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Abstract

Since April 2005 a regularly updated stellar neutron cross section compilation is available on-

line at http://nuclear-astrophysics.fzk.de/kadonis. This online-database is called the ”Karlsruhe

Astrophysical Database of Nucleosynthesis in Stars” project and is based on the previous Bao et

al. compilation from the year 2000. The present version KADoNiS v0.2 (January 2007) includes

recommended cross sections for 280 isotopes between 1H and 210Po and 75 semi-empirical estimates

for isotopes without experimental information. Concerning stellar (n, γ) cross sections of the 32

stable, proton-rich isotopes produced by the p process experimental information is only available

for 20 isotopes, but 9 of them have rather large uncertainties of ≥9%. The first part of a systematic

study of stellar (n, γ) cross sections of the p-process isotopes 74Se, 84Sr, 102Pd, 120Te, 130Ba, 132Ba,

156Dy, and 174Hf is presented. In another application KADoNiS v0.2 was used for an modification

of a reaction library of Basel university. With this modified library p-process network calculations

were carried out and compared to previous results.
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I. STELLAR NEUTRON CAPTURE COMPILATIONS

The pioneering work for stellar neutron capture cross sections was published in 1971

by Allen and co-workers [1]. In this paper the role of neutron capture reactions in the

nucleosynthesis of heavy elements was reviewed and a list of recommended (experimental

or semi-empirical) Maxwellian averaged cross sections at kT= 30 keV (MACS30) presented

for nuclei between C and Pu.

The idea of an experimental and theoretical stellar neutron cross section database was

picked up again by Bao and Käppeler [2] for s-process studies. This compilation published

in 1987 included cross sections for (n, γ) reactions (between 12C and 209Bi), some (n, p) and

(n, α) reactions (for 33Se to 59Ni), and also (n, γ) and (n, f) reactions for long-lived actinides.

A follow-up compilation was published by Beer et al. in 1992 [3].

In the update of 2000 the Bao compilation [4] was extended down to 1H and – like the

original Allen paper – semi-empirical recommended values for nuclides without experimental

cross section information were added. These estimated values are normalized cross sections

derived with the Hauser-Feshbach code NON-SMOKER [5], which account for known sys-

tematic deficiencies in the nuclear input of the calculation. Additionally, the database pro-

vided stellar enhancement factors and energy-dependent MACS for energies between kT=

5 keV and 100 keV.

The KADoNiS project [6] is based on these previous compilations and aims to be a

regularly updated database. The current version KADoNiS v0.2 (January 2007) is already

the second update and includes - compared to the previous Bao et al. compilation [4]- 38

updated and 14 new recommended cross sections. The update history can be followed in

the section “Logbook”. A paper version of KADoNiS (“v1.0”) is planned for 2008, which

also will – like the first Bao compilation from 1987 [2]– include (n, p) and (n, α) reactions

for light isotopes and (n, γ) and (n, f) reactions for long-lived actinides at kT= 30 keV.

Additionally, a re-calculation of semi-empirical estimates based on the latest experimental

results of neighboring nuclides will be performed.
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II. SYSTEMATIC STUDY OF (n, γ) CROSS SECTIONS FOR THE p PROCESS

A. The “p processes”

The “p process” is responsible for the production of 32 stable but rare isotopes between

74Se and 196Hg on the proton-rich side of the valley of stability. Unlike the remaining 99%

of the heavy nuclei beyond iron these isotopes cannot be created by neutron captures in

the s process or r process, and their solar [7] and isotopic abundances [8] are 1-2 orders

of magnitude lower than the respective s- and r-process nuclei. The bulk of p isotopes

is thought to be produced in explosive O/Ne burning during supernova type II explosions

(core collapse supernovae). This mechanism is called “γ process” since the main reactions

are photo-induced reactions of high energy photons (T9= 2-3) on pre-existing seed nuclei

from prior s-processing. The “γ process” can reproduce the solar abundances [7] of most p

isotopes within a factor of 3 [9, 10].

For the missing abundances of the most abundant isotopes 92,94Mo and 96,98Ru alternative

processes have been proposed, e.g. using strong neutrino fluxes in the “νp process” [11], or

rapid proton-captures in the “rp process” [12] in a binary, cataclysmic system with a neutron

star accreting material from a Red Giant.

Apart from the astrophysical uncertainties of the p-process site another problem arises

from the large nuclear physics uncertainties due to missing experimental cross section data.

Present network calculations for the reproduction of the solar abundances of the 32 p-process

isotopes include up to now only the γ-process scenario since it seems to be the best under-

stood part of the p processes. Such network calculations are carried out with a typical

reaction library consisting of ≈1600 isotopes which are connected by several thousands of

reactions [13, 14]. The largest fraction of these reactions concerns short-lived radioactive nu-

clei and thus have to be inferred from theoretical work, e.g. the Hauser-Feshbach statistical

model [5, 15].

Some experimental information for the p process is available for charged-particle reactions,

but the largest amount of data concerns (n, γ) data, which is connected via detailed balance

with the respective (γ, n) reactions needed for the γ process. However, most of this neutron

capture data was measured with the activation technique at one single energy (kT=25 keV),

and thus has to be extrapolated to the respective γ-process energies (kT=170-260 keV) with
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the help of energy-dependencies from Hauser-Feshbach theory. This method was used in the

modification of a reaction library discussed in Sec. III.

B. Experimental technique

The previous status of (n, γ) cross sections for the 32 p isotopes at kT= 30 keV is listed

in the third column of Table III [4]. Experimental data was available for 20 isotopes but

9 of them (92,94Mo, 96Ru, 124,126Xe, 130Ba, 156Dy, 180W, and 190Pt) exhibited uncertainties

larger than 9%. For the remaining 12 isotopes no experimental information was available

in the stellar energy range, where only semi-empirical estimates based on Hauser-Feshbach

predictions existed.

This motivated an extended measuring campaign at the Karlsruhe 3.7 MV Van de Graaff

accelerator using the activation technique. In this framework the p isotopes 74Se, 84Sr, 102Pd,

120Te, 130Ba, 132Ba, 156Dy, and 174Hf were measured with samples of natural composition.

Neutrons were produced via the 7Li(p, n)7Be reaction by bombarding 10-30 µm thick layers

of metallic lithium or lithiumfluoride on a water-cooled copper backing with protons of Ep=

1912 keV, 31 keV above the 7Li(p, n) reaction threshold at 1881 keV. The resulting quasi-

stellar neutron spectrum approximates a Maxwellian distribution for kT= 25.0 ± 0.5 keV

[16] but is truncated at En= 106 keV. Under these conditions, all neutrons are kinematically

collimated into a forward cone of 120◦ opening angle. Neutron scattering through the Cu

backing is negligible, since the transmission is ≈98% in the energy range of interest.

The sample materials were either metals (Se, Pd, Te, Dy, and Hf) or compounds (SrO,

SrCO3, SrF2, BaCO3). Thin pellets were pressed from the respective powders or granules

and enclosed in cans made from thin aluminium foil. In case of Pd, Dy, and Hf the samples

were cut from thin metal foils. During the activations the samples were sandwiched between

10-30 µm thick gold foils of the same diameter and were irradiated in close geometry to the

neutron target. In this way the neutron flux can be determined relative to the well-known

capture cross section of 197Au [16]. The activation measurements were carried out with the

Van de Graaff accelerator operated in DC mode with a current of ≈100 µA (for the Li

targets) or even higher currents (up to 150 µA) for the LiF targets. The mean neutron flux

over the period of the activations was ≈1.5-3×109 s−1 at the position of the samples. To

ensure homogeneous illumination of the entire surface the proton beam was wobbled across
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the Li target. During the irradiation the neutron flux was recorded in intervals of 60 s or

90 s using a 6Li-glass detector for later correction of the number of nuclei which decayed

during the activation.

For the measurement of the induced activities two detector setups were available. A

single high purity Germanium (HPGe) detector with a well defined geometry and 10 cm lead

shielding was used in all cases for the counting of the gold foils, as well as for the activities

of 75Se, 85Sr, 121Te, 131Ba, 133mBa, 157Dy, and 175Hf. The activities of 103Pd and 133gBa were

measured with a gamma detection system consisting of two HPGe Clover detectors [17] in

close geometry. The decay properties of the determined product nuclei are given in Table I.

The sample and activation parameters are shortly summarized in Table II.

C. Results

For a detailed description of the data analysis and the results, see [14, 28, 29]. The

resulting Maxwellian averaged cross sections at kT=30 keV from this measuring campaign

are shown in Table III in bold. The semi-empirical estimates for 74Se, 102Pd, 120Te, 132Ba, and

174Hf are reproduced within the large error bars of the prediction. The previous experimental

values for 130Ba and 156Dy are confirmed perfectly but with much improved uncertainties.

Thus, only 6 p isotopes (98Ru, 138La, 158Dy, 168Yb, 184Os, and 196Hg) remain without

any experimental information about the stellar neutron cross section. The present work is

therefore being extended to the heavier p isotopes and includes the measurement of 158Dy,

168Yb, 184Os, and 196Hg, and the re-measurement of 180W and 190Pt. Only for 98Ru and

138La the activation technique cannot be applied.

III. p-PROCESS SIMULATIONS WITH AN UPDATED REACTION LIBRARY

The p-process network calculations in [13, 14] were carried out with the program

”pProSim” [13, 30]. The underlying network was originally based on a reaction library

from Michigan State University for X-ray bursts, which included only proton-rich isotopes

up to Xenon. For p-process studies it was extended with a full reaction network library from

Basel university [31]. This reaction library is mainly based on NON-SMOKER predictions

[5] with only a few experimental information for light nuclei, and was modified with the
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TABLE I: Decay properties of the product nuclei. Shown here are only the strongest transitions

used for the analysis.

Isotope t1/2 Eγ [keV] Iγ [%] Ref.

75Se 119.79 (4) d 136.0 58.3 (7) [18]

264.7 58.9 (3)

85Srg 64.84 (2) d 514.0 95.7 (40) [19]

85Srm 67.63 (4) min 151.2 12.9 (7)

231.9 84.4 (22)

103Pd 16.991 (19) d 357.5 2.21×10−2 (7) [20]

121Teg 19.16 (5) d 573.1 80.3 (25) [21]

121Tem 154 (7) d 212.2 81.4 (1)

1102.1 2.54 (6)

131Bag 11.50 (6) d 123.8 29.0 (3) [22]

216.1 19.7 (2)

373.2 14.0 (2)

496.3 46.8 (2)

133Bag 10.52 (13) yr 356.0 62.1 (2) [23]

133Bam 38.9 (1) h 275.9 17.8 (6) [24]

157Dy 8.14 (4) h 326.3 92 (4) [25]

175Hf 70 (2) d 343.4 84.0 (30) [26]

198Au 2.69517 (21) d 411.8 95.58 (12) [27]

latest stellar neutron capture cross sections available from KADoNiS v0.2. This modifica-

tion includes more than 350 experimental and semi-empirical (n, γ) cross sections and was

extended to the respective (γ,n) channels calculated via detailed balance.

pProSim simulates the abundance evolution for the 32 p isotopes with a parameterized
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TABLE II: Activation schemes and sample characteristics. Φtot is the total neutron exposure of

the sample during the activation.

Isotope N(Isotope) tact Φtot

[atoms] [min] [neutrons]

74Se (0.7-1.4)×1019 419-1425 (0.2-1.5)×1014

84Sr→g (0.2-1.3)×1019 1234-2621 (0.8-1.6)×1014

84Sr→m (0.4-0.8)×1019 155-274 (1.1-3.3)×1013

102Pd (1.7-2.6)×1019 5751-9770 (3.5-8.2)×1014

120Te→g,m (1.6-2.0)×1018 1406-4142 (1.5-3.1)×1014

130Ba (3.5-4.8)×1017 4014-7721 (2.7-6.9)×1014

132Ba→g,m (3.3-4.7)×1017 4014-7721 (2.7-6.9)×1014

156Dy (0.6-1.8)×1017 362-964 (4.0-9.5)×1013

174Hf (5.0-8.8)×1017 3865-5451 (5.1-8.7)×1014

model of a supernova type II explosion of a 25 M⊙ star. Since the p-process layers are located

far outside the collapsing core, they only experience the bounced shock front passing through

the O/Ne burning zone and the subsequent temperature and density increase. Both, the seed

abundances and the respective temperature and density profiles, were taken from external

works and not calculated self-consistently (for more information, see [13]).

The results from the simulations with the modified reaction library were compared to

the results published in [13] to examine the influence of the experimental neutron capture

data. This was done with help of the so-called “normalized overproduction factor”, which

is =1 when the calculated abundance corresponds to the solar abundances [7]. Ranges of

variations of this factor for SN type II explosions with star masses 13 M⊙≤ M⋆≤25 M⊙ are

published e.g. in Fig. 4 in [10].

The new overproduction factors are slightly below previously published values [10, 13]

due to the inclusion of recent experimental data, especially in the mass range 150≤A≤170

where the main reaction flux is driven by (γ, n), (γ, α), (n, γ), and (n, α) reactions. All of
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these reaction fluxes are found to be smaller. Our study underlines the importance of (n, γ)

and (γ, n) reactions in the p-process flow. For example, we were able to show that a variation

in the neutron rates of the Pb and Bi isotopes has a strong impact on the above mentioned

fluxes. This is due to the fact that a significant fraction of the seed abundances is located

in these isotopes and converted to nuclei at lower mass by photodisintegration sequences

starting with (γ, n) reactions on Pb and Bi. Also the importance of experimental data is

strongly emphasized by these findings. Because of the magicity or near-magicity of the Pb

and Bi isotopes, individual resonances determine the cross sections and the Hauser-Feshbach

theory is not applicable [32, 33]. From discrepancies between resonance and activation

measurements [34, 35] and from theoretical considerations [36], it has been previously found

that even a small direct capture component contributes to neutron capture on Pb [32, 36].

Resonant and direct capture contributions are difficult to handle in theoretical models and

experiments prove to be indispensable.
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TABLE III: Status of MACS30 of all 32 p nuclei. Isotopic abundances were taken from [8]. Rec-

ommended cross section were taken from [4] and [6]. Italic values show semi-empirical estimates.

*Preliminary semi-empirical value based on KADoNiS v0.2. **Preliminary value, data analysis

not yet fully completed.

Isotope Isotopic Recommended MACS30

abundance [8] previous [4] new [6]

[%] [mb] [mb]

74Se 0.89 (4) 267 ± 25 271 ± 15 [28]

78Kr 0.35 (1) 312 ± 26

84Sr 0.56 (1) 368 ± 125 300 ± 17 [28]

92Mo 14.84 (35) 70 ± 10

94Mo 9.25 (12) 102 ± 20

96Ru 5.54 (14) 238 ± 60 207 ± 8

98Ru 1.87 (3) 173 ± 36

102Pd 1.02 (1) 373 ± 118 370 ± 14

106Cd 1.25 (6) 302 ± 24

108Cd 0.89 (3) 202 ± 9

113In 4.29 (5) 787 ± 70

112Sn 0.97 (1) 210 ± 12

114Sn 0.66 (1) 134.4 ± 1.8

115Sn 0.34 (1) 342.4 ± 8.7

120Te 0.09 (1) 420 ± 103 499 ± 24

124Xe 0.09 (1) 644 ± 83

126Xe 0.09 (1) 359 ± 51

130Ba 0.106 (1) 760 ± 110 767 ± 30

132Ba 0.101 (1) 379 ± 137 399 ± 16

136Ce 0.185 (2) 328 ± 21

138Ce 0.251 (2) 179 ± 5
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