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We developed a mathematical scheme that allows us to improve retrieval products obtained from the inversion of
multiwavelength Raman/HSRL lidar data, commonly dubbed “3backscatter� 2 extinction” (3β� 2α) lidar. This
scheme works independently of the automated inversion method that is currently being developed in the framework
of the Aerosol-Cloud-Ecosystem (ACE) mission and which is successfully applied since 2012 [Atmos. Meas. Tech.
7, 3487 (2014); “Comparison of aerosol optical and microphysical retrievals from HSRL-2 and in-situ measure-
ments during DISCOVER-AQ 2013 (California and Texas),” in International Laser Radar Conference, July 2015,
paper PS-C1-14] to data collected with the first airborne multiwavelength 3β� 2α high spectral resolution lidar
(HSRL) developed at NASA Langley Research Center. The mathematical scheme uses gradient correlation relation-
ships we presented in part 1 of our study [Appl. Opt. 55, 9839 (2016)] in which we investigated lidar data products
and particle microphysical parameters from one and the same set of optical lidar profiles. For an accurate assessment of
regression coefficients that are used in the correlation relationships we specially designed the proximate analysis
method that allows us to search for a first-estimate solution space of particle microphysical parameters on the basis
of a look-up table. The scheme works for any shape of particle size distribution. Simulation studies demonstrate a
significant stabilization of the various solution spaces of the investigated aerosol microphysical data products if we
apply this gradient correlation method in our traditional regularization technique. Surface-area concentration can be
estimated with an uncertainty that is not worse than the measurement error of the underlying extinction coefficients.
The retrieval uncertainty of the effective radius is as large as �0.07 μm for fine mode particles and approximately
100% for particle size distributions composed of fine (submicron) and coarse (supermicron) mode particles. The
volume concentration uncertainty is defined by the sum of the uncertainty of surface-area concentration and the
uncertainty of the effective radius. The uncertainty of number concentration is better than 100% for any radius do-
main between 0.03 and 10 μm. For monomodal PSDs, the uncertainties of the real and imaginary parts of the CRI can
be restricted to �0.1 and �0.01 on the domains [1.3; 1.8] and [0; 0.1], respectively.
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1. INTRODUCTION

Our recent publication [1] demonstrates significant progress in
the use of multiwavelength lidar systems that measure backscat-
ter coefficients at wavelength 355, 532, and 1064 nm and

extinction coefficients at 355 and 532 nm, commonly dubbed
“3β� 2α.” Such systems require software capable of processing
the optical aerosol profiles into profiles of particle microphys-
ical parameters. In this context, we develop an unsupervised
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automated inversion method as part of a project study within
NASA’s Aerosol-Cloud-Ecosystems (ACE) mission. This inver-
sion method has been successfully applied since 2012 to data
collected with the first airborne multiwavelength 3β� 2α
High-Spectral-Resolution Lidar (HSRL-2) developed at NASA
Langley Research Center [1,2].

First results retrieved with this automated inversion are
encouraging because they demonstrate good agreement to in
situ data taken aboard an aircraft that flew next to an aircraft
that carried HSRL-2 [1,2]. An in-depth analysis of the first re-
sults from this automated inversion shows that the main source
of disagreement between the results from the automated inver-
sion and the in situ data are related to the retrieved number and
surface-area concentrations. In many cases, these outliers can be
relatively easily identified by visual inspection of the retrieved
profiles of the microphysical particle parameters.

In part 1 of our series of papers [3] we presented first results
on a mathematical scheme that uses gradient correlation rela-
tionships among different particle microphysical properties of
particle size distributions. We analyzed optical profiles from
lidar for our investigations of particle microphysical properties
[3]. We investigated how we can use the relationships found in
that study to identify outliers of particle microphysical proper-
ties that result from the inversion of optical lidar data with the
automated, unsupervised inversion algorithm mode.

We developed what we denote as the proximate analysis
method. This method allows us not only to assess more accu-
rately the regression coefficients that we found from our study
of correlation relationships, see Ref. [3]. This method also
allows us to search for a first-estimate solution space of particle
microphysical parameters on the basis of a look-up table
(LUT). The basis of that LUT is a synthetic optical data (SOD)
bank that we generated and that we introduced in Section 3.1
in Ref. [3]. The SOD includes 63869 3β� 2α data sets com-
puted from logarithmic-normal size distributions that have differ-
ent mean radii, mean widths, and complex refractive indices.

We describe in Section 2 the gradient correlation method.
We explain how correlation relationships are used as a constraint.
In Section 3 we show numerical examples with synthetic optical
data and compare retrieval results that we obtained with different
approaches. Section 4 summarizes our results.

2. METHODOLOGY

A. Regression Equations for Gradient Correlation
Method
Present-day, state-of-the-art multiwavelength Raman and HSRL
multiwavelength lidar measures backscatter coefficients (β) at the
wavelengths 355, 532, and 1064 nm, and extinction coefficients
(α) at 355 and 532 nm. This combination of optical data (OD)
is usually denoted as 3β� 2α, or simply 3� 2. In Ref. [3] we
showed that profiles of optical data and particle microphysical
parameters (PMP) are interdependent. We find correlation rela-
tionships that describe this interdependence. The correlations
have a comparably high degree of confidence from the math-
ematical point of view. The correlation coefficients we obtain
from regression analysis are close to R2 � 1 for the most impor-
tant intensive parameters p (IP) we are interested in. We find
that surface-area concentration (p � s), the ratio of volume

concentration to effective radius (p � v∕reff ) and the product
p � n�r2mean � σ2� are linearly correlated with the extinction
coefficient α�λ� measured at wavelength λ � 355 nm, i.e.,

p � apα�355� � bp; (1a)

p� s; v∕reff ; n�r2mean�σ2� in μm2 cm−3 �Mm−1: (1b)

The parameters n; rmean, and σ are number concentration, mean
radius, and standard deviation, respectively, of a particle size dis-
tribution f �r�.

The regression coefficients (RCs) ap and bp in the correla-
tion relationships [Eq. (1a)] fulfill the conditions

as ∈ �1.3; 1.9�; av ∈ �0.4; 0.6�; an ∈ �0.11; 0.15�;
(2a)

bp � 0; p � s; v∕reff ; n�r2mean � σ2�; (2b)

for any type of particle size distribution (PSD) as for example
mono-and bimodal PSDs. Details can be found in part 1 of our
series of papers [3].

The linear correlations hold true for effective radius reff
versus the extinction-related Ångström exponent åα (EAE)

reff � ar åα � br ; (3)

where the RCs fulfill

ar ∈ �−10; −0.038�; br ∈ �0.18; 0.5� in μm: (4)

However, variations of åα need to be small, for example �0.05
for åα ∈ �1; 2�, and the correlation coefficient is lower, i.e.,
R2 ∈ �0.7; 1�. More explanations can be found in part 1 [3].

In Ref. [3] we also investigated if there are more correlation
relationships for other PMPs. We find linear correlations
of mean radius p � rmean and standard deviation p � σ with
effective radius reff

p � apreff � bp; (5a)

p � rmean; σ in μm; (5b)

where the RCs fulfill

am ∈ �0.17; 0.84�; aσ ∈ �0.21; 0.31�; (6a)

bp ≈ 0; p � rmean; σ: (6b)

The correlation coefficient R2 is close to 1 in Eq. (5a) if aerosol
properties do not change significantly between successive
height bins of an aerosol profile. In terms of lidar data products,
it means profiles of the lidar ratio α∕β and the EAE at these
height bins do not oscillate, and their variations are within
�25 sr and �0.25, respectively.

We note that the linear correlations of Eqs. (3) and (5a) are
valid both for mono- and bi-modal PSDs. However, in contrast
to the conditions of Eq. (2) the conditions in Eqs. (4) and (6)
were obtained only for monomodal PSDs and change signifi-
cantly in the case of bimodal PSDs.

Finally, we found in Ref. [3] that for particles of any mode
fraction (fine versus coarse mode) of the PSD the complex re-
fractive index m � mR − imI (CRI) is uniquely defined by the
extinction‐ (åα) and backscatter‐ (åβ) (BAE) related Ångström
exponents, the lidar ratios α∕β (LR) at two wavelengths, and
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the effective radius reff . We can use that result in the case of
monomodal PSDs for locating the CRI in our LUT.

To locate the CRI, we collect the LUT elements that are
closest to the data products åα, åβ, and α�λ�∕β�λ� which
can be measured with lidar, and reff which can be retrieved with
our regularization algorithm.

As a measure of closeness, we use in Ref. [3] the discrepancy

ρLUT � 1

5

X
p

jpLUT − pexperimentj
pLUT

;

p � åα; åβ�355�;β�532�; α�355�∕β�355�; α�532�∕β�532�; reff :
(7)

We consider only those LUT elements for which the
discrepancy ρLUT lies in the vicinity of the minimal value
ρLUT;min. The CRIs collected in this way and which fulfill the
conditions of Eq. (7) are possible solutions of our search problem.

Equation (7), six correlation relationships, described by
Eqs. (1), (3), and (5) are linked to eight important PMPs
(reff , rmean, σ, n, s, v, mR , and mI) which are commonly used
for the description of atmospheric aerosol particles. They can
be used a priori for constraining the solution space of aerosol
microphysical properties in our underlying inversion problem
(see Eq. (1) in Ref. [3]).

B. Constraints of the Solution Space
The lidar measurements deliver profiles of optical data. Thus,
we want to derive the microphysical particle parameters not
only for one but for several height layers. We therefore rewrite
Eq. (1) in Ref. [3] asZ

r�l�max

r�l�min

K g�λ; m�l�; r�f �l��r�dr � g �l��λ�;

l � 1;…;NL; g � α; β: (8)

The superscript l indicates the number of the height bins we
use to describe the OD profiles g �l��λ� as well as the parameters
r�l�min, r

�l�
max, m�l�, and the function f �l��r� in each height bin l .

The total number of height bins is NL. The kernel function K
is known and its definition can be found in Ref. [4] for the case
of spherical particle geometry.

Equation (8) can be solved, for example, with regularization
which allows us to find a solution space F �l� �
ff �l�

1 �r�;…; f �l�
Nsol

�r�g for each height bin l [5–8] where Nsol

is the total number of individual solutions. If we know F �l�

we can also obtain the solution spaces for any bulk parameter
P�l� � fp�l�1 ;…; p�l�Nsol

g for each height bin l , where

P�l� � R�l�
mean, R�l�

eff , Σ
�l�,N �l�, S�l�, and V �l� denote the solution

space of rmean, reff , σ, n, s, and v, respectively, see Ref. [5]. The
collection of the solution spaces for all NL heights forms the
profiles of the PMPs. The final solution pav at height l is de-
fined by averaging all individual parameters p�l�i , i ≤ Nsol, over
a prescribed interval of the discrepancy range �ρ�l�min; ρ

�l�
av � [6,8].

To find physically meaningful solutions we need to apply
different constraints, as for example, the discrepancy range
�ρ�l�min; ρ

�l�
av �, the radius range �r�l�min; r

�l�
max�, and the complex refrac-

tive index m�l�. In that way we can exclude individual solutions

p�l�i which for example deviate too much from the average value
pav. In that case, we insert a threshold δp that allows us to take
into consideration only those individual solutions that fulfill
the condition

jp�l�i − pavj < δp: (9)

In our previous strategy of data inversion we used this aver-
aging procedure for each solution space (in each height bin)
independently of each other, i.e., we did not take into consid-
eration that results of PMPs of successive height bins may be
correlated to each other.

We developed a mathematical framework that allows us to
consider the correlation in a very specific way that is described
by Kolgotin and Müller [8] and Müller et al. [9]. However, that
method is complex, time consuming, and will require more
effort to understand how it can be efficiently used for the au-
tomated, unsupervised inversion method we are developing for
HSRL-2. In the method presented here we provide an elegant,
efficient way of using the profile information from lidar with-
out including complications from the mathematical point of
view as discussed by Kolgotin and Müller [8].

The profiles of the ODs contain information regarding the
variation of the profiles of the PMPs. In other words, we can
predict the PMP behavior if we know the law(s) (or correlations)
that describe the interdependence of the OD and the PMPs.

In that regard, the linear correlation as described by Eq. (3)
can be used as an extra constraint if we want to find the solution
space for R�l�

eff . In fact, if we measure å�l�α , the correlation pre-
sented in Eq. (3) allows us to estimate r�l�	eff according to

r�l�	eff � ar å
�l�
α � br : (10)

If we introduce the threshold δreff we can rewrite Eq. (9) as

jr�l�eff ;i − r�l�	eff j < δreff : (11)

The linear correlations as described by Eq. (1) can be used as
extra constraints to identify the solution spaces R�l�

mean∪Σ�l�∪N �l�,
V �l�∪R�l�

eff , and S�l� as well; the symbol ∪ means the space con-
junction. Again, introducing the threshold δp the condition in
Eq. (11) can be rewritten in a more general form as

jp�l�i − p�l�	j < δp and p � s; v∕reff ; n�r2mean � σ2�: (12)

Here p�l�	 is defined by Eq. (1) where all bp � 0 and as � 1.6,
av � 0.5, and an � 0.13 with threshold δp � 20%. It is clear
that the RCs can be made more exact with the conditions
described in Eq. (2) depending on the particle properties,
e.g., particle radius (size) and CRI. The use of the constraints
as described by Eqs. (11) and (12) in the averaging procedure
[6,8] is at the heart of the gradient correlation method (GCM).

3. NUMERICAL SIMULATIONS

A. Proximate Analysis of Particle Parameters
The conclusions of the previous section naturally lead us to the
step in which we want to develop a practical method that allows
us to identify the parameters of fine-mode particles even if the
investigated PSDs may contain coarse mode particles (bimodal
size distribution). This situation until now has not been tested
in simulation studies carried out with the automated software.
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HSRL-2 and multiwavelength Raman lidars can measure the
extinction coefficients α�λ� at λ � 355 and 532 nm. As a result,
the EAE is available from Eq. (19) in [3]. From our
own measurements and literature we know that the EAE often
varies between åα � 1 and 2 except in cases of mineral dust,
volcanic ash, and aged smoke. These aerosol types are character-
ized by comparably large particles.We find the following results:

A) the effective radius is proportional to åα with threshold
δreff ≤ 0.07 μm (see Fig. 1(a) in Ref. [3]) and it can be deter-
mined from Eq. (10) as

reff ≈ −0.08åα � 0.26; (13)

B) the surface-area concentration can be estimated from
Eq. (3) as well. For example, if as � 1.6 we find

s ≈ 1.6α�355�; (14)

C) volume concentration is defined on the basis of Eq. (8),
see Ref. [3]

v ≈ 1.6α�355� × �−0.08å� 0.26�∕3: (15)

If we assume that the standard deviation is not too large so
that σ ≪ rmean∕

p
3, see Eq. (29) in Ref. [3], we find that

reff ≈ rmean. For example, if we select from our LUT optical
data such that å > 1 we find rmean < 0.25 μm. That means
σ should be less than 0.15. In contrast, the maximal value
is σmax < 0.09 for all elements in the LUT bank if å > 1.
In that case, we obtain the number concentration from
Eq. (15) in Ref. [3] according to

n ≈
1.6α�355�

4π�−0.08å� 0.26�2 : (16)

Equations (13)–(16) allow us to find the most important
PSD parameters very easily and fast, and their uncertainties
can be estimated if we use as threshold the value δreff �
�0.07 μm and Eq. (2a) at p � s. However, in this approach
we must be sure that we deal with monomodal PSDs.
Otherwise, Eq. (3) does not work with the condition
δreff ≤ 0.07 μm, see for example the stars in Fig. 1(a)
in Ref. [3].

For that reason we must adapt Eqs. (13)–(16) such that they
hold true in the case of bimodal PSDs. To achieve this goal, we
split the optical coefficients into the fine-mode contribution
g f �λ� and the coarse-mode contribution g c�λ�, i.e., we write

g�λ� � g f �λ�� g c�λ� � φg g�λ�� �1 −φg�g�λ�; g � α;β;

(17)

with the fractions φg (fine mode) and 1 − φg (coarse mode),
respectively.

Apparently, the ratio of the fine mode to the coarse mode,
expressed in terms of the optical coefficients is

gc�λ�
g f �λ�

� g�λ�
g f �λ�

− 1 � 1

φg
− 1 g � a; b. (18)

If we use the fine-mode and coarse-mode extinction coef-
ficients measured at 532 nm, i.e., αf �532� and αc�532� we
can find the ratio of the extinction coefficients at 532 and
355 nm, i.e.,

αf �532� � αc�532�
αf �355� � αc�355�

� α�532�
α�355� ; (19)

and from Eq. (19) follows

αf �532� �
α�532�
α�355� �αf �355� � αc�355�� − αc�532�: (20)

If we express αf �355� in Eq. (18) in terms of φα�355� and
αc�355� we obtain the ratio of the extinction coefficients at
532 and 355 nm of the fine mode fractions, i.e.,

αf �532�
αf �355�

� 1

φα�355�

�
α�532�
α�355� � d c�φα�355� − 1�

�
; (21)

where the parameter d c is defined as

d c � αc�532�∕αc�355�: (22)

As we discussed in Ref. [3], we find d c ∈ �1; 1.07� for large
particles whose effective radius is larger than 1.1 μm.

According to the definition in Eq. (19) in Ref. [3], we can
write for the EAE which describes the fine mode

åa;f �
ln
n

1
φα�355�

h
α�532�
α�355� � d c�φα�355� − 1�

io
ln 355

532

≥ åa: (23)

Now we can find all microphysical parameters of the fine
mode fraction of a bimodal particle size distribution. In fact,
in view of Eqs. (13)–(15) the effective radius, surface-area,
and volume concentrations for the fine mode are

reff ;f ≈ −0.08åα;f � 0.26; (24a)

sf ≈ 1.6αf �355� � 1.6φα�355�α�355�; (24b)

vf ≈ sf reff ;f∕3: (24c)

In the case of a fine-mode PSD, the inequality reff < 3rmean

works quite well. Then the maximum value of the number con-
centration can be obtained from Eq. (15) in Ref. [3] and the
inequality [Eq. (31b)] presented in Ref. [3] is

nf ;max �
1

4π

sf
r2mean;f � σ2f

≤
1

2π

sf
r2eff ;f

: (24d)

The minimum level can be obtained from Eq. (15) in
Ref. [3], and the inequality shown in Eq. (31c) in Ref. [3]
becomes

nf ;min �
1

4π

sf
r2mean;f � σ2f

≥
1

4π

sf
r2eff ;f

: (24e)

According to these equations, the fine mode fraction
varies from φα�355� � 1 to some minimal value φα�355� �
φα�355�min ≈ 0.5 at which reff ;f ≤ 0 and the results become
unphysical.

If φα�355� � 1, we assume that the particles are distributed
according to a monomodal distribution law. On the contrary, if
φα�355� < 1 there is a pronounced coarse mode.

If we want to estimate the CRI of the fine mode we need to
find at least three other fractions φβ�355�, φα�532�, and φβ�532�,
and extract optical data spectra αf �λ� and βf �λ� which describe
the fraction of small particles, as we discussed in Section 3.2 in
Ref. [3]. We find all fractions more or less accurately if we take
into account our LUT. If we predefine φα�355� and d c in
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Eq. (23) and if we consider that αc � �1 − φα�α we automati-
cally find from Eq. (22)

φα�532� � 1 − �1 − φα�355��d c

α�355�
α�532� : (25)

If we subsequently select from our LUT the LRs defined
by αf �355�∕βf �355� and αf �532�∕βf �532� we can define
another pair of fractions from the equations, i.e.,

φβ�355� � φα�355�
α�355�
β�355�

βf �355�
αf �355�

; (26)

and

φβ�532� � φα�532�
α�532�
β�532�

βf �532�
αf �532�

: (27)

These values αf �355�∕βf �355� and αf �532�∕βf �532� are
selected so that the respective BAE is equal to

åβ�355�;β�532�;f � åβ�355�;β�532� � ln
φβ�532�
φβ�355�

ln−1
355

532
: (28)

Since lidar delivers β�1064� and thus also the BAE at the
wavelength pair of 532 and 1064 nm we can estimate a fifth
unknown fraction with the help of our LUT, i.e.,

φβ�1064� � φβ�532�

�
532

1064

�
åβ�532�;β�1064�;f −åβ�532�;β�1064�

: (29)

The four equations [Eq. (23)] and [Eqs. (26)–(28)] describe
the four unknown fractions and thus ensure the unique defi-
nition of φα�355�, φβ�355�, φα�532�, and φβ�532� for any prede-
fined values of φα�355� and d c. The parameter d c is quite
strictly constrained by the interval [1; 1.07], whereas the frac-
tion φα�355� can vary between 0.4 and 1. In spite of the fact that
we apparently have the constraints

0 ≤ φα�532� < φα�355� ≤ 1;

0 ≤ φβ�064� < φβ�532� < φβ�355� ≤ 1; d c ∈ �1;1.07�: (30)

These constraints are still not sufficient for the unambigu-
ous estimation of the unknown fractions.

We suggest to test the quality of the unknown fractions by
comparing the derived LRs, BAEs, and EAE of the coarse
mode, which is described by g c � �1 − φg�g, to the respective
parameters LRs, BAEs, and EAE of our LUT. We modify the
discrepancy expressed by Eq. (7) to

ρLUT;c �
1

5

X
p

jpLUT − pcj
pLUT

;

p � åα; åβ�355�;β�532�; åβ�532�;β�1064�; α�355�∕β�355�;
α�532�∕β�532�; (31)

which serves as a measure of the quality, or accuracy of
describing the remaining part of the total spectrum g�λ�.
The smaller the discrepancy, which is described by Eq. (31)
the better is the quality of φα�355�, φβ�355�, φα�532�, φβ�532�,
and φβ�1064�. Our approach can be used if the LUT includes,
at minimum, all elements that allow us to cover all possible
combinations for reff . Thus, we need to extend in the
future the LUT with synthetic data calculated for PSDs with
reff > 3 μm.

We can test this approach in the case of the bimodal
PSDs considered in Section 3.1 in Ref. [3]. The test can be
easily carried out, for example with the help of a table written
in Excel to make the calculations of the formulas shown in
Eqs. (23) and (24) faster. The example is presented in Table 1
[see also Fig. 1, asterisks].

Table 1 contains the columns l � 1;…, NL � 6 which de-
scribe different bimodal PSDs or, in other words, height bins
that describe a profile of optical data taken by lidar. The actual
fraction φα�355� of the fine mode particles decreases with height
from 1 to 0.49. According to Eq. (17), this fraction describes
the fine-mode fraction in terms of the extinction coefficient at
355 nm. If we use Eq. (7) in Ref. [3], we see that in fact we
describe the fine-mode fraction of the surface-area concentra-
tion. All actual (true) microphysical parameters of the fine
mode of the PSDs are fixed. We show them just for reference.

The profile of the synthetic extinction coefficient α�355�
increases with height from 0.093 to 0.190 Mm−1. The EAE
decreases from 1.64 to 0.61 because the contribution of coarse
mode particles increases with height. We use these data as input
(see green symbols in Table 1) for the calculation of the particle
microphysical parameters according to Eq. (24).

The first step of our computations is to estimate the fine
mode fraction φα�355�;fit by means of a fitting procedure (see
red numbers in Table 1). Let us assume there is no coarse mode
at the lowest height bin l � 1, i.e., φα�355�;fit � 1. In that case,
the EAE of the fine mode can be found from Eq. (23). Table 1
shows that å�1�α;f � 1.64 which coincides with the actual value

å�1�α . If, in addition, we assume that the fine-mode effective
radius does not change with height we can select φ�l�

α�355�;fit
in Eq. (23), which leads to å�l�α;f ≈ 1.64 for l � 2;…;NL.

The result is that the numbers φ�l�
α�355�;fit reproduce the true

values φ�l�
α�355� rather well.

We emphasize that the effective radius as determined by
Eq. (24a) is equal to ∼0.05 μm if we significantly decrease
φα�355�;fit, to 0.77, i.e., we assume that the coarse mode exists
at l � 1. This value of the effective radius is very small. Given
the available measurement wavelengths, such a small value can-
not be retrieved in a reliable way with this automated inversion
software. That means the fine mode fraction φα�355�;fit, cannot
be varied over a wide range unless we want to produce unrea-
sonable values of the microphysical particle parameters.

After we fit the profile φ�l�
α�355�;fit according to the condition

å�l�f ≈ const all microphysical parameters of the fine mode of
the investigated PSD can be calculated with the help of the
formulas given in Eq. (24). As seen from Table 1 (red symbols),
the parameters do not change with height, and the values are
close to the true values. We find a maximum relative error of
30% for volume concentration.

If we take into account the threshold δreff � �0.07 μm for
effective radius we can estimate the uncertainties of all param-
eters of the fine mode particles. In that case the maximum level
of uncertainty is 0.2 μm for effective radius, and it is vf ;max �
0.01 μm3 cm−3 for volume concentration. If the PSD shows a
fine mode of particles, we can estimate the maximum level of the
number concentration from Eq. (24d), i.e., nf ;max � 1.5 cm−3.
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If we repeat that approach with the assumption that the
coarse mode is absent, i.e., φ�l�

α�355�;fit � 1 we obtain a similar
result for layers l � 1;…; 5 within the uncertainties δp�1�.
With regard to layer l � 6, the surface-area and volume con-
centrations are overestimated significantly. We stress that we do
not make any assumption about monomodality of the PSD if
the BAE is very close to 0 or even negative, and the EAE is
above 0.5 simultaneously.

Let us estimate the CRI by using the correlation relation-
ships. Since we assume that the PSD is monomodal at
l � 1, i.e., g �1�f �λ� � g�1��λ� and r�1�eff ;f � r�1�eff , we can calculate
the lidar data products BAEs, EAE, and LRs at the measure-
ment wavelengths, and the discrepancy ρLUT, see Eq. (7). The

minimum discrepancy ρLUT;min ≈ 2.8% is obtained from the
LUT for the following set of values:

– åα;f � 1.66, åβ�355�;β�532�;f � 1.45, åβ�532�;β�1064�;f �
1.04,

– lidar ratios 76 sr and 70 sr at λ � 355 and 532 nm,
respectively,

– reff � 0.12 μm, and
– m � 1.7 − i0.025.

The interval �ρLUT;min; ρLUT� � �2.8%; 5%� includes 12 sets
of parameters for which effective radius reff � 0.12–0.15 μm,
the real part of the CRI mR � 1.425–1.7 and the imaginary
part mI � 0.002–0.025. We note that the true effective radius
(almost 0.15 μm) lies between reff � 0.13 and 0.15 μm. For

Table 1. Example of PA of Particle Microphysical Parameters of the Fine Mode Fraction of a PSD
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that range of effective radii, we find m � 1.475 − i0.005 and
1.425 − i0.003, respectively. However, we see that quite
small variations of the effective radius result in a wide variation
of the CRI.

We can use this approach for all other height bins l �
2;…; 6 under the assumption that the PSD is monomodal.
Since the uncertainty δreff does not decrease with height,
we do not expect an improvement of the estimated values of
the CRI at l � 2;…; 6.

Now we consider the general case in which we do not make
any assumption about the fraction φα�355�. For that purpose,
we analyze the data at height bin l � 6. As we discussed before,
the SOD bank does not contain an optical data set that is
consistent with g �6��λ�. Therefore, we use our idea to extract
the spectrum g �6�f �λ� of the fine mode PSD with the help of the

fractions φg�λ�. We consider 13 initial values for the fraction
φα�355� from 0.4 up to 1 with step size 0.05. For each of these
13 initial values we find from Eqs. (23) and (26)–(29) the
13 discrepancies which are defined by Eq. (31).

The minimum discrepancy ρLUT;c � 6% is obtained for
φα�355� � 0.5. The other discrepancies are as large as ρLUT;c �
21% if φα�355� increases to 0.9 and as large as ρLUT;c � 10% if
φα�355� decreases to 0.4 (see Table 2). For the fraction values
φα�355� � 0.95 and 1, there are either no solutions that fulfill
Eq. (30) or there are no solutions that have a low discrepancy.
We note that ρLUT;c � 4% for the true value φα�355� � 0.49.
The results in Table 2 are obtained at d c ≈ 1.03 which is about
in the center of the interval [1; 1.07]. Other d c‐values increase
all discrepancies ρLUT;c�φα�355�� similarly, but they do not
change the trend for d c ≈ 1.03.
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Fig. 1. Numerical example: vertical profile of type 1. Shown are the retrieval results for the case of a 3β� 2α data set, i.e., (a) true input data (solid
line) and distorted data (closed symbols) of the backscatter and extinction coefficients. Also shown are the respective BAE for the wavelength pair
532/1064 nm and the EAE for the wavelength pair 355/532 nm. (b)–(e): true (thick line) and retrieved (line + symbol) results for PMP, CRI, and
PSD. The retrieval results were obtained when GCM was not used (triangles), when GCM was used with the true RCs (squares), and when GCM
was used with incorrect RCs (dashed line). We assumed that the true PSD was either monomodal (MMS) or bimodal (BMS) and that as � 1.6. The
asterisks describe the PA of the fine mode parameters. Stars denote the retrieval results of the CRI of the fine mode particles that follow from the
combination of PA with the results of an effective radius that is obtained with GCM.
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We analyzed the fractions φg�λ� we found in this way in the
vicinity of the minimum discrepancy, i.e., from ρLUT;c � 4%
to 10% (see green lines in Table 2, last column). This vicinity
covers the range of values from 0.4 to 0.65 for φα�355� and from
0.04 to 0.11 for φβ�1064� (see Table 2). At the point
φα�355� � 0.49, we retrieve φβ�355� � 0.45, whereas the true
value is φβ�355� � 0.35 (see Table 1). The uncertainty is
29% at the point φα�355� � 0.49, which is maximal compared
with all other fractions (see Table 1 for reference). If we average
the fractions φg�λ� in the vicinity ρLUT;c � 4% to 10% we ob-
tain the following values for the height bin l � 6:

φ�6�
α�355� � 0.52; φ�6�

α�532� � 0.37; φ�6�
β�355� � 0.43;

φ�6�
β�532� � 0.24; φ�6�

β�1064� � 0.08:

For this set of fractions, the EAE of the fine mode is 1.48. If
we use åα;f � 1.48 and φ�6�

α�355� � 0.52 in Eqs. (24a)–(24e) we
find values of the PMPs that are close to the values mentioned
in Table 1. We also obtain the range of the CRI of the fine-
mode PSD on the basis of the analysis of the lidar data products
and the discrepancy ρLUT [see Eq. (7)]. The results in the height
bins l � 1 and l � 6 are similar, too.

Our approach for estimating the fine mode parameters of a
PSD are summarized into the following steps:

A) We make an analysis regarding the number of
modes of the PSD, i.e., whether it is monomodal (1 mode)
or bimodal (2 modes) by means of a comparison of the
measured properties and the lidar data products in the
LUT. If the comparison is consistent (see, for example, case
#2 in Table 1 in Ref. [3]), the PSD contains a coarse mode
which can be “cut” by extracting the fine mode spectrum
g f �λ� � φg g�λ�. The fractions φg are estimated with
Eqs. (23) and (26)–(29) and we minimize the discrepancy
according to Eq. (31).
B) We calculate the EAE with Eq. (23).

C) We calculate the effective radius from the system of
Eq. (33) in Ref. [3]. The selection of Eq. (33a), or Eq. (33b),
or Eq. (33c) depends on the range of values of the EAE. The
uncertainty is δreff � ��0.05–0.08� μm and depends on the
EAE range as well.
D) We calculate the surface-area concentration from

Eq. (24b). The uncertainty is δs � �20%.
E) We calculate the volume concentration from Eq. (24c).

The uncertainty δv can be derived from the “worst” possible
combination of δreff and δs.
F) We calculate the limits of number concentration from

Eqs. (24d) and (24e). The minimum and maximum limits take
into account the uncertainties δreff and δs.
G) We estimate the CRI on the basis of the analysis of the

lidar data products according to the spectrum g f �λ� and the
discrepancy ρLUT [see Eq. (7)].

Our proximate analysis (PA) is useful for preliminary esti-
mations of microphysical parameters of particles in the fine
mode of the PSD without applying the method of data inver-
sion and the calculation of kernel functions. PA also allows for
the more robust initial assessment of RCs used in the correla-
tion relationships, see Eq. (10). Besides that, a preliminary
estimation of the microphysical parameters can be employed
as a constraint for more complicated methods of optical data
analysis with inversion methods.

B. Retrieval Example for Synthetic Data

1. Numerical Example: Vertical Profile Type 1
In this example, we investigate in more detail the case consid-
ered in Section 3.A. The only difference is that we replace layer
#6 by layer #1 and change the order of layer #4 and layer #5 to
keep the optical data profile more realistic. Besides these
changes, we distort the optical data with 15% extreme error.
Extreme error in the context of this study means that each
of the 3β� 2α channels is independently distorted with an
error of fixed magnitude of �15%. Figure 1(a) shows the

Table 2. Particle Fine Mode Fractions Found with PA for the Example of Height Bin l � 6 in Table 1
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profiles of the synthetic (solid line) and distorted (symbols) op-
tical data at 355, 532, and 1064 nm, as well as the Ångström
exponents BAE for the wavelength pair 532/1064 nm and the
EAE for the wavelength pair 355/532 nm. The profiles of the
true PMPs [Figs. 1(b)–1(d)] and the true PSD [Fig. 1(e)] at bin
l � 4 (at height 4 km) are shown as thick solid black curves.

The statistics and correlations for the true parameters are
presented in Fig. 2 by open black circles and black lines in
the same way as in Fig. 1(a) in [3]. The regression equations
for all parameters are shown in the legends. In spite of the
bimodality of the PSD, we see a very “strong” correlation

between the individual height bins of the profiles because
the correlation coefficients are equal to R2 � 1 in all cases.

We used distorted optical data profiles as input in our tradi-
tional regularization technique [6] to retrieve the solution
space F �l�; l � 1;…; 6. Each solution space F �l� contains about
1 × 105 individual solutions which are retrieved for 150 inver-
sion windows that are located in the radius range from 0.03
to 10 μm. We used 20 equidistant values of the real part,
i.e., mR ∈ �1.325; 1.8� and 30 equidistant values of the imagi-
nary part, i.e., mI ∈ �0.0; 0.1� in the retrieval. We note that
these ranges for the inversion windows and the CRI do not

(a)

(c)

(e) (f)

(d)

(b)

Fig. 2. Numerical example: vertical profile of type 1. The statistics are shown for the true (circles) and the retrieved values obtained for the case
that we do not use GCM (triangles), the case that we use GCM with the true RCs (squares), and the case that we use GCM with incorrect RCs
(dashed lines). We assumed that the PSD is either monomodal (MMS) or bimodal (BMS), and that as � 1.6. The solid lines describe the correlation
trends according to the equation y � ax � b and R2. The regression equations are given in the legends.
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create any constraints on the solution spaces, and we do not use
them in practice.

In the first step we post-processed the solution spaces with-
out using GCM (NoGCM) and without using any constraints
for the parameters reff , n, r ∈ �0.03; 10�, mR ∈ �1.325; 1.8�,
and mI ∈ �0.0; 0.1� in the automated mode [1]. The results
are shown as blue curves with triangles in Figs. 1(b)–1(e).
The retrieved profiles of effective radius, surface-area and vol-
ume concentrations reproduce the true profiles quite well. The
largest disagreement of 45% from the true value is observed for
effective radius at bin l � 5 (at 5 km height). However, the
quality of the retrieved profile of the number concentration
is unsatisfactory. There are outliers with 100%–200% error.
Just two profile bins, the ones at 3 and 6 km, respectively,
coincide with the true values.

Figure 2 shows the statistics of the parameters retrieved with
NoGCM (blue lines, triangle). We see that the results are not
correlated. The correlation coefficient changes from R2 � 0.57
for rmean versus reff [Fig. 2(f )] to R2 � 0.96 for σ versus reff
[Fig. 2(e)]. The RC for surface-area concentration is as � 1.19
[Fig. 2(b)]. We find an � 0.16 for number concentration
[Fig. 2(d)]. These values are outside the ranges defined by
Eq. (2). The low correlation coefficients and values of the
RCs that do not fulfill the condition in Eq. (2) mean that
we deal with outliers in our results.

In the next step, we applied GCM in an attempt to suppress
these outliers and postprocess the solution spaces for the case that
the true RCs are known (TrueRC). Table 3 shows the RCs for all
IPs. We applied the algorithm described in Section 2 and used
δp � 10%–25%. Figure 1 shows the results as red curves with
squares. We see that all retrieved and true profiles match each
other significantly better. The maximum error of 30% occurs
for the number concentration at height bin l � 2 and l � 4.

The result of applying GCM is that we find strong corre-
lations of R2 ≥ 0.97 for the IPs. Figure 2 shows these correla-
tions as red lines with squares. We note that the actual RCs
shown in the legends of Fig. 2 do not coincide with the true
values (see the TrueRC of Table 3) after we used GCM for the
postprocessing. Particularly the RC an for n�r2mean � σ2� is
0.147, whereas the true value is 0.137. The true and actual
mean widths of the RC bσ are 0.03 and 0.02, respectively.

The disagreement between the actual (retrieved) and the
true RCs can be explained, as we already discussed, by the fact
that it is not mandatory that Eq. (12) is simultaneously fulfilled
for the individual and the averaged n�r2mean � σ2�. If we reduce

the threshold δp to 1%–5% we could further stabilize the actual
an (or bσ), but we deal with measurement and mathematical
errors. These two error sources do not allow us to find any indi-
vidual solution f �l�

i �r�, i � 1;…;Nsol, if δp is too small. This is
the reason why we have to set δp � 10%–25% in this case.

The true values of the RCs are not known in practice. If the
RCs for our IPs, i.e., s, v∕reff , and n�r2mean � σ2� vary inside
small intervals, i.e., �20% in Eq. (2) the spread of the RCs
for reff , rmean, and σ are very wide, see for example the condi-
tions in Eq. (32) in Ref. [3]. The choice of the RCs depends
on many factors such as aerosol type, measurement case, and
the experience of the data operator. To assess the capabilities of
GCM we consider two different (opposite) retrieval strategies.

One strategy assumes that the PSD is monomodal (MMS).
The other strategy assumes that the PSD is bimodal (BMS).
The constraints for the RCs of s, v∕reff , and n�r2mean � σ2�
can be described by the same equations for both strategies.
The RCs are as � 1.6, av � 1.6∕3 ≈ 0.53, and an �
1.6∕�4π�≈0.127 (see Table 3). The numbers are in the center
of the respective ranges of values of these RCs. At this step (1st
iteration) the profile of the number concentration is stabilized if
we apply GCM for s, v∕reff , and n�r2mean � σ2� without using
the constraints for reff , rmean, and σ.

However, after the 1st iteration the profile of effective radius still
contains the outliers that we also find if we do not applyGCM (case
of NoGCM). As a result, the effective radius and EAE are only
slightly correlated with R2 � 0.80 (results are not shown here).
To increase the correlation, we add a new constraint in the case
of the effective radius. We use the RCs ar � −0.08 and br �
0.26 in the case of MMS, see Eq. (33b) in Ref. [3]. We use ar �
−0.65 and br � 1.2 in case of BMS; see the equation that describes
the regression line of the stars in Fig. 1(a) in Ref. [3].

We simultaneously use GCM with the constraint applied to
reff , as described in the previous paragraph (1st iteration), to s, to
v∕reff , and to n�r2mean � σ2�. This step stabilizes (smoothes) the
profile of reff . For the case of BMS, we find a high correlation
R2 � 0.97 between reff and åα. In contrast, we find a lower cor-
relation of R2 � 0.79 between reff and å in the case of MMS
(results are not shown here). Furthermore, the discrepancy be-
tween input and backcalculated EAE for the case of MMS starts
to increase to values of 20% and more in bins l � 3–5.

After the 2nd iteration in which we used the constraints si-
multaneously with regard to s, v∕reff , n�r2mean � σ2�, and reff
the profile of σ becomes well correlated with reff , and we obtain
R2 > 0.92 from both strategies (not shown here).

Table 3. Vertical Profile of Type 1: Regression Coefficients and Thresholds that Can Be Used as Constraints in the Next
Version of the Postprocessing of the Solution Space Provided by the Automated, Unsupervised Inversion Algorithm

ap bp δp (%) ap bp δp ap bp δp

P True RC MMS BMS

s 1.74 0.01 10 1.6 0 5% 1.6 0 5%
v∕r 0.57 0.01 10 0.53 0 5% 0.56 0 5%
n�r2mean � σ2� 0.137 0.00 10 0.127 0 5% 0.5 0 5%
reff −0.56 1.07 15 −0.08 0.26 0.05 μm −0.65 1.2 0.05 μm
σ 0.09 0.03 25 0.31 0 25% 0.09 0.02 25%
rmean 0.01 0.11 25 0.2 0.075 10% 0.01 0.10 20%
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With regard to rmean, the correlation with reff remains quite
small, i.e., R2 < 0.15 (results are not shown). To improve the
correlation of rmean and reff we use all available constraints for s,
v∕reff , n�r2mean � σ2�, reff , σ, and rmean in the 3rd iteration. In
addition, with regard to rmean and σ, we use the RC values we
obtained from the previous (2nd) iteration, i.e., we use
aσ � 0.31, bσ � 0, am � 0.2, and bm � 0.075 for MMS, and
we use aσ � 0.09, bσ � 0.02, am � 0.01, and bm � 0.1 for
BMS (see Table 3). Figures 1 and 2 show the final results after
the last, 3rd iteration as dashed curves. The results we obtain
with GCM for the case of TrueRC and BMS are close to each
other. In contrast, the results for MMS underestimate effective
radius and volume concentration. We can define this deviation
(underestimation) as the uncertainty of GCM.

We also apply the PA to the analysis of the fine mode PMPs
and the fractions φg in the case of the distorted OD profiles (see
Fig. 1, asterisks). This approach provides us with similar results
that we obtain in Section 3.A for error free OD (see Table 1,
red symbols). The effective radii for the distorted and the error
free OD profiles coincide since the EAEs of both OD profiles
are the same. The respective values for number, surface-area,
and volume concentrations deviate from each other proportion-
ally to the distortion of the OD.

In the case of the distorted OD, we find even less uncer-
tainty for the CRI, i.e., in the vicinity of ρLUT ≈ 5% at l � 1
we find that real parts are between 1.45 and 1.625. We find a
similar uncertainty for the imaginary part, i.e., it varies between
0.001 and 0.02 regardless whether the OD are distorted or
error free. Again, this uncertainty could be reduced to the
resolution of the real part (�0.025) in the LUT, and from
0.001 to 0.0075 for the imaginary part if we knew the effective
radius to at least�0.01 μm. With regard to the fine mode frac-
tions at l � 4, the PA results in

φ�4�
α�355� � 0.88; φ�4�

α�532� � 0.79; φ�4�
β�355� � 0.80;

φ�4�
β�532� � 0.60; φ�4�

β�1064� � 0.31.

The discrepancy stays below 12% for φβ�532� (see Table 1 for
reference at l � 5). Apparently, we can use this approach to
estimate the effective radius of the coarse mode by taking into
account the values of the LUT. As another result, the volume
concentration of the coarse mode can be assessed, too, like what
can be done for vf by using Eq. (24c). In turn, if we know the
total volume and surface-area concentrations (p � pf � pc) we
may derive the total effective radius which is very important for
the initial assumptions we need to make for the RCs ar and br
in Eq. (10). In that way, we obtain the RCs we use for the BMS.
However, we do not further speculate on this result because
we need to carry out further investigations regarding this
approach of using the LUT; we want to consider all possible
variations of the coarse mode effective radius from 1 to approx-
imately 5 μm, which to our opinion covers most of the poten-
tial aerosol scenarios.

We note that the PMPs derived from the MMS and PA
described in Section 3.A converge (see Fig. 1). For example,
the effective radius retrieved with both approaches is equal
to ∼0.13 μm at l � 1;…; 6. All other parameters retrieved
with MMS and PA at all heights are close to each other within
the uncertainty of PA. We conclude that even if we make a

wrong assumption, in our numerical examples this is the case
for MMS, we are still able to retrieve the PMPs of the fine mode
of the size distribution with good accuracy.

In summary, we recommend the following strategy that
allows us to select properly the RCs:

A) The actual RCs as, av, and an belong to the intervals
shown in Eq. (2).
B) The preliminary RCs ar and br are assessed with PA on

the basis of MMS and/or BMS.
C) The discrepancies of the particle extinction coefficients

and/or the EAEs do not exceed the measurement errors
significantly.
D) The correlation coefficients are close to 1.
E) The predefined number of individual solutions that need

to be averaged and the actual number of individual solutions
that fulfill all correlation constraints should be similar. It is not
acceptable if there are height bins in which the solutions do not
fulfill all constraints.

2. Numerical Example: Vertical Profile Type 2
We computed NL � 6 optical sets of the 3β� 2α type on the
basis of Eq. (8). From these data sets we constructed OD pro-
files which are shown in Fig. 3(a) as solid curves. The true
PMPs and CRIs are shown in Figs. 3(b)–3(d) as thick lines.
For example, the real part and mean width do not change with
height and are equal to mR � 1.5 and σG � 2.1, respectively.
The imaginary part increases with height, i.e., from mI � 0

(height bins 1–2) to 0.01 (height bins 3–4) to 0.03 (height
bin 5) to 0.05 (height bin 6).

With regard to the CRI values this example could for exam-
ple describe a situation of a comparably clean marine boundary
layer that contains a mixture of marine particles (sea salt) with
low light-absorbing anthropogenic pollution and a strongly
light-absorbing pollution layer aloft. We stress that the purpose
of the synthetic profiles is to test the robustness of our post-
processing scheme. We will show results of the analysis of
experimental profiles in the third part of our study which is
currently in preparation.

The true OD profiles were distorted with 15% extreme
error and processed with the inversion algorithm. The circles
in Fig. 4 show the statistics of the true data. The RCs of
the regression equations (black lines) are within the respective
ranges shown in Eqs. (2) and (4). For convenience, we sum-
marize the RCs of the SOD in Table 4.

First, we classify the OD profiles according to Table (1) in
Ref. [3]. The profiles contain OD sets from case #8 at l � 1,
from case #1 at l � 2, 3, 4, and 6, and from case #4 at l � 5.
That means we can approximate our results by monomodal
PSDs and use our LUT for the PA. However, at l � 1 the
particle size is comparably small, i.e., reff ≤ 0.29 μm, and
mI ≤ 0.045 and mR ≥ 1.4. In contrast, at l � 2 − 6 the cases
#1 and #4 permit for the “full” ranges of effective radius
(reff ≥ 0.2 μm) and CRI (mI ≥ 0.0 and mR ≥ 1.3).

In contrast to the numerical example in Section 3.A (see
layer l � 6) where BAE is equal to −0.24 the BAE is close
to 2 in this example. In view of Eq. (33c) in Ref. [3], and
Eq. (24) and φ�1� � 1 we find (true values are in brackets):
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r�1�eff ;f ≈ −0.193 × 0.6� 0.37

� 0.25� 0.08 μm�0.24 μm�
s�1�f ≈ 1.6 × 1 × 0.07

� 0.11� 20% μm2 cm−3�0.136 μm2 cm−3�
v�1�f ≈ 0.11 × 0.25∕3

� 0.009� 20% μm2 cm−3�0.011 μm3 cm−3�
n�1�f ;min ≈ 0.11∕�4 × 3.14 × 0.252� � 0.14 cm−3�1 cm−3�
n�1�f ;max ≈ 0.11∕��2 × 3.14 × 0.252�� � 0.28 cm−3�1 cm−3�

Our PA gives us reasonable results within the respective
uncertainty of δp, though the maximum value of the number

concentration does not include the true value. That result can
be explained by the fact that the true PSD is not “narrow”
(σG � 2.1), i.e., the PSD includes particles both of the fine
and the coarse modes, and the numbers in Eq. (24d) are only
a rough estimate at l � 1. Besides that, we neither took into
account the 20% uncertainty of our estimation of s nor did
we consider the measurement error of 15% of the extinction
coefficients.

We carried out our PA of the CRI in the vicinity of ρLUT ≤
15% [see Eq. (7)]. The minimal discrepancy ρLUT;min ≈ 7%

corresponds to the set of data in the LUT for which
m � 1.55−i0.003. In that vicinity we find another 118 sets
with real parts mR ∈ �1.5; 1.7� and imaginary parts
mI ∈ �0; 0.02�. We again observe that in spite of erroneous
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Fig. 3. Numerical example: vertical profile of type 2. The meaning of the lines, symbols, and colors is the same as in Fig. 1.
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OD the LUT data sets that have effective radii closest to the
true value (0.24 μm) result in real parts mR � 1.5–1.55 and
imaginary parts mI � 0–0.003.

Since the EAE is too low and changes from åα � −0.15 to
åα � −0.02 in the upper height bins (l � 2;…; 6) the PA of
the fine-mode fraction of the particle size distribution will result
in an unacceptably high uncertainty δreff of effective radius
[see Fig. 1(a) in [3] at åα≈0]. Actually, this example is one
of the most difficult scenarios for our retrieval scheme.
However, we can further simplify the PA of the effective radius,
not by using Eq. (24a) but by using the LUT in the same way

Table 4. Variations of the RCs of the SOD Bank

P ap bp
s [1.33; 1.78] [−0.09; 0.03]
v∕r [0.40; 0.60] [−0.03; 0.01]
n�r2mean � σ2� [0.11; 0.14] [−0.05; 0.002]
reff [−10; −0.038] [0.1; 0.5]
σ [0.21; 0.31] 0
rmean [0.17; 0.84] 0

(a)

(c)

(e) (f)

(d)

(b)

Fig. 4. Numerical example: vertical profile of type 2. The meaning of the lines, symbols, and colors is the same as in Fig. 2.
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we use it to find the CRI. In this case, we rewrite the discrep-
ancy of Eq. (7) as

ρLUT�
1

5

X
p

jpLUT−pexperimentj
pLUT

;

p� åα; åβ�355�;β�532�;åβ�532�;β�1064�;

α�355�∕β�355�;α�532�∕β�532�; (32)
i.e., we take into consideration all lidar data products (we add
p � åβ�532�;β�1064�) apart from our PA of effective radius
(p ≠ reff ).

We used the simplified PA of the PMPs for the remaining
heights (l � 2–6). The results are shown as asterisks in Fig. 3.
We collected the LUT values of reff and m for discrepancies
ρLUT up to 25% because of the high level of the OD distortion
(15%). This distortion level can permit for even higher discrep-
ancies of the lidar data products. If we derive effective radius
from our LUT on the basis of Eq. (32), and furthermore derive
surface-area concentration from Eq. (14) we find volume and
number concentrations with Eqs. (24c), (24d), and (24e),
respectively.

Unfortunately, the minimal discrepancies ρLUT at height 2
and 6 km (l � 2, 6) exceed 25%. In practice, it may mean that
the error of the OD measurements is very high and/or the
PSD is not monomodal. We tested the latter assumption
and estimated the fine mode fractions as described in
Section 3.A, i.e., we find

φ�2�
α�355� � 0.5; φ�2�

α�532� � 0.5; φ�2�
β�355� � 0.3;

φ�2�
β�532� � 0.2; φ�2�

β�1064� � 0.06; φ�6�
α�355� � 0.5;

φ�6�
α�532� � 0.5; φ�6�

β�355� � 0.6; φ�6�
β�532� � 0.5;

φ�6�
β�1064� � 0.4.

As a result the minimum discrepancies defined by Eq. (31)
decrease to ρ�2�LUT;c � 6% and ρ�6�LUT;c � 9%, respectively. If we
take into account the LUT values for effective radii reff ;f and
reff ;c, and the fraction φα�355�, we can find the surface-area,
volume and number concentrations of the fine and coarse
modes [see Eqs. (24b)–(24e)], respectively.

Figure 3 (asterisk) shows that the PA provides the PMPs and
their error bars and that the results include the true values of
the PMPs. The only exception is number concentration. We
already discussed that Eq. (24d) does not work properly for
the estimation of nf ;max if the investigated PSD includes large
particles. The parameters åα and åβ�532;1064� are close to 0 and

even negative, simultaneously, which confirms our assumption.
We note the large uncertainty of reff at 2 and 6 km. As a result,
we obtain a large uncertainty of v in these same heights. Such
large uncertainty arises because the erroneous OD can be re-
produced by a bimodal PSD quite well. Our PA demonstrates
this possibility. Besides that, we note that the r�4�eff value at 4 km
does not cover the true value, even if we include the uncertainty
bar. We can explain this behavior by the fact that the minimum
discrepancy ρ�4�LUT is 20%. If we consider the discrepancy range
from 20% to approximately 25% we can avoid using wrong
parameter sets from the LUT, i.e., parameters for which the
OD are too “far” off from the input OD. In that case, the de-
rived set of LUT parameters contains an effective radius that
varies only slightly. In such a case we would extend the discrep-
ancy vicinity or consider the strategy of extracting the fine and
coarse mode fractions.

We use the same approach in this example as in Section 3.B.1,
i.e., we identify the solution space F �l�; l � 1;…; 6, [6] and we
could postprocess it with the automated, unsupervised software
for the following situations

A) GCM is not used, i.e., the case of NoGCM is applied,
B) GCM is used for the case of True RC,
C) GCM is used with incorrect RCs and the assumption

that the PSD is monomodal (MMS) or bimodal (BMS, i.e.,
presence of coarse-mode particles), and as � 1.6, av ≈ 0.53,
and an ≈ 0.127.

Case A: Figures 3(b)–3(e) show all retrieval results. We see
that in the case of NoGCM (triangles) effective radius has large
retrieval errors of up to 300% in three of the six height bins.
The error of number concentration is up to 200% in the height
bin l � 4. In particular, the outliers of reff are caused by a
strong coarse mode which is absent in the true PSD, see the
blue curve with triangles in Fig. 3(e).

Case B: The solution space can be significantly improved
if we require that the correlation relationships are known
and fulfilled (True RC). In that case, the retrieval errors of
number concentration are below 90%. The error of effective
radius is 20%. We obtained these results by using the RCs
shown in Table 5 (True RC).

Case C: We assess the GCM uncertainty by assuming
MMS and BMS. In both cases the RCs as, av, and an are located
in the middle of the respective intervals (see Table 5). The RCs
for effective radius are defined on the basis of the analysis of
our LUT. Figure 1(a) in Ref. [3] shows that in the case
of åα ∈ �0; 0.6� values for reff are minimal if we select

Table 5. Vertical Profile Type 2: Regression Coefficients and Thresholds that Can Be Used as Constraints in the Future
Postprocessing of the Solution Space Provided by the Automated, Unsupervised Inversion Algorithm

ap bp δp ap bp δp ap bp δp

p True RC MMS BMS

s 1.7 0 5% 1.6 0 5% 1.6 0 5%
v∕r 0.57 0 5% 0.53 0 5% 0.56 0 5%
n�r2mean � σ2� 0.135 0 5% 0.127 0 5% 0.5 0 5%
reff −1.06 0.76 0.3 μm −0.6 0.6 0.2 μm −1.25 0.9 0.5 μm
σ 0.285 0 10% 0.25 0.01 20% 0.21 0.0 20%
rmean 0.332 0 20% 0.27 0.06 20% 0.2 0.05 20%
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ar � −0.6 and br � 0.6. The values for ar and br fulfill the
conditions required by MMS. On the contrary, we select
the values ar � −1.25 and br � 0.9 which allow us to maxi-
mize reff in the case of BMS. In that case, we can take into
account the condition that the correlation trends in both strat-
egies should intersect the vicinity of the coordinate point
(å�1�α � 0.6; r�1�eff ;f ≈ 0.25 μm) that we found from our PA.
Furthermore, we make the thresholds δreff large enough
(0.2–0.5 μm) since we deal with a wide spread of the effective
radius when åα<0.5, see Table 5 (MMS, BMS).

After a few iterations we can estimate the RCs for our IPs σ
and rmean. The values are aσ � 0.25, bσ � 0.01, am � 0.27,
and bm � 0.06 for MMS. The values are aσ � 0.21,
bσ � 0.0, am � 0.2, and bm � 0.05 for BMS. Table 5 sum-
marizes these numbers for the cases of MMS and BMS. The
final results are shown in Fig. 3 as dashed curves.

The use of GCM causes quite large variations of effective
radius and number concentration in the cases MMS and BMS.
The uncertainties are 100% and 300% for effective radius and
number concentration, respectively. That level of uncertainty
could be suppressed if information about the modality (mono-
or bimodal) of the PSD is available. Unfortunately, the solution
subspaces for the monomodal and the bimodal PSDs are
acceptable with regard to F �l� (no matter if NoGCM or GCM
is used) and to PA. For the moment there still is ambiguity
of the results when both BAE and EAE are comparably small,
e.g., if they are close to 0. In this case, erroneous OD cannot be
identified as “monomodal” because of large measurement errors.
At the same time, the “bimodal” interpretation yields a good
discrepancy but a wrong coarse mode. One of the next steps
in our research work could be to decrease the uncertainty of
the retrieved effective radius that is provided by MMS and BMS.

Any further improvement of the GCM results depends on
the data operator’s experience and a priori information.
Nonetheless, we stress that even at this stage of our work
GCM already smoothes the profiles of reff and v and thus
provides us with significantly better consistency between suc-
cessive aerosol layers compared with what we obtain from the
method of NoGCM.

Figure 4 presents the statistics for the vertical profile of
type 2 for all results derived with NoGCM (triangle),
TrueRC (square), and MMS and BMS (dashed line). The
legend in Fig. 4 also shows the regression equations that we
obtained after postprocessing the solution space F �l� in the
case of NoGCM and the case of True RC. We also show
the regression equations for the true data (circles).

We see that the IPs s and v∕reff that are retrieved with
NoGCM and TrueRC are linearly correlated with the particle
extinction coefficient [Figs. 4(b) and 4(c)]. The results for
MMS and BMS show the same behavior (not shown here).
We find outliers in the profiles of n if we use NoGCM (see
Fig. 3), and as a result the actual RC an � 0.25 [Fig. 4(d), tri-
angle] is outside the interval defined by Eq. (17) in Ref. [3].
The statistics for NoGCM for the IPs reff , σ, and rmean also
are “de-correlated,” i.e., R2 is low. The numbers decrease from
0.91 to 0.7 [see Figs. 4(a), 4(e), and 4(f )].

If we employ the method TrueRC and use the RCs from
Table 5 we find the following numbers for the RCs:

ar � 1.09 (R2 � 0.93), an � 0.135 (R2 � 1), aσ � 0.26
(R2 � 0.99), and am � 0.3 (R2 � 0.99), see the squares in
Figs. 4(a) and 4(d)–4(f ). If we use MMS and BMS (dashed
lines) we obtain RCs close to the ones shown in Table 5. The
correlation coefficients are R2 > 0.98. We note once more that
the measurement errors are 15%.

We complete the analysis of both numerical examples with
15% measurement error by considering the results of the CRI
retrieval. If we know the true RCs, the real and imaginary parts
converge significantly better to the true values compared to the
convergence we obtain from the method of NoGCM. The re-
sults are shown in Figs. 1(d) and 3(d) as red solid lines with
squares. The errors of mR and mI are on average approximately
0.05–0.10 and i0.010 − i0.015, respectively. There is only one
outlier at 1 km (see vertical profile type 2). The analysis of the
solution space at this height shows that it contains individual
solutions with mR > 1.7 and mI > 0.05.

The results for MMS and BMS almost coincide [see
Figs. 1(d) and 3(d), red dashed line] and overestimate the true
CRI (bias). The results for the CRI are also close to the
NoGCM results [see Figs. 1(d) and 3(d), blue solid line with
triangles]. Therefore, we cannot expect an improvement of
the CRI retrieval if we apply our new GCM only, compared
to our traditional approach [6]. However, we can use GCM
and combine it with our PA. We obtain reff � 0.265 μm as
a mean value from the two values we find from MMS and
BMS at the lowest height bin. In that height, a monomodal
PSD is highly likely. We obtain from the LUT values of CRI
and effective radius (m � 1.55−i0.003 and reff � 0.24 μm), if
we use a discrepancy [Eq. (7)] that is equal to ρLUT;min ≈ 8%.
If we extend the value of the discrepancy to ρLUT � 16%
(twice as large as the minimum value) the LUT values for the
CRI and the effective radius stay below 1.6 (mR), 0.01 (mI),
and 0.24 μm (reff ). The results we obtain for the CRI from
the combination of PA and GCM are shown as stars in
Figs. 1(d) and 3(d). We are considering the option of including
this new method in the next generation version of the auto-
mated inversion software that we are developing for NASA
Langley’s HSRL-2 instrument.

4. CONCLUSION

We presented the novel method of GCM which allows us to
stabilize the solution space of particle microphysical parameters
(PMPs) that we retrieve with our data inversion algorithm
from profiles of optical data taken with multiwavelength
Raman/HSRL (3 backscatter� 2 extinction) lidar. GCM uses
correlation relationships between particle bulk parameters
and optical properties.

These relationships allow us to use additional constraints
during the postprocessing of the solution spaces. As a result,
the IPs �s; v; n�r2mean � σ2�� can be estimated with an uncer-
tainty that does not exceed the measurement error of the ex-
tinction coefficient.

We specially designed the PA method that allows us to ob-
tain from a LUT a first-estimate solution space of the PMPs.
We obtain a robust initial estimation of the RCs on the basis
of the correlation analysis presented in Ref. [3]. PA itself pro-
vides us with estimated values of the PMPs of the fine-mode
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fraction of particle size distributions. The accuracy that we ob-
tain for the PMPs with this approach is not worse than the
accuracy for the PMPs obtained with our traditional inversion
method. However, one of our next steps in fact is that we use
the results from PA as a priori information in the second step of
the data analysis procedure, i.e., we apply this PA in combina-
tion with the traditional inversion algorithm. We are of the
opinion that the combination of the two methods will further
improve our inversion data products, most notably the complex
refractive index. That step of combining the two methods will
allow us to derive trustworthy profiles of absorption coefficients
in future versions of our software development.

The PA method can be generalized for the estimation of
coarse-mode parameters if we extend our LUT by data that
describe particle size distributions with effective radii exceeding
3 μm.

Our comparisons between the results obtained with GCM
and our traditional inversion-with-regularization technique
shows that the methodology presented in this contribu-
tion leads to a significant stabilization of the retrieved profiles
of aerosol microphysical properties. That means the uncer-
tainty of

– surface-area concentration does not exceed the sum of
mathematical (�20%) and measurement (�15% for modern
lidar systems) errors, or 35% in total;

– effective radius is �0.07 μm for fine mode particles and
about 100% for particle size distributions composed of fine
(submicron) and coarse (supermicron) mode particles;

– volume concentration is defined by the sum of the uncer-
tainty of surface-area concentration and the uncertainty of
effective radius;

– the uncertainty of number concentration is less than
100% for any particle radius domain from 0.03 to 10 μm.

Aside from these results, we find that the uncertainties of
the real and imaginary parts of the CRI of monomodal PSDs
can be restricted to �0.1 and �0.01 on the domains [1.3;1.8]
and [0;0.1], respectively, if we combine PA and GCM. This
will allow us in the future to investigate bimodal particle size
distributions in the sense that we can fully analyze the fine
mode fraction of particle size distributions without making
critical assumptions on properties of the coarse mode fraction.
We can thus focus our future work steps on developing a light-
scattering model for coarse model particles which to a large
part consist of nonspherical (dust) particles and for which to
date, to the best of our knowledge, there is no practical model

that can describe light-scattering at 180°‐scattering direction
(backscatter).

We will continue our research work with numerical simu-
lations and the analysis of case studies to further assess the
potential of this new approach.

We are currently preparing part 3 of our series of papers.
There, we will use experimental data and test our method for
retrieving PMPs from optical profiles measured with lidar.

Funding. NASA Langley Research Center; University of
Hertfordshire (UH); Science Systems and Applications.

REFERENCES
1. D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin,

A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W.
Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and
B. Schmid, “Airborne multiwavelength high spectral resolution lidar
(HSRL-2) observations during TCAP 2012: vertical profiles of optical
and microphysical properties of a smoke/urban haze plume over the
northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496
(2014).

2. P. Sawamura, D. Müller, S. Burton, E. Chemyakin, C. Hostetler, R.
Ferrare, A. Kolgotin, L. Ziemba, A. Beyersdorf, and B. Anderson,
“Comparison of aerosol optical and microphysical retrievals from
HSRL-2 and in-situ measurements during DISCOVER-AQ 2013
(California and Texas),” in International Laser Radar Conference,
July 2015, paper PS-C1-14.

3. A. Kolgotin, D. Müller, E. Chemyakin, and A. Romanov, “Improved iden-
tification of the solution space of aerosol microphysical properties
derived from the inversion of profiles of lidar optical data, part 1: theory,”
Appl. Opt. 55, 9839–9849 (2016).

4. C. F. Bohren and D. R. Huffman, eds., Absorption and Scattering of
Light by Small Particles (Wiley, 1983).

5. D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle
parameters from extinction and backscatter lidar data by inversion with
regularization: theory,” Appl. Opt. 38, 2346–2357 (1999).

6. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, and D.
Whiteman, “Inversion with regularization for the retrieval of tropospheric
aerosol parameters from multiwavelength lidar sounding,” Appl. Opt.
41, 3685–3699 (2002).

7. C. Böckmann, I. Miranova, D. Müller, L. Scheidenbach, and R. Nessler,
“Microphysical aerosol parameters from multiwavelength lidar,” J. Opt.
Soc. Am. A 22, 518–528 (2005).

8. A. Kolgotin and D. Müller, “Theory of inversion with two-dimensional
regularization: profiles of microphysical particle properties derived from
multiwavelength lidar measurements,” Appl. Opt. 47, 4472–4490
(2008).

9. D. Müller, A. Kolgotin, I. Mattis, A. Petzold, and A. Stohl, “Vertical pro-
files of microphysical particle properties derived from inversion with
two-dimensional regularization of multiwavelength Raman lidar data:
experiment,” Appl. Opt. 50, 2069–2079 (2011).

Research Article Vol. 55, No. 34 / December 1 2016 / Applied Optics 9865


	XML ID funding



