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We prove that the tree-level scattering amplitudes for (super) Yang-Mills theory in arbitrary dimensions
and for M2-brane models exhibit color-kinematics (CK) duality. Our proof for Yang-Mills theory
substantially simplifies existing ones in that it relies on the action alone and does not involve any
computation; the proof for M2-brane models establishes this result for the first time. Explicitly, we combine
the facts that Chern-Simons-type theories naturally come with a kinematic Lie algebra and that both
Yang-Mills theory and M2-brane models are of Chern-Simons form when formulated in pure spinor space,
extending previous work on Yang-Mills currents [M. Ben-Shahar and M. Guillen, J. High Energy Phys. 12
(2021) 014]. Our formulation also provides explicit kinematic Lie algebras for the theories under
consideration in the form of diffeomorphisms on pure spinor space. The pure spinor formulation of
CK-duality is based on ordinary, cubic vertices, but we explain how ordinary CK-duality relates to notions
of quartic-vertex 3-Lie algebra CK-duality for M2-brane models previously discussed in the literature.
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I. INTRODUCTION

Color-kinematics (CK) duality [1–3] is a remarkable
hidden feature of certain perturbative quantum field theo-
ries that puts the kinematic spacetime structure on the
same footing as internal gauge or flavor symmetries. This
idea has manifold implications and applications as
reviewed in [4–8]. In particular, it is key to the famous
double copy prescription [1–3] that allows for the con-
struction of gravitational scattering amplitudes from a
particular parametrization of the scattering amplitudes of
supersymmetric Yang-Mills (SYM) theory.

CK-duality and the double copy were originally dis-
covered using on-shell amplitude technology. Having been
shown the way by scattering amplitudes, we are naturally
led to ask if we can return to the standard Lagrangian field
theory starting point, possibly shedding further light on
CK-duality [3,9–14]. This is all the more natural from the
homotopy algebraic perspective, which puts Lagrangians
and on-shell amplitudes on equal footing [15–18]. In
certain cases the kinematic Lie algebra and CK-duality
are indeed symmetries of the Lagrangian, just as gauge
invariance is manifest in the Yang-Mills action [13].
The main ingredient in our discussion is the notion of

BV▪-algebras introduced in [19] for first-order Yang-Mills
theory, where ▪ denotes a second order differential operator.
Any field theory with an underlying BV▪-algebra has a
kinematic Lie algebra [13], see also [19]. That is, the tree-
level Feynman diagram expansion is built from Lie-algebra
valued vertices tied together with propagators 1

▪. In the
special case that ▪ ¼ ▫, the spacetime d’Alembertian, this
implies conventional CK-duality if one can extract finite
numerators.1
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1See also [20,21] for related work manifesting CK-duality and
applying it to the explicit construction of double field theory.
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Identifying a theory’s BV▪-algebra (if one exists) is
nontrivial, but there is an archetypal theory with BV▪-
algebra: Chern-Simons (CS) theory, cf. [13,22]. When
looking for CK-dual field theories, we are thus led to
consider theories with CS-like reformulations. There are
two evident families of candidates2: holomorphic CS
theory on twistor space (reviewed in [26,27]) and pure
spinor CS actions (reviewed in [28–34]). For the former,
one obtains BV▪-algebras for self-dual and full SYM theory
with ▪ ¼ ▫ in the self-dual case, but a more complicated
expression in the full case [13].
Here, we consider pure spinor actions.3 For SYM theory,

the pure spinor action is already in CS form, and its
propagator suitably induces a conventional form of CK-
duality as first observed in [39], which shows that Berends-
Giele currents of SYM theory come with a kinematic Lie
algebra. However, a problem arises when turning these
currents into CK-dual kinematic numerators of scattering
amplitudes: the tree-level scattering amplitudes require an
integral over pure spinor space that generically diverges
for individual diagrams. One may skirt the divergences
by regularizing the b-operator [40], but the regularized
b-operator fails to be of second order as required for
CK-duality.
We circumvent this issue using the Y-formalism [41–43]

to demonstrate tree-level CK-duality of SYM theory
directly from the action. Our new proof simplifies the
existing one and exposes much more clearly underlying
algebraic structures, such as the BV▫-algebra and the
kinematic Lie algebra. We then identify the notion of
BV▪-module that governs kinematic Lie algebras for
gauge-matter theories, cf. [44] for the discussion of CK-
duality in this context. As an important application of
this formalism, we show that the pure spinor actions for the
Bagger-Lambert-Gustavsson (BLG), Aharony-Bergman-
Jafferis-Maldacena (ABJM), and Aharony-Bergman-
Jafferis (ABJ) models of [45,46] (cf. [47]) imply suitable
BV▫-algebras to establish all-order tree-level CK-duality.
This completes partial results on CK-duality of Chern-
Simons-matter (CSM) theories in the literature [22,48–51].
Our CK-duality for these theories uses cubic vertices; we
explain how this implies a 3-Lie algebraic CK-duality using
quartic vertices [48–51].
We will be very concise in our definition of the

mathematical tools we use. A much more detailed expo-
sition of the mathematical background is found in [52].

II. ALGEBRAS UNDERLYING CK-DUALITY

To concisely encode CK-duality from the perspective of
an action, we need to reformulate the action in order to
make an additional algebraic structure visible.
In particular, we rewrite the action into an equivalent

form with only cubic interaction terms. This can be
achieved by introducing auxiliary fields, blowing up non-
cubic interaction vertices into cubic ones as done previ-
ously, e.g., in [3,9,11,53]. The Batalin-Vilkovisky (BV)
formalism then produces a vector space graded by ghost
number and a BV-differential encoding gauge transforma-
tions and equations of motion. The resulting structure
dualizes (cf. e.g. [11,15]) to a differential graded (dg)
Lie algebra whose differential encodes the linearized gauge
transformations and the linearized action, and whose Lie
bracket encodes the nonlinear corrections to both.4

This dg-Lie algebra factorizes into the (ungraded) gauge
Lie algebra and a dg-commutative algebra [11,55]. Such
a factorization is possible5 for any ordinary gauge theory
and amounts to the familiar color-stripping in the physics
literature.
CK-duality then appears as a refinement of the dg-

commutative algebra structure. In our previous work [10–12],
this appeared as compatibility with a twisted tensor product.
Here, we focus on the notion of BV▪-algebra [13,19],
see also [52,56,57]. A BV▪-algebra is a dg-commutative
algebra, i.e., a Z-graded vector space endowed with a
differential Q and a graded-commutative product mð−;−Þ,
together with an operator b of degree −1 such that b2 ¼ 0
and b is a second-order differential operator (in the sense
of [56,58]). We usually denote the anticommutator Qbþ
bQ in a BV▪-algebra by ▪.
The fact that b is of second order implies that the derived

bracket

fϕ;ψg ≔ bmðϕ;ψÞ −mðbϕ;ψÞ − ð−1Þjϕjmðϕ; bψÞ ð1Þ

for ϕ;ψ color-stripped fields of ghost numbers jϕj; jψ j is a
(grade-shifted) Lie bracket, see e.g. [59][Proposition 1.2].
This bracket turns out to be precisely the kinematic Lie
algebra that combines with the gauge Lie algebra in cubic
vertices. A kinematic Lie algebra then implies conventional
CK-duality if ▪ ¼ ▫, the spacetime d’Alembertian, and if
the resulting numerators are finite up to distributional
factors implementing momentum conservation.
As an immediate example, consider plain CS theory on

a three-dimensional spacetime M for connections in a
topologically trivial principal bundle P ¼ M ×G for G
some Lie group with Lie algebra g. The dg-Lie algebra

2We do not have anything to say about cubic harmonic
superspace actions [23,24], which also take a Chern-Simons
form, cf. [25].

3The pure spinor formalism has been previously applied to the
study of CK-duality of SYM theory in e.g. [35–38]. It would be
interesting to develop the relation to the present discussion.

4More generally, the BV complex of an arbitrary action
dualizes to an L∞-algebra, with potential terms that are mono-
mials of degree d giving rise to (d − 1)-ary brackets [15,54].

5With dg-Lie algebras and dg-commutative algebras replaced
by L∞- and C∞-algebras, respectively.
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reads as L ¼ g ⊗ Ω•ðMÞ, where Ω•ðMÞ denotes the dg-
commutative algebra given by the de Rham complex
consisting of the differential forms on M. That is, Q is
the exterior derivative and the commutative product is the
wedge product, mð−;−Þ ¼ ∧. While the scattering ampli-
tudes of asymptotically free fields are trivial, we can
consider amplitudes for harmonic one-forms, as done,
e.g., in [22] or [13]. A natural choice for the operator b
is then b ¼ −d† the codifferential defined with respect to a
metric on M. This is indeed a second order differential
operator in the sense of [56,58], and we obtain a BV▫-
algebra as Qbþ bQ ¼ ▫. The resulting kinematic Lie
algebra is the Schouten-Nijenhuis algebra of multivector
fields [13], and the scattering amplitudes of harmonic one-
forms exhibit CK-duality as first noted in [22].

III. SUPERSYMMETRIC YANG-MILLS
THEORIES

A. Pure spinor formulation

We first explain how the pure spinor approach for SYM
theory manifests CK-duality, building on the observations
for currents of [39].
The nonminimal pure spinor space M10DN¼1 of ten-

dimensional SYM theory [60] enlarges the usual super-
space R10j16 to a supermanifold coordinatized by ðxM; θA;
λA; λ̄A; dλ̄AÞ, where indices A belong to the 16 or 16
of Spinð1; 9Þ. Note that dλ̄A is to be considered as an
independent variable from λ̄A, and we use this notation
to follow the common conventions in the pure spinor
literature. All coordinates are commuting except for the
coordinates ðθA; dλ̄AÞ, which are anticommuting. The
coordinates ðλA; λ̄A; dλ̄AÞ carry ghost numbers ð1;−1; 0Þ
respectively and obey the constraints

λAγMABλ
B ¼ λ̄Aγ

MABλ̄B ¼ λ̄Aγ
MABdλ̄B ¼ 0: ð2Þ

The covariant superderivatives DA on R10j16 satisfy

DADB þDBDA ¼ −2γMAB
∂

∂xM
; ð3Þ

and (2) implies that the operator

Q ¼ λADA þ dλ̄A
∂

∂λ̄A
ð4Þ

squares to zero. The volume form ΩM10DN¼1
given in [60]

permits an action principle for a scalar superfield Ψ on
M10DN¼1 of ghost number 1 that takes values in a gauge
metric Lie algebra ðg; h−;−igÞ,

S10DN¼1 ¼
Z

ΩM10DN¼1
hΨ; QΨþ 1

3
½Ψ;Ψ�ig: ð5Þ

One can compute perturbative scattering amplitudes using
the propagator b

▫
in the Siegel gauge bΨ ¼ 0, where the

b-operator carries ghost number −1 and satisfies

Qbþ bQ ¼ ▫ and b2 ¼ 0; ð6Þ

cf. [61,62]. Table I summarizes the properties of all
coordinates and operators.
The b-operator is not unique (cf. [63–65]), but there is a

convenient Lorentz-invariant form

b0 ¼ −
λ̄Aγ

MABDB

2λCλ̄C

∂

∂xM
þ � � � ; ð7Þ

which is commonly used, e.g. in [39]. To argue tree-level
CK-duality of amplitudes, however, we will see that we
have to use the non-Lorentz-invariant b-operator of the
Y-formalism [41–43],

bY ¼ −
vAγMABDB

2λCvC

∂

∂xM
ð8Þ

for some reference pure spinor v with vAγMABvB ¼ 0. This
operator satisfies (6) and imposes a kind of axial gauge
along v.

B. Tree-level CK-duality

Let us consider the color-stripped6 scalar superfield,
which we will denote by the same symbol Ψ, and first
review how CK-duality emerges at the formal level
following [39].
Both choices (7) and (8) for b are second-order differ-

ential operators with respect to the pointwise product on
pure spinor superspace and satisfy (6). Therefore, both

TABLE I. Properties of 10D coordinates and operators.

Spinð1; 9Þ
Mass

dimension
Grassmann
degree

Ghost
number

x 10 −1 0 0
θ 16 − 1

2
1 0

λ 16 − 1
2

0 1

λ̄ 16 1
2

0 −1
dλ̄ 16 1

2
1 0

D 16 1
2

1 0
Q 1 0 1 1
b 1 2 1 −1

Ψ 1 0 1 1

6That is simply a function on pure spinor superspace, as
opposed to a Lie algebra-valued function. Correspondingly all
operators are also stripped of their action on the Lie algebra,
which was simply the identity for all relevant examples.
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enhance the dg-commutative algebra of fields on pure
spinor space with Q as differential and the pointwise
product to a BV▫-algebra. In particular, the derived bracket

fΦ;Ψg ≔ bðΦΨÞ − ðbΦÞΨ − ð−1ÞjΦjΦbΨ ð9Þ

is a (shifted) Lie bracket, as explained in Sec. II, which,
together with (6) implies CK-duality of currents.
Explicitly, the derived bracket simplifies in Siegel gauge

(bΨ ¼ 0) for external states, and we have

fΦ;Ψg ¼ bðΦΨÞ: ð10Þ

Since the propagator is b=▫, all internal lines on any
Feynman diagram are also in Siegel gauge, and we can
push b on to vertices so that each color-stripped vertex is
given by the derived bracket

bðΦΨÞ ¼ fΦ;Ψg: ð11Þ

Here, we see concretely that the color-stripped vertex is
governed by Lie algebra structure constants, leading to a
kinematic Lie algebra. Because the remaining propagator
is 1=▫, we formally recover ordinary CK-duality for the
currents. We note that the above argument has first been
made for the b-operator (7) in [39].
Converting these currents to individual CK-dual tree-

level numerators of amplitudes, however, involves an
integral over ðλ; λ̄Þ that suffers from two kinds of diver-
gences, infrared (IR, λ; λ̄ → ∞) and ultraviolet (UV,
λ; λ̄ → 0). We should stress that these divergences appear
in tree-level amplitudes, but are purely an artifact of the
pure spinor formalism; in the end all tree-level amplitudes
are, of course, finite.
The IR divergences are due to the noncompactness of

pure spinor space. These can be regulated, following
[34,60,66], by inserting a Q-exact regulator into the
measure, ΩM10DN¼1

↦ ΩM10DN¼1
e−ϵfQ;χg, where ϵ is a real

positive constant and χ is a pure spinor field of ghost degree
−1. For χ ¼ −λ̄AθA þ � � � we have

e−ϵfQ;χg ¼ e−ϵðλAλ̄Aþ���Þ; ð12Þ

where the first factor manifestly suppresses the would-be
IR divergences [40]. This clearly preserves the kinematic
Lie algebra since the bracket is merely scaled.
More problematic are the ðλA; λ̄AÞ → 0 UV divergences.

For the covariant nonminimal formalism, the amplitude
integrands contain singularities of the form 1=ðλAλ̄AÞn
arising from the propagator b=▫ as well as the Siegel gauge
condition, bΨ ¼ 0. Using the well-known Berkovits-
Nekrasov regulator [40], these singularities can be regulated
and cancel in the total scattering amplitudes.

More specifically, when using the nonminimal formal-
ism with a Lorentz-covariant b0-operator there exists a
regulator that is Q-invariant and does not change the
Q-cohomology classes [40],

bϵ ¼ e−ϵðwAw̄Aþ���Þb0; ð13Þ

where wA; w̄A are conjugate to λA; λ̄A. Since wA; w̄A are
conjugate momenta, this superficially spoils the second-
orderness of the b-operator. However, all we will require in
the end is that the difference between this b-operator and
the one we will use later isQ-exact, which is the case. What
is crucial in the context of CK-duality is that at tree-level
the UV singularities are integrals of Q-exact terms; these
must vanish due to the gauge invariance of the total
amplitudes. This is also made explicit in [39], where it
is inductively proven for SYM theory and illustrative
examples at low points are given.
This conclusion applies equally to the Y-formalism

b-operator [43]. First, the Y-formalism bY is equivalent
to the covariant b-operator on the Q-cohomology [43]:
b0Ψ ¼ bYΨ for all representativesΨ of theQ-cohomology.
Hence, since all singular contributions to the total ampli-
tude are Q-exact in the covariant b-operator formalism,
it follows that all singular contributions are Q-exact in the
Y-formalism. In conclusion, finite tree-level scattering
amplitudes can be computed using the Y-formalism and
all potential singularities sum into a Q-exact term that
vanish due to gauge-invariance. This latter observation is
all that will be needed for CK-duality in the Y-formalism.
Note first, however, that the preceding argument does not

prevent individual Feynman diagrams, and hence their
numerators, from having singular terms. In the Lorentz-
invariant nonminimal formalism using b0 [60], these singu-
larities are potentially problematic for CK-duality [39].
We shall briefly review the potential obstruction to CK-
duality below, but it is helpful to first consider the analogous
situation in the Y-formalism.
First note that we obtain Y-formalism Siegel gauge

physical states (unintegrated vertex operators) by starting
with the nonsingular representatives λAλBAAB of the anti-
field cohomology classes and applying bY to them [67],

Ψ ¼ bYλAλBAAB

¼ −
vAγMABDB

2λAvA

∂

∂xM
λCλDACD: ð14Þ

The singularities of external states and Feynman diagrams
are thus of the form 1=ðλAvAÞn.
The kinematic Jacobi identities hold order by order in

1=λAvA, but need to be regulated. Again, in the total
scattering amplitude, divergent terms from each diagram
either cancel or combine into Q-exact terms and thus
become discardable. However, we would like to discard
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the singular terms in each individual diagram, before
summing into a Q-exact term, so as to regulate the
individual numerators in a minimal-subtractionlike
scheme. The potential worry is that if Q can change the
degree of divergence, then, in principle, finite terms from
each diagram might be required to form the singular
Q-exact term in the sum. In this case, when min-
imally subtracting the singular terms in each diagram
individually, these finite terms would also need
to be dropped. This will change the finite part of the
numerators and so potentially break CK-duality. However,
since the operator Q, being independent of v, does not
affect the degree of singularity near λAvA ¼ 0, the terms in
the numerators that must be discarded may be restricted to
singular terms only.
More explicitly, let us split each Feynman diagram, γi,

into three terms,

γi ¼ γ0i þ γQ;finite
i þ γQ;finite

i ; ð15Þ

where the finite, γQ;finite
i , and singular, γQ;singular

i , terms
contribute to the Q-exact part of the total amplitude
integrand

I ¼ I0 þQΛ; ð16Þ

where

QΛ ¼
X
i

ðγQ;finite
i þ γQ;singular

i Þ: ð17Þ

Now, because Q preserves the degree of singularity near
λAvA ¼ 0,

P
i γ

Q;finite
i and

P
i γ

Q;singular
i are separately

Q-exact. Consequently, one can simply drop γQ;singular
i in

each diagram separately, while preserving the total ampli-
tude. Since CK-duality holds order by order in 1=ðλAvAÞn,
the resulting “minimally-subtracted” numerators obey the
kinematic Jacobi identities.
In summary, we can truncate away the singular terms in

the numerators without losing kinematic Jacobi identities,
similar to minimal subtraction in dimensional regulariza-
tion. The minimally subtracted numerators provide a CK-
dual parameterization of the scattering amplitudes with
finite numerators.
Therefore, we have all-order tree-level CK-duality for

10D SYM theory. By dimensional reduction and embed-
ding nonmaximally SYM tree diagrams into maximal ones
(cf. [68]), this establishes tree-level CK-duality for all pure
Yang-Mills theories with arbitrary amounts of supersym-
metry in any dimension.
Let us now return to the Lorentz-covariant formalism.

Here, the ultraviolet divergence occurs near λAλ̄A ¼ 0 for
each numerator. As before, in the total amplitude all such
singularities combine into a Q-exact term that vanishes due
to gauge invariance. However,Q does change the degree of

singularity near λAλ̄A ¼ 0 and so we cannot run the argu-
ment presented above for the Y-formalism. As a conse-
quence, the cancellation of singularities in the total
scattering amplitude may require both singular and non-
singular terms from individual diagrams combining to form
Q-exact terms that vanish under integration. As this
discards some nonsingular parts of the numerators, this
may ruin kinematic Jacobi identities of minimally sub-
tracted numerators.

IV. GENERAL GAUGE-MATTER THEORIES

A. 3-algebraic formulation

A gauge theory with matter that features CK-duality
comes with an extension of the algebraic structures dis-
cussed above, as we explain in the following. Because
matter fields take values in a representation of the gauge Lie
algebra, we require an appropriate notion of Lie modules.
A metric Lie module ðg; h−;−ig; V; h−;−iVÞ consists

of a metric Lie algebra ðg; h−;−igÞ with a real orthogonal
g-representation ðV; h−;−iVÞ. Any metric Lie module has a
product ∧ ∶V2 → g defined by

hX; u ∧ vig ¼ hu; X · viV ð18Þ

for all u; v∈V and X∈ g, that is antisymmetric and
g-equivariant.
Proof. For all u; v∈V and X; Y ∈ g, anti-symmetry

follows from hX; u ∧ vig ¼ hu; X · viV ¼ −hX · u; viV ¼
−hv; X · uiV ¼ −hX; v ∧ uig and equivariance is due to
hY; ½X; u ∧ v�ig ¼ −h½X; Y�; u ∧ vig ¼ −hu; ½X; Y� · viV ¼
−hu; X · ðY · vÞiV þ hu; Y · ðX · vÞiV ¼ hX · u; Y · viV −
hY · u; X · viV ¼ hX · u; Y · viV − hX · v; Y · uiV ¼ hY; ðX·
uÞ ∧ vig − hY; ðX · vÞ ∧ uig ¼ hY; ðX · uÞ ∧ vig þ hY;
u ∧ ðX · vÞig. ▪
The g-equivariance

hX · ðu ∧ vÞ; Yig ¼ hðX · uÞ ∧ v; Yig þ hu ∧ ðX · vÞ; Yig
ð19Þ

is, diagrammatically,

ð20Þ

The metrics h−;−ig and h−;−iV define a 3-bracket
⟦−;−;−⟧∶V3 → V by

hs; ⟦u; v; w⟧iV ¼ hs ∧ u; v ∧ wig ð21Þ
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for all s; u; v; w∈V. If ⟦−;−;−⟧ is totally antisymmetric,
ðV; ⟦−;−;−⟧Þ is a 3-Lie algebra in the sense of [69]. We
call the above data a 3-Lie algebra structure.
A gauge-matter theory with exclusively cubic interaction

vertices is still described by a dg-Lie algebra, but this
dg-Lie algebra will now be the sum of two components: the
pure gauge part is again the tensor product of the gauge Lie
algebra with a dg-commutative algebra, but the second,
matter part will be the tensor product of a metric Lie
module together with a differential graded metric Com
module with the matter-gauge interactions provided by the
module structure.
The definition of (ungraded) metric Com modules

mimics the above construction for commutative rather than
Lie algebras. A metric Com module consists of a (possibly
nonunital) metric commutative associative algebra
ðC; h−;−iCÞ (i.e. hX; YiC ¼ hY; XiC and hXY; ZiC ¼
hX; YZiC for all X; Y; Z∈C) with a symplectic C-module
ðV; h−;−iVÞ, i.e. a C-module V with an C-invariant
symplectic metric h−;−iV . Then the product •∶V2 → C
defined by

hX; u • viC ¼ hu; X · viV ð22Þ

for all u; v∈V and X∈C is commutative and C-bilinear.
Proof. For all X; Y ∈C and u; v∈V, commutativity

follows from hX; u • viC ¼ hu; X · viV ¼ −hX · u; viV ¼
hv; X · uiV ¼ hX; v • uiC and bilinearity is due to
hY; X · ðu • vÞiC ¼ −hXY; u • viC ¼ −hu; X · ðY · vÞÞiV ¼
hX · u; Y · viV ¼ hY; ðX · uÞ • viC. ▪
Analogously to the 3-bracket ⟦−;−;−⟧, we define here a

3-bracket ⦅−;−;−⦆∶V3 → V by

hs; ⦅u; v; w⦆iV ¼ hs • u; v • wiC ð23Þ

for all s; u; v; w∈V.
The preceding constructions generalize to the differential

graded setting by inserting appropriate sign factors and
requiring the evident compatibility of the differential with
the products.
In the particular case of a theory with a 3-Lie algebra

gauge structure and cubic interaction vertices, we find an
underlying dg-metric Lie module that factors into a gauge
metric Lie module and a dg-metric Com module, general-
izing color-stripping to color-flavor-stripping.

B. CK-duality

To capture CK-duality for a gauge-matter theory, we
extend our BV▪-algebra B by an additional BV▪-module
describing the matter fields. Such a BV▪-module is a dg-
module ðV;QVÞ over B (in the sense of dg-commutative
algebras) which is endowed with a degree −1map bV∶V →
V that squares to zero, is a second-order differential
operator with respect to the module action of B on V,
and such that QVbV þ bVQV ¼ ▪.

Just as a BV▪-algebra B comes with an associated
kinematic Lie algebra in the form of the derived bracket
(1), a BV▪-module ðV;QV; bVÞ comes with an associated
kinematic Lie module. By a trivial extension of the argu-
ments in [13], cf. also [52], if a color-stripped theory with
matter admits the structure of a BV▪-module, it automati-
cally enjoys gauge-matter CK-duality as long as ▪ ¼ ▫ and
the resulting numerators do not diverge.

V. M-BRANE MODELS

A. CK-duality of the BLG model

Following [46], consider the dimensional reduction of
pure spinor superspace M10DN¼1 to three dimensions,
obtaining the pure spinor superspace M3DN¼8 coordinat-
ized by ðxμ; θαi; λαi; λ̄αi; dλ̄αiÞ, where μ; ν;… ¼ 0, 1, 2.
Then the 16 of Spinð1; 9Þ becomes the 2 ⊗ 8 of
Spinð1; 2Þ × Spinð7Þ, so the spinor index A splits into
ðα; iÞ with α, β ¼ 1, 2 (raised and lowered using εαβ)
and i; j ¼ 1;…; 8 (raised and lowered using δij). The
R-symmetry enlarges from Spinð7Þ to Spinð8Þ. Indices
m; n ¼ 1;…; 8 denote the vector representation 8v
of Spinð8Þ.
Following [46] further, we relax the ten-dimensional

pure spinor constraints (2) in three dimensions to

λαiγμαβλ
β
i ¼ λ̄αiγμαβλ̄

β
i ¼ λ̄αiγμαβdλ̄

β
i ¼ 0: ð24Þ

The color-flavor structure of the BLG model is a metric
Lie module ðg; h−;−ig; V; h−;−iVÞ with g ¼ suð2Þ ⊕
suð2Þ and V ¼ ð2; 1Þ ⊗ ð1; 2Þ. The metric h−;−ig on g
has signature (3,3), while h−;−iV is positive-definite. The
resulting 3-bracket (21) is totally antisymmetric.7

The gauge multiplet of the BLG model belongs to a
g-valued superfieldΨ onM3DN¼8 of mass dimension 0 and
ghost number 1. The matter superfieldΦ takes values in the
tensor product of V with the 8v of Spinð8Þ with mass
dimension 1

2
and ghost number 1. We quotient the matter

field space by the relation

Φm ∼Φm þ λαiγmαβρ
β
i ð25Þ

for arbitrary ραi .
The pure spinor action for the BLG model is then [46]

S3DN¼8 ¼
Z

Ω3DN¼8

�
hΨ; QΨþ 1

3
½Ψ;Ψ�ig

þ gmnhΦm;QVΦn þΨΦniV
�

ð26Þ

7Up to direct sums, this is the only finite-dimensional metric
Lie module allowing for N ¼ 8 supersymmetry [70–73].
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with Ω3DN¼8 the appropriate volume form on M3DN¼8 as
defined in [46], gmn ≔ λαiγmnα

βλiβ, and QV ¼ Q.
Color-flavor-stripping the dg-metric Lie module under-

lying the action (26) yields a dg-metric Commodule V over
C. For any s; u; v; w∈V, the product (22) satisfies

hs • u; v • wiC ¼ hs • v; u • wiC; ð27Þ

inducing a totally symmetric 3-bracket (23).
There is a suitable Y-formalism b-operator also here:

picking a reference pure spinor v with vαiγμαβδijvβj ¼ 0,
define

b ¼ bV ¼ −
vαiγμαβδijDβj

2λαivαi

∂

∂xμ
; ð28Þ

which satisfies (6) and is second-order with respect to the
module action on the dg-metric Com module. Table II
summarizes the properties of all objects.
As in the case of SYM theory, the operator (28) induces a

BV▫-algebra structure for the gauge part, which extends to
a BV▫-module structure on the full dg-metric Com module.
This establishes CK-duality for the currents of the BLG
model based on cubic vertices, not the quartic vertices
anticipated by 3-Lie algebras.
To turn currents into scattering amplitudes, one integra-

tes expressions with singularities of the form 1
λαivαi

over

ðλ; λ̄Þ-space. It is then clear that our previous arguments
regarding minimal subtraction of singularities still hold:
we obtain all-order tree-level CK-duality for the BLG
model.

B. ABJM/ABJ models with pure spinors

Some CSM theories with N < 8 supersymmetry admit
cubic pure spinor actions and thus enjoy tree-level CK-
duality using the Y-formalism. These include the N ¼ 6
ABJM [74] and ABJ [75] models in the pure spinor
formulation of [46]. The pure spinor superspace M3DN¼6

for 3D N ¼ 6 theories results from truncating the Spinð8Þ
R-symmetry to Spinð6Þ, so M3DN¼6 ⊂ M3DN¼8. The
indices agree with those for the BLG model except that
k; l; m; n; p ¼ 1;…; 4 denote the 4 of Spinð6Þ ≅ SUð4Þ.
After truncation, we have λαmn ¼ −λαnm, but the properties
of Q and b are not affected; the volume form Ω3DN¼6

remains dimensionless.
The gauge algebra g remains a metric Lie algebra, but

the representation V is a complex g-representation since
the matter fields are in the complex representation 4 of
Spinð6Þ. The pure spinor actions for ABJM and ABJ
models are [46]

S3DN¼6 ¼
Z

Ω3DN¼6

�
hΨ; QΨþ 1

3
½Ψ;Ψ�ig

þ gmnhΦ̄m;QΦn þ ΨΦniV
�

ð29Þ

with gmn ¼ 1
2
εαβεklpnλ

αmkλβlp.
The kinematic vector space here does not admit a

suitable symplectic metric without breaking the pure spinor
formalism. We can, however, formally quadruple the matter
field space such that the matter fields take values in
ðV ⊕ V�Þ ⊗ ð4 ⊕ 4̄Þ. This violates the nonlinear BRST
symmetry [46] and hence unitarity for arbitrary external
states, but restricting to appropriate external states produces
correct tree amplitudes.
After this enlargement, the dg-Lie algebra factorizes into

a (gauge) metric Lie module and a BV▫-module. Thus the
ABJM and ABJ models are CK-dual at the tree level, in the
usual sense, to all orders.

C. Relation to quartic CK-duality

Previous literature [48–51] (except [22]) considered
CK-duality and double copy of CSM theories using
3-Lie algebras and quartic graphs instead of the usual cubic
graphs. In this section, we explain the relation between the
two notions.
For the BLG model in the pure spinor formalism, the

BRST symmetry requires total antisymmetry and total
symmetry of the 3-brackets ⟦−;−;−⟧ and ⦅−;−;−⦆,
respectively [45]. Integrating out auxiliary modes in Ψ
produces expected quartic and sextic vertices:

ΨQΨþΦΨΦþΨ3↦Φ2Q−1Φ2þðQ−1Φ2Þ3þ��� : ð30Þ

One can use (20) and its dg-metric Com module analogue
to rewrite sextic vertices using quartic ones:

ð31Þ

The right two diagrams consist of quartic Φ4 vertices. By
construction, the coefficients of the resulting total quartic

TABLE II. Properties of 3D coordinates and operators.

SLð2;RÞ × Spinð8Þ
Mass

dimension
Grassmann
degree

Ghost
number

x ð3; 8vÞ −1 0 0
θ ð2; 8sÞ − 1

2
1 0

λ ð2; 8sÞ − 1
2

0 1

λ̄ ð2; 8cÞ 1
2

0 −1
dλ̄ ð2; 8cÞ 1

2
1 0

D ð2; 8sÞ 1
2

1 0
Q (1; 1) 0 1 1
b (1; 1) 2 1 −1

Ψ (1; 1) 0 1 1
Φ ð1; 8vÞ 1

2
0 0
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vertex are totally antisymmetric. Equivariance of the cubic
vertices induces equivariance and thus CK-duality of the
quartic Φ4 vertices. For the BLG model, cubic CK-duality
therefore implies quartic CK-duality, agreeing with the
observation in [49,50] that on-shell 3-Lie algebra CK-
duality of BLG holds at ≤ 10 points with double copy to
3D N ¼ 16 supergravity.
Next, consider the ABJM and ABJ models. Here, the

3-brackets (21) and (23) still exist but are not totally
(anti-)symmetric (being merely cyclic with respect to the
metric). Hence, when translating the cubic graphs into
the corresponding quartic graphs, one must remember the
cyclic order of the attached edges. Thus, the scattering
amplitude is partitioned into terms labeled not by
unadorned quartic trees but by quartic trees with extra
labels. This accords with the observation in [50,51] that, for
the ABJM model, the quartic BCJ identities and quartic
double copy (with unadorned quartic graphs) fail.

VI. CONCLUDING REMARKS

Our observations imply that one can double-copy [10,11]
the pure spinor actions of YM theory to obtain pure spinor
actions of 10D and 3D N ¼ 16 supergravity, using the
formalism of [52].
We note that our claim of cubic CK-duality for N ¼ 6

CSM theories does not contradict the result of [22] that
N ¼ 4 is the maximal supersymmetry for CSM theories
compatible with CK-duality: in the latter paper, only
adjoint matter is considered, while we allow for general
matter.
It is very important to stress that our arguments apply

only to the tree level, and there are fundamental obstruc-
tions to reaching the loop level. Suppose a cubic action S of
(e.g. maximally) SYM theory existed, potentially formu-
lated on some auxiliary space (e.g. pure spinors, twistor
space, harmonic or projective superspace) that manifests
CK-duality off shell for all fields in some gauge. Further
assume that after Kaluza-Klein expanding in the auxiliary
coordinates and integrating out all auxiliary fields, this
action reproduces the standard SYM action Sstd ¼R
trðF2Þ þ � � � in a local, polynomial, Lorentz-invariant

gauge. Then, by assumption, the off-shell tree-level corre-
lators of Sstd, which equal those of S with external legs

restricted to ðc; A;ϕ; χ; Aþ;ϕþ; χþ; cþÞ, are CK-dual.
Further, Sstd computes SYM loop amplitudes correctly
(with the standard path integral measure, i.e. defined using
dimensional regularization etc.), and it can be truncated to
the action of pure Yang-Mills theory SN¼0

std , which consists
of all terms containing exclusively the gauge fields and the
additional fields arising in the BV formalism. The action
SN¼0
std manifestly suffices for computing pure YM scattering

amplitudes, both at tree and at loop level: these amplitudes
can be glued out of off-shell pure YM tree correlators,
which are a subset of the SYM off-shell tree correlators.
Moreover, these amplitudes must be CK-dual because the
tree correlators of our initial SYM theory are CK-dual by
assumption. But this contradicts the result of [76] that
arbitrary-dimensional pure Yang-Mills theory lacks loop-
level CK-duality with Lorentz-invariant polynomial numer-
ators compatible with Feynman rules.
From this perspective, the limitation Qbþ bQ ¼ ▪ ≠ ▫

in the BV▪-algebra structure identified using an ambitwis-
tor action in [13,77,78] seems very natural. The BV▪-
algebra manifests a kinematic Lie algebra at both the tree
and (with some mild assumptions) the loop level, without
directly implying off-shell CK-duality.8

Similarly in the pure spinor picture, failure of loop
CK-duality may be seen as an incompatibility between a
regulator of an ultraviolet divergence (i.e. the regulated
b-operator) and a tree-level symmetry (the kinematic alge-
bra), or an anomaly, following the perspective of [12,13].
Altogether we conclude that, without further input, tree-

level CK-duality is the best one can hope for to obtain from
BV▪-algebras underlying action principles for Yang-Mills
theory.
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