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ABSTRACT

Young stars show evidence of accretion discs which evolve quickly and disperse with an e-folding time of ∼3 Myr. This is in striking
contrast with recent observations that suggest evidence of numerous >30 Myr old stars with an accretion disc in large star-forming
complexes. We consider whether these observations of apparently old accretors could be explained by invoking Bondi-Hoyle accretion
to rebuild a new disc around these stars during passage through a clumpy molecular cloud. We combine a simple Monte Carlo model
to explore the capture of mass by such systems with a viscous evolution model to infer the levels of accretion that would be observed.
We find that a significant fraction of stars may capture enough material via the Bondi-Hoyle mechanism to rebuild a disc of mass
>∼1 minimum-mass solar nebula, and <∼10% accrete at observable levels at any given time. A significant fraction of the observed
old accretors may be explained with our proposed mechanism. Such accretion may provide a chance for a second epoch of planet
formation, and have unpredictable consequences for planetary evolution.
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1. Introduction

Circumstellar discs form around protostars as a result of angu-
lar momentum conservation during gravitational collapse (e.g.
Shu et al. 1987). In the early phases of star formation, disc ma-
terial loses angular momentum and is accreted onto the cen-
tral star. The most direct observational signature of the presence
of a protoplanetary disc is the excess emission, on top of the
expected naked stellar photosphere, at infrared and millimetre
wavelengths, in the ultraviolet and in optical/infrared emission
lines. The long wavelength emission is produced by a dusty disc,
heated by internal dissipation processes or reprocessing of stellar
radiation (e.g. Dullemond et al. 2007). The short wavelength ex-
cess and the optical/infrared emission lines are thought to be pro-
duced by the disc-star interaction as matter accretes onto the star
or is ejected in a wind/jet (Hartmann 2009). Strong observational
evidence shows that both the inner dusty disc and accretion
onto the central star quickly disappear during the early stages
of pre-main-sequence evolution; the fractions of stars with near
infrared excess and with accretion signatures decay with an e-
folding time of 2−3 Myr (Fedele et al. 2010; Hernández et al.
2007). This disc dissipation timescale, even considering the pos-
sible revision by Bell et al. (2013), sets a stringent constraint on
the timescales for planet formation.

Recent work has challenged this paradigm. Sensitive, wide
field Hα surveys of large star-forming complexes in the
Magellanic Clouds and our own Galaxy have revealed a pop-
ulation of pre-main-sequence stars that appear to be older than

10 Myr but still show prominent Hα emission and/or infrared
excess (Beccari et al. 2010; De Marchi et al. 2013a,b, 2011a,c).
Although some of these “old” accretor candidates in nearby star-
forming regions have been shown to be misclassified young stel-
lar objects (Manara et al. 2013), it is difficult to believe that this
is the case for all the candidates; these populations of old accre-
tors are not as centrally condensed as the young stellar clusters in
the same fields (e.g. De Marchi et al. 2011b). If the line emission
is interpreted as due to accretion as in young pre-main-sequence
stars, the implied accretion rates are similar to those derived at
early ages, and typically higher than nearby transitional discs1.
These findings are hard to understand in a framework in which
the primordial disc is still the reservoir of accreting material at
such old ages; even one disc of age >30 Myr implies an initial
population >105 (assuming exponential decay with an e-folding
timescale of 3 Myr).

In this paper we explore the possibility that the old accretors
do not have a primordial disc, but a disc that they re-accreted af-
ter the primordial disc had dissipated. Previous studies (Moeckel
& Throop 2009; Padoan et al. 2005; Throop & Bally 2008)
have investigated the influence of Bondi-Hoyle accretion on pre-
main-sequence mass-accretion rates and the protoplanetary disc
at earlier phases, during the initial evolution of the disc-star sys-
tem within the progenitor cloud. Here we investigate the possi-
bility that a star older than 5−10 Myr happens to travel through
a clumpy molecular cloud, typically unrelated to that in which

1 Although these are systematically lower mass objects.
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Table 1. Parameters for Monte Carlo models.

Parameter Values Parameter Values
fV 10−2, 10−3, 10−4, 10−5 cs 0.3 km s−1

Nstars 105, 105, 106, 107 σv 1 km s−1

Rcl 0.1 pc α 2.35
ncl 104 cm−3

the star formed, and is able to accrete enough material to form a
new accretion disc.

2. Modelling

2.1. Bondi-Hoyle accretion

Hoyle & Lyttleton (1939), Bondi & Hoyle (1944), and Bondi
(1952) proposed a mechanism by which objects can capture mat-
ter from the interstellar medium (ISM). A massive object moving
through the ISM causes a perturbation, pulling material toward
the object. As the capture of material is roughly symmetrical
with respect to the direction of motion of the star, much of the
angular momentum of the material cancels out, and hence it is
captured by the star to eventually be accreted (Davies & Pringle
1980).

The rate at which material is captured is given by

ṀBH = µnvπR2
BH, (1)

where v is the relative velocity between the star and the ISM, n
is the number density of the ISM, and µ is the mean molecular
weight (usually taken as 2.3mH). The gravitational cross-section
is given by πR2

BH, where RBH is the Bondi-Hoyle radius

RBH =
2GM∗
v2 + c2

s
; (2)

cs is the sound-speed of the ISM, typically 0.3 km s−1. For a
1 M� star moving at 1 km s−1, RBH ∼ 1500 au.

To explore the effect of this process in reconstituting discs
around young stars, we build a simple Monte Carlo model to
treat interactions between stars and clumps with densities typi-
cal for molecular clouds. We assume a stationary clumpy molec-
ular cloud, which we model as a collection of identical spheri-
cal clumps with radius Rcl and density ncl. We parametrise the
density of clumps through a volume filling factor of dense gas
fV . We assume a population of “old” young stars that has lost
their primordial disc enters the cloud and moves through the
clumpy medium. By randomly generating stars with masses be-
tween 0.7 M� and 3.2 M�2 from a Salpeter IMF (M ∝ M−α
Salpeter 1955) and velocities generated assuming a velocity dis-
persion of σv = 1 km s−1, we sample the parameters required
in Eq. (2) from the values given in Table 1. The model sim-
ulates 10 Myr treated as a series of quasi-static time steps of
length tst = 2Rcl/v∗, assuming that each star is independent. For
each star, we calculate RBH, the volume swept out per time-step
Vst = v∗tst × π (Rcl + RBH)2, and hence the probability of encoun-
tering a dense clump

p =
Vst × fV

(4/3) πR3
cl

· (3)

2 Stars above ∼3 M� have strong winds which make a simple model
inappropriate, while observations of old accretors are incomplete for
stars below 0.7−1 M� depending on the distance to the observed region.

In each time-step a uniform random number ζ is drawn, and the
star encounters a clump when ζ ≤ p; the impact parameter b
of the encounter is given by drawing a second random num-
ber ζ2 from the same generator such that b = (Rcl + RBH) ζ1/2

2 .
We then determine the accretion rate (Eq. (1)) and resolve the
stellar accretion and the clump-mass depletion on a finer time-
grid of 1000 sub-steps to accurately determine the accreted mass.
Interactions where RBH > Rcl and grazing encounters are treated
correctly by taking the projected area of intersection. By repeat-
ing this process for >105 stars we build up meaningful statistics
about the range of possible BH accretion histories and their prob-
abilities. Note that each star is modelled independently, and mass
accreted by a star does not influence the mass-budget available
to later stars.

The accretion histories determined by this model are then
passed to a viscous evolution model (Sect. 2.2) to estimate the
rate at which material is accreted by the star.

Our choice of fV is based on a reanalysis of SPH simulations
of star-forming regions including feedback mechanisms pre-
sented in Dale et al. (2012, 2013) to determine the filling factor
of gas at densities higher than 104 cm−3. We find that for bound
clouds of similar stellar mass to the regions observed by Beccari
et al. (2010); De Marchi et al. (2013b), 10−6 < fV <∼ 10−3 irre-
spective of whether feedback from massive stars is included.

While this provides a useful estimate of the amount of mass
captured in this way, it somewhat overestimates the total as we
neglect a number of physical processes. First, we neglect the mo-
tion of the clumps and assume that v = v∗ in Eq. (2). Correct
treatment of the relative motions would in general reduce RBH
and hence the accretion rates. Second, stars above 2 M� have sig-
nificant wind and radiation pressure that will depress the accre-
tion rate (Edgar & Clarke 2004). Similarly, we do not include the
possible influence of the X-ray photoevaporation on the accre-
tion, which may have an analagous effect for lower mass stars.
We also ignore the possible influence of magnetic fields, which
recent studies (e.g. Lee et al. 2014) have shown may reduce ac-
cretion rates by a factor of a few. Likewise, we neglect structure
on scales smaller than a single clump; such structure is required
for a disc to form, and would reduce accretion rates relative to
the homogeneous clump case treated here. Finally, we do not
include binaries. However, the only influence of binarity in the
context of Bondi-Hoyle accretion is to increase RBH, since bina-
ries behave as a single object of mass M = M1 + M2.

2.2. Viscous evolution modelling

Due to the angular momentum of the material accreted from the
clump, which may be due to a density gradient within the clump
or the rotation of the clump itself, accretion cannot proceed di-
rectly onto the star (Ruffert 1997). Therefore, the formation of a
thin accretion disc is expected as the result of the viscous spread-
ing of a thin ring. Throop & Bally (2008) described the “buffer”
effect of an accretion disc, but did not directly model it. We as-
sume that the material accreted from the medium circularises at a
radius r0 = 0.1RBH. After a single impulse of accretion onto the
disc, the surface density is described by Σ(r) = M0/(2π)δ(r−r0),
where M0 is the deposited mass. Under the influence of an effec-
tive viscosity ν that redistributes the angular momentum in the
disc, the spreading ring solution (Lynden-Bell & Pringle 1974)
describes the evolution in time of this initial surface density,

Σ(r, t)=
GM∗(rr0)1/4

3πr2νΩ
exp

−

(
r1/2

0 −r1/2
)2

r

3tν


 exp(−λ)I1/2(λ),

(4)
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Fig. 1. Cumulative fraction of the stellar population that has accreted
mass as a function of total accreted mass. The solid blue line indicates a
filling-factor of 10−2, the dotted magenta line 10−3, the dashed red line
10−4, and the dot-dashed green line 10−5.

Fig. 2. Fraction of the population that would be detected as an old accre-
tor at a given time, plotted as a function of the instantaneous accretion
rate. The models are indicated using the same colours and line-styles as
Fig. 1.

where ν is the kinematic viscosity of the gas, Ω the Keplerian
angular speed, I1/2 the modified Bessel function of order 1/2,
λ = 2r3/2/(3(GM∗)3/2νtr0), and we have specialized the expres-
sion for the ν ∝ r case. From this analytical solution, it is possi-
ble to compute the mass accretion rate onto the star Ṁkernel. To
derive the mass accretion rate history onto the star, we convolve
this function with the mass accretion rate history onto the disc:

Ṁ∗(t) =

∫
ṀBH(t′)Ṁkernel(t − t′)dt′. (5)

Given a stellar mass, the loading radius, and a law for viscosity,
the evolution in time is now completely determined. We fix the
viscosity by using the well-known Shakura & Sunyaev (1973)
prescription, ν = α(h/r)2r2Ω, where α is the Shakura-Sunyaev
parameter and h/r the aspect ratio of the disc. We choose typ-
ical values of α = 0.01 and h/r = 0.05(r/1 AU)1/4 (Armitage
2011). Operationally, we sample Eq. (4) numerically on a space
and time grid. We integrate over space to get the mass of the disc
and we numerically differentiate the result to get the mass accre-
tion rate kernel, which can be convolved with the Bondi-Hoyle
history (Sect. 2.1).

3. Results

Our model indicates that a fraction of the population∼40−50× fV
encounter dense regions and accrete more than 0.001 M� ma-
terial by the end of the simulation (Fig. 1). The median ac-
creted mass is typically ∼0.01 M�, similar to the mass of discs
around young pre-main-sequence stars, with strong dependence
on the stellar mass. In extreme cases, however, more massive
stars (>2 M�) with low v∗ that encounter several clumps can cap-
ture ≥M�. Our treatment of the disc formation and evolution is
probably inadequate for these extreme cases.

Converting the Bondi-Hoyle accretion into stellar accretion
rates, we find Ṁ∗ <∼ 10−6 M� yr−1 after the formation of the
disc. Owing to the assumptions inherent in our model, this rate
declines from the peak as a power law as in primordial discs.

By calculating the time each star spends accreting above a
certain threshold accretion rate, one can derive a mean time per
star as a function of the threshold and hence an estimate of the
fraction of the population which one expects to observe accret-
ing at a given time. As shown in Fig. 2, for a threshold rate of
10−8 M� yr−1 we typically find that the cumulative probability is
∼20 fV , i.e. the fraction of a stellar population that one expects to
observe as old accretors at a given time is an order of magnitude
larger than the volume filling-factor of dense clumps.

4. Discussion

Our primary goal is to assess whether the Bondi-Hoyle mech-
anism can contribute significantly to observations of old accre-
tors in regions with ongoing star formation, under a number of
simple assumptions. This involves stars from a previous star-
formation episode, after their primordial discs have dispersed,
interacting with a clumpy molecular cloud. Our model indicates
that up to several percent of the population passing through a re-
gion containing dense clumps may accrete more than 0.001 M�
of material. Because of the factors indicated above (Sect. 2.1),
the model is likely to overestimate the total accreted mass.
However, since the Bondi-Hoyle accretion is a well-understood
process, the largest sources of uncertainty derive from the pa-
rameters assumed as input to the model, and in particular the
clump geometry and filling factor, as well as the assumption that
the accreted material will form a thin disc.

Our initial choice of filling factor was based on a reanalysis
of the simulations of Dale et al. (2012, 2013) for clouds sim-
ilar to those observed to host old accretors. A further estimate
can be obtained from the high-resolution sub-mm maps of the
30 Dor region from Indebetouw et al. (2013). These reveal a
wealth of clumpy structures, similar in scale and density to the
clumps in the Monte Carlo model used here. Assuming that the
clumps are uniform spheres with an average radius Rcl = 0.15 pc
and distributed in a cube whose depth is equal to the projected
size of the observed region (10 × 10 × 10 pc3) yields a filling
factor of fV = 1.5 × 10−3, at the upper end of our parameter
range.

The behaviour of the accretion disc depends strongly on the
viscous timescale τν, as parametrised in terms of r0 and α. An
order of magnitude change in τν has little effect on the observ-
able old-accretor fractions at low thresholds, but the fractions at
high thresholds decline approximately in proportion to 1/τν. For
larger changes in viscosity, this also affects the lowest thresholds
explored in Sect. 3.

Since we do not include stars down to the peak of IMF
(∼0.3 M�) and Bondi-Hoyle accretion rates are ∝M2, we may
overestimate the total fraction of old accretors by a factor ∼3 for
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the Salpeter IMF assumed here. However, Eq. (3) is dominated
by Rcl for low-mass stars, so one would expect a similar fraction
of old accretors when Ṁ is a factor of 4 lower.

Comparisons between our model and the observations of old
accretors are difficult, as there are no firm constraints on the size
of the old population (including non-accretors). Nevertheless,
from Fig. 2 one can see that without an unrealistically large
filling factor (�10−3) of dense clumps, the small, nearby star-
forming regions are unlikely to produce more than one old ac-
cretor, as their typical mass is a few hundred M�. As no old
accretors have been identified in these regions, this is consis-
tent with our model. From the recent identification of a large
(∼3 × 103 M�) diffuse population with ages >∼10 Myr toward
Orion (Bouy et al. 2014) one expects a few tens of reformed
discs, although it is unclear whether there is any overlap between
this population and the Orion molecular clouds.

Observations of old accretors in large star-forming com-
plexes typically detect up to several hundred such sources in
each observed region. Given the formation efficiency we have
computed and our assumed filling factors, this requires a total
population at least of the order of 104 stars in the mass range
of the observed old accretors, or ∼3 × 104 stars correcting for
the IMF, which must have passed through the regions in which
the clumps are distributed. In the case of NGC 3603, which is
inferred to have a population ∼104.2 M� (Rahman et al. 2013)
and ∼100 old accretors, this implies either that the old popula-
tion was significantly richer, or that fV is or was very high. The
30 Doradus region, on the other hand, shows a similar total of
old accretors, although the total population is likely ∼100 times
larger than NGC 3603. Only a small fraction (1%) of the stars
in 30Dor need to pass through regions containing dense clumps
to produce the observed numbers. In reality, fV will evolve with
time, and it is possible that the difference we observe between
these regions may be due to 30Dor being more evolved, or hav-
ing evolved more rapidly, than NGC 3603.

In our model, a significant fraction (up to several tens of
percent) of stars capture enough material to form a circumstel-
lar disc of mass similar to primordial protoplanetary discs. This
raises a number of interesting questions, such as whether a sec-
ond epoch of planet formation is possible, and how the interac-
tion between inflowing material and an existing planetary system
might alter the accretion or the planetary evolution.

The answers to these queries depend strongly on how the
inflowing material interacts with the existing system, which we
have not treated. Nevertheless, Bondi-Hoyle accretion presents
a mechanism by which a new reservoir of potentially planet-
forming material may be built by up to a few percent of stars.
This gives them a second chance to form planets, from material
that is potentially of different composition from the material that
formed the star. Another possibility is that these stars are already
surrounded by a planetary system formed out of the primordial
disc. If they accrete new material, typically with an angular mo-
mentum different from that of the original planetary system, the
interaction of the new material and the existing planets may have
a range of outcomes. Understanding the range of possible out-
comes will require detailed simulations of the accretion process
and of the dynamical interactions with the planetary systems
which are beyond the scope of the present paper.

5. Conclusions

We have presented a model in which Bondi-Hoyle accretion by
stars passing through dense clumps in the outer regions of their
natal molecular cloud leads to the re-formation of a circumstel-
lar disc. As a result, these stars may masquerade as pre-main-
sequence objects due to ongoing accretion and the presence of
infrared excess emission. A significant part of the observed pop-
ulations of old accretors in large star-forming regions may be
explained by this mechanism. As it may have wide-ranging con-
sequences for the early evolution of planetary systems in rich
stellar environments, we believe that further investigation of this
mechanism is warranted.
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