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Abstract

It is commonly accepted that the Inferior Olive (IO) provides a timing signal to the cerebellum. Stable subthreshold
oscillations in the IO can facilitate accurate timing by phase-locking spikes to the peaks of the oscillation. Several theoretical
models accounting for the synchronized subthreshold oscillations have been proposed, however, two experimental
observations remain an enigma. The first is the observation of frequent alterations in the frequency of the oscillations. The
second is the observation of constant phase differences between simultaneously recorded neurons. In order to account for
these two observations we constructed a canonical network model based on anatomical and physiological data from the IO.
The constructed network is characterized by clustering of neurons with similar conductance densities, and by electrical
coupling between neurons. Neurons inside a cluster are densely connected with weak strengths, while neurons belonging
to different clusters are sparsely connected with stronger connections. We found that this type of network can robustly
display stable subthreshold oscillations. The overall frequency of the network changes with the strength of the inter-cluster
connections, and phase differences occur between neurons of different clusters. Moreover, the phase differences provide a
mechanistic explanation for the experimentally observed propagating waves of activity in the IO. We conclude that the
architecture of the network of electrically coupled neurons in combination with modulation of the inter-cluster coupling
strengths can account for the experimentally observed frequency changes and the phase differences.

Citation: Torben-Nielsen B, Segev I, Yarom Y (2012) The Generation of Phase Differences and Frequency Changes in a Network Model of Inferior Olive
Subthreshold Oscillations. PLoS Comput Biol 8(7): e1002580. doi:10.1371/journal.pcbi.1002580

Editor: Abigail Morrison, University of Freiburg, Germany

Received January 23, 2012; Accepted May 10, 2012; Published July 5, 2012

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: This research is funded by a FP7 People Initial Training Network Grant, Grant number: PITN-GA-2009-238686 (CEREBNET), an FP7-ICT grant (REALNET),
and by the Gatsby Charitable Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: btorbennielsen@gmail.com

Introduction

There is a profound interest in the dynamics of neuronal

networks and the simulation of network models is a prevalent

approach to study these dynamics. One aspect of network dynamics

is the generation of oscillatory activity. It has been hypothesized that

oscillations subserve brain-wide communications. For instance,

‘‘binding’’ to connect distinct sensory streams in the brain [1,2], or

entrainment of brain regions [3,4] to facilitate communication and

filtering of information [5,6]. Computational models provide

mechanistic explanations for these phenomena and explore their

functional consequences. As such, electrical oscillations in the brain

have been studied by using network models containing only

chemical synapses [7,8], or a mixture of chemical and electrical

synapses [9]. Network oscillations (and associated experimental

findings) are generally not addressed in networks connected solely by

electrical synapses despite the fact that such brain regions, such as

the Inferior Olive, exist and are known to produce oscillations. Also,

most models of oscillatory neuronal activity focus on oscillatory

behavior in the suprathreshold, spiking regime of neurons. In

contrast, subthreshold oscillations are rarely considered outside the

realm of intrinsic neuronal properties. Here we report on a network

model of the subthreshold oscillations and their dynamic behavior

in the Inferior Olive.

The Inferior Olive (IO) nucleus is the exclusive provider of

cerebellar climbing fibers. Neurons in the IO form a network

solely through electrical connections (gap junctions) between them.

This electrically coupled network of neurons generates subthresh-

old voltage oscillations, which were observed both in-vitro [10–13]

and in-vivo [14,15]. Spiking activity is generally strictly phase-

locked to the peaks of the oscillations. As a result of this peculiar

anatomy and electrophysiological dynamics, the IO has been

implicated as a timekeeper for the cerebellum and has been

suggested to play an important role in the timely execution of

motor commands [16–18] and in the generation of well-timed

signals used in learning [19–21].

There are two observations in relation to the function of the IO

as a timekeeper. The first observation is that the frequency of the

subthreshold oscillation shifts from time to time [14,22]. The base

frequency of the IO subthreshold oscillation is normally well below

10 Hz and shifts of 1 to 6 Hz around the base frequency are

reported [15,22,23]. The second observation is that while different

neurons oscillate at the same frequency, phase differences among

neurons are observed. Stable phase differences up to 90u between

IO neurons were recorded in in-vitro preparations [22]. In-vivo,

Purkinje cells complex spikes, which are considered to be the

manifestation of olivary activity, displayed phase differences up to

180u [24]. The observation of phase differences in a network

PLoS Computational Biology | www.ploscompbiol.org 1 July 2012 | Volume 8 | Issue 7 | e1002580



consisting only of neurons with direct electrical coupling is in itself

problematic: how can phase differences in the subthreshold regime

persist over time between two electrically coupled neurons that

oscillate at the same frequency? While several theoretical models

have been proposed to account for the subthreshold oscillations in

the IO [10,25–29], none of these works provided an explanation

for the controllable modulation of frequencies or for the

generation of persistent phase differences.

In this work we address both frequency modulation and the

generation of phase differences in the IO network. To this end we

built a network model of the IO consisting of basic conductance-

based model neurons [30] in an architecture based on anatomical

and physiological data. The model neurons contain leak (gl) and

low-threshold Ca2+-conductances (gCa, see Methods). At particular

densities of these two conductances, the neuron model exhibits

spontaneous oscillations [30]. Anatomically, it is known that

somata of IO neurons cluster together in small groups of 8–12

neurons [10,31]. This causes considerable overlap between the

dendrites of neurons from the same cluster. In turn, this overlap

gives rise to many dendro-dendritic gap junctions between

neurons of the same cluster. Because of the limited space in

which neurons are situated, there is, arguably, less overlap

between dendrites of neurons belonging to different clusters.

Hence, gap junctions are less frequent between neurons of

different clusters. Additional details about the connectivity come

from physiological experiments in which pairs of IO neurons are

recorded simultaneously. It is known that each neuron connects to

1–38 other neurons [1,2] and that the coupling coefficient

(CC1 = V2/V1, CC2 = V2/V1, and see Methods) ranges from 2–

20%. Although nearby neurons are more likely to be connected,

the strength of individual connections is only weakly correlated

with distance from the soma. There is also physiological support

for nearby neurons having similar biophysical features, such as the

density of low-threshold calcium conductances. The experimental

support is indirect and stems from two different lines of evidence.

First, in vitro preparations show that nearby neurons oscillate with

the same phase and frequency [32]. Since the coupling strength

between neurons is notoriously low, such similar oscillations can

only occur when the neurons share the same conductance densities

that drive the oscillation. Second, the coupling coefficient between

nearby neurons is symmetrical [33] – a feature that only results

from neurons with equal input resistances. As the input resistance

at rest is mainly determined by the leak and low-threshold calcium

conductances (in combination with the h-type conductance), the

densities of these conductances must be very similar.

These data constrain the model’s architecture to a topology in

which similar neurons (in terms of conductance densities) are

clustered together and are densely connected via gap junctions.

The anatomical clustering of dendrites leads to sparse connectivity

between a given cluster and all other clusters, i.e., neurons from

one cluster are connected to neurons in one or a few other clusters

but not necessarily to all other clusters. Thus, major constraints on

the network architecture are imposed by the connectivity scheme,

the limited number of connections per neuron, and the weak

coupling coefficient between cell pairs.

We demonstrate that network models which obey these

experimental constraints, and in which electrical-coupling strength

is subject to modulation, are sufficient to account for frequency

changes and for the generation of phase differences across

frequencies. The robustness of the results is discussed and the

key mechanisms that support the observed network dynamics are

highlighted. We also discuss a prediction based on our theoretical

study.

Results

Constructing a network model based on experimental
data

The aforementioned constraints still leave several free param-

eters. The exact number of neurons in a cluster is bounded by

biological data (8 to 12 neurons per cluster [31]), but not uniquely

defined. Also, the number of clusters is variable and might be

dynamic as there is evidence for dynamic control of the effective

coupling strengths between clusters [15]. Since there is a hard limit

on the maximal number of connections per neuron (38, from [2]),

the actual number of connections per neuron varies with the

cluster size and the number of clusters. In this work we devised a

reference network of 4 clusters, each containing 12 neurons. The

structure of this network within the gl-gCa space is shown in

Figure 1A. Only the oscillating area is marked and the frequency

of the oscillations is color-coded (for further details see Supporting

Text S1). Cells are marked as red squares and clusters are

delineate by ellipses. We limited ourselves to four clusters for the

sake of clarity. To satisfy the connectivity constraints, we

connected each neuron inside a cluster with 4 peers. To simulate

a connection between two clusters, we connected 80% of the

neurons in one cluster with a matching number of randomly

selected neurons in the other cluster. The conductance of the gap

junctions was chosen so as to result in a coupling coefficient of 2–

20% (Figure 1B). In Figure 1B the coupling coefficient of each

intra-cluster connection (red) and each inter-cluster connection

(blue) in the network is illustrated. Note that we provide two CCs

per connection because the inter-cluster CC is asymmetrical due

to differences in the input resistances of connected neurons.

Clustering is organized in such a way that neurons inside each

cluster share similar conductance densities. For the sake of

demonstration, we picked the clusters in such a way that they

were on the boundary in parameter space where neurons can

either display spontaneous oscillations or not. We picked neurons

on this boundary because the robustness of the oscillatory behavior

suggests that at least some of the neurons behave as spontaneous

Author Summary

There is a profound interest in the dynamics of neuronal
networks and the simulation of network models is a
prevalent approach to study these dynamics. Generally,
network models contain neurons that are connected
mostly through chemical synapses to form either a
completely regular topology (such as nearest neighbor
connections), a completely random topology, small-world
networks or scale-free networks. We investigate the
dynamics of an atypical network, inspired by the Inferior
Olive (IO) network, a brain structure located at the end of
the brainstem that is responsible for timely execution of
motor commands. This network is atypical in the sense
that it has neurons in a clustered topology, which are
connected solely by electrical synapses. The dynamics in
the IO are enigmatic as the membrane voltage of some
neurons can oscillate at the same frequency while
maintaining phase difference with other neurons. It has
also been demonstrated that propagating waves of
activity occur spontaneously in this network. Using
computer simulations we unraveled the mechanism
underlying these previously enigmatic experimental ob-
servations. In so doing, we stress the importance of
investigating more realistic network topologies to explore
complex brain dynamics.

Oscillations in Electrically Connected Networks
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oscillators. On the other hand, stable, non-oscillating, neurons are

also encountered [1,23].

A data-driven clustered network generates stable
subthreshold oscillations

In our reference network, the conductance densities of twenty-

six out of forty-eight model neurons are such that they oscillate

spontaneously (Figure 2A, left panel). After adding intra-cluster

gap junctions in accordance with the connectivity scheme

described above, all neurons in clusters C0, C1 and C3 started

oscillating, whereas the oscillations in cluster C2 diminished

within 1 second (Figure 2A, center panel). With further addition

of the inter-cluster gap junctions, all neurons in the network

started oscillating and the network exhibited stable oscillations

(defined as non-dampening over 5 s) at a frequency of 9.2 Hz

(Figure 2A right panel and Figure 2B). Close examination of these

oscillations revealed that neurons within a cluster oscillate at

precisely the same frequency and phase (Figure 2C), whereas

phase differences were evident when neurons from different

clusters were compared (Figure 2B). The amplitude of the

subthreshold oscillations is less constrained in the experiments

and varies on a cell-to-cell basis. However, as indicated by its

name, the peak of the oscillations should remain in the

subthreshold regime and not provoke suprathreshold events.

The simulated voltages observed in our simulations fit nicely with

the experimentally observed range of 0.5–25 mV [1,12,22]. We

use the term ‘‘synchronized oscillations’’ to describe the network

state in which all neurons oscillate at the same frequency (but not

necessarily with the same phase).

It is important to stress that the network dynamics are robust

with respect to the free network parameters (i.e., the exact

number of clusters and the cluster size), as long as the resulting

connectivity pattern meets the anatomical and physiological

constraints outlined before. Namely, we can obtain different

networks composed of various numbers of clusters and cluster

sizes that exhibit synchronized oscillations. To support this

claim, we simulated two sets of pseudo-random network. In the

first set, we simulated networks consisting of 10 neurons per

cluster and varied the number of clusters from 4 to 8. The inter-

cluster connectivity scheme was also sampled randomly, with

each cluster connecting to 1–3 other clusters. In the second set of

simulations, we varied the number of neurons inside each cluster

between 8 and 16, while keeping the number of clusters

constant, and using a fixed inter-cluster connectivity scheme as

in the reference ‘‘4 clusters612 neurons’’ network. The resulting

frequencies at which these networks exhibited spontaneous

oscillations are shown in Figures 2 D & E, respectively. In both

sets of simulations, the actual conductance densities of each

neuron were sampled from within the experimentally observed

range, and the actual gap junction conductances were sampled

so as not to violate the strict constraints on coupling coefficients

between neurons. We found that the generated networks

displayed stable, synchronized oscillations in a wide variety of

frequencies. Note the difference in the results between the two

‘‘4 clusters610 neurons’’ simulations shown in Figures 2 D & E.

This difference stems from the distinct inter-cluster connectivity

schemes.

We also want to stress that roughly 50% of neurons in our ‘‘4

cluster612 neurons’’ reference network oscillate spontaneously.

Evidently, the mechanism we presented for generating synchro-

nized oscillations also holds in networks with a higher proportion

of spontaneously oscillating neurons (e.g., 85%, as in [15]). We

thus show that our network model is able to mimic the

experimentally observed subthreshold oscillations, and that the

‘‘4 clusters612 neurons’’ reference network is a good representa-

tive of a larger set of networks that satisfies the experimental

constraints. (Also see Supporting Text S1)

Inter-cluster coupling strength modulates the frequency
of network oscillations

Two model IO neurons are known to be able to oscillate

synchronously when they are connected with a suitable coupling

strength [30]. Moreover, it was previously found that such a pair

would behave as a single neuron that contains the average density

of the conductances of both neurons. The same mechanism also

works for networks of IO model neurons. Indeed, we show that

the reference network can exhibit oscillations between 6–12 Hz

upon modification of the electrical coupling strength. Figure 3A

Figure 1. Proposed network architecture. A: Model neurons only contain leak and Ca2+ currents and spontaneously oscillate at frequencies
determined by the exact density of the associated conductances. Colors of the gl-gCa plane indicate the frequency at which a model with the
corresponding density of conductances oscillates; in the white region model neurons do not oscillate spontaneously. The network itself consists of
individual neurons (red squares) grouped in clusters (colored ellipses; color not related to the frequency). Neurons inside the cluster are connected to
4 neighbors. When two clusters are connected (black arrows) each neuron from one cluster is connected to a random neuron in the other cluster. All
connections are gap-junctions. B: Resulting coupling coefficients of all connections in the network. This specific network is used throughout the
manuscript for demonstration purposes.
doi:10.1371/journal.pcbi.1002580.g001

Oscillations in Electrically Connected Networks
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shows the voltage in four neurons: one from each cluster. At the

beginning of the simulation (t,5 s) the network oscillates at

6.3 Hz, and after modulating the connection strength (at t = 5 s),

the network oscillates at 10.9 Hz. We changed the coupling

strength in a biologically plausible way. Although the exact

conductance change of each connection was randomized, the

changes of all the connections between two clusters followed the

same trend and either decreased or increased. This way,

heterogeneity was maintained. The changes were always limited

to a sevenfold decrease/increase of the present conductance. In

the reference network, the modulation consisted of strengthening

the connections from groups C3 and C4 to group C1 up to

sevenfold, while moderately decreasing their connection strength

with C0 by a factor of up to four. Intuitively, the frequency at

which the network synchronously oscillates is the frequency of the

‘‘center of mass’’ of the connected neurons, i.e., the frequency of

the weighted average (in terms of the conductances) of all

connected neurons in the network. The reported shift in network

frequency can then be interpreted as a shift of the ‘‘average

neuron’’ on the gl-gCa plane (Figure 1A) from bottom left to top

right. The frequency change can be verified by a short-time

Fourier transformation (Figure 3B) and the standard Fourier

transformation (Figure 3C). As a second step we assessed the

robustness of the mechanism that modulates the network

frequency by repeatedly changing the inter-cluster strength. For

this purpose we simulated a large number of instances of the same

‘‘4 cluster612 neurons’’ network but with different inter-cluster

connection strengths. Additionally, we also changed the coupling

Figure 2. Stable subthreshold oscillation in a clustered network of the IO. A: Raster plot containing all neurons in the network; peaks of the
oscillation are denoted by a dot. Without connections only 26 out of 48 neurons oscillate (left panel). When the intra-cluster connections are added, 3
out of 4 clusters show synchronized oscillations within the clusters (center panel). After adding the inter-cluster connections as well, the whole
network reaches a synchronized oscillation of 9.2 Hz. B: Detail of the membrane potential of one neuron from each cluster indicating that the
network can sustain stable subthreshold oscillations. Colors of the membrane trace and the ellipses in panel A are matching. C: Detail of the
membrane potential of all neurons in one cluster (C0). D&E: Stable oscillations in the proposed network architecture are robust to changes in the
number of clusters and the number of cluster per neuron. In D, networks with a varying number of clusters but a fixed cluster size (10 neurons) and a
randomized connectivity scheme were tested. In E, networks with 4 clusters and a varying cluster size were tested (while the connectivity scheme was
fixed as in the reference network. Therefore, the ‘‘4 clusters610 neurons’’ from panel D and E are not the same). Boxplots indicate the median and the
boxes extend from the lower to the upper quartile. It follows that robust synchronized oscillations can be generated by a variety of networks and that
each network can achieve a range of frequencies.
doi:10.1371/journal.pcbi.1002580.g002

Oscillations in Electrically Connected Networks

PLoS Computational Biology | www.ploscompbiol.org 4 July 2012 | Volume 8 | Issue 7 | e1002580



coefficients randomly by 20% to 400% during simulation of the

network (while still staying within the limit of CC,20%). By

doing so we found networks displaying synchronized oscillations

in the 6–11.5 Hz frequency range both before and after changing

the connection strengths (Figure 3D).

Thus, we identified a robust mechanism to change the

frequency of the synchronized oscillations by means of (small)

changes of the inter-cluster strengths that in turn change the

weighted-average neuron that dictates the frequency of the

synchronized oscillation.

Phase difference between clusters during stable
oscillations

An emergent feature of the proposed clustered network

architecture is that such networks display a phase difference

between neurons (Figure 4A). This phase difference is a

consequence of the difference in the ion channel density in each

cluster. The voltage build-up in neurons with a higher density of

Ca2+-conductance is faster. As a result, these high Ca2+-

conductance neurons oscillate at a higher frequency when

uncoupled. In the coupled case, the faster voltage build-up leads

to their advance in phase over neurons with less Ca2+-conduc-

tance. During the period directly after the peak, the current

flowing between both neurons reverses and causes both neurons to

remain in pace with each other. When the coupling strength is

sufficient, it is this mechanism that binds the two connected

neurons to the same frequency. The same principle holds for

networks with clusters of similar neurons: the cluster with highest

concentration of Ca2+-conductance is advanced in phase over

clusters with less Ca2+-conductance. Figure 4A shows the

membrane potential of a representative neuron for each cluster,

illustrating that while the network oscillates in synchrony, the

temporal succession of the voltage peaks corresponds to the

decrease in Ca2+-density (the colors of the traces match the colors

of the clusters in Figure 1A.) The observed phase differences in the

reference network are summarized in Figure 4B. The respective

phase of each neuron is color-coded with respect to that of the

reference neuron. It can be verified that within a cluster, the

Figure 3. Robust modulation of network frequency by changing the inter-cluster coupling strengths. A: Membrane potential of one
neuron per cluster just before and after manually changing the inter-cluster connection strength in the reference network. The change in inter-cluster
strength caused a shift in the synchronized oscillation frequency from 6.3 Hz to 10.9 Hz. B: Short-term Fourier transformation of the membrane
potential of one neuron in the network indicates the shift in frequency. C: Fourier transformation of the membrane potential of one neuron of each
cluster. All clusters oscillate at the same frequency and are subject to the same shift. D: Histogram of frequencies at which the same network with
pseudo-random inter-cluster connections strengths can oscillate in synchrony. Only changing the inter-cluster coupling strength (within realistic
ranges, i.e., CC,20%) can be sufficient to bring the network to a state of synchronized oscillations with frequencies between 6 and 11 Hz.
doi:10.1371/journal.pcbi.1002580.g003

Oscillations in Electrically Connected Networks
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neurons oscillate at roughly the same phase, whereas a larger

phase difference exists between different clusters. In the 9.2 Hz

regime, the maximum phase difference between any pair of

neurons was 72u (Figure 4B). The aforementioned phase difference

is stable inasmuch as the phase relations between neurons are

maintained over a period of time. This stability over time is

illustrated by the cross-correlation between the peak-times (as done

with spike times) of the different clusters (measured between one

neuron from each cluster and over the 4 seconds of simulated

time, Figure 4C). We assessed the robustness of this phenomenon

by analyzing the data from the previously generated variants of the

reference network (from Figure 3D) and found that the maximal

phase difference observed was 140u. Most inter-cluster phase

differences were between 20u and 130u (data not shown).

The implication that neurons advanced in their phase also have

higher voltage amplitude (because of the larger gCa) can be verified

using Figure 4D. In this figure, the peak voltage of all neurons is

plotted against their gCa-density. The size of the data points

indicates the phase difference relative to the reference (0u phase

difference). Hence, larger data-points in Figure 4D indicate a

greater offset of phase with respect to the reference neuron. The

number of gap junctions and the connectivity between neurons

also play a role in the generation of phase differences: the gap

junction in itself changes the input resistance (which in our model

neurons is a manifestation of the leak conductance). This different

connectivity results in a different number of gap junctions, which

can account for the difference between clusters 2 and 3 in

Figure 4C.

The observed phase difference also provides an explanation for

the ‘‘propagating waves of activity’’ found experimentally [22]. In

the event that there is spatial correlation between the clusters,

different clusters will be activated sequentially, in descending order

of gCa. This sequential activation can be observed as a propagating

wave (see Supporting Text S1 and Supporting Video S1).

Thus, our model also successfully reproduces the experimental

observation of phase differences, and provides a mechanistic

explanation for this phenomenon.

Discussion

In this work we proposed a plausible model of the IO network

that provides an explanation for timing and timekeeping within

the IO. The activity in the IO is crucial for the proper function of

the olivo-cerebellar circuit, and as such it is at the focus of many

studies. Different models of IO neurons have been proposed to

explain single-cell subthreshold oscillations [30], complex firing

dynamics [29], the influence of dendritic spines on synchrony [25]

and rhythmogenesis [26,28]. The dynamic formation of clusters

and transient phase differences were demonstrated to emerge from

chaotic dynamics [34]. To our knowledge, our IO network model

is the first model to reproduce previously unexplained experimen-

tal findings such as the non-chaotic, controllable frequency

Figure 4. Stable phase differences between neurons. A: Focus on the normalized membrane potential of one neuron per cluster reveals that
clusters with higher Ca2+-conductance are advanced in phase with respect to other clusters (traces have colors matching with Figure 1). In the regime
of oscillatory IO neurons, higher Ca2+-density indicates a higher resting membrane potential that causes the neuron to lead in the phase. B: Phase-
map color coding the phase-difference between all neurons in the network. Phase differences are given in degrees relative to the inter-peak-interval;
the phase of the bottom left neuron is taken as reference (0u). Neurons within the same cluster have similar phases due to similar resting potentials,
while larger phase-differences arise between clusters that are farther apart in terms of their conductances. The maximum phase-difference between
two neurons was 72u in the demonstration network. C: Cross-correlation of the peak times between (one neuron from the) four clusters computed for
5 s traces confirms that the phase-differences are stable over time. D: The amplitude and phase difference is proportional to the amount of gCa-
conductance a neuron contains. The y-axis denotes the peak voltage and the x-axis indicates the conductance density. The color-coding is the same
as in A while the size represents the phase-difference (as measured between the neuron at the bottom left and any other neuron).
doi:10.1371/journal.pcbi.1002580.g004

Oscillations in Electrically Connected Networks
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changes and the generation of phase differences, and to provide a

mechanistic explanation for these findings.

We purposely used minimalistic model neurons, as the focus of

this work was the dynamics of the subthreshold oscillations in the

IO network. The model neuron contains only a leak and a Ca2+-

current because these currents are most prominent in the

subthreshold voltage oscillation regime ([265 mV,250 mV])

[29,30]. Clearly, there are many other voltage-gated ion-channels

expressed in IO cells that were not included in this study [29,35].

However, these channels mostly affect action potentials (especially,

the characteristic high-threshold Ca2+ spikes). These currents

could be added in the future in large-scale models of the olivo-

cerebellar circuit. Despite its limitations, our model is elegant in its

minimalistic, yet biologically rooted approach.

In this work we re-evaluate a finding from an earlier work in

which it was shown that two IO model neurons that are not

necessarily oscillatory in isolation can be connected in such a way

that they oscillate synchronously [30], and we interpret this result

in a network context. Previously, it was shown that, in the limit of

strong coupling, a pair of IO model neurons could be considered

as a single neuron containing the average conductance of both

individual neurons. Consequently, the frequency of the synchro-

nous oscillation in a pair of such neurons is determined by the

frequency of the hypothetical average neuron [30]. Manor et al.

proposed as a rule of thumb that an electrically coupled pair of IO

model neurons will oscillate only when the ‘‘average neuron’’ lies

in the region of the gl-gCa plane where a single neuron would

oscillate spontaneously [30] (i.e., inside the colored region in

Figure 1A). We continued to show that the same mechanism holds

for a network of IO model neurons. In that sense, and as we

demonstrated, the inter-cluster connection strength dictates the

frequency of the synchronized oscillations because it weighs the

contributions of each cluster to the average neuron. In the

Supporting Text S1 we provide analytical and empirical support

for the demonstrated effects of coupling strength on the frequency

of synchronized oscillations.

Having shown that the inter-cluster coupling strength deter-

mines the frequency of oscillation, it is straightforward to see that

changes in the inter-cluster coupling strength change the

oscillatory frequency in the network. We note that the intra-

cluster coupling strength does not contribute to the network

frequency because inside a cluster all neurons are electrically

similar and hence the average neuron that represents a single

cluster is very stable; only the inter-cluster connections can change

the frequency. We also note that in the clustered network as we

propose it, the synchronized oscillations can cease in two ways.

First, the virtual, weighted average (neuron) can be moved to a

region in the gl-gCa space were no oscillations occur (i.e., the white

space in Figure 1A). In this case the whole network is stable and no

oscillations occur in any of the neurons. Second, the coupling

coefficient between particular clusters can be decreased to a point

that their mutual influence is too low to sustain synchronized

oscillations. In this case the network breaks down into smaller

functional units in which oscillations may persist, albeit with

different frequencies. The second mechanism allows for resizing

and reassembling the functional network in which synchronized

oscillations occur.

Changes in the functional coupling strength can be induced by

the GABAergic inputs coming from the deep cerebellar nuclei

(DCN). DCN inputs to the IO are co-located at the sites of the gap

junction [17,36] and can shunt the current between two neurons

[32,37–39]. Increased input from the DCN can thus serve to

decrease the coupling strength, while a release from (tonic)

inhibition can increase the coupling strength [39,40]. Thus, a

whole range of coupling strengths can be achieved between

clusters, which can result in a continuum of frequencies at which

the network can oscillate in synchrony. Our proposed mechanism

contrasts with the mechanisms proposed in [15], in which discrete

network frequencies result from coupling and decoupling of

individual neurons.

Blocking of GABAergic inputs has been reported to have the

effect of increasing the size of the group of synchronously

oscillating neurons [12,32,41]. Thus, apart from the effect of

modulating the frequency, GABA could also modulate the size of

the group of synchronously oscillating neurons, which in turn has

an effect on the coherence in Purkinje cell activity. Our model also

captures the re-arrangement of the group of synchronously

oscillation neurons. In Figure 2A (center panel), the network

activity is shown when only intra-cluster connections are present,

which effectively mimics a situation in which clusters are

uncoupled by GABA. Then, when we add the inter-cluster

connections (effectively mimicking blocking of GABAergic inputs),

the complete network goes into a state of synchronized oscillations

(Figure 2, right panel). Thus, our network model also captures the

effect of blocking GABA, which increases the number of

coherently oscillating neurons.

We found that basic neuron models including one active

component (Ca2+ T-type current) in combination with a clustered

network with differential inter-cluster electrical connections can

account for synchronized network oscillations, the modulation of

the frequency and the emergence of phase differences, which in

turn lead to propagating waves of activity. There is a great deal of

theoretical literature related to synchrony in neural network [42–

45]. Synchrony of suprathreshold dynamics (spikes) is often

explained in terms of the coupling functions between neurons

[43–46]. On the other hand, synchrony between the subthreshold

dynamics in neurons has received less attention and is rarely

considered in isolation from its suprathreshold counterpart, despite

the fact that this is exactly what happens in the IO, in which the

firing rate is an order of magnitude slower than the subthreshold

oscillations. Theoretical studies are well suited to find transitions in

dynamics (bifurcations) and allow researchers to pinpoint the

necessary conditions for particular experimental observations [47].

To our knowledge, there is no study illustrating the conditions

required for a network to maintain non-zero phase lags between

purely subthreshold oscillations. We presented a network in which

such non-zero phase lags are exhibited and explained their

existence in terms of the biophysics of voltage-gated Ca2+ current.

However, it remains unclear what the minimal conditions are for

realistic, synchronized subthreshold oscillations in our network.

The minimal conditions depend on what is functionally relevant

for the network. For instance, shifts between 1 and 4 Hz have been

observed experimentally [22]. Clearly, as demonstrated in our

network model, the difference between the intrinsic frequencies of

any cluster in the network will place an upper bound on the size of

the shift achievable in that network. As a rule of thumb, the

maximum shift in a network is limited by the difference between

the intrinsic frequencies (uncoupled) of the clusters (Figure S3 in

Text S1). Thus, to create a shift of 2 Hz in the network, the

intrinsic frequencies of the contributing clusters should be at least

2 Hz apart. However, there is a trade-off between the magnitude

of the shift and the ability of the network to synchronize: the more

dissimilar the intrinsic frequencies of the clusters, the harder it

becomes to create coherent oscillations across the entire network

(Figure S2B in Text S1). A second rule of thumb is that to

synchronize two highly dissimilar neurons or clusters (say, F1–

F2.2 Hz), synchrony can be obtained more easily by introducing

an intermediate neuron or cluster. Consequently, the minimal
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conditions for a network to synchronize depend on the exact

requirements, e.g. the frequency of the synchronized oscillations

and the size of the frequency shift. For now we offer the

aforementioned rules of thumb, but finding the precise minimal

conditions required for synchrony will be addressed in future work.

Many network models are devised to address a particular

question dealing with a part of the natural, experimentally

observed dynamics. To model different dynamics in the same

system, a new model is constructed in the present study that can

accommodate diverse sets of dynamics. We have shown that our

network model, which successfully reproduces subthreshold

oscillations, also accounts for the experimentally observed

frequency changes and phase differences. Moreover, based on

current data from the DCN [40], it is a plausible that the actual

connectivity between the DCN and the IO could implement the

proposed mechanism of IO frequency modulation. No structural

changes (such as a different connectivity statistics) are required in

our model in order to generate oscillations, to change the

frequency and to maintain stable phase differences between

different IO cells. The fact that our model can reproduce a variety

of experimentally observed behaviors increases our confidence

that we have captured in our model the key mechanisms

underlying the observed behavior.

The results presented in this study also give rise to a testable

prediction about the IO. Our prediction addresses the possibility

of modulating IO oscillation frequencies by changing the inter-

cluster coupling strength. This prediction could be tested in an in-

vitro preparation in which a single intracellular recording is made

from an IO neuron while GABAergic input is emulated by GABA

application. We predict that when GABA is released in small areas

close to the dendrites of the recorded cell, a reversible change in

the frequency should be detected. The aim would be to apply

GABAergic input only to the dendrites to shunt some of the gap-

junctional current while maintaining the rest, thus leaving the

intrinsic dynamics of the cell largely unaffected. Consequently, the

neuron would not be uncoupled completely from the network, but

the influence from the network would change. This corresponds to

changing the inter-cluster coupling strength and should affect the

oscillatory behavior of that neuron.

In conclusion, we present the first anatomically and physiolog-

ically plausible (albeit reduced) network model of the IO that

provides a biophysical explanation for previously unexplained

experimental observations. As such, we believe that our model is

suitable to test future hypotheses about the origin of the

subthreshold oscillations and their role in timing.

Methods

Model neuron
We use conductance-based model neurons based on the model

presented in [30]. These conductance-based model neurons

contain only a leak current and a low-threshold (T-type) Ca2+

current. Formally, the dynamics of the model neurons are

described by:

dV

dt
~{1

1

Cm
IlzICað Þ (1)

Il~gl V{Elð Þ (2)

ICa~gCam3
?h V{ECað Þ (3)

in which Cm is the membrane capacitance, El and ECa are the

reversal potentials for the leak and low-threshold Ca2+ current,

respectively. gl and gCa are the maximum conductances of these

currents. m and h are the gating variables for the time and voltage

dependent T-type current and follow

m3
? Vð Þ~ 1zexp

{61{V

4:2

� �� �{3

,

dh

dt
~

h? Vð Þ{h

th Vð Þ ,with

h? Vð Þ~ 1zexp
Vz85:5

8:6

� �� �{1

,and,

th Vð Þ~40z30 1zexp
Vz84

8:3

� �� �{1

exp
Vz160

30

� �

In all presented simulations, EL = 263 mV while gl and gCa

vary between [0.15,0.4] mS/cm2 [0.2,1.4] mS/cm2 [23], respec-

tively. Neurons containing specific amounts of gl and gCa can

exhibit spontaneous oscillations over a range of frequencies as

illustrated in Figure S2 in Text S1. A model neuron can be

equipped with different densities of the associated leak (gl) and

calcium (gCa) conductance. Depending on the exact density of gl

and gCa the neuron can be i) a spontaneous oscillator and oscillate

at different frequencies (Figure 1), ii) a conditional oscillator, iii)

bistable or, iv) stable [30].

Network model
We create the network model by connecting selected neurons

through electrical coupling (gap-junctions). The effect of a gap-

junction on a single neuron can be represented by an additional

current that mimics the current flowing between two connected

cells proportionally to the difference in membrane potential in

both cells: Igap,1~
V2{V1

Rc1
and Igap,2~

V1{V2

Rc2
, which is added to

the right-hand side of the appropriate equation (1). The precise

values of Rc1 and Rc2 are of little importance as they depend on

the actual input resistance of a neuron. A more useful

measurement of coupling through gap-junction is the coupling

coefficient: CC1 = V2/V1 = R2/(R2+Rc1) and CC1 = V2/V1 = R1/

(R1+Rc2) as it directly assesses the electrical impact of one neuron

on the other. Note that the voltages V1 and V2 are not the same in

the calculation of CC1 and CC2 because they are measured from

two separated experiments; one in which the current is injected in

the first neurons and another experiment in which the current is

injected in the second neuron. Due to the dependence on the input

resistances, CC1 and CC2 also do not need to be the same.

Based on anatomical and physiological data the network

architecture has to satisfy three interconnected constraints. First,

neurons similar in terms of their conductances densities are

clustered together and connected more densely to neurons inside

the same cluster than to neurons belonging to different clusters.

Second, the number of connections per neurons is between 1 and

38 [2]. Third, the connection strength is limited to a coupling

coefficient between 2 and 20%. However, the majority of

connections have a reported strength of CC,10% [1].

We generated pseudo-random networks in which we manually

set the meta-parameters of the network, namely the number of

neurons per cluster (12), the number of clusters (4), the number of

connected neighbors inside a cluster (4), the overall connectivity

scheme between clusters (Figure 1B), and, the number of

connections between 2 connecting clusters (1 per neuron). In the

networks generated for Figure 2 D&E, we sampled one cluster

center for each cluster. We then sampled according to a normal

distribution around this center (m= 0.005 mS/cm2 and
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m= 0.01 mS/cm2 for gl and gCa, respectively) to get set the actual

values for the conductances of the model neurons inside that

cluster. The networks in Figure 2D have a randomized

connectivity scheme in which each cluster was connected to one

to three other clusters. The networks in Figure 2E had a fixed

connectivity scheme, namely the scheme from Figure 1 (left). The

networks in Figure 3D were the same as the reference network and

only differed in their inter-cluster strengths.

We implemented all simulations in PyNEURON [48]; the code is

available on ModelDB (accession number: 144502). Analysis of the

network dynamics was done with custom routines in Python/SciPy/

Matplotlib (Python: http://python.org, SciPy: http://www.scipy.

org/, Matplotlib: http://matplotlib.sourceforge.net/). The ‘‘phase-

map’’ in Figure 4B is generated by computing the phase difference

between each pair and setting the first neuron in the first cluster as

the reference (i.e., 0u phase-difference). For the visualization, the

clusters were ordered from bottom-to-top in order of larger phase-

difference to the reference. The cross-correlation in Figure 3C is

computed from the peak times (as is generally done with spike times)

and not from the full membrane potential trace.

Supporting Information

Text S1 Additional information about the robustness of the

model, modulation of network frequencies and the range of

frequencies at which (a pair of) IO model neurons can oscillate.

(DOC)

Video S1 Video illustrating propagating waves of activity in a

‘‘20 clusters620 neurons’’ network.
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