Stigmergic Gene Transfer and Emergence of Universal Coding

Mikhail Prokopenko,! Daniel Polani,? and Matthew Chadwick®

1CSIRO Information and Communication Technology Centre, Locked bag 17, North Ryde, NSW 1670,
Australia

2Department of Computer Science, University of Hertfordshire, Hatfield AL10 9AB, United Kingdom
Saddress, UK

We consider a simple information-theoretic model for evohaiy dynamics approaching the “coding thresh-
old”, where the capacity to symbolically represent nuclai @equences emerges in response to a change in
environmental conditions. We study the conditions when gliog between the dynamics of a "proto-cell’ and
its proto-symbolic representation becomes beneficial in tefrpseserving the proto-cell’s information in a noisy
environment. In particular, we are interested in understanthe behaviour at the “error threshold” level which,

in our case, turns out to be a whole “error interval”. The ukebupling is accompanied by self-organization
of internal processing, i.e. an increase in complexity witiie evolving system. Secondly, we study whether
and how different proto-cells can stigmergically share saébrmation via a joint encoding, even if they have
slightly different individual dynamics. Implications forgtemergence of biological genetic code are discussed.

I. INTRODUCTION a transition to “proto-symbols” encoding features of ptive

cells in dedicated sequences and enabling a rudimentaig-tra
A. Understanding emergence of genotype-phenotype lation. The analysis presented by Woese (Woese, 2004) sheds
relationship light not only on this transition, but also on saltationd theve

occurred at other times, e.g. advents of multicellularitg a
One of the most fundamental problems in biology and arlanguage. The common feature is “the emergence of higher
tificial life is the definition and understanding of “the g&ne levels of organization, which bring with them qualitatiyel
As pointed out by Carl Woese, whose work provided a verynew properties, properties that are describable in reolucti
strong motivation for this study, this problem continues toist terms but that are neither predictable nor fully expaie
contribute to much debate between classical biologists whitherein” (Woese, 2004).
understand “the gene to be defined by the genotype-phenotypeMore importantly, the reason for the increase in complexity
relationship, by gene expression as well as gene replicazan be identified asommunicatiorwithin a complex, sophis-
tion” and many molecular biologists who declared the prob-icated network of interactions: “translationally proédagro-
lem to be solved when the Watson-Crick structure of DNAteins, multicellular organisms, and social structureseaeh
clearly revealed the mechanism of gene replication (Woeseahe result of, emerge from, fields of interaction when thetat
2004). Woese strongly argues against fundamentalist reduattain a certain degree of complexity and specificity” (Barb
tionism and presents the real problem of the gene as “how theri, 2003; Woese, 2004). The increase of complexity is also
genotype-phenotype relationship had come to be”. In othelinked to adding new dimensions to the phase space within
words, the main question is how the mechanism of translatiomhich the evolution occurs, i.e. expansion of the network of
evolved. interacting elements that forms the medium within which the
The evolution of the translation mechanism is a compli-new level of organization (entities) comes into existeriar{
cated process, and we may only intend to analyse its simpliieri, 2003; Woese, 2004).
fied models. However, in doing so we shall take a principled
approach and consider a model of evolutionary dynamics in a
generic information-theoretic way, without obscuring ittw  B. Guiding self-organization
hypothetical aspects such as biochemical compositionrof “p
mordial soup”, structural properties of procaryotic cediss- An increase of complexity is one of the landmarks of self-
ceptibility of aminoacyl-tRNA synthetases to horizontahg  organization. The latter is usually defined as an increase in
transfer (HGT), etc. The simple assumptions that we makegrder within an open system, without an explicit externai-co
following Woese (2004), include the notion of primitive lsel  trol. In addition, it is expected that the increased order, i
as loosely connected conglomerates existing during the “erthe more complex inner organization, exhibits both robust-
of nucleic acid life” (Vetsigian et al., 2006; Woese, 197&)d  ness and dynamics. Robustness is understood if the system
the conjecture that primitive cell organization was “ldyge continues to function in the face of perturbations (Wagner,
horizontal” in nature (Woese, 1998; Woese and Fox, 1977)2005), while dynamics are interpreted via local interaegio
making the simple cellular componentry open to HGT. among subsystems or components of the system. Kauffman
In taking the information-theoretic view, we focus on the (Kauffman, 2000) suggests that the underlying principle of
“coding threshold” separating the phase of nucleic acig lif self-organization is the generation of constraints in tlease
from the evolutionary stage “where the capacity to represerof energy. According to this view, the constrained reledse a
nucleic acid sequence symbolically in terms of a (colinear)ows for such energy to be controlled and channelled to per-
amino acid sequence developed” (Woese, 2004). More prderm some useful work. This work in turn can be used to
cisely, we hope to understand the pressures that forced suthild better and more efficient constraints for the reledse o



further energy and so on. As pointed out by Prokopenko et ako amino acids is not unique but spread over related codons
(2008), the lack of agreement of what is meant by complexand amino acids. (Vetsigian et al., 2006). In other words,
ity, constraints, etc. leaves any definition of self-orgation  accepting innovations from neighbours requires that the re
somehow vague. A quantitative approach suggests to meaeiving proto-cell is sufficiently flexible in translatinge in-
sure complexity precisely, and demands that the complexitgoming fragments of the proto-code. Such a flexible transla-
of external influence into a self-organizing system showd b tion mechanism, of course, would produce imprecise copies.
strictly less than the gain in internal complexity (Prokoke  However, a descent of the whole innovation-sharing commu-
et al., 2008). nity may be traceable: i.e., in a statistical sense, the‘igext-
These observations can be formalized information-eration” should be correlated with the previous one. Asadhote
theoretically. More precisely, we intend to consider a com-by Woese (2004),
munication channel between a proto-cell and itself at aréutu
time point, and pose a question of the channel capacity con- A sufficiently imprecise translation mechanism

strained by the noise. According to this approach, poliutin could produce “statistical proteins”, proteins
the channel with the noise corresponds to adding conssraint ~ Whose sequences are only approximate transla-
on self-organization, guiding it in a specific way. By vary- tions of their respective genes (Woese, 1965).
ing the nature and degree of the noise prevalent in the envi- ~ While any individual protein of this kind is only
ronment within which such proto-cells exist and evolve, we a highly imprecise translation of the underlying
hope to identify conditions leading to self-organizatidran gene, a consensus sequence for the various im-
efficient coupling between the proto-cplr seand its encod- precise translations of that gene would closely ap-
ing with “proto-symbols”. Specifically, we investigate con proximate an exact translation of it.

ditions under which such coupling is beneficial in terms or . ) )
preserving the information within the noisy communication!n 0thér words, agiven gene can be translated notinto a aniqu

channel across time. We intend to demonstrate that the colfrotein but instead into a family of related protein seqesnc
pling evolves to protect some information about the praits-c ~€2rly life did not require a refined level of tolerance” (vet
in the encoding. A rudimentary translation may help to re-Sigian et al., 2006). Looseness of the outcome is implied

cover the information that otherwise would have been lost duPY @n imprecise genome replication comprising relativety f
to the noise. unique genes (Woese and Fox, 1977) — therefore, rather than

trying to develop a dynamical system (a proto-cell plus €nco
ing) that fully preserves the information about the congdom
ate, we only need to develop dynamics that corresponds to
“statistical proteins”, preserving information in a “camsus

o _ sequence”. While any individual protein of this kind is only
_Itis important to realize two features of the early phase, highly imprecise translation of the underlying gene, acon
in cellular evolution that existed before the “coding tires gong5 sequence for the various imprecise translatiomsof t
old”. First of all, the “players are cell-like entities $iih early gene would closely approximate an exact translation of it”.

stages of their evolution”, and that “the evolutionary dyRa  Thatis, the consensus sequence would capture the main infor
ics...involves communal descent” (Vetsigian et al., 2006) y,ation content of the innovation-sharing community.

That 'f" tr:e Ce.”ﬁ are not yet well-formed ehm't'.es thgtm?;a Moreover, it can be argued that the universality of the code
comp et?l y, wit banherrorr-]corfrectlng rnlec anism. ; atb Uisa generic consequence of early communal evolution medi-
proto-cells can be thought of as conglomerates of substrate,o 4"y horizontal gene transfer (HGT), and that thus HGT

that exchange components with their neighbours freely —enhances optimality of the code (Vetsigian et al., 2006):
horizontally. The notion of vertical descent from one “gen- '

C. Stigmergic Gene Transfer

eration” to the next is not yet well-defined. This means that HGT of protein coding regions and HGT of trans-
the descent with variation from one “generation” to the next lational components ensures the emergence of
is not genealogically traceable but is a descent of a cellula clusters of similar codes and compatible trans-
community as a whole. lational machineries. Different clusters compete

Secondly, genetic code that appears at the coding threshold  for niches, and because of the benefits of the com-
is “not only a protocol for encoding amino acid sequences in munal evolution, the only stable solution of the
the genome but also an innovation-sharing protocol” (Vetsi cluster dynamics is universality.

gian et al., 2006), as it used not only as a part of the mecha-
nism for cell replication, but also as a way to encode relevan The adopted information-theoretic view allows us to han-
information about the environment. Different proto-ceflay  dle particular HGT scenarios where certain fragments neces
come up with different innovations that make them more fit tosary for cellular evolution begin to play the role of the jrot
the environment, and the “horizontal” exchange of suchrinfo code. One scenario may assume that the proto-code islinitial
mation may be assisted by an innovation-sharing protocol - &cated within its proto-cell, and is functionally “septad’
proto-code. With time, the proto-code develops into a urive from the rest of the cell when such a split becomes benefi-
sal genetic code. cial. Another scenario suggests that the proto-code ieptes
Such innovation-sharing is perceived to have a price: it imin an environmental locality, and subsequently entrapped b
plies ambiguous translation where the assignment of codortbe proto-cells that benefit from such interactions. Wedveli



that the first scenario (“internal split”) is less likely tega  1l. MODELLING EVOLUTIONARY DYNAMICS
duce either universal code or universal translational rimach
ery than the second scenario (“entrapment”). In genera, it  Our generic model for evolutionary dynamics involves a
quite possible that internal split and entrapment played-co dynamical coupled system, where a proto-cell is couplet wit
plementary roles. Importantly, however, there was an @adir its potential encoding, evolving in a fithess landscape athap
exchange of information among the cells via their local en-by a selection pressure. The selection pressure rewarsisrpre
vironment, which is indicative of stigmergy. Henceforthe w vation of information in presence of both environmentabkeoi
would like to refer to such gene transfer stigmergic gene and inaccuracy of internal coupling. When the proto-cell is
transfer(SGT): proto-cells find matching fragments, use themrepresented as a dynamical system, the information about it
for coding, modify and evolve their translation machinarnyd  may be captured generically via the structure of the phase-
exchange certain fragments with each other via the local erspace (e.g., states and attractors) of the dynamical sy$tem
vironment. SGT can be thought of as a sub-class of HGT, difparticular, a loss of such information corresponds to a loss
fering from the latter in that the fragments exchanged betwe of structure in the phase-space, while informational recpv
two proto-cells may be modified during the transfer procgss bwould correspond to recovery of the equivalent (e.g., iSemo
other cells in the locality. phic) structure in the phase-space. Importantly, the méor
tion about the attractors can be compactly encoded if tisere i

As pointed out by Polani et al. (2006), information should & need for it.
not be considered simply as something that is transpored fr ~ For example, the states of the system may loosely corre-
one point to another as a “bulk” quantity — instead, “looking SPond to dominant substrates (e.g., prototypical amimsaci
at the intrinsic dynamics of information can provide ingigh used by the cell. The chosen representation does not have
into inner structure of information”. It is conjectured tha to deal with the precise dynamics of biochemical interaxtio

maximization of information transfer through selectedreha Within the cell, but rather focuses on structural questiohs
nels is one of the main evo|utionary pressures (B|a|ek et a|_the cell's behavior: does it have more than one attracter, ar
2006; Klyubin et al., 2007; Laughlin et al., 2000; Lizier &ta the attractors stable (periodic) or chaotic, how many stdee
2008; Piraveenan et al., 2007a,b, 2009; Prokopenko et athe attractors cycle through, etc. Representing the dyceimi
2006) a|though the evo|uti0nary process involves a |argthiS way avoids the need to simulate the unknown cellular ma-
number of drives and constraints, information fidelity .(i.e chinery, but allows us to analyze under which environmental
preservation) is a consistent motif throughout biology. dvlo conditions the SGT may have become beneficial. In partipular
ern evolution operates close to the error threshold (Adamilf the potential encoding develops to have a compact strerctu
1998), and biological sensorimotor equipment typically ex that matches the structure of the cell's phase-space, teen t
hausts the available informatory capacity (under given con€ncoding would be useful in recovering such structure, lshou
Straints) close to the limit (Laugh“n et al., 1998) Adaifoi; the latter be affected by environmental noise. Informatson
instance, argues that the evolutionary process extratits va Understood in Shannon sense (reduction of uncertaint), an
able information and stores it in the genes (Adami, 1998)a loss of such information corresponds to a loss of structure
Since this process is relatively slow (Bennett, 1990; Lloyd in the phase-space. At the same time, informational regover
1990), it is a selective advantage to preserve this infaomat Would correspond to recovery of some isomorphic structure i
once captured. the phase-space.

In this paper, we follow the model of Piraveenan et al.
(2007a) and Polani et al. (2008), focusing on the infornmatio
preservation property of evolution within a coupled dynami
cal system. These previous studies verified that the abdity
symbolically encode nucleic acid sequences does not chevelqs
when environmental noisgis too large or too small. In other

A. A model with direct fusion of system and translation
dynamics

The generic dynamical coupled system (Polani et al., 2008)
described by the equations

words, it is precisely a limited reduction in the informatio S (Xie—1,m) + 01 t £ t*
channel’s capacity, brought about by the environmentaeoi Xom =4 afm (Xi1 n;) T+ 1)
that creates the appropriate selection pressure for thgingu " (1= a)hm (thl A Dem) t=t*

between a proto-cell and its encoding. Here we extend these
models by introducing co-evolution of multiple proto-catin-
trapping a common encoding using SGT. v { Im (Xem + Vt,m) t=to @)
tm = Yic1m t >t

In the following, we shall concentrate on the informa-
tion preservation property of evolution in the vicinity dfet  where X, ,,, are the variables that describe multiple proto-
“coding threshold”. Everything else is modeled minimalist cells,1 < m < M, and andY; ,,, their potential encodings
cally: we encapsulate the influence of evolutionary constisa at time ¢, respectively. Functiory,, defines the dynamical
within a dynamical system, and represent the acquisition o§ystem representing the dynamic for proto-cell The func-
valuable information by an explicit “injection” of inforntian  tion g is a mapping fronjo, 1] to [0, 1]. Parametetx € [0, 1]
at the beginning of each trajectory. sets the relative importance of the translattoftom symbols



(e.g., proto-codons) into the proto-cell state (e.g.,@emhino  However, the numeric nature of the composition
acids).
In the simplest casep = 1 (one cell), ancy = 1/2, the o [fm (Xe—1,m) + o] + (1= )b (Yie1,m + Yem)

system reduces to . . . . L
y in equation (1) obscures the pure information-theoretowi

+ ¢y t £ t* 3) More precisely, the linear combination (direct fusion) dfje
$h(Yio1+y) t=t* inal dynamics and back-translation of the encoding places a
bias on possible encodings. In the next section we desanibe a
improved model which is free of this shortcoming.

_ 1)
Xt_{%[f(th + @] +

g (X ) t=1o
Yi= { Y1 t> 1o )

The functiony, describes the external (environment) noiseC: An SGT model with indirect fusion
that affects the proto-cells: it is the same for all cells, ¢ ) o o
is independent ofn. This noise represents a pressure to push AS mentioned above, the objective of modeling is to pre-
the systenX towards certain attractors (implementation is de-S€rve information between the initia;,, and recovered
scribed in Appendix VILA). Xy state.s'of the system. On.e. may then pose a question
The functiony; ., represents both the matching noise as-Whether it is necessary to explicitly model a recovered sys-
sociated with accessing information froiy, ,, by Y, ., at €M X-. After all, the information-theoretic framework al-
time to, and the noise of ambiguous back-translation (applied®Ws Us to formulate this question in terms of computing a
only att*). In other words, it represents the inaccuracy withindifference between the initial systeki, and the joint system
the internal encoding/translation channel. In additidre t (Xt=—1,Yi-—1), where the latter is sampldxbforeany possi-
noisey) may be interpreted as inaccuracy of the environment'd!€ back-translation is applied. In other words, one deraand
representation within the encodiiig which indirectly “per-  that the systenX;. _,,Y;- ) jointly preserves information

ceives” the environment through the systéf(implementa- about the original system. This formalization becomesiposs
tion is described in Appendix VII.A). ble because the information accessible by any back-trigosla

is contained within the joint syste(;«_1, Y;+_1) anyway.
Removing back-translation from the description simplifies

B. Entrapment and SGT the model as follows:
The entrapment mechanism that matches the information Xem = fm (Xec1m) + 01 ©)
from the proto-cell with its encoding (i.e. which encodes it
information) at timet, is given byg,,,. Attimet = ¢, noise G (X -+ Vo) T
is introduced into the environment affecting dynamics & th Yim { " YtTl . " > to (6)

proto-cell. At the same timeé = g, information from the

proto-cell Xy, ., is accessed by the systéryy, ,,, (encoding)  Capturing difference between the initial systefy, and the

via the matching function,,. This process is affected by the joint system(Xy-_1,Y;-_1), wheret* > t,, information-

noisey. The feedback fron¥” to X' (henceforth we drop sub-  theoretically will formalize our objective function: infma-

scripts when the meaning is clear) occurs at timd.e. the  tion preservation. When dealing with multiple systems, one

function h,,, translates the input;-_; ,, from the encoding needs to consider respective differences between thaliniti

back into the proto-cell. This internal translation is sd¢d systemsX;, ., and the joint system&X ;- 1, Yir _1.m)-

to internal noise as well. . _ The enhanced model (indirect fusion of system and trans-
In evolving the potential encoding systérmcoupled with  ation dynamics) can be further extended by reintroducing

X via a suitable functiog, one attempts to preserve informa- the back-translation functio# (t*) = h(X-_1, Y1), and

tion between the initialX;, and recoveredy;- states of the measuring a difference between the initial syst€mand the

system, as described in Section IIl. recovered systen® (t*). This will be a subject of future re-
Piraveenan et al. (2007a) considered the ease 1, equa-  search.

tions (3)—(4), and functioh being the identity (a single sys-

tem). Polani et al. (2008) considered a system with multiple

proto-cells:m > 1, and contrasted universality of the transla- D. Coupled logistic maps

tion machinery: all function,,, are identical, whiley; # g,

for ¢ # j, with universality of the proto-code: all proto-codes Each dynamical system is a logistic mal,; =

gm are identical, whiley; # h; for ¢ # j. The system (1)—(2) =X, (1 — X;) + dn, Wherer is a parameter, and,, is an

is coupled not only due to the common environment ngise additive constant (see Appendix VII.B), used to differatdi
but also due to the shared translation machirienr shared  between multiple systemg,,. We used- = 3.5, resulting in
proto-codey. This coupling supported a simple information- four states of the attractor of the logistic map for each ef th
theoretic model of HGT and specifically, SGT. As only the multiple systemsX,,.

information content is dealt with, the consideration ofride Coupled logistic maps have been extensively used in mod-
tical h,,,'s and/or identicaly,,,’s allowed to study gene trans- elling of biological processes. One prominent study is the
fers without details of molecular (state-to-state) intdicms.  investigation of spatial heterogeneity in population dyies
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(Lloyd, 1995) who examined the dynamic behaviour of the

model using numerical methods and observed a wide ran

of behaviours. For instance, the coupling was shown tostab|de

lize individually chaotic populations as well as causeviuii-

ally stable periodic populations to undergo more complex be

haviour. Importantly, a single logistic map can only have on

attracting periodic orbit, but multiple attractors weresin 1

by Lloyd (1995) for coupled logistic maps. H(A) =) P(a)w =—Y P(a)log P(a) (7)
Logistic maps were chosen to model the system (5)—(6) acA acA

mostly due to their simplicity, well-understood behaviduor

the vicinity of chaotic regimes (e.g., bifurcations and syea

try breaking), the possibility of multiple attractors inugded

maps, as well as their ability to capture both reproductiwh a

Given a probability distributior” over the outcomes € A
discrete random variable representing the process, and
fined by the probabilitie®(a) = P(A = a) given for all

a € A), the average Shannon information content of an out-
come is determined by

Henceforth we omit the logarithm bage This quantity is

known ag(information) entropy Intuitively, it measures, also

in bits, the amount of freedom of choice (or the degree of ran-

starvation effects (that are important for studying thactire domness) contained in the Process — a process with many
possible outcomes has high entropy. This measure has some

in the phase-space). unique properties that make it specifically suitable for mea
Let us consider an example, with a single system. Origi- que prop P Y

nal information is represented by four clear clusters ] suring “how much “choice” is involved in the selection of the
I . P y X event or of how uncertain we are of the outcome?” (Shannon,
in Figure 1. Figure 2 shows the ensemhkl¢| at the time

» . co o 1948).
t* — 1. The environment noisg disrupts the logistic map dy-

; . . . In evolving the potential encoding systémcoupled with
namics, anql some information aboqt th_e attractok'aind its X via a suitable functiory, we minimize difference between
four states is lost in the course of time: the observed sampl

(X;~_1) does not contain four clear clusters. fhe initial systemX,, and the joint systeniX;. 1, ¥.-_1) at

. . some timet* — 1. This difference is captured information-
The encoding structure that is to be evolvedyincan be . . e : .
: LT i~ i theoretically via Crutchfield’s information distance (@ro-
associated with “proto-symbols” (“codes”) that help to com

plement at time* — 1 the remaining information contained in field, 1990) between two components:
the “polluted” systen{ X« _1). d(A, B) = H(A|B) + H(B|A) ®)

The entropies are defined as
Ill. INFORMATION PRESERVATION

. o H(A|B) = H(A,B) — H(B) 9)
Information Theory was originally developed by Shannon

(1948) for reliable transmission of information from a swair
A to a receiverB over noisy communication channels. Put H(A,B) = — Z Z P(a,b) log P(a,b),  (10)
simply, it addresses the question of “how can we achieve per-
fect communication over an imperfect, noisy communication
channel?” (MacKay, 2003). When dealing with outcomeswhere P(a) is the probability that4 is in the states, and
of imperfect probabilistic processes, it is useful to defime  P(q, b) is the joint probability.
information content of an outcomewhich has the probabil- The distancel(A, B) measures the dissimilarity of two in-
ity P(a), aslog, 5,y (it is measured in bits): improbable formation sources! and B; it is a true metric in the sense
outcomes convey more information than probable outcomeghat it fulfils the axioms of metrics, including the triangle

acAbeEB



inequality. In addition, as opposed to the mutual informa- 3 v ' ' ' ' ' ' '
tion used in (Piraveenan et al., 2007a), the informationrmet .| e
ric d(Xi,, (X—1,Y-—1)) is sensitive also to the case when sy T

-4+ e 4

one information source is contained within another. While
the results do not radically depend on the choice of distance .s|
d( X4, (Xe+—1,Y-—1)) over the mutual information, the for-
mer leads to a more crisp recovery of structure in the phase-
space. £ osst
In addition, we wish to reward crispness in the encoding
function g, in other words, express a preference toward more
concise proto-codes. This preference can be simply capture st

&
T

by minimization of entropy,H (¢), of function g, mapping 41 i

from [0, 1] to [0, 1]. This places another constrain guiding self-

organ ization. Ty % 100 150 200 250 200 50 w00
Combining the distance(X:,, (X+-1,Y:<—1)) and en- ceneraton

tropy H(g) produces our information-theoretic objective ?'G'S Ffitr;es;in b_itsd._s_gualrgsindiﬁatethe average fimess, "+'s show
functlon fOI‘aSIng|e System Itness of the best individual In eac generatlon.

F' = —[d(Xy,, (Xp—1,Y 1)) + H(g)]  (11)

1 T T T T ju) T T

For a multiple system// ensembles), the fitness function - . °
generalizes as o8} o

1 o
FM = [ %jd(Xto,m, (Xe—1m: Yeeo1m)) + H(9)] | o : :

(12)

In this case, the challenge is to produce such a universal en-" , a0 ° o °
codingg that the corresponding systeifis = g(X,, + ¥m ),
using the same mapping are complementary to their pol- ° : be o
luted counterpartsX,,. In other words, the joint systems 02 5o . 1
(Xm,Y,,) preserve at a later tim& as much information as ¢ °
possible about the respective initial systeMig at timet,, . ) ) ) e )
and in doing so use the same, universal, encogdinghis is 0 02 04 06 08 !
an enhancement of the original SGT model with direct fusio ) . I
(Polani et al., 2008) where either multipte,’s or multiple "HIG. 4 One ensemble: a random functipat the start of evolution:
gm'S were allowed.

Maximization of the fitness function is achieved by employ-
ing a simple genetic algorithm (GA) (described in the Ap-
pendix).

g(x) bins

no structure is observed.

say that self-organization results from fluctuations, thain-

ternal information processing has self-organized in raspo

to environmental “pollution”. This self-organization pslY’

IV. RESULTS FOR A SINGLE SYSTEM to maintain the structure of the spa&e (namely, the infor-

mation about the attractor’s structure): the four “protales”

The increase in the information-theoretic fitness functioncorrespond to the four states of the attractoXof

observed over a number of generations is shown in Figure 3. The experiment also demonstrated that noise within the en-
let us, at this stage, analyze self-organization of strectu vironment affects the self-organization within the enogdi

(increase of order) within the processing functipnFigures ~ Figure 6 traces fitnesg" (for the best individual), over the

4 and 5 contrast a randomly selected functioat the start —external noisep, for different internal noise levelg. We can

of the evolution (noisey is set top = 0.025, while noise  observe a steady decrease in fitness punctuated by two-transi

1 = 0.015), with the best individual functiop after512 gen-  tions, that form three plateaus. As conjectured by Piraaeen

erations. The important difference is in the way of mappinget al. (2007a), the encoding is not beneficial when the envi-

states ofX into the encoding”. The selection pressure re- ronmental nois is outside a certain range (in this instance,

sulted in a more “condensed” mapping. This is achieved by).008 < ¢ < 0.03). The middle plateau is precisely the re-

an increase in organization as well as robustnegs insmall  gion specifying this range, i.e. the “error interval”.

shift from z to = & ¢ results now only in a small difference  Be reminded that the information distandéA, B) con-

betweery(z) andg(x £ ). sists of two components: the log$(A|B), and the waste
The self-organization of counters the effect of internal H(B|A). The waste measures packaging information which

processing nois#, given the noise in the environment. In  envelops the proto-cell’s information, but itself does ocon-

general, following (Haken, 1983; Prigogine, 1980), we maytain any information of interest, while the loss measures ho
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much of the proto-symbolically encoded information is actu ing g such that the corresponding systefs= g(X,,+v¥m),

ally lost. Polani et al. (2008) explained the cascade otplas  using the same mapping complement their polluted coun-

as follows: (i) everything is recoverable (the first plateii) terparts X,,, in preserving as much information as possible

waste appears (the medium plateau); (iii) loss appearsa$he about the respective initial systems. As shown in Figure 7,

plateau). this challenge is successfully met: a self-organized eingod

The clustering in the encodiny” corresponds to self- is observed, and can be compared with the encoding evolved

organization of discrete “proto-symbols” in the encodifige  for the single system.

information reconstructed at timé will not be precise, and This supports the conjecture that multiple systems exert

rather than having four crisp stateX, can be described as joint pressure on proto-code’s universality, allowing 86 T:

an individual with an imprecise translation of the undertyi the very same “codes” are successfully used by multiple en-

gene within a “consensus sequence” (Woese, 2004), analsembles in preserving information unique to each ensemble.

gous to a “statistical protein”. Figure 8 traces fitnes8™ (for the best individual), over
the external noiseo. We can again observe a steady de-
crease in fitness punctuated by two transitions and forming

V. RESULTS FOR MULTIPLE SYSTEMS three plateaus.

In this section, we now focus on a system with multiple

proto-cells which share the coding channel. Concretely, wé/l. CONCLUSION AND FUTURE WORK

considerM = 4, r = 3.5, for variousd,,,, and attempt to

evolve a universal proto-code. We considered an information-theoretic model based on dy-
To reiterate, the challenge is to produce a universal encodiamical systems for self-organization of a universal eirapd
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able to preserve information over time, when the main systerns above zerof(z) is set tof(x) — 1.0. The logistic map
is suffering from perturbations. While doing so, we extendedf is initialized with a value betwee6.0 and 1.0, and stays
previous work, by employing a purely information-theateti  within this range if the value of is within the rangg0, 4.0].
fitness function aimed at capturing the indirect fusion of-(u We usedr = 3.5, resulting in four states of the attractor of
translated) encoding and system dynamics. Furthermore, wbe logistic map (if,, = 0 then the states are approximately
studied the effects on a small population of systems sharing.38, 0.50, 0.83, 0.87). Each of the multiple systems with dif-
an encoding, and verified the conjecture that SGT is possiblderentos,,, possesses four states of the respective attractor. The
It is striking that the pressure to develop a distinctiventisy  timet = ¢, is set after each logistic map settles into its attrac-
bolic” encoding does only develop if the noise in the origina tor cycle, having passed through a transient.
system is in a particular range, not too small and not tocelarg
Scanning through different noise levels, we observe skvera
plateaus of the fithess corresponding to qualitative jumps iC. State-space
the way not only the initial state is encoded but how the sgste
dynamics is affected by the noise. The middle plateau which In order to estimate the probability distribution of a rando
is most relevant for the self-organization of distinct syitsh ~ variable (X or Y) at a given time, we generate an initial ran-
turns out to be the most sensitive for the precise level afaoi  dom samplé X)) = (X}, X2, ..., X&) of size K. EachX{,
CHECK wherel < i < K, is chosen from a uniform random distribu-
The multiple system scenario shows that universal encoction within [0.0, 1.0]. The mappingX;,,; = f(X;) produces
ing can be successfully used by several systems which difan ensemble ok’ corresponding time series,< i < K, de-
fer slightly. However, at this point, we did not yet model the noted agX|] = [X/}, X?,..., X/], where0 <t < T, andT
explicit recovery, by re-introducing back-translatiométion,  is a time horizon. Within the ensemble, each time selg¢s
and comparing the initial system dynamics with the dynamicgnay have a different initial valu& . Atany given time’, we
recovered. This will be addressed in future work. can obtain a sampleX,/) = (X}, X2, ..., X/).
Woese observed that “statistical proteins form the basis of Given the samplé.X;,) at the timet = ¢y, and the map-
a powerful strategy for searching protein phase space, fin®®ingY;, = g(X;, + ), we can generate the samglg,, ) =
ing novel proteins” (Woese, 2004). We believe that further(Y,:, Y, ..., Y,X) for the variableY". In the corresponding
modelling of the evolutionary dynamics in such a space magnsemblgY] = [V,!,Y}?,... Y;X] each sample is identical
explain mechanisms resolving Eigen’s paradox (Eigen, 1971to the the sampléY;, ).
and leading to convergence on “the lingua franca of genetic We generate an ensembleXftime series, each series gov-
commerce” (Woese, 2004). erned by equation (1). The ensemp¥g provides a fixed con-
straint on the optimization. Fa&achfunctiong, an ensemble
[Y] is then generated, using equation (2) — i.e., the values of

VIl. APPENDIX: METHODS the series; depend on the choice of functign The ensem-
ble [X] is kept unchanged while we evolve the population of
A. External and internal noise functionsg, being an optimization constraint, but the ensem-

ble [Y] differs for each individual within the population. The
The functiony; describes the external (environment) noisefitness of each functiop is defined by equation (11) or (12),
that affects the proto-cells: it is the same for all cells, ; ~ and estimated via the respective entropies.
is independent ofn. It is implemented as a random variable  The experiments were repeated for different ensemiles
ot € [—1,u], whereu > 0 andl > 0, which is uniformly dis-
tributed, with probabilityl /2, betweerd andi, and with prob-
ability 1/2 betweend andu (sampled at each time step). In D. Genetic Algorithm
other words, positive values may be more sparsely distibut
than the negative if; is larger thari. We generate a population gfunctions (the size of the pop-
The function); ,, represents both the matching noise as-ulation is fixed att00). In order to implement the mapping
sociated with accessing information fraiy, ,,, by Y;,., at ~ the domain of is divided inton consecutive bins; such that
time ¢y, and the noise of ambiguous back-translation (appliedt; = [(i — 1)/n,i/n) for 1 < i < n, where [a,b) denotes
only att*). This noise is modelled as uniform random noisean interval open on the right, and, = [(n — 1)/n,1]. The
Yim € [~bm,bm], where0 < b, < 1.0, and is used only range ofy is divided intom consecutive bing; such thay,; =
att, andt*. [(j—1)/m,j/m)forl < j < m,andy,, = [(m—1)/m,1].
Then each birx; in the domain is mapped to a bip in the
range:G : z; — y;, whereG represents the discretized map-
B. Coupled logistic maps ping. Formally, anyx € z; is mapped ty(z) = G(x;),
whereG(z;) is the median value of the bifi(x;). For exam-
A logistic map X1 = rX; (1 — X;) + 4, is defined by  ple, if n = 100, m = 10, andy; = G(x30), that is, the bin
parameters andd,,, 0 < d,, < 1.0, used to differentiate be- 3, = [0.29,0.30) is mapped to the bip; = [0.6,0.7), then
tween multiple systemg,,,. That is, the functiory,, is given  for anyz € x3 (e.g.,« = 0.292), the functiong(z) would
by f () = ra (1 — x) + 0,,; if the right-hand side expression return0.65 = 7.




Therefore, in the GA, each functiancan be encoded as Lizier, J. T., Prokopenko, M., and Zomaya, A. Y. (2008). Local in

an array ofn integers, ranging from to m, so that thei-th formation transfer as a spatiotemporal filter for complex systems.
element of the array (théth digit) represents the mapping ~ Physical Review F77(2):026110.
y; = G(x;), wherel < j < m. Lloyd, A. (1995). The coupled logistic map: A simple model for the

We hav ; _ effects of spatial heterogeneity on population dynamic3.heor.
e have chosen generation gapgeplacement strategy. In Biol.. 173:217-230.

our experiments, we se_t the generatlt_)n gap paraneter Lloyd, S. (1990). Valuable information. In (Zurek, 1990), pages
In other words, the entire old population is sorted accord- {93 197

ing to fitness, and we choose the ba8% for direct repli-  \acKay, D. 3. (2003)Information Theory, Inference, and Learning
cation in the next generation, employing an elitist setecti  Algorithms Cambridge University Press, Cambridge.
mechanism. The rest of selection functionality is moved int piraveenan, M., Polani, D., and Prokopenko, M. (2007a). Emermge
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