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Abstract 

This paper analyses both quarterly data from the Confederation of British Industry (C.B.I.) 

Survey on respondents‟ expectations of recent and forthcoming manufacturing output, and 

monthly Office of National Statistics (O.N.S.) figures on actual manufacturing output within 

the U.K. Quarterly output expectations of the C.B.I. manufacturers are explained from the 

monthly O.N.S. observations using a bounded rationality approach. The logistic formulation 

models the diffusion process across respondents. There is a backward-looking C.B.I. Survey 

perspective, explained by past O.N.S observations, and a forward-looking perspective, 

explained from future O.N.S. statistics. Also, the forecasting of monthly manufacturing output 

from earlier values along with the quarterly C.B.I. Survey information is examined, and tested 

against the alternative Pesaran/Thomas method.  

The study provides econometric evidence for the validity of the logistic model, and shows 

that bounded rationality can explain the formation of predictions among business managers in 

the U.K. manufacturing sector. The emerging consensus from the literature, supported by this 

paper, is that the logistic format is a superior „approximation‟ to the true data generating 

process compared with the earlier standard Anderson/Pesaran/Thomas approach. An 

adjustment to the Survey is used, which achieves perfect symmetry with „up‟ and „down‟ 

versions of the data. The benefits of this adjustment are tested in the forecasting Section. 
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Introduction 

 

Expectations play a central rôle in macroeconomics (Evans and Honkapohja, 2001) because in 

an uncertain world, decision-making by the business community is based on their 

expectations concerning the future behaviour of key economic variables. As indicated by 

Branch (2004), the rational hypothesis has failed to explain the survey data on inflationary 

expectations, because of the knowledge required by economic actors on the structure of the 

economy. Even an „up-dating rule-of-thumb‟ in the spirit of rational expectations can require 

substantial resources and knowledge of the economy, which is „on par‟ with a skilled, 

experienced econometrician. It is this lack of ability and information for the formation of 

rational expectations that leads agents to adopt bounded rationality to explain the process of 

formation and diffusion of expectations (Sargent, 1993), which is the approach applied in this 

paper to output expectations.  

This article presents a model of output expectation formation applied to information derived 

from the Confederation of British Industry (C.B.I.) Industrial Trends Survey. This data is 

explained in more detail in the next Section, and the following one is concerned with relevant 

methodology and functional form. There are a range of approaches to modelling expectations 

of output in the literature, and three papers have been published quite recently applying them 

specifically to C.B.I. figures (Mitchell et al, 2002; Driver and Urga, 2004 and Mitchell et al, 

2005).  Mitchell et al. (2005) provide an overview of the alternative depictions of output 

expectation formation. Driver and Urga (2004) deal only with backward-looking models, and 

therefore, exclude forecasting. This paper maintains the monthly disaggregation of the 

Government output statistics, which are used to explain the C.B.I. Survey expectations; the 

other recent articles use quarterly data. The articles by Mitchell et al (2002 and 2005) 

disaggregate by company respondent to the C.B.I. Survey, but unfortunately the ability to 

disaggregate in that way ceased in 1999, so there is no current forecasting application.  
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The C.B.I. Data  

The Survey draws information from managers of at least one thousand, seven hundred 

manufacturing companies, who are asked the following questions,   

"Excluding seasonal variations, what has been the trend over the past four months and what 

are the expected trends for the next four months...?" 

 

This is the company Survey data on backward- and forward-looking expectations used in this 

article. According to Mitchell et al. (2005), page 488, the majority of researchers in this field:   

 

“treat the difference between the four-month period referred to in the survey and the 

quarterly frequency of our official data is being unimportant”. 

 

The approach used in this study maintains the timing distinction between the quarterly survey 

and the monthly output figures, by comparing quarterly survey data with the monthly, non-

seasonally adjusted government statistics. The respondents give an indication of output trends 

at the beginning of the month (m0), covering the past four months (m0 to m-4), which are 

published each January, April, July and October, which are (m+1). By contrast, Official 

manufacturing output data to the end of the month, (m-1), are made available initially two 

months later (m+1), although subject to later correction (C.B.I., 1983).                            

The C.B.I. survey started in 1958 on the basis of three questionnaires per year until 1972 

when it became quarterly. We have converted the three figures each year before 1972 into 

four by interpolation. The sources of the observations are the C.B.I. and the Datastream 

database. The empirical analysis in subsequent sections of this article suggests that these 1959 

to 1971 observations are reliable, with no evidence of heteroskedasticity in the regressions.   

Respondents are asked to identify a trend over the past and future four months without 

seasonal variation, but they may instinctively contrast their current response with that of a 

year earlier. The Survey figures may be the result of a smoothing process (Cunningham, 

1997), which could lead to serial correlation patterns in the regression analysis.  
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The form in which the study has used the monthly Official manufacturing output is as annual 

logarithmic changes. This was achieved by taking the logarithm of the Official estimate of 

manufacturing output each month, and subtracting the logarithm of output 12 months 

previous. This reflects the „overlapping‟ yearly sequence of events, which, we argue, is the 

basis for managers' responses.  

Output Expectations and Functional Form: A Logistic Model of Business Expectations  

 

Mitchell et al (2005) explain that there are two, fundamentally different approaches, to 

quantifying qualitative information such as the C.B.I. Survey data;  these are the regression 

method, in this output expectations case the Pesaran/Thomas procedure, and the probability 

method, in this instance, the logistic (or logit) model. Their abilities to explain the Survey 

expectations cannot be directly compared, because the dependent quantitative variables are 

different, but their abilities to forecast the Government output data can be compared using 

Root Mean Squared Error (RMSE), the Akaike Information Criteria (AIC) and the Schwartz 

Bayesian Criteria (SBC). 

Pesaran (1984) developed the Linear Anderson Method to explain Survey Expectations of 

prices. It was further adapted in Thomas (1995) to explain Output Survey Expectations.  

Driver and Urga (2004) use the Linear Anderson and, for some series, the Pesaran method.  

The logistic (or logit) model is an example of a probability method, related to the approach of 

Carlson and Parkin (1975). As Cramer (1991) explains, there can be a number of reasons for 

using a logistic formulation: one is a probability threshold explanation, described and used in 

Mitchell et al (2002); another is a diffusion explanation, where the results of a Survey are a 

„snapshot‟ of a dynamic process of expectation formation by companies. A third explanation 

could be that the logistic function facilitates the „compression‟ of a variable over an infinite 

range to one over a restricted scale. 
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To expand on the diffusion explanation, suppose that the business environment has been 

benign, most firms have expected „up‟, and there has been positive growth in aggregate 

manufacturing output in the economy. Then some leading respondents of the „pack‟ begin to 

expect recession, and change to „down‟, reducing the proportion of „ups‟. The expected 

change in direction, up or down, denoted by ,kE  should later be reflected in the Official data, 

represented by ,X denoting actual manufacturing output growth. The expected change in 

direction, ,kE is related to the output growth rate by a proportional coefficient ,1 and a 

constant, ,0 to a linear approximation.  The „leaders of the pack‟ are later followed by more 

of „the pack‟, and finally by the „stragglers‟.  

The formation of the expectations is based on bounded rationality, meaning that respondents 

are rational in pursuit of self-interest, but are constrained by the complexity and cost of 

processing information. Agents are "intendedly rational, but only limitedly so" (Simon, 1961). 

The intended rationality of economic agents is constrained by the existence of imperfect, 

locally available asymmetrical information, and by the complexity and expense attached to 

processing it into meaningful expectations about the changing economic environment within 

limited time.  There are limits on the skills of individuals to process information without 

error, and even with the advent of computers, there is finite computational capacity to store 

and process available information (Simon, 1986). Interdependent agents may seek to 

minimise the costs of expectation formation by relying on the expectations formed by others, 

such as naive agents with high information related costs, or with little or no resources 

available for gathering and processing data. Those entrepreneurs with the skills and resources 

needed to form expectations from the available imperfect information are likely to become 

trendsetters (or „alpha‟) within the „pack‟ of respondents. The latecomers are particularly slow 

in adopting the market expectations, because they face high costs in adapting to change.  This 

sequence of dispersion and degree of interdependence implies a non-linear process which can 
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be captured by the logistic function. The alpha trend-setter and latecomer groups are small 

relative to the majority of entrepreneurs, which means that the dissemination of business 

expectations will be slow initially, with a sudden acceleration as the majority of entrepreneurs 

'convert' to the change in predictions of ,KE which is followed by a slow-down as the 

stragglers reluctantly fall into line.   

The proportions of „ups‟ (U) or „downs‟ (D) of the Survey can be used to measure this non-

linear process, but unless the proportion of the „sames‟ (S) is constant in the Survey, the 

results will be different. Other investigators have not always appreciated that the unadjusted 

„ups‟ give quite different results to the „downs‟ if the „sames‟ alter. Historically the proportion 

of „sames‟ has changed considerably at times, so some adjustment is clearly called for. The 

„ups‟ and the „downs‟ can be normalised so that they sum to 1 (or 100), by calculating SZ 1  

to derive the adjusted variables of ZUu / and ZDd /
 1

. Then either normalised variable can be 

used in the empirical analysis because they give perfectly symmetric results for .kE   

The non-linear diffusion process can be represented by the logistic function denoted as 

follows: 

1)(
)exp1( 10 


X

kE
                                                                                 [1]                                           

where, as already indicated in the discussion, 

kE  = the proportion of observations on the expected change in direction: up or 

down, in output of the k-th firm for the period;   

X  =  the growth rates of backward- and forward-looking output derived from the 

Official time-series data; 

0    =  a constant that fixes the curve on the time scale; 

1  =  the rate of growth coefficient. 

 

                                                           
1
 In fact, the normalized „ups‟ were tested against the unadjusted „rises‟ using the Thomas (1995) procedure. This method 

was chosen because of the simplicity, allowing a straightforward comparison using the AIC and SBC statistics. 
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Defining ,101 Xz   where kE varies in an 'S' shape over time, a sigmoid path (Crammer, 

1991), and re-writing [1] to ease the manipulation:  

 

.)exp1( 1
 tz

kE                                                                                        [2] 

                                                            

It can be shown that 1 kE0 as  .  tz  This is a necessary condition for kE  to be a 

probability density function. It is simple to show by algebraic manipulation that [2] implies 

,exp11
1

)+(=E-
-+z

k
t  with the so-called odds ratio equal to

2
: 
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=
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                                                                [3] 

Taking the natural log of each side of [3] to derive the logits: 

 

t
z

k

k z=)(=
E-

E
texpln

1
ln 













                                                                [4] 

and substituting to obtain: 

.
1

ln X+=
E-

E
10

k

k 












                                                                      [5] 

According to Cramer (1991), this logistic model of [5] can give empirically identical results to 

the probit model, given appropriate choice of the parameters. The logistic is used by Mitchell 

et al (2005 and 2002) because it captures the required characteristics that link the output 

expectation ( kE ) with “the growth rate…” in the official measure of output growth, X .  In 

their words on page 133: 

“As the growth rate rises from a low negative value, one would expect both the proportions 

reporting no change and those reporting a rise in their volume of output to increase. Beyond 

a particular point the steady state proportion reporting no change should be expected to start 

falling again, while the proportion reporting a rise should continue to increase. The 

proportion reporting a fall should be expected to be declining function of the growth rate.” 

 

This statement clearly indicates that the logistic format captures the dynamic properties of 

diffusion as an “approximating model” of the true, evolving data-generating process (Hansen, 

                                                           
2
 The Taylor expansion in conjunction with the odds format justifies this approximation leading to [5] with a remainder (or a 

form of error-term), which is the goal of model selection in the approach of Hansen (2005). See page 10 of Cramer (1991) for 

an exposition of the mathematics. 
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2005)
3
. The quote above from Mitchell et al (2002) is immediately followed by: We can see 

that the logit models have the expected properties.  

Empirical estimation of the backward-looking model of business expectation diffusion 

 

A logistic model of expectation diffusion is estimated here using the C.B.I. data on past 

output trends. In this econometric model, ,kE  is adjusted to bqu , , the proportion of firms that 

at  the time of the Survey  ( q ) had a „rise‟ in their output over the previous four months ( b ), 

adjusted for „sames‟. Equation [5] then becomes: 

.
1

ln 1
,

,
X+=

u-

u
0

bq

bq















                                                               [6] 

The dependent variable is the adjusted proportion of managers in the Survey who think output 

rose in the previous four months (backward-looking). The independent variable is the Official 

change in manufacturing output. The econometric model of equation [6] indicates the extent 

to which a logistic model fits the observations. The estimated parameters of 0 and 1  are 

expected to be significant and positive, because an increase in the percentage of managers 

who have expected “ups” in output should be correlated with a rise in the rate of growth of 

manufacturing output. The inclusion of the constant term in the regression corrects any 

average bias of the official data (Cunningham, 1997).   

The statistical study employs the Hendry methodology of general-to-specific estimation on 

the more general form of equation [6] to discover the dynamics and lag structure, as follows:             

     ,11

11

0

5

1

),(0, q

j

jmj

i

biqibq dcXlulu   






                                                   [7] 

where ),( biqlu   equals ,
1 ,

,















 



biq

biq

u

u
In jmX  denotes the annual growth in the official, non-

seasonally adjusted output series based on month ,m  for earlier months )( jm  and 1d is one 

                                                           
3
 The first glimpse of the logistic model applied to the C.B.I. Survey data in the public domain was in a footnote 

in Cunningham (1997). 
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dummy variable
4
.  The general form was simplified by imposing restrictions and removing 

insignificant variables, using formal „t‟ tests, while lowering the standard error of the 

regression, and improving performance against the selection criteria. The following restricted 

model represents the backward-looking, bounded model: 

)70134.0()63537.0()060161.0()068278.0()053786.0()025122.0(

1839.43458.212114.022264.071289.0022224.0 1),5(),4(),1(,   mmbqbqbqbq XXlulululu
 

,0040099.0:,93191.0:,0056.1:,1570.3:

,3351.62,2782.43,83443.0ˆ,177,0634.2,29906.0ˆ,87155.0,87958.0

)21368.0()73985.0()67353.0()8239.0()84940.0()77554.0(

,2432.13070.29933.18239.15105.13235.4

2
1

2
2

2
1

2
4

22

176542





 







DCBA

SBCAICSTDWRR

dXXXXX qmmmmm

             [8]                     

 

where bracketed figures are standard errors. R2  is the multiple correlation coefficient with the 

adjusted one denoted by ,2R DW is the Durbin-Watson statistic, ̂  is the estimated standard 

error of the regression, T  is the number of observations used for estimation and Ŝ  is the 

standard deviation of the dependent variable, AIC is the Akaike Information Criterion and 

SBCis the Schwartz Bayesian Criterion
5
.  

The diagnostic statistics in expression [8] are shown above6 and suggest a well-defined model 

statistically. The restrictions increased the AIC and the SBC statistics when compared with 

the general model
7
. The dynamic process embodied in the equation suggests a complex 

diffusion over a time span of seven periods, where the first three values are compared with the 

following four negative lags. Also, lagged estimates of the dependent variable have an 

important rôle to play in acting as a error-adjustment process, lagged by one and four quarters, 

which imply the need for a lag of 5 quarters too, using operator algebra. 

                                                           
4 The dummy variable refers to important events which led to short-run, „unusual‟ changes at 1998: Q4 (-1) and 2004: Q4 

(+1). 
5
 Coefficient stability was checked for compared with the shorter period since 1972, but the results are not 

reported in detail. 
6 A: Lagrange Multiplier test of the residual serial correlation, B: Ramsey‟s Reset test using the square of the fitted values,   

C: Based on a test of Skewness and Kurtosis of residuals, D: Based on the regression of the squared residual on squared fitted 

values. 
7 In this study, the AIC and SBC statistics are based on the maximum likelihood statistics, and therefore, it is the maximum 

values that are of interest (or reduced negative numbers). 
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Empirical estimation of the forward-looking model of business expectation diffusion 

 

The C.B.I. Survey forward-looking data requires similar alignment with the timing of the 

Official manufacturing figures as the backward-looking observations did, where in this case 

managers are expected to identify future output trends. We assume the „next‟ four-months are 

compared with the same four-month period in the previous year, taking annual logarithmic 

differences. There is also a need for the normalization adjustment using the „same‟ responses 

as for the backward analysis. The representation of bounded expectations now takes the 

general form, after some preliminary elimination of insignificant output variables:  

,11

19

7

16

1

),(0, q

j

jmi

i

fiqifq dcXlulu   






                                           [9] 

where ),( fiqlu   equals 


















fiq

fiq

u-

u

,

,

1
ln the future adjusted “ups”, jmX  denotes the forward growth in 

the official unadjusted output series and 1d is one dummy variable
8
. A more specific model for 

the period 1963: Q4 to 2003: Q3 was then derived by imposing restrictions to eliminate 

statistically insignificant variables:  

.20101.0:,2022.2:,46967.0:,3788.3:

.8589.96,4830.81,61678.0ˆ,160,1700.2,39067.0ˆ,59881.0,62152.0

)16988.0()89795.0()0325.1()89646.0()92303.0(

,3795.13723.35413.37626.23253.3

)055659.0()063813.0()059264.0()045522.0()045321.0(

17889.021634.016166.032351.0069693.0

2
1

2
2

2
1

2
4

22

1131098

),6(),5(),4(),1(,



















DCBA

SBCAICSTDWRR

dXXXX

lululululu

qtmmmm

fqfqfqfqfq

                  [10] 

The diffusion of expectations is explained here by the future output from months eight to 

thirteen, augmented by the error adjustment mechanism from previous expectations. The 

estimated parameters in the equation are statistically significant and the model explains 

approximately sixty per cent of the change in the quarterly diffusion process of expectations of 

manufacturing output. This means the predictions of the model as a rise in the percentage of 

                                                           
8 In the form of 1973: Q2 (1), 1974: Q1 (-2) and Q2 (1), accounting for the Barber Boom, the three-day week in 

manufacturing industry caused by the miners‟ strike and  the effect of the General Election of that year. 
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managers predicting growth in manufacturing output in the next four months is correlated with a 

subsequent overall increase in the rate of growth of output in the O.N.S. data. This empirical 

representation is well defined statistically on inspection of the diagnostic statistics in [10] with 

the AIC and the SBC improving compared with the (unreported) general model. 

These estimation results, in particular the significant lagged expectation variables, provide 

evidence that the expectations formation and diffusion among managers is really an error 

correction process. A further step in the analysis is to impose a precise error adjustment formula 

in order to capture these short-run dynamics. Using the data through from 1960 to 2004, the co-

integrating regression for these variables of interest is: 

 

.84596.0,36546.0

)1789.1()055443.0(

,9369.1162569.0

2

,





DWR

UXlu qmfq

                                                      [11] 

 

The Durbin-Watson statistic is reported, as it is sufficiently above zero to suggest that the 

residuals from the regression may indeed be stationary for co-integration. The 2R  is relatively 

low, because the estimation is a function of changes. Furthermore, to complement the 

conclusion for stationarity in the residuals, ,qU  from [11], Dickey-Fuller (DF) and the 

Augmented Dickey-Fuller (ADF) statistics were calculated and tests for co-integration 

performed. Concluding that there is a long-run relationship existing between the variables, the 

error-correction model is estimated using the residuals from expression [11] over the period 

1960:Q2 to 2004:Q4: 

 

,60842.0ˆ,179,9887.1,42171.0ˆ,51958.0,5307.0

)29938.0()29861.0()32321.0()29921.0()047697.0()83628.0(

,4247.12296.16469.285609.021140.03213.3

22

43211,



 

STDWRR

ddddUQXlu qqmfq





      [12] 
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where 4,3,2,1, idi are four dummy variables
9
. The quarterly change in mX , ,3 mm XX is 

denoted by mQX . All the diagnostic tests suggest a well-defined statistical model. The sample 

size was reduced, so that stability could be „checked‟, by starting at 1972: Q1, suggested by 

Driver and Urga (2004) as this is the point when the Survey became an actual quarterly 

response, which led to:  

.66144.0ˆ,132,0616.2,44403.0ˆ,54935.0,56311.0

)31570.0()31456.0()35076.0()057140.0()0575.1(

.4301.12288.16721.220393.01737.3

22

4321,



 

STDWRR

dddUQXlu qqmfq





              [13] 

 

The coefficients are stable when comparing [12] and [13]. These error correction models are 

much more constrained than the specific forward-looking model of [10], almost to the point of 

over simplification. Expression [10] is statistically the better model, as shown by the lower 

standard error of the regression, but [12] and [13] add another perspective on the process of 

expectation formation.    

 

Econometric estimation of the forecasting model of future O.N.S. output 

 

The forecasting of future output using the Survey is causally quite different to the explanation 

of expectations in the previous Sections. Simple reversal (or inversion) of a regression 

equation in these circumstances is not possible. The forward-looking model, however, does 

indicate which dependent, and which explanatory variables, might be of particular interest. 

Given the empirical information of the forward-looking model, the dependent variable 

investigated was the change in ,8mX  explained by the relevant previous output changes, and 

                                                           
9 They refer to important historical events which led to short-run, „unusual‟ changes: 1d  1966: Q4 (-1) and 1969: Q4 

(1), 2d 1974: Q1(-1) and 1974: Q2 (1), 3d 1979: Q2 (1) and 1979: Q3 (-1), 4d 1980: Q3  (-1) and 1983: Q2 (1). 

The events of 1979, 1980 are the „deep-seated‟ recession effects and the Falklands war created uncertainty in 1983. 
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logistic variables from available Survey data, giving rise to the following restricted empirical 

formulation in Table [1]: 

Table [1]:  Dependent variable is ,74588   mmmmm XXXXX 1962:Q3 2004:Q3 

fiqLu ,  Coefficient Standard Deviation 

(-0)     0.0070994  0.0036385 
(-1)             -0.0059482  0.0036084 

(-5)     0.0097090  0.0037925 

(-6)             -0.0156160  0.0038233 
(-7)              0.0174550   0.0040754 

(-8)             -0.0129460  0.0038257 

jmX       (+7)     0.1679400  0.0596550 

(+6)               0.32088 0.055398 
(+5) -0.40679 0.066924 

(+2) -0.11491 0.063138 

(+1) -0.15765 0.062644 

   

jmX       (-0) 0.15862 0.062790 

(-4) 0.37200 0.065157 
(-6) 0.27799 0.060513 

(-7) -0.55133 0.067936 

(-11) -0.18076 0.066333 
(-12) 0.12655 0.060178 

(-13)  -0.089129 0.060285 

(-14) -0.27206 0.061403 
(-15)  0.18809 0.056620 

(-16) -0.29360 0.069189 

(-18)  0.13613 0.061049 
(-19)  0.46340 0.065137 

(-20) -0.22250 0.059332 

(-21) -0.11110 0.058729 
(-23) 0.15476 0.058507 

(-24) 0.18781 0.056418 

0̂  
             0.002138                              0.002617 

1Ĉ  
  0.069284 0.015870 

2Ĉ  
  0.080316                              0.018181     

3Ĉ  
             0.070736 0.017241 

4Ĉ  
 -0.046745 0.016819 

5Ĉ  
             0.080514 0.020284 

2R .81254   2R .76843 ̂ 0.020492 DW 1.9710  169T Ŝ 0.042583 

  Test Statistics     LM Version     F Version 

A: Serial Correlation Chi-sq(4)=5.3622 F(4,132)=1.0814 

B: Functional Form Chi-sq(1)=0.41409 F(1,135)=0.33160 
C: Normality Chi-sq(2)=0.15167 not applicable 

D: Heteroskedasticity Chi-sq(1)=0.000138 F(1,167)=0.0001125 

 

where 5,4,3,2,1, iCi are five dummy variables
10

.  The model shows the astonishing complexity 

underpinning the Survey. To make practical use, however, of this model for forecasting 

requires a „cascade‟ of intermediate models, which provide forecasts of ,7mX ,6mX ,5mX 2mX  

and 1mX  along with .mX  These models are illustrated by the following inverted „error 

correction‟ for ,mX  even though  a more general form would be preferable in practice: 

                                                           
10 The form is: 1972: Q3 (1) and 1973: Q2 (-1), 1978: Q3 (1) and 1979: Q2 (-1), 1978: Q4 (1) and 1979: Q3 (-1), 

1979: Q1 (1) and 1979: Q4 (-1), as well as 1979: Q2 (1) and 1980: Q1 (-1). 
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.0206.379,5321.388,042179.0ˆ,176,8325.1,026167.0ˆ,61512.0,62612.0

)018686.0()018845.0()018723.0()055807.0()047122.0()032774.0(

.084128.011192.010139.055414.0)(29455.0021917.0)(

22

321131,



 

SBCAICSTDWRR

dddUXQluXQ qqmfqm





   [14] 

 

where 3,2,1, idi  are three dummy variables
11

. In fact, this equation shows that the explanation 

of expectation formation can be reversed indirectly to explain future output using Ordinary 

Least Squares, although the „classical‟ assumptions underpinning regression estimation are 

not satisfied for this type of reversed analysis.  

The predictive models can now be tested. Clearly, the absence of auto-correlation among the 

residuals is one of the necessary conditions for the forecasts, from the proposed models, to be 

boundedly rational. For an unbiased and efficient forecast of )( mXQ in [14], the constant 

should be zero and the coefficient should be equal to one. The empirical study, over the time 

span of 1961: Q1 to 2004: Q4 derived the following estimates: 

)05859.0()019495.0(

,ˆ)ˆ(99992.00003443.0)( tmm VXQXQ 
                                                             [15] 

where )ˆ( mXQ is the fitted-values from [14] with tV̂  free of serial-correlation. Both hypotheses 

under the null are statistically accepted, so the depiction is unbiased and efficient. Following 

the same procedure for the model in Table [1], the estimation resulted in:  

 

)037169.0()000.0(

.ˆ)ˆ(0000.1000.0)( 88 tmm VXX                                                                    [16] 

These forecasts appear to have the required, desirable properties.  

The model in [14], in terms of ,ˆ
mX can also be compared with the Pesaran/Thomas (1995) 

procedure for generating expectations. This estimation of the Pesaran/Thomas format could not 

cope with the „full‟ sample period because of heteroskedasticity, although the time scale between 

                                                           
11 The format is as follows: 1978: Q2 (1) and 1979: Q1 (-1), 1980: Q1 (1) and Q2 (-1) as well as 1975: Q2 (-1) and 

1989: Q1 (1). 
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1977: Q4 to 2004: Q4 led to a well-defined, backward-looking statistical representation of the 

form
12

: 

)092188.0()096448.0()093351.0(

.ˆ22318.0ˆ25315.0ˆ40667.0ˆ

)016435.0()015736.0()0084985.0(

,ˆ10349.01389.0061111.0

421

1,

ttttt

tbqm

UVVVV

VdUX







                                                       [17] 

,55.227,65.235,042790.0ˆ,110,9160.1,027662.0ˆ,5808.0,60125.0 22  SBCAICSTDWRR   

.073408.0:,92905.0:,010217.0:,1773.3: 2
1

2
2

2
1

2
4   DCBA            

 

mX  is the backward-looking output growth
13

 with ,,bqU the past, adjusted „ups‟.  The inclusion of 

the past residuals, ,ˆ
tV  were tested as “instruments” using the Hausman (1978) test, which led to 

an F-statistic of 15.61, rejecting the null-hypothesis of no error-correcting forecasts. Thus, it is 

necessary to include the past residuals as “instruments” for the self-correcting mechanism of 

forecast errors. The model  in [17] was tested against the use of the unadjusted, past „ups‟ (in 

[18] below), which led to a reduction in the AIC and SBC statistics of 227.2332 and 221.8323 

respectively, showing the adjustment is superior. The diagnostic tests clearly indicate a „well-

defined‟ statistical format, even for the unadjusted data, but showing less explanatory power. The 

unadjusted, backward-looking model is as follows: 

)093351.0(

.ˆ36633.0ˆ

)017787.0()036919.0()0094409.0(

,ˆ10283.025399.0053502.0

1

1,

ttt

tabqm

UVV

VdUX







                                                   [18] 

,83.221,23.227,042790.0ˆ,110,87140.1,030121.0ˆ,504498.0,51813.0 22  SBCAICSTDWRR 

.28232.0:9049.3:,43103.0:,2478.7: 2
1

2
2

2
1

2
4   DCBA  abqU ,  is the data set representing the unadjusted, C.B.I. „ups‟. 

 

 

                                                           
12

 It is suggested by Driver and Urga (2004) in their article, that it is not possible to derive output expectations. 

The difficulty arises because they assume that the process is non-linear, when it can be captured by a linear 

format, as outlined in Thomas (1995). 
13

 Plus a dummy variable to remove unusual events at the following points in the data set:  1979: Q1 (1), 1980: Q2 

(1) and 1981: Q1 (1), which arose from recession affecting output growth. 
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According to Hansen (2005), in addition to use of the model selection statistics, the AIC and 

SBC indicated above, the root mean-squared error, or in this case the root mean squared forecast 

error (RMSFE) can be relevant in comparing models. The expected change in output over the 

next four months, ,, fqU the adjusted „ups‟, are utilized in the following equation to create output 

expectations from [17] to aid comparison: 

.23318.025315.040667.01389.0061111.0ˆ
31,   tttfq

e
m VVVUX                                    [19] 

These are compared with the fitted-values, ,ˆ
mX  derived from expression [14].  In the case of 

[19], the RMSFE led to a value of 0.031912. For ,ˆ
mX from [14], the RMSFE was 0.024595. The 

logistic function is shown here to have the lower RMSFE, compared with the Pesaran/Thomas 

method. method here. 

Future manufacturing output is important for explaining developments in  such factors as 

manufacturing capital expenditure and exports along with domestic production, and therefore, 

affects overall aggregate demand, the balance of payments and the level of spare capacity in the 

U.K. economy. The forecasting model described should influence both the Bank of England‟s 

decisions on its interest rate policy and the U.K. Treasury‟s choice of fiscal policy. 

 

Conclusion 

 

The paper has focused on the process of formation of business expectations underlying the C.B.I. 

Survey. The study argues for the adoption of a bounded rationality interpretation in order to 

explain business expectation diffusion in the context of limited information, complexity and 

expense, suggesting a non-linear diffusion process of expectations, captured by the logistic 

model. It predicts that an increase in the percentage of managers expecting growth in 

manufacturing output will be associated with a rise in the Official rate of growth of output, 

estimated with observations on both backward- and forward-looking output expectations.  
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The use of the C.B.I. Survey data for forecasting future output is also illustrated. The results 

of the estimations provide evidence supporting the logistic specification, which has been 

extensively tested. This article has shown how to adjust the raw „ups‟ and „downs‟ statistics 

with the „sames‟ to achieve symmetry in results.  

Other recent research in this area, Mitchell et al (2002 and 2005) have focused on 

disaggregating the Survey observations by the respondent. Unfortunately, the cessation of 

availability of that data in 1999 has reduced its relevance. This study uses output data 

disaggregated by months, although the Survey expectations are quarterly. 

What all the research activity based on the C.B.I. Industrial Trends Survey indicates is that it 

remains an important source of information for the U.K. Government, the Bank of England 

and British businesses as well as academics. Attention should continue to be focused on 

improving forecasting performance through research of disaggregated data sets, the functional 

form and the formation of Survey expectations Indeed, the discussion in this study not only 

applies to the functional form and the disaggregation, but also relates to the formation of 

expectations by providing some empirical support for the process of diffusion. This is in line 

with models of bounded rationality, where decision-making is uncertain and complex, and 

where entrepreneurs make decisions with one eye on their businesses, and the other firmly 

fixed on the expectations of the „alphas‟ of the pack.  
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