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ABSTRACT

We report the discovery of a medium-strength (∼0.5 kG) magnetic field on the
young, massive star τ Sco (B0.2 V), which becomes the third-hottest magnetic star
known. Circularly polarized Zeeman signatures are clearly detected in observations col-
lected mostly with the ESPaDOnS spectropolarimeter, recently installed on the 3.6-m
Canada–France–Hawaii Telescope; temporal variability is also clearly established in
the polarimetry, and can be unambiguously attributed to rotational modulation with
a period close to 41 d. Archival UV spectra confirm that this modulation repeats over
timescales of decades, and refine the rotation period to 41.033± 0.002 d.

Despite the slow rotation rate of τ Sco, we nonetheless succeed in reconstructing
the large-scale structure of its magnetic topology. We find that the magnetic structure
is unusually complex for a hot star, with significant power in spherical-harmonic modes
of degree up to 5. The surface topology is dominated by a potential field, although a
moderate toroidal component is probably present. We fail to detect intrinsic temporal
variability of the magnetic structure over the 1.5-yr period of our spectropolarimetric
observations (in agreement with the stable temporal variations of the UV spectra),
and infer that any differential surface rotation must be very small.

The topology of the extended magnetic field that we derive from the photospheric
magnetic maps is also more complex than a global dipole, and features in particular
a significantly warped torus of closed magnetic loops encircling the star (tilted at
about 90◦ to the rotation axis), with additional, smaller, networks of closed field lines.
This topology appears to be consistent with the exceptional X-ray properties of τ Sco
and also provides a natural explanation of the variability observed in wind-formed UV
lines. Although we cannot completely rule out the possibility that the field is produced
through dynamo processes of an exotic kind, we conclude that its magnetic field is
most probably a fossil remnant from the star-formation stage.

Key words: stars: magnetic fields – stars: winds – stars: rotation – stars: early type
– stars: individual: τ Sco – techniques: spectropolarimetry
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1 INTRODUCTION

Magnetic fields in hot, high-mass stars of spectral types O
and early B may have a drastic influence on the physics of
the stellar interiors (e.g., Spruit 2002) and atmospheres (e.g.,
Babel & Montmerle 1997). As a consequence, they can also
significantly modify these stars’ long-term evolution, and in
particular their rotational history (e.g., Maeder & Meynet
2003, 2004, 2005). However, quantifying these effects re-
quires that we know the basic properties of such fields.

From a theoretical point of view, several quite differ-
ent mechanisms have been proposed as potential means
of generating large-scale magnetic fields in very hot stars.
For example, such fields may be fossil remnants of the
star-formation stage, either as relics of the field that per-
vaded the interstellar medium from which the star formed,
or as leftovers from dynamo action in the convective
Hayashi phase. This hypothesis was initially proposed for
the lower-mass, chemically peculiar, magnetic Ap and Bp
stars (e.g., Moss 2001) and has recently been rediscussed
for the particular case of high-mass O and early-B stars by
Ferrario & Wickramasinghe (2005, 2006); in this scenario,
very hot magnetic stars are expected to be the progenitors
of magnetic neutron stars.

A second possibility is that fields may be pro-
duced by continuing dynamo action; this option, ini-
tially suggested about two decades ago (e.g., Moss 1982),
has not been closely examined until quite recently,
but is now attracting increasing interest from theoreti-
cians. A dynamo action could operate in the convec-
tive core (Charbonneau & MacGregor 2001; Brun et al.
2005), but the outer radiative envelope could also be
involved in genuine dynamo processes, in a subsurface
shear layer (Tout & Pringle 1995; Lignières et al. 1996)
or even throughout the whole envelope (Spruit 2002;
MacDonald & Mullan 2004; Mullan & MacDonald 2005;
Maeder & Meynet 2005; Braithwaite 2006).

Unfortunately, all available theoretical options still suf-
fer significant problems. Fossil-field theories have yet to
demonstrate that sufficient magnetic flux can survive the
accelerated decay and expulsion associated with Hayashi
convection1, while core-dynamo theories are still lacking de-
tailed models linking the field produced in the core with that
emerging at the surface (Moss 2001). Being based on a very
new idea, radiative-zone dynamo theories are still in their
infancy and need to establish their potential validity, by
demonstrating that, in particular, stellar radiative zones are
capable of sustaining differential rotation throughout their
whole volume.

In addition to these issues, existing theories face
a number of problems when compared to observations.
At some point, all theories involve the coexistence of
large-scale toroidal fields in stellar interiors and possibly
even close to the surface (e.g., Braithwaite & Spruit 2004;
Braithwaite & Nordlund 2006), which observations of mag-
netic Ap and Bp stars do not yet confirm (Moss 2001). More-

(TF); fpaletou@ast.obs-mip.fr (FP); manset@cfht.hawaii.edu
(NM)
1 This difficulty may not be as problematical as it first seemed,
as discussed in Moss (2003), and should not concern stars with
masses larger than 10 M⊙.

over, dynamo theories predict magnetic topologies that are
expected to vary on short timescales and to depend strongly
on stellar rotation rates, which again is not observed in
intermediate-mass magnetic stars (Moss 2001). Last but not
least, dynamos theories should in principle apply to most hot
stars (as they do for most cool stars), making it hard to un-
derstand why only a small fraction of them (about 10% in
the case of Ap/Bp stars) apparently hosts magnetic fields.

Indirect evidence for the presence of magnetic fields in
high-mass stars is regularly reported in the literature, these
being postulated as a potential explanation for many oth-
erwise enigmatic phenomena, including unanticipated X-ray
line profiles and high X-ray temperatures (e.g., Cohen et al.
1997; Robinson et al. 2002; Cohen et al. 2003; Smith et al.
2004). However, with direct detections of magnetic fields in
only two O stars to date (Donati et al. 2002, 2006), together
with less than a handful of early-B stars with masses larger
than 10 M⊙ (e.g., Donati et al. 2001; Neiner et al. 2003),
very little is known reliably about magnetic strengths and
topologies from a statistical point of view. One reason for
this is that absorption lines of these stars are not only rel-
atively few in number in the optical, but are also generally
rather broad (due to rotation, or to some other type of as
yet unknown macroscopic mechanism; e.g., Howarth et al.
1997), decreasing dramatically the size of the Zeeman sig-
natures that their putative fields can induce.

In these respects, τ Sco (HR 6165, HD 149438,
HIP 81266) appears as a very promising target for magnetic-
field studies; thanks to its brightness and unusually nar-
row absorption lines (among the sharpest known for stars
more massive than 10 M⊙), τ Sco is an obvious candidate
for accurate spectropolarimetric experiments. Moreover, its
strong, hard X-ray emission (with log LX/LBol ≃ −6.5,
Cohen et al. 1997) poses a severe challenge to the standard
picture of O-star wind-shock models, leading some authors
(e.g., Cohen et al. 2003) to speculate that it displays the
presence of a magnetically confined wind, as proposed by
Stahl et al. (1996) and Babel & Montmerle (1997), and as
detected on the very young O star θ1 Ori C (Donati et al.
2002; Gagné et al. 2005b,a). We therefore included τ Sco in
a list of candidates for observation with ESPaDOnS, a high-
efficiency spectropolarimeter installed in 2004/5 on the 3.6-
m Canada–France–Hawaii Telescope (CFHT; Donati et al.,
2006, in preparation).

In this paper, we first present our new spectro-
polarimetric observations and Zeeman detections obtained
for τ Sco, and briefly summarize the UV spectra (Sec. 2).
We then carry out a basic analysis of these data to establish
the rotation period (Sec. 3), and review the fundamental
stellar parameters in the light of our result (Sec. 4). We per-
form detailed modelling of the magnetic topology of τ Sco,
by direct fitting to the observed Zeeman signatures (Sec. 5).
Finally, we discuss the implications of our results for models
of the X-ray emitting magnetosphere of τ Sco, as well for as
theories of large-scale magnetic-field generation in high-mass
stars (Secs. 6 and 7).
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Table 1. Journal of spectropolarimetric observations. Columns 1–6 list the UT date & time, heliocentric Julian date (all at mid-exposure),
observing site, exposure time, and peak signal to noise ratio (per 2.6 km s−1 velocity bin) of each observation. Columns 7 and 8 list the
rms noise level (per 1.8 km s−1 velocity bin, relative to the unpolarized continuum level Ic) in the circular-polarization profile produced
by Least-Squares Deconvolution (see Sec. 2) and the estimated longitudinal field Bℓ (with corresponding 1σ error bars). The rotational
cycle E from the ephemeris of eqn. 1 is given in column 9.

UT HJD Obs texp S/N σLSD Bℓ Cycle
Date (h:m:s) (2,453,000+) (s) (10−4Ic) (G)

2004 Sep. 04 05:58:31 252.7475 CFHT 4 × 30 1440 0.70 −24.4 ± 3.3 1.456
2004 Sep. 04 06:23:17 252.7647 4 × 30 1280 0.75 −18.3 ± 3.4 1.457

2004 Sep. 25 05:03:15 273.7075 CFHT 4 × 30 1060 0.96 +36.2 ± 4.5 1.967
2004 Sep. 25 05:10:24 273.7124 2 × 60 1100 0.92 +47.5 ± 4.3 1.967

2004 Sep. 26 08:51:15 274.8689 AAT 4 × 120 890 1.03 +64.0 ± 4.2 1.995
2004 Sep. 27 08:52:49 275.8700 4 × 120 860 1.10 +78.4 ± 4.5 2.020
2004 Sep. 28 08:58:25 276.8739 4 × 120 670 1.36 +80.5 ± 5.6 2.044

2005 May 23 09:14:25 513.8903 CFHT 4 × 300 1700 0.63 −47.9 ± 3.0 7.820
2005 May 24 08:32:52 514.8614 4 × 60 900 1.17 −50.3 ± 5.6 7.844
2005 May 25 08:41:35 515.8675 4 × 60 880 1.19 −41.4 ± 5.5 7.868

2005 June 19 07:19:19 540.8096 CFHT 4 × 120 1200 0.85 −19.2 ± 4.3 8.476
2005 June 20 06:44:15 541.7852 4 × 120 1550 0.66 −20.2 ± 3.3 8.500
2005 June 21 06:51:16 542.7900 4 × 120 1650 0.62 −19.8 ± 2.9 8.525
2005 June 22 08:42:17 543.8671 4 × 120 1440 0.71 −12.8 ± 3.6 8.551
2005 June 23 06:07:24 544.7595 4 × 120 1670 0.61 −5.9 ± 3.1 8.572
2005 June 24 06:22:32 545.7699 4 × 120 1710 0.60 +1.3 ± 3.1 8.597
2005 June 25 06:05:50 546.7583 4 × 120 1570 0.68 +4.7 ± 3.4 8.621
2005 June 26 06:00:31 547.7545 4 × 120 1590 0.66 +0.9 ± 3.3 8.646
2005 June 26 11:02:47 547.9644 4 × 120 1370 0.82 −5.1 ± 4.2 8.651

2005 Aug. 19 05:20:15 601.7224 CFHT 4 × 30 1250 0.77 +44.5 ± 3.7 9.961
2005 Aug. 21 05:21:43 603.7232 4 × 30 1200 0.81 +80.3 ± 4.0 10.010
2005 Aug. 23 05:11:45 605.7161 4 × 30 1150 0.85 +87.8 ± 4.2 10.058

2005 Sep. 19 05:03:10 632.7079 CFHT 4 × 30 1180 0.83 −21.8 ± 3.7 10.716
2005 Sep. 20 05:01:56 633.7070 4 × 30 1280 0.76 −28.9 ± 3.6 10.740
2005 Sep. 24 04:55:44 637.7023 2 × 50 680 1.48 −45.9 ± 6.8 10.838
2005 Sep. 25 04:48:19 638.6971 4 × 30 1200 0.83 −51.9 ± 5.3 10.862
2005 Sep. 25 05:01:33 638.7063 4 × 30 1120 0.89 −43.4 ± 4.2 10.862

2006 Feb. 07 15:03:44 774.1269 CFHT 4 × 30 1090 0.88 +44.9 ± 4.1 14.162
2006 Feb. 08 16:22:33 775.1817 4 × 30 910 1.04 +44.3 ± 4.8 14.188
2006 Feb. 09 16:16:56 776.1779 4 × 30 620 1.58 +38.9 ± 7.0 14.212
2006 Feb. 10 16:33:25 777.1895 4 × 30 1250 0.76 +32.8 ± 3.4 14.237
2006 Feb. 11 16:18:20 778.1791 4 × 30 1020 0.94 +25.8 ± 4.2 14.261
2006 Feb. 13 16:15:23 780.1772 4 × 30 490 2.06 +35.4 ± 9.4 14.310
2006 Feb. 14 16:23:12 781.1827 4 × 30 840 1.13 +0.6 ± 5.6 14.334
2006 Feb. 15 14:07:12 782.0884 4 × 30 1060 0.92 +8.0 ± 4.5 14.357

2 OBSERVATIONS

2.1 Optical spectropolarimetry

Spectropolarimetric observations of τ Sco were collected
with ESPaDOnS from 2004 Sep. to 2006 Feb., during the
first engineering runs (in 2004, when the field was first
detected) and subsequently for scheduled ESPaDOnS pro-
grammes. The ESPaDOnS spectra span the entire optical
domain (from 370 to 1,000 nm) at a resolving power of about
65,000. In total, 32 circular-polarization sequences were col-
lected, most of them consisting of 4 individual subexposures
taken in different polarimeter configurations (in two cases,
the sequence was interrupted after the second exposure due
to a technical problem with the instrument control). The
extraction procedure is described in Donati et al. (1997, see

Donati et al., 2006, in prep., for further details) and was
carried out with Libre ESpRIT, a fully automatic reduction
package/pipeline installed at CFHT for optimal extraction
of ESPaDOnS spectra. The peak signal-to-noise ratios per
2.6 kms−1 velocity bin range from 490 to 1710, depending
mostly on weather conditions and exposure time (see Ta-
ble 1)2.

Three additional circular-polarization spectra were ob-
tained at the 3.9-m Anglo-Australian Telescope (AAT) in
late Sep. 2004, using a visitor-instrument Cassegrain po-

2 Note that the instrument suffered a 1.3-mag loss in throughput
compared to the optimal performance from early March to late
June 2005, due to severe damage to the external jacket of optical
fibres linking the polarimeter with the spectrograph (now fixed).
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Figure 1. LSD unpolarized and circularly polarized profiles of
τ Sco (bottom, top curves respectively), as observed on 2005
June 24. The mean polarization profile is expanded by a factor of
100 and shifted upwards by 1.10 for display purposes.

larimeter, fibre linked to the UCL echelle spectrograph
(UCLES), in a setup very similar to that described by
Donati et al. (2003). The AAT spectra, processed with the
same reduction package as used for the CFHT data, cover
430–670 nm at a resolving power of 65,000. The peak signal-
to-noise ratios per 2.6 km s−1 velocity bin range from 670 to
890, depending on the weather (see Table 1).

Both instruments use Fresnel rhombs (rather than crys-
talline plates) as retarders, with the result that spectropo-
larimetric ripples (e.g., Aitken & Hough 2001; Semel 2003)
are decreased down to a level below detectability. An ex-
ample of this improvement compared to previous otherwise
similar instruments (such as the MuSiCoS spectropolarime-
ter; Donati et al. 1999) is illustrated by Wade et al. (2005)
and Wade et al. (2006) in the particular case of hot-star ob-
servations.

In order to gain a multiplexing advantage by combin-
ing results from different lines in the spectra, Least-Squares
Deconvolution (LSD; Donati et al. 1997) was applied to all
observations. The line list required for LSD was computed
from an Atlas9 LTE model atmosphere (Kurucz 1993) at
Teff = 30, 000 K, log g = 4.5, roughly matching τ Sco’s pa-
rameters. We utilized only moderately strong lines (those
with synthetic profiles having line-to-continuum core depres-
sions larger than 10% prior to all non-thermal broadening
mechanisms, but omitting the very strongest, broadest fea-
tures, such as Balmer and He lines, whose Zeeman signature
is strongly smeared out compared to those of narrow lines)
– some 500 spectral features altogether, with about half cor-
responding to oxygen lines and most others coming from N,
Si, C and Fe. The average noise levels in the resulting LSD
signatures range 0.6–2.1×10−4 for ESPaDOnS spectra and
1.0–1.4×10−4 for the AAT data (per 1.8-km s−1 velocity bin,
relative to the unpolarized continuum level Ic; see Table 1).
Significant Zeeman signatures are clearly detected in all the
spectra, with a full amplitudes of about 0.2%, demonstrat-
ing that a magnetic field is securely detected for τ Sco; an
illustrative example is shown in Fig. 1.

The Zeeman signatures detected are variable with time3

and correspond to projected longitudinal fields (computed
from the first-order moment of the Stokes V LSD profile;
Donati et al. 1997) ranging from −50 to +90 G (see Ta-
ble 1). Our results are compatible with the earlier findings of
Landstreet (1982) that longitudinal fields of normal upper-
main-sequence stars in general, and of τ Sco in particular
(for which Landstreet 1982 report two estimates), are less
than 100 G on average.

2.2 UV spectroscopy

We augmented the new spectropolarimetric data set with
archival UV spectra obtained with the International Ultra-
violet Explorer satellite (IUE; Boggess et al. 1978). The IUE
archive contains 107 high-resolution spectra of τ Sco, cov-
ering the wavelength range 115–195 nm, sampled at 0.01-
nm intervals with a resolution of about 104 and S/N ≃

20. We examined spectra obtained from the MAST IUE
archive at the Space Telescope Science Institute, reduced us-
ing newsips pipeline software (Nichols & Linsky 1996, the
‘mxhi’ product). IUE spectra were each acquired through
one of two focal-plane apertures, designated ‘small’ and
‘large’; we found indications of data-processing errors in a
number of small-aperture spectra, which also generally have
poorer signal and S/N than the large-aperture data (typi-
cally, the small aperture transmitted only ∼half the incident
radiation). We therefore present results based on only the
72 large-aperture spectra in the archive; incorporating the
small-aperture data introduces no material changes to the
conclusions.

3 THE ROTATION PERIOD OF τ SCO

3.1 Zeeman spectroscopy

Time variability of the projected longitudinal field is a po-
tentially powerful tool for estimating stellar rotation peri-
ods, which often cannot be measured by other means. Specif-
ically, temporal fluctuations of the line-of-sight component
of the field in hot stars may be attributed to a magnetic
topology that is not axisymmetric about the rotation axis,
thus showing different configurations to the observer as the
star rotates. Searching for timescales on which the longitu-
dinal field repeats identically from one cycle to the next has
been very successful in estimating rotation periods of Ap
and Bp stars (e.g., Borra & Landstreet 1980).

Of course, the longitudinal-field values contain far less
information about the field topology than the Zeeman sig-
natures themselves. The Stokes V LSD profile shown in
Fig. 1 provides a clear demonstration of this point; while the
Zeeman signature strongly indicates a field detection (at a
level of about 27σ), the corresponding longitudinal field is
1.3 ± 3.1 G and is therefore inconclusive by itself. Nonethe-
less, longitudinal-field values are convenient summary statis-
tics in several respects, and in particular can provide useful

3 The LSD I profiles are also variable in strength. The level of
this variability is, however, small (about 0.3% rms of the contin-
uum level, equivalent to ∼3% of the central line depth), affecting
mainly the line width. We return to this point in Sec. 4.
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rough estimates of the average magnetic flux over the stellar
surface.

As an initial step in modelling the longitudinal-field
variations of τ Sco, we compared a double sine-wave fit to
the data, with the two periods held in the ratio 2:1 (moti-
vated by what we expect from a simple, rotationally modu-
lated, linear combination of dipole plus quadrupole fields).
For a range of assumed values for the longer (i.e., rotational)
period, the amplitudes and phases of both waves were opti-
mized to obtain the best fit to the longitudinal-field measure-
ments, using a standard least-squares minimization process,
with the reduced-χ2 value, χ2

ν , evaluated as the statistic of
merit for the fit quality. Fig. 2 (upper panel) shows the re-
sults of this exercise, and indicates a strong minimum in χ2

ν

at Prot = 41.08 ± 0.07 d (1σ uncertainty).
However, the double sine-wave model evidently provides

no more than a rough fit to the data, with a minimum
χ2

ν as large as ∼9. This, in turn, indicates that the field
must be significantly more complex than a tilted dipole plus
quadrupole combination, and must contain higher-order,
multipole components.4 Clearly, more-detailed modelling of
the Zeeman signatures is necessary in order to obtain an
adequate description of the magnetic topology of τ Sco; we
describe such modelling in Sec. 5.

The mis-match between the simple model and the data
means that the 41-d signal is no more than a provisional
estimate of the rotation period. More accurate and precise
values may be obtained both from modelling the Zeeman
signatures directly (Sec. 5), and from a time-series analysis
of the IUE data (Sec. 3.2).

3.2 UV line-profile variability

Direct measurement of magnetic fields in hot stars (e.g.;
Donati et al. 2001, 2002; Neiner et al. 2003; Donati et al.
2006) has often been presaged by the detection of strictly
periodic UV line-profile variability, with the inference of
a magnetic field by analogy with He peculiar stars (e.g.;
Stahl et al. 1996; Neiner et al. 2003; Walborn et al. 2004).
A search for variability in the IUE spectra of τ Sco
(known to exhibit abnormally strong UV P-Cygni lines;
Walborn & Panek 1984) is therefore a natural follow-up to
our detection of rotationally modulated Zeeman signatures
in the spectropolarimetric data.

We are fortunate that τ Sco was adopted as a photo-
metric calibration star by the IUE Project, and that as a
consequence the temporal sampling of the UV spectra is
rather well suited to investigating the rotational timescale
identified in the Zeeman spectroscopy: the large-aperture
spectra span 16.6 yr (1979 Feb – 1995 Sept, median date
1988 Aug) at a median sampling rate of 50.7 d (range 0.7 hr
– 417 d).

We analyzed the rectified IUE spectra using the
implementation of the clean algorithm described by

4 The rotational modulation of the longitudinal field is very rem-
iniscent of what is observed on the helium-strong star HD 37776
(Thompson & Landstreet 1985), apart from the fact that the field
of HD 37776 is stronger than that of τ Sco by more than an order
of magnitude.

Figure 2. Periodogram resulting from a double sine-wave fit to
the longitudinal-field data of τ Sco. Top panel: χ2

ν as a function
of the period of the main sine wave. A clear minimum is obtained

for a period of about 41 d. Middle panel: Temporal fluctuations of
the longitudinal field of τ Sco (full dots, with 1σ error bars) along
with the model fit (full line) for the adopted period of 41.033 d, as
a function of heliocentric Julian date (HJD). Bottom panel: As for
the middle panel, but as a function of rotation phase, computed
using the ephemeris of eqn. 1.
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Figure 3. Time-series analysis of IUE spectra of τ Sco. The bottom panel shows the mean spectrum for (left to right) the N v, Si iv, and
C iv resonance doublets; in each case, vertical tickmarks indicate the rest wavelengths, while the horizontal bar extends from 1000 km s−1

bluewards of the short-wavelength component to +500 kms−1 redwards of the long-wavelength component. The next panel up shows
part of the 2D cleaned periodogram, showing evidence for a periodic signal at ν = 0.049 d−1 in the wind-formed lines (see Fig. 4),
while the next two panels show the fourier power and phase, respectively, at that frequency. The top panel shows the residuals about
the mean of the rectified spectra phased according to the ephemeris of eqn. 1.

Figure 4. Mean power spectrum for regions extending
1000 kms−1 bluewards of the short-wavelength component to
+500 km s−1 redwards of the long-wavelength component for the
N v 124 nm, Si iv 140 nm, and C iv 155 nm resonance doublets
(black line), and for equivalent regions 2 nm longwards (red line).

Roberts et al. (1987); some results of this analysis are pre-
sented in Fig. 3. There is a strong signal at ν = 0.049 d−1

(P = 20.5 d) in the main features formed in the stellar wind
(the N v 124 nm, Si iv 140 nm, and C iv 155 nm resonance
lines, but also Si iii 120.6 nm). To examine this in greater
detail, we constructed the mean power spectrum for wave-
lengths from 1000 kms−1 bluewards of the short-wavelength
component to 500 kms−1 redwards of the long-wavelength
component for each of the three resonance doublets, together
with a comparison spectrum from equivalent regions 2 nm
longwards of each feature; results are shown in Fig. 4.

In addition to the main signal, there is a weak secondary
signal at ν = 0.024 d−1 (Fig. 4), corresponding to a pe-
riod of about 41 d.5 Since a period of 20.5 d is completely
excluded by the Zeeman measurements (Sec. 3.1), we in-

5 There are also signals, in both the main and reference datasets,
at P = 0.5 yr and 1 yr. These are presumed to be non-
astrophysical (and are most probably the result of varying back-
ground levels).
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Figure 5. Mean residual intensity for regions from 1000 km s−1

bluewards of the short-wavelength component to +500 km s−1

redwards of the long-wavelength component for each of the
N v 124 nm, Si iv 140 nm, and C iv 155 nm resonance doublets,
as a function of rotational phase. Phases are computed according
to the ephemeris of eqn. 1.

terpret our findings as indicating a slightly non-sinusoidal
double wave with Prot = 41.03 d. To refine this period we
average results from the 75 0.1-Å wavelength bins in the
−1000/ + 500 km s−1 test ranges for which the peak of the
power spectrum is safely identifiable with the ν = 0.049 d−1

signal; half the mean peak frequency for those samples cor-
responds to Prot = 41.033 ± 0.002 d (s.e.).

As an alternative characterization of the data, fit-
ting a gaussian to the peak of the mean power spectrum
yields P rot = 41.034 d, and a full-width at half-maximum
(FWHM) of 0.36 d. To obtain a second, reasonably con-
servative, estimate of the uncertainty on the period, we may
assume that the signal does not go out of phase by more than
0.125Prot (i.e., 0.25 of the 20.5-d half-wave period) in each of
the contributing wavelengths, giving P = 41.0340±0.0040 d
(s.e.).

We emphasize that the data are fully consistent with
a strictly periodic signal; the IUE data, spanning almost
17 yr, show no evidence for any non-periodic component
insofar as the width of the periodogram peak is entirely ac-
counted for by the finite number of cycles in the dataset
(N = 148). Moreover, the same period is recovered, to high
accuracy, in completely independent datasets separated by
a quarter-century (viz., the IUE and Zeeman spectroscopy;
more-detailed modelling of the Zeeman data, reported in
Sec. 5, yields Prot = 41.02±0.03 d). Furthermore, the preci-
sion of the adopted rotation period is high enough to ensure
that the relative phasing between the archival IUE spectra
and our new spectropolarimetric data is better than 1%.

On the basis of these results we therefore adopt

T0 = HJD 2, 453, 193.0 + 41.033(±0.002)E (1)

as our rotational ephemeris, where phase zero is arbitrarily
chosen for convenience as a date just prior to the acquisition
of the first Zeeman data. The rotational modulation of the
mean residual intensity over the N v, Si iv and C iv UV
resonance doublets with this ephemeris is shown in Fig. 5;
significant absorption episodes are observed to occur in all
3 spectral features around phase 0.3 and 0.8.

4 ROTATIONAL PROPERTIES

From our analysis, τ Sco is the second-slowest rotator so far
known among high-mass stars (cp. HD 191612, whose rota-
tion period is suggested to be 538 d; Donati et al. 2006). In
order to be able to refine our modelling of its magnetic topol-
ogy, we first summarize what we know about its physical
parameters, and examine how these tie in with the rotation
period we derive.

From detailed spectroscopic studies by Kilian (1992),
Mokiem et al. (2005) and Simon-Diaz et al. (2006), we know
that τ Sco is a young star, with an age of a few Myr6, a mass
of ∼15 M⊙, a temperature of 31, 500 ± 500 K, and a radius
of 5.2 ± 0.5 R⊙.7 The radius and rotation period imply an
equatorial rotation velocity, ve, of only 6.4 ± 0.6 kms−1,
and thus a line-of-sight projected rotation velocity, ve sin(i),
which is even less (where i is the inclination of the rota-
tion axis to the line of sight). This ve sin(i) limit is signifi-
cantly lower than the estimate given by Kilian (1992) from
line-profile modelling (19 kms−1), but is similar the value
(of 5 km s−1) reported by both Smith & Karp (1978) and
Mokiem et al. (2005), and is consistent with the upper limit
given by Simon-Diaz et al. (2006, 13 kms−1).

We performed our own simple modelling of the LSD
Stokes I profile, to get an estimate of how much (and what
type of) broadening is required in addition to a pure ro-
tational broadening in order to obtain a reasonable fit to
the data. We find that gaussian broadening with an average
FWHM of 13.5 kms−1 gives a nice match to the mean LSD
profile (after allowance for a gaussian instrumental broad-
ening, with a FWHM of 5 km s−1). This corresponds to a
turbulent velocity of about 8 kms−1, a value similar to esti-
mates given by Mokiem et al. (2005) and Simon-Diaz et al.
(2006, 10.8 and 8.7 km s−1, respectively). This broadening is
larger than the thermal broadening expected for most lines
used in the LSD process (about 5 kms−1 in average, ranging
from 3 to 6 km s−1, depending on the atom), and the similar
widths found for lines from different atoms confirm that the
main origin is non-thermal.

As already mentioned in Sec. 2, we observe that the
Stokes I LSD profiles of τ Sco are slightly variable with time,
and that this temporal variation can also be attributed as
modulation with the 41 d rotation period derived at Sec. 3
(see Fig. 6). This modulation consists mainly of a small
∼10%), phase-locked variation of the line width, with the
average photospheric profile being slightly narrower around
phase 0.5. We suspect that this indicates that the atmo-
spheric turbulence evinced by the line broadening is induced
at the base of the wind, and is not constant over the surface
of τ Sco, reflecting, perhaps, the spatial distribution of field
strengths and orientations; another possibility is that the
density at the base of the wind is not constant over the sur-
face of the star (again, as a potential result of the magnetic

6 Although τ Sco is quoted to be younger than 1 Myr by
Kilian (1992), its membership in the Sco OB2 association
(de Zeeuw et al. 1999) suggests that τ Sco, as the most massive
star in the group, is roughly as old as the group itself – i.e., nearly
5 Myr.
7 Significantly larger radii are cited in the literature, e.g. by
Howk et al. 2000, but they are not consistent with the well-
established Hipparcos parallax.
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Figure 6. Dynamic LSD Stokes I spectrum of τ Sco, demonstrat-
ing that the average unpolarised line is also modulated with the
detected rotation period of 41 d (see Sec. 3). A simple synthetic
profile (featuring gaussian turbulence broadening with a FWHM
of 13.5 km s−1 and ve sin(i) = 6 km s−1, see text) was removed
from all profiles to emphasize variability. A clear signal, centred
at phase 0.5, crosses the line profile and indicates that the aver-
age photospheric line of τ Sco gets slightly narrower (by about
10%) around phase 0.5. Blue and red respectively correspond to
line absorption/emission features with an amplitude of ±0.4% of
the continuum intensity (i.e. ±3% of the central line depth).

field), causing the observer to see to different atmospheric
depths (and thus different turbulent broadenings) at differ-
ent rotational phases. We also find that a slightly better
fit to the Stokes V signatures is obtained when assuming a
local line profile width about 10% narrower than that de-
rived from LSD Stokes I profiles; we speculate that Zeeman
signatures are formed at atmospheric depths slightly differ-
ent from the unpolarised spectral lines, i.e. in a layer where
turbulent broadening is weaker.

From the observed variability of the longitudinal field,
which in particular shows a steep gradient as well as a sign
switch in as little as 10% of the rotational cycle (between
phase 0.85 and 0.95; see Fig. 2, bottom panel), we conclude
that it is unlikely that τ Sco is seen near-pole-on; modelling
of the Zeeman signatures (Sec. 5) reveals that significantly
better fits to the data are obtained with ve sin(i) = 6 km s−1

than with values ≤5 kms−1. This implies that i is large,
probably in the range 60◦–90◦. Since there is only a low
probability that the star is seen exactly equator on, we as-

sume i = 70◦ (and ve sin(i) = 6 kms−1) in the following
analysis. Very similar results are obtained with values of i
ranging from 60◦ to 90◦.

Finally, we note that the radial velocity of τ Sco has
remained remarkably stable during the whole length of our
run, at −0.6± 0.1 kms−1. This confirms earlier conclusions
by Stickland & Lloyd (1995) that there is no reason to sup-
pose that τ Sco a member of a binary system.

5 MODELLING THE SURFACE MAGNETIC

TOPOLOGY OF τ SCO

5.1 Methodology

To reconstruct the surface magnetic topology of τ Sco from
the set of observed Zeeman signatures, we use our magnetic-
imaging code (Brown et al. 1991; Donati & Brown 1997) in
its most recent implementation (Donati 2001). While still
based on maximum-entropy image reconstruction, this lat-
est version reconstructs the field topology as a spherical-
harmonic decomposition, rather than as a series of indepen-
dent magnetic-image pixels as before. One obvious advan-
tage of this method is that we can impose a priori con-
straints on the field topology – e.g., that the field is purely
potential, or purely toroidal, or a combination of both. An-
other important advantage of this formalism is that both
simple and complex magnetic topologies can easily be re-
constructed (Donati 2001), whereas the original method
failed at reconstructing simple magnetic geometries (such
as dipoles; Brown et al. 1991).

To effect this approach, we describe the field as the sum
of a potential and a toroidal component, each expressed as
a spherical-harmonic expansion. In a formalism similar to
that of Jardine et al. (1999), the field components can be
written as:

Br(θ, φ) = −
∑

ℓ,m

αℓ,mYℓ,m(θ, φ) (2)

Bθ(θ, φ) = −
∑

ℓ,m

(βℓ,mZℓ,m(θ, φ) + γℓ,mXℓ,m(θ, φ)) (3)

Bφ(θ, φ) = −
∑

ℓ,m

(βℓ,mXℓ,m(θ, φ) − γℓ,mZℓ,m(θ, φ)) , (4)

where

Yℓ,m(θ, φ) = cℓ,mPℓ,m(θ) eimφ (5)

Zℓ,m(θ, φ) =
cℓ,m

ℓ + 1

∂Pℓ,m(θ)

∂θ
eimφ (6)

Xℓ,m(θ, φ) =
cℓ,m

ℓ + 1

Pℓ,m(θ)

sin θ
im eimφ (7)

cℓ,m =

√

2ℓ + 1

4π

(ℓ − m)!

(ℓ + m)!
, (8)

with ℓ and m denoting the order and degree of the spherical-
harmonic mode Yℓ,m(θ, φ) (θ and φ being the colatitude and
longitude at the surface of the star), and Pℓ,m(θ) the asso-
ciated Legendre polynomial. For a given set of the complex
coefficients αℓ,m, βℓ,m and γℓ,m (where αℓ,m characterises
the radial field component, βℓ,m the azimuthal and merid-
ional components of the potential field term, and γℓ,m the
azimuthal and meridional components of the toroidal field
term), one can produce the associated magnetic image at
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the surface of the star, and thus derive the corresponding
Stokes V dataset. We carry out the inverse problem, aimed
at reconstructing a set of complex coefficients from an auto-
mated, iterative fit to the observed circular-polarization LSD
profiles. Principles of maximum-entropy image reconstruc-
tion are applied to the set of complex coefficients, rather
than on the image pixels. This is similar to what is pre-
sented by Hussain et al. (2001), except that we generalize
the problem to fields that are non-potential and feature a
significant toroidal component. Fitting a pure potential field
to the data is equivalent to fitting αℓ,m and βℓ,m alone (set-
ting all γℓ,m to zero); using all three sets of coefficients in the
fitting procedure produces a more general magnetic topol-
ogy, with a non-zero toroidal field. Trying both approaches
is a straightforward way of investigating whether or not the
magnetic field at the surface of τ Sco is potential in nature.

For a spectral resolution of 5 kms−1, a microturbulent
velocity of 7.5 km s−1, and a projected equatorial velocity
ve sin(i) of 6 km s−1, the number of resolved equatorial el-
ements around the star is about 5, implying that we need
about 10 equatorial elements to reproduce the observations
with adequate surface sampling. Truncating the spherical-
harmonic expansion of the magnetic-field components to
terms with ℓ ≤ 10 is therefore sufficient in the case of τ Sco,
and should introduce negligible degradation in the spatial
resolution of our reconstructed images. In practice, we used
ℓ ≤ 12 and found that, as expected, no improvement in
the quality of the fit to the data was obtained when adding
higher-order terms. This corresponds to mapping a total of
90 modes at the surface of the star, implying a total of 360
image parameters in the case of a potential field, and 540 in
the case of a potential- plus toroidal-field configuration.

We first carried out a series of magnetic reconstructions
for a wide range of values of the rotation period (without
constraining the field to a specific type of configuration).
The minimum χ2

ν is obtained at Prot = 41.02 ± 0.03 d (1σ
uncertainty). This estimate of Prot is a refinement of that
derived in Sec. 3.1, because of the more complete physical
model; it is fully compatible with the adopted, more precise
period derived independently from the IUE data (eqn. 1;
Sec. 3.2).

The best-fit model of the Zeeman signatures is shown
in Fig. 7, from which it is obvious that the greater part of
the observed profile information is satisfactorily reproduced.
Nonetheless, the minimum χ2

ν is as large as 1.5, indicating
that discrepancies between the model and observations still
exist. The origin of these (small) discrepancies is not yet
clear, but may result from the simple isotropic local line-
profile model we use to compute the synthetic Stokes V pro-
files (Sec. 4). We note that the fit to the data is much worse
if we force the magnetic topology to be very simple, e.g.,
similar to that found in most magnetic chemically peculiar
stars to date. For instance, when truncating the spherical
harmonics expansion to ℓ ≤ 1 (equivalent to fitting the data
with a tilted magnetic dipole model), the minimum achiev-
able χ2

ν is 15; with ℓ ≤ 2 (roughly equivalent to adding up
a magnetic quadrupole component to the model), the fit
quality is still very rough (χ2

ν ≃ 8). The detected Stokes V
profiles (and in particular the observed rotational modula-
tion) definitely indicate that the magnetic-field topology of
τ Sco is much more complex than usual (by massive star
standards).

5.2 Results

The magnetic topology we reconstruct by assuming that the
field includes both a potential field and a toroidal field com-
ponent is shown in Fig. 8. The corresponding χ2

ν is 1.5. If we
instead assume that the field is purely potential, the optimal
fit we obtain yields χ2

ν = 1.8, indicating a slightly poorer
fit; while the inferred topology is broadly similar to that
shown in Fig. 8, the contrast and information content is sig-
nificantly higher than in the previous case. We can thus say
that, at given image information content, the potential- plus
toroidal-field configuration provides a significantly better fit
than the pure potential-field configuration (with respective
χ2

ν values of 1.5 and 1.8), indicating that the first option
appears significantly more likely than the latter.

The contributions of potential and toroidal terms to
the azimuthal and meridional field components are shown
separately in Fig. 9 (the toroidal term does not contribute
to the radial field component). We therefore conclude that
the surface magnetic topology of τ Sco is mainly poten-
tial, but apparently also includes a toroidal field compo-
nent. We find that the potential field component includes
about 70% of the overall reconstructed magnetic energy, and
thus clearly dominates over the toroidal field component. In
particular, we note that, compared to the potential compo-
nent, this toroidal component is much weaker in τ Sco than
in most cool magnetic stars observed to date, where the
toroidal component largely exceeded the poloidal one (e.g.,
Donati et al. 2003). Moreover, we find that this toroidal
component is not primarily axisymmetric (at least about
the rotation axis), featuring for instance two sign switches
(at phases 0.52 and 0.18) at equatorial latitudes (see Fig. 9,
top right panel).

The results further emphasize that the reconstructed
magnetic field is far more complex than a simple dipole; for
example, the polarity of the radial field component switches
sign six times along the equator (instead of just twice as
expected for a tilted dipole). A more quantitative way of
considering the complexity of the field is to examine the
relative strengths of the reconstructed spherical-harmonic
coefficients αℓ,m, βℓ,m and γℓ,m (see Fig. 10). Even though
the modes corresponding to a tilted dipole are excited (ℓ = 1
and m = 0 − 1), a large number of other modes carry sig-
nificant power (especially sectoral modes); the ℓ = m = 4
mode is among the strongest, and its signature can be read-
ily seen from the magnetic images of Fig. 8. Unsurprisingly,
modes with ℓ > 6 contribute little to the reconstructed im-
age. The reconstructed toroidal component only shows up
in low-degree (though non-axisymmetric) modes.

Since our τ Sco spectropolarimetry spans several rota-
tion cycles, and since several phase ranges were observed
more than once (phases ∼0.00, 0.47 and 0.85; see Table 1),
we can directly investigate whether the magnetic field of
τ Sco exhibits signs of variability on a timescale of about a
year. We find that profiles obtained at very similar phases
in different cycles (e.g., at cycles 2.02 and 10.01) agree to
within the noise level.

We can also estimate how much latitudinal shear the
magnetic topology of τ Sco experienced between 2004 Sep.
and 2005 Sep., using the methods employed for cool stars by
Petit et al. (2002) and Donati et al. (2003); we find no evi-
dence for differential rotation at the surface of τ Sco, with
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Figure 7. Maximum-entropy fit (thick lines) to the observed Zeeman signatures of τ Sco (thin lines). The rotational phase and cycle of
each observation is written next to each profile. A 3σ error bar is also plotted left to each profile.

an upper limit of about 3 mrad d−1 (i.e., at least 20 times
smaller than for the Sun). This is in agreement with our
finding that the rotational modulation of UV lines, presum-
ably related to the magnetic topology (Sec. 7.3.1), is stable
over timescales of decades (Sec. 3.2).

We emphasize that only moderate surface spatial reso-
lution can be obtained for τ Sco, as a result of its low rota-
tion velocity; close bipolar groups, for example, could there-
fore easily remain undetected if present on scales smaller
than the resolution element. However, given the dense phase
coverage obtained throughout the whole rotation cycle, the
large-scale magnetic field of τ Sco (up to orders with ℓ ≃ 6),
as well as its non-variability on a time scale of about 1.5 yr,
is very well constrained by our observations.

6 ORIGIN OF THE FIELD

Using the magnetic map we derived for τ Sco, and thanks in
particular to its unusual degree of complexity (by the stan-
dards of early-B and O-type stars), several questions can be
addressed regarding the physics of massive stars. Our results
both give us the opportunity to rediscuss the problem of the
origin of magnetic fields in very hot stars, and also enable
us to investigate the impact of complex fields on radiatively
driven winds.

Although the classical picture was that magnetic fields
of hot stars were presumably fossil remnants from the
formation stage, the situation has changed considerably,
with regular reports from both observers and theoreti-
cians that massive stars may be able to generate dy-
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Figure 8. Maximum-entropy reconstructions of the magnetic
topology of τ Sco, assuming that the global field can be expressed
as the sum of a potential field and a toroidal field. The three com-
ponents of the field are displayed from top to bottom (flux values
labelled in G). The top image (radial field component) is de-
scribed through the set of complex coefficients αℓ,m (see Sec. 5).
The star is shown in flattened polar projection down to latitudes
of −30◦, with the equator depicted as a bold circle and parallels

namo processes, either deep inside their convective cores
(Charbonneau & MacGregor 2001; MacDonald & Mullan
2004; Brun et al. 2005), within the greater part of their ra-
diative envelope (Spruit 1999, 2002; MacDonald & Mullan
2004; Mullan & MacDonald 2005; Maeder & Meynet 2005;
Braithwaite 2006), or in a subsurface layer (Tout & Pringle
1995; Lignières et al. 1996). In each case, different processes
are invoked to explain the generation of magnetic fields. How
do these proposals stand up in the particular case of τ Sco?

6.1 Dynamo processes?

Being intrinsically a very slow rotator (the second slowest
rotator among massive stars after HD 191612; Donati et al.
2006), τ Sco does not seem to be an optimal candidate for
triggering dynamo processes. Of course, one may argue that
the rotation rate of the inner stellar regions may be far larger
than that at the surface; evolutionary models tend, how-
ever, to indicate that the radial gradient in rotation rate is
only moderate in massive stars, particularly in those hosting
magnetic fields (Maeder & Meynet 2003, 2004, 2005).

Wherever they operate (whether in the convective core,
the radiative envelope, or a subsurface layer), dynamo pro-
cesses are all expected to strengthen with rotation rate and
to vanish when rotation is slow; they should therefore be
relatively weak in a star like τ Sco. In the particular case of
the Spruit–Tayler dynamo processes (Spruit 1999, 2002), for
example, field strengths only of order a few G are expected
to appear at the surface of a star with a rotation rate as
small as that of τ Sco (Mullan & MacDonald 2005), much
lower than we have found. In the case of the core-dynamo
hypothesis, MacDonald & Mullan (2004) demonstrate that
surface magnetic fields need to originate in core fields that
largely exceed the equipartition value, which is again highly
unlikely in a slowly rotating star.

A second observation is that the magnetic features we
reconstruct at the surface of τ Sco are present at essentially
all latitudes. This is not compatible with the predictions of
the Spruit–Tayler dynamo model with buoyancy included
to allow magnetic flux rise up to the surface, which should
produce magnetic regions concentrated at intermediate lat-
itudes (Mullan & MacDonald 2005). Nor is it compatible
with the core-dynamo theory, which predicts that flux tubes
should mostly show up very close to the pole at the surface
of the star (MacDonald & Mullan 2004).

Our observations further indicate that the recon-
structed magnetic field is mostly poloidal, and includes no
more than a moderate surface toroidal component. This is
not compatible with dynamos operating in a shear layer be-
low the surface or within the convective zone, which are
expected to produce strong axisymmetric azimuthal fields
(e.g., Braithwaite 2006) that should likely show up at photo-
spheric level, and should even dominate the global magnetic
map in the case of a sub-surface shear layer (as they do
in stars with very shallow subsurface convective zones; e.g.,
Marsden et al. 2006). Moreover, we observe that the photo-
sphere of τ Sco experiences negligible latitudinal shear (at
least 20 times smaller than that of the Sun). Again, this
is most probably inconsistent with a subsurface shear-layer
dynamo, which is expected to generate azimuthal and radial
gradients of angular velocity, at least within the shear layer
itself.
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Figure 9. Azimuthal and meridional components of the reconstructed potential (left column) and toroidal (right column) field structures.
Adding both together yields the azimuthal and meridional field components shown in Fig. 8. The image on the left hand side is described
through the set of complex coefficients βℓ,m while that on the right hand side is obtained through the coefficients γℓ,m (see Sec. 5).

An additional argument against dynamo processes is
that they should essentially succeed (if conceptually valid)
at producing magnetic fields in most hot stars and not only
in a small fraction of them. The fact that magnetic fields
are detected in a star like τ Sco, known for its peculiar spec-
troscopic morphology (e.g., through its abnormally strong
UV P-Cygni lines and its unusually hard X-ray emission),
after having been detected in other peculiar hot stars (like
θ1 Ori C, HD 191612 and β Cep), represents further evi-
dence that magnetic fields (at least those of moderate to
high intensity) are not a common feature of most hot stars,
but rather a rare occurence. In this respect, the parallel
between massive hot stars with intermediate-mass ones, for
which only about 10% of them are magnetic, seems strength-
ened by our new result.

Finally, the magnetic configuration of τ Sco exhibits no

sign of variability evident on a timescale of a year or so.8

Archival IUE data provide a further, albeit indirect, indica-
tion that the field topology is probably stable on timescales
of decades. Although all dynamo models proposed for hot
stars predict some kind of temporal variability, little infor-
mation is available on the typical timescale on which the
surface fields are expected to evolve. At least for models
depending on differential rotation, we can expect the field
configuration within the star to evolve on timescales shorter

8 We note that two longitudinal-field estimates obtained for τ Sco
by Landstreet (1982), −61 ± 30 G and −16 ± 23 G and on JDs
2,442,174.92 and 2,442,175.89 respectively, average to a longitu-
dinal field of −33 ± 18 G at a phase 0.49 (cycle −169) accord-
ing to eqn. 1. The longitudinal field we measure at this phase,
−20 ± 3 G, is compatible with the estimate given by Landstreet
(1982) to within the errors, and provides additional (though ad-
mittedly fairly weak) evidence that the magnetic field of τ Sco
exhibits no intrinsic variability on timescales of decades.
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Figure 10. Modulus (in G) of the spherical-harmonic complex coefficients αℓ,m, βℓ,m and γℓ,m (see Sec. 5) for the reconstructed
magnetic-field topology of τ Sco, as a function of mode degree ℓ and order m. These sets of coefficients respectively correspond to the
magnetic images shown in the top panel of Fig. 8 (radial field component), left panels of Fig. 9 (azimuthal and meridional component
of potential field term) and right panels of Fig. 9 (azimuthal and meridional component of toroidal field term). Only modes with ℓ < 10
are displayed here.

than a year, as buoyant flux tubes typically need timescales
of order a year to travel to the surface in a star like τ Sco
(provided the field in the flux tube is not too weak com-
pared to the local equipartition value; MacDonald & Mullan
2004), again implying that the observed non-variability ar-
gues against the proposed dynamo models.

Recent numerical results by Braithwaite & Spruit
(2004) and Braithwaite & Nordlund (2006) also indicate
that magnetic fields in hot stars seem to reach a stable
equilibrium (involving both potential and toroidal fields)
but are not self-amplified by instability processes, unless the
star features self-sustained differential rotation (Braithwaite
2006). Similar numerical results are obtained by Brun and
collaborators (Zahn, personal communication). Our result
indicates that τ Sco is likely not a differential rotator (as it
would otherwise host strong axisymmetric toroidal fields like
those seen on cool stars, Donati et al. 2003); it may there-
fore be fairly natural that no evidence for dynamo action is
detected on τ Sco.

6.2 Fossil fields?

The next step is to compare our observations with predic-
tions of the fossil-field theory. Since τ Sco is rather young (a
few Myr; Sec. 4), the complexity of the field we detected is
probably not a problem; while low-order terms (with longer
decay times) are expected to dominate the fossil magnetic
topologies of old stars, higher-order terms should still be
present in stars as young as τ Sco. Moreover, very little dif-
ferential rotation and variability (on a ∼yearly timescale) is
expected to occur in stars hosting superequipartition fossil
magnetic fields, in agreement with what we find.

Both toroidal and poloidal fields of comparable
strength are expected to be present within the star, at
least to ensure dynamical stability of the fossil field on
long timescales (Moss 2001; Braithwaite & Spruit 2004;
Braithwaite & Nordlund 2006). The prediction is that the
expected toroidal field should be roughly axisymmetric
(with respect to the poloidal magnetic axis) and concentrate

on the poloidal magnetic equator (Braithwaite & Spruit
2004; Braithwaite & Nordlund 2006). Although we indeed
detect a small toroidal field at the surface of the star, its
topology is not compatible with such predictions, which
would require the toroidal field to coincide with the poloidal
field equator (i.e. to show up mainly as a meridional field belt
encircling the star, passing through both rotational poles
and crossing the rotational equator at phases of about 0.3
and 0.8, see Sec. 7). Note however that theory expects the
toroidal field to remain within the stellar interior; it may
therefore be unsurprising not to detect it at photospheric
level. We suggest that the toroidal field structure we detect
at photospheric level rather results from the interaction of
the stellar wind and the magnetic field (see Sec. 7).

Another attraction of the fossil-field theory is that there
is no contradiction with the fact that the star is both mag-
netic and slowly rotating. Actually, we note that magnetic
hot stars are, in average, even more slowly rotating than
non-magnetic stars. One can, of course, wonder whether this
is a real property of massive magnetic stars, or simply an
observational bias (magnetic fields being easier to detect by
spectropolarimetric methods in narrow-lined, slowly rotat-
ing stars); however, experiments clearly demonstrate that
several rapidly rotating O stars (e.g., ζ Pup, ζ Ori) have
surface magnetic fields with strengths not more than a few
tens of G (Donati, in preparation). The youth of τ Sco
excludes the possibility that slow rotation is a result of
angular-momentum loss through a magnetic wind during the
main-sequence phase;9 thus the most probable option is that
this situation is due to a process occuring during the for-
mation stage. The idea proposed for magnetic, chemically-
peculiar stars (also more slowly rotating in average than

9 Following Donati et al. (2006), we evaluate the magnetic-
braking timescale of τ Sco to be of order of 5 Gyr. As this
timescale is some 3 orders of magnitude larger than the age
of τ Sco, we can safely conclude that angular-momentum loss
through the current magnetically confined wind is not responsi-
ble for the slow rotation.



14 J.-F. Donati et al.

non-magnetic stars of similar spectral type), invoking mag-
netic coupling with a putative accretion disc (Stȩpień 2000),
is probably not applicable in the case of massive stars, which
do not exist as stars during the formation stage and directly
appear onto the main sequence. One possibility is that proto-
stellar discs with intrinsically higher primordial magnetic
fields are more successful at expelling angular momentum
from the disc (e.g., through magnetic jets) than those with
weak primordial fields, leading to magnetic hot stars rotat-
ing more slowly than non-magnetic counterparts of similar
mass.

6.3 Conclusion

Taking all these arguments into consideration, we find that
the magnetic topology we have reconstructed for τ Sco is
more likely to be of fossil origin than to be generated by
any of the various dynamo mechanisms proposed up to now
in the literature. If this is confirmed, it would indicate that
very hot magnetic stars probably represent a high-mass ex-
tension of the classical Ap/Bp phenomenon; the reason these
massive magnetic stars do not mark themselves as chem-
ically peculiar is probably related to their strong winds,
which prevent photospheric element stratification building
up. This scenario would also argue in favour of the proposi-
tion of Ferrario & Wickramasinghe (2005, 2006), who sug-
gested that massive magnetic stars are the progenitors of
highly magnetic neutron stars.

7 THE EXTENDED MAGNETOSPHERIC

STRUCTURE

A second topic of interest is the impact of the magnetic field
on the radiatively driven wind of τ Sco. In particular, τ Sco
gives us the opportunity of investigating the confining ef-
fect of magnetic fields whose topology is more complex than
those of other early B and O stars for which similar studies
have been carried out (Donati et al. 2001, 2002; Gagné et al.
2005b,a).

In the now-standard picture, initially proposed by
Babel & Montmerle (1997) and further investigated by
Donati et al. (2001, 2002), ud-Doula & Owocki (2002),
Townsend & Owocki (2005) and Gagné et al. (2005b,a), the
magnetic field is assumed to be dipolar; the dense wind com-
ing from each magnetic hemisphere is deflected by the field
towards the magnetic equator, where it produces a strong
shock, a very hot X-ray emitting post-shock region (reach-
ing temperatures of 107 K), and a cool, dense disk in the
magnetic equator, where the plasma accumulates before be-
ing ejected away from, or accreted back onto, the star (de-
pending on the local radial velocity of the plasma when it
reaches the disc, and on the effective gravity in the disc at
this point).

For a more complex magnetic topology, the picture
is expected to differ significantly. The extended magnetic
structure should show a correspondingly greater degree of
complexity, involving distinct regions of closed loops alter-
nating with regions of open field lines, rather than two open-
field polar cones and one closed-field magnetic torus, as in
the dipole field case. Wind flows should freely escape the star
along open field regions and should produce shocks and very

hot X-ray emitting plasma within each closed-field region,
with cool, dense condensations forming at loop summits.
The resulting magnetospheric structure should therefore be-
gin to resemble that of the Sun, with hot coronal arcades
confining cool, dense, prominence-like structures (the main
difference being, of course, the heating mechanism itself).

7.1 The magnetic-confinement parameter

First, to evaluate to what distance from the star the wind
of τ Sco is magnetically confined, it is useful to consider
the wind magnetic-confinement parameter η, defined by
ud-Doula & Owocki (2002) to characterize the ratio between
the magnetic-field energy density and the kinetic energy den-
sity of the wind:
η = B2R⋆

2/Ṁv∞, (9)
where B is the typical magnetic-field strength, Ṁ is the av-
erage mass-loss rate, and v∞ is the terminal wind velocity.
Our study demonstrates that B is in average ≃ 300 G over
the surface of τ Sco. However, there is a substantial disper-
sion in published estimates of Ṁ , with recent determinations
ranging 0.2–6 × 10−8 M⊙ yr−1 (e.g., Mokiem et al. 2005;
Repolust et al. 2005); we adopt a value of 2×10−8 M⊙ yr−1

as a reasonable average of modern observational determina-
tions. Observations also suggest a terminal velocity of about
2,000 kms−1 (e.g., Abbott 1978), but line-driven wind theo-
ries predict a significantly higher value (up to 3,800 kms−1,
Pauldrach 1987; note, however, that the stellar parameters
used for these theoretical studies, and in particular the mass,
temperature, luminosity and radius of τ Sco, are all signifi-
cantly overestimated compared to modern values). We adopt
v∞ = 2, 000 kms−1 (Mokiem et al. 2005).

With these values, we find that the wind confinement
parameter is about 40, and thus that the Alfven radius,
above which all closed magnetic loops open under the wind
ram pressure, is of order of 2 R⋆. This is in good agreement
with the findings of Cohen et al. (2003), based on Chandra
observations (and in particular on Si xiii and Mg xi line ra-
tios), that the X-ray emitting plasma is located at average
distances of about 1 R⋆ above the surface10.

Arguably, this agreement may be partly coincidental,
given the large uncertainty on Ṁ ; if it were 10 times smaller
than the value we adopted, with all other parameters held
fixed, η would reach a value of 400. The magnetosphere
would then be confined out to significantly larger distances
(typically of order 4R⋆); we should then detect hard X-ray
emission from loops extending several R⋆ above the stellar
surface, which is apparently not the case. If Ṁ were larger
than 6 × 10−8 M⊙ yr−1, then η would be smaller than 10,
and no stable magnetic loops extending further than 0.3 R⋆

above the surface would survive the wind pressure (e.g.,
ud-Doula & Owocki 2002), again in contradiction with X-
ray observations. We therefore conclude that, if this model
is correct, X-ray observations constrain η to values ranging

10 A recent re-analysis of the Chandra τ Sco spectra using up-
dated atomic data (e.g., Gagné et al. 2005a) indicates that all
line ratios from He-like ions (including both Si xiii and Mg xi)
are consistent with the X-ray emitting plasma being concentrated
at a distance of about 1 R⋆ above the photosphere (Cohen 2006,
personal communication).
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Figure 11. Closed magnetic-field lines of the extended magnetic configuration of τ Sco, extrapolated from the photospheric map of
Fig. 8. The star is shown at phases 0.25 (left) and 0.83 (right). Note the warp of the magnetic equator and the additional network closed
loops around phase 0.65 (mostly visible on the right side of the right panel).

Figure 12. Open field lines of the extrapolated extended mag-
netic configuration. The star is shown at phase 0.83 only.

typically within 20 to 100, and hence the mass-loss rate to
values of 1–4×10−8 M⊙ yr−1.

7.2 Magnetic-field extrapolation

Using the field-extrapolation technique of Jardine et al.
(1999), with a spherical source function set to 2 R⋆ (to mimic
the mainly radial orientation of the field lines at distances

larger than 2 R⋆), we can draw inferences on the large-scale
magnetospheric structure of τ Sco, presented in Figs. 11
(closed field lines) and 12 (open field lines). We find that
the extended field structure is significantly more complex
than a global dipole, even though it still features a torus
of closed magnetic loops encircling the star (with an axis
of symmetry roughly tilted at ≃90deg to the rotation axis;
Fig. 11) and two main cones of open field lines on opposite
sides of the star (see Fig. 12). In particular, the magneto-
spheric equator is significantly warped, and additional net-
works of closed loops are present at low latitudes (e.g., one
around phase 0.65, left panel of Fig. 11, in conjunction with
the equatorial region of positive radial field reconstructed at
this phase, another one around phase 0.4). Most closed loops
typically extend to a distance of up to 2 R⋆, in reasonable
agreement with constraints derived from Chandra data.

Note that these small networks of closed loops (at
phases 0.40 and 0.65) both coincide with local maxima of the
reconstructed toroidal field component (see top right panel
of Fig. 9); from this apparent spatial correlation, we spec-
ulate that the toroidal field component we detect may be
produced through an interaction of the stellar wind and the
magnetic field right at the photospheric level. We also note
that these loops roughly coincide with the rotation phase at
which the unpolarised line profile of τ Sco is slightly nar-
rower than average; again, this may reflect the particular
wind configuration that results from this specific field con-
figuration at the stellar surface. MHD simulations are of
course needed to confirm whether this idea is realistic or
not.
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7.3 Observational implications

7.3.1 Optical and UV diagnostics

This model implies that excess absorption in UV lines should
occur when the magnetospheric equatorial plane crosses
the line of sight, as in all similar hot magnetic stars (e.g.,
Donati et al. 2001, 2002, 2006; Neiner et al. 2003), i.e., at
phases 0.3 and 0.8 – in excellent agreement with observa-
tions (see Fig. 5). In particular, the fact that the two UV
absorption events we detect are largely similar in shape, and
separated by 0.5 rotation cycles, provides independent con-
firmation that either the angle i of the rotation axis to the
line-of-sight (which we found to be ≃ 70◦), or the global
tilt of the large-scale magnetic structure to the rotation axis
(for which we derived an estimate of ∼ 90◦), or both, is/are
large. As mentioned previously, the relative phasing between
our new spectropolarimetric data and the old archival IUE
spectra is accurate enough (of order 1%; Sec. 3.2) to en-
sure that this match is not a coincidence; it thus provides a
strong argument in favour of the present model.

Photometric measurements secured by Hipparcos in-
dicate a constant flux level (to within 10 mmag), show-
ing that the column density of the wind material trapped
within the magnetospheric equator of τ Sco is not high
enough to produce detectable light variations through scat-
tering, even when the disc is seen edge-on. This situation
is similar to that found for β Cep and θ Ori C (for which
no photometric variations are detected; Donati et al. 2001,
2002), but differs from HD 191612 and σ Ori E (for which
eclipses of the continuum radiation by the magnetospheric
plasma are observed, at levels of 0.04 and 0.15 mag, re-
spectively; Walborn et al. 2004; Townsend & Owocki 2005;
Donati et al. 2006).

In our data, we detect no rotational modulation of
the Hα flux from τ Sco, mimicking what is observed in
β Cep (which shows only long-term Hα variations), but
very different to θ Ori C, σ Ori E and HD 191612 (all
of which exhibit strong Hα modulation; Stahl et al. 1996;
Townsend & Owocki 2005; Walborn et al. 2003). More mod-
elling is required to check whether these observations are
compatible with the basic picture presented here; this is
postponed for a future study.

7.3.2 X-ray diagnostics

The wind pressure at the base of the the postshock region
is given by

pw = ǫ Ṁv∞/4πR⋆
2, (10)

to first order, where ǫ = 1/x2
− 1/x3 and x is the radial

distance from the centre of the star at which the equilib-
rium location of the shock front settles (in units of R⋆).
For a range of reasonable values of x (∼1.2–1.7), ǫ remains
roughly constant (∼0.10–0.15), implying a wind pressure of
about 20–30 g cm−1 s−2. This corresponds to a number den-
sity of protons and electrons of about 1010 cm−3 for a post-
shock temperature of order 107 K within the loop. Again,
this is in good agreement with the upper limits on the elec-
tron density derived by Cohen et al. (2003) from Chandra
data. By assuming that the closed ‘corona’ (the equatorial
magnetospheric torus and the small additional networks of
closed loops) is filled with such a plasma, and using the

simple coronal-structure model of Jardine et al. (2002), we
find that the resulting emission measure is of order of a
few 1054 cm−3, in reasonable agreement with actual mea-
surements from X-ray spectra (Wojdowski & Schulz 2005).
This result essentially indicates that, in the model we have
devised, the observed X-ray emission can be mostly at-
tributed to the magnetosphere (and that the model is there-
fore broadly consistent with X-ray observations).

If our speculation is correct, it implies that the X-
ray emission of τ Sco should be modulated on a timescale
equal to the rotation period (i.e., 41 d), as a result of the
magnetosphere being partially eclipsed by the stellar disc
in appropriate viewing configurations. We estimate the ex-
pected fractional modulation to be about 40%, i.e., compa-
rable to that of θ Ori C (Gagné et al. 2005a,b), but should
feature two main eclipse episodes each rotation cycle, cen-
tred on phases ∼0.3 and 0.8 (concomitant with the UV line-
absorption events witnessed in IUE spectra); this should be
easily detectable given adequate temporal sampling.

Checking such predictions should provide a strong test
of our model. If the observed X-ray rotational modulation
is much weaker than expected, it could imply that most of
the magnetospheric emission is produced in small-scale loops
evenly spread over the stellar surface; this would argue for
additional, high-order components of the magnetic topology
that we are not able to detect in this study (as a result of
the limited spatial resolution provided by Doppler imaging
for stars rotating as slowly as τ Sco).

At this stage, a more accurate model is obviously nec-
essary to confirm the conclusions of the present paper, and
to develop in more detail how well the X-ray spectrum of
τ Sco can be reproduced once the magnetospheric structure,
including the wind-induced expansion of magnetic loops, is
consistently taken into account. Such a sophisticated model
should also aim to reproducing the observed modulation of
UV spectra and the upper limits on the photometric and Hα
flux variability (e.g., as done for σ Ori E by Townsend et al.
2005).

8 CONCLUSION

We have reported the detection of a magnetic field on the
massive B0.2 V star τ Sco, using data obtained mostly
with ESPaDOnS, the new high-resolution stellar spectro-
polarimeter recently installed at CFHT. From the Zeeman
signatures and their temporal variability, we were able to
identify the rotation period of τ Sco and to reconstruct the
large-scale topology of its photospheric field. Archival IUE
spectra confirm that the rotational modulation is stable on
timescales of decades, with Prot ≃ 41.03 d.

We find that the surface magnetic topology is unusually
complex (judged by the small sample of massive-star results)
and is mostly potential. It also includes a moderate toroidal
component; in particular, the strength of this toroidal com-
ponent (relative to that of the poloidal component) is much
lower than that found in partly-convective cool stars hosting
dynamo-generated magnetic fields. No temporal variability
of the magnetic structure is detected over the 1.5-yr period
of our observations; we thus conclude that any surface dif-
ferential rotation of τ Sco is at least 20 times weaker than
that of the Sun.
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We determine that the large-scale magnetospheric
structure of τ Sco is significantly more complex than a global
dipole; it features in particular a significantly warped torus
of closed magnetic loops encircling the star, tilted at about
90◦ to the rotation axis, as well as additional (smaller) net-
works of closed field lines. The extended magnetic topology
we derive from extrapolations of the photospheric magnetic
maps is apparently compatible with the published X-ray lu-
minosity and spectral characteristics of τ Sco. Our model is
also compatible with the observed modulation of UV spec-
tral lines. We predict that τ Sco should exhibit a clear ro-
tational modulation of its X-ray emission.

From these results, we conclude that its magnetic field is
most probably a fossil remnant from the formation stage. We
cannot yet completely rule out the possiblity that the field
is produced through one of the recently-elaborated dynamo
processes that may operate in the radiative zones of hot
stars, but our findings already indicate that this option is
rather unlikely.
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