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Abstract

Characteristics of natural language can be illumi-
nated through the application of well known tools
in Information Theory. This paper shows how some
of these characteristics can be exploited in the devel-
opment of automated speech and language process-
ing applications. The explicit representation of dis-
continuities in a temporal sequence of sounds, such
as pauses in speech, can be utilized to improve the
transmission of information. Arguments based on
comparative entropy measures are used.

1 Introduction

Characteristics of natural language can be illumi-
nated through the application of well known tools
in Information Theory. This paper shows how some
of these characteristics can be exploited in the devel-
opment of automated speech and language process-
ing applications. We investigate how discontinuities
in a temporal sequence of sounds, such as pauses
in speech, can be utilized to improve the transmis-
sion of information. The Machine Readable Spoken
English Corpus (MARSEC), which is prosodically
annotated, is used.

The approach taken is to examine certain ob-
served phenomena in speech, and suggest how their
exploitation could have conferred an advantage as
human language evolved. Many years ago Mandel-
brot proposed that a general statistical structure, in-
dependent of meaning, underlies human languages,
and that language is “intentionally if not consciously
produced in order to be decoded word-by-word in
the easiest possible fashion” (Mandelbrot, 1952). By
examining how language is produced for humans to
decode, we expect to learn efficient ways to represent
language for machine processing.

This work developed out of investigations into
data representation for automated natural language
parsing (Lyon and Frank, 1997; Lyon and Brown,
1997).
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2 Background: selection for efficient
and robust communication

There is a high biological cost in developing the
physiology capable of producing speech. Humans
can produce a much wider range of sounds than
other species can, but in order to do this the hu-
man anatomy has evolved in a way that has incurred
significant physiological disadvantages (Lieberman
(Lieberman, 1992)). In spite of this, the human
speech faculty has developed: presumably the abil-
ity to communicate by speech greatly outweighs the
concomitant disadvantages.

It is instructive to examine the characteristics of
human speech that distinguish it from non-speech
sounds. First, Lieberman notes the high transmis-
sion rates that characterise speech: 15 to 25 pho-
netic elements per second can be produced or rec-
ognized. The identification of non-speech sounds is
much slower: a maximum of 7 to 9 items per second.
Secondly, he notes the larger range of sounds that
only humans have the anatomy to produce. These
include vowels like [i] and [u] which are less suscep-
tible to perceptual confusion than some other pho-
netic elements, and more easily combined with other
sounds.

Observing these characteristics of human speech,
we see selection for speed, reliability and wider scope
as language has evolved. Now, if speech has evolved
to meet these requirements for efficient communica-
tion at some biological cost, we expect that other
empirical factors will be exploited too. This paper
examines the statistical environment in which speech
operates, shows why structured language is likely to
evolve, and uses this information to develop more ef-
ficient methods of representing speech for automated
processing.

3 Sequence structure and efficient
coding

We now investigate how words are grouped together,
and why certain modes of segmentation are likely to
evolve. We first describe the metrics that will be
used, and then illustrate their application.



3.1 Entropy and perplexity

This analysis is based on comparative measures of
the entropy of sequential data (Cover and Thomas,
1991). Entropy is a measure, in a certain sense, of
the degree of uncertainty. If the entropy can be re-
duced, the predictability of the next element in an
incomplete sequence is increased. A sequence repre-
sented in a way that lowers the entropy without re-
ducing its representational power is a more efficient
message carrier. Therefore, we would expect lan-
guage to evolve so that it enabled lower entropy cod-
ing of a sequence of words. This same approach to
the development of language models has been used
in automated speech recognition for many years (Je-
linek, 1990). Typically, entropy is reduced by taking
more of the context into account. If we know pre-
ceding words there is reduced uncertainty about the
next word.

The new contribution we make is to show that
the entropy can also be reduced by modelling dis-
continuities along with words. The segmentation
of a stream of words in this way is not arbitrary:
the segments are related to structural components of
language (Arnfield, 1994; Fang and Huckvale, 1996;
Ostendorf and Vielleux, 1994).

Definitions

Let A be an alphabet, and X be a discrete random
variable. The probability mass function is then p(z),
such that

p(z) = probability(X = z),z € A

If we consider letter sequences the z’s could be the
26 letters of the standard alphabet.
The entropy H(X) is defined as

H(X)=- Z p(z) x logs p(x)
z€A

We talk loosely of the entropy of a sequence, but
more precisely consider a sequence of symbols X;
which are outputs of a stochastic process. We esti-
mate the entropy of the distribution of which the ob-
served outcome is typical. Often the related metric
of perplexity is employed. If P represents perplexity
and H entropy, then

p=2"

and P can be seen as a measure of the branching
factor, or number of choices !.

Tn many practical applications the formula for perplex-
ity is reduced to a special case based on the (questionable0
assumption that language is ergodic

3.2 Illustrations from letter sequences

Though we are investigating groups of words, the
subject is introduced by recalling Shannon’s well
known work on the entropy of letter sequences
(Shannon, 1951). He showed that the entropy H
of written English, can be reduced as more of the
statistics of the language are taken into account. He
produced a series of approximations to the entropy
H of written English, which successively take more
of the context into account. Hy represents the av-
erage number of bits required to determine a letter
with no statistical information. Thus, for an alpha-
bet of 16 symbols Hy = 4.0.

H; is calculated with information on single letter
probabilities. If we knew, for example, that letter
e had a high probability of occurring while ¢ had a
low probability, then the letter e could have a shorter
code than g. Messages using this alphabet could be
coded with fewer bits than could be done without
this information. H; would be lower than Hj.

H, uses information on the probability of 2 let-
ters occurring together; H,, called the n-gram en-
tropy, measures the amount of entropy with informa-
tion extending over n adjacent letters of text 2 and
H, < H(,_1)- As n increases the n-gram entropy
declines: the degree of predictability is increased as
information from more adjacent letters is taken into
account. The formula for calculating the entropy of
discrete, sequential data is given in (Lyon, 1999).

Entropy reduction and sequence structure

The entropy can also be reduced if some of the struc-
ture of the letter strings is captured. As Shannon
says “a word is a cohesive group of letters with
strong internal statistical influences” so the intro-
duction of the space character to separate words will
lower the entropy H> and Hs.

With an extra symbol in the alphabet Hy will rise:
there will be more choice, less predictability. H; may
go down because the space will be much more fre-
quent than any other symbol, and this can outweigh
the effect of the larger number of symbols. However,
H, and Hjs do in fact decline. The space symbol
prevents “irregular” letter sequences between words,
and this is one way in which unpredictability is re-
duced.

3.3 The significance of boundary marking
for ASCII data

For other representations too, the insertion of
boundary markers that capture the structure of a
sequence will reduce the entropy. Gull and Skilling
(Gull and Skilling, 1987) report on an experiment
with a string of 32,768 zeroes and ones that are

2This notation is derived from that used by Shannon
(Shannon, 1951). It differs from that used by Bell, Cleary
and Witten (Bell et al., 1990).



Key:
|| is a pause, | is a minor discontinuity
annotator 1 annotator 2
we we
heard heard
automatic automatic
fire fire
| |
a a
few few
yards yards
away away
| I
we we
drove drove
on on
I I
a a
jet jet
appeared appeared

Table 1: Example of MARSEC corpus with minimal prosodic annotations

known to be ASCII data organised in patterns of 8
as bytes, but with the byte boundary marker miss-
ing. By comparing the entropy of the sequence with
the marker in different positions the boundary of the
data is “determined to a quite astronomical signifi-
cance level”.

3.4 The entropy of strings of words

Now, a similar analysis can be employed to see how
words are organised into structured constituents. In
(Lyon and Brown, 1997) Lyon and Brown showed
how the entropy of text mapped onto part-of-speech
tags could be reduced if clauses and phrases were
explicitly marked. Syntactic markers can be consid-
ered analogous to spaces between words, or to virtual
punctuation marks.

Consider, for example, how subordinate clauses
are discerned. There may be an explicit opening
marker, such as a ‘wh’ word, but often there is no
mark to show the end of the clause. If markers are
inserted and treated as virtual punctuation some of
the structure is captured and the entropy declines.
A sentence without verbal markers for the opening
or closing of clauses can be represented as

The shirt { he wants } is in the wash.

If this sentence is given part-of-speech tags the
symbols ‘{’ and ‘}’ will represent two classes in the
tagset. We call them “virtual-tagl” and “virtual-
tag2”. The part-of-speech tags have probabilistic
relationships with the virtual tags in the same way
that they do with each other. The pairs and triples
generated by this string exclude “unlikely” tag se-
quences such as (noun, pronoun), but include, for

instance, (noun, virtual-tagl). The entropy, Hs and
H;, with virtual tags explicitly marking some con-
stituents is lower than that without the virtual tags.

4 Analysis of the MARSEC corpus

In a similar way the words from a speech signal can
be segmented into groups, with periodic discontinu-
ities. There is a relationship between prosody and
syntax, and the placement of discontinuities provide
clues to syntactic structure (Arnfield, 1994; Fang
and Huckvale, 1996; Ostendorf and Vielleux, 1994).

We have investigated how the entropy of sequences
of words varies when discontinuities are represented.
This research was carried out using MARSEC (Ma-
chine Readable Spoken English Corpus), which is
annotated with prosodic markers. The corpus has
been mainly collected from the BBC, and is available
free on the web. We have used part of the corpus,
just over 26,000 words, comprising the 4 categories
of news commentary (A), news broadcasts (B), lec-
tures aimed at a general audience (C) and lectures
aimed at a restricted audience (D). Discontinuities
in speech can have many causes: hesitation phenom-
ena perform a number of roles, particularly in spon-
taneous speech. However, by using this corpus from
professional speakers we propose that the dominant
cause for discontinuities will be related to the effi-
cient transfer of information.

The prosodic markers in MARSEC which we re-
tain are the major and minor tone unit boundaries.
The term “discontinuity” is taken to cover both
these features. The major tone unit boundary can
also be labelled as a pause. The prosodic markup
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Figure 1: Comparison of trigram part-of-speech entropy for sections of the MARSEC corpus, (i) with both
major and minor discontinuities marked (ii) without either. The tagset size is 28 with the discontinuities
represented, 26 without them. Table 2 gives the data for the 18655 word corpus as an example

was done by two trained annotators. Most of the
corpus was marked up by one or the other of the
annotators, but a few sections have been marked up
by both. We see that there is a large measure of
agreement, but not a total consensus. In Table 1
we show some sample data as we used it, in which
only the major and minor tone unit boundaries are
retained. When passages were marked up twice, we
chose one in an arbitrary way, so that each annotator
was chosen about equally.

Taking the discontinuities as virtual words, we
find that the minor discontinuities have a probabil-
ity of approximately 0.15, major discontinuities or
pauses 0.04, jointly 0.19.

4.1 Aim of the investigation

Our purpose is to examine whether the entropy of a
corpus is reduced by representing discontinuities as
well as words. Since we are interested in syntactic
structures we work with parts-of-speech rather than
actual words. We can measure the entropy Hy, Hi,
H> and Hj3 for the corpus with and without prosodic

markers for major and minor discontinuities. The
tagset used in this work is given in the Appendix.
There are 26 classes, 28 when discontinuity markers
are also represented.

Care is needed to compare entropy measures for
sequences of different alphabet sizes, but we propose
to extract information in the following way.

e H, will be higher with markers, since the alpha-
bet size increases.

e H; could be lower or higher depending on the
frequency of the new symbols.

e H> and Hj could be lower or higher depending
on

— the frequency of the new symbol

— whether the marker captures some of the
language structure

We will be looking for cases where H; rises while
H, and / or Hjs decline. This indicates that it is
not the frequency of the new symbol that causes the



Speech Number of Number of Hy H; H, Hs;
representation | minor discontinuities | major discontinuities
Words only 0 0 4.70 | 4.11 | 3.29 | 2.94
Words + minor 3454 0 4.75 | 4.09 | 3.18 | 2.84
Words + major 0 1029 4.75 | 4.19 | 3.32 | 2.84
Words + both 3454 1029 4.81 | 4.17 | 3.16 | 2.70

Table 2: Entropy measures for 18655 words of the MARSEC corpus, (sections A, B, C concatenated) with
and without major and minor discontinuities. See text on calculation of Hj.

Speech Number of Number of Hy H; Hs Hs;
representation minor discontinuities | major discontinuities
Words + discontinuities 3109 1209 481 | 4.19 | 3.63 | 3.05
in arbitrary positions

Table 3: Entropy measures for same part of MARSEC corpus with discontinuities in arbitrary positions :
major discontinuity every 19 words, minor discontinuity every 7 words (except for clashes with major)

decline, but the capture of some structure. If H;
declines, then a fall in Hy and Hs is not informative.

The corpus size increases marginally with the
addition of the markers, which should lead to a
marginal increase in entropy. So any effect from this
will not account for a fall in Hy and Hs.

If we worked with words rather than parts-of-
speech the discontinuity markers would be signifi-
cantly more frequent than any words. The entropy
would decline but we would not be able to ascertain
the cause.

4.2 Implementing the investigation

To conduct this investigation the MARSEC corpus
was automatically tagged, using a version of the
Claws tagger?. These tags were mapped onto the
smaller tagset (see Appendix). Random inspection
indicated about 96% words correctly tagged.

The entropy of part of the corpus was calculated
(i) for words only (ii) with minor discontinuities rep-
resented (iii) with major discontinuities, pauses, rep-
resented and (iv) with major and minor discontinu-
ities represented. Results are shown in Table 2, and
in Figure 1.

H; is calculated in the following way. We assume
a dependency does not reach across a major discon-
tinuity (see, for instance Ney et al. (Ney et al., 1997,
page 200)). Therefore, we omit any triple that spans
a major discontinuity.

Note that we are interested in comparative en-
tropies. We do not calculate entropy on unseen test
data, since it is not our aim to get a best estimate,
but to compare results with and without represent-
ing discontinuities.

The entropy converges slowly to its asymptotic
value as the size of the corpora increases, and this

3Claws4, supplied by the University of Lancaster, de-
scribed by (Garside, 1987)

is an upper bound on entropy values for smaller
corpora. Ignoring this may give misleading results
(Farach and et al., 1995). The reason why entropy
may be underestimated for small corpora comes
from the fact that we approximate probabilities by
frequency counts, and for small corpora these may
be poor approximations.

5 Results

Figure 1 shows the results for different size corpora.
Table 2 gives the results of this investigation for the
corpus of 18655 words. It shows that when major
and minor discontinuities are represented, then H,
and Hj decline even though H; increases. For the
representation of words with minor discontinuities
alone, results are not conclusive, since H; declines.
For the representation of words with major discon-
tinuities alone Hs declines, though H» shows a con-
trary movement.

Compare these results to those of another exper-
iment where the corpora of words only were taken
and discontinuities inserted in an arbitrary manner.
Major discontinuities were inserted every 19 words,
minor ones every 7 words, except where there is a
clash with a major one. The numbers of major and
minor discontinuities are comparable to those in the
real data. Results are shown in Table 3. Hs and
Hj are higher than the comparable entropy levels
for speech with discontinuities inserted as they were
actually spoken.

Moreover, the entropy levels are higher than for
speech without any discontinuities: the arbitrary in-
sertion has disrupted the underlying structure, and
raised the unpredictability

6 Conclusion

In this paper we have examined mechanisms by
which language is encoded in such a way that it can



be decoded as easily as possible. We examined differ-
ent representations of English speech and saw that
it can be more efficiently coded when discontinuities
are represented (Section 4). Strings of words with
no prosodic boundaries represented are associated
with higher levels of entropy, which makes decod-
ing harder. Using information on discontinuities in
speech is an aid to producing a more efficient code.

As language has evolved, we would expect selec-
tion pressure to encourage the development of seg-
mented modes of representation, where segments
correspond to structural elements. The evolution
of structured language can be seen as the survival of
the fittest in the statistical environment.

In the same way, developers of automated speech
and language processing systems can exploit the sta-
tistical characteristics of sequences of words. This
result is of general interest, and supports the de-
velopment of improved language models for many
applications.
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Appendix: The tagset of 26 classes used in
the experiments

article or determiner - singular
article or determiner - plural
predeterminer e.g. “all”
pronomial determiner e.g. “some”
pronomial determiner - singular
proper noun
noun - singular
noun - plural
pronoun - singular
pronoun - plural
relative pronoun
possessive pronoun
verb - singular
verb - plural
auxiliary verb - singular
auxiliary verb - plural
existential “here” or “there”
present, participle
past participle
infinitive “to”
preposition
conjunction
adjective
singular number “one”
adverb
exceptions



