notes that the strong Hebb effect observed in these data is based just as much 

on a decrease in omission errors as it is on a decrease in order errors2. 

 

Second, there was a concern with the design, as follows. McNicol (1978) noted 

that items that appear in the same serial position in consecutive lists in an ISR 

task are recalled slightly better than items that change position. McNicol 

hypothesized that strengthening of some positional coding caused the 

increase in recall accuracy on the following list. These short-term positional 

effects are a potential source of confounding effects in the current design (see 

figure 2, top panel). The idea, in the current experimental context, is that 

under the influence of some short-term positional context, items from the 

previous list occasionally “protrude” into recall of the current list and, when 

they do so, have a tendency to preserve their previous within-list position. 

When this happens under normal ISR conditions, i.e. on a filler list, this 

results in an error, since the target item (the item presented in the current list) 

is different from the recalled item (the item presented in the previous list).  

However, when the same positional context exists an items in successive lists, 

the result is a small increase in the proportion of correct responses. 

                                                 
2
 However, note that in experiment 2, the decrease in errors was concentrated more in omission errors 

than in order errors. 
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Thus there is a potential confound between the existence of a short-term 

positional code that results in this tendency for items to protrude into the 

same serial position, and the mechanism of long-term order learning. While 

these data demonstrate a small effect of positional context, our assessment of 

the Hebb effect’s contribution to performance on the transfer list is 

compromised. Note that in Experiment 1, the transfer list comes immediately 

after the last repetition of the Hebb list; five of its ten items maintain the 

position they had in the previous list, thereby increasing the opportunities for 

inadvertent correct answers. Thus, a performance advantage will be expected 

on S-items regardless of any improvement due to Hebb repetition.  The lack 

of any difference in the size of the effect between filler lists that followed a 

Hebb list and filler lists that followed other filler lists supports this 

conclusion.  If there had been a greater number of zero-distance protrusions 

following a Hebb list, this might have argued in the favour of the 

strengthening of positional codes. 

 

It was decided to test whether the apparent support of the order-error data 

for the positional model of Burgess and Hitch is due to this confound in the 

design of the first experiment or is a genuine effect which will be present 

whether or not the transfer list is the list immediately following the final Hebb 

list. If it is the case that the repeating Hebb list is learned by the long term 

strengthening of position-item or context-item connections, then the S-items 

of the transfer list should still be recalled better than F- or D-items even after 

several intermediate lists. This was tested in Experiment 2. 

 

EXPERIMENT 2 

 

The experimental design was changed slightly so as not to present the transfer 

list immediately after the final Hebb list. The transfer list, in this experiment, 

was presented on the fourth list after the final Hebb list. The Hebb list was 

then re-presented a further three lists later, to check that performance on, and 
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therefore the long-term representation of, the Hebb list had not decayed to 

baseline levels.  The design of this experiment, in terms of the progression of 

trials, can be seen in the lower panel of Figure 2, above. Only two blocks are 

shown for convenience. As can be seen from this, the transfer list occurs 

immediately after the first presentation of the repeating list from the 

following block, which, since it has not been presented before is essentially a 

novel (filler) list following another filler list, thus removing the confounding 

influence of the short-term positional protrusions from the preceding Hebb 

list list. Any positional protrusion errors will still be errors, rather than 

“inadvertently” correct responses. 

 

Method 

 

Participants 

 

Forty members of the CBU panel of paid volunteers, aged between 17 and 40 

participated in the study.  

 

Materials, Design and Procedure 

 

The materials, design and procedure were identical to those of Experiment 1, 

with the exception that, after each block of eight Hebb lists, if the final 

repetition of the Hebb list is said to be list N, the transfer list was presented at 

list N + 4, and the Hebb list was presented again at list N + 7. The final Hebb 

lists appeared at trials 24, 48, 72 and 96, the transfer lists on trials 28, 52, 76 

and 100 and the control Hebb lists on trials 27, 51, 79 and 103. This control 

Hebb list added a further item type to those available for analysis, giving five: 

H – final Hebb list items; CH – control Hebb list items; F – filler list items; S – 
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transfer list items that retain the same serial position in the transfer list as the 

Hebb list; and D – transfer list items that have different serial positions in the 

Hebb list and transfer list.  

 

Results 

 

Hebb effect 

The gradients of the lines of best fit through the recall data for both Hebb lists 

and the immediately preceding filler lists were calculated for each block. A 

two (list type: Hebb vs. filler) by four (block) repeated measures ANOVA was 

carried out on these gradient data. There was a highly significant main effect 

of list type, F(1,39) = 33.79, p < 0.001, and no other significant effect or 

interaction, thus showing a highly reliable increase on the Hebb lists above 

and beyond any non-specific practice effect. The mean gradient collapsed 

across groups were 0.32 and 0.05 items correct per list per presentation 

respectively. 

 

Error types during Hebb list learning 

 

The error types made during Hebb list learning data were analysed using a 

two (list types) by two (error types) by eight (Hebb list repetitions) repeated 

measures ANOVA. 

This showed a significant main effect of list type, F (1, 39) = 70.30,  p < 0.001 

such that more errors were made on filler lists than Hebb lists and a 

significant main effect of error type, F (1, 39) = 4.50, p < 0.05, such that more 

omissions than transposition errors were made overall. There was a reliable 

main effect of Hebb list repetitions, F (7, 273) = 13.2, p < 0.001, and a 

significant downward linear trend in number of errors made with each 
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repetition of the Hebb list, F (1, 39) = 53.36, p < 0.001. There was a significant 

interaction between Hebb list repetition and list type, F (7, 273) = 6.74, p < 

0.001, showing that there is a reduction in errors made with repetitions of the 

Hebb list, but no commensurate reduction in filler list errors over the same 

period. A significant three way interaction, F (7, 273) = 2.89, p < 0.01, shows 

that this reduction in Hebb list errors is greater for omission errors than order 

errors, in contrast to the result of the same analysis in experiment 1. The 

difference in the error-type profiles of the experiments presented here are 

most likely attributable to participant adherence to instructions. These 

interactions can be seen easily in Figure 6. 

 

/* * * * * * * * * * * * * * * * insert Figure 6 about here please * * * * * * * * * *  / 

 

Serial position curves 

 

As with Experiment 1, the serial position data were analysed for differences in 

recall performance between the eighth presentation of the Hebb list, the filler 

list immediately preceding the eighth Hebb list and the transfer list.  The 

additional, delayed presentation of the Hebb list was also included in this 

analysis as a check on whether the long-term representation of the list built up 

over the first eight presentations decays rapidly.  These serial position curves 

are shown in Figure 7, below. A four (list types) by ten (serial positions) 

ANOVA was carried out on these data. Due to a violation of the assumption 

of sphericity in the serial position data, W (44) = 0.001, p  0.001, the Huyn-

Feldt correction was applied to the degrees of freedom in these data,  = 0.381.   

The analysis of variance showed significant main effects of list type, F (2.58, 

98.08) = 26.29, p <0.001 and serial position, F (3.43,130.36) = 51.54, p < 0.001. 

There was no significant interaction. Figure 7 shows the serial position curves, 

with the transfer lists split into those that started with an S-item and those 

that started with a D-item. As this illustrates, there is no difference in recall 

between the filler lists and the transfer lists, and no difference between the 
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eighth presentation of the Hebb list and the delayed control Hebb list. The 

zig-zag pattern in the serial position curves predicted by the This is confirmed 

by planned comparisons between the levels of the list-type variable, using the 

Bonferroni correction for multiple comparisons. These showed that recall 

accuracy on transfer and filler lists did not differ, that recall accuracy on the 

eighth presentation of the Hebb list and the control Hebb list did not differ, 

and that recall was significantly more accurate on both the eighth Hebb list 

presentation and the control Hebb list than on either the transfer list or the 

filler list. 

  

/* * * * * * * * * * * * * *  * * * insert figure 7 about here please * * * * * * * * * */ 

 

 

Error types comparison 

 

As with the previous experiment, the errors were classified as order errors or 

omission errors and the different item types compared in terms of both error 

types. These are shown in table 2, below. A two (error types) by five (item 

types) repeated measures ANOVA was carried out on these data. There was a 

non-significant trend towards more omission errors than order errors; F (1, 

39) = 3.24, p = 0.08, and a significant main effect of item type; F (2.88, 112.3) = 

36.52, p < 0.001 (Degrees of freedom corrected using the Huyn-Feldt 

correction at  = 0.72 for a violation of the assumption of sphericity). 

 

/* * * * * * * * * * * * * *  * * * insert Table 2 about here please * * * * * * * * * */ 

 

Planned comparisons between item types, using the Newman-Keuls 

studentized range statistic, showed no difference between the H-items and C-

items (p > 0.4) and no differences between the S-items, D-items and F-items 
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(all p > 0.5), and large (all p < 0.001) differences between all combinations of 

H- and C-items and S-, D- and F-items. 

 

As the values in table 2 show, the apparent effect found in Experiment 1 is not 

evident once the confounding factor has been removed; that is, once the 

transfer list is not subject to protrusion errors from the final Hebb list, there is 

no longer any advantage for the S-items in order errors. 

 

 

Discussion 

 

Experiment 2 was a replication of Experiment 1 with one crucial difference; 

the confound introduced by having the transfer list immediately following the 

final repetition of the Hebb list was removed. In this second experiment, there 

were no differences between the S-items and the D-items of the transfer list, 

and neither the S-items nor the D-items differed in performance from items in 

filler lists. There were no differences apparent between the S-items, D-items 

or F-items in either number or types of error. This is inconsistent with a model 

that uses positional codes to store information about serial order and uses 

strengthening of those positional codes to simulate the Hebb effect, that is, to 

learn long-term information about serial order. 

From a qualitative examination of how the Burgess and Hitch 

(1992,1996,1999) model works, it appears that the model could not give the 

pattern of results shown in this experiment. Qualitative interpretation of 

complex models is, however, a risky business. In order to both test whether, 

as claimed by Burgess and Hitch (1999), the Hebb effect is handled adequately 

by their model, and whether it can replicate the data from this experiment, a 

computational implementation of their model was required. 
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COMPUTATIONAL MODELLING 

 

Introduction 

 

The Burgess and Hitch (1999) model of serial order memory uses a localist 

connectionist framework to simulate the operation of the phonological loop 

component of working memory (Baddeley, 1986). It uses four layers of nodes 

connected as shown in Figure 8. 

 

/* * * * * * * * * * * * * *  * * * insert figure 8 about here please * * * * * * * * * */ 

 

Heavy lines indicate full connectivity. Narrow lines indicate one-to-one 

connections. 

Each node in the phoneme layers is a localist representation of a phoneme. 

Activation of an input phoneme causes automatic activation of the 

corresponding output phoneme and vice-versa. For visual presentation, an 

item node is activated, suppressing all other item nodes.  The output 

phoneme nodes associated with that item are activated, thus activating a 

subset of the input phonemes. Weighted connections differentially activate 

the item nodes, which compete for selection, in a “winner takes all” race. The 

context layer, which has a slowly changing pattern of activation, is associated 

with the selected item through fast-learning, fast-decaying weight change. At 

recall, the progression of context layer states is “played back” activating items 

that then compete in a winner-takes-all selection process. The winner’s long-

term connection weights with the current pattern of the context layer and 

input phoneme layer are strengthened slightly. It is this strengthening of 

long-term weights that Burgess and Hitch use to model the Hebb effect and 

other repetition-learning effects (see Burgess and Hitch, 1999, for a full 

description). 
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In Burgess and Hitch (1999), the Hebb effect is simulated by manually 

increasing the long-term context-item association weights of the lists. 

Unsurprisingly the model is more accurate on these “Hebb” lists than on 

simulation runs where the long-term context-item association weights are 

fixed at zero.  

Two sets of simulations will be presented here. First, we will discuss an 

attempt to directly model the Hebb effect through repeated presentation of 

the same list interleaved with non-repeating trials.  Second, the results of 

simulations that used the method employed by Burgess and Hitch (1999) will 

be presented. 

 

Direct Modelling of the Hebb effect 

 

Method 

 

Simulations were carried out in an attempt to model the Hebb effect directly. 

That is, by setting the model’s long-term learning rate parameter, Wlt, to a 

small positive value, and allowing the long-term context-item weights to be 

altered by a small amount each cycle.  Burgess and Hitch state that the model 

had been implemented without long-term decay because this would be 

negligible over the single-trial time-course used in all their simulations, but 

that slow decay was assumed to act on all long-term weights. Thus, for these 

simulations, an additional parameter was introduced to the model, namely 

the rate of decay of the long-term weight component. This was defined as the 

power to which the short-term weight decay rate was raised and was a small 

positive value between zero and one. To illustrate this, if the short-term decay 

rate was 0.75, the value used in all the current simulations, a long-term decay 

constant of 0.1 would mean long term weights decayed at a rate of 0.75 0.1 = 

0.97.  In this way, long-term context-item associations could decay slowly 
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over time, avoiding the potential complication of the long-term context-item 

associations saturating, preventing further learning.  

The normal Hebb-effect design was implemented, such that on every third 

trial, the model was presented with the sequence 1 to 9, and all other lists 

were random permutations with no repetition or substitution of those digits.  

 

Simulations 

 

To explore the space of parameter combinations thoroughly optimisation 

techniques were employed on the output from the model. The factors 

manipulated were the long-term decay factor, the long-term learning rate,  

Wlt and the maximum the long-term weight, Wlt (max).  The model’s 

performance was marked such that for each parameter setting, the gradient of 

the least-squares line of best fit was calculated separately for performance on 

repeating lists and non-repeating lists, as was done for the data from 

experiments 1 and 2.  By comparing these values with each other and with 

zero, a measure of the model’s performance was derived, such that negative 

gradient values were penalised (performance should not get worse), as were 

very low performance values at any point (performance should not start at 

floor).  Simulations where performance on repeating lists improved more 

than performance on non-repeating lists scored lowest.  A gradient-descent 

algorithm was employed in an attempt to find optimal parameter values that 

would result in a significant Hebb effect.  Several starting points were chosen 

for the optimisation to reduce the chance of the optimisation merely finding a 

local minimum.  The results of the best-performing model are shown below in 

Figure 9.  It is clear that the performance chart in Figure 9 is not a good 

simulation of real Hebb effect learning.  The optimisation routines have 

chosen values of the free parameters such that performance decreases sharply 

initially, then recovers, with the repeated presentation of items at the same 

serial position on the Hebb lists allowing faster recovery on those lists than on 

the filler lists. 
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/ * * * * * * * * *  insert Figure 9 about here please * * * * * * * * * * * * * * * / 

 

Simulation of the Hebb effect following Burgess and Hitch (1999) 

 

Given the failure of our attempts to make the model to produce a Hebb effect 

directly, in the following simulations, therefore, the Hebb effect was not 

simulated by updating the long-term weights on a trial-to-trial basis. Rather, 

the effect was simulated in the same, artificial manner as it was in Burgess 

and Hitch (1999), that is the parameter in the model that fixes the number of 

times a list is presumed to have been seen was manipulated to simulate final 

Hebb lists, transfer lists and filler lists. The failure to replicate the basic Hebb 

effect, except under conditions where the program’s parameters are 

specifically manipulated to instantiate it, casts doubt on this model as an 

adequate description of the performance improvement found with Hebb 

repetition.   

 

Method 

 

To simulate the Hebb effect as implemented by the Burgess and Hitch model, 

the model parameter that sets the number of assumed previous repetitions of 

the list, N(Hebb), was set to 8 and the maximum value of the long-term 

context-item weight, Wlt(max), was set to 0.25. This value was chosen because 

it was high enough to allow some weight-change before saturation, but not so 

high that the long-term component could come to dominate the short-term, 

decaying weights. The value of the increment in long-term context-item 

weight per repetition (Wlt ) was varied from near zero to a value that would 

take the long-term weight for an item seen repeatedly in the last eight lists 

close to Wlt(max). Ten thousand trials at each value of Wlt were carried out. 
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To simulate filler list performance, 10000 trials were carried out with N(Hebb) 

set to zero, and with the other variables manipulated in the same way. 

 

A final set of simulations were carried out where, at recall only even-

numbered serial positions received any activation from the long-term 

component of the context-item association weights (Wlt), thus simulating 

transfer trials where D-items fall on odd-numbered serial positions.  

 

Simulations and discussion 

 

As expected, given that the Hebb effect is being simulated through parameter 

setting, lists whose items have been given an activation boost equivalent to 

having been presented with, and having recalled, a list 8 times, showed a 

recall advantage over lists whose items had not been so boosted. This 

advantage increased with the value of Wlt. Unsurprisingly, filler 

performance did not alter with increasing Wlt. The top panel of Figure 10 

shows the gain in Hebb list performance across the parameter set used in 

these simulations. 

 

/* * * * * * * * * * * * * *   Insert Figure 10 about here please * * * * * * * * * * * */ 

 

 

When the parameters relating to the maximum weight a context-item node 

can take and the size of the increment in long-term weight per presentation 

were set so as to give a Hebb effect comparable to the size of effect found in 

empirical data (about 12 – 13 % recall advantage - Wlt(max) = 0.25 and Wlt = 

0.013), a saw-tooth pattern is seen in those simulated serial position curves for 

which only even-numbered serial positions are given the activation-boost 

associated with the model’s implementation of the Hebb effect, as shown in 
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the lower panel of figure 10. When the rate of long-term weight learning is 

increased beyond this level, performance on these lists becomes worse. This is 

because as the strength of the S-items becomes too large they tend to be 

recalled too early in the list and, moreover, they are often then repeated later 

in the list when they overcome the decaying response repetition inhibition. 

This performance is in line with the predictions made earlier, that in the 

Burgess and Hitch model S-items would be recalled better than filler items, 

and as it turns out, D-items until they reach a point at which their strength 

causes them to be recalled too early. Both patterns are inconsistent with the 

data collected in Experiment 2. 

 

GENERAL DISCUSSION 

 

In two experiments and with computer simulations, we have shown the 

inadequacy of the Burgess and Hitch (1999) model of the phonological loop 

with respect to its ability to account for Hebb-effect learning. Moreover, by 

showing a robust Hebb effect in the absence of any advantage for items that 

maintain their Hebb positions in a transfer list, we have called into question 

all those theories which posit that the Hebb effect results from the 

strengthening of position-item associations. That is not to say that that we 

believe there to be no role for position-item associations in models of serial 

recall. The effect of protrusions from the previous list evinced here in 

Experiment 1 and by McNicol (1978) indicates that positional effects can be 

seen in ISR experiments. This supports other studies that have found similar 

positional effects (as discussed and extended in Henson, 1998). While such 

positional effects are well documented, they appear to be short-lived, not 

contributing greatly, if at all, to the observed Hebb effect, since the small 

advantage in the number of order errors for items occupying the same serial 

position that they were learned in disappears when they do not appear in that 

position in a list immediately subsequent to the learned list. We believe (Page 
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& Norris, 1998) that these effects originate outside of the phonological loop, 

the system primarily involved in standard immediate serial recall tasks. 

 

The question has been raised of what is being learned in the Hebb effect, as 

presented in the current study.  The response method in this study is manual 

keying of responses into a keypad. Therefore there remains the possiblility 

that learning here is not of a long-term phonological representation of the 

repeating list, but of a motor sequence, analogous to serial reaction time 

learning (e.g. Nissen and Bullemer, 1987; Stadler, 1992). In serial reaction time 

experiments, implicit learning of a sequence is hypothesised to occur, since 

there is no evidence of an explicit representation of the sequence of key-

presses, yet a speeding of responses and a reduction of errors is observed. It 

seems unwise to discount any possible motor-learning component to the 

Hebb effect, indeed, evidence (Cumming, 2001) suggests that there is indeed 

some contribution of response-learning in the Hebb effect.  When responses 

are made such that a different motor pattern is required for correct recall of 

each presentation of the Hebb list, learning is slower. However, a purely 

implicit learning explanation seems unlikely, as there is evidence (Hebb, 1961; 

McKelvie, 1987) that the majority, but by no means all, participants in this 

task are aware of the repeating sequence.   

 

If we assume for the moment that the Hebb effect is an experimental analogue 

of those phonological memory processes that underlie the learning of 

phonological word forms (i.e., vocabulary) then it is perhaps not surprising 

that a model based on position-item associations does not fair too well. It is 

rather difficult to see how a position-item association model could usefully be 

applied to vocabulary learning. First, the beginning and ends of words, and 

hence the within-word position of any 

given sublexical unit, are not reliably marked in speech input. In those 

experimental analogues of word-form learning carried out with infants by 

Saffran et al. (1996; 1997) any markers to word boundaries (e.g., stress pattern, 

etc.) were deliberately avoided. Nonetheless, infants as young as 7 months old 



Page 30 

were able to recognise on a later test those pseudowords that had been 

repeated within the otherwise featureless stream of syllables that was used as 

a training stimulus. Second, even if within word position were marked, the 

result of training with stimuli containing multiple words would presumably 

be position-item associations that represented an amalgam of the 

full set of position-item correspondences, that is, the relative frequencies of 

different items in different positions. But such an encoding would have 

nothing to offer with regard to the learning of individual vocabulary items. In 

order to have any bearing on vocabulary learning proper, each word would 

have to engage its own, unique, positional context vector with which to 

encode the within-word positions of the sublexical items of which it was 

composed. But the idea of having one context vector per word raises all sorts 

of questions about how such an arrangement might be established, questions 

that would take us far enough away from the current experiments that we 

will refrain from discussing them further here. 

 

If, as we believe, a position-item association model is unsuited to the 

modelling of the Hebb effect and, ultimately, of vocabulary learning, what 

sort of system might better fulfil these functions. Our view is that the Hebb 

effect proceeds by combining list items together into chunks (c.f. Miller, 1956), 

maybe of size equal to that of the list itself, but more likely smaller. The 

repetition of a list aids in the formation of chunks comprising subsequences of 

the list itself, the longer list subsequently being remembered as a chunk or, 

more likely, a list of chunks rather than as a long list of individual items. 

Memory for lists of pre-established chunks, such as the list FBIPHDUSA, is 

more accurate than for lists such as AFBIPHDUS, which has virtually the 

same item-to-item transitions but with the chunks broken up or "disguised" 

(Bower & Springston, 1970). In our view, the Hebb effect involves the 

establishment of new chunks in LTM, which can be used to expedite the recall 

of a long letter sequence. 
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Such an account of the Hebb effect is entirely consistent with the data 

presented here. When a transfer list is derived from the Hebb list by leaving 

only alternate items in place (e.g., transforming the list 0123456789 to 

0529476381) the chunks out of which the list is comprised are completely 

changed. One would expect, therefore, that repeated presentation of the 

former list would not assist in recall of the latter. The 

experiments presented above confirm this expectation. 

 

As was noted earlier in this paper, the primacy model of immediate serial 

recall was derived from previous work into the long-term memory of item 

sequences (Nigrin, 1993; Page, 1993; 1994). In this earlier work, long-term 

memory for short item sequences or chunks was implemented using an 

unsupervised learning mechanism that constructed localist representations of 

those subsequences made familiar by repetition. Briefly, these localist 

representations of short item-sequences were constructed using the primacy 

gradient in short-term memory in such a way that the connection between the 

(connectionist) node representing a list item and a node corresponding to a 

chunk of which it forms part, is stronger the earlier in the chunk the item 

appears. Thus for the learned chunk ABC, the connection to the chunk node 

from the node representing item A (henceforth, the A-node) would be 

stronger than that from the B-node which, in turn, would be stronger than 

that from the C-node. Thus, there would be a primacy gradient in connection 

weights that would mirror, and would be learned via, the proposed primacy 

gradient in short-term memory activations. Once such a chunk node is 

established, it is deemed to activate best when its items activate in an order 

consistent with the primacy gradient in long-term weights. Thus the ABC-

node is activated best by the sequence ABC and worse by, for example, the 

sequences ACB, BAC, etc.. This sensitivity to correct order can be 

established in various ways (see Nigrin, 1993; Page, 1993; 1994), some 

developments of which are the subject of current work. Suffice to say here 

that the reactivation of learned chunks during the presentation of a 

familiarised list can be of assistance in correct recall of that list, just as 
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previously learned knowledge can assist in the recall of the list FBIPHDUSA, 

as noted above. Clearly, if sequence chunks are represented in such a way 

that their reactivation depends tightly on the correct items’ arriving in the 

correct order, then any experimental manipulation of a familiarised Hebb list 

that leaves alternate items in position while randomly placing other items, 

would not be expected to yield an increased level of performance relative to 

filler controls.  

 

The data we have presented here are a challenge for models that seek to 

account for the Hebb effect in terms of a strengthening of position-item 

associations and at least consistent with a model based on the establishment 

of order-sensitive chunks. Further work will investigate whether Hebb-effect 

learning is a good analogue of the learning of phonological word forms. If it 

proves to be so, this will help place experimental and theoretical work 

relating to the phonological loop in a broader and more ecologically valid 

context. 
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TABLE CAPTIONS 

Table 1: Mean number of errors per list split into error types (standard 

deviations shown in parentheses). Note S-items and D-items are 

reconstructed “lists” of items taken from alternate blocks of the experiment. 

Table 2:  Mean number of errors per list split into error types (standard 

deviations shown in parentheses), Experiment 2. 
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FIGURE CAPTIONS 

 Figure 1: An example transfer list ordering. The top row of circles represents 

the order of the items in the Hebb list, while the bottom row is the relative 

order of the transfer-list items. 

 

Figure 2: Top panel: progression of experimental trials used in experiment 1.  

For simplicity, only two experimental blocks are shown here.  As can be seen, 

the transfer lists are presented on the trial immediately following the eighth 

presentation of each blocks’ Hebb list. Bottom panel: trial-type progression 

used in experiment 2.  In this experiment, the transfer list is 4 lists after the 

eighth presentation of the Hebb list. 

 

Figure 3:  Error types during Hebb list learning, Experiment 1. 

 

Figure 4: Serial position curves for all list types, experiment 1.  Note the slight 

zig-zag pattern in the early portion of the transfer lists. 

 

Figure 5: Protrusion distribution for filler lists following Hebb lists and 

following other filler lists, expressed as a normalised proportion of times an 

erroneous response appeared at a distance of x away in the previous list from 

its position in the current list. 

 

Figure 6: Order and omission errors by Hebb list repetition for both Hebb lists 

and error lists, Experiment 2. 

 

Figure 7: Serial position curves for all list types in experiment 2. Transfer lists 

are shown separately depending on whether they were SDSD or DSDS type. 
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Figure 8: Diagram of the Burgess and Hitch (1999) model. Heavy lines show 

full interconnectivity with modifiable weights. Narrow lines indicate one-to-

one mapping with no alterable weights. 

 

Figure 9: Performance of the optimised gradient performance model. 

 

Figure 10: Top panel: Serial position curves for the range of parameter values 

investigated here (Wlt = 0.011 to 0.03).  Serial position curves of the filler 

lists, transfer lists and Hebb lists (8 simulated repetitions) 
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Item type Error type 

 omission order 

Hebb 1.156 (1.151) 1.729 (1.572) 

filler 2.146 (1.623) 2.365 (1.414) 

same 2.480 (1.529) 1.854 (1.211) 

different 2.229 (1.602) 2.542 (1.421) 
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Table 1:  Mean number of errors per list split into error types (standard 

deviations shown in parentheses), Experiment 1. Note S-items and D-items 

are reconstructed “lists” of items taken from alternate blocks of the 

experiment.   
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Item type Error type 

 omissions order 

Hebb 1.431 (1.173) 1.369 (1.141) 

Control 1.725 (1.479) 1.400 (1.259) 

Same 2.700 (1.358) 2.175 (1.542) 

Different 2.725 (1.266) 2.188 (1.492) 

Filler 2.938 (1.174) 2.156 (1.345) 
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Table 2:  Mean number of errors per list split into error types (standard 

deviations shown in parentheses), Experiment 2. 
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Significance levels for order error comparisons. 

 S-item D-item H-item F-item 

S-item ////// 0.001 n.s. 0.05 

D-item  ////// 0.05 n.s. 

H-item   ////// 0.01 

F-item    ////// 
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Table 2 : Comparisons of number of order errors made on each item type. 
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Figure 1: An example transfer list ordering. The top row of circles represents 

the order of the items in the Hebb list, while the bottom row is the relative 

order of the transfer-list items. 
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Figure 2: Top panel: progression of experimental trials used in experiment 1.  

For simplicity, only two experimental blocks are shown here.  As can be seen, 

the transfer lists are presented on the trial immediately following the eighth 

presentation of each blocks’ Hebb list. Bottom panel: trial-type progression 

used in experiment 2.  In this experiment, the transfer list is 4 lists after the 

eighth presentation of the Hebb list. 
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Figure 3:  Error types during Hebb list learning, Experiment 1. 
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Figure 4: Serial position curves for all list types, experiment 1.  Note the slight 

zig-zag pattern in the early portion of the transfer lists. 
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Figure 5: Protrusion distribution for filler lists following Hebb lists and 

following other filler lists, expressed as a normalised proportion of times an 

erroneous response appeared at a distance of x away in the previous list from 

its position in the current list. 
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Figure 6: Order and omission errors by Hebb list repetition for both Hebb lists 

and error lists, Experiment 2. 
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Figure 7: Serial position curves for all list types in experiment 2. Transfer lists 

are shown separately depending on whether they were SDSD or DSDS type. 
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Figure 8: Diagram of the Burgess and Hitch (1999) model. Heavy lines show 

full interconnectivity with modifiable weights. Narrow lines indicate one-to-

one mapping with no alterable weights. 
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Figure 9: Performance of the optimised gradient performance model.
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Figure 10: Top panel: Serial position curves for the range of parameter values 

investigated here (Wlt = 0.011 to 0.03).  Serial position curves of the filler 

lists, transfer lists and Hebb lists (8 simulated repetitions)   

 

 

 


