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ABSTRACT 

Power lithium-ion batteries are widely utilized in electric vehicles (EVs) and 

hybrid electric vehicles (HEVs) for their high energy densities and long service-life. 

However, thermal safety problems mainly resulting from thermal runaway (TR) must 

be solved. In general, temperature directly influences the performance of lithium-ion 

batteries. Hence, an efficient thermal management system is very necessary for 

battery modules/packs. One particular approach, phase change material (PCM)-based 

cooling, has exhibited promising applicability due to prominent 

controlling-temperature and stretching-temperature capacities. However, poor thermal 

conductivity performance, as the main technical bottleneck, is limiting the practical 

application. Nevertheless, only promoting the thermal conductivity is far from enough 

considering the practical application in EVs/HEVs. To fix these flaws, firstly, the heat 

generation/transfer mechanisms of lithium-ion power batteries were macro- and  
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microscopically reviewed. Following that, the thermal conductivity, structural stability, 

and flame retardancy of PCM are thoroughly discussed, to which solutions to the 

aforementioned performances are systematically reviewed. In addition, battery 

thermal management system (BTMS) employing PCM is illustrated and compared. 

Eventually, the existing challenges and future directions of PCM-based BTMS are 

discussed. In summary, this review presents effective approaches to upgrade the PCM 

performances for high-density lithium-ion BTMS. These strategies furtherly 

accelerate the commercialization process of PCM BTMS. 

Highlights 

(1) The classification and heat production/transfer principles of power lithium-ion 

batteries are elaborated.  

(2) The categories of PCM and the enhanced key performances are summarized.  

(3) The application of PCM-based BTMS in the module/pack is particularly 

described.  

(4) The existing challenges and the future directions of PCM-based BTMS are 

discussed. 

Keywords: Lithium-ion power batteries, thermal safety, thermal management, phase 

change materials, hybrid cooling system, preheating system 
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Abbreviati
ons 

 
 

  

EVs Electric vehicles HEVs Hybrid electric vehicles 
TR Thermal 

runaway 
PCM Phase change material 

BTMS Battery thermal 
management 
system 

HP Heat pipe 

TE Thermoelectric CNT Carbon nanotube 
PCC Phase change 

composite 
LFP LiFePO4 

LMO LiMn2O4 LCO LiCoO2 
NCA Li(NiCoAl)O2 NCM Li(NiCoMn)O2 
SSPCM Solid-solid PCM SLPCM Solid-liquid PCM 
SGPCM Solid-gas PCM LGPCM Liquid-gas PCM 
PA  Paraffin EG Expanded graphite 
EG-MWC Expanded EG-CNF Expanded graphite-carbon 
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NT graphite-multi-w
alled carbon 
nano-tube 

nano-fiber

HDPE High density 
polyethylene 

Microencapsul
ated phase 
change 
materials 

MicroPCM 

LDPE Low density 
polyethylene 

SEBS Styrene-b-(ethylene-co-butylene)-
b-styrene 

SSPoPCM Solid-solid 
polymer PCM 

FS Form stabilized 

DEEP Diethyl 
ethylphosphonat
e 

LOI Limiting oxygen index 

HRR Heat release rate PHRR Peak 
heat release rate 

TSR Total smoke rate THR Total heat 
release 

APP Ammonium 
polyphosphate 

RP Red phosphorus 

IFR Intumescent 
flame retardant 

PP Polypropylene 

SPR Smoke produce 
rate 

PNDA Phosphorus nitrogen containing 
diamine 

CFA Char forming 
agent 

CP Chlorinated paraffin 

AT Antimony 
trioxide 

CF  Copper foam 

OBC Olefin block 
copolymer 

SBS Styrene butadiene styrene 

B-CPCM Block-shaped 
CPCM 

S-CPCM Serpentine CPCM 

PCS Personal cooling 
system 

CM Copper mesh 

OHP Oscillating heat 
pipe 

TECs TE coolers 

SEI Solid electrolyte 
interphase 

AC Alternating current 

AlN Aluminium 
nitride 

  

 

1. Introduction 
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Significant energy shortage and environmental pollution have increased the need 

for developing new energy storage technologies. In general, minimizing carbon 

emissions has always been prioritized in the global scale, particularly with an average 

emission reduction target of 40% for 2015 2025 [1]. As such, the development of 

new energy vehicles has become a global trend. Environmentally friendly electric 

vehicles (EVs) and hybrid electric vehicles (HEVs) have been considered as a 

possible solution to the aforementioned world-wide issues. Many countries have 

announced the future plans (Table 1) to target fuel vehicle withdrawal to encourage 

the development of electric-driven EVs and HEVs. The driving miles, performance, 

service life, and safety of EVs and HEVs are largely dependent on their power 

systems. In particular, lithium-ion power batteries are considered a primary option for 

power battery systems due to their high energy density, high voltage, low 

self-discharge rate, long cycle-life, and specific energy. However, the pressure [2,3], 

vibration [4], and operation temperature [5] of lithium-ion batteries require careful 

consideration for their application in EVs and HEVs. In particular, the 

charge discharge electrochemical reactions are significantly dependent on the 

operating temperature, which in turn directly affect the power battery electrochemical 

performance and heat generation behavior for reliability and safety considerations. In 

general, lithium-ion batteries operate within an optimum temperature range of 

20oC 40oC and at a temperature uniformity of 5oC [6]. However, lithium-ion power 

battery heat dissipation is difficult during continuous temperature increase and heat 

accumulation due to a lack of efficient dissipation approaches, which in turn 

aggravate  the electrochemical reactions. As a result, thermal runaway (TR), 

especially in abusive conditions (Fig. 1), produces flame, fire, and explosive accidents 

[7]. Recent TR-induced accidents are described in Table 2. There are higher chances 

of executing TR scenarios during stressful and abusive battery operations, such as 

operating at high discharge rates, high ambient temperatures (>40°C), and under 

thermal, electrical (excessive charging and discharging), and mechanical abuse 

conditions. Therefore, the development of a high-efficiency, scientific, and 

appropriate battery thermal management system (BTMS) is crucial to produce the 
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desired performances. Particularly, the following functions must be met: 1) accurate 

monitoring and measuring of battery operating temperatures in real time; 2) efficient 

ventilation and heat dissipation of high-temperature battery packs; 3) rapid heating of 

low-temperature battery packs; 4) continuous maintenance of specified operation 

temperature range; and 5) improved the uniform temperature distribution across the 

battery cells. 

Table 1  

Future plans to ban the sale of traditional fuel vehicles [8-10]  

Countries  Detailed time / year Specific target 

France 2040 A blanket ban on the fuel 

vehicle sale 

United Kingdom  2040  A complete ban on the sale of 

traditional diesel-powered cars 

Germany  After 2030 Banning the sale of traditional 

internal combustion engine 

cars 

India  2030 Banning the sale of 

conventional fuel cars 

Holland  2025 Banning the sale of 

conventional fuel cars 

Norway  2025 Banning the sale of 

conventional fuel cars 

China  2040 Banning the sale of 

conventional fuel cars 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



7 
 

 

Fig. 1. Schematic of lithium-ion battery TR mechanism under different abusive conditions [7]. 

 

Table 2  

Selected lithium-ion battery TR mechanism-induced severe accidents  

Date of accident Location Source of accident 

January 6, 2016 Norway Tesla Model S suddenly fired when 

charging in the charge station [11] 

August 17, 2016 Biarritz, France Tesla Model 90D suddenly fired when 

testing driving [12] 

September 27, 2017 
Newman Company, 

Shenzhen City, China 

Short circuit-induced spontaneous 

combustion of stored batteries in a 

warehouse [13] 

May 12, 2018 Florida, USA Tesla Model S resulted in fire accidents 

after collisions [14] 

April 7, 2019 Hangzhou, China Battery spontaneously ignited and 

occurred propagation during the 

charging process [15] 

July 18, 2019 Beijing, China Batteries suddenly ignited during the 

rest-time period [16] 

June 11, 2019 Daly City, California, USA Lithium-ion battery-induced fire during 

charging, which ignited surrounding 

combustible materials and spread the 

fire accident [13] 

May 8, 2020 Dongguan City, China Lithium-ion battery-induced 
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spontaneous combustion of car, 

resulting in a fire [13] 

August 16, 2020 Taiyuan City, China Lithium-ion battery-induced 

spontaneous combustion of electric car 

during charging [13] 

November 6, 2020 Haikou City, China EC 30-type electric car suddenly began 

to smoke and burn [17] 

November 9, 2020 Pingxiang City, China New energy vehicle burst into flames, 

accompanied by large amount of smoke 

and explosion [18] 

November 22, 2020 Shenzhen City, China New energy car suddenly sent up 

smoke, which spread the fire and 

resulted in an explosion [19] 

At present, the development of an optimal BTMS approach has been based on 

air-based cooling [20,21], liquid-based cooling [22-24], and phase change material 

(PCM)-based cooling [25-27]. Cooling methods can also be categorized as active 

cooling or passive cooling based on their energy consumption [28]. In particular, 

active cooling, such as air-conditioning refrigeration and refrigerator cooling, defines 

cooling methods with additional energy consumption costs. In contrast, passive 

cooling, such as natural convection cooling and PCM-based cooling, define cooling 

methods that do not consume energy. In general, air cooling BTMSs can be easily 

installed and exhibit low production and maintenance costs, and are thus the most 

commonly applied approach in EVs/HEVs [21]. However, with the ascension of the 

energy density and driving miles, this system cannot fully meet the cooling demand, 

especially with maintaining temperature homogeneity. Although the liquid cooling 

strategy possesses higher heat transfer coefficients due to the excellent thermal 

conductivity of the coolant, the system is very complicated, expensive, difficult to 

maintain, and has a risk of experiencing short circuits from the leakage of the cooling 

medium [23]. In contrast, Al-Hallaj and Selman proposed a PCM-based BTMS in 

2000 for the heat generation management of eight 100 Ah cells as an alternative heat 

dissipation technique. The PCM BTMS does not have additional energy requirements, 

making it appropriate for simple filling systems [29]. In addition, PCM is able to 

absorb/release abundant latent heat during phase transition stage, thereby producing 

somewhat constant temperature distributions and controlling the temperature rise (Fig. 
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2). However, the primary PCM technology bottleneck, specifically its low thermal 

conductivity, impedes the heat transfer rate and lowers the cooling capacity during 

storing/releasing heat. Hence, many research efforts contributed to the promotion of 

the thermal conductive coefficient through diverse optimization and modification of 

PCM [30,31]. Rehman et al. [32] reported PCM heat transfer changes with porous 

materials/foams, specifically enhancements in its thermal conductive performance. 

Malik et al. [33] examined EVs and HEVs and reviewed its use of PCM/carbon 

nanotube (CNT) materials. Jaguemont and Mierlo [34] reported prospective BTMS 

through various passive and active cooling strategies, and traditional BTMS 

development trends. Liu et al. [35] reviewed various systematic techniques to increase 

virgin PCM thermal conductivity. Chen et al. [36] examined the relationship between 

various PCM thermal management strategies and power lithium-ion battery cooling 

performances, particularly with regards to improving its thermal conductivity 

performance. Previous research has focused on enhanced PCM heat transfer. However, 

only PCM thermal conductivity enhancement is insufficient considering PCM applied 

in EVs and HEVs at various operating conditions. PCM mechanical strength, 

leak-proof, electrical insulation, and flame retardancy significantly affect lithium-ion 

battery safety, all of which must fulfill high EV and HEV standard demands. To our 

best knowledge, the aforementioned several properties have been minimally reported. 

Therefore, this review organized the thermal management of PCM for high 

energy-density lithium-ion batteries as follows: 1) classification of power lithium-ion 

batteries and heat production/transfer principles; 2) categories for PCM and increased 

key performances (thermal conductivity, mechanical strength and flame retardant 

performance); 3) detailed application of PCM in the BTMS in the modules/packs; and 

4) current challenges, prospective PCM-based BTMS development approaches and 

future directions. This overview aims to cohesively reference all current and future 

PCM properties for PCM loading application and commercialization in new energy 

vehicles. In addition, this review aims to provide in-depth, systematic engineering 

guidance for PCM-based BTMS. 
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Fig. 2. Working principles of BTMS using PCM: (a) heat transfer mechanism of PCM-based 

cooling technology and (b) temperature-controlling and temperature-balancing theories of the 

phase change composite (PCC) BTMS [25,27].

2. Power lithium-ion batteries

2.1. Power lithium-ion batteries categorization

Electricity-driven vehicles rely very significantly on lithium-ion batteries. 

Lithium-ion batteries can be distributed across three categories based on their external 

shape and appearance: (1) cylindrical, (2) prismatic, and (3) pouch (Fig. 3). These 

batteries have four primary components: (1) a positive electrode (cathode); (2) a 

negative electrode (anode); (3) an electrolyte; and (4) a separator [37,38]. In general, 

the anode is composed of carbon such as graphite or silicon-carbon composites, 

whereas the cathode is composed of a lithium oxide composite. A lithium salt is 

generally dissolved in organic solvents, such as ethylene carbonate, diethyl carbonate, 

or dimethyl carbonate, to produce the electrolyte, which stimulates ion transport 

between the anode and cathode [39,40]. The separator mainly controls electron

transport to minimize short circuiting between the positive and negative poles [41]. 

Cylindrical cells, such as 18650 (diameter=18 mm; length=65 mm), 26650, 32650,

and 42110, have electrodes distributed as layers spiraling around ,

is stuffed into a metal shell (Fig. 3d). At present, standard and typical cylindrical cells 

are regarded as the most commonly used assembly for battery module/packs because 
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of their mature technology, excellent consistency, good mechanical stability [42-44]. 

However, these cells still exhibit thermal safety issues that must be resolved carefully. 

For example, the power systems of Tesla Roadster, which are composed of 6831 

18650-type cells, and Tesla Model S with 7104 cells, are all designed with an efficient 

BTMS to guarantee a high heat dissipation efficiency. Compared with cylindrical cells, 

the assembly can also be applied in rigid prismatic cells but is inserted into 

a cuboid can (Fig. 3e). However, prismatic cells are able to more easily disperse heat 

during discharge due to their large heat dissipation area [45,46]. Enough space can be

provided when utilizing rectangular cells in EVs/HEVs. In contrast, pouch cells have

stacking multiple-layered anode separator cathode slice structures that are placed and 

sealed in electrolyte pouches (Fig. 3f). The none-rigid feature is beneficial for 

decreasing the weight and increasing the high energy density and packaging efficiency, 

although this generates additional mechanical destructive properties and swelling

[47-49]. Power battery modules/packs constituted by the cylindrical/prismatic cells 

will be matched with different PCM forms, which will be concretely elaborated in 

Section 4.

Fig. 3. Commonly used power lithium-ion batteries and their internal structure: (a) cylindrical

cells, (b) rigid prismatic cells, (c) pouch cells, (d) cylindrical lithium-ion cell structure, (e) 

prismatic lithium-ion cell structure, and (f) lithium-ion cell pouch structure [37,38].
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    Lithium-ion power battery electrochemical patterns can be categorized as 

lithium-iron phosphate (LiFePO4, LFP), lithium manganese oxide (LiMn2O4, LMO), 

lithium cobalt oxide (LiCoO2, LCO), lithium nickel cobalt aluminum (Li(NiCoAl)O2, 

NCA), and lithium nickel cobalt manganese (Li(NixCoyMn1-x-y)O2, NCM) [50]. The 

overall performance comparison of the aforementioned lithium-ion batteries is listed 

in Table 3. At present, lithium-ion batteries with LFP and ternary electrochemical 

patterns have been the primary technological route choices of designing the power 

system. The ternary power batteries have relatively high energy and power densities, 

which aggravates the TR given its material crystal structure and chemical reaction 

during lithium-ion insertion and extraction processes under heat-intensive conditions 

[51]. Therefore, the development of an appropriate BTMS technique is of the essence 

to optimize heat output of lithium-ion batteries (Section 2.2) and to enhance their 

lifespan, safety performance, and driving miles. 

Table 3  

Trade-off analysis of the mainstream lithium-ion power batteries [52,53]. 

Cathode 

chemistry 

LCO LMO LFP NCM NCA 

Voltage (V) 3.7 3.8 3.2 3.6 3.7 

Specific 

energy 

(mAh/g) 

150 120 150 160 170 

Energy 

density 

(Wh/kg) 

120-150 105-120 130 160-220 220-250 

Cycles life 500 300 2000 1000 1000 

Thermal 

Safety 

Poor  Excellent Excellent Preferable Poor 

Operating 

temperature 

range/oC 

-20 60oC -20 60oC -20 60oC -20 55oC -20 60oC 

Cost Expensive Cheap Cheap More 

expensive 

Low 

Advantages Stable 

charge/discharge 

properties and 

simple technology 

Low cost 

and 

admirable 

safety 

High 

security, 

environment

ally friendly 

and longer 

Good 

circulation 

Eminent 

low-tempera

ture property 

and high 

energy 
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service life density

Disadvantage

s 

Expensive Co and 

reduced cycle life 

Low energy 

density 

Poor 

low-tempera

ture 

performance 

and 

discharge 

voltage 

High cost of 

Co 

Poor 

high-temper

ature 

property and 

high 

technical 

barrier 

2.2. Lithium-ion battery heat generation/transfer mechanisms 

2.2.1. Heat production mechanism 

The embedding and disembedding electrochemical reaction processes of Li+ can 

be interpreted as follows: Li+ is embedded from the positive to negative directions 

during charging and, in contrast, is embedded from the negative to positive directions 

during discharging (Fig. 4). This reversible electrochemical process does not damage 

the original internal lithium battery crystal structure.  

 

Fig. 4. Lithium-ion power battery working principle. 

A chain of electrochemical reactions proceeds during charging/discharging to 

generate heat. As known, lithium-ion battery heat generation is highly dependent on 

the temperature (Table 4).  

Table 4  

Lithium-ion power battery heat generation under different temperature ranges. 
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Temperature range /oC Chemical reactions Heat generation/J·g-1 Mechanism analysis 

110 150 LixC6 + 350 Rupture of passivation 

film 

130 180 Melting of PE 

diaphragm 

-190 Heat absorption 

160 190 Melting of PP 

diaphragm 

-90 Heat absorption 

180 500 Decomposition of 

Li0.3NiO2 and 

electrolyte 

600 Releasing oxygen 

temperature 200oC 

220 500 Decomposition of 

Li0.45CoO2 and 

electrolyte 

450 Releasing oxygen 

temperature 230oC 

150 300 Decomposition of 

Li0.1MnO4 and 

electrolyte 

450 Releasing oxygen 

temperature 300oC 

130 220 Solvent and LiPF6 250 Lower energy 

240 350 LixC6 and PVDF 1500 Violent chain growth 

660 Aluminum melting -395 Heat absorption 

Lithium-ion battery heat production is primarily divided into three heat 

components: reversible chemical reaction heat, Joule heat, and polarization heat. In 

general, cell heat generation is an unsteady, internal process, as described by Eq. (1). 

According to Eq. (2), the heat generation in the battery is mainly comprised of the 

total heat generation rate (q), internal reaction heat (qreaction), increased heat 

(qheat-capacity), heat caused by the phase transition process inside the cell (qphase-change), 

and additional heat rate (qmixing) caused by the uneven concentration of cells. Uniform 

cell concentration under ideal conditions is assumed during normal charging and 

discharging, such that inner-cell phase transitions can be deemed negligible. Therefore, 

the Eq. (2) can be simplified as Eq. (3): 

 ,               (1) 

where 

= density of the power lithium-ion cell, kg/m3, 

C= specific heat capacity of the lithium-ion cell, J/kg K, 

q= heat production per unit volume of the cell, J/m3, 

 ,        (2) 
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 ,          (3) 

 ,                                          (4) 

where 

Q=total heat generation of the cell, J, 

I = total current of the cell, A, 

U = open-circuit voltage, V, 

E = electromotive force, V, 

T = the average temperature of the cell during the discharge process, oC, and 

I(U-E) =I2R, including the Joule heat caused by internal resistance of the lithium-ion 

cell and the polarization heat caused by mass transfer loss, J; and R is the total of the 

polarization resistance and Joule resistance, .  

2.2.2 Heat transfer approaches  

    Lithium-ion power battery electrochemical reactions exhibit three primary heat 

transfer modes: heat conduction, heat convection, and heat radiation. Practical 

application generally only follows the first two transfer modes and ignores heat 

radiation. The detailed calculations are shown as follows: 

(1) Heat conduction includes the heat transfer between the materials within the cell, 

such as the electrodes, the electrolyte, and current collectors. The cell can be 

regarded as an entirety, and the heat is dissipated from the inside to the surface 

cell.  

 ,                                               (5) 

where 

Q1 = heat generation caused by heat conduction, W, 

A = heat transfer area, m2, 

= thermal conductivity coefficient, W/(m K), and 

dt/dx= temperature gradient. 

(2) Heat convection refers to the exchanging heat of the cell surface with the 

surrounding cooling medium, such as water or air.  
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2Q hA t ,                                           (6) 

where 

Q2 = convection-induced heat generation, W, 

h = surface heat transfer coefficient, W/(m 2·K), 

A = surface heat transfer, m2, and 

t= cell temperature difference, oC. 

 

3. Phase change materials (PCMs) 

3.1. Classification and function of PCMs 

PCMs are capable of storing/releasing the latent heat during 

solidification/melting phases. Furthermore, PCMs are able to maintain a constant 

operation temperature given their high latent heat.  

According to phase change temperature range, PCMs can be divided into 

high-temperature range with melting points ranging from 120oC 850oC and a 

low-temperature range from 0 120oC. Generally, solar power generation, 

low-temperature engines, and low-power electricity stations perform at higher 

temperatures. While the latter is normally used in recycling waste heat recovery, solar 

energy storage and battery thermal management fields. PCMs are categorized into 

four groups based on physical substance changes during phase transition: solid solid 

PCM (SSPCM), solid liquid PCM (SLPCM), solid gas PCM (SGPCM), and 

liquid gas PCM (LGPCM). SSPCMs possess the unique advantages of small volume 

change, low subcooling, non-corrosion, high thermal efficiency, long lifespan but low 

latent heat, and high cost. SLPCM can be observed in eutectic, organic, and inorganic 

forms. The explicit classifications of SLPCM are summarized in Fig. 5. At present, 

SSPCM and SLPCM, as heat dissipation media, are mainly applied in the BTMS area. 

In contrast, SGPCM and LGPCM are rarely used due to their largely varying gas 

production volumes. Paraffin (PA), an organic PCM, has been widely applied in the 

battery thermal safety field due to its appropriate melting temperature range, high 
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latent heat (Table 5), stable and chemically inert properties, self-nucleation, minimal 

super cooling effect, and cost-effective advantages.  

 

Fig. 5. Classification of SLPCM [36]. 

Table 5  

Thermophysical properties of selected straight chain alkanes. 

Molecular formula Molecular weight Melting point/oC Latent heat/J g-1 

C16H34 226 16.7 236.81 

C17H36 240 21.4 171.54 

C18H38 254 28.2 242.67 

C19H40 268 32.6 - 

C20H42 282 36.6 246.86 

C21H44 296 40.2 200.83 

C22H46 310 44.0 251.04 

C23H48 324 47.5 234.30 

C24H50 338 50.6 248.95 

C25H52 352 53.5 - 

C26H54 366 56.3 255.22 

C27H56 380 58.8 234.72 

 

In terms of the energy storage efficiency, an ideal PCM normally has the 

following merits [54,55]: 1) suitable phase change temperature; 2) higher latent heat; 

3) stable performance; 4) prominent thermal conductivity coefficient; 5) small volume 

expansion rate; 6) non-poisonous, non-corrosion, environmentally friendly, 

non-combustive, and non-explosive; and 7) low cost and excellent processability. The 
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application of composite PCMs, which are largely based on the power battery exterior 

shape, is elaborated in Fig. 6. 

 

Fig. 6. Application forms of the composite PCMs in power systems: (a) fabricated PCM matrix; (b) 

PCC with cylindrical cells; and (c) PCC plates with prismatic cells [56,57]. 

    Although remarkable latent heat and appropriate phase-changing temperature of 

PA, the relatively low thermal conductivity coefficient (0.1 0.3 W/m K) will reduce 

the cooling efficiency and heat transfer rates, which further restricts the application of 

PA-based PCM in BTMS [58]. In addition to poor thermal conductivity, leakage issue 

in the molted form, mechanical strength, flame retardant as well as electrical 

insulation performances are very essential for power lithium-ion batteries 

modules/packs safety considering the practical applications. The improvement of the 

aforementioned characteristics, which will be expounded in the following sections, is 

also of vital significance for the optimization of BTMS from the macro view and the 

research of PCM modification from the micro perspective.  
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3.2. Enhanced pivotal properties of PCM

3.2.1. Thermal conductive performance 

One drawback of PCM is the unacceptably inherent low thermal conductivity 

which prolongs heat storage and releasing time. To address this issue, adding the high 

thermally conductive additives to the base PA such as metal mesh [59,60], metal foam 

[61-65], metallic oxide powders [66,67], expanded graphite (EG) [68-70], carbon 

fiber [71-73], nanoparticles [74-76], and graphene and carbon nanotube (CNT) [77-79] 

is the most promising solution. Additionally, the addition of fins, such as radial fins 

[80] and axial fins [81], is regarded as an effective pathway to solving low thermal 

conductivity issues. The most commonly used fabrication approaches of preparing the 

above high-conductive composite PCMs, but not limited to, are shown as follows: 

physical mixing and dispersing, and compression methods [82,83], vacuum 

impregnation method [84], chemical impregnation method [85], and self-absorption 

method [86]. Wu et al. [87] reported on the composite PCMs preparation and thermal 

conductivity enhancements following a traditional physical mixing. Their 

experimental results presented an increased 

following the addition of 20% EG. Wu et al. [88] employed 

mechanical compression methods to produce copper mesh (CM)/PA/EG composite 

PCMs for a rectangular LiFePO4 power battery pack (16 V/12 Ah) BTMS (Fig. 7). 

Their results exhibited a 

30-fold indicating a lower discharge temperature 

rising rate and faster rest temperature difference-decreasing rate. Zhang et al. [89] 

applied aluminium nitride (AlN) as the high thermal conductive additive via 

traditional physical mixing and dispersive techniques to produce PA/EG/epoxy resin 

composite PCMs (Fig. 8). These modules (3.2 V/33 Ah) were comprised of 30 

18650-type LiFePO4 cells, which exhibited increased thermal conductivity 

coefficients for pure PA to 4.331 W·m 1 K 1 for the composite, 

suggesting enhanced heat conduction performance. Sheng et al. [90] examined 
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PA-based composite PCM-strengthened honeycomb carbon fibers, which enhanced 

their thermal energy storage using vacuum impregnation technology. As shown in Fig. 

9, the carbon scaffolds, composite PCMs preparatory methods and detailed optical 

sample images were described. The composite PCMs exhibited a high thermal 

conductivity of ) at a carbon filler content of 12.8% as well as good 

shape stability. Cao et al. [91] reported on enhanced PCM performance via 

three-dimensional (3D) printing with prickly honeycomb carbon fibers for improved 

rectangular ternary lithium-ion battery thermal management. The composite were 

prepared through mechanical hot compression technique (Fig. 10), and the thermal 

conductive property came to the highest value of 5.723 W/(m K). Arshad et al. [92] 

studied the thermal conductivity changing rules of metallic-oxide (TiO2, Al2O3 and 

CuO)-based mono and hybrid nanocomposite PA-based PCMs for thermal 

management systems by conventional mixing and stirring method. According to the 

results, the thermal conductive performance was largely temperature-dependent and 

the samples with Al2O3 and CuO hybrid additives exhibited a thermal conductivity of 

0.48 oC. Heyhat et al. [93] examined the battery thermal management 

of a 18650 lithium-ion cell with thermal energy storage composites of PCM, metal 

foam, fins, and nanoparticles (Fig. 11). According to the results, a porous-PCM 

composition exhibited the highest heat transfer effect compared with the nano-PCM 

and fin-PCM samples, exhibiting a 4oC 6oC battery mean temperature reduction 

compared with pure PCM. Qu et al. [94] reported on the thermal conductivity of 

PA-based shape-stabilized PCM with hybrid EG-multiwalled CNT (EG-MWCNT) 

and EG-carbon nanofiber (EG-CNF) fillers. Hybrid carbon nano (CN)-additive  

fillers PA-high density polyethylene (HDPE) SSPCMs exhibited increased thermal 

conductivities by 60% and 21.2%, respectively, compared with the single CN additive 

EG. In addition, the PA-HDPE/EG-MWCNT composite PCMs presented better 

thermal conductivity properties compared with PA-HDPE/EG-CNF. Kiani et al. [95] 

carried out the increased thermal conductive property analysis of copper-foam 

enhanced PCMs when utilized in the lithium-ion BTMS. The porous structure largely 

affected the conductive heat distribution, producing an effective thermal conductivity 
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Similarly, Zheng et al. [96] optimized a lithium-ion BTMS by 

generating a fin-enhanced PCM system. Compared with finless systems, this 

enhanced PCM/fin system more effectively cooled the power system. Ping et al. [97] 

lowered the prismatic battery module surface temperature by 36.4% compared with 

the system with pure PCM by producing a fin-enhanced PCM cooling system. Wang 

et al. [98] combined PCM and fins for the enhanced cooling efficiency of the battery 

packs. This coupled structure was able to withstand a high heat density and extend the 

PCM operation time. Weng et al. [99] added a specific branch-structure fin PCM 

BTMS with heat transfer channels. Inspired by the LiFePO4 battery module (16 V/12 

Ah), Wu et al. [100] produced a rectangular stabilized PCM/EG composite plate 

coupling with heat pipe (HP) (Fig. 12), which enhanced the PA/EG composite thermal 

 The composite PCMs with enhanced 

thermal conductivity maintained higher temperature within 50oC and lowered the 

temperature fluctuation under the cycling conditions. Nomura et al. [101] introduced a 

high thermal conductivity PCM with a metal-stabilized carbon-fiber network prepared 

by a hot-pressing method. The results indicated improved thermal conductivity with 

increasing indium volume fraction. Samimi et al. [102] investigated enhancement 

dependence on PA carbon fiber loading on thermal conductivity, which exhibited 

minimum and maximum thermal conductivity enhancements of 85% and 155%, 

respectively (average of 105%). The participation of high conductive promoters in 

PCM were expected to improve the thermal conductivity coefficient, leading to a 

higher heat transfer/dissipation rate. However, the addition of fillers could generally 

result in lowered latent heat due to lowered PA substrate mass [103,104]. For example, 

Li et al. [105] loaded EG and silica gel into PA to produce a composite PCM, wherein 

the experimental results exhibited PA, PA/EG, and PA/EG/SiO2 latent heats of 275 J/g, 

131.9 J/g, and 112.8 J/g, respectively. Notably, excessive additives can affect the 

fluidity and uniformity of the whole PCM, thereby resulting in agglomeration and 

significantly lowering the composite heat storage capacity and thermal conductivity 

properties [106]. Therefore, in the selection of additives, an appropriate mass ratio is 

vital for the overall performance of the composite to achieve the optimal balance 
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between thermal conductivity and latent heat.

Fig. 7. Promoted thermal-conductive PA/EG composite PCMs [88].

Fig. 8. PA/EG/epoxy resin composite PCMs with AlN as additives: (a) specific preparation 

process and (b) thermal conductivity property changes [89].

Fig. 9. Sisal-derived carbon scaffold and PA-based composite PCMs construction [90].
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Fig. 10. PA/EG/carbon fiber/ HDPE composite PCMs: (a) specific preparation procedures and (b) 

thermal conductivity coefficient changes with different carbon fiber mass fractions [91].

Fig. 11. Schematics of BTMS units with (a) pure PCM, (b) PCM/nanoparticles, (c) PCM/fins, and 

(d) PCM/metal foam [93].
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Fig. 12. PA/EG BTMS coupling with HP for the square batteries modules [100]. 

 

3.2.2. Structural stability 

Regarding the PA-based PCM, much research work has been done to improve 

the thermal conductivity through various effective approaches. However, structural 

stability problems, such as the execution of long-term/harsh working EV/HEV cycles, 

poor mechanical properties, phase change component precipitation/leakage, and 

composite PCM matrix deformation (mechanical molding- or repeated 

melting/solidifying-induced PA/EG module cracking) (Fig. 13) [107,108] were 

generally ignored in practical applications, thereby severely restricting the utilization 

in the BTMS. Hence, the generation of a robust and strong PCM is beneficial for the 

BTMS. Three potential methods can be applied to address the aforementioned issues: 

(1) traditional packaging of closed tanks or containers; (2) shape-stabilized PCM 

construction, and (3) microencapsulated phase change materials (MicroPCM) (Fig. 

14). The conventional solution produces a relatively complex structure that requires 

additional cost and weight, resulting in reduced lithium-ion battery module/pack 

energy density. One particular strategy, namely, the generation of specific 

shape-stabilized PCM with pure PA and supporting matrices, can address these issues. 

Shape maintenance and the leakage elimination of form-stable composite PCM during 

phase change periods can be achieved through the use of supporting polymer 

substrates such as HDPE, low-density polyethylene (LDPE) [109-111], polyethylene, 

and epoxy resin [112-115] as well as plastic/metallic skeletons and carbonaceous 

additives. In particular, Chen et al. [116] impregnated 

styrene-b-(ethylene-co-butylene)-b-styrene (SEBS) /PA/HDPE form-stable PCMs into 

metal foam to generate novel PCC for thermal energy storage. According to their 

experimental results, composite PCMs only exhibited 2.39% PA loss in PA from 

seepage after a 15 h thermal cycle test. Rao et al. [106] produced PA-based composite 

PCMs coupling with copper particles and copper foam, which improved the 
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mechanical strength. Pan et al. [117] enhanced the mechanical properties of a BTMS

by applying cut copper fiber sintered with skeleton/PA composite PCMs. MicroPCM

are tiny capsules with specific core-shell structure, such that the PCM core 

surrounded by the shell prevents PCM leakage during phase transition, finally 

enhancing the heat transfer area and controlling PCM volume change. At present, 

microencapsulated technology has been applied in organic and inorganic PCMs. In 

this part, the advances of the form-stable and microcapsule PA-based composite 

PCMs were mainly discussed. 

Fig. 13. Structural stability problems of PCM matrix during preparation and testing.

Fig. 14. Schematic diagram of MicroPCM.

Inspired by the epoxy matrix, Wang et al. [118] produced a novel-shaped

stabilized PA/EG composite PCM (Fig. 15), which produced uniformly distributed PA 

in the polymer matrices without any leakage due to the flexible encapsulated scaffold 
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structure and highly tight network morphology caused by epoxy resin. Lv et al. [119] 

developed a PA/EG composite PCM with LDPE-enhanced coupled with low fins for a 

hybrid BTMS. The results indicated enhanced mechanical properties, less melted PA, 

and lowered PCM leakage following the introduction of LDPE. The composite PCM 

exhibited an improved bending strength, impact strength, and shore hardness that 

were 15.4-, 1.1-, and 3.5-fold higher than those of PA/EG, respectively (Fig. 16). 

According to Zhang et al. [120], enhanced AlN power was observed with 

PA/EG/epoxy resin composite PCMs. The 20 wt% AlN-enhanced composite PCMs 

exhibited an increased tensile strength, bending strength, and shock strength of 

164.2%, 67.6%, and 38.1%, respectively. In addition, 4.59% lower precipitation rates 

were observed (Fig. 17). Similarly, Lv et al. [110] enhanced the battery thermal 

management by producing novel nanosilica-enhanced PCM with anti-leakage and 

anti-volume-changes advantages. Their nanosilica pores were able to readily absorb 

liquid PA, thus lowering composite PCM module PA leakage, inhomogeneity, and 

volume changes. Grosu et al. [121] reported that hierarchical macro-nanoporous 

metals were able to minimize leakage for high-thermal conductivity shape-stabilized 

PCM in BTMS. According to the results, the hierarchical trimodal macro-nanoporous 

metal (copper) exhibited superior antileakage due to enhanced nanopore capillary 

forces. With respect to the MicroPCM, Liu et al. [122] prepared and characterized 

sodium thiosulfate pentahydrate/silica MicroPCM for thermal energy storage. The 

testing data demonstrated a maximum MicroPCM encapsulation ratio of 94.65%, 

showing great potential for use in thermal energy storage applications. Tao et al. [123] 

developed a composite PCMs possessing a dual-level packaging structure (Fig. 18). 

PCM shape-stability was a result of its dual-level packaging design given the porosity 

of graphite and epoxy resin. As such, Xiao et al. [124] enhanced the battery thermal 

management by customizing a SSPCM design with a cross-linked polymeric structure 

and ultra-high thermal stability. The results indicated the strengthened volume 

stability and heat tolerance (up to 250oC) while also minimizing deformation and 

leakage for practical BTMS application (Fig. 19).  
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Fig. 15. Mechanical strengths variations: (a) shock and tensile strengths at break and (b) shock 

and bending strengths at break [118].

Fig. 16. Bending strength and leakage variations: (a) bending strength and (b) mass changes with 

time [119].

Fig. 17. Mechanical strength variations of different proportions of AlN powders in PCC: (a) 

tensile, bending strength, and shock strength at break and (b) leakage rate changes with testing 

time [120].
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Fig. 18. Structure schematic of dual-level packaged PCMs at higher temperatures [123]. 

 

Fig. 19. Digital photographs of the PCC: (a) SLPCM and (b) solid-solid polymer PCM 

(SSPoPCM) modules after cycling [124]. 

3.2.3. Flame retardant property  

Based on the above analysis in Section 3.2.2, the development of form-stable 

composite PCMs can inevitably enhance the mechanical strength and relieve any 

leakage phenomenon. However, composite PCMs combining pure PA with polymeric 

substrate are inflammable at higher temperatures given their particular chemical 

compositions. Having an overall power system, especially for EVs/HEVs, with flame 

retardant PA-based composite PCM is essential for thermal safety. As such, 
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minimizing flammability can be achieved by incorporating PCM with flame retardant 

additives or insulating flame retardant interface materials. Particularly, halogen-free 

flame retardants are widely employed to address life safety and environmental 

pollution concerns. The methods to increase the flame retardant property of PA-based 

composite were systematically summarized in the section. Previous literature on 

PA-based MicroPCMs and form-stabilized (FS) products for thermal energy storage 

are presented in Table 6 [125].  

Table 6  

Literature reviews on fire-retardant PCC applications 

PCM Type  Form/shell Fire retardant Result Referen

ce 

PA MicroPCM 
Gelatin and 

Na-alginate 

Clay-nano particle 

shell material, 

introduced during 

microencapsulation 

Ignition 

time of 

treated 

textile 

increased 

by 

25% 50

% 

[126] 

PA MicroPCM Polymetacrylic 

acid-co-ethyl 

methacrylate 

PCM-diethyl 

ethylphosphonate 

(DEEP), introduced 

during 

microencapsulation 

6 9% 

increase 

in treated 

foam 

limiting 

oxygen 

index 

(LOI)  

[127] 

PA or fatty 

acid 

MicroPCM Melamine-formaldeh

yde resin, gelatin, 

polyurea, 

polyurethane, 

urea-formaldehyde 

resin, and 

combinations 

Boric acid, sodium 

carbonate, and 

sodium silicate 

applied on the 

surface of the 

microcapsule after 

microencapsulation 

NA [128] 

PA FS HDPE Nine Mg(OH)2, 

Al(OH)3, 

ammonium 

polyphosphate 

(APP), PER, and 

EG formulations 

NA [129] 
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PA FS-PCM HDPE 15-20-25 

APP+PER+melamin

e (2:1:1) wt%; EG 

NA [130] 

PA FS-PCM HDPE APP, PER, Fe 40% 56

% lower 

heat 

release 

rate 

(HRR)  

[131] 

PA FS-PCM HDPE APP, EG, zinc 

borate 

HRR 

decreased 

by 60% 

[132] 

PA FS-PCM HDPE APP, EG, zinc 

borate 

HRR 

decreased 

by 

60% 68

% 

[133] 

n-Octadeca

ne 

Nano 

encapsulate

d 

Melamine-formaldeh

yde 

Phosphorus nitroge

n containing 

diamine (PNDA) 

Peak 

heat 

release 

rate 

(PHRR) 

decreas

ed by 

32.8% 

 

Total 

heat 

release 

(THR) 

decreas

ed by 

30.3% 

Total 

smoke 

rate 

(TSR) 

decreas

ed by 

18.6% 
 

[134] 

n-Octadeca

ne 

Nano 

encapsulate

d 

Poly(methylmethacryl

ate) 

Diethyl 

bis(2-hydroxyethyl 

acrylate)amino 

methylphosphonate 

pHRR 

decreas

ed by 

39.7% 

 [135] 
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Total 

heat 

release 

(THR) 

decreas

ed by 

18.4% 

TSR 

decreas

ed by 

12.2% 

LOI 

increase

d from 

19.5% 

to 

25.1% 
 

PA Shape 

stabilized 

- Acrylic resin/EG; 

alkyd resin/EG; and 

epoxy resin/EG 

pHRR 

decreased 

by 

62% 84

% 

[136] 

PA Shape 

stabilized 

HDPE and 

styrene-butadiene-styr

ene copolymer 

Organomontmorillo

nite, EG 

pHRR 

decreased 

by up to 

72.7% 

[137] 

Paraffin 

chlorinated 

paraffin 

FS-PCM HDPE EG, antimony 

trioxide 

pHRR 

decreased 

up to 

50% 

[138] 

PA (70%) FS-compos

ite 

Olefin block Acrylic resin/EG, 

glass fibers 

pHRR 

decreased 

by 58.8% 

[139] 

PA FS-PCM ER PEPA-TMA pHRR 

decreased 

by 45%, 

LOI 

reached 

29.8% 

[131] 

 

Zhang et al. [120] produced an FS flame retardant PCC comprising PA, EG, APP, 

red phosphorus (RP), and epoxy resin for power BTMS. The proposed composite 
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PCMs exhibited an APP/RP ratio of 23/10 for its optimum flame retardant 

performance based on macro- and micro-level investigations. Kazanci et al. [125] 

applied the halogen-free flame retardants ortho-phosphoric acid and pentaerythritol 

onto PA and a polystyrene shell to generate fire-resistant MicroPCMs (Fig. 20), which 

enhanced the flame retardancy and thermal energy storage. Huang et al. [139] 

combined modified glass fibers with FS PCM as a means to increase flame retardancy. 

It was indicated that the modified glass fibers could further improve the flame 

retardancy of PCM, thereby achieving a V-0 burning rating. Accompanied with the 

results of the cone calorimeter test, the PHRR of the flame retardant FS composite 

PCMs dropped by 58.8%. In addition, the combustion rate significantly slowed down 

due to the formation of modified glass fiber-induced carbon layer protection. Weng et 

al. [140] designed a flame-retarded aerogel felt/PCM coupling structure for the power 

battery module. Their experimental data demonstrated that the aerogel felt effectively 

inhibited the combustion flame and delaying battery TR. Ma et al. [141] improved the 

flame retardant curing agent PEPA-TMA by applying this to the high-performance 

flame retarded PA/epoxy resin FS PCM. The PCM fulfilled the UL 94 V-0 test 

requirements at an intumescent flame retardant (IFR) loading of 24 wt%, which 

enhanced the charring capacity and flame retardancy. Li et al. [142] applied a char 

forming agent (CFA) and the flame retardant APP to mixed PA/polypropylene (PP) 

PCMs. The combination of the CFA and APP largely enhanced the charring ability, 

such that PCM passed the UL-94 V-0 rating with an APP/CFA loading of 30%. The 

PCMs exhibited promoted flame retardancy given the obvious decrease in PHRR, 

THR, and SPR. Zhang et al. [143] investigated metal-thermal interactions as well as 

PA/IFR flame retardancy. According to their results, PA/IFR system exhibited a higher 

char yield with the metal, thereby improving the flame retarded performance and IFR 

flame retardant efficiency of PA. Zhang et al. [144] enhanced the IFR flame retardant 

efficiency through the generation of a flame retardant shape-stabilized PCM that was 

composed of PA, HDPE, EG, and IFR, as evinced by their presented flame retardant 

mechanism for PCM. Zhang et al. [145] examined the dependence of the chlorinated 
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paraffin (CP) and antimony trioxide (AT) thermal properties on EG, to which the 

results indicated more high-temperature PA/HDPE/CP/AT hybrid char residue, 

indicating improved CP/AT flame retardant efficiency following EG participation. 

Song et al. [146] prepared and examined EPDM-, PA-, nano-magnesium hydroxide-, 

and RP-based flame retardants form stable PCMs. Their results showed that the 

addition of nano-MH and RP increased the amount of char residuals at 700oC, thereby 

improving the flame retarding property. The thermal safety of power system was 

significantly dependent on the flame retarded PA-based composite PCM. However, 

focus has been placed on PA-based PCM thermal conductivity enhancements instead 

of its structural stability and flame retardancy. Hence, in the development of PCM, 

these previously dismissed properties should be of concern in consideration of 

practical utilization .  

 

Fig. 20. PA-based MicroPCM production using fire-resistant additives [125]. 

 

4. Application of PCM in BTMS 

4.1. Pure PCM thermal management system  

After analyzing the main property (thermal conductivity, structural stability, and 

flame retardancy) promotion methods of PCMs in Chapter 3, the application of 

enhanced PCMs in BTMSs and thermal safety will be summarized in this section. In 

general, the BTMS undergoes the PCM cooling method given its low cost, simplicity, 

and high cooling efficiency. The PCM-based BTMS has been increasingly used due to 
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its distinguished abilities to control the temperature and stretch the temperature 

distribution without the need for additional energy (passive cooling). For example, 

Karimi et al. [147] reported on the cooling performance of a typical cylindrical 

lithium-ion battery that was enhanced by applying PA-based PCM composites with a 

metal matrix and nanoparticles, wherein significant maximum temperature reductions 

of up to 70% were observed. Similarly, Kizilel et al. [148] investigated the BTMS 

cooling performance with PA/EG composite PCMs within the lithium-ion battery 

module, to which the results performed a constant maximum temperature around 

45°C. The PCM pack exhibited a lowered capacity recession rate of 50% even at an 

ambient temperature of 45°C and a discharge rate of 2.08C-high rate (10 A). In 

addition, the above-mentioned design produced a lower compact pack volume for the 

enhanced complex cooling system, which in turn lowered the total large power weight 

for application, thus enhancing the lithium-ion pack energy density. Wang et al. [149] 

amended the typical 18650 battery module with three types of PCMs, namely, PCM 1 

(pure PA), PCM 2 (EG 20%, PA 80%), and PCM 3 (EG 3%, ER 47%, PA 50%) (Fig. 

21). According to the experimental results, the module for PCM 2 showed its peak 

temperature at 1C, 3C, and 5C discharge rates, which respectively decreased by 10%, 

12%, and 20%, respectively. The PCM 3-based battery module exhibited an 8.36% 

lower maximum temperature as compared to that with PCM 2 following 30 

continuous charging discharging cycles. Wang et al. [150] reported on enhanced 

power cell cooling performances, specifically 26650, 42110, and square cells, 

following the application of copper foam (CF) onto PCM compared with those only 

using pure air cooling. The results suggested improvements in temperature-controlling 

capacity, wherein the peak temperature of the 26650, 42110, and square battery of 

CF/PCM-BTMS was well-maintained below 44.37oC, 51.45oC, and 50.69oC for 

periods longer than those using pure PCM or air. Hussain et al. [65] produced nickel 

foam-PA composite, which significantly lowered the PCM surface temperature. In 

particular, a 31% and 24% temperature reduction were observed at a discharge rate of 

2C compared with using natural air convection and pure PCM. Khateeb et al. [151] 

employed an aluminum foam-PCM composite onto a 13.2 Ah battery pack, which 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



35 
 

exhibited a 5oC lower temperature compared with pure PCM. In comparison, Wang et 

al. [152] reported on the 11.7oC lower battery surface temperature at a discharge rate 

of 2C following the utilization of aluminum foam-PA composites. Zhang et al. [153] 

maintained the temperature of a cylindrical 42110-type lithium-ion battery module 

(36 V/20 Ah) by applying a PA-based PCM composite matrix coupled with CF (Fig. 

22). The results indicated significant improvements in the thermal conductivity, which 

in turn maintained the module peak temperature and maximum temperature difference 

to be 50oC and within 3oC, respectively. Li et al. [154] applied CF-PCM composites 

to characterize the 10 Ah cell surface temperature, to which 29% and 12% lower 

temperature was respectively observed compared with the use of air convection and 

pure PCM mode at a discharge rate of 1C. Qu et al. [155] employed CF-enhanced 

PCM to investigate the passive thermal management of square lithium-ion batteries. 

The experimental results presented 17oC and 30oC lower battery surface temperatures 

following the addition of PCM/CF at discharge rates of 1C and 3C, respectively. 

Previous studies have also reported on various PA/EG composites [156-159]. 

Particularly, Somasundaram et al. [156] applied a PA/EG matrix to investigate the 

heat dissipation performance employing a thermo-electrochemical model, which 

exhibited a 18oC lower temperature at a discharge rate of 5C. Sabbah et al. [157] 

experimentally investigated and simulated the PCM cooling system thermal 

performance under harsh conditions, particularly at a 6.66C discharge rate and 40oC, 

to which a 5% lower peak temperature was observed at a discharge current of 10.0 A. 

Ling et al. [158] investigated various PA and PCM performances through the 

participation of PA/EG composites with BTMS. In particular, PA offered the best 

battery operating temperature given its melting point of 44oC. In addition, a constant 

temperature could be achieved at higher composite densities and higher EG mass 

fractions. Fathabadi et al. [159] utilized PA/EG composites in a passive PCM cooling 

system, to which their results determined that the PCM could control the maximum 

operation temperature below 60oC. Samimi et al. [88] used a composite PA-based 

PCM with carbon fiber in the battery module, to which their experimental data 

indicated a reduction of 15oC. Zhang et al. [160] carried out the relative experiment 
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testing of 42110-type LiFePO4 battery module (48 V/10 Ah) with PA/EG composites 

under different ambient temperature conditions (Fig. 23). The practical loading test 

was also applied to battery pack consisting of four aforementioned modules, to which 

the results exhibited the ability to control the PCM cooling system peak temperature 

under 42oC and maintain a 5oC maximum temperature difference. The peak 

temperature was maintained within 50oC even under intense pulse discharge current 

condition. Azizi and Sadrameli [147] reported on the high-temperature LiFePO4 

battery pack thermal management following the application of a PCM and aluminum 

wire mesh plate composite. A 19%, 21%, and 26% maximum temperature reduction 

was observed at discharge rates of 1C, 2C, and 3C, respectively. Wilke et al. [161] 

applied a composite PCM to postpone lithium-ion battery pack TR propagation, 

which lowered the max temperature by at least 60°C. Rao et al. [162] studied the 

temperature reduction and distribution in the battery pack using PA/CF. At a discharge 

rate of 5C and under ambient temperatures of 29oC and 33oC, the battery module 

exhibited maximum temperatures of 40.89oC and 42.33oC as well as local temperature 

differences of 3.24oC and 4.08oC, respectively. Moraga et al. [163] employed multiple 

PCM layers for the lithium-ion polymer battery module (Fig. 24). A 20.9oC and 

23.2oC lower maximum temperature was observed following the application of two 

different composite PCM designs compared with the module without PCM. Nashei et 

al. [164] investigated a battery pack with three PCM shells with varying 

thermo-physical specifications, to which the results deemed the three-layer cases as 

optimal (lowest battery maximum temperature after 7200 s discharge) given that 

higher PCM thermal conductivity allowed for closer battery placement. Al-Hallaj et al. 

[165] produced a PCM-based system prototype for a passive cooling system for 

lithium-ion batteries in EVs/HEVs. The produced system could be applied in lieu of 

active cooling systems without the need for additional components. Similarly, 

Al-Hallaj et al. [166] reported on a uniform discharge temperature profile using PCM 

in batteries. Talluri et al. [167] enhanced a 3.7 V/16 Ah pouch cell through the 

addition of a PCM cooling system (Fig. 25), of which the experimental results of a 

single battery indicated prominent battery temperature control. Lazrak et al. [168] 
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designed an innovative practical BTMS based on PCM with copper dutch weave 

enhanced and investigated the cooling effect, to which a 5oC lower temperature 

increase and enhanced distribution were observed. Rao et al. [169] numerically and 

experimentally examined the PCM thermal management of ageing LiFePO4 power 

battery, wherein the results indicated that PCM with a 45oC lower melting point 

effectively dissipated heat to produce a maximum temperature below 50oC, which 

significantly lowered the unit temperature difference before PCM melting. Weng et al. 

[140] coupled aerogel felt with flame-retarded PCM to minimize TR thermal 

propagation (Fig. 26). PCM-EG prevented flame combustion and lowered the battery 

module peak temperature, whereas the aerogel felt significantly delayed the battery 

TR. Ouyang et al. [170] monitored the thermal failure propagation of PCM, wherein 

the module wrapped with PCM exhibited failure propagation behavior given the low 

conductivity and diffusivity of traditional PCM. Wang et al. [171] reported on the 

relationship of PCM and TR, the effect on cell module failure propagation for those 

using PA and graphene-enhanced PA, and various battery module burning behaviors. 

The graphene-enhanced PA module more easily propagated given the strong heat 

transfer between adjacent cells. In comparison, the presented PCM modules could not 

effectively prevent TR propagation. Wilke et al. [161] investigated single cell TR 

entrance via nail penetration and its effect on PCM thermal management for 

propagation prevention. According to the results, only packs without PCM fully 

propagated compared with those with PCC (Fig. 27). Although the application of 

traditional rigid PCM matrix/block and plates in BTMS exhibited excellent heat 

dissipation performance, they undoubtedly increased the weight and volume of the 

power system, further decreasing the energy density. Hence, considering the 

lightweight goal, the innovative forms of PCM, such as curved and flexible PCMs, are 

attracting more and more attention [172-177]. Wu et al. [175] applied olefin block 

copolymer (OBC), EG, and PCM highly thermally conductive and flexible PCM (Fig. 

28). Furthermore, they evaluated the thermophysical properties and applied structural 

stability composite PCMs in the battery modules. The produced flexible composite 

film effectively managed the thermal performance by lowering the commercial 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



38 
 

lithium-ion battery working temperature by at least 12oC, even at higher discharge 

rates. Wu et al. [178] applied OBC, PA, and EG into thermally induced flexible PCM 

for innovative battery thermal management, to which the experimental results 

exhibited a flexible PCM-based BTMS maximum temperature of 43.4°C at a 

discharge rate of 2.5C, which was 28.8°C lower than that without PCM. Lower 

temperature fluctuation and long-term PCM latent heat were observed even under 

dynamic stress and charge discharge cycles. Huang et al. [179] developed a flexible 

composite PCM containing styrene butadiene styrene (SBS), PA, and EG. This 

composite PCM was then applied to the lithium-ion polymer pouch battery module 

(Fig. 29) to examine the maximum temperature and temperature difference. The 

maximum temperature was contained below 46°C and a temperature difference within 

4°C was observed during the 5C discharge process. Zhao et al. [180] tested the 

gradient PCMs embedded thin heat sinks, specifically the power battery pack cooling 

and temperature uniformity, to which a 11.2% lower maximum battery temperature 

and a 78.3% lower temperature standard deviation were observed at 600 s. Zhang et al. 

[120] monitored an 18650 ternary battery module, particularly the cooling 

performance of air-cooled, pure PA, and composite flame-retarded PCM with AlN 

(Fig. 30). The fire retardant PCMs exhibited promoted battery module cooling and 

temperature maintenance, leading to a 44.7% lower peak temperature and 30.1% 

lower maximum temperature difference within 1.36oC at a 3C discharge rate for 25oC. 

The temperature was maintained within 5oC even at a 45oC high-temperature 

condition. It is known that with the increase of energy density of lithium-ion power 

batteries, a single BTMS cannot meet the heat dissipation requirement. In addition, 

after long, uninterrupted lithium-ion battery charging discharging cycles, the heat that 

is stored inside the PCM must be diffused in time through secondary heat dissipation 

to maintain the high transfer efficiency and robust PCM BTMS. Thus, the present 

research investigated the use of hybrid heat dissipation systems such as PCM/air, 

PCM/liquid, PCM/HP, and PCM/TE.  
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Fig. 21. Three kinds of composite PCMs in the 18650 cell: (a) battery module composed of

selected cells and PCMs, (b) maximum temperature comparison at a discharge rate of 3.0C, (c) 

maximum temperature comparison at a discharge rate of 5.0C, and (d) maximum temperature 

difference comparison [149].

Fig. 22. Application of PCM/CF composites in cylindrical 42110-type battery module: (a) 

PCM/CF battery module and (b) comparison of maximum temperature at a 5C cell discharge with 

various cooling methods [153].
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Fig. 23. Application of PA/EG composite in cylindrical 18650-type battery module: (a) battery 

module assembly schematic and (b) comparison of air-cooling module and PCM cooling module

maximum temperature test data [160].

Fig. 24. Polymer battery module with PA/EG composite: (a) PCM assembly in battery module, 

and (b) transient comparison of average battery temperature with and without PCM [163].

Fig. 25. Proposed single lithium-ion polymer pouch BTMS [167].
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Fig. 26. Structure and assembly of designed flame retarded PA/aerogel felt battery module [140]. 

 

Fig. 27. Autopsy images: (a c) battery pack without PCM and (d f) battery pack with PCM [161]. 

 

Fig. 28. Battery temperature management: (a) commercial 18650 lithium-ion cells with/without 

composite film wrapped, (b) cell surface temperature evolution at various discharging currents, 

and (c) temperature evolution of battery monomer wrapped with composite film [175]. 
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Fig. 29. Diagram of battery modules with flexile PCM BTMS: (a) battery module without a 

BTMS, (b) battery modules with flexible PCM on both sides of each monomer, (c) temperature 

testing point arrangement, and (d) schematic diagram of the monomer with flexible SBS/PA/EG 

placed [179]. 
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Fig. 30. Various BTMS cooling effects: (a) air cooling mode, (b) PCM heat dissipation mode, (c) 

comparison of peak temperatures (45oC) and (d) maximum temperature difference (45oC) [120].

4.2. Hybrid PCM thermal management system

    The available latent heat escapes following phase change, resulting in 

temperature regulation failure as well as subsequent BTMS failure, particularly under 

abusive and stressful conditions. PCM systems have high thermal energy storage 

capacity but lack of long-term thermal stability. As such, a secondary heat dissipation 

strategy must be applied to actual battery packs for heat storage capacity recovery, 

especially following harsh, repetitive processes. This approach enhances PCM

thermal efficiency and safety, particularly in hybrid PCM systems that are coupled

with traditional air cooling, liquid cooling, TE cooling, and HP cooling.

4.2.1. PCM/air cooling system

The hybrid PCM/air cooling system is regarded as the most common pathway 
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aiming to diffuse the heat in PCMs. Lv et al. [181] applied serpentine CPCM 

(S-CPCM) plates with forced air cooling to produce a PCM cooling structure, which 

commonly has the block-shaped CPCM (B-CPCM) (see Fig. 31). The high shape 

stability S-CPCM plates exhibited a higher surface area and more air flow channels as 

compared to the B-CPCM module, enhancing the overall secondary heat dissipation 

capability. The produced S-CPCM module exhibited a much lower maximum 

temperature compared with that of the B-CPCM module (51.9 vs. 54.2oC) during 

repetitive charging discharging cycles. Jilte et al. [182] reported on BTMS with PCM 

with cell-to-cell air cooling, to which the results presented constant cell temperature 

uniformity (within 0.05°C) at a rate of 2C and within 0.12°C at a discharge rate of 4C. 

The proposed cell-to-cell cooling layout exhibited a less than 5°C maximum cell 

temperature rise even at ambient condition and an air supply temperature of 40°C. 

Fathabadi et al. [159] investigated the differences in natural and forced convection of 

combined PCM and air cooling. The system presented a battery temperature below 

60°C at an ambient temperature range of 20°C to 55°C. Ling et al. [183] examined the 

air- and PCM-based battery cooling strategies of a battery module with 20 cells 

(18650 cylindrical), to which the results preferred the combination of an air flow- and 

PCM-based hybrid system that employed both passive and active cooling. Qin et al. 

[184] reported on a hybrid BTMS integrated forced-air convection and PCM (Fig. 32), 

to which the results indicated controlled maximum temperature difference and 

maximum temperature within the proposed optimum range even at a dynamic 

charge/discharge current rate of 4C. Xie et al. [185] integrated PCM with air cooling 

and maintained a maximum temperature within 50°C during 4C charging discharging 

cycles. Jiang et al. [186] produced a lithium-ion EG/PA composite battery pack with 

tube-shell design, in which BTMS was combined with forced air cooling and 

minimized cell temperature rise and maintained maximum temperature difference of 

1°C 2°C. Kermani et al. [187] embedded PCM in CF for hybrid thermal management 

in lithium-ion batteries for forced-air convection (Fig. 33). The steady-state 

lithium-ion battery module surface temperature was kept below the 60°C limit even at 

high constant current discharge of 5 W. As such, this hybrid BTMS can be applied in 
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battery thermal safety operations because it simultaneously employs active and 

passive systems. Lu et al. [188] integrated PCM and ventilation fans in a novel 

personal cooling system (PCS), which effectively ameliorated the heat stress of both 

hot-humid and hot-dry environments. Wu et al. [88] designed a PA/EG composite 

plate using enhanced CM and combined this with the air-forced cooling as the 

secondary auxiliary heat dissipation measure in a prismatic battery pack (Fig. 34). The 

as-constructed CM enhanced the mechanical strength and thermal conductivity of 

PA/EG plate, thereby enhancing its heat dissipation performance and temperature 

uniformity. Additionally, the exposed copper fins from the composite aided in heat 

dissipation and air flow disturbance, especially with forced air convection, thereby 

strengthening its heat transfer capability. Shi et al. [189] examined a PCM-air-cooling 

integrated BTMS, to which their experimental and theoretical results indicated the 

complete melting of the PCM while maintaining the battery temperature at a safe 

range due to air cooling. Situ et al. [190] applied novel double CM-enhanced PCM 

plates to develop an efficient, rectangular LiFePO4 battery module thermal 

management system. The outstretched CM of the double CM-PCM plates and 

air-cooling coupled system lowered the internal battery temperature while also 

lowering the power consumption. Lv et al. [119] added low aluminum heat dissipation 

fins to a PCM/air-forced cooling composite cooling strategy (Fig. 35), wherein the 

as-constructed PCM-based battery module exhibited prominent heat dissipation 

performance. This cooling system maintained the battery pack temperature of 50°C 

and a 5°C temperature difference at an extremely high discharge rate of 3.5C. The 

relative work referring to the combination of PCM and air cooling could be found in 

the following literature [191-194]. In short, the hybrid PCM/air cooling strategy 

integrated passive PCM with active air cooling, giving full play to their respective 

advantages. PCM, as the direct heat dissipation medium directly contacting with 

power batteries, possessed the outstanding capacities of controlling the temperature 

and stretching the temperature distribution. Additionally, air cooling with low energy 

consumption, simple construction, and low cost quickly diffused the heat accumulated 

in the PCM, further improving the utilization efficiency and service life of the PCM. 
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For small-scale lithium-ion battery systems with low heat dissipation requirements, 

PCM/air cooling can be selected as the first choice when designing the composite 

BTMS. Nevertheless, for large-scale power battery systems with higher cooling 

demand, -producing an efficient PCM-based composite BTMS using PCM or other 

innovative cooling techniques is of great need due to the low air thermal conductivity, 

which efficiently increases the energy density and thermal safety demands.

Fig. 31. S-CPCM coupled with forced air convection thermal management structure: (a) 

serpentine plates and (b) S-CPCM plates and air-forced cooling in the battery module [181].

Fig. 32. Description of the proposed BTMS: (a) arrangement of air direction and channels and (b) 

top view of the introduced battery module [184].
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Fig. 33. Description of the proposed BTMS: (a) arrangement of air direction and channels and (b) 

composition of the battery module [187].

Fig. 34. Battery pack design with CM-PCM plate [88].

Fig. 35. LDPE-CPCM coupled battery pack employing PCM and air-forced cooling [119].
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4.2.2. PCM/liquid cooling system

Generally speaking, cooling plates are the most commonly applied battery liquid 

cooling method, specifically the integrated PCM/liquid system, due to their flat metal 

plate shape with internal channels [195-198]. Zhao et al. [199] investigated liquid 

cooling-PCM in a battery module with 18650 lithium-ion cells, wherein the adjacent 

battery surfaces were largely dependent on the heat accumulation. Conjugated cooling 

effectively lowered the battery temperature ramp-up rate and steady-state battery 

temperature compared with single PCM or liquid cooling conditions. Similarly, Rao et 

al. [200] explored the cooling effect of PCM/mini-channel hybrid BTMS (Fig. 36) 

based on the water mass flow rate, phase change temperature, and PCM thermal 

conductivity coefficient. The novel BTMS exhibited a remarkable maximum 

temperature drop of 14.8°C compared with the PCM-based BTMS. Ling et al. [201] 

applied response surface methodology to optimize a hybrid BTMS that employed a 

PCM-liquid cooling strategy for lithium-ion batteries. The 20-cells module exhibited 

its maximum battery temperature of 37.0°C and a maximum temperature difference 

below 3°C during 1.5C discharge process. Hekmat et al. [202] characterized a 

lithium-ion battery module with PCM and cooling water pipes (Fig. 37), to which the 

hybrid cooling system presented a constant and lowest battery module temperature, 

indicating the superiority of hybrid BTMS. Hémery et al. [203] reported that a mixing 

BTMS, namely, a PCM and liquid cooling system, exhibited uniform temperature 

across the system during melting, though the wall temperature was maintained below 

60°C. Bai et al. [204] applied an electrothermal model-based internal non-uniform 

heat source to explore the PCM/water cooling-plate thermal management of 

lithium-ion battery modules. The corresponding results implied the minimized TR 

following five continuous charging-discharging cycles. Kong et al. [205] optimized a 

PCM-controllable liquid cooling coupled BTMS at various ambient temperatures (Fig. 

38) for commercial 21700 Li(NiMnCoAl)O2 batteries, which exhibited good cooling 

efficiency at 30°C as well as maintained a maximum surface temperature of 41.1°C 

and battery pack temperature difference of 4°C after 3C discharge. Lopez et al. [206] 
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explored combined lithium-ion battery active (liquid heat exchanger)-passive (PCM) 

thermal management strategies, the results of which indicated the maximum and 

gradient module temperature dependence on the PCM properties and cell spacing. 

Song et al. [207] performed a thermal analysis to explore the conjugated cooling 

configurations of a battery module with PCM and liquid cooling technologies. 

According to the simulation results, the conjugated cooling effectively lowered both 

the battery temperature ramp-up rate and steady-state battery temperature compared 

with using single PCM or liquid cooling. Kshetrimayum et al. [208] applied an 

integrated PCM and micro-channel plate cooling system to characterize the heat 

propagation and TR of a nail-penetrated 18650-type battery module. The maximum 

cell temperature adjacent to the thermal abused cell was less than which 

minimized TR spreading throughout all the battery cells. Cao et al. [209] 

experimentally and numerically explored the influence of liquid cooling-PCM hybrid 

thermal management system on temperature increase and temperature uniformity (Fig. 

39). A higher cooling efficiency was observed from the high PCM mass fraction and 

cooling medium flow rate. Wu et al. [210] applied a hybrid liquid cooling- PCM 

system to optimize a light-weight battery module, which exhibited a 42.67% and 

38.27% lowered maximum temperature and temperature difference, respectively, as 

compared to a single liquid-based cooling. Following optimization, the battery 

module temperature difference and thermal system weight were maintained at 3.7°C 

and 107.1 g, respectively, at a maximum temperature below 48.5°C at a 4C discharge 

rate. Ding et al. [211] numerically investigated a PCM/cooling plate hybrid system 

cooling performance under varying discharging conditions, the results of which 

suggested a relationship between the maximum temperature and physical PCM 

parameters. In particular, the maximum temperature difference was dependent a great 

deal on the cooling plate water flow direction. Li et al. [212] reported a PCM- and 

external liquid cooling-based battery module hybrid cooling system (Fig. 40), wherein 

double-sided liquid cooling better maintained the lowest battery temperature and 

within an acceptable temperature difference. In addition to the aforementioned studies, 

some work focused on the PCM/liquid integrated BTMS of power lithium-ion 
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batteries modules/packs [213-216]. In general, PCM-liquid cooling is largely 

employed as a mainstream development direction for EV BTMSs compared with the 

PCM/air-cooling method, particularly due to the cooling plate design, which is placed 

at the bottom of battery pack. However, Solving the leakage problem of cooling 

medium to prevent short circuit will eventually improve the thermal safety of the 

whole power system.  

 

Fig. 36. Square lithium-ion battery pack diagram: (a) overall system, (b) a module without battery 

case, and (c) mini-channel structure [200]. 
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Fig. 37. Composite liquid/PCM cooling battery pack: (a) lithium-ion battery module and

temperature sensors; (b) prismatic cells, cooling pipes, and PCM; (c) water circulation system and 

component frontal view; and (d) water circulation system and component back view [202].

Fig. 38. Battery pack and coupled PCM-liquid-cooling system production [205].
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Fig. 39. Battery module with conjugated cooling configuration: (a) overall system: (1) heat 

spreading plate, (2) battery, (3) PCM, (4) thermal column, (5) insulation layer, (6) cold plate 

assembly, and (b) battery module numerical model [209]. 

 

Fig. 40. Experimental system and thermocouple locations [212]. 

4.2.3. PCM/HP cooling system 

HPs are heat transferring devices that effectively operate without external 

pumped power, which allows efficient heat energy transport across longer distances 

due to high phase-change heat transfer speeds at all temperature differences. HPs are 

widely applied in thermal management systems due to their compact structure, 

flexible geometry, long lifetime, and low maintenance [217-219]. Finned HPs exhibit 

enhanced heat transfer, deeming them far superior compared with conventional bared 

HPs [220,221]. However, PCM-HP hybrids can exhibit low thermal conductivity and 

overheating issues. As such, Wu et al. [100] investigated the thermal performance of a 

HP-assisted PCM-based BTMS (Fig. 41), to which the highest battery temperature 

was maintained below 50°C at 5C discharge. Even under various cycling conditions, 

the aforementioned system still exhibit stable and lower temperature fluctuations. 

Chen et al. [222] designed a PCM/fin integrated structure for 18650-type Sanyo 

ternary and Sony LiFePO4 (Fig. 42), and compared its cooling effect with that of 

air-cooled and pure PCM cooling. Undoubtedly the PCM/fin additions maintained 
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the lowest temperature. Greco et al. [223] added HPs to a cylindrical cell using 

PA/porous-graphite-matrix graphite composite. Under similar conditions, the 

maximum system temperature decreased to 23.9°C compared with air-forced cooling. 

Wang et al. [224] characterized the thermal performance of PCM/oscillating HP 

(OHP)-based BTMS (Fig. 43). Compared with the single OHP-cooled and 

PCM/OHP-based hybrid heat dissipation strategy cooling effects, the designed hybrid 

BTMS efficiently cooled the system compared with that only using the HP-cooled 

system. Lei et al. [225] designed a PCM thermal storage-, HP-, and spray 

cooling-inspired lithium-ion battery thermal management approach (Fig. 44). The 

proposed design BTMS controlled temperature growth at an average surface 

temperature of 8°C at a 24 A discharging current and 40°C room temperature. The 

battery surfaces exhibited a maximum temperature difference below 2.6°C. Yuan et al. 

[226] evaluated the dependence of the lithium-ion BTMS performance enhancement 

on coupled PCM-HP. The designed BTMS exhibited 20°C lithium-ion battery heating 

at an ambient temperature below 0°C, such that the inner battery temperature 

difference efficiently reached 0°C. Zhao et al. [227] examined the cylindrical power 

battery pack PCM-HP thermal management performance (Fig. 45), wherein the 

developed coupled system maintained a peak temperature less than 50°C at a 

maximum temperature difference below 5°C for a longer period compared with 

air-based BTMS and PCM-based BTMS. Hata et al. [228] evaluated a PCM-HP 

battery-cooling system under a short-circuited condition (Fig. 46). According to the 

results, TR was observed at a battery temperature above 80°C, and PCM-HP 

maintained the lithium-ion battery temperature at about 80°C. Yanada et al. [229] 

applied PCM-HPs to characterize a lithium-ion battery cooling system for EVs, the 

results of which indicated that TR temperatures were attained after 708 s using the 

proposed cooling system compared with 104 s with no cooling device. Putra et al. 

[230] employed a passive battery cooling system that used beeswax PCM and HP (Fig. 

47) for EVs, to which PCM-HP exhibited a maximal temperature decrease of 33.42°C. 

Chen et al. [231] applied a coupled PCM/HP cooling system on a power battery pack. 

Their experimental results indicated that it had positive cooling effect on the battery 
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pack to adopt PCM/HP coupled system, ensuring battery operations within the 

optimal temperature range and a more uniform temperature distribution. Zhang et al. 

[232] produced a HP-assisted separation type PCM-based BTMS using various 

current discharge rates and cycles. The proposed system exhibited a more suitable 

temperature and minimized temperature imbalances within the battery pack compared 

with other methods. Huang et al. [233] applied aluminum flat HP as the secondary 

heat dissipation approach of PCM-based cooling system for 18650-type battery 

modules (Fig. 48). Excellent temperature-control capacity was observed, the highest 

temperature of which was controlled at 50°C under a discharge rate of 3C with an 

approximately 3°C peak temperature difference. Other corresponding research studies 

concentrating on a PCM/HP hybrid system are reported in the literature [234-236]. 

The aforementioned studies confirmed the outstanding cooling efficiency, 

temperature-controlling, and temperature-balancing capacities of the PCM/HP 

composite BTMS. However, a small HP contact area and bulkiness given its 

evaporator and condenser sections hindered its integration, particularly with PCM. 

Thus, selection of the PCM/HP hybrid system is mainly dependent on the HP design 

scheme, which is based on the specific weight and size of the PCM mass and heat 

generation of the power batteries. 

 

Fig. 41. Designed battery pack and sub-modules employing PCM/HP cooling strategies [100]. 
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Fig. 42. 18650-type cell with PCM/fin structure: (a) PCM cooling and (b) heat dissipation fins and 

PCM-fin cooling [222].

Fig. 43. PCM/OHP based battery cooling system [224].

Fig. 44. Proposed PCM thermal storage-, HP-, and spray cooling-inspired BTMS design [225].
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Fig. 45. Battery module with PCM/HP composite BTMS: (a) Designed scheme and (b) actual 

experimental setup [227].

Fig. 46. Proposed PCM/HP hybrid cooling system: (a) overview, (b) schematic view, and (c) HPs

with fins [228].

Fig. 47. Proposed hybrid PCM/HP cooling system for square batteries: (a) arrangement of power 
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batteries and thermocouples and (b) HP-PCM heat transfer/exchange [230].

Fig. 48. Schematic of proposed hybrid PCM/HP cooling system: (a) designed battery module with 

integrated BTMS, (b) nine-cell sub-module rectangular region, (c) heat transfer mechanism, and 

(d) peak temperature variations [233].

4.2.4. PCM/TE cooling system

TE modules or coolers (TECs) are active thermal components that convert 

electricity to thermal energy using the Peltier effect, which cools and heats various

items (Fig. 49) [237-241]. TECs are enmeshed with p-type and n-type semiconductors 

alternately placed between two thin ceramic wafers. The Peltier effect generates a heat 

flux two-conductor junction, wherein the current passes through the circuit of 

matrices (Fig. 50) [242]. In general, TECs have the following merits: compact sizes,

moderate weights, low maintenance requirements, wide operating temperature ranges, 

highly reliability, no mechanical moving parts, and long life-span [243-245]. However, 

they also exhibited low efficiencies and have additional power requirements, limiting

their commercial applicability. TECs have been increasingly employed in BTMSs for 

improved performance [246-249]. Liu et al. [246] investigated the dependence of the 
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TE cooling system thermal management performance on the current. A battery 

temperature increase of about 3.5oC could be maintained following discharge at 

equivalent current conditions and a semiconductor cooling unit working current of 3.5 

A. In addition, an enhanced battery pack temperature difference of 5oC was 

maintained. Riffat et al. [247] examined the thermal characteristics of a TEC module 

attached to the rectangular battery front, the results of which showed a 10oC lower 

peak temperature at a 3C discharge rate following the utilization of TEC. 

Alternatively, PCM and TE integration shows a promising potential in 

transforming a passive system to a semi-passive system as well as increasing the 

BTMS efficiency. Previous research has described the PCM/air, PCM/liquid, and 

PCM/HP-integrated BTMS, though few studies have reported on the PCM/TE 

composite system. Zhang et al. [250] employed a PCM and TE composite cooling 

sheet for power battery pack thermal management (Fig. 51). The battery surface 

temperature was maintained within a reasonable range at a high discharging rate. In 

addition, improved battery temperature uniformity and battery energy saving were 

observed. Manikandan et al. [251] presented a novel technique to enhance thermal 

performance of a TE cooler using PCM. They concluded that the temperature had a 

significant reduction. Jiang et al. [252] applied TE-PCM in a BTMS for a cylindrical 

cell (Fig. 52), which, was inferred to more efficiently control the temperature 

compared with natural convection and liquid cooling. The maximum battery 

temperature was maintained below 50oC for up to 5335 s at a battery calorific value of 

6 W compared with natural convection (930 s) and liquid cooling (1275 s). Cui et al. 

[253] investigated a concentrated PCM/TE cooling system, which maintained the 

operating temperature within the ideal working temperature range. Yin et al. [254] 

established an experimental platform containing three concentrated 

photovoltaic-PCM-TE hybrid subsystems, and demonstrated that the improved system 

could well maintain the system at the desired temperature. Song et al. [255] proposed 

a semiconductor TE device and PCMs for standby battery thermal management of an 

outdoor base station (Fig. 53), which exhibited a temperature difference below 5oC for 

the limits of the thermal management temperature and PCM phase change 
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temperature. In addition, the maximum battery module temperature was maintained 

below 38.85 oC after 1C discharging and 0.5C charging. The combined TE and PCM 

cooling method is expected to receive increasing attention in the future. However, 

based on the inherent property of TE cooling, when considering the application of TE 

and PCM in a BTMS, improving the lower efficiency of the Peltier process will 

benefit the removal of heat stored in PCM, further promoting PCM utilization 

efficiency and thermal safety performance.  

  

Fig. 49. Schematic of a TE module [237-241].  Fig. 50. Heat transfer principle of a TE chip 

[242]. 

 

Fig. 51. TE sheet-PCM composite thermal management diagram [250]. 
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Fig. 52. PCM- and TE cooling-based battery module test setup [252]. 

 

Fig. 53. Battery pack with TE semiconductor devices and PCMs [255]. 

 

4.3. Battery heating using PCM-based thermal management 

As is known, battery heating has been a major concern [256-258] under low 

temperature conditions. As an essential function of an effective BTMS, the common 

heating methods can be found in previous studies [259-261]. The battery performance 

and lifetime are largely dependent on low ambient temperatures, which can cause the 

increase of internal resistance, [262,263], solid electrolyte interphase (SEI) film 

formation, low reaction rate, electrode degradation, and electrolyte property decay 

[264-267]. Previous studies have focused on single cell-heating or single heating 
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method development for facile and non-standardized battery modules [268,269]. For 

example, Zhang et al. [268] employed metallic resistance heating on a cell, which 

exhibited a higher heating efficiency and thermo-consistency compared with those 

using the positive temperature coefficient heating method. Zhu et al. [269] applied 

alternating current (AC) pulse heating as the single heating method for large, 

laminated power lithium-ion batteries. Low-temperature thermal management is 

essential for safe and efficient lithium-ion battery pack operation in EVs. However, 

previous studies have focused on battery pack heat dissipation and have minimally 

reported on PCM-BTMS heating strategies under extremely cold conditions. Single 

and hybrid PCM-based BTMSs are generally employed for lithium-ion power system 

preheating at colder temperatures. Zhong et al. [270] examined a designed 18650-type 

battery module with a composite PCM cooling/resistance wire preheating coupling 

system (Fig. 54), the results of which indicated that the system efficiently preheated 

the batteries under colder temperature conditions. The coupling system raised the 

inner battery center temperature up to 40oC within 300 s. Huo et al. [271] applied the 

lattice Boltzmann method to characterize PCM-based battery thermal management 

under ultra-low temperature conditions. The results indicated that raising the latent 

heat best preserved heat at lower temperatures. Lv et al. [272] reported on a 

PCM-BTMS hybrid with forced air convection heating or silicone plate heating (Fig. 

55), wherein the closed-ended battery design optimized the forced-air-convection 

heating strategies and silicone plate heating at 90 W to provide the optimal heating 

performances. Fan et al. [273] explored battery heating under colder climate 

conditions, the results of which indicated that an external heating source allowed 

higher mass flow rate for enhanced heating. However, quickly raising the heating 

medium inlet temperature could result in heated batteries, which might exceed a 

maximum battery temperature of 40oC. Ling et al. [274] compared the PCM thermal 

management performances of various lithium-ion battery packs at low temperatures. 

According to the results, highly thermally conductive PCM exhibited lower cell 

temperature variations, thus reducing the voltage differences. He et al. [275] coupled 

heating sheets and PCM to characterize the thermal management system of lithium 
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ion battery modules (Fig. 56), wherein the PCM-based battery modules maintained 

the temperatures for longer periods compared with the air-based ones. In addition, the 

PCM-based battery module exhibited a temperature difference of 2.82°C, whereas the 

air-based module was 14.49°C. Ghadbeigi et al. [276] examined the PCM-based 

BTMS performance under cold temperatures conditions, which was composed of PA 

and PA/EG composites, and compared their results to a battery module without PCM 

material. Rao et al. [277] produced a PCM- and air heating-based 3D module of 

power battery thermal management unit under cold temperatures, to which the air 

heating time was 6.4, 5.2, and 4.2 times that of PCM heating to allow the battery 

center temperature to reach 10oC. Better PCM performance at shortened cold startup 

times were a result of the high PCM latent heat (Fig. 57). A lower temperature 

difference of 4.6°C from 9.9°C was observed at a five-fold higher PCM thermal 

conductivity. PCM-based BTMS research has focused on heat dissipation and cooling 

requirements, though power batteries undergo stressful and abusive conditions, 

particularly at higher discharge rates and operating or ambient temperatures. 

Nevertheless, the utilization of PCMs in heating the lithium-ion batteries at cold 

temperature has since been ignored. Notably, various operation and environmental 

conditions must be addressed, particularly extremely low temperatures, to allow equal 

battery heating and cooling. Hence, this study focused on the development of PCMs 

for low-temperature heating batteries. Future research should focus on lowering 

energy consumption while simultaneously improving the PCM-based BTMS battery 

heat transfer efficiency to promote the integrated power system thermal safety. 
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Fig. 54 Battery module design: (a) resistance wire wrapped around batteries, (b) batteries within 

the module shell, (c) battery pack composed of battery modules, and (d) preheating experimental 

setup [270].

Fig. 55. PCM battery module heating strategies: (a) standardized PCM-based battery module, (b) 

forced air convection heating strategy, (c) optimized forced air convection heating strategy, and (d) 

silicone plate heating strategy [272].
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Fig. 56. Battery module heating system coupled with PCM and heating sheet: (a) battery module 

with heat sheet, (b) average air-based battery module surface temperature with two heat sheets at 

50oC, and (c) average PCM-based battery module surface temperature with two heat sheets at 

50oC [275].

Fig. 57. Comparison of temperature responses of PCM and air heating [277].

4.4. Opportunities and challenges of PCM-BTMS

In general, the PCM cooling system is widely applied for battery thermal 

management given its excellent temperature control and equalization. As known, 

maintaining a high-energy power lithium-ion battery system density can increase the 

EVs and HEVs driving ranges. Thus, a high-efficiency BTMS can be produced by

lowering the system weight and improving the energy density.
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Traditional PCM modules, especially those with bulky PCM blocks and matrices, 

inevitably increased the weight and volume of the whole power system, thereby 

significantly reducing the energy density. To solve the mentioned problem, the 

development of innovative forms and new lightweight PCMs and PCM-BTMSs is of 

crucial concern. In addition, current research on PCM cooling systems is still in the 

experimental phase compared with traditional mature air cooling and liquid cooling. 

The developed battery packs with PCM function are also at the sample level, and have 

not been promoted for practical EV application. Optimizing the PCM thermophysical 

parameters and PCM BTMS particularly the performance optimization, structure 

design, weight, cost, space, energy consumption, and cooling efficiency, can speed up 

PCM-based battery module industrialization. The heat dissipation demand of 

high-density power batteries must be addressed, which a single PCM heat dissipation 

system cannot fulfill. At this time, the more efficient PCM-based hybrid cooling 

systems integrating the passive PCM and active cooling technologies will inevitably 

become the future development trend. Within the composite cooling system, the active 

and passive have separate advantages based on their essential attributes. The 

complementary system will efficiently remove the heat accumulated in the PCM heat 

dissipation medium, improving the heat storage/heat release efficiency of PCM and 

furthering its utilization efficiency and cycle life for the overall performance and safety.  

Different PCM-based hybrid BTMS approaches, which include PCM/air cooling, 

PCM/liquid cooling, PCM/HP, and PCM/TE cooling, have varying merits and 

disadvantages, such as space availability, cost, weight, integration degree, and service 

life. As such, the development of a rational design and installation of an appropriate 

thermal management system must address demands of heat dissipation of practical 

loading conditions. 

5. Conclusions and future directions in the field  
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5.1. Conclusions

Lithium-ion batteries are limited by their temperature dependence, which can 

result in temperature increase and non-uniformity. Applicable PCM-based cooling 

systems must be able to lower the maximum temperature while maintaining a 

homogeneous cell temperature distribution. However, low thermal conductivities, 

combustion performance of organic PCM, structural instability caused by the leakage, 

and deformation or collapse have restricted the development of PCM-BTMSs. This 

study first reviewed and classified mainstream lithium-ion batteries, to which the 

lithium-ion battery heat generation/transfer mechanisms were characterized. Then, 

considering the practical application and security attributes of PCM, the current 

research situation and performance promotion solutions to the low thermal 

conductivity, structural instability, and combustion characteristics were illustrated. 

Following that, the design scheme, cooling efficiency, and advantages and 

disadvantages of current BTMS that employ PCM as heat transfer medium for 

EVs/HEVs were objectively evaluated and analyzed. Lastly, the current challenges 

and opportunities referring to PCM and BTMS employing PCM were concretely 

expounded. Based on the above study, the following conclusions were drawn: 

(1) In terms of lithium-ion power batteries, three main kinds of products are applied 

in electrified-driven vehicles according to the external shape and appearance: 

cylindrical, prismatic, and pouch. For standard and typical cylindrical cells 

(especially 18650-type), the battery module/pack is the most commonly used type 

of assembly as it improves the temperature consistency among thousands of cells 

and controls the temperature. Different from cylindrical cells, prismatic cells 

possess a higher heat dissipation efficiency due to their larger contact area. 

Enough space should be considered when applying the prismatic cells to the 

EVs/HEVs. The special structure of the pouch cell enables a decrease in weight 

and increase in the high-energy densities and packaging efficiency, though this 

may result in additional mechanical destroy and swelling. Owing to the difference 

of various chemical compositions of lithium batteries, those with higher energy 
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density (such as NCM811/C, NCM/SiC) may exhibit higher potential safety risks 

due to their electrode materials, especially under abusive conditions (electric 

abuses, thermal abuses, and mechanical abuses). These abnormalities shorten the 

battery lifespan and may result in TR. Hence, an efficient BTMS is crucial and 

necessary for lithium-ion battery modules/packs. 

(2) The PCM thermal conductivity significantly influences the overall power system 

heat transfer efficiency. However, in consideration of the practical application of 

PCM, only improving the thermal conductivity coefficient by adding the high 

thermal conductive fillers (such as metallic powers/foam, carbon-based foams) is 

insufficient. Continuous battery module charging/discharging cycles can result in 

PCM structure damage to some extent due to the intrinsic property of organic 

PCM. Therefore, the structural stability and flame retardancy of PCM is predicted 

to be a research hotpot. The development of form-stabilized and flame retarded 

composite PCMs are very urgent. It is noting that the heat latent and melting point, 

as the fundamental parameters of PCM, should not be decreased while adding the 

functional additives to PCM. When selecting the appropriate composite PCM for a 

battery system, a high-thermal conductive, robust, and excellent flame retarded 

composite PCM is suitable and helpful for enhancing the system security.  

(3) A PCM cooling system has been confirmed to have remarkable 

temperature-reducing and temperature-stretching capacities through experimental 

and simulation methods. For power lithium-ion battery systems with higher heat 

dissipation standards, a single PCM-BTMS is not enough. Hybrid PCM-based 

systems that are coupled with traditional air cooling, liquid cooling, HPs, and TE 

are more efficient choices, and are predicted to be the inevitable trend of 

high-energy density battery systems. A secondary cooling strategy such as active 

auxiliary measures can eliminate stored PCM heat while maintaining the high 

PCM heat transfer efficiency and utilization life. Further, in addition to the cooling 

performance of PCMs at high temperature condition, the heating methods of 

PCMs in extreme low temperature have been reviewed through the combination 

of resistance wires, heating sheet, and so on. 
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(4) To maintain the higher energy density of lithium-ion battery systems, a 

lightweight and creative form of PCM is a very effective solution. Although PCM 

and PCM-based cooling systems have been verified and confirmed through many 

experimental and simulation research work, these ideas are still in the laboratory 

phase given that many technical issues must first be solved prior to application in 

practical EVs/HEVs. In the end, the developed PCM-based cooling system must 

be compact, integrated, efficient, lightweight, has low energy consumption, and be 

secure. Every PCM-based heat dissipation system has its obvious advantages and 

disadvantages. Hence, we need to rationally choose the suitable BTMS according 

to the practical factors such as the heat generation, cooling demand, space, weight, 

and cost. 

5.2. Future recommendation 

Based on the above review and analysis the following research perspectives are 

highlighted as the future development of PCM-based BTMS: 

(1) Considering the high energy density, lightweight and continuous driving 

range requirements of EVs/HEVs, ternary lithium-ion power batteries have been 

regarded as one of the mainstream technology routes. It is worth noting that the 

participation of PCM in the power battery module/pack can not significantly reduce 

the energy density of the system. Simultaneously, excellent heat dissipation efficiency 

and high safety performance should be maintained. Hence, composite PCM with 

flexible, processable, high thermal conductivity and latent heat, flame retardant and 

electrical insulation properties will become the focus of future research. The key point 

is that a good proportion and balance point should be discovered for the physical 

property parameters of the composite PCM so as to ensure the superior 

comprehensive properties. 

(2) As a functional material, the thermal conductivity and latent heat of PCM will 

directly affect the heat dissipation efficiency. PA is the most widely used organic PCM 

in BTMS due to its merits. Nevertheless, how to overcome the precipitation problem 
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under uninterrupted high temperature cycles without obviously decreasing the thermal 

physical performance parameters will be the key consideration in the future. 

Considering the actual operating conditions of EVs/HEVs (climbing, accelerating, 

starting, collision, etc.), it is critical to improve the mechanical strength of PCM to 

avoid collapse, cracks and damage phenomenon. MicroPCM is a recommended 

solution to the aforementioned problem. However, realizing the application of 

MicroPCM in power battery modules/packages needs to be further explored; 

(3) If the temperature increase of power battery modules/packages is only 

controlled by PCM after long-term continuous high-rate charge-discharge cycles, the 

heat storage capacity of PCM will inevitably decline and cannot be recovered in time. 

Therefore, secondary heat dissipation is needed to improve the PCM durability, 

ultimately the utilization efficiency. Consequently, hybrid PCM-based BTMS will be 

one of the research hotspots in the future. Especially considering the current 

integrated CTP (cell to pack) and CTC (cell to chassis) technologies, the coupling of 

PCM and liquid cooling plate will be the most promising technical solution to achieve 

industrial application in the future. 

(4) Low temperature rapid preheating is also one of the main functions of the 

BTMS. At present, referring to PCM-based BTMS, the research of preheating 

technology is less than that of heat dissipation system. A high-efficiency, 

cost-effective and safe rapidly heating system needs to be developed in the future.  

(5) Different BTMS employing PCM have their merits and drawbacks. Up to 

now, the corresponding research focuses on the measurement of heat dissipation effect, 

performance evaluation and structure optimization, lacking quantitative data on 

economy, environmental benefit, maintenance, system complexity and weight. The 

aforementioned future research directions will be concerned by the researchers in the 

following work. 

 

In a word, this work aimed to fully address the pivotal PCM thermophysical 

performances and security features to serve as a reference. In addition, the 

PCM-BTMS cooling performances were discussed and compared with actual BTMS 
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application, which will be benefit for accelerating the industrialization of this 

innovative cooling strategy. 
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The figures in this manuscript are as follows: 

 

Fig. 1. Schematic of lithium-ion battery TR mechanism under different abusive conditions [7]. 



Fig. 2. Working principles of BTMS using PCM: (a) heat transfer mechanism of PCM-based 

cooling technology and (b) temperature-controlling and temperature-balancing theories of the 

phase change composite (PCC) BTMS [25,27].

Fig. 3. Commonly used power lithium-ion batteries and their internal structure: (a) cylindrical

cells, (b) rigid prismatic cells, (c) pouch cells, (d) cylindrical lithium-ion cell structure, (e) 

prismatic lithium-ion cell structure, and (f) lithium-ion cell pouch structure [37,38].



 

Fig. 4. Lithium-ion power battery working principle. 

 

Fig. 5. Classification of SLPCM [36]. 



 

Fig. 6. Application forms of the composite PCMs in power systems: (a) fabricated PCM matrix; (b) 

PCC with cylindrical cells; and (c) PCC plates with prismatic cells [56,57]. 

 

Fig. 7. Promoted thermal-conductive PA/EG composite PCMs [88]. 



Fig. 8. PA/EG/epoxy resin composite PCMs with AlN as additives: (a) specific preparation 

process and (b) thermal conductivity property changes [89].

Fig. 9. Sisal-derived carbon scaffold and PA-based composite PCMs construction [90].

Fig. 10. PA/EG/carbon fiber/ HDPE composite PCMs: (a) specific preparation procedures and (b) 

thermal conductivity coefficient changes with different carbon fiber mass fractions [91]. 



Fig. 11. Schematics of BTMS units with (a) pure PCM, (b) PCM/nanoparticles, (c) PCM/fins, and 

(d) PCM/metal foam [93].

Fig. 12. PA/EG BTMS coupling with HP for the square batteries modules [100].

Fig. 13. Structural stability problems of PCM matrix during preparation and testing.



Fig. 14. Schematic diagram of MicroPCM.

Fig. 15. Mechanical strengths variations: (a) shock and tensile strengths at break and (b) shock 

and bending strengths at break [118].

Fig. 16. Bending strength and leakage variations: (a) bending strength and (b) mass changes with 

time [119].



Fig. 17. Mechanical strength variations of different proportions of AlN powders in PCC: (a) 

tensile, bending strength, and shock strength at break and (b) leakage rate changes with testing 

time [120].

Fig. 18. Structure schematic of dual-level packaged PCMs at higher temperatures [123].



 

Fig. 19. Digital photographs of the PCC: (a) SLPCM and (b) solid-solid polymer PCM 

(SSPoPCM) modules after cycling [124]. 

 

Fig. 20. PA-based MicroPCM production using fire-resistant additives [125]. 



Fig. 21. Three kinds of composite PCMs in the 18650 cell: (a) battery module composed of

selected cells and PCMs, (b) maximum temperature comparison at a discharge rate of 3.0C, (c) 

maximum temperature comparison at a discharge rate of 5.0C, and (d) maximum temperature 

difference comparison [149].

Fig. 22. Application of PCM/CF composites in cylindrical 42110-type battery module: (a) 

PCM/CF battery module and (b) comparison of maximum temperature at a 5C cell discharge with 

various cooling methods [153].



Fig. 23. Application of PA/EG composite in cylindrical 18650-type battery module: (a) battery 

module assembly schematic and (b) comparison of air-cooling module and PCM cooling module

maximum temperature test data [160].

Fig. 24. Polymer battery module with PA/EG composite: (a) PCM assembly in battery module, 

and (b) transient comparison of average battery temperature with and without PCM [163].

Fig. 25. Proposed single lithium-ion polymer pouch BTMS [167].



 

Fig. 26. Structure and assembly of designed flame retarded PA/aerogel felt battery module [140]. 

 

Fig. 27. Autopsy images: (a c) battery pack without PCM and (d f) battery pack with PCM [161]. 

 

Fig. 28. Battery temperature management: (a) commercial 18650 lithium-ion cells with/without 

composite film wrapped, (b) cell surface temperature evolution at various discharging currents, 

and (c) temperature evolution of battery monomer wrapped with composite film [175]. 



Fig. 29. Diagram of battery modules with flexile PCM BTMS: (a) battery module without a 

BTMS, (b) battery modules with flexible PCM on both sides of each monomer, (c) temperature 

testing point arrangement, and (d) schematic diagram of the monomer with flexible SBS/PA/EG 

placed [179].

Fig. 30. Various BTMS cooling effects: (a) air cooling mode, (b) PCM heat dissipation mode, (c) 

comparison of peak temperatures (45oC) and (d) maximum temperature difference (45oC) [120].



Fig. 31. S-CPCM coupled with forced air convection thermal management structure: (a) 

serpentine plates and (b) S-CPCM plates and air-forced cooling in the battery module [181].

Fig. 32. Description of the proposed BTMS: (a) arrangement of air direction and channels and (b) 

top view of the introduced battery module [184].



Fig. 33. Description of the proposed BTMS: (a) arrangement of air direction and channels and (b) 

composition of the battery module [187]. 

 

Fig. 34. Battery pack design with CM-PCM plate [88]. 

 

Fig. 35. LDPE-CPCM coupled battery pack employing PCM and air-forced cooling [119]. 

 



Fig. 36. Square lithium-ion battery pack diagram: (a) overall system, (b) a module without battery 

case, and (c) mini-channel structure [200].

Fig. 37. Composite liquid/PCM cooling battery pack: (a) lithium-ion battery module and

temperature sensors; (b) prismatic cells, cooling pipes, and PCM; (c) water circulation system and 

component frontal view; and (d) water circulation system and component back view [202].

Fig. 38. Battery pack and coupled PCM-liquid-cooling system production [205].



 

Fig. 39. Battery module with conjugated cooling configuration: (a) overall system: (1) heat 

spreading plate, (2) battery, (3) PCM, (4) thermal column, (5) insulation layer, (6) cold plate 

assembly, and (b) battery module numerical model [209]. 

 

Fig. 40. Experimental system and thermocouple locations [212]. 

 

Fig. 41. Designed battery pack and sub-modules employing PCM/HP cooling strategies [100]. 



Fig. 42. 18650-type cell with PCM/fin structure: (a) PCM cooling and (b) heat dissipation fins and 

PCM-fin cooling [222].

Fig. 43. PCM/OHP based battery cooling system [224].

Fig. 44. Proposed PCM thermal storage-, HP-, and spray cooling-inspired BTMS design [225].



Fig. 45. Battery module with PCM/HP composite BTMS: (a) Designed scheme and (b) actual 

experimental setup [227].

Fig. 46. Proposed PCM/HP hybrid cooling system: (a) overview, (b) schematic view, and (c) HPs 

with fins [228].



Fig. 47. Proposed hybrid PCM/HP cooling system for square batteries: (a) arrangement of power 

batteries and thermocouples and (b) HP-PCM heat transfer/exchange [230].

Fig. 48. Schematic of proposed hybrid PCM/HP cooling system: (a) designed battery module with 

integrated BTMS, (b) nine-cell sub-module rectangular region, (c) heat transfer mechanism, and 

(d) peak temperature variations [233].

Fig. 49. Schematic of a TE module [237-241].  Fig. 50. Heat transfer principle of a TE chip

[242].



 

Fig. 51. TE sheet-PCM composite thermal management diagram [250]. 

 

Fig. 52. PCM- and TE cooling-based battery module test setup [252]. 



 

Fig. 53. Battery pack with TE semiconductor devices and PCMs [255]. 

 

Fig. 54 Battery module design: (a) resistance wire wrapped around batteries, (b) batteries within 

the module shell, (c) battery pack composed of battery modules, and (d) preheating experimental 

setup [270]. 



Fig. 55. PCM battery module heating strategies: (a) standardized PCM-based battery module, (b) 

forced air convection heating strategy, (c) optimized forced air convection heating strategy, and (d) 

silicone plate heating strategy [272].

Fig. 56. Battery module heating system coupled with PCM and heating sheet: (a) battery module 

with heat sheet, (b) average air-based battery module surface temperature with two heat sheets at 

50oC, and (c) average PCM-based battery module surface temperature with two heat sheets at 

50oC [275].



 

Fig. 57. Comparison of temperature responses of PCM and air heating [277]. 
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The tables in this manuscript are as follows: 

Table 1  

Future plans to ban the sale of traditional fuel vehicles [8-10]  

Countries  Detailed time / year Specific target 

France 2040 A blanket ban on the fuel 

vehicle sale 

United Kingdom  2040  A complete ban on the sale of 

traditional diesel-powered cars 

Germany  After 2030 Banning the sale of traditional 

internal combustion engine 

cars 

India  2030 Banning the sale of 

conventional fuel cars 

Holland  2025 Banning the sale of 

conventional fuel cars 

Norway  2025 Banning the sale of 

conventional fuel cars 

China  2040 Banning the sale of 

conventional fuel cars 

 
Table 2  

Selected lithium-ion battery TR mechanism-induced severe accidents 



Date of accident Location Source of accident 

January 6, 2016 Norway Tesla Model S suddenly fired when 

charging in the charge station [11] 

August 17, 2016 Biarritz, France Tesla Model 90D suddenly fired when 

testing driving [12] 

September 27, 2017 
Newman Company, 

Shenzhen City, China 

Short circuit-induced spontaneous 

combustion of stored batteries in a 

warehouse [13] 

May 12, 2018 Florida, USA Tesla Model S resulted in fire accidents 

after collisions [14] 

April 7, 2019 Hangzhou, China Battery spontaneously ignited and 

occurred propagation during the 

charging process [15] 

July 18, 2019 Beijing, China Batteries suddenly ignited during the 

rest-time period [16] 

June 11, 2019 Daly City, California, USA Lithium-ion battery-induced fire during 

charging, which ignited surrounding 

combustible materials and spread the 

fire accident [13] 

May 8, 2020 Dongguan City, China Lithium-ion battery-induced 

spontaneous combustion of car, 

resulting in a fire [13] 

August 16, 2020 Taiyuan City, China Lithium-ion battery-induced 

spontaneous combustion of electric car 

during charging [13] 

November 6, 2020 Haikou City, China EC 30-type electric car suddenly began 

to smoke and burn [17] 

November 9, 2020 Pingxiang City, China New energy vehicle burst into flames, 

accompanied by large amount of smoke 

and explosion [18] 

November 22, 2020 Shenzhen City, China New energy car suddenly sent up 

smoke, which spread the fire and 

resulted in an explosion [19] 

 

Table 3  

Trade-off analysis of the mainstream lithium-ion power batteries [52,53]. 

Cathode 

chemistry 

LCO LMO LFP NCM NCA 

Voltage (V) 3.7 3.8 3.2 3.6 3.7 

Specific 

energy 

(mAh/g) 

150 120 150 160 170 



Energy 

density 

(Wh/kg) 

120-150 105-120 130 160-220 220-250

Cycles life 500 300 2000 1000 1000 

Thermal 

Safety 

Poor  Excellent Excellent Preferable Poor 

Operating 

temperature 

range/oC 

-20 60oC -20 60oC -20 60oC -20 55oC -20 60oC 

Cost Expensive Cheap Cheap More 

expensive 

Low 

Advantages Stable 

charge/discharge 

properties and 

simple technology 

Low cost 

and 

admirable 

safety 

High 

security, 

environment

ally friendly 

and longer 

service life 

Good 

circulation 

Eminent 

low-tempera

ture property 

and high 

energy 

density 

Disadvantage

s 

Expensive Co and 

reduced cycle life 

Low energy 

density 

Poor 

low-tempera

ture 

performance 

and 

discharge 

voltage 

High cost of 

Co 

Poor 

high-temper

ature 

property and 

high 

technical 

barrier 

 

Table 4  

Lithium-ion power battery heat generation under different temperature ranges. 

Temperature range /oC Chemical reactions Heat generation/J·g-1 Mechanism analysis 

110 150 LixC6 + 350 Rupture of passivation 

film 

130 180 Melting of PE 

diaphragm 

-190 Heat absorption 

160 190 Melting of PP 

diaphragm 

-90 Heat absorption 

180 500 Decomposition of 

Li0.3NiO2 and 

electrolyte 

600 Releasing oxygen 

temperature 200oC 

220 500 Decomposition of 

Li0.45CoO2 and 

electrolyte 

450 Releasing oxygen 

temperature 230oC 

150 300 Decomposition of 

Li0.1MnO4 and 

electrolyte 

450 Releasing oxygen 

temperature 300oC 



130 220 Solvent and LiPF6 250 Lower energy

240 350 LixC6 and PVDF 1500 Violent chain growth 

660 Aluminum melting -395 Heat absorption 

 

Table 5  

Thermophysical properties of selected straight chain alkanes. 

Molecular formula Molecular weight Melting point/oC Latent heat/J g-1 

C16H34 226 16.7 236.81 

C17H36 240 21.4 171.54 

C18H38 254 28.2 242.67 

C19H40 268 32.6 - 

C20H42 282 36.6 246.86 

C21H44 296 40.2 200.83 

C22H46 310 44.0 251.04 

C23H48 324 47.5 234.30 

C24H50 338 50.6 248.95 

C25H52 352 53.5 - 

C26H54 366 56.3 255.22 

C27H56 380 58.8 234.72 

 

Table 6  

Literature reviews on fire-retardant PCC applications 

PCM Type  Form/shell Fire retardant Result Referen

ce 

PA MicroPCM 
Gelatin and 

Na-alginate 

Clay-nano particle 

shell material, 

introduced during 

microencapsulation 

Ignition 

time of 

treated 

textile 

increased 

by 

25% 50

% 

[126] 

PA MicroPCM Polymetacrylic 

acid-co-ethyl 

methacrylate 

PCM-diethyl 

ethylphosphonate 

(DEEP), introduced 

during 

microencapsulation 

6 9% 

increase 

in treated 

foam 

limiting 

oxygen 

index 

(LOI)  

[127] 

PA or fatty 

acid 

MicroPCM Melamine-formaldeh

yde resin, gelatin, 

Boric acid, sodium 

carbonate, and 

NA [128] 



polyurea, 

polyurethane, 

urea-formaldehyde 

resin, and 

combinations 

sodium silicate 

applied on the 

surface of the 

microcapsule after 

microencapsulation 

PA FS HDPE Nine Mg(OH)2, 

Al(OH)3, 

ammonium 

polyphosphate 

(APP), PER, and 

EG formulations 

NA [129] 

PA FS-PCM HDPE 15-20-25 

APP+PER+melamin

e (2:1:1) wt%; EG 

NA [130] 

PA FS-PCM HDPE APP, PER, Fe 40% 56

% lower 

heat 

release 

rate 

(HRR)  

[131] 

PA FS-PCM HDPE APP, EG, zinc 

borate 

HRR 

decreased 

by 60% 

[132] 

PA FS-PCM HDPE APP, EG, zinc 

borate 

HRR 

decreased 

by 

60% 68

% 

[133] 

n-Octadeca

ne 

Nano 

encapsulate

d 

Melamine-formaldeh

yde 

Phosphorus nitroge

n containing 

diamine (PNDA) 

Peak 

heat 

release 

rate 

(PHRR) 

decreas

ed by 

32.8% 

 

Total 

heat 

release 

(THR) 

decreas

ed by 

30.3% 

Total 

[134] 



smoke 

rate 

(TSR) 

decreas

ed by 

18.6% 
 

n-Octadeca

ne 

Nano 

encapsulate

d 

Poly(methylmethacryl

ate) 

Diethyl 

bis(2-hydroxyethyl 

acrylate)amino 

methylphosphonate 

pHRR 

decreas

ed by 

39.7% 

 

Total 

heat 

release 

(THR) 

decreas

ed by 

18.4% 

TSR 

decreas

ed by 

12.2% 

LOI 

increase

d from 

19.5% 

to 

25.1% 
 

[135] 

PA Shape 

stabilized 

- Acrylic resin/EG; 

alkyd resin/EG; and 

epoxy resin/EG 

pHRR 

decreased 

by 

62% 84

% 

[136] 

PA Shape 

stabilized 

HDPE and 

styrene-butadiene-styr

ene copolymer 

Organomontmorillo

nite, EG 

pHRR 

decreased 

by up to 

72.7% 

[137] 

Paraffin 

chlorinated 

paraffin 

FS-PCM HDPE EG, antimony 

trioxide 

pHRR 

decreased 

up to 

50% 

[138] 

PA (70%) FS-compos

ite 

Olefin block Acrylic resin/EG, 

glass fibers 

pHRR 

decreased 

by 58.8% 

[139] 


