
A Non-Transitive Trust Model for
Key Distribution

Sarvjeet Herald, Stephen Clarke and Bruce Christianson
School of Computer Science, University of Hertfordshire

College Lane, Hatfield, AL10 9AB, UK
{s.herald, s.w.1.clarke, b.christianson}@herts.ac.uk

Abstract: Key distribution mechanisms such as PKI or

PGP implicitly assume trust to be transitive. This can be
a problematic assumption. The user relies indirectly (often
implicitly) on the remote entities to satisfy its trust require-
ments. In fact, over the years trust has been a much debated
topic in the electronic world. In our view, trust is most use-
fully modeled as non-transitive and subjective to the user.
This paper explores a novel way to address the well known
asymmetric key distribution problem in the electronic world
by mitigating the subjective risk of the user. We extend the
conventional PKI and PGP models by deploying a recently
introduced concept called trust*. Trust* is a way of building
on existing trust relationships using an electronic equivalent
of real-world guarantees so as to avoid the need for transi-
tive trust. This application of trust* provides a flexible way
to bridge the gap between the two unknown entities through
the use of localized guarantees. Our model allows trust* to
replace the need for transitive trust in PKI or PGP and thus
reduce the perceived risk of the user in key distribution.

1 Introduction
Trust [11], [12] is a much debated topic in the electronic world.
The electronic world is very different from the real world as
the trusting party is usually unqualified to evaluate risks in
the electronic context.

Due to an enormous growth of the Internet, it is highly
likely that users do not have a prior relationship but still want
to communicate. In such scenarios, users with no personal
relationship can securely exchange messages using public-key
cryptography. A unique public-private key pair can ensure,
for example, that their messages are confidential: if the mes-
sage is encrypted with the public key of the recipient and
sent to the recipient over an open communication channel,
only the owner with the corresponding private key will be
able to decrypt it. However, an interesting problem faced by
the growing number of electronic users is to find the correct
public key of the recipient. This problem is often referred
to as the key distribution problem. Existing solutions such
as Public Key Infrastructure (PKI) [2] or Pretty Good Pri-
vacy (PGP) [22] involve a third party (assumed to be trusted)
like a public-key authority, public-key directory, key signing
or reputation system for key distribution. The problem with
existing solutions is they implicitly assume trust to be transi-
tive. This can be a problematic assumption. The user relies

indirectly (often implicitly) on the remote entities to satisfy
its trust requirements.

In a recent work, Clarke, et al. [6] discuss how analogies to
real world guarantees via intermediate entities can be used to
replace the need for transitive trust. This paper will discuss
how the need for transitive trust can be eliminated for key
distribution. The notion of trust used in this paper is first-
hand subjective trust based on the user’s already established
personal relationships. The application of Clarke’s concept of
trust* can be used to bridge the gap between two unknown
entities, thus reducing the perceived risk of an individual.

2 Trust
Over time researchers have come up with definitions
of trust as transitive, derived, bi-directional, or relied
upon [11], [13], [14], [21]. However, it is often argued that
trust is not always transitive [5]. On the Internet, within
and across domains, trust can be broadly classified into three
trust models: Direct Trust, Hierarchical Trust and Web of
Trust [4].

Direct Trust

All cryptosystems use direct trust in some way. This simple
trust model is based on a direct relationship one individual
has with another based on an existing relationship. In the
real world, direct trust is often one-way, for example, Alice
trusts Bob, but Bob does not trust Alice. Similarly on the
Internet, trust should be generally assumed one-way. But in
many situations direct trust is assumed to be two-way.

Figure 1: Direct trust model.

Hierarchical Trust

Hierarchical trust allows two principals in different adminis-
trative domains to communicate if a chain of trust is estab-
lished between the two. Usually each domain has its own
Certification Authority (CA). This trust model represents a

1



Figure 2: Hierarchical trust model.

parent-child relationship where a single parent can have mul-
tiple children who trust their parent. Hierarchical trust is
commonly used in PKI for cross verification of Public Key
Certificates (PKC). It helps users with no prior relationship
to build (transitive) trust relationships. Figure 2 shows a typ-
ical parent-child relationship in a hierarchical trust model. It
shows a PKI with a root CA, other CAs and the end users.

Parents have knowledge about a child’s key. Every child
sends its key to the parent who registers the key in its di-
rectory (after verifying the child according to the parent’s
policies and procedures). Figure 2 shows the complexity of
the trust assumptions implicit in the hierarchical trust model.
The dotted arrow shows that a parent has the knowledge of
the public-key of the child. Solid arrows show direct trust.
Having knowledge about someone is very different from trust-
ing someone.

Suppose that E wants to communicate with H, then A is
the lowest common entity between the two. E trusts B to give
him the correct key of H, but B does not know the key of H.
B trusts A to give B the key of H, but even if we assume that
trust is transitive (whence E trusts A to give B the key of H)
this is still not enough: A does not know the key of H either.
D does know the key of H, but now as well as transitivity we
also need to assume symmetry of the trust between CAs: A
must trust D to give A (and hence B) the correct key of H.
These assumptions on trust (which imply that every end user
must trust every CA) are often not justified, and usually are
not even stated explicitly, for the PKI.

Web of Trust

The concept of a Web of Trust was first put forth by
PGP [18], [22] creator Phil Zimmermann in 1992 where the
responsibility of validation of public keys is delegated to peo-
ple you trust. The Web of Trust is a general directed graph
and does not have a centrally trusted controller (such as a
CA) but instead depends on the trust of other users. The
public key is signed by a trusted person who acts as an in-
troducer. The solid arrow in Figure 3 represents direct trust.
For example, 11 or 8 may introduce 9 to 7 due to direct trust
(7 directly trusts 11 or 8 and 11 or 8 has knowledge of the

Figure 3: Web of Trust

key of 9). The final trust decisions are left to the user based
on his trustee’s assertion that the public key in circulation is
correct.

Phil Zimmermann did not assume trust to be transitive in
web of trust. The trust is limited to the introducer. But,
the users of the web of trust in PGP made an assumption of
trust transitivity and extended web of trust to allow chains
of introducers.

3 Key Distribution Mechanisms
To develop trust among users with no prior relationship, var-
ious key management mechanisms are used in practice. Dent
and Mitchell [9] discuss standards for key management, a
key’s life cycle and its usage. Often a trusted third party,
PKI, PGP or reputation system is used to increase trust on
the Internet and solve the key distribution problem. However,
relationships between unknown parties are based on second
hand (i.e. indirect) trust. The truster does not know the
trustee personally. Trust (often implicitly) is thus assumed to
be transitive. A trustee has to rely on (an assumed) trusted
third party to provide assurance on the public-key of the re-
cipient. This is due to lack of alternatives for the user and
can be a problematic assumption.

Public Key Infrastructure (PKI)

The primary principle of PKI is to establish trust hierarchies
to enable secure, convenient, and efficient acquisition of pub-
lic keys. Stallings [19] states: “RFC 2822 (Internet Security
Glossary) defines public-key infrastructure (PKI) as the set of
hardware, software, people, policies, and procedures needed
to create, manage, store, distribute, and revoke digital certifi-
cates based on asymmetric cryptography.” Typically multiple
CAs are involved in a PKI, responsible for generation, man-
agement, storage, deployment, and revocation of public key
certificates and require cross verification. Vacca [20] states:
“When CAs negotiate cross-certification services, they will
examine each others CPSs1. The liability of the certificate
issuers and the end entities together helps in the degree of
the trust.”

When designing the PKI, it was thought that these hier-
archies would provide a greater degree of trust. Ellison and

1Certification Practice Statement

2



Schneier [10] discusses the risks of PKI and the imprecise use
of the word “trust”. The CA’s are actually the organisations
used to establish trust. There are few popular CA’s on the
Internet, but in fact, it is very easy for anyone with skills to
behave as a CA and issue certificates. This makes it difficult
for a user with no personal relationship with a particular CA,
to analyze the threats regarding the ownership and authen-
ticity of a public key.

Jøsang [13] recommended the introduction of relative trust
in the key to owner binding, and recommendations based on
first-hand evidence, as a way to transitively trust which miti-
gates the risk involved in PKI. However, the element of risk in
existing public-key based trust relationships arises from the
fact that trust is assumed to be transitive. The risk increases
with the increase in the complexity of the hierarchies. The
relying party relies indirectly (often implicitly) on the remote
CA (the assumed-to-be-trusted third party) to verify that the
principal carrying the key is the owner of the key.

Pretty Good Privacy (PGP)

PGP [1], [18], [22] is a tool intended to provide Internet users
with cryptographic privacy and authentication. It removes
the need for hierarchies of certification authorities (CAs). The
approach is a decentralised web of trust where individuals
sign the key certificates of others. Key legitimacy of an un-
known entity is provided to the sender by a trusted entity
(who also acts as an introducer to the sender). The intro-
ducer recommends that the key in the certificate belongs to
the person stated. A web of trust is a more generic solution
than the hierarchical approach, but potentially more difficult
to manage [4]. The individuals who sign the key may still be
unknown to the truster. Moreover, in PGP trusting a key is
not the same as trusting a key’s owner [16].

In PGP, multiple chains of individuals are formed between
end entities while recommending a key. This often results in
a problem, “hidden dependencies in PGP trust values” [13].
The web of trust in PGP causes the transfer of recommen-
dations between users based on second hand evidence, which
may lead to violation of trust requirements of the verifier.

Reputation Systems

A reputation system [3], [17] collects, distributes and aggre-
gates feedback about participants past behavior to predict fu-
ture behavior to each transaction. Reputation systems seek to
establish trust between strangers who hold no relationship but
want to communicate. For example, PGP has its own type of
reputation system called “web of trust” to solve the problem
of uniquely identifying public-key certificates and who they
belong to. A reputation system tries to increase trustworthi-
ness between strangers. Users can append ratings to the key,
which would enable strangers to trust the public-key certifi-
cate. Usually a user has no personal relationship with the
entity recommending. But even when they do, users must
still trust the public-key certificate based on second hand ev-
idence. This has the effect of requiring transitivity of trust.
Although the final trust decisions are left on the user, the lack
of alternatives forces the user to trust the recommendations.

4 Trust*
The trust* model [6], [7], [8] uses guarantees to extend local
trust between end-points to a new relationship called trust*.
This is analogous to a real world protocol, where a guarantor
can be used to replace the need for transitive trust. (For ex-
ample, the buyer trusts the guarantor, the guarantor trusts
the vendor. If the vendor defaults, the guarantor will com-
pensate the buyer, who thus does not need to trust the ven-
dor. All trust remains local.) Trust* extends local trust to a
new relationship which can hold between principals that are
unknown to and do not trust each other. Guarantees are pro-
vided by principals within pre-existing (local) trust relation-
ships. Each principal directly trusts the principal providing
them with a guarantee, but there is no end-to-end trust. The
pre-established trust relationship mitigates the subjective risk
of a user.

Figure 4: Trust* relationship.

Trust* is based on a unidirectional chain of locally trust-
ing principals and can consist of a arbitrary number of hops
to communicate with the unknown entity (Figure 4). Each
trust relationship is localised and one-way, and so trust* can
be extended to multiple guarantors between the end entities.
Risk is redistributed to the guarantor B who will take the re-
sponsibility because he trusts entity C based on his long term
relationship. The guarantor B provides a guarantee to A that
C will act appropriately. If C does not, then B will pay A a
forfeit. Guarantees are localised and one-way, so reverse trust
is not required, Entity C need not trust the guarantor B.

A payment model is used for the provision of guarantees
in the trust* protocol. These include commission payments
as an incentive for giving a guarantee and forfeit payments
as a deterrent for defaulting a guarantee. Forfeits may also
compensate the affected party. These payments are paid lo-
cally and can be micro-payments, CPU time, database access,
bandwidth or something else of local value.

The concept of extending trust using localised guarantees
enables the trust*er to act as if he trusts the trust*ee directly.
As actual trust relationships are localised, trust management
and payment mechanisms can be heterogeneous and end en-
tities participating in the trust* relationship can even remain
anonymous to each other. An important advantage of trust*
is that no new trust relationships need to be built for trust*
to work.

3



5 Trust* Key Distribution
On the Internet where users have no existing relationship, the
introduction of trust* to the key distribution mechanisms dis-
cussed earlier mitigates the subjective risk of the user. The
trust*er (user) develops a trust* path to the trust*ee via a
guarantor who he directly trusts based on his existing trust
relationships. The user contacts his trusted source for a guar-
antee of the end-point. The guarantor acts as a mediator to
develop a trust* path between the end entities. This elimi-
nates the need for transitive trust in the existing key distri-
bution mechanisms. The use of forfeits as deterrent provides
assurance to the trust*er. The commission is an incentive to
the guarantor to provide the guarantee.

PKI with Trust*

The user contacts a particular CA who issued the public-key
certificate to the entity he wants to communicate with, using
a guarantor. Now, instead of the complex trust relationships
in hierarchical trust model (figure 2), the hierarchies of trust
are reduced to single hops by trusting only the principal pro-
viding the user with a guarantee. The introduction of trust*
to PKI avoids unnecessary trust assumptions and eliminates
the transitive trust. The user E need only find a guarantor
which he trusts directly to guarantee the public-key certifi-
cate from the CA D. The user E and the guarantor agree on
commissions and forfeit rates before he receives the public-key
certificate from D, through the trust* relationship. The guar-
antee mitigates the subjective risk of the user and provides
assurances on public-key certificate. The user need not trust
the CA D, he trusts only the guarantor. The direct trust of
the user on guarantor can be revoked or updated anytime if
the trust ceases or changes.

PGP with Trust*

Similar to the early web of trust, trust now is limited to one
hop. The trust complexity of the chain of introducers is re-
duced to the (pre-existing) relationship with a guarantor who
guarantees the end node. This eliminates the need for transi-
tive trust and mitigates the subjective risk of the user. There
can even exist end-to-end anonymity as the user need not have
knowledge about the end node because he is assured with the
guarantee. In order to enter into a trust* relationship with
the end node, the user only needs to find a guarantor who has
a trust* path to the end node and agree on commission and
forfeit rates. The user does not trust the end node, but relies
on the guarantee. As trust is now localised, the use of trust*
removes the hidden dependencies in trust values discussed
earlier. As with PKI, the direct trust the user has with guar-
antor can be revoked or updated anytime if the trust ceases
or changes.

Routing with Trust*

Any established network routing protocol can be used to
find an appropriate chain of guarantors in a trust* relation-
ship. This requires no change to the current infrastructure.
Routing decisions are often based on two popular algorithms:
Dijikstra Algorithm and Bellman-Ford Algorithm; involving
least cost or distance vector [8]. Routing algorithms such as

RIP v1, RIP v2, IGRP, EIGRP, OSPF, BGP, PBR [15] can be
used to establish a trust* path between the end-entities. How-
ever, we propose a specific algorithm, called Web of Trust*,
that uses trust* for key distribution.

6 Web of Trust*

Web of Trust* does not have a centrally trusted controller,
and does not rely on a third party or an introducer to develop
new trust relationships on the Internet. Unlike web of trust
in PGP, assurances are provided by the guarantor who the
user directly trusts. Trust* is extended between the end-
entities using a guarantor (or chain of guarantors). Trust
does not go beyond one hop and is always local. End-entities
need not trust each other directly, but instead use trust*.
Commission and forfeit are used as a cost metric (similar to
metric in other routing algorithms) that help in deciding the
route. We propose a particular algorithm as a part of our Web
of Trust* which mitigates the subjective risk of the user in key
distribution. This algorithm is motivated from flooding and
adaptive algorithms, and is used to build trust* relationships
for key distribution.

The Algorithm

Shortest path is often not the most secure path. Unlike Open
Shortest Path First (OSPF), instead of finding the shortest
path between the end entities, the route is found using the
local directly trusted nodes. Trust* can then extend this to
any number of hops to reach the end entity. Each node first
checks its trust* table (Figure 5) to find any already estab-
lished trust* relationship with the trust*ee. A trust* table
maintains the state of the already established trust* relation-
ships and the guarantor. If an appropriate trust* relationship
is found at any node (n) then there takes place a complete
transfer of this part of the trust* table to node (n− 1), if the
node (n) is willing to provide a guarantee. This is similar to
distance vector protocols such as RIP, IGRP where the entire
table is broadcast to the neighbor. The difference is due to
localization, each node receives first hand information instead
of second hand and the trust* table is unicast not broadcast.
Each node maintains trust* state locally.

Figure 5: Web of Trust*

The optimal trust* route chosen depends on the following:

Case 1: No suitable guarantor to provide guarantee.
If there are no already established trust* relationship in the
trust* table, the client sends a guarantee request message to
all its directly trusted nodes. Instead of flooding the network,
guarantee request are sent only from node (n) to the node

4



(n+ 1) where node (n+ 1) are the nodes listed in node (n)’s
direct trust table. Each node repeats the algorithm.

Case 2: The guarantor is not willing to provide a
fresh guarantee.
Even if there is an already established trust* relationship,
the guarantor might reject the new request. This can be for
various reasons: he no longer trusts the node for which he
was guaranteeing, his guarantee policy does not allow him to
provide another guarantee to the client, etc. The client then
behaves as if there is no already established trust* relation-
ship, removes the trust* relationship from the trust* table
and starts looking for new guarantor (Case 1).

Case 3: The guarantor is willing to provide a fresh
guarantee.
A guarantor might be willing to provide a fresh guarantee
if there is an already established trust* relationship, after
agreeing on commission and forfeit rates. Then a complete
transfer of the trust* table in the reverse trust* path takes
place. The node (n − 1) on receiving the trust* table from
node (n), first updates its trust* table and then sends its
updated trust* table to the node (n − 2). This process is
repeated until the client node receives the updated trust*
table and updates its own trust* table.

Figure 6: Message passing in Web of Trust*

Figure 6 shows the message passing in Web of Trust* to
get the public-key certificate from CA.

1. The client A requests a guarantee from its directly trusted
node C (possible guarantor) depending upon if there is an
already established trust* relationship or not, in the trust*
table. Checking the trust* table first is necessary.

2. If the directly trusted node C is available to provide a guar-
antee, it replies with an offer i.e. commission and forfeits
rates (this may involve negotiation until the client accepts
the offer).

3. If client A accepts the offer, he pays the up-front commis-
sion payment to the guarantor C and requests the public-
key certificate.

4. The client A receives the public-key certificate from the
guarantor C.

5. The client A sends either a delivery receipt to the guarantor
C or claims forfeit.

Similar to link state protocols, message passing is done only
when a guarantee is required. It is unnecessary to send ad-
vertisements on changes in the state, when no guarantee is
required. If the guarantor is willing to give a fresh guarantee,
it then sends its new guarantee conditions i.e. commission and
forfeit rates. Commission and forfeit are used as a cost met-
ric similar to the metric used in other routing algorithms that
help in deciding the route. If the new guarantee conditions are
acceptable to the client, the client pays up-front commission
payment and requests the public-key certificate. A guaran-
tor, on receiving the public-key certificate request from the
client, requests the public-key certificate from the end-entity
(via another guarantor, if involved). The end-entity passes
the public-key certificate back to the requester, which even-
tually reaches the client. A copy of the public-key certificate
is maintained at each node until the client sends either a suc-
cessful delivery receipt or claims a forfeit.

Advantages of Web of Trust*

1. The node knows many other possible trust* routes through
the passing of trust* tables.

2. The node is in a better position to provide guarantees to
the nodes that directly trust him, due to the increase in
knowledge of more routes.

3. The majority of requests only have to go one hop to find a
suitable trust* route, once the trust* routes are established.

4. When a node in a route is down, the guarantor is respon-
sible for attempting to find the new route for his client. In
the case that the guarantor is not responding, the client
can try another guarantor.

There is a small load in the network due to the complete
transfer of the trust* table. But in subsequent searches for
a guarantor, a client has prior knowledge and this prevents
network congestion.

7 Implementation
A prototype of this model was implemented to integrate
trust* with PKI using web of trust*. A client on receiv-
ing public-key certificate from the guarantor, verifies it to
ensure the certificate is valid against the basic minimum re-
quirements. Alternatively, the guarantor can first check the
certificate before delivering it to client, but this unnecessarily
increases the work load for each of the guarantors involved
in the trust* path. The following checks are performed on a
certificate:

1. The certificate received is of the correct owner as requested.

2. The certificate (or any part of the issuing chain) is not
expired.

3. The certificate is not listed in a certificate revocation list.

4. The signature attached to the certificate is valid i.e. the
hash value matches.

5. The certificate does not violate the key usage or the basic
constraints set by the CA.

5



6. The purpose of the certificate issued is same as needed.

7. The names of an issuer and a subject must form a chain,
i.e. except the first and last certificates, a subject of a higher
certificate must be an issuer of a next certificate.

8. The CA issuing the certificate is in current certificate store
and enabled. This validation is repeated until the root
certificate is validated.

9. The signing key matches with the public key in the certifi-
cate.

10. The decrypted contents of the MIC2-Info field matches the
MIC computed locally.

If the certificate fails the above test, the client claims the
forfeit from the guarantor. Depending on the importance of
the communication for which the guarantee was sought, the
client may cease his direct trust or look for another guarantor
from his directly trusted sources. The client provides the
reason for the forfeit claim such as, “the certificate received
is expired”, etc. The guarantor, who fears false forfeit claim
requests, repeats the above test, matches the reason of claim
and checks the certificate himself. He uses the locally stored
copy of the certificate to ensure that the claim is genuine. The
guarantor always carries the risk of losing his future earning if
he does not pay a genuine forfeit claim. A client might cease
to trust him. The guarantor loses his future incentives: profit
earned by providing correct guarantees.

If the guarantor finds the certificate to be correct, he re-
quests a fresh certificate from a different trust* route, checks
the certificate and matches the two certificates to find the
genuineness of his guarantee and also of his guarantors, if
any. The guarantor can then make better decisions: pay the
forfeit, negotiate with the client or simply deny the wrong
forfeit claim and take the consequences.

If the guarantor repeatedly does not pay the client the
agreed forfeit, this eventually results in cease of trust from
the client. According to the guarantor this might be a bet-
ter option for him as he senses a greater threat in giving
future guarantees. On the other hand, if the client still trusts
the guarantor, and requests a guarantee again, the guarantor
might not offer a guarantee (after analysing his risks) or may
demand higher commission.

Negotiation

Analogous to the real world, a guarantor may try to convince
the client to withdraw a forfeit claim and not to lose future
commission. If the policy allows, a guarantor might decide
to enter in negotiation with the client. The guarantor sends
a negotiation message to the client stating his reason for the
correctness of the certificate. If the client is still not con-
vinced, and demands the forfeit a second time, the guarantor
may consider his request to oblige him. This is analogous
to a customer not convinced with the quality of the goods
purchased and visits the store to claim a refund. The store
looks into its company’s policy and tries to convince the cus-
tomer with valid reasons. They may know the customer is
wrong but to oblige him, may offer him a replacement or an

2Message Integrity Check

exchange on other goods. A fuzzy customer might still want
his money back. So, the store (who wants to oblige and retain
the customer for future profit) will likely refund the money.
A persistent complainer will eventually not get a refund.

The guarantor may offer the client a free guarantee from
a different trust* route to ensure him the correctness of the
certificate. If the client accepts the offer, the guarantor sends
him another trust* route. The client and the guarantor record
this act of obliging. A fuzzy client still not convinced demands
the forfeit, then depending on the risks involved in giving back
the forfeit: potential profit and customer retention; a guar-
antor might return the forfeit but records it. However, the
maximum permissible refunds before ceasing the relationship
depend on the individual guarantor because he does not trust
the client. The client on the other hand might eventually con-
sider this a breach of trust and cease his trust in the guarantor
anyway.

8 Discussion

An advantage of using trust* is heterogeneity: because all
trust is local, each user can apply his own authentication
mechanisms. Any already established authentication mecha-
nisms can be employed to authenticate the two users. Gener-
ally, a user signs the message with his private key, and sends
it to the guarantor after encrypting the message with the
public-key of the other end.

The need for end-to-end anonymity depends on the key dis-
tribution mechanism in use. By using trust*, end-entities may
remain anonymous. For example, the client’s pre-knowledge
of the end point (i.e. CA who issued the public-key certificate)
need not require end-to-end anonymity for key distribution
in PKI. The motive is to find a trusted source who can guar-
antee the public-key certificate from a particular CA. While
in PGP, the uncertain knowledge of the end-point motivates
end-to-end anonymity. A client is far-less concerned with the
end-point as long as he is getting assurance from his trusted
source.

Analogous to the real world, a guarantor is willing to pro-
vide a guarantee for monetary benefits. This model ensures
that the electronic guarantor gains incentives for his guaran-
tee. Before the trust* relationship can be established, the
client and its directly trusted node (the guarantor), agree on
commission and forfeit type and rates.

Commission is paid up-front. This incentive can also be
considered as an act of obliging the guarantor in the hope to
get more successful guarantees in future. If the client is not
satisfied with the guarantee he may demand the agreed forfeit
otherwise he will notify the guarantor that he is happy with
the guarantee. The commissions and forfeits are the building
blocks of trust* where failure of payment may result in the
cease of trust or change in relationship. The forfeit acts as
a deterrent to discourage false guarantees and prevent the
delivery of false certificates to the client.

Short-term problems may arise when a guarantor is receiv-
ing a commission from his client and also from the entity he
is guaranteeing. If the guarantor is getting more commission
from the entity he is guaranteeing than the forfeit he is paying
to the client, the guarantor’s changed incentive might result in

6



giving a wrong guarantee to the truster. But if the client has
to claim the forfeit regularly from this guarantor, the client
will eventually decide to cease his local trust. Alternatively,
a guarantor may decide to suddenly increase the client com-
mission to avoid frequent forfeit claims from the same client,
rather than simply cutting off the guarantee requests.

Trust* is one-way: the client trusts the guarantor, but the
guarantor need not trust the client. A guarantor might be
in doubt, if the client is regularly falsely claiming the forfeit.
Similar to the trust* table, a reverse trust* table helps in
deciding on future guarantees by the guarantor. A guarantor
records the service he provided to the truster which includes
commissions and forfeits. A guarantee policy (if needed) can
be associated with this reverse trust* table. If the guarantor
has already provided a guarantee to the client, then a fresh
guarantee should only be provided after checking the reverse
trust* table.

In the situations where the trustee suspects the truster of
false forfeits claims, he can choose an additional route from
a different direct trust relationship. This can provide assur-
ances to the guarantor or the end-entity who otherwise do not
trust the truster.

Figure 7: Cycles of Trust*

“Cycles of trust*” [8] can be used to further decrease the
subjective risk. The cycles of trust* extend the Web of Trust*
in the opposite direction. If a trust* path can be found from
A to C, then it is usually possible to find a trust* path from
C to A, via different sequence of nodes. This protects against
spoof forfeit claims. Figure 7 is an example where B directly
trusts C but C does not trust B or A. In such situations, the
Web of Trust* can be extended to C’s pool of directly trusted
nodes to find a guarantor for a reverse guarantee that false
forfeit claims will not be made. This will assure authenticity
of A to C, decrease the subjective risk of C on false claims,
and prevent false/spoofing guarantee requests.

Other issues such as congestion can be considered in the
future. For example, when particular nodes increase their
prices, this may cause “nearby” nodes to overload, particu-
larly when long trust* paths involving many nodes are af-
fected.

There is more to be done, to make this approach commer-
cially viable, efficient and scalable, depending on the reader
of this paper.

9 Conclusion

Trust is a much debated topic on the Internet and is defined
in different ways. We believe, trust is not always transitive.
Existing key distribution mechanisms implicitly assume trust
to be transitive. The user is forced to rely on third parties
for the correct public-key. This is due to the lack of alterna-
tives currently available to the user. Trust* is an alternative
approach which eliminates the need for transitive trust. The
motive behind this research was to explore a new way of build-
ing on the trust in conventional key distribution mechanisms
and which avoids the need for transitivity of trust.

Trust* uses guarantees to extend the effects of local trust
to end-points. All trust is local; end to end authentication
is not required. Indeed the end-entities may remain anony-
mous. The Web of Trust* introduced in this paper establishes
a trust* path between the end-entities. Then the trust*er can
act as if he trusts the trust*ee directly. This algorithm main-
tains the state of the trust* path locally at each node. There
is a small load in the network due to the complete transfer
of the trust* table. But in subsequent searches for a guar-
antor, the client has prior knowledge and this reduces overall
network load.

The commissions and forfeits in trust* are used as incentive
and deterrent to encourage delivery of the correct public-key.
Forfeits can also ensure that the affected party is compen-
sated. The commission is paid up-front and the client on
receiving the certificate either sends a message to guarantor
that he is happy or claims a forfeit.

Trust* requires no change in infrastructure and has the
benefit that it builds on already established trust relation-
ships. No new trust relationships need to be built. Trust
management remains local, thus unlike other methods that
address the key distribution problem, trust* is heterogeneous
in many contexts.

This research shows that the combination of trust* with
either conventional PKI or PGP is feasible. The need for
transitive trust is eliminated. The trust required is now lo-
calised. Thus, the subjective risk perceived by the user is
decreased.

References

[1] Alfarez Abdul-Rahman. The pgp trust model. Technical
Report. University College London, 1996.

[2] Erik Andersen. The x.500 directory standard: A key
component of identity management. Telektronikk, 1:160–
164, 2008.

[3] G. Bella, G. Costantino, and S. Riccobene. Evaluat-
ing the device reputation through full observation in
manets. Journal of Information Assurance and Security,
4(5):458–465, 2009.

[4] Germano Caronni. Walking the web of trust. In WET-
ICE ’00: Proceedings of the 9th IEEE International
Workshops on Enabling Technologies, pages 153–158,
USA, 2000. IEEE Computer Society.

[5] Bruce Christianson and William S. Harbison. Why isn’t
trust transitive? In Proceedings of the International

7



Workshop on Security Protocols, pages 171–176, London,
UK, 1997. Springer-Verlag.

[6] Stephen Clarke, Bruce Christianson, and Hannan Xiao.
Trust*: Using Local Guarantees to Extend the Reach of
Trust. In Proceedings of the Seventeenth International
Workshop on Security Protocols, April 2009. To appear.

[7] Stephen Clarke, Bruce Christianson, and Hannan Xiao.
Extending Trust in Peer-to-Peer Networks. In Advances
in Databases and Information Systems, LNCS 5968,
2010.

[8] Stephen W Clarke. Trust*: Extending the Reach of Trust
in Distributed Systems. PhD thesis, University of Hert-
fordshire, 2009.

[9] Alexander W Dent and Chris J Mitchell. User’s Guide
to Cryptography and Standards. Artech House, 2005.

[10] Carl Ellison and Bruce Schneier. Ten risks of pki: What
you’re not being told about public key infrastructure.
Computer Security Journal, XVI(1):1–7, 2000.

[11] Tyrone Grandison and Morris Sloman. A Survey of Trust
in Internet Applications. IEEE Communications Surveys
and Tutorials, 3(4):2–16, 2000.

[12] Jingwei Huang and David Nicol. A calculus of trust
and its application to pki and identity management. In
IDtrust ’09: Proceedings of the 8th Symposium on Iden-
tity and Trust on the Internet, pages 23–37, USA, 2009.
ACM.

[13] Audun Jøsang. An algebra for assessing trust in certi-
fication chains. In Proceedings of the Network and Dis-
tributed Systems Security Symposium (NDSS’99). The
Internet Society, 1999.

[14] Audun Jøsang, Roslan Ismail, and Colin Boyd. A survey
of trust and reputation systems for online service provi-
sion. Decision Support Systems, 43(2):618 – 644, 2007.
Emerging Issues in Collaborative Commerce.

[15] James Macfarlane. Network Routing Basics: Under-
standing IP Routing in Cisco R⃝Systems. Wiley Publish-
ing Inc, 2006.

[16] P. A. Nixon, W. Wagealla, C. English, and S. Terzis. Se-
curity, Privacy and Trust Issues in Smart Environments.
Pearson Press, 2004. Chapter in Smart Environments,
D. Cooke and S. Das (Eds).

[17] Paul Resnick, Ko Kuwabara, Richard Zeckhauser, and
Eric Friedman. Reputation systems. Commun. ACM,
43(12):45–48, 2000.

[18] William Stallings. Protect your privacy: a guide for PGP
users. Prentice-Hall, Inc., USA, 1995.

[19] William Stallings. Cryptography and Network Security
Principles and Practices. Pearson Hall, USA, 5 edition,
January 2010.

[20] John R. Vacca. Public Key Infrastructure: Building
Trusted Applications and Web Services. Auerbach Pub-
lication, USA, 2004.

[21] Weiliang Zhao, Vijay Varadharajan, and George Bryan.
Modelling Trust Relationships in Distributed Environ-
ments. In TrustBus, pages 40–49, 2004.

[22] Philip R. Zimmermann. The Official PGP User’s Guide.
MIT Press, USA, May 1995.

Author Biographies
Sarvjeet Herald Born in India, Sarv-
jeet is a PhD student in the Algorithms
Research Laboratory at the University of
Hertfordshire. He was awarded a Univer-
sity prize for scoring “an unbroken string
of A1s” in his M.Sc. (Distributed Systems
and Networks) at the University of Hert-
fordshire (2009). His B.Sc. studies at St.

Stephen’s College (University of Delhi), India focused on dif-
ferent areas in Computer Science, Physics and Mathematics
(2008). His research interest includes trust, security proto-
cols, network security and cryptography.

Stephen Clarke Born in Chelmsford,
UK, Stephen holds a BSc and PhD in
Computer Science from the University
of Hertfordshire, UK. His research and
teaching interests are in security and trust
in computer networks and distributed
systems. Currently, he is a visiting lec-
turer at the School of Computer Science

at UH.

Bruce Christianson New Zealander
Bruce Christianson is Professor of Infor-
matics at the University of Hertfordshire.
Originally trained as a Functional Ana-
lyst, specializing in representation prob-
lems in Information and Communication
Theory, he spent several years as a Con-
sultant in the Communications Business

Unit of Data Connection Ltd, before joining the University of
Hertfordshire (then The Hatfield Polytechnic) in 1987. Bruce
is widely known for his work on Optimistic Security for Open
Distributed Systems.

8


