
Hierarchical Growing Neural Gas

K.A.J. Doherty, R.G. Adams, N. Davey
Department of Computer Science, University of Hertfordshire, United Kingdom

E-mail: {K.A.J.Doherty, R.G.Adams, N.Davey}@herts.ac.uk

Abstract
This paper describes TreeGNG, a top-down unsuper-

vised learning method that produces hierarchical classi-
fication schemes. TreeGNG is an extension to the Grow-
ing Neural Gas algorithm that maintains a time history
of the learned topological mapping. TreeGNG is able to
correct poor decisions made during the early phases of
the construction of the tree, and provides the novel abil-
ity to influence the general shape and form of the learned
hierarchy.

1 Introduction
The discovery of hierarchical structure through statis-

tical methods is generally referred to as cluster analysis
or numerical taxonomy, and these techniques are well
established. The statistical generation of a hierarchical
clustering can be achieved by either agglomerative or di-
visive methods. However, the divisive methods suffer
from the inability to recover from a poor decision in the
construction of the dendrogram [1].

Unsupervised Competitive Learning is the artificial
neural network foil to cluster analysis. A sub-set of the
family of Unsupervised Competitive Learning methods
are the Growing Self-organising networks. Each node of
the network has a position vector in the input space, and
nodes are connected by edges to form graphs. The com-
petitive Hebbian rule [2] produces the edges that form a
sub-set of the Delaunay triangulation for the nodes [3].
The neighbourhood of a node is defined by the edges in-
cident to the node. The positions of the nodes are altered
in response to each input, and the structure of the net-
work is modified by the insertion and deletion of nodes
and edges. This dynamic behaviour can result in disjoint
graph structures. The procedure used to form the graph
and the resultant graph structure are called topology rep-
resenting networks (TRN) [4].

TRN research has mainly focused on the discovery of
concepts without hierarchical structure, but there have
been recent attempts to discover and learn the taxon-
omy of concepts contained in an unlabelled set of data.
A family of hierarchical neural clusterers has emerged
based on Fritzke’s Growing Cell Structures (GCS) [5].
However, the GCS algorithm has some inherent prob-

lems, which we will describe later in this document.
In this paper we propose a new unsupervised hierar-

chical, top-down classifier. Our model uses the Growing
Neural Gas (GNG) algorithm [6], removing the reliance
on the sometimes less-than-successful partitioning pro-
duced by GCS, and provides the ability to alter the gen-
eral shape and form of the tree structure. The remainder
of this paper is organised as follows: In the next two
sections, we describe the dynamics and performance of
the GCS and GNG networks, and the known hierarchical
variants. In section 4, we present our model and the re-
sults of our experiments, and in the final section, section
5, we draw our conclusions.

2 Topology Representing Networks
In this section, we very briefly describe the dynamics,

and comment on the performance, of the GCS and GNG
networks.

2.1 Growing Cell Structures

The GCS algorithm grows a network composed of k-
dimensional network construction units, for which k is
user-defined (fig. 1). Since k is generally less than that
of the arity of the input data, the GCS model performs
a dimensionality-reducing mapping from the (possibly
high dimensional) input space into a (generally lower)
user-defined dimensional output space.

k=1 k=2 k=3

Fig. 1. Examples of GCS network topologies for k-
dimensional network construction units [5].

Periodic node deletion occurs based on a measure of
node activity and the volume of the input space classified
by the node. The calculation of the Voronoi volume re-
quired for node deletion is difficult in dimensions greater



than 2, and algorithm implementations have resorted to
estimates [7, 5].

2.2 Growing Neural Gas

Growing Neural Gas is similar to GCS but does not
impose the strict network-topology preservation rule,
and edges are deleted based on an age criterion. The
network incrementally learns the Delaunay triangulation
corresponding to the topological relationships inherent
in the data set, and continues until a user defined stop-
ping criterion is satisfied.

2.3 GCS and GNG Comparison

Fritzke claimed that GCS “automatically finds mean-
ingful partitions of the data”, and that GCS was able
to estimate the probability density of the input “under
a wide range of parameter settings” [5]. In later work,
Köhle and Merkl used GCS for document classification.
Their results suggested that the GCS automatic cluster
boundary generation aided the identification of cluster
structure. However, they also noted that the algorithm
is very sensitive to parameter selection, and for a wide
range of parameters, GCS was “unable to produce se-
mantically meaningful classification results” [8]. The
strict topological preservation rule of GCS can result in
massive purges in the GCS network, causing much of
the accumulated learning to be lost [9]. The results of
our own investigations also suggest that GCS clustering
results are heavily dependent on the network parameter
settings.

In a performance comparison of three incremental net-
works (including GNG and GCS) and the multilayer
perceptron, the networks were benchmarked on four
datasets, and scored for classification error, convergence
rate and parameter sensitivity [10]. The GNG algorithm
returned the superior benchmark score. The algorithm
converged rapidly and showed little dependence on the
network parameter settings. Again, the results of our
own experiments agree with these findings.

3 TreeGCS
Various hierarchical variants to GCS and GNG have

been proposed [9, 11]. TreeGCS [7] is an interesting
variant. TreeGCS is a top-down, incremental learning hi-
erarchical classifier, that maintains a time history tree of
the graph connectivity of a standard GCS algorithm. As
a part of the normal GCS dynamics, periodic node dele-
tion takes place, occasionally resulting in graphs split-
ting into two or more disjoint graphs. Every disjoint
GCS graph structure is represented by a leaf node in the
tree representation. Every epoch, the tree representation
is examined, and if a GCS graph structure represented

by a leaf node has split, then a new child for every new
graph is inserted into the hierarchy beneath the old leaf
node. Similarly, if a disjoint sub-graph is deleted from
the network, then the leaf node associated with the sub-
graph is removed from the tree, and the hierarchy is up-
dated to remove any inconsistent structure e.g. nodes
with a single child are removed.

4 TreeGNG
Based on the results of our own experiments and the

work of others, we consider that the relatively poor per-
formance of GCS should preclude its use as the underly-
ing algorithm. We believe that an improved basis for this
time mapping approach would be the GNG algorithm.
We propose the TreeGNG algorithm (fig. 2), which fol-
lows the TreeGCS algorithm but uses GNG as the un-
derlying clustering algorithm, has a user-defined graph
generation rate and replaces the epoch count stopping
criterion with a more flexible user-defined stopping cri-
terion.

Fig. 2. The TreeGNG Algorithm

Within the GCS algorithm, the rate of node deletion
is a user-defined iteration count; within the TreeGCS al-
gorithm, the generation of the tree structure is based on
an epoch-by-epoch examination of the graph connectiv-
ity. The same approach could be followed for TreeGNG.
However, we decided that we could make use of the fact
that the shape of the final tree will be dependent on the
relationship of these two key periods. If tree generation
occurs very infrequently in relation to the frequency of
node deletion, then the tree will be very shallow and pos-
sibly have a large branching factor. As tree generation
becomes more frequent, the tree will tend to get deeper



with a smaller branching factor, and taken to the limit,
if the tree is generated every time a change occurs in
the number of graphs, then the tree will be binary. This
aspect was not examined by Hodge and Austin, but we
believe it provides a useful tool, as the the general shape
and form of the tree can be specified.

Fig. 3 illustrates the TreeGNG graph splitting and the
resultant tree growth.

Network

Tree

(a) (b) (c)

Network

Tree

(d) (e) (f)

Fig. 3. GNG graph splitting and tree growth. In network
(a), following the standard GNG ageing dynamics, the
dashed edge is marked for deletion. Edge deletion re-
sults in two disjoint networks (b). At tree generation
time, the tree is updated with new subordinate nodes
(c) to reflect the the splitting of the graph. The edge
ageing and deletion process is repeated in graphs (d)
and (e) producing further tree growth (f) at the next
tree generation time.

4.1 Experimental Results

We tested the utility of our algorithm on a range of
data, and report the results for two synthetic data sets.
The data sets comprised of 675 and 900 elements in
R

2. For both data sets, we ran the GNG algorithm for
5000 epochs with a range of parameters. For all the pa-
rameters considered, GNG satisfactorily clustered these
data in-line with our expectations, and the induced De-
launay triangulation indicated the appropriate number of
discrete clusters.

Figs. 4 and 5 (upper) shows the results of clustering
with 50 codebook vectors, for a GNG edge deletion age
of 1 epoch and 2 nodes insertions per epoch. It should
be noted that the overall clustering time can be reduced
by using a smaller edge deletion age, with little (if any)
impact on the quality of the final clustering. We recorded
the time history of the graph connectivity for tree genera-
tion intervals ranging from 1 iteration to 100 epochs, and

every iteration every epoch

every 30 epochs every 75 epochs

10

1

(1)
(9) (10)

(8)

(2) (3)

(4) (5)

(6)

(7)

Fig. 4. GNG clustering of the MIX10 data set (upper fig.) with
50 nodes, a GNG edge deletion age of 1 epoch and a
node insertion rate of 2 per epoch. The time history
trees for a range of tree generation intervals are shown
in the lower figures. With the tree generation occur-
ring every 30 epochs, the tree structure was broadly
in-line with our expectations of an appropriate hierar-
chical representation.

typical resultant tree structures are shown (figs. 4 and 5
lower). The trees confirm that frequent tree generation
results in binary tree representations, whilst an extended
period between tree generations results in wider, shal-
lower trees; but of more importance is that between these
two extremes, the tree structure is in-line with our expec-
tation of the most appropriate tree structure. In addition,
the TreeGNG tree structures do no exhibit the instabil-
ity noted with TreeGCS where “for many parameter set-
tings” the network repeatedly deletes and reinstates the



every iteration every epoch

every 30 epochs every 100 epochs

1

10

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Fig. 5. GNG clustering of the GAUS9 data set (upper fig.)
with 50 nodes, a GNG edge deletion age of 1 epoch
and a node insertion rate of 2 per epoch. The resul-
tant time history trees for a range of tree generation
intervals are shown in the lower figures. With the tree
generation occurring every 30 epochs, the tree struc-
ture was broadly in-line with our expectations of an
appropriate hierarchical representation.

same clusters [7]. The results of tests on other synthetic
data sets have indicated that TreeGNG is able to produce
trees in-line with our expectations of an approriate struc-
ture.

5 Conclusions
We have developed an unsupervised top-down hier-

archical classification tool based on Fritzke’s GNG al-
gorithm and Hodge and Austin’s TreeGCS. Our method
dynamically learns and adjusts the tree structure in re-

sponse to the input data, and produces stable hierarchi-
cal representations for a broad range of network param-
eters. The periodic edge removal and competitive Heb-
bian learning of the GNG algorithm allows the network
to recover from poor decisions in the generation of the
hierarchy and thus overcome one of the major problems
with TreeGCS and the divisive statistical methods. The
algorithm also provides the novel ability to influence the
general shape and form of the learned hierarchy.

References
[1] Everitt, B. (1993), Cluster Analysis, Edward

Arnold, London, 3rd edition

[2] Hertz, J., Krogh, A., Palmer, R. (1991), Intro-
duction to the Theory of Neural Computation,
Addison-Wesley, Redwood City, CA

[3] Fritzke, B. (1996), Growing Self-Organizing
Networks-Why?, In: Proc. European Symposium
on Artificial Neural Networks, pp. 61–72

[4] Martinetz, T. M., Schulten, K. J. (1994), Topol-
ogy Representing Networks, Neural Networks,
7(3):507–522

[5] Fritzke, B. (1994), Growing Cell Structures - A
Self-Organising Network for Unsupervised and Su-
pervised Learning, Neural Networks, 7(9):1441–
1460

[6] Fritzke, B. (1995), A Growing Neural Gas Network
Learns Topologies, Advances in Neural Informa-
tion Processing Systems, pp. 625–632

[7] Hodge, V. J., Austin, J. (2001), Hierarchical Grow-
ing Cell Structures: TreeGCS, IEEE Trans. Knowl-
edge and Data Engineering, 13(2):207–218

[8] Köhle, M., Merkl, D. (1996), Visualising Simi-
larities in High Dimensional Input Spaces with a
Growing and Splitting Neural Network, Lecture
Notes in Computer Science, 1112:581–586

[9] Burzevski, V., Mohan, C. K. (1996), Hierarchical
Growing Cell Structures, In: Proc. IEEE Int. Conf.
Neural Networks, Washington D.C., volume 3, pp.
1658–1663

[10] Heinke, D., Hamker, F. H. (1998), Compar-
ing Neural Networks: A Benchmark on Grow-
ing Neural Gas, Growing Cell Structures, and
Fuzzy ARTMAP, IEEE Trans. Neural Networks,
9(6):1279–1291

[11] Cao, X., Suganthan, P. (2002), Hierarchical Over-
lapped Growing Neural Gas Networks with Appli-
cations to Video Shot Detection and Motion Char-
acteristics, In: Proc. Int. Joint Conf. Neural Net-
works, IEEE, Hawaii, USA, volume 2, pp. 1069–
1074


