Visualization of incomplete data using class information constraints
Sun, Yi., Tino, P. and Nabney, I.
(2002)
Visualization of incomplete data using class information constraints.
Springer Nature.
We analyse how the training algorithm for the Generative Topographic Mapping (GTM) can be modifed to use class information to improve results on incomplete data. The approach is based on an Expectation-Maximisation (EM) method which estimates the parameters of the mix- ture components and missing values at the same time; furthermore, if we know the class membership of each pattern, we can improve the generic algorithm by eliminating multi-modalities in the posterior distribution over the latent space centres. We evaluate the method on a toy prob- lem and a realistic data set. The results show that our algorithm can help to construct informative visualisation plots, even when many of the training points are incomplete.
Item Type | Other |
---|---|
Date Deposited | 14 Nov 2024 11:15 |
Last Modified | 14 Nov 2024 11:15 |