
AN ANALOG OF THE FEIGIN-FRENKEL HOMOMORPHISM

FOR DOUBLE LOOP ALGEBRAS

CHARLES YOUNG

Abstract. We prove the existence of a homomorphism of vertex algebras, from
the vacuum Verma module over the loop algebra of an untwisted affine algebra,
whose construction is analogous to that of the Feigin-Frenkel homomorphism from
the vacuum Verma module at critical level over an affine algebra.
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1. Introduction and overview

The goal of this paper is to give an analog of the Feigin-Frenkel homomorphism

Vg,−h∨
0 → M(n) in the case in which g is of untwisted affine type. To set the scene,

we should first recall the situation in finite types.

1.1. The Lie algebra sl2 (over C) has a realization in terms of first order differential
operators:

E 7→ D H 7→ −2XD F 7→ −XXD. (1)

Here E,F,H are the Chevalley-Serre generators and X,D are generators of a Weyl
algebra with commutation relations [D,X] = 1. At the heart of the Wakimoto
construction [Wak86] is the observation that this homomorphism of Lie algebras can
be promoted to a homomorphism of vertex algebras, given by

E[−1]|0〉 7→ β[−1]|0〉
H[−1]|0〉 7→ −2γ[0]β[−1]|0〉
F [−1]|0〉 7→−γ[0]γ[0]β[−1]|0〉 − 2γ[−1]|0〉, (2)
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from the vacuum Verma module over ŝl2 at the critical level, to the vacuum Fock
module for a βγ-system of free fields. Note the new feature, the term −2γ[−1]|0〉.

This is a special case of a construction which works for any finite-dimensional simple
Lie algebra g =C n− ⊕ h⊕ n. The realization (1) generalizes to a homomorphism

ρ : g→ DerO(n); A 7→
∑
α∈∆+

PαA(X)Dα (3)

from g to the Lie algebra DerO(n) of derivations of the algebra O(n) = C[Xα]α∈∆+

of polynomial functions on the unipotent group U = exp(n) ∼= n. This realization
arises from the infinitesimal action of g on a flag manifold, B−\G, whose big cell is
diffeomorphic to U .

Recall (from e.g. [Kac98; FB04]) that the vacuum Verma module Vg,k
0 over ĝ at

level k ∈ C is generated as a vertex algebra by states {A[−1]|0〉 : A ∈ g}, whose
non-zero non-negative products (i.e., whose OPEs) are given by

A[−1]|0〉 (0) B[−1]|0〉 = [A,B][−1]|0〉,
A[−1]|0〉 (1) B[−1]|0〉 = kκ

(
A|B

)
|0〉. (4)

Here κ
(
·|·
)

is the invariant symmetric bilinear form on g normalized as in [Kac90].
With this normalization, the critical level is equal to −h∨, where h∨ is the dual
Coxeter number of g.

Let M(n) be the vacuum Fock module for the βγ-system on n ∼= U . It is generated
as a vertex algebra by states βα[−1]|0〉 and γα[0]|0〉, α ∈ ∆+, obeying

βα[−1]|0〉 (0) γβ[0]|0〉 = δβα|0〉.
(See Section 4 for the details.)

Both Vg,k
0 and M(n) have natural Z≥0-gradations (by depth) and the first two

graded subspaces are

Vg,k
0 [0] ∼= C M(n)[0] ∼= O(n)

Vg,k
0 [1] ∼= g M(n)[1] ∼= DerO(n)⊕ ΩO(n), (5)

where ΩO(n) = HomO(n)(DerO(n),O(n)) is the space of one-forms. One identifies
|0〉 ' 1 and A[−1]|0〉 ' A ∈ g; and γα[0] ' Xα, γα[−1] ' dXα and Dα ' βα[−1].
Given these identifications, the homomorphism ρ : g → DerO(n) gives rise to a
graded linear map

Vg,k
0 [≤1]→ M(n)[≤1],

sending |0〉 → |0〉 and

A[−1]|0〉 7→
∑
α∈∆+

PαA(γ[0])βα[−1]|0〉.

This map does not preserve the non-negative products, but the result of Feigin and
Frenkel [FF90a], [FF88; FF90b] [Fre05b; Fre07] is that, at the critical level k = −h∨,
it may be lifted to one which does. Namely, there exists a linear map

φ : g→ ΩO(n); A 7→
∑
α∈∆+

Qα,A(X)dXα
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such that the graded linear map

Vg,−h∨
0 [≤1]→ M(n)[≤1] (7a)

associated to ρ+ φ : g→ DerO(n)⊕ ΩO(n), i.e. the one sending |0〉 → |0〉 and

A[−1]|0〉 7→
∑
α∈∆+

PαA(γ[0])βα[−1]|0〉+
∑
α∈∆+

Qα,A(γ[0])γα[−1]|0〉, (7b)

does preserve the non-negative products. This latter map (7) is the restriction of a
homomorphism of graded vertex algebras,

Vg,−h∨
0 → M(n).

The map φ : g → ΩO(n) respects the weight gradation. In particular φ(h⊕ n) = 0
on grading grounds.

For example in the case of sl2, φ(F ) = −2dX, φ(E) = φ(H) = 0, as in (2).
Various perspectives on this important result have subsequently appeared in the

literature [BF97], [FF99],[FG08], [ACM11] In particular, see [GMS01] for an inter-
pretation in the language of vertex algebroids and chiral algebras [MSV99; GMS04],
[GMS00; AG02; GMS03; BD04; Mal17]

1.2. Now, and for the rest of this paper, let us suppose instead that g is of untwisted
affine type, i.e. that

g ∼=C g̊[t, t−1]⊕ Ck⊕ Cd
for some finite-dimensional simple Lie algebra g̊. (Here k is central and d = t∂t is the
derivation element corresponding to the homogeneous gradation.)

We still have the Cartan decomposition g =C n− ⊕ h ⊕ n. The Lie subalgebra
n =

⊕
α∈∆+

nα is now of countably infinite dimension, and no longer nilpotent. But

its completion ñ =
∏
α∈∆+

nα is a pro-nilpotent pro-Lie algebra (i.e. a certain inverse

limit of nilpotent Lie algebras – see [Kum02], and Section 2.4 below) and there is still
a bijective exponential map

exp : ñ
∼−→ U

to a group U , which is now a pro-unipotent pro-group. We shall fix (in Section 2.6)
a convenient choice of coordinates on U ,

Xa,n : U → C.

Here (a, n) runs over a countable index set, A, which also indexes a topological basis

Ja,n of ñ. (Recall dim(nα) can be greater than 1 in affine types other than ŝl2, so we
cannot simply index by the positive roots ∆+.)

We set O(n) := C[Xa,n](a,n)∈A and define DerO(n) to be the Lie algebra of deriva-
tions of O(n) consisting of sums of the form∑

(a,n)∈A

P a,n(X)Da,n, P a,n(X) ∈ O(n),

subject to the constraint that only finitely many summands are nonzero. It has a

completion, D̃erO(n) ⊃ DerO(n), consisting of sums of the same form but without
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the constraint. (Here the new generators Da,n obey [Da,n, X
b,m] = δb,ma,n .) As before,

we define the space of one-forms ΩO(n) = HomO(n)(DerO(n),O(n)).
The group U can still be seen as a copy of the big cell of a flag manifold B−\G, in

a sense made precise in [Kas89].1 For our purpose the important point is that there
is a homomorphism of Lie algebras,

ρ : g→ D̃erO(n); A 7→
∑

(a,n)∈A

P a,nA (X)Da,n (8)

as we show in a concrete fashion in Section 2.11. This is the analog of the homomor-
phism (3).

Some examples in the case g = ŝl2 are shown in Fig. 1.
(The centre of g lies in the kernel, ρ(k) = 0, so the homomorphism ρ actually

factors through g/Ck ∼= g̊[t, t−1] oCd.)

1.3. One may define the vacuum Verma module Vg,k
0 over ĝ at level k ∈ C when g is

affine, such that (4) still holds, where κ
(
·|·
)

is the standard non-degenerate symmetric

invariant bilinear form from [Kac90] (with κ
(
k|d
)

= 1 and so on). It is still a vertex
algebra.

The main result of the present paper (Theorem 29) is that the homomorphism ρ

can be promoted to a homomorphism of vertex algebras Vg,0
0 → M. Of course, we

have yet to explain what M is. To motivate its definition, it is instructive to consider
what happens when one attempts to generalize the construction above in the most
direct fashion.

Thus, let M(n) be, again, the vacuum Fock module for the βγ-system on n ∼= U . It
is a vertex algebra, generated by (now, countably infinitely many) states βa,n[−1]|0〉
and γa,n[0]|0〉, (a, n) ∈ A, obeying

βa,n[−1]|0〉 (0) γb,m[0]|0〉 = δb,ma,n |0〉.

Both Vg,k
0 and M(n) are once more Z≥0-graded by depth, and the identifications in

(5) continue to hold. (One now identifies γa,n[0] ' Xa,n, γa,n[−1] ' dXa,n and
Da,n ' βa,n[−1].) In particular,

M(n)[1] ∼= DerO(n)⊕ ΩO(n).

Importantly, it is DerO(n) and not its completion D̃erO(n) which appears here.
Indeed, by definition, M(n) consists of finite linear combinations of states of the
form γa1,n1 [−N1] . . .γar,nr [−Nr]βb1,m1 [−M1] . . .βbs,ms [−Ms]|0〉. Thus, in contrast to

Section 1.1, the image ρ(g) ⊂ D̃erO does not naturally embed in M(n)[1]. We need

some larger space. We shall introduce a completion M̃(n) of M(n) as a vector space,
in which certain infinite linear combinations are allowed provided they truncate to

1It is perhaps worth stressing that B−\G is not the affine Grassmannian or the affine flag variety

in the usual sense of e.g. [Gör10, §2.2]. For example when g = ŝl2, the (set of C-points of the)

affine Grassmannian is SL2(C[[t]])
∖
SL2(C((t))), whereas here B− = SL2(t−1C[t−1])B̊− with B̊− the

usual lower-triangular Borel subgroup of SL2(C). See also the discussion in [Fre04, §5] (in which one
should swap t↔ t−1 to match the present conventions).
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ρ(JE,0) = DE,0 + 2XH,1DE,1 −XF,1DH,1

+
(

2XH,2 − 2
(
XH,1

)2)
DE,2 −XF,2DH,2 +

(
XF,1

)2
DF,2

+
(

2XH,3 + 4
3

(
XH,1

)3)
DE,3 +

(
−XF,3 −XE,1

(
XF,1

)2)
DH,3 + 2

(
XF,1

)2
XH,1DF,3

+ . . .

ρ(JF,1) = DF,1 +XE,1DH,2 − 2XH,1DF,2

+
(
XE,1

)2
DE,3 +

(
XE,2 + 2XE,1XH,1

)
DH,3 +

(
−2XH,2 − 2

(
XH,1

)2)
DF,3

+ . . .

ρ(JE,−1) =
(
2XH,1 + 2XE,0XF,1

)
DE,0

+
(

2XH,2 + 2
(
XH,1

)2)
DE,1 +

(
−XF,2 − 2XF,1XH,1

)
DH,1 −

(
XF,1

)2
DF,1

+
(

2XH,3 + 2XE,1XF,2 − 8
3

(
XH,1

)3)
DE,2 −XF,3DH,2 + 2

(
XF,1

)2
XH,1DF,2

+ . . .

ρ(JF,0) = −
(
XE,0

)2
DE,0 +XE,1DH,1 − 2XH,1DF,1

−
(
XE,1

)2
DE,2 +XE,2DH,2 +

(
−2XH,2 + 2

(
XH,1

)2)
DF,2

+
(
XE,3 − 2XE,1

(
XH,1

)2)
DH,3 +

(
−2XH,3 + 8

3

(
XH,1

)3)
DF,3

+ . . .

Figure 1. In type g = ŝl2, the first few terms of the images of the
Chevalley-Serre generators e1 = JE,0, e0 = JF,1, f1 = JF,0, f0 = JE,−1

under the homomorphism ρ : g→ D̃erO(n).

finite linear combinations when βa,n[N ] is set to zero for large |n|. (See Section 4.7.)
The definition is chosen to ensure that

M̃(n)[1] ∼= D̃erO(n)⊕ ΩO(n).

We get the graded linear map

Vg,k
0 [≤1]→ M̃(n)[≤1]

sending |0〉 → |0〉 and

A[−1]|0〉 7→
∑

(a,n)∈A

P a,nA (γ[0])βa,n[−1]|0〉,

with P a,nA (X) the polynomials from (8).
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1.4. At this point, naively, one would like to ask whether this map gives rise to a
homomorphism of vertex algebras in the same way as in (7) above. In that direction,
we shall establish the following statement. (It will actually be a corollary, Theorem 33,
of our main result.) There exists a linear map

φ : g→ ΩO(n); A 7→
∑

(a,n)∈A

Qa,n;A(X)dXa,n (9)

such that the graded linear map

Vg,k
0 [≤1]→ M(n)[≤1]

associated to ρ+ φ : g→ D̃erO(n)⊕ ΩO(n), i.e. the one sending |0〉 → |0〉 and

A[−1]|0〉 7→
∑

(a,n)∈A

P a,nA (γ[0])βa,n[−1]|0〉+
∑

(a,n)∈A

Qa,n;A(γ[0])γa,n[−1]|0〉,

does preserve at least the 0th vertex algebra product (for any k ∈ C). That is, if we
call this latter map ϑ, we have

ϑ(A)(0)ϑ(B) = ϑ(A(0)B) (10)

for all A ' A[−1]|0〉 and B ' B[−1]|0〉 in g ∼= Vg,k
0 [1].

The map φ again respects the weight gradation, so that φ(h⊕ n) = 0.

For example, in type g = ŝl2, when using the same choice of coordinates on U as
in Fig. 1 one finds that

φ(f1 = JF,0) = −2dXE,0, φ(f0 = JE,−1) = −4dXF,1,

and then

φ(JH,−1) = −12dXH,1 − 4XF,1dXE,0

φ(JF,−1) = −8dXE,1 + 4XH,1dXE,0

φ(JE,−2) = −10dXF,2 − 8XH,1dXF,1 + 2(XF,1)2dXE,0,

and so on.
While encouraging, this statement skirts around a serious caveat, which is the

reason the question above was naive: the completion M̃(n) is not a vertex algebra.

Or, more precisely, the vertex algebra structure on M(n) does not extend to M̃(n). In
particular, when one tries to extend the definition of the vertex algebra nth products

(n) : M(n)×M(n)→ M(n) by bilinearity to M̃(n)×M̃(n), the results are not in general
finite.

Thus, it was a non-trivial fact about the image of ϑ that the expression ϑ(A)(0)ϑ(B)
in (10) was even well-defined. And one finds the would-be 1st products ϑ(A)(1)ϑ(B)
are not in general finite.
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1.5. As an aside, let us examine some examples of these divergences in type g = ŝl2.
For this subsection only, we modify the OPEs by introducing a formal variable z
which will serve as a regulator:

βa,n[−1]|0〉 (0) γb,m[0]|0〉 = znδb,ma,n |0〉.

One has

ϑ(JH,0) = −2
∑
n≥0

γE,n[0]βE,n[−1]|0〉+ 2
∑
n≥1

γF,n[0]βF,n[−1]|0〉.

It follows that the regulated 1st product ϑ(JH,0)(1)ϑ(JH,0) is the formal series

ϑ(JH,0)(1)ϑ(JH,0) =
(
−4− 4

∑
n≥1

z2n
)
|0〉.

(We recall the standard details of computing such products in Section 4.) As more
intricate examples, one finds

ϑ(JE,1)(1)ϑ(JF,−1) =
(
−8z − 4

∑
n≥1

z2n+3
)
|0〉

ϑ(JH,1)(1)ϑ(JH,−1) =
(
−12z − 4z3 − 8

∑
n≥1

z2n+3
)
|0〉

ϑ(JE,−2)(1)ϑ(JF,2) =
(
−10z2 − 4

∑
n≥1

z2n+4
)
|0〉.

These series are divergent when one attempts to remove the regulator by setting z = 1.
One might be tempted to treat these divergences by ζ-function regularization. For an
introduction to the formal-variable approach to ζ-function regularization, see [Lep99]
(and cf. also [Blo96; Lep00; DLM06]). It amounts to the following prescription. First,
one notes that each series above is the small-z expansion of some rational expression in
z. One substitutes z = ey in that rational expression, to obtain a rational expression
in ey; then one expands ey as a formal series in y. The result is a quotient of formal
series in y, and hence a well-defined formal Laurent series in y. Finally, one extracts
the constant term in that series.

Very suggestively, when one does that, the result is zero in each example above.
For instance for ϑ(JE,−2)(1)ϑ(JF,2) one obtains −10−4

(
−5

2

)
= 0. In what follows we

shall use a different approach, but it will indeed be the case that the homomorphism
we construct is from the vacuum Verma module at level zero.

1.6. To proceed, we need more information about the image of the homomorphism

ρ : g → D̃erO(n) from (8). We illustrate the idea with an example in type g = ŝl2.
Let us consider a term in the infinite sum ρ(e1) =

∑
(a,n)∈A P

a,n
e1 (X)Da,n for the
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generator e1 = JE,0: say, the term PE,8e1 (X)DE,8. One finds

PE,8e1 (X) = 2XH,8

− 2
(
XH,4

)2
+ 4

(
XH,2

)2
XH,4 − 2

3

(
XH,2

)4 − 8
(
XH,1

)2
XH,2XH,4

+ 8
3

(
XH,1

)2 (
XH,2

)3
+ 16

3

(
XH,1

)3
XH,2XH,3 + 4

3

(
XH,1

)4
XH,4 − 4

3

(
XH,1

)4 (
XH,2

)2
− 8

15

(
XH,1

)5
XH,3 + 8

45

(
XH,1

)6
XH,2 − 2

315

(
XH,1

)8
+ 8

3X
E,3XF,2

(
XH,1

)3
− 4

3X
E,2XF,2

(
XH,1

)4 − 4XE,2XE,3
(
XF,1

)2
XH,1 −

(
XE,2

)2 (
XF,2

)2
− 2

(
XE,2

)2 (
XF,1

)2 (
XH,1

)2 − 4XE,1XE,3
(
XF,1

)2 (
XH,1

)2
+ 4XE,1XE,2

(
XF,1

)2
XH,3

− 8
3X

E,1XE,2
(
XF,1

)2 (
XH,1

)3
+ 2

(
XE,1

)2 (
XF,1

)2
XH,4 − 2

(
XE,1

)2 (
XF,1

)2 (
XH,2

)2
+ 4

(
XE,1

)2 (
XF,1

)2
XH,1XH,3 + 4

(
XE,1

)2 (
XF,1

)2 (
XH,1

)2
XH,2

− 2
3

(
XE,1

)2 (
XF,1

)2 (
XH,1

)4 − 2
(
XE,1

)2
XE,2

(
XF,1

)2
XF,2.

Observe that only the first monomial has any factor Xa,n with n > 4. This is an
example of a general pattern: for any fixed A ∈ g, as n becomes large almost all the
monomials in P a,nA (X) have only factors Xc,p with p . n/2.

We shall make this idea precise with the notion of widening gap in Section 2.12.
See Theorem 10, which will show that the difference

ρ(Ja,n)−
∑
b,c∈I

fba
c

∑
m>max(1,n)

Xb,m−nDc,m, (12)

has widening gap. (Here fba
c are structure constants of g̊.) Elements of widening gap

form a Lie algebra, DerO(n), with DerO(n) ⊂ DerO(n) ⊂ D̃erO(n).
The notion of widening gap goes over to the vertex algebra M(n): one can define a

subspace M(n) of the completion M̃(n) in which infinite sums are allowed but only if
they have widening gap. The vertex algebra structure on M(n) does extend to M(n).
(See Lemma 21.)

1.7. The question therefore becomes: what to do with the leading terms in ρ(Ja,n)?
Our approach, in Section 3, will be to glue together two copies of the realization (8)
back-to-back. Let O := O(g) := C[Xa,n](a,n)∈I×Z denote the algebra of polynomial

functions on all of g. We shall define D̃erO and its subalgebra, DerO, of elements
of widening gap. The Cartan involution σ : g→ g, which exchanges n and n−, gives

rise to an involution τ : D̃erO → D̃erO, which exchanges D̃erO(n) and D̃erO(n−).

On twisting the homomorphism ρ : g ↪→ D̃erO(n) ⊂ from (8) by these involutions,

we get a homomorphism τ ◦ ρ ◦ σ : g ↪→ D̃erO(n−). Adding the two, we obtain a
homomorphism

ρ := (ρ+ τ ◦ ρ ◦ σ) : g→ D̃erO(n)⊕ D̃erO(n−)

↪→ D̃erO.
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Of course, having helped oneself to a copy of O = O(g), there is an obvious ho-

momorphism g → D̃erO coming from the coadjoint representation, which sends
Ja,n 7→

∑
b,c∈I fba

c
∑

m∈ZX
b,m−nDc,m. So one should keep in mind that what is

special about the homomorphism ρ is that, by construction, the resulting action of g
on O stabilizes O(n) and O(n−).

We then check that the difference

ρ(Ja,n)−
∑
b,c∈I

fba
c
∑
m∈Z

Xb,m−nDc,m

has widening gap, i.e. belongs to DerO. The advantage of this statement, compared
to (12), is that we can replace the sums,

∑
m∈ZX

b,m−nDc,m, by an abstract set of

generators Sbc,n of the loop algebra gl(̊g)[t, t−1]. In this way we can, and shall, regard
ρ as a homomorphism from g to the Lie algebra

D := DerO o
(
gl(̊g)[t, t−1] oCD

)
(13)

(here D is a derivation element, and g 3 d 7→ D). See Lemma 17 and the discussion
following.

1.8. We define a vertex algebra M in light of this definition of the Lie algebra D.
Namely, we have M := M(g), the vacuum Fock module for the βγ-system on g, and

we introduce its completion as a vector space, M̃, and the subspace generated by

elements of widening gap, M ⊂ M̃. Then M is a vertex algebra, and we can take a
“semi-direct product of vertex algebras” with the level zero vacuum Verma module

Vgl(̊g)[t,t−1]oCD,0
0 to define M; so, as a vector space,

M ∼=C M⊗ Vgl(̊g)[t,t−1]oCD,0
0 .

See Section 4.9. By construction we have

M[0] ∼= O
M[1] ∼= D ⊕ ΩO.

At that point we shall be in a position to state our main result: see Theorem 28
and Theorem 29. It says the following: let φ = φ + τ ◦ φ ◦ σ : g → ΩO where
φ : g→ ΩO(n) ⊂ ΩO is the map from (9). Then the graded linear map

Vg,0
0 [≤1]→M[≤1]

associated to ρ + φ : g → D ⊕ ΩO (in the same fashion as above) preserves the
non-negative products, and is the restriction of a homomorphism of graded vertex
algebras

θ : Vg,0
0 →M. (14)

Associated to this homomorphism of vertex algebras is a homomorphism of Lie
algebras

Lg→ L(M[≤1]) (15)
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from the loop algebra Lg := g ⊗ C((s)) of the affine algebra g to the Lie algebra of
formal modes of states in M[≤1]. In fact, the central element k ∈ g is in the kernel of
ρ, so we actually get a homomorphism

LL̊g→ L(M[≤1])

from the double-loop algebra LL̊g := g̊[t, t−1]⊗ C((s)).
The homomorphism θ has the property that the non-negative modes of states in

Vg,0
0 [1] ∼= g stabilize M(n) and M(n−) inside M = M(g). Thus, we get an action of

L+g := g⊗ C[[s]], and in fact of L+L̊g := g̊[t, t−1]⊗ C[[s]], on M(n) and M(n−). See
Proposition 31. (This is in contrast to the obvious vertex-algebra homomorphism

Vg,0
0 →M, which sends Ja,n[−1]|0〉 →

∑
b,c∈I fba

cSbc,n[−1]|0〉; cf. Section 1.7.)
Finally, in Theorem 32, we shall lift the homomorphism θ to a homomorphism

Vg,0
0 →M⊗ π0

where π0 is the vacuum Fock module for a system of dim h free bosons (see Sec-
tion 4.14). (For this homomorphism, the state k[−1]|0〉 is no longer in the kernel.)

1.9. Let us conclude this introduction with some comments about these results.

The homomorphism θ is not a free-field realization: we adjoined the copy of the

vacuum Verma module Vgl(̊g)[t,t−1]oCD,0
0 in the definition of M, and so the vertex alge-

bra M does not have mutually commuting creation operators and mutually commut-
ing annihilation operators. This is apparent already at the level of the Lie algebra
homomorphism ρ : g → D: the Lie algebra D defined in (13) had generators Sab,n
in addition to the mutually commuting coordinates Xa,n and mutually commuting
derivatives Da,n. There is some rough intuition that says that is to be expected. In
this paper, the vertex algebra structure is always associated to the second coordinate,
s, appearing in the double loop algebra LL̊g := g̊[t, t−1] ⊗ C((s)). One would like to
be able to say at the same time that Xa,n and Db,n are modes in the t-coordinate of
states “Xa

0 |0〉” and “Db,−1|0〉”, and then that the Sab,n are merely the modes in the

t-coordinate of a composite state, “Xa
0Db,−1|0〉”, roughly speaking. To make sense of

such statements, one would need a theory of vertex algebras on polydiscs (of complex
dimension two, in our case), perhaps following [CG17; GW18; SWW19]. Since in the
present paper we confine ourselves to the standard definition of vertex algebras, it is
perhaps unsurprising that we need to include these Sab,n as generators in their own
right.

Relatedly, whereas in finite types M(n) gets the structure of a module at the critical
level over the central extension ĝ of the full loop algebra Lg, here the subspace
M(n) ⊂ M is stabilized by L+g, as in Proposition 31, but certainly not by all of Lg.
It might be interesting to study the Lg module through M(n) inside M.
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To illustrate the structure of the image of θ, let us examine an example in type

g = ŝl2. One finds

θ(JF,1[−1]|0〉) = SEH,1[−1]|0〉 − 2SHF,1[−1]|0〉 (16)

− γE,0[0]βH,1[−1]|0〉 − γE,−1[0]βH,0[−1]|0〉+ 2γH,0[0]βF,1[−1]|0〉
− 4γE,−1[−1]|0〉
+ βF,1[−1]|0〉
+ 2γE,−1[0]γF,0[0]βF,0[−1]|0〉 − γE,−1[0]γE,−1[0]βE,−1[−1]|0〉
− 2γH,−1[0]γE,−1[0]βH,−1[−1]|0〉+ 2γH,−1[0]γH,−1[0]βF,−1[−1]|0〉
+ 2γE,−2[0]γF,−1[0]βF,−2[−1]|0〉 − 2γH,−1[0]γE,−1[0]γE,−1[0]βE,−2[−1]|0〉
+ 8

3γ
H,−1[0]γH,−1[0]γH,−1[0]βF,−2[−1]|0〉

+ γE,1[0]γE,1[0]βE,3[−1]|0〉+ 2γH,1[0]γE,1[0]βH,3[−1]|0〉
− 2γH,1[0]γH,1[0]βF,3[−1]|0〉+ . . . .

In the first line there are terms belonging to Vgl(̊g)[t,t−1]oCD,0
0 [1]; in the second, a finite

sum of compensating quadratic terms. Then in the remaining lines is the sum of other
terms, which is infinite but with widening gap. The divergences in the 1st products,
cf. Section 1.5, are removed because we set the 1st products of the states Sab,n[−1]|0〉
to zero. Note that zero, rather than some other finite level, was not a choice: since

θ(k[−1]|0〉) = 0 and κ
(
k|d
)

= 1, θ could not be a homomorphism from Vg,k
0 at any

nonzero level k. Correspondingly, the homomorphism in (15) is from the loop algebra
Lg, rather than any central extension thereof. It is tempting to say that the critical
level is zero for untwisted affine algebras. We do not consider deforming to other
levels in the present paper.

One motivation for the present paper comes from Gaudin models. In the case of
g of finite type there is a deep connection [FFR94; Fre05a] between the centre of

the vacuum Verma module at the critical level, Vg,−h∨
0 , and the (large, commuta-

tive) algebra of Gaudin Hamiltonians, sometimes called the Bethe algebra [MTV06;
MTV09; Ryb18]. In the approach to the Bethe ansatz for Gaudin models described

in [FFR94], the Feigin-Frenkel homomorphism Vg,−h∨
0 → M(n)⊗ π0 plays a key role.

Gaudin models of affine type should provide a means of describing the spectra of
integrals of motion of certain integrable quantum field theories: an idea pioneered in
[FF11], and with further progress in [Vic18; FH18; LVY19; LVY20; Lac18; FJM17;
Del+19a; Del+19b; Vic21; You; Gai+20].

1.10. The structure of this paper is as follows.

In Section 2 we construct the homomorphism ρ : g→ D̃erO(n). Then in Section 3
we introduce the homomorphism ρ : g→ D. In Section 4 we recall basic facts about
βγ-systems and vertex algebras, before going on to state the main results starting in
Section 4.12. The proof of the main theorem, Theorem 28, is given in Section 5. It
follows the strategy due to Feigin and Frenkel and discussed in detail in [Fre07, §5].
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In particular, we introduce the bc-ghost system and use it to define a subcomplex, the
local complex, of the Chevalley-Eilenberg complex for (in our case) the double loop
algebra LL̊g. In Section 6 we give the proof of Theorem 32. Finally, in Appendix A we
compute explicitly the values of coefficients appearing in the images of the Chevalley-
Serre generators of g under the homomorphism θ: see Proposition 30.

2. Realization of g by differential operators on the big cell

2.1. Loop realization. We work over the complex numbers C. Let g̊ be a finite-
dimensional simple Lie algebra, and g̊[t, t−1] the Lie algebra of Laurent polynomials,
in a formal variable t, with coefficients in g̊. Let κ

(
·|·
)

: g̊ × g̊ → C denote the non-
degenerate symmetric g̊-invariant bilinear form on g̊, with the standard normalization
from [Kac90]. Let g′ denote the central extension of g̊[t, t−1] by a one dimensional
centre Ck,

0→ Ck→ g′ → g̊[t, t−1]→ 0,

whose commutation relations are given by [k, ·] = 0 and

[a⊗ f(t), b⊗ g(t)] := [a, b]⊗ f(t)g(t)− (rest fdg)κ
(
a|b
)
k.

If we write an := a⊗ tn for a ∈ g̊ and n ∈ Z, the commutation relations take the form

[am, bn] = [a, b]n+m +mδn+m,0 κ
(
a|b
)
k.

Define the Lie algebra

g := g′ oCd,
by declaring that d obeys [d, k] = 0 and [d, a ⊗ f(t)] = a ⊗ t∂tf(t) for all a ∈ g̊ and
f(t) ∈ C[t, t−1].

The form κ
(
·|·
)

extends uniquely to a non-degenerate invariant symmetric bilinear

form on g, which we also write as κ
(
·|·
)
, whose nonzero entries are given by

κ
(
an|bm

)
= κ

(
a|b
)
δn+m,0, κ

(
k|d
)

= κ
(
d|k
)

= 1

for a, b ∈ g̊, n,m ∈ Z.

2.2. Kac-Moody data. Recall that the Lie algebra g is isomorphic to a Kac-Moody
algebra g(A) with indecomposable Cartan matrix A = (Aij)i,j∈I of untwisted affine
type. Here I = {0, 1, . . . , `} is the set of the labels of the nodes of the Dynkin diagram.
Let h ⊂ g(A) be the Cartan subalgebra and

g = n− ⊕ h⊕ n

the Cartan decomposition, where n (resp. n−) is generated by ei (resp. fi), i ∈ I.
These ei, fi are the Chevalley-Serre generators of the derived subalgebra g′ := [g, g].
By definition they obey

[h, ei] = 〈αi, h〉ei, [h, fi] = −〈αi, h〉fi, (17a)

[h, h′] = 0, [ei, fj ] = α̌iδij , (17b)

for any h, h′ ∈ h, together with the Serre relations

(ad ei)
1−Aijej = 0, (ad fi)

1−Aijfj = 0. (17c)
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Here 〈·, ·〉 : h∗ × h → C is the canonical pairing, αi (resp. α̌i), i ∈ I, are the simple
roots (resp. simple coroots) of g. We have 〈αi, α̌j〉 = Aji.

Let b := h⊕ n and b− := h⊕ n−.
There exist unique collections of relatively prime positive integers {ǎi}i∈I and

{ai}i∈I such that
∑

j∈I Aijaj = 0 and
∑

j∈I ǎiAij = 0. Whenever g is untwisted

(in fact more generally whenever g is not of type 2A2k) one has ǎ0 = 1 and a0 = 1.
The dual Coxeter and Coxeter numbers of g are given respectively by

h∨ =
∑
i∈I

ǎi, h =
∑
i∈I

ai = 1 +
∑
i∈I̊

ai.

The central element k ∈ h and imaginary root δ ∈ h∗ are given by

k =
∑
i∈I

ǎiα̌i ∈ h, δ =
∑
i∈I

aiαi ∈ Lh (18)

Let I̊ = I\{0} = {1, . . . , `}. The matrix (Aij)i,j∈I̊ obtained by removing the zeroth

row and column of A is the Cartan matrix of g̊. Let h̊ := spanC{α̌i}i∈I̊ ⊂ g denote

its Cartan subalgebra and h̊∗ = spanC{αi}i∈I̊ its dual.

2.3. Root lattice and basis of root vectors. Let Q :=
⊕

i∈I Zαi denote the root
lattice of g. We have the decomposition of g into root spaces,

g =
⊕
α∈Q

gα, gα := {x ∈ g : [h, x] = x 〈α, h〉 for all h ∈ h},

and this is a Q-gradation of the the Lie algebra g. Let ∆ := {α ∈ Q : dim gα 6= 0}
be the set of roots of g. We write Q≥0 :=

⊕
i∈I Z≥0αi and Q>0 := Q≥0 \ {0}. The

positive roots of g are ∆+ := Q>0 ∩∆.

Let Q̊ :=
⊕

i∈I̊ Zαi denote the root lattice of g̊ and ∆̊ ⊂ Q̊ its set of roots. Let

∆̊+ := ∆̊ ∩∆+ be the positive roots of g̊.
Recall that the roots of g are given by

∆ = {α+ nδ : α ∈ ∆̊, n ∈ Z} ∼= ∆̊× Z
and the positive roots are given by

∆+ = ∆̊+ t {α+ nδ : α ∈ ∆̊, n ∈ Z≥1} ∼= ∆̊+ t ∆̊× Z≥1

Let {Hi}i∈I̊ ⊂ h̊ be a basis of h̊. Choose root vectors E±α ∈ g̊±α for each α ∈ ∆̊+,

normalized such that 〈α, [Eα, E−α]〉 = 2. Let2

Jα := Eα, Ji := Hi,

and also let I :=
(

∆̊ \ {0}
)
∪ I̊, so that

{Ja}a∈I = {E±α}α∈∆̊+
∪ {Hi}i∈I̊

is a Cartan-Weyl basis of g̊.

2Strictly speaking, in the examples in type ŝl2 in the introduction, we wrote for example JE,n rather
than Jα1,n and JH,n rather than J1,n.
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Let B denote the basis of g given by

B = {k, d} ∪ {Ja,n}a∈I,n∈Z
where Ja,n := Ja ⊗ tn. We fix a total ordering ≺ on B as follows. Pick any total

ordering ≺ of the positive roots ∆̊+ of g̊ such that α ≺ β whenever β − α ∈ Q>0.
and any total ordering ≺ of the Cartan generators {Hi} of g̊. Then declare that for
every n ∈ Z,

E−β,n ≺ E−α,n ≺ Hi,n ≺ Hj,n ≺ Eα,n ≺ Eβ,n ≺ E−β,n+1 . . . (19a)

whenever i ≺ j and α ≺ β, and finally that

E−α,0 ≺ d ≺ k ≺ Hi,0.

We can identify the Chevalley-Serre generators of g′ as follows: ei = Eαi,0 and

fi = E−αi,0, for i ∈ I̊, while e0 = E−δ+α0,1 and f0 = Eδ−α0,−1, where

δ − α0 =
∑
i∈I̊

aiαi ∈ ∆̊+ (20)

is the highest root of g̊.
Let

wgt : I × Z→ Q;

{
wgt (α, n) = α+ nδ α ∈ ∆̊ \ {0}
wgt (i, n) = nδ i ∈ I̊

2.4. The pro-nilpotent pro-Lie algebra ñ. Define

ñ :=
∏
α∈∆+

gα.

An element of ñ is a (possibly infinite) sum of the form
∑

α∈∆+
xα with xα ∈ gα for

each α ∈ ∆+. (It lies in n ⊂ ñ if and only if all but finitely many of the xα are zero.)
The Lie bracket is well-defined on ñ because, for a given positive root α ∈ ∆+, there
are only finitely many positive roots β, γ ∈ ∆+ such that β + γ = α. Similarly, the
Lie bracket is well-defined on

b̃ := h⊕ ñ, g̃ := n− ⊕ h⊕ ñ.

Let ht(α) denote the grade of a root α ∈ Q in the homogeneous Z-gradation of g,

i.e. ht(nδ + α) = n for n ∈ Z and α ∈ ∆̊. Define

n≥k :=
⊕
α∈∆+

ht(α)≥k

nα, k ≥ 1.

These are Lie ideals in n and we have embeddings n≥k+1 ↪→ n≥k for each k ∈ Z≥1.
For each k, the quotient n

/
n≥k is a nilpotent Lie algebra, and these nilpotent Lie

algebras form an inverse system

. . .� n
/
n≥k+1 � n

/
n≥k � . . . .

The inverse limit of this inverse system is isomorphic to ñ:

ñ ∼= lim←−
k

n
/
n≥k. (21)
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Indeed, elements of this inverse limit are by definition (possibly infinite) sums of the
form

∑
α∈∆+

xα, xα ∈ gα, which truncate to finite sums modulo n≥k for any k; in

other words, they are nothing but elements of ñ.
In this way, ñ becomes a topological Lie algebra, with the linear topology in which

a base of the open neighbourhoods of 0 is given by the ideals

ñ≥k :=
∏
α∈∆+

ht(α)≥k

nα, k ≥ 1.

(This topology is Hausdorff since
⋂∞
k=1 ñ≥k = {0}.)

In fact, the Lie algebra ñ gets the structure of a pro-nilpotent pro-Lie algebra; see
e.g. [Kum02, §4.4 and §6.1]. The pro-Lie algebra structure on ñ consists of the family
F consisting of all Lie ideals a ⊂ ñ such that a ⊃ ñ≥k for some k, and the pro-topology
is the linear topology in which these ideals form a base of the open neighbourhoods
of 0.

2.5. The group U . For each k ≥ 1, let exp
(
n
/
n≥k

)
denote a copy of the vector

space n/n≥k and let m 7→ exp(m) ≡ em be the map into this copy. We may endow
this copy with a group structure, given by the Baker-Campbell-Hausdorff formula,

exp(x) exp(y) := exp

(
x+ y +

1

2
[x, y] + . . .

)
,

from which only finitely many terms contribute since n/n≥k is nilpotent. For all m, k
with m ≥ k, there is a commutative diagram

n/n≥m n/n≥k

exp(n/n≥m) exp(n/n≥k)

∼ ∼

where the horizontal maps are the canonical projections. The inverse limit

U := lim←−
k

exp(n/n≥k) (22)

is then a group, and the diagram above defines an exponential map exp : n̂
∼−→ U .

Recall that, by definition of the inverse limit, we have the commutative diagram

U

. . . exp(n/n≥3) exp(n/n≥2) exp(n/n≥1)

π3
π2

π1

in which the maps are surjective group homomorphisms, and the group element g in
(26) is equivalent to the sequence (πi(g))∞i=1 of its truncations.

In fact, to any pro-Lie algebra one can canonically associate a pro-algebraic group
(or pro-group, for short). If the pro-Lie algebra is pro-nilpotent, then this pro-group
will be pro-unipotent. For the definitions, see e.g. [Kum02, §4]. The group U is the
pro-unipotent pro-group algebra associated to the pro-nilpotent pro-Lie algebra ñ,



16 CHARLES YOUNG

just as the quotients exp(n/n≥k) are the unipotent affine algebraic groups associated
to the nilpotent Lie algebras n/n≥k.

2.6. Polynomial functions on U . Now let us choose coordinates on U . Recall our
ordered basis (B,≺) of g from (19). We get an ordered basis of n,

B+ := B ∩ n

= {Jα,0}α∈∆̊+
∪ {Ja,n}a∈I,n∈Z≥1

= {Ja,n}(a,n)∈A, (23)

where we introduced a notion for the index set,

A := {(α, 0)}α∈∆̊+
∪ I × Z≥1. (24)

It will also be useful to introduce the set

− A := {(α, 0)}α∈∆̊−
∪ I × Z≤−1. (25)

Any element of g ∈ U can be uniquely written in the form

g =
−→∏

(a,n)∈A

exp(xa,nJa,n) (26)

for some xa,n ∈ C, where we use
−→∏

to denote the product with factors ordered so
that exp

(
xb,mJb,m

)
stands to the left of exp(xc,pJc,p) if Jb,m ≺ Jc,p in our basis.

For each (a, n) ∈ A let Xa,n : U → C be the function on U such that Xa,n(g) = xa,n.
Then these are good coordinates on U . We get the C-algebra

O(n) := C[Xa,n](a,n)∈A

of polynomial functions on U . Inside O(n) we have for each k ∈ Z≥1 the subalgebra

O(n)<k := C[Xa,n](a,n)∈A
n<k

(27)

of polynomial functions on the quotient group exp(n
/
n≥k), and O(n) =

⋃
k≥1O(n)<k

is their union. In other words, O(n) is the direct limit of these O(n)<k with respect
to the inclusions

. . . ↪→ O(n)<k ↪→ O(n)<k+1 ↪→ . . . . (28)

2.7. Differential operators on U . Let H denote the Weyl algebra on generators
Xa,n, Da,n, (a, n) ∈ A, i.e. the associative unital C-algebra obtained by quotient-
ing the free associative unital C-algebra in these generators by the two-sided ideal
generated by the relations

[Xa,n, Xb,m] = 0, [Da,n, X
b,m] = δbaδn+m,0, [Da,n, Db,m] = 0,

where [A,B] := AB −BA. As a vector space, one has

H ∼=C C[Xa,n](a,n)∈A ⊗ C[Da,n](a,n)∈A.

We think of H as the algebra of polynomial differential operators on U . The left
action of H on O(n) is given by

Xa,n.f = Xa,nf, Da,n.f = [Da,n, f ]

for (a, n) ∈ A and f ∈ O(n).
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Let H≥k denote the left ideal in H generated by D(a,n) with n ≥ k. It consists of
those polynomial differential operators that annihilate O(n)<k. The quotientsH/H≥k
form an inverse system of associative algebras,

. . .� H
/
H≥k+1 � H

/
H≥k � .

The inverse limit
H̃ := lim←−

k

H
/
H≥k

is a topological associative algebra, whose elements are by definition (possibly infinite)
sums of the form ∑

(a,n)∈A

P a,n(X;D)Da,n, (29)

where, for each (a, n) ∈ A, P a,n(X;D) ∈ C[Xb,m](b,m)∈A ⊗ C[Db,m](b,m)∈A. Since any

f ∈ O(n) lies in O(n)<k for some k, this completion H̃ also has a well-defined action
on O(n).

Note that the degree of the polynomials P a,n(X;D) in (29) is allowed to grow
without bound as n increases.

2.8. The Q-gradation. The algebra H has a gradation by the root lattice Q,

H =
⊕
α∈Q
Hα,

defined by the demand that Da,n ∈ Hwgt(a,n) and Xa,n ∈ H−wgt(a,n) for all (a, n) ∈ A.
That is, more explicitly,

Dα,n ∈ Hα+nδ and Xα,n ∈ H−α−nδ,

for each (α, n) ∈ ∆̊+ × {0} ∪ (∆̊ \ {0})× Z≥1 ⊂ A, and

Di,n ∈ Hnδ and Xi,n ∈ H−nδ,

for each (i, n) ∈ I̊ × Z≥1 ⊂ A. In particular we get a gradation of O(n) ⊂ H by the
negative root lattice:

O(n) =
⊕

α∈−Q≥0

O(n)α.

2.9. Polynomial vector fields on U . The commutator bracket [A,B] := AB−BA
makes H into a Q-graded Lie algebra. It has the Lie subalgebra DerO(n) consisting
of the (finite) sums of the form ∑

(a,n)∈A

P a,n(X)Da,n, (30)

where the coefficients P a,n(X) ∈ C[Xb,m](b,m)∈A are nonzero for only finitely many
(a, n) ∈ A, i.e. it is the free O(n)-module with O(n)-basis consisting of the derivative
operators Da,n, (a, n) ∈ A. It inherits the Q-grading of H.

Lemma 1. The commutator bracket makes the completion H̃ into a topological Lie
algebra.
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Proof. The associative algebra H̃ is certainly a Lie algebra with respect to the com-

mutator. Let us check the commutator [·, ·] : H̃×H̃ → H̃ is continuous, where H̃×H̃
has the product topology. The open neighbourhoods of zero in the product topology

include the subspaces H̃≥k × H̃≥` for all k, ` ∈ Z≥1. Suppose (An, Bn), n = 1, 2, . . . ,

is a sequence in H̃ × H̃ which converges to zero. Then, for any k, the terms in this

sequence are eventually in H̃≥k × H̃≥k. It follows that, for any k, the terms of the

sequence [An, Bn], n = 1, 2, . . . , of commutators eventually lie in H̃≥k. But the latter

are a base of open neighbourhoods of zero in H̃, so the sequence of commutators con-
verges to zero. Since these are all linear topologies (i.e. vector addition is continuous)
this is enough to show that the commutator is a continuous map, as required. �

Define D̃erO(n) ⊂ H̃ to be the vector subspace of H̃ topologically generated by

the monomials of the form P a,n(X)Da,n. In other words, D̃erO(n) consists of (now
possibily infinite) sums of the form (30).

Lemma 2. D̃erO(n) is a topological Lie subalgebra of H̃.

Proof. This is really immediate, given the previous lemma: all that has to be checked
is that terms linear in D’s close under the commutator, which is obvious. But let us
write out the full argument nonetheless. Let

∑
(a,n)∈A P

a,n(X)Da,n and
∑

(a,n)∈AQa,n(X)Da,n

be two elements of D̃erO(n). Their commutator is equal to

∑
(b,m)∈A

 ∑
(a,n)∈A

P a,n(X) [Da,n, Qb,m(X)]−
∑

(a,n)∈A

Qa,n(X)
[
Da,n, P

b,m(X)
]Db,m

(31)
For each (b,m), the polynomial Qb,m(X) ∈ O(n) lies in O(n)<k for some k, so the
sum ∑

(a,n)∈A

P a,n(X)[Da,n, Qb,m(X)]

is well-defined: only the (finitely many) terms with n < k contribute. The other sum
in (31) works the same way. We see that (31) is a well-defined sum belonging to

D̃erO(n). �

2.10. The topological Lie algebra g̃. For each k ∈ Z, define vector subspaces of
g and g̃ respectively as follows:

g≥k =
⊕
α∈∆

ht(α)≥k

gα, g̃≥k =
∏
α∈∆

ht(α)≥k

gα.

(So when k ≥ 1, g≥k = n≥k and g̃≥k = ñ≥k.) Just as in (21), we have

g̃ ∼= lim←−
k

g
/
g≥k

(
∼= lim←−

k

g̃
/
g̃≥k

)
,
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where this is now an inverse limit merely of vector spaces. This endows the vector
space g̃ with a linear topology in which {g̃≥k}k∈Z form a base of the open neighbour-
hoods of 0. Moreover g̃ =

⋃
k∈Z g̃≥k and dim (g̃≥k/g̃≥m) < ∞ for all k,m ∈ Z with

k ≤ m.
(With this topology, g̃ becomes a c.l.c. C-vector space, in the language of [Kas89].)
The Lie bracket on g̃ is continuous in this topology, i.e.

g̃× g̃→ g̃; (A,B) 7→ [A,B]

is continuous, where g̃× g̃ gets the product topology.
The adjoint action makes the Lie algebra g̃, regarded as a vector space, into a

module over itself. In particular, it makes g̃ into a module over the subalgebra ñ.

Lemma 3. The action of ñ on g̃ exponentiates to yield a well-defined action of U on
g̃ from the right,

g̃× U → g̃,

given by

B.eA =
∞∑
k=0

(−1)k

k!
adkAB = B + [B,A] +

1

2
[[B,A], A] + . . .

for B ∈ g̃, A ∈ ñ. �

2.11. Infinitesimal transformations. Unlike the action of ñ ⊂ g̃ on g̃, the action of
the full Lie algebra g̃ on itself does not exponentiate to an action of a group. Indeed,
for A,B ∈ g̃, the sum

∑∞
k=1

1
k! adkAB may not be an element of g̃≥m for any m ∈ Z,

which is to say it may not be a well-defined element of g̃. (Consider for example
A = Hi,−1 and B = Eα,0.)

Nonetheless, it is convenient for computations in what follows to be able to treat
infinitesimal transformations (by general elements of g̃) on the same footing as finite
group transformations. That is, we would like to make sense of group elements of the
form exp(εA) = 1 + εA, working to first order in an (“infinitesimal”) parameter ε.

To that end, let ε be a formal variable and let Cε denote the ring

Cε := C[ε]
/
ε2C[ε].

For any Lie algebra p (over C), we have the Lie algebra p(Cε) := Cε ⊗C p. Consider
the Lie algebra

g̃(Cε) := Cε ⊗C g̃.

We shall write its elements as A+ εB with A,B ∈ g̃. It has a nilpotent Lie ideal εg̃.
The vector subspace

fε := εg̃⊕ ñ, (32)

forms a Lie subalgebra

fε ⊂ g̃(Cε).
It is another pro-nilpotent pro-Lie algebra. We get the corresponding pro-unipotent
pro-group exp(fε). Let us write adA(B) := [A,B].
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Lemma 4. For all A ∈ ñ and B ∈ g̃, we have the following relations in exp(fε),

eAeεB = eεB

( ∞∏
k=1

eε
1
k!

adkA(B)

)
eA,

eεBeA = eA

( ∞∏
k=1

eε
(−1)k

k!
adkA(B)

)
eεB,

together with eεAeεB = eεBeεA, and exAeεA = e(x+ε)A = eεAexA for all x ∈ C.

Proof. These follow from the Baker-Campbell-Hausdorff formula. (Note that the
order of the terms in the products

∏∞
k=1 is unimportant by virtue of the equality

eεAeεB = eεBeεA.) �

There is another vector-space decomposition of fε, namely fε =C εb− ⊕ ñ(Cε), and
this gives a useful way to factorize elements of the group exp(fε). Let U(Cε) :=
exp(ñ(Cε)). Then the multiplication map

exp(εb−)× U(Cε)
∼−→ exp(fε) (33)

is a bijection.
Let us introduce the right coset space

U0(Cε) := exp(εb−)
∖

exp(fε) .

The action from the right of the subgroup U(Cε) ⊂ exp(fε) is both transitive and
free, in view of (33), and we get a bijection

U(Cε)
∼−→ U0(Cε); g 7→ exp(εb−) g.

Let

U0 := exp(εb−)U

denote the orbit of exp(εb−) under the right action of the subgroup U ⊂ U(Cε). The
bijection above restricts to a bijection

U
∼−→ U0; g 7→ exp(εb−) g.

By means of this bijection, we can regard Xa,n, (a, n) ∈ A as coordinates on U0, and
O(n) as the ring of polynomial functions on U0.

For us, the motivation for these constructions is contained in the following lemma.

Lemma 5. Let A ∈ g̃. Then there exist polynomials
{
P b,mA (X) ∈ O(n)

}
(b,m)∈A

(de-

pending linearly on A) such that

eεb−

 −→∏
(b,m)∈A

ex
b,mJb,m

 eεA = eεb−
−→∏

(b,m)∈A

e

(
xb,m+εP b,mA (x)

)
Jb,m

in U0(Cε), for every element
−→∏

(b,m)∈A ex
b,mJb,m of the group U ⊂ U(Cε).

If A ∈ gα and Jb,m ∈ gβ then P b,mA (X) ∈ O(n)α−β.
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Proof. This is true by construction, but let us go through the details to explain how

in practice one computes these P b,mA . Recall that the group element

g =
−→∏

(b,m)∈A

ex
b,mJb,m ∈ U

is defined by the sequence (gi)
∞
i=1 of its truncations,

gi := πi(g) =
−→∏

(b,m)∈A
m<i

ex
b,mJb,m ∈ en/n≥i , (34)

to the subgroups en/n≥i . The product in (34) is finite, for each i.
Let A ∈ g̃. Then A ∈ g̃≥k for some integer k. Consider the right action on g by

the group element eεA ∈ exp(εg̃) ⊂ exp(fε). The group element g′ := geεA ∈ exp(fε)
is defined by the sequence of its truncations, (g′i)

∞
i=1. On grading grounds, we have

g′i = πi
(
gmax(i,i−k)e

εA
)
,

i.e. to compute πi(geεA) we need at most the first max(i, i−k) terms in the sequence
(34) of truncations of g. Also, we need only the truncation πi(e

εA) of eεA; this
truncation can be expressed as a finite product of monomials of the form eεa with a a
multiple of one of our basis vectors of g. The relations in Lemma 4 hold in particular
when the A and B there are multiples of vectors from our basis B+ of n, and in that
case so too are all the factors in the products on k on the right-hand sides. Using
these relations a finite number of times, we may re-write g′i in the form

g′i = g′′i

−→∏
(b,m)∈A

ht((b,m))<i

e(xb,m+εP b,mA (x))Jb,m , where g′′i ∈ eεb− ,

for polynomials P b,mA (X) ∈ O(n), depending linearly on A and with the stated grading
property. �

Lemma 6. The linear map

ρ : g̃→ D̃erO(n)

given by

ρ : A 7→
∑

(b,m)∈A

P b,mA (X)Db,m

is a homomorphism of Lie algebras. It respects the Q-gradation, and is therefore
continuous.

Proof. Let Cε,η := C[ε, η]
/ (
ε2C[ε, η]⊕ η2C[ε, η]

)
. Replacing Cε by Cε,ν in the defini-

tions above, we get the Lie algebra g̃(Cε,η) := Cε,η ⊗ g̃ and its Lie subalgebra fε,η =C

εg̃ ⊕ ηg̃ ⊕ ñ =C εb− ⊕ ηb− ⊕ ñ(Cε,η). Define U0(Cε,η) := exp(εb− ⊕ ηb−)
∖

exp(fε,η).

We have U(Cε,η) ∼= U0(Cε,η). We can identify U0 as defined above with the orbit
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exp(εb− ⊕ ηb−)U of exp(εb− ⊕ ηb−) under the right action of U ⊂ U(Cε,η). Let
A,B ∈ g̃ and consider the coset

eεb−⊕ηb−

 −→∏
(b,m)∈A

ex
b,mJb,m

 eεAeηBe−εAe−ηB. (35)

On the one hand eεAeηBe−εAe−ηB = eεη[A,B] and hence (35) is equal to

eεb−⊕ηb−
−→∏

(b,m)∈A

e

(
xb,m+εηP b,m

[A,B]
(x)
)
Jb,m = eεb−⊕ηb−

−→∏
(b,m)∈A

e

(
xb,m+εη

∑
γ P

γ
[A,B]

(x)Dγ .xb,m
)
Jb,m .

On the other hand, we see that

eεb−⊕ηb−

 −→∏
(b,m)∈A

ex
b,mJb,m

 eεAeηB

= eεb−⊕ηb−
−→∏

(b,m)∈A

e

(
xb,m+εP b,mA (x)+ηP b,mB (x+εPA(x))

)
Jb,m

= eεb−⊕ηb−
−→∏

(b,m)∈A

e

(
xb,m+εP b,mA (x)+ηP b,mB (x)+εη

∑
(a,n)

(
Pa,nA (x)(Da,nP

b,m
B )(x)

))
Jb,m

and hence (35) is equal to

eεb−⊕ηb−
−→∏

(b,m)∈A

e

(
xb,m+εη

∑
(a,n)

(
Pa,nA (x)(Da,nP

b,m
B )(x)−Pa,nB (x)(Da,nP

b,m
A )(x)

))
Jb,m

= eεb−⊕ηb−
−→∏

(b,m)∈A

e(xb,m+εη[
∑

(a,n) P
a,n
A (x)Da,n,

∑
γ P

γ
B(x)Dγ].xb,m)Jb,m (36)

This is true for all xb,m. We conclude that∑
(a,n)

P a,nA (X)Da,n,
∑
(b,m)

P b,mB (X)Db,m

 =
∑
(a,n)

P a,n[A,B](X)Da,n,

so that the map ρ is indeed a homomorphism of Lie algebras. The polynomial P b,mA be-
longs to O(n)wgt (b,m)−wgt (a,n) whenever A ∈ gwgt(a,n), so ρ respects the Q-gradation.

Hence it respects the principal Z-gradation and is therefore continuous. �

Remark 7. Just as in the case of g of finite type, there is also another realization

ρL : ñ → D̃erO(n) of ñ, coming from the left action of U on itself. The image

ρL(ñ) ⊂ D̃erO(n) lies in the centralizer of ρ(ñ), but not of ρ(g̃). In the case of g of
finite type, ρL plays an important role in the definition of screening operators [FF92;
FB04; Fre07].

In what follows, we get more information about image of the homomorphism ρ.
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2.12. Bounded grade and widening gap. Let us say a collection of polynomials
{P a,n(X)}(a,n)∈A in O(n) has widening gap if, for every K ≥ 1, we have

P a,n(X) ∈ C
[
Xb,m : m < n−K, b ∈ I

]
(37)

(for all a ∈ I) for all but finitely many n ∈ Z≥0. Let us say that an element

v =
∑

(a,n)∈A

P a,n(X)Da,n ∈ D̃erO(n)

has widening gap if the collection of coefficient polynomials {P a,n(X)}(a,n)∈A has
widening gap. Let us say that v has bounded grade if there exists M ∈ Z such that

P (a,n)(X) ∈
M⊕

k=−M
O(n)[n+k]

for all (a, n) ∈ A, where we denote by O(n) =
⊕

k∈ZO(n)[k] the Z-gradation of O(n)

in which X(a,n) ∈ O(n)[−n].

Example 8. For any a, b, c ∈ I:

(i)
∑

n∈Z≥1
Xa,nXb,nDc,2n has bounded grade and widening gap,

(ii)
∑

n∈Z≥1
Xa,1Db,n has widening gap but not bounded grade,

(iii)
∑

n∈Z≥1
Xa,nDb,n has bounded grade but not widening gap.

Define DerO(n) to be the subset of D̃erO(n) consisting of elements with bounded

grade and widening gap. It is a Lie subalgebra (and an O(n)-submodule) of D̃erO(n).
(See Lemma 15 and its proof, below.)

The following lemma says that any element of bounded grade “almost” has widen-
ing gap.

Lemma 9. Suppose
∑

(a,n)∈A P
a,n(X)Da,n ∈ D̃erO(n) has bounded grade. For every

K, we eventually (i.e. for all but finitely many n) have

P a,n(X) ∈ O(n)<n−K ⊗

C⊕
⊕

(b,m)∈A
m≥n−K

CXb,m

 .

Proof. Suppose to the contrary that for some K there is, for every N , always an
n > N such that P a,n(X) (for some a ∈ I) has a nonzero monomial m(X) with
Xb,rXc,s as a factor, for some r, s ≥ n − K, b, c ∈ I. The grade of m(X)Da,n is
bounded above by −r− s+ n ≤ 2K − n < 2K −N . So for every N we find terms of
grade less than 2K −N . �

This applies in particular to the image ρ(Ja,n) ∈ D̃erO(n) of one of the generators
of g′ (which is certainly of bounded grade: it is in grade n, since homomorphism

ρ : g̃→ D̃erO(n) respects the Q-gradation and hence the homogeneous Z-gradation).
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It is natural to try to isolate the terms in ρ(Ja,n) which fail to have widening gap.
This is the content of Theorem 10 below. Let fab

c denote the structure constants of
g̊ in our basis {Ja}a∈I :

[Ja, Jb] =
∑
c∈I

fab
cJc.

For every (a, n) ∈ I × Z, define the element +Ja,n ∈ D̃erO(n) by

+Ja,n :=
∑
b,c∈I

fba
c

∑
m>max(1,n)

Xb,m−nDc,m (38)

Theorem 10. For all (a, n) ∈ I × Z,

ρ(Ja,n)− +Ja,n ∈ DerO(n),

i.e. this difference has widening gap.

Proof. For the entirety of this proof, pick and fix some (a, n) ∈ A. The element
ρ(Ja,n) − +Ja,n is in grade n. The non-trivial thing we have to check is that it has
widening gap. We have

ρ(Ja,n) =
∑

(b,m)∈A

P b,m(X)Db,m,

for some polynomials P b,m(X). As in Lemma 5, these polynomials are given by the
demand that, for any group element

g =
−→∏

(b,m)∈A

ex
b,mJb,m ∈ U ⊂ U(Cε),

we have, for some B ∈ b−, the following equality in the group exp(fε): −→∏
(b,m)∈A

ex
b,mJb,m

 eεJa,n = eεB
−→∏

(b,m)∈A

e(xb,m+εP b,m(x))Jb,m . (39)

Given any positive integer K, we can always find a positive integer N large enough
that 2(N −K) + min(n, 0) > N . Consider any m > N , so that we have

2(m−K) + min(n, 0) > m. (40)

To compute P b,m(X) in (39) it is enough to compute the truncation,

πm+1

(
πp(g)eεJa,n

)
, (41)

where p = m+ 1−min(n, 0). We can factor the truncation πp(g) as follows:

πp(g) = g<m−Kg≥m−K

where g<m−K = πm−K(g) is the further truncation, and where g≥m−K are the re-

maining factors in πp(g), i.e. some product of ex
d,sJd,s with p ≥ s ≥ m−K, d ∈ I.

Consider what happens as we use Lemma 4 to move eεJa,n leftwards through the
product in (41). We arrive at an equality of the following form:

πm+1

(
g<m−Kg≥m−KeεJa,n

)
= πm+1

(
g<m−KeεJa,ng′≥m−K

)
(42)
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for some

g′≥m−K =
−→∏

(d,s)∈A
m≥s≥m−K

e(xd,s+εyd,s)Jd,s .

Here certainly yd,s ∈ C[xe,r](e,r)∈A;p≥r≥m−K . Moreover, these yd,s are at most linear:
indeed, our choice (40) ensures that for any t, s > m−K, a nested commutator

[Jf,t, [Je,s, Ja,n]]

has grade t + s + n > 2(m −K) + n > m and so does not contribute in πm+1(g); a
fortiori, nested commutators of Ja,n with three or more generators of grade > m−K
cannot contribute. In this we way see that

yb,m = fca
bxc,m−n;

it arises from the step

ex
c,m−nJc,m−neεJa,n = eεJa,ne(εxc,m−nfcabJb,m+... )ex

c,m−nJc,m−n .

It remains to show that, starting from the expression on the right of (42), as we
continue to reshuffle terms in (42) using Lemma 4 until they are all in order, we never
again shift xb,m by any quantity that depends on any of the xd,s with s ≥ m−K. To
see that, note first that we have

πm+1

(
g<m−KeεJa,ng′≥m−K

)
= πm+1

(
πm+1

(
g<m−KeεJa,n

)
g′≥m−K

)
.

Here we can use Lemma 4 to re-write

πm+1(g<m−KeεJa,n) = πm+1(eεBg′<m−Kg
′′)

for some B ∈ b− and some

g′<m−K =
−→∏

(d,s)∈A
m−K>s≥0

e(xd,s+εyd,s)Jd,s and g′′ =
−→∏

(d,s)∈A
m≥s≥m−K

eεz
d,sJd,s .

Here zd,s ∈ C[xe,r](e,r)∈A;m−K>r≥0; to stress the point, zd,s manifestly cannot depend

on any of the xd,s with s ≥ m−K. At this stage we have arrived at

πm+1

(
g<m−Kg≥m−KeεJa,n

)
= πm+1

(
eεBg′<m−Kg

′′g′≥m−K
)

= πm+1

(
eεBg′<m−Kπm+1(g′′g′≥m−K)

)
.

All that remains is to put the terms in

πm+1(g′′g′≥m−K)

in the correct order. But since 2(m−K) > m, as in (40), we again have on grading
grounds that all commutators we produce as we use Lemma 4 have too high grade to
contribute in this truncation, and we simply get

πm+1(g′′g′≥m−K) =
−→∏

(d,s)∈A
m≥s≥m−K

e(xd,s+εyd,s+εzd,s)Jd,s .
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This completes the proof that, for any positive integer K, we have that for all
sufficiently large m,

P b,m(x) = fca
bxc,m−n mod C[xe,r]r<m−K . (43)

That, is ρ(Ja,n)− +Ja,n has widening gap, which is what we had to show. �

It will be helpful to have a name for the difference in Theorem 10: let us write

ρ(Ja,n)− +Ja,n =:
∑

(b,m)∈A

+Rb,ma,n (X)Db,m (44)

for certain polynomials +R.

3. Cartan involution and doubling trick

3.1. Definition of D. Let us introduce the polynomial algebra

O := C[Xa,n](a,n)∈I×Z

and define the vector spaces

DerO :=
⊕

(a,n)∈I×Z

ODa,n, D̃erO :=
∏

(a,n)∈I×Z

ODa,n.

Let us say a collection of polynomials {P a,n(X)}(a,n)∈I×Z in O has widening gap if,
for every K ≥ 1, we have,

P a,n(X) ∈ C
[
Xb,m : |m| < |n| −K, b ∈ I

]
. (45)

(for all a ∈ I) for all but finitely many n ∈ Z.

Lemma 11. Equivalently, the polynomials {P a,n(X)}(a,n)∈I×Z have widening gap if
and only if, for every K ≥ 1 there is some B(K) such that

P a,n(X) ∈ C
[
Xb,m : |m| < max(|n| −K,B(K)), b ∈ I

]
(46)

for all (a, n) ∈ I × Z.

Proof. Suppose {P a,n(X)}(a,n)∈I×Z have widening gap. Then for all K ≥ 1 there
exists some m(K) such that whenever |n| > m(K), P a,n has no factor Xc,m with
|m| > |n| −K. But that leaves only finitely many polynomials P a,n, and we can find
B(K) such that none of them has any factor Xc,m with |m| > B(K). Conversely,
suppose {P a,n(X)}(a,n)∈I×Z obeys the condition in the lemma. Then for all K ≥ 1,
|n| > B(K) for all but finitely many n, so {P a,n(X)}(a,n)∈I×Z has widening gap. �

Corollary 12. Suppose we are given collections {P a,n}, {Qa,n}, {Ra,n}, . . . , of
polynomials with widening gap. Then∑

(b,m)∈I×Z

P b,m
∂Qa,n

∂Xb,m
, (a, n) ∈ I × Z,
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is a collection of polynomials with widening gap (and, hence, so is∑
(b,m),(c,p)∈I×Z

P b,m
∂Qc,p

∂Xb,m

∂Ra,n

∂Xc,p
, (a, n) ∈ I × Z,

and so on). �

For future use, let us note also the following.

Corollary 13. More generally, if {P a,ni }(a,n)∈I×Z, i = 1, . . . , N and {Qa,n} are col-
lections of polynomials with widening gap then∑

(b1,m1),...,(bN ,mN )∈I×Z

P b1,m1
1 . . . P bN ,mNN

∂NQa,n

∂Xb1,m1 . . . ∂XbN ,mN
, (a, n) ∈ I × Z,

is a collection of polynomials with widening gap. �

Corollary 14. If {Qa,n} is a collection of polynomials with widening gap then the
sum ∑

(a,n)∈I×Z

∂Qa,n

∂Xa,n

has only finitely many non-zero terms, and hence is a well-defined polynomial in
O = C[Xa,n](a,n)∈I×Z. �

Let DerO ⊂ D̃erO denote the subspace consisting of elements of the form∑
(a,n)∈I×Z

P a,n(X)Da,n

such that the polynomials {P a,n(X)}(a,n)∈I×Z have widening gap. (We shall also

refer to elements of DerO themselves as having widening gap.) Evidently, we have

DerO ⊂ DerO ⊂ D̃erO

and the Lie algebra DerO(n) from Section 2.12 embeds in DerO.

Lemma 15. D̃erO is a Lie algebra and DerO is a Lie subalgebra.

Proof. The Lie bracket of the Lie algebra DerO, given by ∑
(a,n)∈I×Z

P a,n(X)Da,n,
∑

(b,m)∈I×Z

Qb,m(X)Db,m


=

∑
(a,n),(b,m)∈I×Z

(
P b,m

∂Qa,n

∂Xb,m
−Qb,m ∂P a,n

∂Xb,m

)
Da,n,

extends to a well-defined Lie bracket on D̃erO: for each (a, n) on the right, the
sum on (b,m) contains only finitely many non-zero terms since Qa,n and P a,n are
polynomials. Corollary 12 then implies DerO is a Lie subalgebra. �
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Let {Sab,n}a,b∈I,n∈Z denote the generators of the loop algebra gl(̊g)[t, t−1], obeying
the commutation relations[

Sab,n, S
c
d,m

]
= δcbS

a
d,n+m − δadScb,n+m. (47)

Let D denote the derivation element for the homogeneous gradation of this loop
algebra. By definition, it obeys

[D,Sab,n] = nSab,n.

We have the homomorphism Lad : g̊[t, t−1]→ gl(̊g)[t, t−1] given by

Ja,n 7→ Ja,n :=
∑
b,c∈I

fba
cSbc,n, n ∈ Z. (48)

and hence the homomorphism Lad : g→ gl(̊g)[t, t−1] oCD, with

k 7→ 0 and d 7→ D.

There is an embedding ι : gl(̊g)[t, t−1] oCD ↪→ D̃erO given by

ι(Sbc,n) :=
∑
m∈Z

Xb,m−nDc,m, ι(D) :=
∑

a∈I,m∈Z
mXa,mDa,m.

By means of this embedding, gl(̊g)[t, t−1]oCD acts (via the adjoint action) on D̃erO.

Lemma 16. This action stabilizes the Lie subalgebra DerO.

Proof. Suppose
∑

(a,n)∈I×Z P
a,n(X)Da,n ∈ DerO. Pick any K ≥ 1 and any generator

Sbc,m of gl(̊g)[t, t−1] (it is clear that DerO is stable under D). Since the {P a,n} have

widening gap, eventually P a,n has no factor Xd,p with |p| > |n| −K − |m|. Therefore[
Sbc,m,

∑
(a,n)∈I×Z P

a,n(X)Da,n

]
again has widening gap. (Note that for this argument

to work it is necessary that the gap is really widening, i.e. that the condition in (45)
is that for every K eventually |m| < |n| −K.) �

Let us define D as the corresponding semi-direct product of Lie algebras,

D := DerO o
(
gl(̊g)[t, t−1] oCD

)
. (49)

3.2. Cartan involution. Now let τ : D̃erO → D̃erO be the involutive (i.e. τ2 = id)
automorphism defined by

τ(Xα,n) = X−α,−n, τ(Xi,n) = −Xi,−n,

τ(Dα,n) = D−α,−n, τ(Di,n) = −Di,−n, (50)

for α ∈ ∆̊ \ {0}, i ∈ I̊ and n ∈ Z. Recall O(n) = C[Xa,n](a,n)∈A where A :=
{(α, 0)}α∈∆̊+

∪ I×Z≥1 indexes a basis of n. Let us introduceO(n−) := C[Xa,n](a,n)∈−A,

where −A := {(α, 0)}α∈∆̊−
∪ I × Z≤−1. We define D̃erO(n−) by obvious analogy

with D̃erO(n). Clearly, τ(D̃erO(n)) = D̃erO(n−) and τ(D̃erO(n−)) = D̃erO(n).
Let σ : g→ g be the Cartan involution of the affine Kac-Moody algebra g, defined by

σ(ei) = fi, σ(fi) = ei, σ(H) = −H, (51)
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for i ∈ I and H ∈ h. One has

σ(Jα,n) = J−α,−n, σ(Ji,n) = −Ji,−n,

for α ∈ ∆̊ \ {0}, i ∈ I̊ and n ∈ Z. We get a homomorphism of Lie algebras

τ ◦ ρ ◦ σ : g→ D̃erO(n−)

and hence a homomorphism of Lie algebras

ρ := (ρ+ τ ◦ ρ ◦ σ) : g→ D̃erO(n)⊕ D̃erO(n−)

↪→ D̃erO. (52)

By construction, ρ has the equivariance property

τ ◦ ρ = ρ ◦ σ. (53)

Note that

ι(Ja,n) = (ι ◦ Lad)(Ja,n) =
∑
b,c∈I

fba
c
∑
m∈Z

Xb,m−nDc,m ∈ D̃erO.

Lemma 17. For all (a, n) ∈ I × Z,

ρ(Ja,n)− ι(Ja,n) ∈ DerO.

Proof. Recall the definition (38) of +Ja,n. Let us give a name to the linear map

f+ : g→ D̃erO(n); Ja,n → +Ja,n. The key observation is that the difference

(f+ + τ ◦ f+ ◦ σ)(Ja,n)− ι(Ja,n) (54)

is a finite sum of terms of the form Xb,mDc,p, and thus an element of DerO ⊂ DerO.
Together with Theorem 10, this implies the result. �

It follows from Lemma 17 that the image ρ(g) of g in D̃erO lies in the embedded
copy of D. In what follows we shall regard ρ as a homomorphism

ρ : g→ D (55)

into the abstract copy of D we defined in (49).
Observe that the difference (f+ + τ ◦ f+ ◦ σ)(Ja,n) − ι(Ja,n) in (54) generically

contains terms which do not stabilize both O(n) and O(n−). (For example, terms
like Xa,5Db,−7 or Xa,−3Db,8.) For that reason, it is worth stressing the following
crucial property (which is true by construction).

Proposition 18. ρ(g) stabilizes O(n) and O(n−) in O. �

This is in contrast to the obvious homomorphism g→ D̃erO sending Ja,n 7→ ι(Ja,n)
(and k 7→ 0, d 7→

∑
n nX

a,nDa,n). So what we have shown is that it is possible to add,

to each generator ι(Ja,n), an infinite sum belonging to DerO of “correction terms”, in
such a way that the resulting action does stabilize O(n) and O(n−). It will be useful
to have a name for these “correction terms”. Let us write

ρ(Ja,n)− ι(Ja,n) =
∑

(b,m)∈I×Z

Rb,ma,n (X)Db,m, (56)
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where the collection {Rb,ma,n (X)}(b,m)∈I×Z of polynomials has widening gap, for each
(a, n) ∈ I × Z.

4. Vertex algebras and main results

4.1. Weyl algebra H. Let H denote the associative unital C-algebra obtained by
quotienting the free associative unital C-algebra with generators

βa,n[N ], γa,n[N ],

with N ∈ Z and (a, n) ∈ I ×Z, by the two-sided ideal generated by the commutation
relations

[βa,n[N ],βb,m[M ]] = 0, [βa,n[N ],γb,m[M ]] = δb,ma,n δN,−M1, [γa,n[N ],γb,m[M ]] = 0.

As a vector space,

H ∼=C H− ⊗ H+,

where

H− ∼= C [γa,n[N ],βa,n[N − 1]]N≤0;(a,n)∈I×Z (57)

is the algebra of creation operators and

H+ ∼= C [γa,n[N ],βa,n[N − 1]]N>0;(a,n)∈I×Z (58)

is the algebra of annihilation operators. The fact that H+ and H− are commutative
(and that H is commutative modulo 1) makes this an example of a system of free
fields.

4.2. Fock module M. Define M to be the induced H-module generated by a vector
|0〉, the vacuum, annhilated by H+, i.e.

βa,n[M ]|0〉 = 0, M ∈ Z≥0, γa,n[M ]|0〉 = 0, M ∈ Z≥1 (59)

for all (a, n) ∈ I × Z, and on which 1|0〉 = |0〉. Vectors in M are called states.
There is an obvious Z × Q-gradation of H and of M in which βa,n[N ] has grade

(N,α) and γa,n[N ] has grade (N,−α) whenever Ja,n ∈ gα, and |0〉 has grade (0, 0).
Call the first factor here the depth gradation. Let M[N ] denote the subspace of

depth n, so that

M =

∞⊕
n=0

M[N ]. (60)

Call the corresponding filtration, given by

M[≤m] :=

m⊕
n=0

M[N ],

the depth filtration. Every v ∈ M belongs to M[≤m] for some m.
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4.3. The subspace M[≤1]. Let us introduce the space

ΩO := HomO(DerO,O).

It comes equipped with the derivative ∂ : O → ΩO defined by (∂f)(v) = v(f). It is
a free left O-module, with an O-basis consisting of basis vectors ∂Xa,n, (a, n) ∈ A,
which obey ∂Xa,n(Db,m) = δa,nb,m: ΩO ∼=O

⊕
(a,n)∈AO∂Xa,n. There is an action of

DerO on ΩO, given by v.(f∂g) = (v.f)∂g + f∂(v.g). This action extends to a well-

defined action of D̃erO. The space ΩO is graded by the root lattice Q, ∂ has grade
0, and these structures respect the Q-grading.

The subspace M[0] consists of states of the form P (γ[0])|0〉 where P (X) ∈ O.
Meanwhile the subspace M[1] consists of states of the form∑

(a,n)∈I×Z

P a,n(γ[0])βa,n[−1]|0〉+
∑

(a,n)∈I×Z

Qa,n(γ[0])γa,n[−1]|0〉

for polynomials P a,n(X), Qa,n(X) ∈ O, (a, n) ∈ I ×Z. Thus, there are isomorphisms
of vector spaces,

M[0] ∼= O, (61)

M[1] ∼= ΩO ⊕DerO, (62)

the latter given by identifying βa,n[−1]|0〉 with Da,n and γa,n[−1]|0〉 with ∂Xa,n.

Remark 19. The subspace M[≤1], equipped with the restriction of the vertex algebra
structure on M we are about to recall, is an example of a 1-truncated vertex algebra.
This in turn makes M[1] into a vertex O-algebroid. See [GMS04; Bre02; GMS01].

4.4. Vertex algebra structure. For every N ∈ Z, there is a linear map

M→ EndM; A 7→ A(N)

sending any given state A to its N th mode, A(N) ∈ EndM, and these modes can be
arranged in a formal series, the field

Y (A, x) :=
∑
n∈Z

A(N)x−N−1 ∈ Hom (M,M((x))) .

The state-field map Y (·, x) : M→ Hom (M,M((x))) obeys a collection of axioms that
make M into a vertex algebra; see e.g. [LL04; Kac98; FB04]. It is defined as follows.
First,

βa,n(x) := Y (βa,n[−1]|0〉, x) =
∑
N∈Z

βa,n[N ]x−N−1,

γa,n(x) := Y (γa,n[0]|0〉, x) =
∑
N∈Z

γa,n[N ]x−N .

Next, let us write f (N)(u) := 1
N !

∂N

∂uN
f(u). Then Y (βb,m[−M ]|0〉, u) = β

(M−1)
b,m (u) and

Y (γa,n[−N ]|0〉, u) = γa,n(N)(u) and more generally if

A = γa1,n1 [−N1] . . .γar,nr [−Nr]βb1,m1 [−M1] . . .βbs,ms [−Ms]|0〉, (63)
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then

A(u) := Y (A, u) = :γa1,n1(N1)(u) . . .γar,nr(Nr)(u)β
(M1−1)
b1,m1

(u) . . .β
(Ms−1)
bs,ms

(u):. (64)

Here :. . .: denotes the normal-ordered product of fields, which is defined in general as
follows. For any states A,B ∈ M,

:Y (A, u)Y (B, v): :=

(∑
M<0

A(M)u−M−1

)
Y (B, v) + Y (B, v)

(∑
M≥0

A(M)u−M−1

)
,

(65)
and :Y (A, u)Y (B, u): is the specialization at u = v. For more than two fields, the nor-
mal ordered product is understood to be right-associative, i.e. :Y (A, u)Y (B, v)Y (C,w): =
:Y (A, u)

(
:Y (B, v)Y (C,w):

)
: and so on.

For the βγ-system (and for systems of free fields more generally) there is a simpler
definition of the normal ordered product for monomial states like A in (63). Given
any monomial m ∈ H, one defines :m: ∈ H to be the monomial with the same factors
as m but ordered so that all annihilation operators stand to the right of all creation
operators (see (57) and (58)). Then

:γa1,n1(N1)(u1) . . .γar,nr(Nr)(ur)β
(M1−1)
b1,m1

(v1) . . .β
(Ms−1)
bs,ms

(vs):

is defined by normal-ordering the monomials in the series, term by term.
The depth gradation, (60), makes M into a graded vertex algebra: the vacuum
|0〉 is in grade zero; for any states A ∈ M[R], B ∈ M[S] and any N ∈ Z, A(N)B ∈
M[R+ S −N − 1].

We have the translation operator T ∈ EndM of the vertex algebra M, defined by
TA := A(−2)|0〉. It acts on monomials in the generators of H as a derivation, according
to

[T,βa,n[−N ]] = −Nβa,n[N − 1], [T,γa,n[−N ]] = −(N − 1)γa,n[N − 1],

and by definition T |0〉 = 0.

4.5. The OPE. One has the commutator formula for modes of states:[
A(M), B(N)

]
=
∑
K≥0

[
M

K

](
A(K)B

)
(M+N−K). (66)

Here, for all M ∈ Z,
[
M
K

]
:= M(M−1)...(M−K+1)

K! for K 6= 0 and
[
M
0

]
:= 0. From

this and the definition of the normal ordered product, (65), one obtains the operator
product expansion (OPE):

Y (A, u)Y (B, v) =
∑
N≥0

Y (A(N)B, v)

(u− v)N+1
+ :Y (A, u)Y (B, v):

as an equality in Hom(M,M((u))((v))). Here (u − v)−N−1 is understood to be ex-
panded in positive powers of v/u. Thus, computing the singular terms in the OPE is
the same things as computing the non-negative vertex algebra products.
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4.6. The Wick formula. For the βγ-system (and for systems of free fields more
generally) one has the usual Wick formula for OPEs of monomial states. We take
the statement from [FB04, §12.2.6].

Let A(u) and B(u) be normal-ordered monomials in βa,n(u), γa,n(u), (a, n) ∈ I×Z,
and their derivatives as in (64). A single pairing between A(u) and B(v) is a choice,
for some fixed (a, n) ∈ I × Z, of

i) one factor β
(N)
a,n (u) from A(u) and one factor γa,n(M)(v) from B(v)

– to such a pairing we associate the function (−1)N
[
N+M
N

]
1

(u−v)N+M+1 – or

ii) one factor γa,n(N)(u) from A(u) and one factor βa,n(M)(v) from B(v)

– to such a pairing we associate the function (−1)M+1
[
N+M
N

]
1

(u−v)N+M+1 .

A pairing is a disjoint union of zero or more single pairings. To a pairing P we asso-
ciate the function fP (u, v) obtained by taking the product of the functions associated
to each constituent single pairing (or 1, for the empty pairing). Given a pairing P
let (A(u)B(v))P denote the product A(u)B(v) but with all factors belonging to the
pairing removed (to leave 1, in the special case that there are no factors left). The
contraction :A(u)B(v):P associated to a pairing P is by definition

:A(u)B(v):P := fP (u, v) :(A(u)B(v))P : .

Lemma 20 (Wick formula). The product A(u)B(v) is equal to the sum of contrac-
tions :A(u)B(v):P over all pairings P between the monomials A and B, counted with
multiplicity (and including the empty one). �

One can then compute the OPE by Taylor-expanding the fields βa,n(u) and γa,n(u)
about u = v.

4.7. Completion M̃ of M. Having in mind the completion D̃erO of DerO intro-
duced in Section 3 (and see Section 2.9), one sees that M[≤1] is not quite big enough

for our purposes. Let us introduce a completion of M̃ of M in such a way as to pre-
serve the depth filtration. To that end, we start by completing each filtered subspace
M[≤m], as follows.

Let H−≥k denote the two-sided ideal in the commutative algebra H− of creation

operators, cf. (57), generated by

{βa,n[N ] : a ∈ I, |n| ≥ k,N ∈ Z}.
Let I[≤m]k denote the subspace of M[≤m] given by

I[≤m]k := M[≤m] ∩
(
H−≥k|0〉

)
.

Thus, I[≤m]k is the subspace of M[≤m] spanned by monomials in the creation oper-
ators that have some factor βa,n[N ] with |n| ≥ k. We have

I[≤m]0 ⊃ I[≤m]1 ⊃ I[≤m]2 ⊃ . . .
and

⋂∞
i=0 I[≤m]i = {0} and we define

M̃[≤m] := lim←−
k

M[≤m]
/
I[≤m]k.
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These completed subspaces M̃[≤m] form a directed system, M̃[≤0] ⊂ M̃[≤1] ⊂ M̃[≤2] . . . ,

and we define M̃ to be the direct limit

M̃ := lim−→
m

M̃[≤m].

In other words, each element of M̃ is by definition an element of M̃[≤m] for some

sufficiently large m (depending on the element) with two elements of M̃ considered

equal if they are equal in M̃[≤m] for some m.
Explicitly, the sum∑
a1,...,ap∈I
n1,...,np∈Z

P a1,n1(γ) . . . P ap,np(γ)βa1,n1 [−N1] . . .βap,np [−Np]|0〉, p ∈ Z≥0, (67)

belongs to M̃ if, for each i ∈ {1, . . . , p}, Ni ∈ Z≥1 and there is a bound on the depth
of the polynomials

P ai,ni(γ) ∈ C[γb,m[−M ]]b∈I,m∈Z,M∈Z≥0

as (ai, ni) ranges over I × Z. Elements of M̃ are finite linear combinations of such
sums.

The vertex algebra structure on M does not extend to a well-defined vertex algebra

structure on M̃. For example in M̃ we have the state

S :=
∑

(a,n)∈I×Z

γa,n[0]βa,n[−1]|0〉 ∈ M̃.

It is an infinite sum, and when we attempt to compute, for example, the action of
the would-be first mode of S,

S(1) =
∑
N≥0

∑
(a,n)∈I×Z

(βa,n[−N ]γa,n[N + 1] + γa,n[−N ]βa,n[N + 1])

on the state S, we encounter a double contraction yielding the ill-defined sum∑
(a,n)∈I×Z

βa,n[0]γa,n[1]
∑

(b,m)∈I×Z

γb,m[0]βb,m[−1]|0〉

=
∑

(a,n)∈I×Z

∑
(b,m)∈I×Z

δb,ma,n δ
a,n
b,m =

∑
(a,n)∈I×Z

1.

4.8. The vertex algebra M. Let M ⊂ M̃ denote the subspace of M̃ spanned by
states of the form (67) such that, for each i = 1, . . . , p, the collection of polynomials
{P ai,ni}(ai,ni)∈I×Z has widening gap in same sense as in Section 3.1, i.e. for every
K ≥ 1, we have

P ai,ni(γ) ∈ C
[
γb,m[−M ] : |m| < |ni| −K, b ∈ I,M ∈ Z≥0

]
, (68)

(for all ai ∈ I) for all but finitely many ni ∈ Z.
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Evidently M ( M ( M̃, and

M̃[1] ∼= ΩO ⊕ D̃erO
M[1] ∼= ΩO ⊕DerO

(and M[0] = M[0] = M̃[0] ∼= O).

Lemma 21. The vertex algebra structure on M extends uniquely to a well-defined
vertex algebra structure on M.

Proof. The non-trivial thing we have to check is the closure of the OPE, i.e. that the
OPE of any two fields of states in M has coefficients that are fields of states in M.

This follows from the Wick formula, Section 4.6. Consider a typical contraction:∑
(a,n)∈I×Z

:. . . P a,n(γ)(z) . . .βa,n(z):
∑

(b,m)∈I×Z

:. . . Qb,m(γ)(w) . . .βb,m(w):.

The resulting sum has, associated to the factor βb,m, the coefficient polynomial (we
suppress the mode numbers [M ], which play no essential role here)∑

(a,n)∈I×Z

P a,n
∂Qb,m

∂γa,n
.

As in Corollary 12, this collection of polynomials again has widening gap, and the
same logic extends to longer chains of contractions. More generally, by Corollary 13
the same is true in any situation in which the contractions form an acyclic directed
graph. (We think of a contraction of βa,n into P b,m(γ) as a directed edge (a, n) →
(b,m).) And, in view of Corollary 14, any cycle in the directed graph of the contrac-
tions merely gives rise to an overall factor belonging to C[γc,p[−M ]]c∈I,p∈Z,M∈Z≥0

.
For example, in∑

(a,n)∈I×Z

:. . . P a,n(γ)(z) . . .βa,n(z):
∑

(b,m)∈I×Z

:. . . Qb,m(γ)(w) . . .βb,m(w):,

only finitely many n,m can give nonzero summands. �

Remark 22. As a vertex algebra, M is generated by the fields (γa,n(z))(a,n)∈I×Z to-
gether with all the fields ∑

(a,n)∈I×Z

:P a,n(γ(z))βa,n(z):

as (
P a,n(γ(z)) ∈ C[γb,m (N)(z) : (b,m) ∈ I × Z, N ≥ 0]

)
(a,n)∈I×Z

runs over all collections of polynomials that have widening gap and bounded depth.
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4.9. The vertex algebras M and M. Let L denote the Lie algebra with generators
{Sab,n[N ]}a,b∈I,n∈Z,N∈Z and {D[N ]}N∈Z subject to the relations[

Sab,n[N ],Scd,m[M ]
]

= δcbS
a
d,n+m[N +M ]− δadScb,n+m[N +M ].[

D[N ],Sab,n[M ]
]

= nSab,n[N +M ].

In other words, L is loop algebra of gl(̊g)[t, t−1] o CD. We can take the semi-direct
product Ln H, where the action of L on H is given by[

Sab,n[N ],βc,m[M ]
]

= −δacβb,m+n[N +M ], [D[N ],βc,m[M ]] = −mβc,m[N +M ][
Sab,n[N ],γc,m[M ]

]
= δcbγ

a,m−n[N +M ], [D[N ],γc,m[M ]] = mγc,m[N +M ].

Let M denote the module over LnH induced from a vector |0〉 obeying the conditions
(59) together with

Sab,n[N ]|0〉 = 0, D[N ]|0〉 = 0, N ∈ Z≥0.

Thus as a vector space M is the tensor product of the Fock module M over H and

the vacuum Verma module (at level 0) Vgl(̊g)[t,t−1]oCD,0
0 over L:

M ∼=C M⊗ Vgl(̊g)[t,t−1]oCD,0
0 .

This module M is a vertex algebra. The state-field map is given by the formulas
in Section 4.4 together with

Sab,n(x) := Y
(
Sab,n[−1]|0〉, x

)
=
∑
N∈Z

Sab,n[N ]x−N−1,

D(x) := Y (D[−1]|0〉, x) =
∑
N∈Z

D[N ]x−N−1. (69)

As a vertex algebra, M is generated (in the sense of the Strong Reconstruction
Theorem [Fre+95],[Kac98, §4.5],[FB04, §4.4]) by the countable collection of fields
βa,n(z), γa,n(z), Sab,n(z) and D(z), subject to the OPEs

βa,n(z)γb,m(w) = δb,ma,n
1

z − w
+ . . .

Sab,n(z)γc,m(w) = δcb
γa,m−n(w)

z − w
+ . . . Sab,n(z)βc,m(w) = −δac

βb,m+n(w)

z − w
+ . . . ,

D(z)γc,m(w) = m
γa,m(w)

z − w
+ . . . D(z)βc,m(w) = −m

βb,m(w)

z − w
+ . . . ,

Sab,n(z)Scd,m(w) =
δcbS

a
d,n+m(w)− δadScb,n+m(w)

z − w
+ . . . ,

D(z)Sab,n(w) = n
Sab,n(w)

z − w
+ . . . .

(with the others being trivial).
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We can enlarge the tensor factor M to M as in Section 4.8 above. Let M denote
the resulting vector space,

M ∼=C M⊗ Vgl(̊g)[t,t−1]oCD,0
0 .

Lemma 23. The vertex algebra structure on M extends uniquely to a well-defined
vertex algebra structure on M. �

Proof. Given Lemma 21, the remaining thing to check is that the OPE of Sab,n(z) with

the field of any state in M has coefficients which are again the fields of well-defined
states in M. This is true by the same reasoning as in Lemma 16. �

We have the depth gradation on M, in which |0〉 has grade 0 and γa,n[N ], βa,n[N ],
Sab,n[N ] and D[N ] contribute grade −N .

We continue to identify

M[0] = M[0] ∼= O

by identifying P (X) ∈ O with the state P (γ[0])|0〉 in M[0], and to identify ΩO with
the subspace of M[1] consisting of states of the form∑

a,n∈I×Z
Pa,n(γ[0])γa,n[−1]|0〉 ∈ M[1] ⊂M[1],

by identifying this state with
∑

a,n∈I×Z Pa,n(X)∂Xa,n ∈ ΩO. Note that ∂ : O → ΩO
then corresponds to the vertex algebra translation operator T .

We also have the obvious injective linear map

 : D ↪→M[1] (70)

which maps the element∑
a,n∈I×Z

P a,n(X)Da,n +
∑

a,b∈I,n∈Z
pb,na Sab,n ∈ D

to the state ∑
a,n∈I×Z

P a,n(γ[0])βa,n[−1]|0〉+
∑

a,b∈I,n∈Z
pb,na Sab,n[−1]|0〉 ∈M[1]

(The first sum is possibly infinite but must obey the condition (45), cf. (68). By
definition of gl(̊g)[t, t−1] the second sum must have only finitely many nonzero sum-
mands.)

In this way,

M[0] ∼= O
M[1] ∼= ΩO ⊕ (D). (71)

Note that while we identify O and ΩO with their images in M[≤1], from now on we
keep the explicit notation  for the embedding of D.
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4.10. Local Lie algebras. Given any vertex algebra V one has the Lie algebra L(V )
of formal modes of states in V . (See [FB04, §4].) Namely,

L(V ) := V ⊗ C((t))
/

Im(T ⊗ 1 + id⊗ ∂t). (72)

It is generated by formal modes A[M ], A ∈ V , M ∈ Z, modulo the relations
(TA)[M ] = −MA[M−1].3 The Lie bracket is given by the same commutator formula
(66) obeyed by the modes A(M) (living in End(V )), i.e.[

A[M ], B[N ]
]

=
∑
K≥0

[
M

K

](
A(K)B

)
[M +N −K]. (73)

Since this formula involves only the non-negative products (i.e., only the singular
terms of the OPE), we get a Lie subalgebra L(L ) associated to any subspace L ⊂ V
closed under translation T and all the non-negative products. (Such a subspace L is
called a vertex Lie subalgebra of V [Pri99; DLM02].) In fact, we don’t need to insist
on closure under translation: let L be any subspace closed under the non-negative
products; then

∑∞
n=0 T

nL ⊂ V is also closed under all the non-negative products4,
and under translation.

Thus, given any vector subspace L ⊂ V , let

L(L ) :=

( ∞∑
n=0

TnL

)
⊗ C((t))

/
Im(T ⊗ 1 + id⊗ ∂t);

then (73) defines the structure of a Lie algebra on L(L ) whenever L closes under
all the non-negative products.

Such Lie algebras L(L ) are called local Lie algebras.
For any such Lie algebra L(L ) we have (as one sees from the commutator formula)

subalgebras L≥0(L ) and L0(L ) consisting of, respectively, the non-negative and zero
modes of states in L .

4.11. The extension of LD by L(O ⊕ ΩO). In our case we have the Lie algebra
L(M) associated to the vertex algebra M. The following is clear on inspection.

Lemma 24.

(i) The subspace M[≤1] is closed under all the non-negative products.
(ii) The subspace O⊕ΩO is closed under all the non-negative products and moreover

these non-negative products all vanish.
(iii) O ⊕ ΩO ⊂ M[≤1] is an ideal, in the sense that A(M)B ∈ O ⊕ ΩO for all A ∈

O ⊕ ΩO, B ∈M[≤1] and M ≥ 0.

�

As a result, we have the short exact sequence of Lie algebras

0→ L(O ⊕ ΩO)→ L(M[≤1])→ L(M[≤1])
/
L(O ⊕ ΩO)→ 0

3Strictly speaking, it is spanned by linear combinations of the form
∑
N fNA[N ], fN ∈ C, A ∈ V , of

these formal modes.
4Indeed, we have (TA)(n)B = −nA(n−1)B (note the right-hand side is zero when n = 0) and
A(n)TB = T (A(n)B)− (TA)(n)B.
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where L(O ⊕ ΩO) is commutative.

Remark 25. We can describe the commutative Lie algebra L(O⊕ΩO) more explicitly:
since ∂ = T : O → ΩO is injective and has kernel C|0〉, we have that

L(O ⊕ ΩO) ∼= L(ΩO)⊕ C1 ∼= LΩO ⊕ C1

where LΩO := ΩO ⊗ C((t)) is the loop algebra of ΩO, the latter regarded as a
commutative Lie algebra, and where 1 := |0〉[−1] is the only nonzero mode of the
state |0〉.

Now let LD := D ⊗ C((t)) denote the loop algebra of D.

Lemma 26. There is an isomorphism

LD ∼= L(M[≤1])
/
L(O ⊕ ΩO)

of Lie algebras, so we have the exact sequence of Lie algebras

0→ L(O ⊕ ΩO)→ L(M[≤1])→ LD → 0. (74)

Proof. Checking the definitions, one first sees that at the level of vector spaces we
have

L(M[≤1]) ∼=C L(O ⊕ ΩO)⊕ L((D(g)))

and

L((D(g))) ∼=C LD.

The fact that LD ∼= L(M[≤1])
/
L(O ⊕ ΩO) is also an isomorphism of Lie algebras is

a consequence of the following observation. �

Lemma 27. For any X,Y ∈ D, we have

(X)(0)(Y ) ≡ ([X,Y ]) mod ΩO, (X)(0)(Y ) ≡ 0 mod O.

Proof. Let us compute the OPE of two states in (D). Throughout this proof we use
summation convention over repeated pairs of indices not only in I but also in Z. Let

A = P a,n(γ[0])βa,n[−1]|0〉+ pb,na Sab,n[−1]|0〉,

B = Qa,n(γ[0])βa,n[−1]|0〉+ qb,na Sab,n[−1]|0〉.
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Then we find

Y (A, z)Y (B,w) = :Y (A, z)Y (B, z): (75)

+
1

z − w
:Y (P a,n(γ)|0〉, z)Y

(
∂Qb,m

∂γa,n[0]
βb,m[−1]|0〉, w

)
:

+
1

z − w
pb,na :Y

(
∂Qc,m

∂γb,p[0]
γa,p−n[0]βc,m[−1]|0〉, w

)
:

+
1

z − w
pb,na :Y (Qa,m(γ)βb,m+n[−1]|0〉, w):

− 1

z − w
:Y

(
∂P a,n

∂γb,m[0]
βa,n[−1]|0〉, z

)
Y
(
Qb,m(γ)|0〉, w

)
:

− 1

z − w
qb,na :Y

(
∂P c,m

∂γb,p[0]
γa,p−n[0]βc,m[−1]|0〉, z

)
:

− 1

z − w
qb,na :Y (P a,m(γ)βb,m+n[−1]|0〉, z):

+
1

z − w
pb,na qd,mb

(
δcbS

a
d,n+m(w)− δadScb,n+m(w)

)
− 1

(z − w)2
:Y

(
∂P a,n

∂γb,m[0]
|0〉, z

)
Y

(
∂Qb,m

∂γa,n[0]
|0〉, w

)
:.

All but the final line are modes of states in (D) and involve only single contractions,
and we recognise the terms as correctly reproducing the Lie bracket in D. �

The final line in (75) involves a double contraction, and defines the extension of
LD by L(O ⊕ ΩO) in Lemma 26. Namely, we see that

[A[K], B[L]] = [A,B][K + L] + ω(A[K], B[L]),

with

ω(A[K], B[L])

:= −K
(

∂P a,n

∂γb,m[0]

∂Qb,m

∂γa,n[0]
|0〉
)

[K + L− 1]−
([
T,

∂P a,n

∂γb,m[0]

]
∂Qb,m

∂γa,n[0]
|0〉
)

[K + L]

(76a)

where we continue to employ summation convention over repeated indices. Let us
stress that these implicit sums on b,m and a, n have only finitely many nonzero terms,
by virtue of our definition of M; cf. (68).

The formula above defines ω on the subalgebra L
(
gl(̊g)[t, t−1]

)
⊂ LD. When one of

the arguments to ω is a mode D[K] of D, there are obviously no double contractions,
so

ω(D[K], ·) = 0. (76b)

This map ω defines a cocycle

[ω] ∈ H2(LD,L(O ⊕ ΩO))
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in the usual Chevalley-Eilenberg cohomology of LD with coefficients in L(O ⊕ ΩO).
(It is easy to see that this cocycle is non-trivial, as in the case of g of finite type in
[Fre07, §5.5.3], so the sequence in Lemma 26 does not split.)

4.12. Main result. The homomorphism ρ : g→ D gives rise to a homomorphism of
the corresponding loop algebras

ρ̃ : Lg→ LD, (77)

given by

ρ̃(A[N ]) := ρ(A)[N ], A ∈ g, N ∈ Z.
Pulling back the cocycle ω ∈ H2(LD,L(O ⊕ ΩO)) from (76) by this homomorphism
ρ̃, we obtain a cocycle

ρ̃∗(ω) ∈ H2(Lg,L(O ⊕ ΩO)) (78)

of Lg with coefficients in L(O⊕ΩO). It defines an extension L̃g of Lg by L(O⊕ΩO),

0→ L(O ⊕ ΩO)→ L̃g→ Lg→ 0.

We can now state the main result of this paper.

Theorem 28. The cocycle ρ̃∗(ω) is trivial, so this sequence splits.
Specifically, there is a linear map

φ : g→ ΩO

of Q-grade 0 and obeying

φ(h) = 0, φ(n∓) ⊂ ΩO(n±) and φ ◦ σ = τ ◦ φ,

such that the map  ◦ ρ + φ : g → (D) ⊕ ΩO ∼= M[1] gives rise to a homomorphism
of Lie algebras,

Lg→ L(M[≤1]);

A[N ] 7→
(
( ◦ ρ+ φ)(A)

)
[N ], A ∈ g, N ∈ Z.

Proof. The proof occupies Section 5 below. �

To state this result in a more concrete form, we note the map φ is given by

Ja,n 7→
∑

(b,m)∈I×Z

Qa,n;b,m(X)∂Xb,m

(and k 7→ 0; d 7→ 0) for certain polynomials Qa,n;b,m(X) ∈ O. We introduce also the
generating series of the generators of Lg,

k(z) :=
∑
N

k[N ]z−N−1, d(z) :=
∑
N

d[N ]z−N−1, Ja,n(z) :=
∑
N

Ja,n[N ]z−N−1,

and let (Ja,n)(z) =
∑

N∈Z (Ja,n)[N ]z−N−1 with Ja,n as in (48). Recall the polyno-

mials Rb,ma,n (X) ∈ O from (56).
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Theorem 29. There is a homomorphism of Z×Q-graded Lie algebras

Lg→ L(M[≤1])

given by

k(z) 7→ 0

d(z) 7→ (D)(z)

Ja,n(z) 7→ (Ja,n)(z) +
∑

(b,m)∈I×Z

Y (Rb,ma,n (γ[0])βb,m[−1]|0〉, z)

+
∑

(b,m)∈I×Z

Y (Qa,n;b,m(γ[0])γb,m[−1]|0〉, z).

Equivalently, there is a homomorphism of Z≥0 ×Q-graded vertex algebras

θ : Vg,0
0 →M

given by

k[−1]|0〉 7→ 0

d[−1]|0〉 7→ (D)[−1]|0〉

Ja,n[−1]|0〉 7→ (Ja,n)[−1]|0〉+
∑

(b,m)∈I×Z

Rb,ma,n (γ[0])βb,m[−1]|0〉

+
∑

(b,m)∈I×Z

Qa,n;b,m(γ[0])γb,m[−1]|0〉.

Proof. The first part is a restatement of Theorem 28 in more concrete terms. For the
equivalence of the statement about vertex algebras, see [Fre07, §6.1]. �

Let us give the form of the homomorphism on the Chevalley-Serre generators of g.
We write γei = γαi,0 for i ∈ I̊ and γe0 = γ−δ+α0,1, cf. (20), and so on.

Proposition 30. The homomorphism θ : Vg,0
0 →M from Theorem 29 is given by

ei[−1]|0〉 7→ (ρ(ei)) + ciγ
fi [−1]|0〉

h[−1]|0〉 7→ (ρ(h))

fi[−1]|0〉 7→ (ρ(fi)) + ciγ
ei [−1]|0〉

for i ∈ I and h ∈ h, where

ci := −2 +
∑
j∈I
j≺i

aij , i ∈ I.

Proof. On Z≥1 × Q-grading grounds, the homomorphism must be of this form for
some values of coefficients ci. We compute these values in Appendix A. �
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4.13. Action of L+g on M(n). The vertex algebra M = M(g) was the vacuum Fock
module of the βγ-system associated to the vector space g. In exactly the same way,
one defines M(n±), with

M(n±) ∼=C C[γa,n[N ]]N≤0;(a,n)∈±A ⊗ C[βa,n[N − 1]]N≤0;(a,n)∈±A

as vector spaces. These M(n±) are vertex subalgebras of M.
We have the subalgebra L≥0(M([≤1]) of non-negative modes of states in M[≤1], as

in Section 4.10. For all A ∈M[≤1] and B ∈ M, A(N)B ∈ M for all N ≥ 0. Therefore
L≥0(M[≤1]) acts on M, via

A[N ]v := A(N)v

for A ∈ M[≤1], N ≥ 0 and v ∈ M. The Lie algebra homomorphism Lg → L(M[≤1])
of Theorem 28 restricts to a homomorphism L+g→ L≥0(M([≤1]) from the half-loop
algebra

L+g := g⊗ C[[t]].

In this way, L+g acts on M. The following is analogous to Proposition 18.

Proposition 31. This action of L+g stabilizes M(n) and M(n−). That is, for all
A ∈ g, N ≥ 0, and v ∈ M(n±),

θ(A[−1]|0〉)(N) v ∈ M(n±).

Proof. Let N ≥ 0. Suppose without loss that A = Ja,n. (The result is clear for A = d
and trivial for A = k.)

The conditions on φ given in Theorem 28 imply that φ(Ja,n)(N) stabilizes the
subspace M(n±), and annihilates M(n∓), whenever Ja,n ∈ n∓. And φ(h) = 0. Hence
φ(Ja,n)(N) stabilizes both M(n±).

The same applies to all terms in (ρ(Ja,n)) cubic or higher in the generators β, γ.

(Recall that these terms are either in (DerO(n)) or in (DerO(n−)).)

The term (Ja,n)(N) in (ρ(Ja,n))(N) stabilizes M(n±) if a ∈ I̊ and n = 0, i.e.
if Ja,n ∈ h. Otherwise it does not, but by our construction there is then also a

sum of compensating quadratic terms in (ρ(Ja,n))(N), of the form γb,m(M)βc,p(N−M)

with {(b,m), (c, p)} 6⊂ ±A. The latter condition ensures the double contractions
between such quadratic terms and states in M(n±) vanish. The single contractions
of such compensating quadratic terms ensure that M(n±) is stabilized, just as in
Proposition 18 and the discussion following. �

4.14. Homomorphism to M ⊗ π0. We have the loop algebra Lh := h ⊗ C((t)) of
the Cartan subalgebra h ⊂ g. Let {bi}i=1,...,dim h = {Hi}i∈I̊ t {k, d} denote a copy of

our basis of h and let {bi}dim h
i=1 ⊂ h be its dual basis with respect to the form κ

(
·|·
)
:

κ
(
bi|bj

)
= δji .

Then Lh has basis {bi[N ]}i=1,dots,dim h;N∈Z. Let π0 denote the Lh-module

π0 := U(Lh)⊗U(h⊗C[[t]]) C|0〉
induced from the trivial one-dimensional h ⊗ C[[t]]-module C|0〉. There is a lin-
ear isomorphism π0

∼= C[bi,n]i=1,...,dim h;n<0 of of vector spaces, and of modules over
U(t−1h[t−1]) ∼= C[bi,n]i=1,...,dim h;n<0.
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The space π0 is a commutative vertex algebra, the state-field map being given by

bi(x) := Y (bi[−1]|0〉, x) =
∑
N∈Z

bi[N ]x−N−1,

cf. Section 4.4. (Like M, it is a system of free fields.) It has the depth gradation, in
which bi[N ] contributes grade −N , and it inherits the Q-gradation from h.

We continue to write γei = γαi,0 for i ∈ I̊ and γe0 = γ−δ+α0,1, etc.
We have the tensor product of vertex algebras M ⊗ π0, which is again Z≥0 × Q-

graded.

Theorem 32. There exists a Z≥0 ⊗Q-graded homomorphism of vertex algebras

w : Vg,0
0 →M⊗ π0

given by

ei[−1]|0〉 7→ (ρ(ei)) + ciγ
fi [−1]|0〉+

〈
bj , α̌i

〉
γfi [0]bj [−1]|0〉

h[−1]|0〉 7→ (ρ(h)) +
〈
bi, h

〉
bi[−1]|0〉

fi[−1]|0〉 7→ (ρ(fi)) + ciγ
ei [−1]|0〉+

〈
bj , α̌i

〉
γei [0]bj [−1]|0〉

for i ∈ I and h ∈ h.

Proof. The proof is given in Section 6. �

Equivalently, there is a Z×Q-graded homomorphism of Lie algebras

Lg→ L(M⊗ π0)

given by

ei(z) 7→ (ρ(ei))(z) + ci∂zγ
fi(z) +

〈
bj , α̌i

〉
γfi(z)bj(z)

h(z) 7→ (ρ(h))(z) +
〈
bi, h

〉
bi(z)

fi(z) 7→ (ρ(fi))(z) + ci∂zγ
ei(z) +

〈
bj , α̌i

〉
γei(z)bj(z)

for i ∈ I and h ∈ h.

4.15. On zero modes. We have the homomorphism of Lie algebras ρ : g→ D̃erO(n)

from Lemma 6, and the embedding i : D̃erO(n) ↪→ M̃(n) ⊂ M̃ given by∑
(a,n)∈A

P a,n(X)Da,n 7→
∑

(a,n)∈A

P a,n(γ[0])βa,n[−1]|0〉,

where P a,n(X) ∈ O(n) for each (a, n) ∈ A. Let φ : g → ΩO(n) be the linear map
defined by

φ(x) =

{
0 x ∈ b+

φ(x) x ∈ n−

where φ : g→ ΩO was the splitting map from Theorem 28. We continue to identify

ΩO(n) with a subspace of M(n) ⊂ M̃(n) (with f(X)dXa,n 7→ f(γ[0])γa,n[−1]|0〉). We
get a linear map

ϑ = i ◦ ρ+ φ : g ∼= Vg,0
0 [1]→ M̃(n)[1].
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(The kernel is the centre Ck ⊂ g; if one wanted an embedding, one could introduce a
tensor factor π0 as in Section 4.14.)

The would-be non-negative vertex algebra products ϑ(x)(N)ϑ(y), x, y ∈ g, N ≥ 0,
of states in the image of this map are generically ill-defined, i.e. divergent, sums (as
we saw in the examples in Section 1.5). Thus, we don’t get a direct analog in affine

types of usual Feigin-Frenkel free-field realization Vg,−h∨
0 → M(n) in finite types.

Nonetheless, we do have the following.

Theorem 33. The vertex algebra 0th product (0) : M(n)×M(n)→ M(n) extends to a
well-defined product

(0) : ϑ(g)× ϑ(g)→ ϑ(g)

on the image ϑ(g) ⊂ M̃(n)[1] of g in M̃(n).
Moreover, we have

ϑ(x)(0)ϑ(y) = ϑ([x, y])

for all x, y ∈ g.

Proof. Let x, y ∈ g. We first want to show that ϑ(x)(0)ϑ(y) is well-defined.
Calculating as in the proof of Lemma 27, one sees that for any twoX,Y ∈ DerO(n),

we have

i(X)(0)i(Y ) = i([X,Y ]) + d(X,Y ) (79)

where we define a (C-)bilinear map d(·, ·) : DerO(n)×DerO(n)→ ΩO(n) by

d

 ∑
(a,n)∈A

P a,n(X)Da,n,
∑

(b,m)∈A

Qb,m(X)Db,m


:= −

∑
(a,n),(b,m)∈A

(
∂Db,mP

a,n(X)
)(
Da,nQ

b,m(X)
)
. (80)

Now, d(·, ·) does not extend to a well-defined bilinear form on D̃erO(n) × D̃erO(n):
for example if v =

∑
n∈Z≥1

Xa,nDa,n for some fixed a ∈ I, then −d
(
Xc,1v, v

)
=(

1 +
∑

m∈Z≥1
1
)
∂Xc,1 is ill-defined. But we can define a Lie subalgebra large enough

to contain the image of g and small enough that d(·, ·) remains well-defined, as

follows. First let us define a Lie subalgebra D1 ⊂ D̃erO(n), by stipulating that∑
(a,n)∈A P

a,n(X)Da,n belongs to D1 if, for some K ∈ Z≥1,

P a,n(X) ∈
⊕

(b,m)∈A
n+K≥m≥n−K

CXb,m

for each (a, n) ∈ A. One checks that DerO(n) o D1 is a Lie subalgebra of D̃erO(n).
According to Theorem 10, the image ρ(x) of x belongs to this subalgebra:

ρ(x) ∈ DerO(n) oD1.

Lemma 34. d(·, ·) extends to a well-defined C-bilinear map

d(·, ·) :
(
DerO(n) oD1

)
×
(
DerO(n) oD1

)
→ ΩO(n),
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with the property that d(D1, ·) = 0.

Proof of Lemma 34. d(·, ·) vanishes, summand by summand, whenever its first ar-
gument is linear in the generators {Xa,n}(a,n)∈A, since ∂(Da,nX

b,m) = 0 for all
(a, n), (b,m) ∈ A. So by linearity it is enough to consider the case when the first
argument,

∑
(a,n)∈A P

a,n(X)Da,n belongs to DerO(n), i.e. has widening gap. The

second argument has bounded grade, so there is some M such that Da,nQ
b,m(X) = 0

for all n,m such that n−m ≥M . By the assumption of widening gap, there is some
N (depending on M) such that, for all n > N , Db,mP

a,n(x) = 0 whenever n−m < M .
So at most the first N terms in the sum on n can be nonzero:∑

(a,n),(b,m)∈A

(
∂Db,mP

a,n(X)
)(
Da,nQ

b,m(X)
)

=
∑

(a,n),(b,m)∈A
n≤N

(
∂Db,mP

a,n(X)
)(
Da,nQ

b,m(X)
)
,

and then for each n the sum on m is also finite, since P a,n(X) is a polynomial. �

At this stage, we have shown that (79) holds for all X,Y ∈ DerO(n) o D1. In
particular, it holds for the images ρ(x), ρ(y) of x, y ∈ g:

i(ρ(x))(0)i(ρ(y)) = i(ρ([x, y])) + d(ρ(x), ρ(y)) .

It follows that ϑ(x)(0)ϑ(y) is well-defined. (There are no possible double contractions,
and hence no possible divergences, of the products between the subspaces ΩO(n) and

i(D̃erO(n)) of M̃(n).)
The “moreover” part is then essentially a corollary of Theorem 28. Consider the

linear map π : M[1] → M̃[1] which acts as the identity on M[1] ⊂ M[1] and sends
Sab,n[−1]|0〉 →

∑
m∈Z γ

a,m[0]βb,m+n[−1]|0〉 and D→
∑

(a,m)∈I×Zmγ
a,m[0]βa,m[−1]|0〉.

By construction, for any x ∈ g, π(θ(x[−1]|0〉)) = ϑ(x) + τ(ϑ(σ(x))), where ϑ(x) ∈
M̃(n)[1] and τ(ϑ(σ(x))) ∈ M̃(n−)[1]. (See (54) and the discussion following.) Thus

π(θ(x[−1]|0〉))(0)π(θ(y[−1]|0〉)) = ϑ(x)(0)ϑ(y) + τ(ϑ(σ(x)))(0)τ(ϑ(σ(y))) (81)

for all x, y ∈ g. At the same time, for any X,Y ∈ M[1], we check that π(X)(0)π(Y )
is well-defined and equal to π(X(0)Y ). Thus

π
(
θ(x[−1]|0〉)

)
(0)π

(
θ(y[−1]|0〉)

)
= π

(
θ(x[−1]|0〉)(0)θ(y[−1]|0〉)

)
= π(θ([x, y][−1]|0〉))
= ϑ([x, y]) + τ(ϑ(σ([x, y]))). (82)

On comparing (81) and (82), and projecting onto the summand M̃(n)[1] of M̃(n)[1]⊕
M̃(n−)[1], we have the result. �

Corollary 35. There is a well-defined Lie algebra L0(ϑ(g)) of the formal 0-modes of
states in the image of ϑ, and the map

g→ L0(ϑ(g)); x 7→ ϑ(x)[0]

is a homomorphism of Lie algebras. �
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Proof. This follows from the theorem since, when the Lie bracket formula (73) for
formal modes is specialized to the Lie bracket of formal zero modes, only the 0th
product contributes: [A[0], B[0]] = (A(0)B)[0]. �

5. Proof of Theorem 28

In (78) we obtained a cocycle ρ̃∗(ω) ∈ H2(Lg,L(O ⊕ ΩO)). In fact, we can be
rather more precise: recall ρ(k) = 0, ρ(d) = D, and ω(D[N ], ·) = 0. So we have
actually defined a L(O ⊕ ΩO)-valued 2-cocycle on the double-loop algebra

LL̊g := L(̊g[t, t−1]) := g̊[t, t−1]⊗ C((s)).

Our goal is to show that this cocycle is trivial.
We shall follow closely the strategy of proof due to Feigin and Frenkel [FF90a],

and specifically the treatment in [Fre07, §5.6], [Fre05b]; cf. also [Fei84; FF92]. The
subspace O ⊕ ΩO ⊂M is contained in the larger subspace

M0 := C[γa,n[−N ]]a∈I,n∈Z,N∈Z≥0
|0〉 ⊂M.

This subspace is a commutative vertex algebra. It is also an ideal for the action of
M[≤1] in the same sense as in Lemma 24: A(M)B ∈ M0 for all A ∈ M0, B ∈ M[≤1]
and M ≥ 0. It follows that

ρ̃∗(ω) ∈ H2(LL̊g,L(M0)),

and it is convenient to show our cocycle is zero in the latter space.
To do so, we first show that the cocycle ρ̃∗(ω) actually belongs to the local sub-

complex of this CE complex. Let us define this local complex.

5.1. bc-system. Let Cl denote the Clifford algebra with generators

ba,n[N ], ca,n[N ],

with N ∈ Z and (a, n) ∈ I × Z, and anticommutation relations

[ba,n[N ], bb,m[M ]]+ = 0, [ba,n[N ], cb,m[M ]]+ = δb,ma,n δN,−M1, [ca,n[N ], cb,m[M ]]+ = 0,

where we write [X,Y ]+ := XY + Y X for the anticommutator.
Define Λ to be the induced Cl-module generated by a vector |0〉 such that

ba,n[M ]|0〉 = 0, M ∈ Z≥0, ca,n[M ]|0〉 = 0, M ∈ Z≥1. (83)

for all (a, n) ∈ I × Z. It is Z×Q-graded just as is M, cf. Section 4.4.
Cl is a superalgebra (with all generators b, c of odd degree) and its module Λ is a

vector superspace. Λ is moreover a vertex superalgebra (for the definition of which
see e.g. [Kac98; FB04]). The state-field map Y (·, x) : Λ→ Hom (Λ,Λ((x))) is defined
as follows. First,

ba,n(x) := Y (ba,n[−1]|0〉, x) =
∑
N∈Z

ba,n[N ]x−N−1,

ca,n(x) := Y (ca,n[0]|0〉, x) =
∑
N∈Z

ca,n[N ]x−N ,
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and then in general if

A = ca1,n1 [−N1] . . . car,nr [−Nr]bb1,m1 [−M1] . . . bbs,ms [−Ms]|0〉, (84)

then

A(u) := Y (A, u) = :ca1,n1(N1)(u) . . . car,nr(Nr)(u)b
(M1−1)
b1,m1

(u) . . . b
(Ms−1)
bs,ms

(u):. (85)

The normal-ordering here is defined just as in Section 4.4 only with the addition of
signs to allow for the superspace Z/2Z-grading: we have

:Y (A, u)Y (B, v): :=

(∑
M<0

A(M)u−M−1

)
Y (B, v)+(−1)p(A)p(B)Y (B, v)

(∑
M≥0

A(M)u−M−1

)
.

(86)
whenever A and B are in grades p(A) and p(B) respectively.

We have the (super)translation operator T ∈ End Λ of the vertex superalgebra
Λ, defined by TA := A(−2)|0〉. It acts on monomials in the generators of Cl as a
superderivation, according to

[T, ba,n[−N ]]+ = −Nba,n[N − 1], [T, ca,n[−N ]]+ = −(N − 1)ca,n[N − 1],

and we have T |0〉 = 0.
For each r ≥ 0, let Λr0 denote the subspace of Λ spanned by states of the form

ca1,n1 [−N1] . . . car,nr [−Nr]|0〉,
with a1, . . . , ar ∈ I, n1, . . . , nr ∈ Z, N1, . . . , Nr ∈ Z≥0. The sum, Λ0 :=

⊕∞
r=0 Λr0 is a

supercommutative vertex superalgebra.

5.2. Chevalley-Eilenberg cochains for L+L̊g with coefficients in M0. Let L+L̊g
denote the Lie algebra

L+L̊g := g̊[t, t−1]⊗ C[[s]].

It is a topological Lie algebra, with the the linear topology coming from the Z≥0-
grading (i.e. the linear topology in which g̊[t, t−1]⊗ sNC[[s]], N ∈ Z≥0, are a base of
the open neighbourhoods of 0).

The space M0 is a module over L+L̊g. Indeed, let us write Ja,n := (ρ(Ja,n)) ∈M,
that is

Ja,n =
∑

(b,m)∈I×Z

Rb,ma,n (γ[0])βb,m[−1]|0〉+
∑

(b,c)∈I

fba
cSbc,n[−1]|0〉,

where we recall the definition (56) of the polynomials Rb,ma,n and the definition (70) of
the injective map . From Lemma 27 and the fact that ρ : g→ D is a homomorphism
of Lie algebras, it follows that

Ja,n(0)Jb,m ≡ fabcJc,n+m mod ΩO,

Ja,n(1)Jb,m ≡ 0 mod O. (87)

The mode Ja,n(N) restricts to a linear map M0 → M0 for all non-negative N , as in
Lemma 24(iii). This defines an action of L+L̊g because, in view the commutator
formula (66) and (87), we have

[Ja,n(N), Jb,m(M)] = fab
cJc,n+m(N+M) mod L(M0), N,M ≥ 0,
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(and equality modulo L(M0) is enough, cf. Lemma 24(ii)).
As an L+L̊g-module, M0 is smooth, which is to say that for all v ∈ M0 and all

a ∈ g, a[N ]v = 0 for all sufficiently large N . In other words the action is continuous,
when we endow M0 with the discrete topology.

We have the rth exterior power
∧r L+L̊g of the topological vector space L+L̊g,

with its natural topology. The space of r-cochains of the Chevalley-Eilenberg com-
plex of L+L̊g with coefficients in the module M0 is the space Cr(L+L̊g,M0) :=
Homcont(

∧r L+L̊g,M0) of continuous linear maps

λ :
∧r

L+L̊g→ M0.

Since M0 has the discrete topology, continuity means that for each such λ there must
be some N such that λ kills everything in grades ≥ N . Thus

Homcont
(∧r

L+L̊g,M0

)
=
⊕
N≥0

Hom
((∧r

L+L̊g
)
N
,M0

)
. (88)

5.2.1. Case of finite-dimensional g. Let us digress to recall what happens when g is
of finite dimension. In that case the subspaces (

∧r L+L̊g)N appearing in (88) are also
all finite-dimensional, and so⊕

N≥0

Hom
((∧r

L+L̊g
)
N
,M0

)
∼= M0 ⊗

⊕
N≥0

((∧r
L+L̊g

)
N

)∗
∼= M0 ⊗ Λr0,

where in the second step we identify the restricted dual,
⊕

N≥0 ((
∧r L+L̊g)N )∗, with

the space Λr0 spanned by states of the form ca1 [−N1] . . . car [−Nr]|0〉, by means of the
bilinear pairing given by

(ca1 [−N1] . . . car [−Nr]|0〉, Jb1 [K1] ∧ · · · ∧ Jbr [Kr])

7→

{
sign(σ) ai = bσ(i) and Ni = Kσ(i) for each i, for some σ ∈ Sr
0 otherwise

(Here we picked a basis Ja of g, where a runs over a finite set of indices.)
In this way, one has a linear isomorphism C•(L+L̊g,M0) ∼= M0 ⊗ Λ0.

5.2.2. Case of infinite-dimensional g. Now we return to our case, in which g has
countably infinite dimension. The tensor product M0⊗Λ0 now corresponds only to a
subspace of C•(L+L̊g,M0), and one which will not be large enough for our purposes.
It is convenient simply to define, for each r,

M0 ⊗̃ Λr0 :=
⊕
N≥0

Hom
((∧r

L+L̊g
)
N
,M0

)
= Cr(L+L̊g,M0).

An element Φ ∈ M0 ⊗̃ Λr0 can be regarded as a possibly infinite sum of states of
the form

ca1,n1 [−N1] . . . car,nr [−Nr]v ∈ M0 ⊗ Λr0, (89)
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with
∑r

i=1Ni ≤ N for some bound N depending on Φ,5 and subject to the condition
that for any λ ∈

∧r L+L̊g, the pairing (Φ, λ), defined as follows, yields a well-defined
(i.e. finite) element of M0. We first define the pairing between a state in M0 ⊗ Λr0 of
the form (89) and a vector in

∧r L+L̊g of the form

Jb1,k1 [K1] ∧ · · · ∧ Jbr,kr [Kr] (90)

by declaring that

(ca1,n1 [−N1] . . . car,nr [−Nr]m,Jb1,k1 [K1] ∧ · · · ∧ Jbr,kr [Kr])

7→

{
sign(σ)m ai = bσ(i), ni = kσ(i) and Ni = Kσ(i) for each i, for some σ ∈ Sr
0 otherwise

Then we extend by linearity in both slots.

Remark 36. Neither L+L̊g nor
∧r L+L̊g are complete. For example, pick an a ∈ I and

let sN =
∑N

n=1 Ja,n[n] forN = 1, 2, 3, . . . . This sequence is Cauchy but not convergent
(because the infinite sum

∑∞
n=1 Ja,n[n] does not belong to L+L̊g = g⊗ C[[t]]).

By not completing these spaces, we preserve a useful property of “compact sup-
port”: for any λ ∈

∧r L+L̊g there exists some k such that λ can be written as a
possibly infinite linear combination of terms of the form (90) with |ki| < k for each
i = 1, . . . , r.

5.3. The complex C•(L+L̊g,M0) and the state Q. Thus, we have the spaces of the
Chevalley-Eilenberg complex C•(L+L̊g,M0) of L+L̊g with coefficients in the module
M0. The differential d : Cr(L+L̊g,M0) → Cr+1(L+L̊g,M0) is given by the usual
formula,

(df)(x1, . . . , xr+1) :=
r+1∑
p=1

(−1)p+1xp.f(x1, . . . , xp−1, xp+1, . . . , xr+1)

+
∑

1≤p<q≤r+1

(−1)p+qf([xp, xq], x1, . . . , xp−1, xp+1, . . . , xq−1, xq+1, . . . , xr+1). (91)

Informally, we may introduce a state Q given by

Q :=
∑

(a,n)∈I×Z

ca,n[0]Ja,n −
1

2

∑
a,b,c∈I
n,m∈Z

fab
cca,m[0]cb,n[0]bc,n+m[−1]|0〉.

This is by analogy with the definition of Q in the case where g has finite dimension.
In our case, Q does not belong to the tensor product M⊗Λ0, because of the infinite
sums on n,m. It belongs to a suitable completion. One should not expect the vertex

superalgebra structure to extend to that completion, just as M̃ was not a vertex
algebra in Section 4.7. Since Q is the only such state we shall actually need, let us
avoid a formal definition. Instead, we shall check that Q has the specific properties
we need, as they arise.

5Note that we have not required these summands to have bounded depth overall, so the depths of the
states v ∈ M0 could increase without bound as, say, n1 increases. We shall only ever need elements
of bounded depth, though.
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Here is the first such property. The zero mode Q(0) unambiguously defines a linear
map M0 ⊗̃ Λ0 → M0 ⊗̃ Λ0. (It involves only single contractions.) One easily sees
that it coincides with the CE differential:

dΦ = Q(0)Φ.

5.4. The local complex C•loc(Lg,L(M0)). Recall the definition of the local Lie alge-
bra L(L ) from Section 4.10. One sees from (73) that the formal zero modes generate
a Lie subalgebra, which we shall denote by

L0(L ) ⊂ L(L ). (92)

We can apply this in particular to the subspaces M0 ⊗ Λr0 of the supercommutative
vertex superalgebra M0⊗Λ0, to obtain the vector superspaces (in fact, supercommu-
tative Lie superalgebras) L0(M0 ⊗ Λr0). We see that these spaces are given by

L0(M0 ⊗ Λr0) =

∑
k≥0

T k(M0 ⊗ Λr0)

/(ImT + C|0〉)

= (M0 ⊗ Λr0)
/

(ImT + C|0〉).
(Note that we have to quotient by the subspace C|0〉 = kerT too, not just ImT ,
because the zero mode |0〉[0] = |0〉 ⊗ t0 = ∂t(|0〉 ⊗ t) = (T + ∂t)(|0〉 ⊗ t) ≡ 0 does
vanish in L(M0 ⊗ Λr0).)

Now, when g has finite dimension, the spaces of the local complex are, by definition,
precisely these L0(M0⊗Λr0). In our case, in which g has countably infinite dimension,
we must use the larger spaces M0 ⊗̃ Λr0 from Section 5.2.2. By analogy with the
above, let us define

Crloc(LL̊g,L(M0)) :=
(
M0 ⊗̃ Λr0

)/
(ImT + C|0〉) (93)

for each r. Here we use the fact that the definition of the translation operator extends
in a well-defined way to M0 ⊗̃ Λr0.

Let us write
∫

for the projection map
∫

: Cr(L+L̊g,M0)→ Crloc(LL̊g,L(M0)); Φ 7→∫
Φ := Φ[0]. Let us attempt to define a differential

d : Crloc(LL̊g,L(M0))→ Cr+1
loc (LL̊g,L(M0))

by setting
d(Φ[0]) := (dΦ)[0] = (Q(0)Φ)[0].

The fact that this is a consistent definition is a consequence of the following lemma.

Lemma 37. We have the commutative diagram

Crloc(LL̊g,L(M0)) Cr+1
loc (LL̊g,L(M0))

Cr(L+L̊g,M0) Cr+1(L+L̊g,M0)

Cr(L+L̊g,M0) Cr+1(L+L̊g,M0).

d

∫
d

∫

T

d

T

(94)
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Proof. What has to be checked is that the lower square is commutative. This is
seen by direct calculation: as in Section 5.3, there is a well-defined notion of the
zero mode Q(0) of Q acting on M0 ⊗̃ Λ0, and we check that TdΦ = T (Q(0)Φ) =
(TQ)(0)Φ +Q(0)TΦ = Q(0)TΦ = dTΦ. �

Thus, we obtain a complex, (C•loc(LL̊g,L(M0)), d). This is the local complex. As
the notation suggests (and as we now check) it forms a subcomplex of the usual
Chevalley-Eilenberg complex C•(LL̊g,L(M0)) of LL̊g with coefficients in L(M0).

Consider first a state Ψ ∈ M0 ⊗ Λr0 ⊂ M0 ⊗̃ Λr0 of the form

Ψ = ca1,n1 [−N1] . . . car,nr [−Nr]v.

We can apply the state-field map to this state, and in particular we can take the zero
mode Ψ(0) ∈ End(M⊗Λ). This zero mode Ψ(0) is a (generically infinite) sum of terms

ca1,n1 [M1] . . . car,nr [Mr]v[M ] (95)

(Here v[M ] ∈ L(M0) is the Mth mode of the state v ∈ M0.6)
We have the exterior algebra

∧r LL̊g. The pairing from Section 5.2.2 goes over to
this setting, and using it we can certainly interpret each term (95) as an r-cochain in

Cr(LL̊g,L(M0) := Homcont(
∧r

LL̊g,L(M0)).

Moreover, the infinite sum Ψ[0] is again a well-defined r-cochain, i.e. it is continuous,
when L(M0) gets its natural (i.e. t-adic) linear topology.

These statements are exactly as in the case in which g has finite dimension. The
only new aspect of the present case is that a general state Φ ∈ M0 ⊗̃ Λr0 may itself
be an infinite sum of such states Ψ ∈ M0 ⊗ Λr0, subject to the conditions we gave in
Section 5.2.2. But, for any given µ ∈

∧r LL̊g, we can arrange that for only finitely
many of these summands Ψ does Ψ[0] have nonzero pairing with µ. (This is clear
from the notion of “compact support” from Remark 36.) In this way, we can indeed
interpret Φ[0] ∈ Crloc(LL̊g,L(M0)) as an element of Cr(LL̊g,L(M0)).

Finally, one checks that the derivative on C•loc(LL̊g,L(M0)) coincides with the usual
Chevalley-Eilenberg derivative.

5.5. The cocycle ω[0]. As the relevant example for us, consider the state ω ∈
M0 ⊗̃ Λ2

0 given by

ω := −ca,n[−1]cb,m[0]
∂Rc,pa,n
∂γd,q[0]

∂Rd,qb,m
∂γc,p[0]

|0〉 − ca,n[0]cb,m[0]

[
T,

∂Rc,pa,n
∂γd,q[0]

]
∂Rd,qb,m
∂γc,p[0]

|0〉

(96)

where the polynomials R are as we defined them in (56).
(Here and below we use summation convention, for brevity.)

6Here and in what follows we are equivocating between formal modes X[M ] ∈ L(M⊗Λ) and modes
X(M) ∈ End(M⊗Λ) of states in X ∈ M⊗Λ. There is no loss in this because the vertex superalgebra
M⊗Λ of free fields has the property that the Lie algebra homomorphism L(M⊗Λ)→ EndM⊗Λ is
injective.
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The formal zero mode ω[0] is realized in End(M0 ⊗̃ Λ2
0) as the following infinite

sum

ω(0) = −
∫

ca,n ′(x)cb,m(x)Y

(
∂Rc,pa,n
∂γd,q[0]

∂Rd,qb,m
∂γc,p[0]

|0〉, x

)
dx

−
∫

ca,n(x)cb,m(x)Y

([
T,

∂Rc,pa,n
∂γd,q[0]

]
∂Rd,qb,m
∂γc,p[0]

|0〉, x

)
dx

= −
∑
K,L∈Z

Kca,n[−K]cb,m[−L]

(
∂Rc,pa,n
∂γd,q[0]

∂Rd,qb,m
∂γc,p[0]

|0〉

)
[K + L− 1]

−
∑
K,L∈Z

ca,n[−K]cb,m[−L]

([
T,

∂Rc,pa,n
∂γd,q[0]

]
∂Rd,qb,m
∂γc,p[0]

|0〉

)
[K + L].

At the same time, from (76) we have

ρ̃∗(ω)(Ja,n[K], Jb,m[L])

= −K

(
∂Rc,pa,n
∂γd,q[0]

∂Rd,qb,m
∂γc,p[0]

|0〉

)
[K + L− 1]−

([
T,

∂Rc,pa,n
∂γd,q[0]

]
∂Rd,qb,m
∂γc,p[0]

|0〉

)
[K + L].

We see that ω[0] is identified with our cocycle ρ̃∗(ω), and so our cocycle belongs to
the local complex.

5.6. Submodules M0(n) and M0(n−). To proceed, we need more information about
the structure of M0 as an L+L̊g-module. Recall that

O(n) = C[Xa,n](a,n)∈A,

O(n−) = C[Xa,n](a,n)∈−A

and that our action of g on O stabilizes both of these, as in Proposition 18. It follows
that if we now define

M0(n) := C[γa,n[−N ]](a,n)∈A,N≥0|0〉,
M0(n−) := C[γa,n[−N ]](a,n)∈−A,N≥0|0〉,

then our action of L+L̊g on M0 (given by Ja,n[N ]v = Ja,n(N)v, as in Section 5.2)
stabilizes these subspaces (in fact, commutative vertex subalgebras) of M0. (Cf.
Proposition 31.)

As modules over L+L̊g, these subspaces turn out to be isomorphic to contragredient
Verma modules, as we now describe.

5.7. Contragredient Verma modules. The contragredient Verma module M∗λ over
g of highest weight λ ∈ h∗ is by definition the coinduced left U(g)-module

M∗λ = Coindg
b−

Cvλ := Homres
U(b−)(U(g),Cvλ),
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where Cvλ denotes the one-dimensional U(b−)-module defined by n−.vλ = 0 and
h.vλ = λ(h)vλ for h ∈ h. Here Homres means the following: we have the isomorphism
of vector spaces

HomU(b−)(U(g),Cvλ) ∼= HomU(b−)(U(b−)⊗ U(n),Cvλ)

∼= HomC(U(n),C) = U(n)∗,

and Homres means we allow only maps that, under this isomorphism, belong to the
restricted dual U(n)∨ :=

⊕
α∈Q(U(n)α)∗ ⊂ U(n)∗ of the Q-graded vector space U(n).

The isomorphism above is also one of left U(n) modules. So, as left U(n)-modules,

M∗λ
∼= U(n)∨. (97)

We also have the contragredient Verma modules “in the opposite category O”, i.e.
the twists of the modules above by the Cartan involution σ of (51).

Define M∗,σλ to be the coinduced left U(g)-module

M∗,σλ = Coindg
b+

Cv−λ := Homres
U(b+)(U(g),Cv−λ ).

where Cv−λ denotes the one-dimensional U(b+)-module defined by n.v−λ = 0 and

h.v−λ = λ(h)v−λ for h ∈ h.
As vector spaces, and as modules over U(n−), we have

M∗,σλ
∼= U(n−)∨.

These definitions go over to the half loop algebra L+g in an obvious way: Cvλ
becomes a module over L+b− if we declare that (b−⊗ tC[[t]]).vλ = 0 and then we get
the left U(L+g)-module Homres

U(L+b−)(U(L+L̊g),Cvλ), and likewise its twist by σ.

Proposition 38.

(i) There are isomorphisms of g-modules

O(n) ∼= Homres
U(b−)(U(g),Cv0),

O(n−) ∼= Homres
U(b+)(U(g),Cv0).

(ii) There are isomorphisms of L+g-modules

M0(n) ∼= Homres
U(L+b−)(U(L+g),Cv0)

M0(n−) ∼= Homres
U(L+b+)(U(L+g),Cv0).

Proof. The proof is the same as in the case of g of finite type in [Fre07, §5.2.3, §5.6.3].
For completeness let us go through the steps.

First we show that O(n) ∼= U(n)∨ as n-modules. To do that we consider the
pairing U(n) × O(n) 7→ C; (x, P ) 7→ 〈x, P 〉 := x.P |0∈n. It respects the Q-gradations
of U(n) and O(n), in the sense that U(n)α pairs as zero with O(n)β unless α+β = 0.

Consider the restriction of the pairing to U(n)α ×O(n)−α for some α ∈ Q>0. Recall
our ordered basis B+ = {Ja,n}(a,n)∈A of n from (23) and (19). We have the PBW
basis of U(n)α consisting of ordered monomials these basis elements, and we have the
basis of O(n)−α consisting of monomials in the Xa,n, (a, n) ∈ A. Both these bases
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have the lexicographical ordering coming from the ordering of A. The action of Ja,n,
(a, n) ∈ A, on O(n) is by a differential operator of the form

Da,n +
∑

(b,m)∈A
wgt(Jb,m)−wgt(Ja,n)∈Q>0

P b,ma,n (X)Db,m (98)

From this one sees that the matrix of the restricted pairing with respect to the two
ordered bases above is diagonal with non-zero entries. Thus the restriction of the
pairing to U(n)α × O(n)−α is non-degenerate, for each α ∈ Q>0. This shows that
O(n) ∼= U(n)∨ as a vector space. But the pairing is also manifestly n-invariant:
〈xei, P 〉 = 〈x, eiP 〉. This shows that O(n) ∼= U(n)∨ as left modules over U(n), where
the left U(n)-module structure on U(n)∨ is the canonical one, coming from the right
action of U(n) on itself by right multiplication.

Thus, given (97), we have O(n) ∼= M∗0 as n-modules. Now we show it is an isomor-
phism of g-modules. The coinduced module M∗λ has the following universal property.
Suppose M is a g-module and N ⊂M a b−-submodule of M such that the quotient
M/N is isomorphic to Cvλ as a b−-module. Then there is a homomorphism of g-
modules M → M∗λ sending v 7→ v∗λ, where v ∈ M is such that v + N spans M/N ,
and where v∗λ ∈ M∗λ is a non-zero vector of weight λ. In our case, as a b−-module,
O(n) has the submodule N =

⊕
α∈Q>0

O(n)−α (or equivalently, the ideal in O(n)

generated by (Xa,n)(a,n)∈A). The quotient O(n)/N is a b−-module of dimension one,
spanned by the class 1 + N of the vector 1 ∈ O(n). This vector 1 + N has weight
zero and is annihilated by n− (since n−.1 ∈ N). Hence there exists a homomorphism
of g-modules φ : O(n)→M∗0 sending 1 to a non-zero vector v∗0 ∈M∗0 of weight zero.
Now, for any P ∈ O(n) there exists x ∈ U(n) such that x.P = 1: indeed, take the last
nonzero monomial m of P with respect to the lexicographical ordering and consider
the corresponding PBW basis element m∗ of U(n). We see that m∗.m is a nonzero
multiple of 1. Thus x.φ(P ) = φ(x.P ) = φ(1) = v∗0 is nonzero and hence φ(P ) is
also nonzero. That is, φ : O(n) → M∗0 is injective. But we know O(n) ∼= M∗0 as an
n-module, as above, so in fact φ must be a bijection. This completes the proof that
O(n) ∼= M∗0 ≡ Homres

U(b−)(U(g),Cv0) as g-modules.

The argument for O(n−) ∼= Homres
U(b+)(U(g),Cv0) is the same, just twisted by the

Cartan involution σ so that O(n) and O(n−), and U(n) and U(n−), are interchanged.
(Compare (55).)

For part (ii), the argument is again essentially the same, with the Q-gradation
above replaced by the Q×Z≥0 gradation. One shows first that M0(n) ∼= U(L+n)∨ as
L+n-modules, and then uses that fact to show that the canonical homomorphism of
L+g-modules M0(n)→ Homres

U(L+b−)(U(L+g),Cv0) is an isomorphism. �

Therefore there is an isomorphism of modules over g′/Ck ∼= L̊g := g̊[t, t−1],

O(n) ∼= Homres
U(b′−/Ck)(U(g′/Ck),Cv0)

(where b′− := g′ ∩ b−) and an isomorphism of modules over L+(g′/Ck) ∼= L+L̊g,

M0(n) ∼= Homres
U(L+(b′−/Ck))(U(L+(g′/Ck)),Cv0).
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Given an r-cochain
∧r L+L̊g → M0(n), we may restrict it to

∧r L+h̊ and then

compose the resulting map
∧r L+h̊→ M0(n) with the canonical projection of L+L̊g-

modules M0(n)→ Cv0. This defines a map of complexes

µ : C•(L+L̊g,M0(n))→ C•(L+h̊,Cv0).

Lemma 39. This map µ is a quasi-isomorphism, i.e. it induces an isomorphism of
the cohomologies,

H•(L+L̊g,M0(n)) ∼= H•(L+h̊,Cv0).

Proof. The proof, using the Serre-Hochschild spectral sequence (see [Fuk86, §1.5]), is
the same as in [Fre07, Lemma 5.6.6]. �

The following is [Fre07, Lemma 5.6.7].

Lemma 40. If the restriction of a cocycle γ ∈ Crloc(LL̊g,L(M0(n))) to
∧r L̊h is zero,

then γ represents the zero cohomology class, [γ] = [0], in Hr
loc(LL̊g,L(M0(n))).

Proof. We can suppose r ≥ 1.
Consider a cocycle γ ∈ Crloc(LL̊g,L(M0(n))). We have γ = X[0] for some cochain

X ∈ Cr(L+L̊g,M0(n)). The closure of γ implies dX is in the image of T : dX = TY ,
say, for some Y ∈ Cr+1(L+L̊g,M0(n)). We have TdY = −dTY = −ddX = 0 and
since T has kernel 0 (for all r ≥ 1), that implies dY = 0.

Let γ denote the restriction of γ to
∧r L̊h. We have γ = X[0], where X denotes the

restriction of X to
∧r L+h̊. If γ is zero then X is in the image of T . Therefore so too

is µ(X). So we have µ(X) = Th, say, for some h ∈ Cr(L+h̊,Cv0). Now, µ is a map of
complexes, so dTh = dµ(X) = µ(dX) = µ(TY ). It is clear that T commutes with µ.
Thus −Tdh = Tµ(Y ) and hence, again since the kernel of T is trivial, dh = −µ(Y ).
That is, µ(Y ) is exact. But µ is a quasi-isomorphism as in Lemma 39. So Y must
also be exact: Y = dB, say, for some B ∈ Cr(L+L̊g,M0(n)).

Let X ′ = X+TB. We see that γ = X ′[0] and X ′ is a cocycle: dX ′ = dX−TdB =
dX − TY = 0.

(At this point, effectively we have shown we were at liberty to assume our X – now
called X ′ – was not only a cochain, but a cocycle. We now repeat many steps from
above, but armed with that extra fact.)

We have µ(X ′) = Th′ (where h′ = h + µ(B)). So −Tdh′ = dTh′ = dµ(X ′) =

µ(dX ′) = 0, and hence dh′ = 0. So h′ is a cocycle in Cr(L+h̊,Cv0) =
(∧r L+h̊

)∨
.

Thus, again since µ is a quasi-isomorphism, we have h′ = µ(B′) for some cocycle
B′ ∈ Cr(L+L̊g,M0(n)). Finally, we see that µ(X ′) = Tµ(B′) = µ(TB′). Hence
the cocycles X ′ and TB′ in Cr(L+L̊g,M0(n)) represent the same cohomology class
in Hr(L+L̊g,M0(n)). Therefore the cocycles X ′[0] and (TB′)[0] in Crloc(L+L̊g,M0(n))
represent the same cohomology class in Hr

loc(L+g,M0(n)). (Indeed X ′−TB′ = dC for
some C ∈ Cr(L+L̊g,M0(n)) implies X ′[0] − (TB′)[0] = (dC)[0] = d(C[0]).) But γ =
X ′[0] and 0 = (TB′)[0], so we have shown γ is cohomologous to zero, as required. �

This is the key lemma. However, to use it, we have to get around one final obsta-
cle: our cochain ω[0] lives not in C2

loc(LL̊g,L(M0(n))) but only in the larger space
C2

loc(LL̊g,L(M0)).
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5.8. Cohomology equivariant with respect to τ . Recall the involutive automor-
phism τ defined in Section 3. Let us also denote by τ the involutive automorphism
of Λ⊗M defined by τ |0〉 = |0〉,

τ(γα,n)[N ] = γ−α,−n[N ], τ(γi,n)[N ] = −γi,−n[N ],

τ(βα,n)[N ] = β−α,−n[N ], τ(βi,n)[N ] = −βi,−n[N ],

τ(cα,n)[N ] = c−α,−n[N ], τ(ci,n)[N ] = −ci,−n[N ],

τ(bα,n)[N ] = b−α,−n[N ], τ(bi,n)[N ] = −bi,−n[N ],

τ(Sαβ,n[N ]) = S−α−β,−n[N ], τ(Sαi,n[N ]) = −S−αi,−n[N ],

τ(Siβ,n[N ]) = −Si−β,−n[N ], τ(Sij,n[N ]) = Sij,−n[N ],

for α, β ∈ ∆̊ \ {0}, i, j ∈ I̊, n ∈ Z, and N ∈ Z, and τ(D[N ]) = −D[N ].
Let Cτ,•loc (LL̊g,L(M0)) = L0 ((Λ•0 ⊗M0)τ ) denote the subspace consisting of zero

modes of states Φ ∈ Λ0 ⊗M0 such that τΦ = 0.

Lemma 41. τQ = Q and hence Cτ,•loc (LL̊g,L(M0)) is a subcomplex of C•loc(LL̊g,L(M0)).

Proof. The term 1
2fab

cca,m[0]cb,n[0]bc,n+m[−1]|0〉 in Q is τ -invariant because σ is an

automorphism of g̊[t, t−1]. (More explicitly, this term is equal to∑
α∈∆̊+

∑
i∈I̊

∑
n,m∈Z

fα,−α
icα,m[0]c−α,n[0]bi,n+m[−1]|0〉

+
∑
α∈∆̊+

∑
i∈I̊

∑
n,m∈Z

(
fαi

αcα,m[0]ci,n[0]bα,n+m[−1]|0〉+ f−α,i
−αc−α,m[0]ci,n[0]b−α,n+m[−1]|0〉

)
+

1

2

∑
i,j,k∈I̊

∑
n,m∈Z

fij
kci,m[0]cj,n[0]bk,n+m[−1]|0〉

and each line of this expression is τ -invariant.) The other term inQ,
∑

(a,n)∈I×Z c
a,n[0]Ja,n,

is τ -invariant because, in view of (53),

τJa,n = τ(ρ(Ja,n)) = (τ(ρ(Ja,n))) = (ρ(σJa,n))

and thus

τJα,n = J−α,−n, τJi,n = −Ji,−n
for α ∈ ∆̊ \ {0}, i ∈ I̊ and n ∈ Z. �

Lemma 42. The element ω ∈ Λ2
0 ⊗M0 obeys

τω = 0.

Proof. Indeed, we definedω as in (96) but one sees (in view of (75)) that, equivalently,

ω = ca,n[0]cb,m[0] (Ja,n(0)Jb,m − fabcJc,n+m) + ca,n[−1]cb,m[0]Ja,n(1)Jb,m
(summation convention). The fact that τω = 0 follows, using the statements above
and the fact that τ is an automorphism for all the non-negative products. �



58 CHARLES YOUNG

Thus our cocycle ω[0] belongs to the subcomplex Cτ,•loc (LL̊g,L(M0)). More is true.
We have the subspace M0(n) + M0(n−) of M0. It is closed (trivially) under all the
non-negative products. Therefore L(M0) has the Lie subalgebra L(M0(n) +M0(n−)).

Lemma 43. The cocycle ω[0] has coefficients in this subalgebra, i.e

ω[0] ∈ Cτ,2loc (LL̊g,L(M0(n) + M0(n−))).

Proof. We use summation convention. By definition, (96),

ω = −ca,n[−1]cb,m[0]
∂Rc,pa,n
∂γd,q[0]

∂Rd,qb,m
∂γc,p[0]

|0〉 − ca,n[0]cb,m[0]

[
T,

∂Rc,pa,n
∂γd,q[0]

]
∂Rd,qb,m
∂γc,p[0]

|0〉

where Rb,ma,n (X) are the polynomials from (56). On recalling (44) and (54), we see
that for every (a, n) ∈ I × Z, we have that

Rb,ma,n (X) = Ab,ma,n (X) +Bb,m
a,n (X)

where

Ab,ma,n (X) ∈ C[Xc,p](c,p)∈±A, Bb,m
a,n (X) ∈

⊕
(c,p)∈∓A

CXc,p, for all (b,m) ∈ ±A.

Now we shall argue that

ω = −ca,n[−1]cb,m[0]

(
∂Ac,pa,n
∂γd,q[0]

∂Ad,qb,m
∂γc,p[0]

|0〉+
∂Bc,p

a,n

∂γd,q[0]

∂Bd,q
b,m

∂γc,p[0]
|0〉

)

− ca,n[0]cb,m[0]

[
T,

∂Ac,pa,n
∂γd,q[0]

]
∂Ad,qb,m
∂γc,p[0]

|0〉. (99)

Indeed, we see all A-B cross terms are zero just by inspecting the index contractions.

The remaining term is −ca,n[0]cb,m[0]
[
T,

∂Bc,pa,n
∂γd,q [0]

]
∂Bd,qb,m
∂γc,p[0] |0〉 but this is zero by the

linearity of the Bb,m
a,n and the fact that [T, 1] = 0. So we have the equality (99). The

term
∂Bc,pa,n
∂γd,q [0]

∂Bd,qb,m
∂γc,p[0] |0〉 is proportional to |0〉, again by the linearity of Bb,m

a,n . And by

definition of the Ab,ma,n , the A-A terms all belong to Λ2
0 ⊗ (M0(n) + M0(n−)). So we

have established that
ω ∈ Λ2

0 ⊗ (M0(n) + M0(n−))

and hence the result. �

Lemma 44. There is an isomorphism of complexes

Cτ,•loc (LL̊g,L(M0(n) + M0(n−))) ∼= C•loc(LL̊g,L(M0(n)))

Proof. There is certainly a linear isomorphism

Λ0 ⊗M0(n)
∼−→ Λ0 ⊗ (M0(n) + M0(n−))

v 7→ (1 + τ)v,

and hence a linear isomorphism L0(Λ0 ⊗M0(n)) ∼= L0(Λ0 ⊗ (M0(n) + M0(n−))). We
have (1 + τ)(Q(0)v) = Q(0)v + (τQ)(0)τv = Q(0)v + Q(0)τv = Q(0)(1 + τ)v, so this
isomorphism commutes with the differential. �
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Finally we can complete the proof of Theorem 28.
We have shown that our cocycle ρ̃∗(ω) = ω[0] belongs to Cτ,2loc (LL̊g,L(M0(n) +

M0(n−))) and therefore corresponds to a cocycle ζ ∈ C2
loc(LL̊g,L(M0(n))). By the

key lemma, Lemma 40, such a cocycle is cohomologous to zero if its restriction to L̊h
vanishes. The restriction of ζ to L̊h is zero if the restriction of ρ̃∗(ω) to L̊h is zero.

And the restriction of ρ̃∗(ω) to L̊h is indeed zero because, for all i ∈ I̊, ρ(Ji,0) = Ji,0
(and hence Rb,ni,0 (X) = 0).

Thus there exists a 1-cochain ξ ∈ C1
loc(LL̊g,L(M0(n))) such that ζ = dξ. It may

be written in the form

ξ = Ξ[0], with Ξ := ca,n[0]
∑

(b,m)∈A

Qa,n;b,m(γ[0])γb,m[−1]|0〉

for some polynomials Qa,n;b,m(X) ∈ O(n), (b,m) ∈ A, such that Ξ has Q-grade 0.

In this way we obtain a 1-cochain, (1 + τ)ξ ∈ Cτ,1loc (LL̊g,L(M0(n) + M0(n−)), such
that ρ̃∗(ω) = d(1 + τ)ξ, as required.

6. Proof of Theorem 32

In Section 2.11 we studied the infinitesimal right action of g̃ on the right coset space

U0(Cε) := exp(εb−)
∖

exp(fε). In the same way we may consider the right action of g̃

on the right coset space exp(εn−)
∖

exp(fε). We get the following analog of Lemma 5

and Lemma 6.

Lemma 45. Let A ∈ g̃. Then there exist polynomials
{
P b,mA (X) ∈ O(n)

}
(b,m)∈A

and

{piA(X) ∈ O(n)}i∈I (depending linearly on A) such that

eεn−

e
∑dim h
i=1 yibi

−→∏
(b,m)∈A

ex
b,mJb,m

 eεA

= eεn−e
∑dim h
i=1 (yi+εpiA(x))bi

−→∏
(b,m)∈A

e

(
xb,m+εP b,mA (x)

)
Jb,m

for every element e
∑dim h
i=1 yibi

−→∏
(b,m)∈A ex

b,mJb,m of the group B := H n U .

Hence, the linear map

g̃→ D̃erO(n) n
dim h⊕
i=1

O(n)∂Y i

given by

A 7→
dim h∑
i=1

piA(X)∂Y i +
∑

(b,m)∈A

P b,mA (X)Db,m

is a homomorphism of Lie algebras. It respects the Q-gradation (where we assign
Q-grade zero to the generators ∂Y i). �
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Explicitly, this homomorphism sends

ei 7→ ρ(ei), h 7→ ρ(h) +

dim h∑
j=1

〈
bj , h

〉
∂Y j , fi 7→ ρ(fi) +

dim h∑
j=1

〈
bj , α̌i

〉
Xei∂Y j ,

where Xei := Xi are as in (101). Let Xfi := τXei . It follows that there is a
homomorphism of Lie algebras (here, recall (55))

ρ′ : g→ D n
dim h⊕
i=1

O∂Y i

defined by

ei 7→ ρ(ei) +

dim h∑
j=1

〈
bj , α̌i

〉
Xfi∂Y j ,

h 7→ ρ(h) +

dim h∑
j=1

〈
bj , h

〉
∂Y j ,

fi 7→ ρ(fi) +

dim h∑
j=1

〈
bj , α̌i

〉
Xei∂Y j ,

for i ∈ I and h ∈ h. This yields a homomorphism of the loop algebras, just as in (77),

Lg→ L

(
D n

dim h⊕
i=1

O∂Y i

)
.

Now we note that

(M⊗ π0)[0] =C O and (M⊗ π0)[1] =C ΩO ⊕ 

(
D n

dim h⊕
i=1

O∂Y i

)
where we continue to identify O and ΩO with subspaces of M = M⊗C|0〉 as before,
and we extend the definition of the injective linear map , (70), by setting



(
dim h∑
i=1

pi(X)∂Y i

)
=

dim h∑
i=1

pi(γ[0])bi[−1]|0〉.

As in Lemma 26 and Lemma 27, we then find that there is an isomorphism of Lie
algebras

L

(
D n

dim h⊕
i=1

O∂Y i

)
∼= L((M⊗ π0)[≤1])

/
L(O ⊕ ΩO).

We get an exact sequence of Lie algebras

0→ L(O ⊕ ΩO)→ L((M⊗ π0)[≤1])→ L

(
D n

dim h⊕
i=1

O∂Y i

)
→ 0 (100)
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As in the proof of Lemma 27, the cocycle defining this extension is given by double
contraction terms in the OPE. Following [Fre07], the key observation is then that
there are no possible double contractions between the new terms we have added
(which belong to the subspace O⊗ π0 ⊂M⊗ π0) and the existing terms (which each
have at most one factor of β or S). It follows that the statement of Theorem 28 still
holds (with the same lifting map φ) when ρ is replaced by the map ρ′ above.

Appendix A. The coefficients ci

In this section, for i ∈ I, let us write Xi := Xa,n for the unique (a, n) such that
Ja,n = ei, i.e.

Xi :=

{
Xαi,0, i ∈ I̊ = I \ {0}
X−δ+α0,1, i = 0

(101)

and similarly X [i,j] := Xa,n for the unique (a, n) such that Ja,n ∝ [ei, ej ]. Define Di,

D[i,j] likewise. Recall the homomorphism ρ : g̃→ D̃erO(n) from Lemma 6.

Lemma 46. Let i ∈ I. The terms in ρ(fi) of the form XiXa,nDa,n for some (a, n) ∈
A are

−XiXiDi +
∑
j≺i

aijX
iX [i,j]D[i,j] −

∑
j≺i

aijX
iXjDj .

Proof. This follows from a direct calculation, of the sort in the proof of Lemma 5 and
Theorem 10. Let us give the outline. We have

ρ(fi) =
∑

(a,n)∈A

P a,nfi
(X)Da,n. (102)

By inspection, one sees that if P a,nfi
(X) is to have both Xa,n and Xi as factors, then

it must be that [fi, Ja,n] is proportional to a basis vector that precedes ei in our basis.
(We have to pick up the dependence on Xa,n as exp(εfi) moves leftwards through the
product, and then pick up the dependence on Xi as some term is pushed through
exp
(
xiei

)
.) This is a strong constraint: we must have either

(1) Ja,n = ej for some j ∈ I, or
(2) Ja,n ∝ [ei, ej ] for some j ∈ I such that ej ≺ ei.

Let us compute the coefficients of the resulting terms. Consider case (2): suppose
ej ≺ ei and Ja,n = c[ei, ej ] for some nonzero c ∈ C, so that [Ja,n, fi] = c[[ei, ej ], fi] =
c[α̌i, ej ] = caijej . We have

exp(xa,nJa,n) exp(εfi)

= exp(εfi)
(

exp(εxa,n[Ja,n, fi]) exp
(
ε1

2 [Ja,n, [Ja,n, fi]]
)
. . .
)

exp(xa,nJa,n)

= exp(εfi) exp(εxa,ncaijej) exp(xa,nJa,n) . . . .

Here exp(εxa,ncaijej) still needs to be pushed left through the factor exp
(
xiei

)
which

appears further left in the product. We get

exp
(
xiei

)
exp(εxa,ncaijej) = exp(εxa,ncaijej) exp

(
εxixa,naijc[ei, ej ]

)
exp
(
xiei

)
. . . .
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We obtain the terms
∑

j≺i aijX
iX [i,j]D[i,j] in ρ(fi).

Now consider terms Ja,n = ej for some j. When i ≺ j we just get

exp
(
xjej

)
exp(εfi) = exp(εfi) exp

(
xjej

)
since [ej , fi] = 0. Eventually we reach the factor exp

(
xiei

)
. We continue to shuffle

terms, getting

exp
(
xiei

)
exp(εfi) = exp(εfi) exp

(
εxiα̌i

)
exp

(
ε
1

2
(−2xixiei)

)
exp
(
xiei

)
= exp(εfi) exp

(
εxiα̌i

)
exp
((
xi − εxixi

)
ei
)

and then finally we have to move exp(εfi) exp
(
εxiα̌i

)
further left through factors

exp
(
xjej

)
with j ≺ i:

exp
(
xjej

)
exp(εfi) exp

(
εxiα̌i

)
= exp(εfi) exp

(
εxiα̌i

)
exp
(
−εxjxiaijej

)
exp
(
xjej

)
= exp(εfi) exp

(
εxiα̌i

)
exp
((
xj − εxjxiaij

)
ej
)

From these last two expressions we read off the terms−XiXiDi and−
∑

j≺i aijX
iXjDj

in ρ(fi). �

For all h ∈ h, we have

ρ(h) = −
∑

(a,n)∈A

〈wgt(a, n), h〉Xa,nDa,n (103)

and hence ρ(h)(Xi) = −〈αi, h〉Xi (as it certainly should, on Q-grading grounds).

Proposition 47. For all h ∈ h and for each i ∈ I, we have

 (ρ(h)) (1)  (ρ(ei)) = 0,

 (ρ(h)) (1)  (ρ(fi)) = −ciρ(h)(Xi),

with ci as in Proposition 30.

Proof. Recall the Wick lemma from Section 4.6. First products, like  (ρ(h)) (1)  (ρ(fi)),
involve a double contraction. In view of (102) and (103), and then making use of the
lemma above, we find

 (ρ(h)) (1)  (ρ(fi)) =
∑

(a,n)∈A

〈wgt(a, n), h〉
(
Da,nP

a,n
fi

(X)
)

= −2 〈αi, h〉Xi +
∑
j≺i

aij 〈αi + αj , h〉Xi −
∑
j≺i

aij 〈αj , h〉Xi

= 〈αi, h〉

−2 +
∑
j≺i

aij

Xi = −ciρ(h)(Xi).

�

Therefore
(ρ(h)) (1) ((ρ(fi)) + ciγ

ei [−1]|0〉) = 0

for each i ∈ I. This shows that φ(fi) = ciγ
ei [−1]|0〉 and, hence, φ(ei) = ciγ

fi [−1]|0〉.
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[Gör10] U. Görtz. “Affine Springer fibers and affine Deligne-Lusztig varieties”.
In: Affine flag manifolds and principal bundles. 2010, pp. 1–50. doi: 10.
1007/978-3-0346-0288-4_1 (cit. on p. 4).

[GW18] O. Gwilliam and B. Williams. “The holomorphic bosonic string”. In:
Contemporary Mathematics (2018), pp. 213–258. doi: 10.1090/conm/
718/14481 (cit. on p. 10).

[Kac90] V. G. Kac. Infinite-dimensional Lie algebras. Third. Cambridge Univer-
sity Press, Cambridge, 1990, pp. xxii+400 (cit. on pp. 2, 4, 12).

[Kac98] V. Kac. Vertex algebras for beginners. Second. Vol. 10. American Mathe-
matical Society, Providence, RI, 1998, pp. vi+201. doi: 10.1090/ulect/
010 (cit. on pp. 2, 31, 36, 47).

[Kas89] M. Kashiwara. “The flag manifold of Kac-Moody Lie algebra”. In: Al-
gebraic analysis, geometry, and number theory (Baltimore, MD, 1988).
1989, pp. 161–190 (cit. on pp. 4, 19).

[Kum02] S. Kumar. Kac-Moody groups, their flag varieties and representation the-
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