
ANALYSING AND ENHANCING THE

PERFORMANCE OF ASSOCIATIVE MEMORY

ARCHITECTURES

SIMON PAUL TURVEY

A thesis submitted in partial fulfilment of the

requirements of the University of Hertfordshire for the

degree of Doctor of Philosophy

The programme of research was carried out in the Department of Computer Science,

Faculty of Engineering and Information Sciences, University of Hertfordshire

February, 2003

Abstract

This thesis investigates the way in which information about the structure of a set of

training data with `natural' characteristics may be used to positively influence the design of

associative memory neural network models of the Hopfield type. This is done with a

view to reducing the level of connectivity in models of this type.

There are three strands to this work. Firstly, an empirical evaluation of the

implementation of existing theory is given. Secondly, a number of existing theories are

combined to produce novel network models and training regimes. Thirdly, new strategies
for constructing and training associative memories based on knowledge of the structure of

the training data are proposed.

The first conclusion of this work is that, under certain circumstances, performance benefits

may be gained by establishing the connectivity in a non-random fashion, guided by the

knowledge gained from the structure of the training data. These performance
improvements exist in relation to networks in which sparse connectivity is established in a

purely random manner. This dilution occurs prior to the training of the network.

Secondly, it is verified that, as predicted by existing theory, targeted post-training dilution

of network connectivity provides greater performance when compared with networks in

which connections are removed at random.

Finally, an existing tool for the analysis of the attractor performance of neural networks of

this type has been modified and improved. Furthermore, a novel, comprehensive

performance analysis tool is proposed.

11

Acknowledgment

It goes without saying that a project of this magnitude enormously affects one's own life

and indirectly touches so many others. There are, therefore, a correspondingly large

number of people to thank.

My supervisory team must be singled out for special praise:

Steve Hunt, for his unwavering faith, sublime patience, and occasional yet splendid

hospitality.

Neil Davey, for his bubbling enthusiasm, constant good humour, and continuous, yet

gentle, encouragement.

Ray Frank, for acting as a foil to Steve and Neil, underscoring and enhancing their unique

and distinctive characteristics.

I must thank my parents, especially my father, for bringing me up and shaping me into the

person I am today. My office-mates, researchers all, whose hard work has inspired me to

stay true to my own task. Without their laughter, conversation, discussion, and,

importantly, coffee breaks, none of this would have been possible.

Around the university, so many others have lent their time in so many different ways:

Lynette, Bob, Austen, the department's computer technicians. All these people and more

have, in no small measure, contributed indirectly to this work.

Finally, much closer to home, I must thank my partner Cat for her continuing love and

patience. She and our various companions, George W. Bear, Eeyore Belle, Magic,

Scorch, and Mrs Scorch, have managed to keep my spirits high and a smile on my face. I

could not have done it without you. Also, my good friends Alex and Katherine; their

continuous friendship and support was both welcome and appreciated.

Thank you all.

111

Table of Contents

Abstract .. 11

Acknowledgments ... iii

Table of Contents ...
iv

List of Tables ... vi

List of Figures .. xv

1. Introduction ..
1

1.1. Introduction ..
1

1.2. Methodology and Research Goals
... 2

1.3. Thesis Outline ..
3

1.4. Thesis Format ..
4

1.5. Common Notation ...
5

2. A Survey of the Hopfield and Related Network Models
................. 6

2.1. Overview ..
6

2.2. Hopfield Networks ...
7

2.3. Network Dynamics ...
8

2.3.1. Simple Update Dynamics ...
8

2.3.2. Stochastic Dynamics ..
12

2.3.3. Continuous Dynamics ...
12

2.4. Weight Matrices ..
14

2.4.1. Abbott's Network Classes ..
17

2.5. Learning Rules .. 25

2.5.1. Class 1 ... 25

2.5.2. Class 2 ... 26

2.5.3. Class 3 ... 29

2.5.4. Other Learning Rules .. 31

2.6. Further Variations ... 32

2.6.1. Modification of Neuron Thresholds
... 32

iv

3. Network Performance Analysis Tools
...

34

3.1. Introduction .. 34

3.2. Performance Metrics ... 34

3.2.1. Pattern Stability ... 34

3.2.2. Pattern Load .. 34

3.2.3. Capacity .. 35

3.2.4. Training Time ... 35

3.2.5. Attractor Basin Size .. 35

3.2.5.1. The Kanter and Sompolinsky Attractor Basin Measure
.......

36

3.2.5.2. Modified Kanter and Sompolinsky Measure 38

3.2.5.3. Comprehensive Attractor Analysis Measure
........................ 39

4. Performance of Fully Connected Networks 42

4.1. Introduction
.. 42

4.2. Training Time .. 43

4.3. Pattern Stability
... 45

4.4. Attractor Performance
... 47

4.5. Conclusions and Summary
..

49

5. Introduction to Sparse Connectivity .. 50

5.1. Introduction .. 50

5.2. Justification of Approach ... 51

5.3. Review of Literature Related to Sparse Connectivity 55

5.4. Summary of Literature Review ... 64

6. Post-Training Removal of Synapses and its Effect on Network

Performance .. 65

6.1. Introduction .. 65

6.2. Experimental Design
... 66

6.3. Synapse Removal Strategies ... 67
6.3.1. Random Removal ... 67
6.3.2. Smallest-Value-First Removal

.. 67
6.4. Results .. 68

V

6.4.1. Symmetric Local Learning ... 68

6.4.1.1. Pattern Stability .. 68

6.4.1.2. Attractor Performance .. 70

6.4.2. Blatt and Vergini .. 74

6.4.2.1. Pattern Stability .. 74

6.4.2.2. Attractor Performance .. 76

6.5. Discussion ... 80

6.6. Conclusions .. 81

7. Development and Analysis of Non-Random

Training Data .. 82

7.1. Introduction .. 82

7.2. Generating Non-Random Data ... 83

7.2.1. Geometric Data
... 83

7.2.2. Character Data
... 84

7.3. Analysis of Training Pattern Characteristics 85

7.3.1. Measuring the Bias of a Training Set
.. 85

7.3.2. Calculating the Local Correlation within a Training Pattern
....... 86

7.3.3. Calculating the Level of Local Correlation across a Training Set.. 88

7.3.4. Measuring Site Activity across a Training Set
............................. 89

7.4. Results of Training Pattern Analysis
.. 90

7.4.1. Training Set Bias
... 90

7.4.2. Cross-Pattern Local Correlation
... 90

7.4.2.1. Geometric Data .. 91

7.4.2.2. Character Data ... 95

7.4.2.3. Measuring Each Neighbourhood's Contribution to Local

Correlation .. 99

7.4.3. Measuring Site Activity within a Training Set 101
7.4.3.1. Geometric Data and Random Data (b=0.5) 101
7.4.3.2. Character Data and Random Data (b=0.8)

......................... 102
7.5. Discussion and Summary

... 104

vi

8. Associative Memory Architectures with Sparse

Connectivity ..
105

8.1. Introduction ..
105

8.2. Network Architecture, Learning Rule, and Training Data
106

8.3. Network Performance Analysis ...
107

8.4. Establishing Connectivity ..
108

8.4.1. Random Connectivity ...
108

8.4.2. Nearest Neighbour Connectivity ... 109

8.5. Experimental Structure ..
111

8.6. Results ..
112

8.6.1. Capacity and Training Time ..
112

8.6.1.1. Results for Random (b=0.5) and Geometric Data 113

8.6.1.2. Results for Random (b=0.8) and Character Data 116

8.6.2. Storage Efficiency ..
118

8.6.2.1. Results for Random (b=0.5) and Geometric Data
..............

118

8.6.2.2. Results for Random (b=0.8) and Character Data 119

8.6.3. Attractor Performance ..
121

8.6.3.1. Results for Random (b=0.5) and Geometric Data
121

8.6.3.2. Results for Random (b=0.8) and Character data
124

8.6.4. Neuron Failure Count ...
126

8.6.4.1. Results for Random (b=0.5) and Geometric Data 126

8.6.4.2. Results for Random (b=0.8) and Character Data 130

8.7. Summary and Conclusions ..
134

9. Increasing Performance through Increasing Connectivity 138

9.1. Introduction ..
138

9.2. Structure of the Investigation .. 139

9.3. Stabilising Training Patterns in Networks with Failed Neurons 140

9.3.1. Geometric Data
... 141

9.3.2. Character Data ... 145

9.4. Improving Attractor Performance with Further Connectivity
............ 149

9.4.1. Geometric Data ... 150

vii

9.4.2. Character Data ... 154

9.5. Summary and Conclusions .. 157

10. Conclusions ... 160

10.1. Introduction .. 160

10.2. Summary of Achievements .. 160

10.3. Practical Implications ... 163

10.4. Future Work ... 163

References .. 165

Appendices ... 171

Appendix A: Developing an Associative Memory Simulator 172

Appendix B: A Selection of Geometric Training Data 178

Appendix C: A Selection of Character Training Data 179

Appendix D: Data Tables - Sparse Connectivity 180

Appendix E: Data Tables - Compensatory Connectivity 188

Appendix F: Paper Presented at ICANNGA 2002 196

Appendix G: Paper Presented at RASC 2003 .. 201

vii'

List of Tables

2. A Survey of the Hopfield and Related Network Models 6

Table 2.1: The relationship between the loading (a) and the maximum

possible lower bound for K for unbiased random patterns 24

7. A Development and Analysis of Non-Random Training Data 82

Table 7.1: Training data set bias for geometric and character data
........... 90

Table 7.2: Mean local correlation values at various neighbourhood sizes
for geometric training data

... 93

Table 7.3: Mean local correlation values at various neighbourhood sizes

for character training data ... 98

8. Associative Memory Architectures with Sparse Connectivity
........ 105

Table 8.1: Connectivity level equivalences between connectivity

established by random means and that established using neighbourhood

connectivity. Also shown is the corresponding mean number of

connection at each neuron for each level of connectivity 111

Table 8.2: Results of capacity and training time comparisons between

random (b=0.5) and geometric data types at each of five levels of random

or neighbourhood connectivity. The type of data resulting in the highest

capacity or lowest training time is given for each case 113

Table 8.3: Results of capacity and training time comparisons between

random and neighbourhood connectivity strategies at each of five levels of

connectivity for networks learning random data (b=0.5) and geometric
data. The pattern of connectivity resulting in the highest capacity or

shortest training time is given for each case ... 115

Table 8.4: Results of capacity and training time comparisons between

random (b=0.8) and character data at each of five levels of random or

neighbourhood connectivity. The type of data resulting in the highest

capacity or shortest training time is given for each case 116

ix

Table 8.5: Results of capacity and training time comparisons between

random and neighbourhood connectivity strategies at each of five levels of

connectivity for networks learning random data (b=0.8) and character
data. The pattern of connectivity resulting in the highest capacity or

shortest training time is given for each case ... 117

Table 8.6: Storage efficiency values calculated as the ratio of the number

of successfully trained patterns to the mean number of connections per

neuron. Values highlighted with bold text are the maximum value for

each data/connectivity type pairing .. 118

Table 8.7: Storage efficiency values calculated as the ratio of the number

of successfully trained patterns to the mean number of connections per

neuron. Values highlighted with bold text are the maximum value for

each data/connectivity type pairing .. 119

Table 8.8: Results of attractor performance comparisons between

random (b=0.5) and geometric data at each of five levels of random or

neighbourhood connectivity. The type of data resulting in the highest

attractor performance is given for each case .. 121

Table 8.9: Results of attractor performance comparisons between

random and neighbourhood connectivity strategies at each of five levels of

connectivity for networks learning random data (b=0.5) and geometric
data.. The pattern of connectivity resulting in the highest attractor

performance is given for each case .. 123

Table 8.10: Results of attractor performance comparisons between

random (b=0.8) and geometric data at each of five levels of random or

neighbourhood connectivity. The type of data resulting in the highest

attractor performance is given for each case .. 124

Table 8.11: Results of attractor performance comparisons between

random and neighbourhood connectivity strategies at each of five levels of
connectivity for networks learning random data (b=0.8) and character
data.. The pattern of connectivity resulting in the highest attractor
performance is given for each case .. 125

X

List of Figures

2. A Survey of the Hopfield and Related Network Models 6

Figure 2.1: Plot of the bipolar step function ...
9

Figure 2.2: Output function employed by non-monotonic Morita

dynamics. The parameters used to generate the graph were: c=50, c'=15,

h=0.5, and x=-1 ..
13

Figure 2.3: Gamma distribution for a network with random weights
18

Figure 2.4: Gamma distribution for a network with weights generated

using the Hopfield learning rule ..
19

Figure 2.5: Gamma distribution for a network with weights generated

using the Blatt & Vergini learning rule ...
22

Figure 2.6: Gamma distribution for a network with weights generated

using a Gardner class rule ...
24

3. Network Performance Analysis Tools ... 34

Figure 3.1: A stylised representation of the attractor basin for an

imaginary pattern pl. The next nearest pattern to the last successful

convergence point is pattern p2. The dashed line represents just one

successful sample ..
37

Figure 3.2: A stylised representation of the reference basin (blue line) for

an imaginary pattern pl. Sample walks are shown as dashed lines. The

resulting attractor basin (red line) can be seen to be non-circular 40

4. Network Performance of Fully Connected Networks 42

Figure 4.1: Training time as a number of iterations through the training

set for random patterns of bias 0.5 .. 43

Figure 4.2: Training time as a number of iterations through the training

set for random patterns of bias 0.8 .. 44

Figure 4.3: Pattern stability as a percentage of the total number of

patterns being learnt for random patterns of bias 0.5 45

xi

Figure 4.4: Pattern stability as a percentage of the total number of

pattern being learnt for random patterns of bias 0.8
46

Figure 4.5: Attractor performance of networks learning random patterns

of bias 0.5 .. 47

Figure 4.6: Attractor performance of networks learning random patterns

of bias 0.8 .. 48

5. Introduction to Sparse Connectivity .. 50

Figure 5.1: A selection of input patterns and the corresponding output

values ...
51

Figure 5.2: An example training set consisting of paired duplicate

patterns ..
52

Figure 5.3: An example of a pair of patterns with identical inputs but

dissimilar outputs ...
52

Figure 5.4: Transformed form of the input patterns shown in figure 5.3 .. 53

Figure 5.5: Graph showing the relationship between the mean pattern

overlap, R, and the critical capacity a. ..
54

Figure 5.6: Graph showing the relationship between the critical capacity

a, and the minimum stability coefficient, K, at increasing levels of pattern

correlation indicated by the magnetism of the patterns, m 54

6. Post-Training Removal of Synapses and its Effect on Network

Performance ..
65

Figure 6.1: The manner in which pattern stability, as a percentage of the

total number of patterns stored, changes with respect to increasing

network load and decreasing levels of connectivity. The individual plots

represent a) pattern bias 0.5, random removal; b) pattern bias 0.5,

smallest-first removal; c) pattern bias 0.9, random removal; d) pattern bias

0.9, smallest-first removal ... 68

X11

Figure 6.2: The manner in which attractor performance changes with

respect to increasing network load and a decreasing level of connectivity.

The individual plots represent a) pattern bias 0.5, random removal; b)

pattern bias 0.5, lowest-first removal; c) pattern bias 0.9, random removal;
d) pattern bias 0.9, smallest-first removal .. 70

Figure 6.3: The decline in attractor performance for a number of fixed

loading points (a=0.05, a=0.30, and a=0.50) using patterns of bias 0.5.

The results of both random removal and smallest-first removal are shown

for comparison ... 72

Figure 6.4: The decline in attractor performance for a number of fixed

loading points (a=0.05, a=0.30, and a=0.50) using patterns of bias 0.9.

The results of both random removal and smallest-first removal are shown

for comparison ... 72

Figure 6.5: The manner in which pattern stability, as a percentage of the

total patterns stored, changes with respect to increasing network load and

decreasing levels of connectivity. The individual plots represent a) pattern

bias 0.5, random removal; b) pattern bias 0.5, smallest-first removal; c)

pattern bias 0.9, random removal; d) pattern bias 0.9, smallest-first

removal ..
74

Figure 6.6: The manner in which attractor performance changes with

respect to increasing network load and decreasing levels of connectivity.

The individual plots represent a) pattern bias 0.5, random removal; b)

pattern bias 0.5, smallest-first removal; c) pattern bias 0.9, random

removal; d) pattern bias 0.9, smallest-first removal 76

Figure 6.7: The decline in attractor performance (R) for a number of
fixed loading points (0.05,0.30, and 0.50) using patterns of bias 0.5. The

results of both random removal and smallest-first removal are

superimposed for comparison ... 78

Figure 6.8: The decline in attractor performance (R) for a number of
fixed loading points (0.05,0.30, and 0.50) using patterns of bias 0.9. The

results of both random removal and smallest-first removal are

superimposed for comparison ... 78

xiii

7. Development and Analysis of Non-Random Training Data 82

Figure 7.1: Two examples of training patterns based on the generated

geometric data
... 83

Figure 7.2: Two examples of training patterns based on the character
data

.. 84

Figure 7.3: Two example patterns with bias 0.5 85

Figure 7.4: (a) An example of a bit with a neighbourhood size (d) equal

to 1. (b) An example of a bit with a neighbourhood size (d) equal to 3 86

Figure 7.5: Frequency distribution of the cross-pattern local correlation

values for geometric data at a neighbourhood distance, d=1 91

Figure 7.6: Frequency distribution of the cross-pattern local correlation

values for geometric data at a neighbourhood distance, d=2
..................... 91

Figure 7.7: Frequency distribution of the cross-pattern local correlation

values for geometric data at a neighbourhood distance, d=3
..................... 92

Figure 7.8: Frequency distribution of the cross-pattern local correlation

values for geometric data at a neighbourhood distance, d=4
..................... 92

Figure 7.9: Frequency distribution of the cross-pattern local correlation

values for geometric data at a neighbourhood distance, d=5 93

Figure 7.10: Mean local correlation against sub-pattern neighbourhood

size for geometric training data
... 94

Figure 7.11: Frequency distribution of the cross-pattern local correlation

values for character data at a neighbourhood distance, d=1
....................... 95

Figure 7.12: Frequency distribution of the cross-pattern local correlation

values for character data at a neighbourhood distance, d=2
....................... 95

Figure 7.13: Frequency distribution of the cross-pattern local correlation
values for character data at a neighbourhood distance, d=3

....................... 96

Figure 7.14: Frequency distribution of the cross-pattern local correlation
values for character data at a neighbourhood distance, d=4

....................... 96
Figure 7.15: Frequency distribution of the cross-pattern local correlation
values for character data at a neighbourhood distance, d=5

....................... 97

xiv

Figure 7.16: Mean local correlation against sub-pattern neighbourhood

size for character training data. The level of global correlation is shown
for comparison ... 98

Figure 7.17: The level of local correlation introduced by each new level

of neighbourhood connectivity for geometric and character data. The

global correlation of the geometric and character data sets is indicated by

the dotted and dot-dashed lines respectively ... 99

Figure 7.18: Frequency distribution of the site activity values for random
data (b=0.5) .. 101

Figure 7.19: Frequency distribution of the site activity values for

geometric data ... 101

Figure 7.20: Frequency distribution of the site activity values for random
data (b=0.8) .. 102

Figure 7.21: Frequency distribution of the site activity values for

character data ... 103

8. Associative Memory Architectures with Sparse Connectivity 105

Figure 8.1: A pictorial representation of a small network within which

random connectivity has been established. Connections are shown for

two neurons as an example ... 109

Figure 8.2: A pictorial representation of a small network within which

neighbourhood connectivity has been established at a distance (d) of 1.

Connections are shown for two neurons as an example 110

Figure 8.3: Training time against pattern load for networks with random

connectivity learning random (b=0.5) and geometric data. Training time

is shorter for random data (solid line) at low loadings (< 0.1500) but

shorter for geometric data (dashed line) at higher loadings
........................ 114

Figure 8.4: Failed neuron count against increasing pattern load for

networks constructed with random connectivity at levels of 7.41,21.09,

39.96,63, and 89.25 mean connections per neuron and trained using
random (b=0.5) data .. 126

xv

Figure 8.5: Failed neuron count against increasing pattern load for

networks constructed with neighbourhood connectivity at levels of 7.41,

21.09,39.96,63, and 89.25 mean connections per neuron and trained

using random (b=0.5) data
...................................... 127

Figure 8.6: Failed neuron count against increasing pattern load for

networks constructed with random connectivity at levels of 7.41,21.09,

39.96,63, and 89.25 mean connections per neuron and trained using

geometric data
... 128

Figure 8.7: Failed neuron count against increasing pattern load for

networks constructed with neighbourhood connectivity at levels of 7.41,

21.09,39.96,63, and 89.25 mean connections per neuron and trained

using geometric data .. 128

Figure 8.8: Failed neuron count against increasing pattern load for

networks constructed with random connectivity at levels of 7.41,21.09,

39.96,63, and 89.25 mean connections per neuron and trained using

random (b=0.8) data .. 130

Figure 8.9: Failed neuron count against increasing pattern load for

networks constructed with neighbourhood connectivity at levels of 7.41,

21.09,39.96,63, and 89.25 mean connections per neuron and trained

using random (b=0.8) data ... 131

Figure 8.10: Failed neuron count against increasing pattern load for

networks constructed with random connectivity at levels of 7.41,21.09,

39.96,63, and 89.25 mean connections per neuron and trained using

character data
... 132

Figure 8.11: Failed neuron count against increasing pattern load for

networks constructed with neighbourhood connectivity at levels of 7.41,

21.09,39.96,63, and 89.25 mean connections per neuron and trained

using character data .. 133

xvi

9. Increasing Performance through Increasing Connectivity 138

Figure 9.1: Mean number of connections per neuron after stabilisation of
failed neurons for geometric data pattern loads of 0.0125 to 0.2500 learnt

by networks with initial neighbourhood connectivity established at
distances 1 to 5

... 141

Figure 9.2: Post-stabilisation storage efficiency for geometric data pattern
loads of 0.0125 to 0.2500 using networks with initial neighbourhood

connectivity established at distances 1 to 5 .. 142

Figure 9.3: Post-stabilisation attractor performance for geometric data

pattern loads of 0.0125 to 0.2500 using networks with initial

neighbourhood connectivity established at distances 1 to 5 143

Figure 9.4: Mean number of training phases for geometric data pattern
loads of 0.0125 to 0.2500 using networks with initial neighbourhood

connectivity established at distances 1 to 5 .. 144

Figure 9.5: Mean number of connections per neuron after stabilisation of
failed neurons for character data pattern loads of 0.0125 to 0.2500 learnt

by networks with initial neighbourhood connectivity established at
distances 1 to 5 ... 145

Figure 9.6: Post-stabilisation storage efficiency for character data pattern
loads of 0.0125 to 0.2500 using networks with initial neighbourhood

connectivity established at distances 1 to 5 .. 146

Figure 9.7: Post-stabilisation attractor performance for character data

pattern loads of 0.0125 to 0.2500 using networks with initial

neighbourhood connectivity established at distances 1 to 5 147

Figure 9.8: Mean training phase count for character data pattern loads of
0.0125 to 0.2500 using networks with initial neighbourhood connectivity

established at distances 1 to 5 .. 148

xvii

Figure 9.9: The attractor performance of networks initially connected

using the local neighbourhood strategy and with further symmetric

connectivity added at random. Training patterns were from the

geometric data set. Attractor performance is shown at 5% connectivity

intervals. The dashed vertical lines represent the level of neighbourhood

connectivity before either compensatory or additional random

connectivity was added. The loading on the network is a=0.0125 (5

patterns) ... 150

Figure 9.10: The attractor performance of networks initially connected

using the local neighbourhood strategy and with further symmetric

connectivity added at random. Training patterns were from the

geometric data set. Attractor performance is shown at 5% connectivity

intervals. The dashed vertical lines represent the level of neighbourhood

connectivity before either compensatory or additional random

connectivity was added. The loading on the network is a=0.1250 (50

patterns) ... 152

Figure 9.11: The attractor performance of networks initially connected

using the local neighbourhood strategy and with further symmetric

connectivity added at random. Training patterns were from the

geometric data set. Attractor performance is shown at 5% connectivity
intervals. The dashed vertical lines represent the level of neighbourhood

connectivity before either compensatory or additional random

connectivity was added. The loading on the network is a=0.2500 (100

patterns) ... 153

Figure 9.12: The attractor performance of networks initially connected

using the local neighbourhood strategy and with further symmetric

connectivity added at random. Training patterns were from the character
data set. Attractor performance is shown at 5% connectivity intervals.

The dashed vertical lines represent the level of neighbourhood

connectivity before either compensatory or additional random

connectivity was added. The loading on the network is a=0.0125 (5

patterns) ... 154

xviii

Figure 9.13: The attractor performance of networks initially connected

using the local neighbourhood strategy and with further symmetric

connectivity added at random. Training patterns were from the character

data set. Attractor performance is shown at 5% connectivity intervals. The

dashed vertical lines represent the level of neighbourhood connectivity

before either compensatory or additional random connectivity was added.

The loading on the network is a=0.1250 (50 patterns) 155

Figure 9.14: The attractor performance of networks initially connected

using the local neighbourhood strategy and with further symmetric

connectivity added at random. Training patterns were from the character

data set. Attractor performance is shown at 5% connectivity intervals.

The dashed vertical lines represent the level of neighbourhood

connectivity before either compensatory or additional random

connectivity was added. The loading on the network is a=0.2500 (100

patterns) ...
156

xix

1. INTRODUCTION

1.1. Introduction

The purpose of this thesis is to answer the question: "What benefits are there to using

information about the task in guiding the design of the pattern of connectivity of a sparsely

connected Hopfield-type neural network? ".

There are three themes to this work: Firstly, the empirical investigation of existing

theory; secondly, the combining of theories to produce novel network models and

training regimes; thirdly, the proposal of new strategies for constructing and

training associative memories.

Hopfield-type networks used for research purposes are usually trained on random

bit-patterns and the structure and correlations present in more natural data are not

taken into account. Little work on relating sparse connectivity to the nature of the

training data exists and even less is available empirically evaluating any resulting

network models. Therefore, this thesis is not a theoretical work but rather an

empirical evaluation of a number of architectural modifications to the original

Hopfield network. The modifications made however will be shown to be based on

established, published theory.

The key results are presented in chapters 8 and 9. It is demonstrated that, under

certain conditions, correlations in the training data can be exploited through

particular patterns of connectivity and that this can lead to improved capacity and

attractor performance.

Finally, while biological plausibility is not a driving factor in this investigation,

implausibility is avoided wherever practicable. The results obtained therefore, may

well be interesting from both an engineering and biological standpoint.

1

1.2. Methodology and Research Goals

The methodology employed throughout this work is to conduct empirical

evaluations based on many averaged network simulation runs using both random

and designed datasets.

A variety of distinct tasks needed to be completed in order to accomplish the

overall aim of the investigation. These were:

1. To investigate the current state of the art with respect to Hopfield-type

associative memories. High performance learning rules and performance

metrics were of particular interest. A learning rule was to be chosen for use
in later experiments.

2. To develop a neural network simulator suitable for immediate use and

capable of being extended for later, further experimentation.

3. To manufacture sets of training data that simulate the structure of natural

patterns and to investigate the nature of intra- and inter-pattern correlation
in the manufactured data sets

4. To investigate the history and current standing of the field of sparsely

connected associative memory architectures.

5. To investigate the impact on network performance of post-training removal

of connectivity. As a simple method of reducing network connectivity, this

strategy needs to be investigated for purposes of later comparison.

6. To investigate the effectiveness of two techniques for constructing sparse

connectivity prior to training. The first of these will be a simple random

connectivity strategy; the second will create connectivity based on some

knowledge of the structure of the training data.

7. To investigate whether the attractor performance of sparsely connected
networks can be improved with additional connectivity.

2

1.3. Thesis Outline

The structure of the thesis is as follows:

Chapter 2 presents a brief history of the Hopfield network together with an

explanation of the architecture and the dynamics of the network. A review of the

background literature pertinent to this investigation is included as is a presentation

of a number of different learning rules applicable to the basic Hopfield architecture.

An explanation of a method of categorisation of the weight matrices resulting from

the presented learning rules is given.

Chapter 3 describes a number of measures used in assessing the performance of the

networks created in the course of this investigation. Issues with existing tools are

identified and solutions to them are proposed. Also presented is a new attractor

performance measure providing the same functionality as existing tools while

extending and improving the quality and quantity of analytical information

provided.

Chapter 4 presents the results of the application of the performance tools described

in chapter 3 to fully-connected networks trained using the learning rules described

in chapter 2. The learning rules are evaluated according to their performance and a

learning rule is chosen for use in further work.

Chapter 5 introduces the field of sparsely connected associative memory networks.

A justification of the approach taken in this investigation to establishing sparse

connectivity is provided based on a number of existing works. Various techniques

used to establish sparse connectivity are described. A review is then presented of

the existing literature related to sparse connectivity in the context of associative

memories.

Chapter 6 presents the results of a series of experiments using networks in which

connectivity has been removed after training. Training is carried out using two
learning rules. The first of these is the learning rule identified for future use in

chapter 4; the second is another high-performance learning rule from chapter 2,

included for purposes of comparison. The performance of the networks is

evaluated with respect to the level of pattern stability and attractor performance at
each level of connectivity.

3

Chapter 7 presents the results of analyses performed on non-random training data

carried out in preparation for future work. The pseudo-natural datasets are

introduced and the characteristics of such data explained. The analysis tools are

described alongside details of their use. Finally, the results of applying the analysis

tools are presented and the implications of the results discussed.

Chapter 8 deals with the subject of creating Hopfield-type associative memories

with structured sparse connectivity and two methods of creating sparse connectivity

are described and justified. Networks are trained with various numbers of input

patterns and results of five types of performance analysis are presented. The

implications of the results are then discussed.

Chapter 9 builds on the results of chapter 8 and presents the results of an

investigation into ways the attractor performance of the networks might be further

improved once an initial level of connectivity has been established locally. Firstly, a

technique for correcting networks which exhibit some degree of error in their

training is investigated. Secondly, the effect of adding further connectivity to the

networks is examined. The networks are assessed with respect to the attractor

performance metric described in chapter 3.

Chapter 10 concludes the thesis and summarises the findings described in the earlier

chapters. The novel areas of work are identified and some practical implications of

the work discussed. Finally, some potential avenues for future work are identified.

1.4. Thesis Format

The chapters of this thesis are numbered sequentially from 1 and are identified in

the text by being preceded by the word `chapter'. Sections exist within chapters

and are identified along with the chapter number to which they belong. Cross-

references to sections begin with the section symbol §, such that §3.1 would refer

to the first section in the third chapter. Figures and tables are similarly labelled. For

example, `figure 4.2' refers to the second figure in the fourth chapter. Tables are
denoted by using the word `table' in place of `figure' where appropriate. Figures

and tables are indexed separately. In practice, this means that both `figure 2.1' and
`table 2.1' could exist in chapter 2, the former referring to the first figure and the
latter, the first table.

4

1.5. Common Notation

For convenience, some frequently used notation is identified and defined.

The letter N is frequently used to represent the number of neurons in a network.

Neuron indices are usually represented using the letters i and j.

A network's current state vector is represented by the letter S and the state of an

individual neuron represented by S.

An individual training vector is represented by the letter g and an individual bit

represented by ý,,

A network's weight matrix is denoted using the character W and individual weight

are referred to using the notation W. This represents the weight on the

connection between from neuron j to neuron i.

The local field of an individual neuron, i, is denoted h,

5

2. A SURVEY OF THE HOPFIELD AND RELATED NETWORK
MODELS

2.1. Overview

It is arguable that the entire modern field of associative memory neural networks

stems from the seminal work of Hopfield (1982; 1984) in which the physical

properties of the spin glass provide inspiration for a neural network. Kinzel (1987)

provides an introduction to the relationship between spin glasses and neural

networks. In that work spin glasses are described as being disordered magnetic

materials in which, at low temperatures, the atoms freeze to form a random

structure. The analogy is formed between the atoms of the spin glass as neurons,

and the magnetic forces through which they interact as synapses.

With Hopfield's publications came a resurgent interest in recurrent networks and

content addressable memories and whilst undeniably the catalyst for this renaissance,

Hopfield was neither the first nor alone in investigating spin glass-like models. For

instance, Little (1974) suggested a model bearing similarities to that proposed by

Hopfield. As observed by Gurney (1997) however, the quantum mechanical slant

to Little's work may have prevented it from being the genesis of the modern field

that Hopfield's paper was to become.

Even earlier than Little's work, Willshaw (1969) proposed a simple associative

network based on the principles and properties of the hologram. This work bears

little resemblance to the Hopfield model as it is known today but nevertheless

incorporates thresholded neurons at its core and so registers as a somewhat distant

cousin. Gardner-Medwin (1976) examined the similarities with respect to recall

and update dynamics between the brain and recurrent networks mainly of the

Hebb (1949) type.

6

2.2. Hopfield Networks

Hopfield's original network (1982) uses binary or bipolar neurons derived from the

work of McCulloch and Pitts (1943). A neuron is always in some state. In the case

of binary neurons the state takes the form of one of the values 0 and 1 and for

bipolar neurons the state is represented by the values -1 and +1. The current state

of neuron i is denoted S; where the symbol i indicates the index of the neuron and

takes the value 1.. N, where N is the number of neurons in the network. The

current state of the network as a whole is represented by the state vector S.

Each neuron has an activation threshold against which its input is evaluated. The

decision as to whether or not an individual neuron should fire is wholly based upon

the value of the neuron's input relative to the activation threshold. The network is

fully-connected in that each neuron is connected to all others. This pattern of
interconnection makes networks of this type recurrent in nature, as connections
feed information back to other neurons.

The connections between neurons (often termed synapses) are bidirectional and
have values associated with them known as weights. The matrix of values

representing these weights is called the weight matrix and is given the symbol W.

An individual connection links the output of one neuron to the input of another

and the weight value can affect the traversal of the connection by some signal

emitted by the outputting neuron. The process of calculating a neuron's input, the
determination whether or not it should fire, the value of the signal emitted, and the

manner of its propagation to the inputs of other neurons is determined by a

network's update dynamics.

7

2.3. Network Dynamics

The dynamics of a recurrent network influence its recall characteristics and

performance. Given some start state, the weights and dynamics of a network
determine the states through which the network will pass. For networks that

possess less than full connectivity, the effect of the pattern of connectivity of the

network on the network dynamics cannot be ignored and rather than specific

allowance having to be made for such an architecture the absence of a connection

can be considered as equivalent to the weight on that connection being zero, as

Hopfield suggests. Such a connection will thus have no effect on the dynamics of

the network as will be seen below.

2.3.1. Simple Update Dynamics

The original Hopfield network is presented as possessing neurons that randomly

and asynchronously evaluate themselves in parallel with regard to whether or not

their level of activation, called the net input and termed h; at neuron i, is above or

below some threshold value denoted 0.

The calculation of the net input of a neuron is performed as follows:

N

IW si (2.1)
J=t, frj

The next state S, ' of neuron i is calculated from the net input:

+1 if h, >0
S, = S, if h, =0 (2.2)

-1 if h, <0

where 0 is normally taken as 0.

8

Equation (2.2) represents the neurons' output function and when graphed,

excepting the special case where h; is equal to zero, looks as follows:

Since true parallelisation is not possible using computer software simulations on

non-parallel hardware, sequential equivalents must be employed. Some

methods by which this can be accomplished are detailed below.

There are two fundamental methods of updating neurons: synchronous and

asynchronous. During synchronous update, all the neurons of a network are

updated at the same time while asynchronous update differs in that neurons are

updated one by one.

Regardless of whether the update dynamics are synchronous or asynchronous,

symmetric weights (W, = W) are required for a valid energy function. The

presence of an energy function implies simple dynamics in the form of fixed

points or n-cycles. As the network state evolves according to the rules of the

dynamics (equations (2.1) and (2.2)) the energy function never increases. The

implication of this is that the stored patterns form local minima of the energy

surface described by the combination of equation (2.3) and all 2N possible states

of the network. The energy function for the standard Hopfield dynamics is as
follows (Hopfield, 1982):

E=-1
N

ES, h, (2.3) 2
, _,

9

Figure 2.1: Plot of the bipolar step function.

Synchronous Updates

The term synchronous update is somewhat misleading in the context of

software simulations of neural networks. It is not possible to genuinely update

all neurons simultaneously so an equivalent system must be sought. In

synchronous updating, the neurons' outputs are calculated en masse before they

are fed back to act as inputs to those neurons during the next time step.

Using this method, all neurons are effectively updated simultaneously. This

can cause the network to fall into 2-cycles with the network's neurons

collectively switching between 2 distinct states; these states are always some

pattern and its inverse.

There are a number of problems with the idea of synchronous updating. The

notion that all neurons in the brain might update at the same time is clearly

flawed. The requirement for some centralised clock with which to

synchronise the updates illustrates this. Also, when updating synchronously,

there is no opportunity for any neuron to affect the update of any other. It is

this fact can lead to a network simply flipping between states and not

converging on a solution.

Asynchronous Updates

During asynchronous update, the neurons are selected for update one at a

time, in either a fixed or random order. It is the order in which the neurons

are selected that is the primary means of distinguishing between the three

different ways in which asynchronous updating may be implemented.

During fixed order asynchronous update, neurons are simply selected in some
fixed order and the output of each one is calculated. The output is immediately

available as an input value to neurons yet to be updated. The act of updating all

the neurons in the network once is termed an update iteration.

Random order, asynchronous updates guarantee convergence on a stable pattern

given a symmetric, zero-diagonal weight matrix (Hopfield, 1982). Asymmetric

weights may result in the network being unable to converge upon a single state.
When this occurs, the network commonly ends up either cycling around a
number of states without settling or even wandering chaotically.

10

Two variations of random order asynchronous dynamics exist. The first of these

represents the closest serial analogy to the parallel dynamics proposed by

Hopfield. Neurons are randomly chosen for update at discrete time steps. At

each time step, each neuron has an equal chance of being selected and over a

sufficiently long period of time all neurons should have been updated

approximately the same number of times. This variant is termed random update

with replacement since after update a neuron is replaced in the pool of those

available to be selected for update. It should be apparent that the concept of an

update iteration cannot apply to this update method.

The second random order variant reintroduces the update iteration and specifies

that each neuron may only be selected for update once in each update iteration.

In all other aspects this update method operates in the same way as random

update with replacement. This variant is termed simply random update.

Throughout this work, asynchronous pseudo-random updates are employed. For

speed, a large table of random values is precalculated and this table determines

the order in which neurons are updated.

11

2.3.2. Stochastic Dynamics

Stochastic neurons are those where the value of the net input to the neuron

determines not whether the neuron will fire but rather, the probability that the

neuron will fire. The degree of stochasticity in the network is commonly

controlled by some notion of `temperature' that may be gradually reduced as

network update progresses.

This idea of the `temperature' of a system has its roots in the field of

thermodynamics where the temperature of an entity is related to the level of

energy in the system. When applied to neural networks the pseudo-temperature

regulates the amount of `random' movement in the network. At a temperature

of 0a network becomes deterministic in nature. These dynamics can be seen in

alternative associative memory models such as the Boltzmann machine (Hinton

and Sejnowski, 1983).

The purpose behind this introduction of noise (the random movement) is to

prevent the system falling into spurious local energy minima and to aid its

movement into one of the energy wells of one of the stored patterns.

A stochastic version of the Hopfield network exists (Hopfield, 1982) whereby

the convergence state of the network is measured as the average state of each

neuron over some period of time. In this model, the temperature is not reduced

and so the network constantly updates with some degree of randomness.

2.3.3. Continuous Dynamics

In introducing the network update dynamics it was shown, using equation (2.2),

that the Hopfield network is often constructed using a step output function.

Other output functions are possible and are applicable to the Hopfield

architecture.

Continuous Hopfield Network

Hopfield (1984) proposes the construction of a model based on a sigmoidal

output function. Hopfield shows that, under certain conditions, the stable states

of the continuous model correspond to those present in the equivalent discrete

network as, over time, the network saturates out to +1/-1 states. The

justification of this output function lies in the fact that it may be viewed as

representing the short-term average of a biological neuron's firing rate.

12

Morita Dynamics

Morita (1993) presents an interesting modification to the update rule. Whereas

Hopfield-style associative memories are commonly built using a sigmoid output

function (continuous Hopfield model) or a step function (discrete Hopfield

model). Morita presents a non-monotonic output function that, it is claimed,

provides better performance.

The output function is given by:

(u) _
1-exp[-cu] 1+ic exp[c'(Iul-h)] (2.4)
1+exp[-cu] 1+exp[c'(Iul-h)]

Where, in this case, c, c', and h are positive constants and K is a parameter which
is usually negative. A graph of this function is shown below (figure 2.2).

flu)

Morita states that the use of this output function in both continuous and discrete

networks greatly improves recollection ability and memory capacity. Morita also

notes that the continuous model no longer recalls spurious memories with the

modified dynamics.

Whilst the claimed attributes of Morita's update rule are undoubtedly of interest,

a detailed investigation of its implementation is outside the immediate scope of
this work.

13

Figure 2.2: Output function employed by non-monotonic Morita dynamics. The parameters
used to generate the graph were: c=50, c'=15, h=0.5, and K=-1.

2.4. Weight Matrices

The values possessed by the weight matrix of a particular instance of a Hopfield-

type network is determined in part by the algorithm employed in embedding the

patterns which are to be learnt and in part by the patterns themselves. The

algorithms used to train networks to recognize these patterns are commonly termed

learning rules.

The learning rule used to train the original model was inspired by Hebb (1949).

The assumption is that persistent or repetitive activity at a neural level induces

lasting (though not necessarily permanent) changes that add to the increased

embeddedness of the associated pattern. Hebb states this as follows:

"When an axon of cell A is near enough to excite a cell B and repeatedly or

persistently takes part in firing it, some growth process or metabolic change

takes place in one or more cells such that A's efficiency, as one of the cells

firing B is increased. "

In its original form above the Hebb proposal is not explicit enough to form part of

a working model. Quoting from Haykin (Haykin, 1999), the simplest

interpretation (Stent, 1973; Changeux and Danchin, 1976) of the Hebb proposal

into a workable training prescription is:

"7f two neurons on either side of a synapse (connection) are activated

simultaneously (i. e. synchronously), then the strength of that synapse is

selectively increased. "

This method will produce a working weight matrix though it fails to make use of

all the information available to it. In the prescription outlined above there is no

distinction between correlation between neurons that are off together (0/0), and

neurons which are anticorrelated (0/1) in the case of a binary representation.

The first interpretation of Hebb's proposal then becomes deficient for the purpose

of generating a suitable weight matrix. The natural evolution of the interpretation

given above is to take into account the positive and negative activation values

present in a bipolar representation. This modified scheme is easily presented as a

system of neural learning based upon the principles of correlation/anti-correlation.
If two units of a network are in agreement with each other, i. e. are both outputting
+1 or -1, then the synaptic strength between them, represented in this case by the

14

weight on the connection joining the units, should be increased by some amount.

If, on the other hand, the two units in question are outputting different values from

each other then they are in disagreement and the weight should be correspondingly

decreased. As an equation for forming a weight matrix for the network the

correlation/anti-correlation method of learning can be represented thus:

P

Wý =11 Wl =0 (2.5)
N N_,

where W, represents the weight on the connection from neuron j to neuron i and µ

represents the index of the current training pattern. Summing the correlations over

all patterns for each neuron pair Y, gives the value for the weight between that pair.

The condition W, "; =0 enforces the zero diagonal required for guaranteed

convergence using the asynchronous random network update dynamics described

in §2.3.

By training the network in this manner we are reinforcing correct performance and

`punishing' (through reduction of the weights) the incorrect behaviour.

The Hopfield model based on Hebbian learning has a relatively low capacity when

compared with models trained using later algorithms. However, it does have the

distinction of possessing three important properties that cause it to be generally

accepted as being a plausible, though unlikely, model of biological neural

interaction. These three properties (denoted by bold type) are detailed below:

" The algorithm is local in its use of information. Two forms of locality are

identified: spatial locality and temporal locality.

If an algorithm is spatially local, the information that the algorithm requires in

order to calculate the weight change on the synaptic connection is that which is

directly available to the two units between which the connection exists.

For an algorithm to be temporally local, the information that the algorithm uses

must exist wholly and exclusively at the current point in time and comprise

only that information contained within the network's state and weights.

" The algorithm is immediate in its effect. That is, the algorithm requires only a

single pass through the training set in order to calculate an effective weight
matrix. A learning rule operating in this way is often called a one-shot learning

15

rule. Other forms of learning rule can require a number of passes through the

training set before a suitable weight matrix is formed and these are termed

iterative learning rules.

" The algorithm is incremental in the way in which it learns new patterns. If a

learning rule is described as being incremental it is taken to mean that the

algorithm is capable of embedding new memories in the network without

reference to, or destroying, those that already exist.

There exist minor variations on equation (2.5) as shown by Müller and Reinhardt

(1991). They suggest that for a network that excludes the self-coupling of units a

normalisation factor of 1/(N- 1) would be appropriate as the summation runs over

N-1 terms.

As alluded to in §2.1 the Hebb rule is not the only means by which networks of the

Hopfield type may be trained.

16

2.4.1. Abbott's Network Classes

According to Abbott (1990) it has been shown (Abbot and Kepler, 1989) that

associative memories fall into universality classes identified by the networks'
behaviour near maximum capacity. Networks may exhibit quite different

behaviour from each other at lower loadings but those belonging to the same

class begin to behave similarly as they reach saturation. The importance of

these universality classes lies in the fact that it becomes less important that the

model being studied is an absolutely accurate representation of the real system.

If the model being studied lies in the same class as the real system it is derived

from then calculations upon the model will elicit the same answers as if they

were performed on the real system.

The universality classes are defined by the distribution of stability coefficients
known as gammas. At first glance, it could seem obvious that the size of the

local field, It, might be sufficient to indicate the embeddedness of a particular

pattern at unit i. While it is true that, according to the combination of

equations (2.1) and (2.2), it is enough for the value h,, termed the aligned local

field, to be positive to ensure pattern stability; this would imply that simply

multiplying all the weights of a network would improve the attractor

performance of the patterns. This is not the case however, as it is not the

magnitude of the weights that is important for pattern stability but rather the

size of the weights relative to one another. Scaling every weight by the same

value will thus have no effect on the stability or otherwise of the patterns in

the training set.

Removing the aligned local field's dependence on the magnitude of the

weights is the key to eliminating this potentially misleading feature.

17

Stability coefficients, as their name implies, provide an indication of the depth

of embedding of a trained pattern and are calculated as follows:

µ hNt µ
__ (2.6)

where:

N
ý/2

IW, 1= 1Wu (2.7)
J=I

The denominator IWI present in equation (2.6) makes the calculation of

gamma independent of any scaling of the weights. Now, if the gamma values
for a pattern are all greater than zero then it can be said that that pattern will be a

stable point of the network.

In the simplest case, a network consisting of random weights would generate a
distribution of gammas similar to the following:

I BOO

1600

1400

1200

loon

a
s eoo

600

400

200

As might be expected from a matrix of random weights, the distribution of

gamma values is approximately Gaussian with a zero mean. It can be seen that

roughly half the values fall below the stability threshold of zero. This worst-case

class of weight matrices will be termed Class 0.

18

0
.8 "7 .6 -5 J .3 "2 .101234567

Stability

Figure 2.3: Gamma distribution for a network with random weights.

Class 1

In order to improve the stability of the training set there are two immediate

strategies that might be employed. They are: shifting the mean of the

distribution so that a greater number of values become greater than zero, and

tightening the distribution which will have a similar effect in pulling all the

values closer together.

Weight matrices exhibiting these properties can be generated using Hebb-like

learning rules. Figure 2.4 (below) shows an example of the distribution of

gammas one might expect from such a matrix.

7000

6000

5000

rood

s 3000

2000

loon

Figure 2.4: Gamma distribution for a network with weights generated using the Hopfield
learning rule.

The distribution shown in figure 2.4 has a mean of approximately 2 and a

smaller proportion of values below the stability threshold. The weight matrix

that the distribution was produced from was generated by the Hopfield learning

rule. Weight matrices that have distributions of gamma values similar to that

above are said to be Class 1 matrices. This category is also known as the Hopfield

class as it is the distribution of gammas from the Hopfield weight matrix that is

the archetype of this class.

19

Oi rr+rrrr -ý
876 -5 1321012315678

Stability

Networks with weight matrices of this type commonly have very low capacities

of around a=0.15. Abbott's analysis of the Hopfield architecture shows

however, that a matrix should exist with a narrower Gaussian distribution of

gammas with a=1.14. Abbott neither specifies nor suggests a technique by

which such a matrix might be generated.

With class 1 rules, there is always a non-zero probability that a trained pattern

may not be stable.

Learning rules that generate weight matrices of this class are Hebbian learning

(Hebb, 1949; Hopfield, 1982; Hopfield, 1984) as described above and the rule
developed by Storkey (1997; 1999).

20

Class 2

In figure 2.4, the presence of values below the stability threshold indicates that

not every bit in every pattern is stable for the network from which that

distribution was obtained. The production of another class of weight matrices is

possible by learning rules which rectify this situation by moving the distribution

mean to some positive value (1, in the simplest case) and attempting to make the

variance of the data zero.

This class of weight matrices is known as Class 2 or the pseudo-inverse class and

is so called because the algorithms that fall into this category all calculate or

approximate the weight matrix based on the calculation of the pseudo-inverse

of the matrix formed by the training patterns. According to Amit (1989), this

technique was originally suggested by Kohonen et al (1973) and adapted for

application to neural networks by Personnaz et al (1986).

The pseudo-inverse learning rule can be written using matrix notation as

follows:

W= M(MTM)-'MT (2.8)

where W is the connection matrix, and M is the matrix formed by the training

patterns as column vectors.

It is important to keep in mind that most weight matrices of this class will be

generated using algorithms that closely approximate the ideal pseudo-inverse

weight matrix. Figure 2.5 below, for example, is a distribution of gammas from

a weight matrix created by the Blatt & Vergini (1991) learning rule. Also,

Abbott states that a point distribution would only be seen in the extreme case of

a network of infinite size (N=c0) that has been trained using an infinitely large

training set (P=te).

21

A typical distribution one might expect to see from weight matrices in this class is

shown below in figure 2.5 (below):

z MO

20000

15000

s
10000

6000

Figure 2.5: Ganuna distribution for a network with weights generated using the Blatt & Vergini
learning rule.

As expected, it can be seen in figure 2.5 that the distribution, though tight,

does not have the zero variance that is stated to be a feature of weight matrices

based on the pseudo-inverse. As explained above, this is due to the effect only

being seen as N-- Oo.

Weight matrices in this class have a capacity of a=1 though at this level of

loading linear dependencies within the training patterns is inevitable and the

weight matrix becomes the identity matrix. The maximum practical capacity

is therefore N-1.

Learning rules that generate weight matrices of this class are: the pseudo-inverse

rule, Blatt & Vergini's rule (1991), Iterative Local Learning with Equal Fields

(Diederich and Opper, 1987).

22

0
-8 -7 -6 -5 J -3 -2 -1 012315678

Stability

Class 3

The third class of weight matrices is known as the Gardner class after the

extensive work on the space of interactions in neural networks by Gardner

(1988).

Distributions of gamma values generated from weight matrices in this class have

all gamma values below some critical value K made at least equal to that value.

The fact that the correctness of the aligned local field is not enough to

guarantee that the learned patterns will behave as attractors, as mentioned in

§2.4.1, is reinforced by Gardner who states that the inequalities:

E wu4j >x (2.9)
jti

subject to the normalisation condition:

1w' =i (2.10)
,.;

should imply larger basins of attraction for larger values of K. Equation (2.10)

ensures that, by normalising the length of the weight vector, that the aligned

local fields are themselves the gamma values for the weight matrix.

So, the larger the value of K of a given weight matrix, the better the attractor

performance should be. K is directly related to the capacity, a.. (the network

loading beyond which not all training patterns will be stable), in that a.,,. will

decrease as K gets larger. It is apparent that the reverse must also be true; for a

given loading a there exists a maximum value of K, termed K, �..
This

relationship is defined by Gardner as:

a= 21
(2.11)

J eXp -^ Zt (t+xmu)2 dt

_IC-
v

23

This relationship is illustrated by the following table showing example values:

Loading (a) Kmax

20

1 0.5

0.5 1

0.2 2

Table 2.1: The relationship between the loading (a) and the maximum possible lower bound for K
for unbiased random patterns.

Table 2.1 shows that the maximum loading for networks of this class should be

close to 2 for unbiased random patterns. Gardner concludes that the maximum

capacity will increase for correlated patterns. This is an important point and will
be discussed in greater detail in chapter 5 where the second phase of this work is

introduced.

Distributions of gamma values for weight matrices of this class will look similar

to the graph shown in figure 2.6 (below):

35000

30000

25000

mooo

LL 1w

10000

5C

"8 "7 "6 "5 4 "3 "2 "1 01234567

Stability

Figure 2.6: Gamma distribution for a network with weights generated using a Gardner class
rule.

8

24

2.5. Learning Rules

There is a wide range of learning rules applicable to the architecture described in

§2.2 and many of these have been mentioned previously in the context of the class

of weight matrices that they produce.

What follows is a description of the origin and mechanism of a number of learning

rules categorised according to the class of weight matrix that they produce.

2.5.1. Class 1

The following learning rule all produces a weight matrix that is class 1, or

Hopfield class.

Storkey learning rule

Storkey's learning rule is an attempt to increase the capacity of the original

Hopfield model without some of the sacrifices brought about by some of the

more complex algorithms. Storkey's learning rule operates as follows:

W! ̀ =Wu'-'+N4; ' I -N ; ̀hi, - by 1 (2.12)

where:

N

W; ý 41 (2.13)
k=l, ksi. J

where hj is a form of local field or activation at neuron i for pattern µ. The

extra terms that Storkey's rule possesses over the Hopfield rule have the effect of

partially unlearning the previously presented pattern.

The importance of the Storkey algorithm lies in the fact that it, like the Hebb-

inspired learning employed by Hopfield, is immediate in operation. The

algorithm is also local with respect to the information it requires to calculate

the change to the weights. Some temporal non-locality is present however, as
it is apparent from equation (2.13) that the calculation of the local field for the

current pattern does not take into account the most recent changes to the

weight matrix. In order to implement this rule it is necessary to take the
biologically implausible step of pre-calculating the aligned local fields for the

entire network for use in training the network on the next pattern at the

conclusion of training the current one. The biological implications of this

temporary storage of information at a global level exemplify the importance of

25

temporal locality in a learning rule that is to be a plausible model of neural
learning.

2.5.2. Class 2

The following learning rules all produce weight matrices that are class 2, or

pseudo-inverse class.

Iterative Local Learning with Equal Fields

Diederich & Opper (1987) propose a learning rule that aims to modify the

weights such that the aligned local fields of every neuron will eventually become

equal to 1 for every training pattern. The aligned local field is defined as h, S; at

neuron i where h; is the local field according to equation (2.1). One benefit of
forcing the aligned fields of deliberately embedded memories to be equal to 1 is

that it provides a method of distinguishing them from spurious states that might
be retrieved during recall.

The algorithm begins with a zero weight matrix and proceeds according to:

REPEAT UNTIL ERROR <E

SET THE NETWORK STATE TO ONE OF THE

FOR EACH NEURON i IN TURN

UPDATE THE INCOMING WEIGHTS TO NEURON i ACCORDING TO:

OWu
ý1-hN ") 4

N
(2.14)

where e is the maximum permitted error across all neurons and patterns and is a

small positive constant.

The error is calculated as:

E=EI1-k4l'I
t. µ

(2.15)

Equation (2.14) is functionally equivalent to the delta rule (Hertz, Krogh et al.,
1991) employed in the training of perceptrons with the learning rate in this case
being 1 IN.

The learning rule itself (equation (2.14)) is both temporally and spatially local in
its use of information during training. The stopping condition, involving

equation (2.15), is clearly non-local. It could be argued that, because of the

26

dependence of the learning rule on the stopping condition, the algorithm as a

whole is non-local.

Blatt & Vergini

Blatt & Vergini (1991) present a learning rule which takes the form of an

iterative method for approximating the projection matrix. The training

algorithm is guaranteed to find an appropriate weight matrix within a finite

number of presentations of each pattern if such a matrix exists.

The algorithm begins with a zero weight matrix and proceeds according to:

FOR EACH PATTERN IN TURN

SETm=1

REPEAT UNTIL ERROR <E

APPLY THE PATTERN TO THE NETWORK

FOR EACH NEURON IN TURN

UPDATE INCOMING WEIGHTS ACCORDING TO:

Awy =(k' (ý; ' - hµ) (t
l-

hj) (2.16)
N

SETm=m+1

REMOVE ALL SELF-CONNECTIONS

The error is calculated as:

E=EIT-h, %i'I (2.17)
l, µ

where T is the desired threshold value for the aligned local field.

As this learning rule generates a weight matrix approximating that generated by

the pseudo-inverse rule but possessing a non-zero leading diagonal the final step

of removing the self connections (W; 's) must be taken in order to guarantee

convergence upon the stored patterns.

Blatt & Vergini present a formula for calculating the minimum number of

presentations of the training set to perform in order to achieve aligned local

fields with values of at least T. The number of presentations, V, is calculated as

being the smallest integer conforming to:

NV >_ logk
1TZ

(2.18)

27

where k and T are real valued constants such that 1<k <_ 4 and 0 <_ T<1. k

is referred to as the memory coefficient of the network; the larger it is, the fewer

steps are required to train the network.

For efficiency, this work employs a version of the learning rule which pre-

calculates the number of training set presentations required by using equation

(2.18). This removes the need for a computationally intensive test for the

aligned local field being correct to be performed at each iteration.

The Blatt & Vergini learning rule has the advantage of being local in its use of

information but crucially it is also incremental. Remarkably, the addition of
further patterns to the network can be made without harm or disturbance to the

stored patterns already present.

28

2.5.3. Class 3

The following learning rules all produce weight matrices that are class 3, or

Gardner class.

Gardner's Rule

Gardner (1988) proposed a learning rule which, provided such a solution exists,

will find a solution to equation (2.9) which forces all gamma values above some

specified value, K.

The algorithm begins with a zero weight matrix and proceeds according to:

REPEAT UNTIL ALL GAMMA VALUES ARE CORRECT

FOR EACH PATTERN R IN TURN

FOR EACH NEURON i IN TURN

IF Y; <_KTHEN

UPDATE THE INCOMING WEIGHTS ACCORDING TO:

AWf =N (2.19)

where h; is the local field defined by equation (2.1) and I WI, is the length of the

incoming weight vector at neuron i.

Gardner offers two choices for the function f (hr) :

i) The perceptron algorithm:

fýh"ý=1 (2.20)

which is guaranteed to converge upon a solution, if one exists, in a finite

number of training steps.

ii) The relaxation algorithm (Abbot and Kepler, 1989):

fýh; =ý(ic-h") IWI, (2.21)

which, if a solution exists, will converge for 0<X: 5 2 and according to

Gardner, is most efficient for X=2.

This algorithm is not considered for implementation in this work due to the

need to calculate the length of the incoming weight vector at each weight
change. This is considered, in this work, to be outside the spirit of local
computation.

29

Iterative Local Learning

Diederich & Opper (1987) and Forrest (1988) both propose a learning rule that

is similar in operation to the perceptron rule (Rosenblatt, 1958). This iterative

scheme aims to drive the local fields for each training pattern to the correct side

of +T or -T is appropriate. This goal can be formalised in terms of the aligned

local fields as follows:

h; ''4; " >_ T for all i, µ (2.22)

The algorithm begins with a zero weight matrix and proceeds according to:

REPEAT UNTIL LOCAL FIELDS ARE CORRECT

SET THE NETWORK STATE TO ONE OF THE 4µ

FOR EACH NEURON i IN TURN

IF h, %, " <T THEN UPDATE THE INCOMING WEIGHTS TO NEURON i

ACCORDING TO:

ýµýµ

OWE= 'j
N

If one exists, this learning rule will converge upon a suitable weight matrix for

which all the trained patterns are guaranteed to be stable. This rule is very

similar to the Gardner rule (previous page) with:

fýh"ý=1 (2.23)

Iterative Local Learning is fully local in its use of information and, as its name
implies, is iterative in operation.

A symmetric version of this rule exists (Gardner, 1988) in which an weight

change at each W, is replicated at W;. This has the advantage of ensuring simple

updates dynamics as described earlier in §2.3.

30

Krauth & Mezard's Learning Rule

Krauth & Mezard (1987) propose a modification to the iterative local learning

rule (Diederich and Opper, 1987). This rules differs from the original in that at

each pattern presentation opportunity the pattern with the smallest aligned local

field is selected to be the presented. This is in contrast to the undefined

presentation order of iterative local learning.

This learning rule will produce a value of K (Gardner, 1988) that tends towards

Y, as the training threshold, T, increases.

The algorithm begins with a zero weight matrix and proceeds according to:

REPEAT UNTIL LOCAL FIELDS ARE CORRECT

FOR EACH NEURON i IN TURN

SELECT THE PATTERN WITH THE LOWEST ALIGNED LOCAL FIELD AT THIS UNIT

THEN UPDATE THE INCOMING WEIGHTS TO NEURON i ACCORDING TO:

4 "'" ewe- `N' (2.24)

The advantage that this learning rule has over iterative local learning is that it is

capable of finding the optimal value for K when using a sufficiently high

threshold.

2.5.4. Other Learning Rules

Other learning rules exist beyond those described in the sections above. Davey

et at. (2002) identify two worthy of note. The first of these is an alternative

technique for finding a weight matrix of Gardner class proposed by Athithan

(1995). In this work Athithan approaches the training of the network as an

optimisation problem solvable by linear programming techniques. The further

investigation of this mathematical approach is outside the scope of this project.

The second rule identified is proposed by Plakhov and Semenov (1994). Their

technique initialises the weight matrix according to one-shot Hebbian learning

and proceeds to train further by applying random patterns to the network and
`unlearning' them. Again, further investigation of this rule is outside the scope

of this work.

31

2.6. Further Variations

The set of learning rules described in §2.5 is not intended to be exhaustive but

rather to encompass a range of what might be considered the most interesting

algorithms with which to experiment. Work has been conducted on improving

the performance of networks by changing them further upon conclusion of the

weight modification process and one of the techniques employed in doing this is

described below.

2.6.1. Modification of Neuron Thresholds

It was seen in §2.3.1 that the original Hopfield network was made up of neurons

with thresholds set to zero. Modifying the thresholds of a network's neurons

would be an obvious scheme through which the network performance might be

improved upon.

Schultz (1995) proposes a system whereby the threshold of a neuron is set to a

value exactly halfway between the values of the largest negative and smallest

positive local fields taken across all patterns. The motivation behind this

technique is to maximise the `slack' over the set of training patterns. The term

`slack' is best described using Schultz's own example.

Consider, for example, a neuron in a trained network. The local field for each

of four training patterns is: -3, -1,5, and 7. The desired output values at that

neuron for the training patterns are: -1, -1,1, and 1 respectively. It can be seen

from the local field of -1 that if the neuron threshold is set at zero then only a

small amount of corruption (1 unit) in the pattern presented for recall can cause

that neuron to output the incorrect value (+1) as the local field is pushed above

the threshold.

Schultz suggests a value of 2 would be more appropriate for the threshold so as

to maximise the separation between the positive and negative local fields with

the smallest magnitudes. This provides greater error correction capability for

patterns that might otherwise be particularly susceptible to failing at low levels of

corruption. It is this separation between the local fields that is termed the `slack'.

32

The new threshold value is given by:

K+h' - h, " =min {hr uhf >0}
(2.25) 6, = where

2 ti =max{eIh'<0}

Results of performance analyses of networks employing this technique may be

found in Davey et al (2002).

Buckingham and Willshaw (1993) examine in detail a number of threshold-

setting strategies both simple and complex based, in part, on Marr's (1971)

proposal that the value of the threshold should depend on a neuron's input

activity. The full range of techniques is too wide to cover here and the

deployment of them outside the scope of this project but both Buckingham and

Willshaw and Schultz (1995), mentioned above, present opportunities for

investigating further improving the performance of the networks studied within

this work.

33

3. NETWORK PERFORMANCE ANALYSIS TOOLS

3.1. Introduction

To be able to compare the relative performance of the networks and learning

rules used throughout this work it was necessary to have a robust set of analysis

tools. This chapter presents a description of the performance measures used

throughout this investigation.

The measures are: pattern stability, capacity, training time, and attractor

performance.

3.2. Performance Metrics

3.2.1. Pattern Stability

The simplest test is that of pattern stability. A network is placed in a start state
known to correspond exactly to one of the patterns the network has been

trained upon. If the network state, upon update of all neurons in accordance

with the network dynamics, has moved from that initial state to some other,

then the pattern forming the start state is deemed not to be stable.

The presence or absence of unstable patterns at a particular loading assists in

determining the capacity of a network (described below) as well as providing

an indication of the speed at which a network's memory of a set of training

patterns fails.

3.2.2. Pattern Load

While not in itself a performance metric, the loading placed on the network is

important in the calculation of metrics such as capacity, described below. The

loading on a network, denoted by the symbol ,
is calculated according to:

P
a =- N

(3.1)

where P is the number of patterns in the training set and N is the size of the

network.

34

3.2.3. Capacity

The capacity of a network represents the maximum loading that can be placed

upon the network with all the patterns remaining stable. The capacity,

denoted by
max'

is calculated in the same manner as the loading:

Umaa (3.2)

where P is the number of patterns in the training set and N is the size of the

network.

The capacity can be determined using the pattern stability measure described

above. If the number of patterns to be learnt by a network is gradually

increased and the network retrained each time, the last loading at which all the

patterns are stable provides a maximum value for Pin equation (3.2).

3.2.4. Training time

The training time of a network is reported in terms of the number of iterations

through the training set that is required for the network to be fully trained.

This measure is only applicable to networks with those learning rules where

multiple presentations of patterns are required.

3.2.5. Attractor Basin Size

The attractor basin size is a measure designed to indicate the recall ability of a

network when given, as its start state, a corrupted version of one of the trained

patterns. The stored pattern is considered to be acting as a final state to which

the evolving state of the network is attracted through the action of the update

dynamics.

The attractor performance of an associative memory can be defined in terms of

the radii of the basins of attraction of the stored patterns. The analogy is often

made between a marble started high on the wall of a basin rolling to a standstill

at the basin's base and the relaxation of networks with Hopfield-type dynamics

into a state of low energy. The radius of the basin of attraction is

correspondingly analogous to how far, in Hamming distance, one can move

the start state of the network away from a stored pattern and still have the

pattern recalled correctly by the network.

35

As the state space of a network forms a discrete N-dimensional hypercube with

the states of the network at the vertices it is somewhat incorrect to think of

attractor performance in this 3-dimensional, continuous fashion. It does

however, serve as a useful visualisation of the activity of the network (Hertz,

Krogh et al., 1991).

3.2.5.1. The Kanter and Sompolinksy Attractor Basin Measure

Kanter and Sompolinsky (1987) devised a technique for measuring the size of

the basins of attraction. This measure is effectively an average of the basin sizes
for all the patterns embedded in the network. Based on the method of

gradually increasing the corruption of a known stored pattern and attempting

recall using the corrupted pattern as a network's initial state (Hopfield, 1982),

the calculation is performed as follows:

For a given set of P patterns, a network start state is chosen from the training

data. The first mN bits of the pattern selected are fixed to be equal to those of

the original pattern. The value, m, represents the proportion of the start state

that is to remain the same as the stored pattern and is termed the overlap. For

example, consider a simple network of 10 units:

We assume some start state:

-1 1 -1 1 -1 1 -1 1 -1 1

If we begin with a high overlap, or a value of m=0.9, then our randomly

corrupted state might be:

-1 1 -1 1 -1 1 -1 1 -1 -1

The fixed portion of the states is shown using bold text. This new pattern is

applied to the network and the network permitted to update until it converges

upon a pattern. If the updated pattern is equal to the source pattern i. e. the

uncorrupted original, then the successful start state is recorded. This process is

repeated for a number of different initial states derived each time from a
known stored pattern. If all the start states tested converge correctly then the

current value m is recorded and denoted mo. The value of m is then lowered

and the process begins again. m,, always represents the furthest successful point
tested so far at which all, or most, of the sample states flow to the original
patterns.

36

The above procedure is repeated until an average mo, calculated over different

sets of patterns, has been obtained. The number of pattern sets is arbitrary

though the larger the sample set the greater the accuracy of the final measure.

A value the size of the basin of attraction, R, can now be defined as:

R=1-(mo) (3.3)

Kanter and Sompolinsky note that for small values of , where R is close to 1,

the effect that the size of the network has on the result is not insignificant. In a

theoretical network of infinite N, the distance between patterns is very large -

there is no interference between them. At low loadings in a finite size

network one would expect the R value to be close to the maximum of 1. At

these low loadings however, the effect that interference might have on the

result must be taken into account. As loading increases, the importance of the

effect of pattern interference falls by comparison with other factors affecting

attractor performance such as spurious memories.

To partially compensate for the interference, Kanter and Sompolinksy refine

equation (3.3) so that it becomes:

[1_
R=(<

1-mo])) (3.4)

where m, is the largest overlap of the initial states with the rest of the patterns

and is calculated using the set of corrupted patterns stored from the first

procedure. Implementing this involves a record being made of the largest

overlap each corrupted pattern has with the patterns in the training set that are

not the original source pattern and these values become the m, 's for use in

equation (3.4)

2

basin
Ntr

Figure 3.1: A stylised representation of the attractor basin for an imaginary pattern pl. The next
nearest pattern to the last successful convergence point is pattern p2. The dashed line represents just
one successful sample.

37

Figure 3.1 (previous page) shows the various values measured during the

calculation of the Kanter and Sompolinksy measure. An ideal attractor basin

around pattern pl is shown. The next nearest pattern to the last successful

sample state is denoted p2.

Note that the refined version of the measure no longer acts as a direct measure

of the attractor basin size but rather becomes a relative measure that takes into

account the proximity of the patterns to each other. This has the advantage of

producing a single value for the `goodness' of a network's attractor

performance based on some knowledge of the dispersal of the patterns in the

pattern space. The disadvantage is that the absolute measure of the basin size

in terms of the proportion of corrupt bits correctable has been lost due to the

normalisation in equation (3.4).

3.2.5.2. Modified Kanter and Sompolinsky Measure

Two aspects of the original Kanter and Sompolinksy measure were modified to

produce the version employed in this work.

Firstly, when choosing a number of bits to fix in order to produce an overlap

with a stored pattern, the original measure always fixed the first mN bits.

Fixing the same bits each time a sample pattern is generated causes the sample

patterns to be rooted in the same area of the state space. To counteract this,

the bits which are to be fixed in each sample pattern are chosen at random.

Secondly, assigning the unfixed bits randomly to be equal to +/-1 does not

guarantee a sample pattern to be exactly the required distance away from the

stored pattern. The modification implemented to resolve this was to invert the

unfixed bits, thus resulting in a sample pattern that is exactly the specified

distance away each time.

Inverting rather than flipping the unfixed bits also addresses a disparity in the

way the pattern overlaps are measured for the values mo and m,. mo is regarded

as being the overlap of the last successful sample state with the source pattern as

a proportion of the total length of the pattern. This fails to take into account

that when randomly flipping the unfixed portion of a sample pattern, half the
flipped bits will, on average, have the same value as in the original pattern.
Therefore, the average overlap, when taken over all the samples, will in fact be

mo + 0.5 (1 - mo). When calculating m,, the value used is genuinely the

38

overlap with the next nearest pattern. Inverting rather than flipping the

unfixed bits ensures the fact that both overlaps are accurate.

3.2.5.3. Comprehensive Basin Analysis Measure

The comprehensive basin analysis measure (CBAM) was developed as part of

this work in order to address an issue with the Kanter and Sompolinsky

measure described above. The Kanter and Sompolinksy measure produces a

single comparative value indicating the overall recall quality of the network but

loses information related to the absolute attractor performance of the individual

stored patterns.

The new measure is based on the notion of having a reference basin for each

stored memory. The reference basin of a pattern is calculated as being one half

the Hamming distance between it and the pattern nearest to it. As the inverse

of one of the intentionally stored patterns may be closer than one of the stored

patterns themselves then they too are compared against. The reference basin is

used as a reference because half the distance between a pattern and its nearest

neighbour is equal to the largest basin size we might reasonably expect for that

pattern. This is the case because the reference basin represents the furthest one

can move away from a pattern before becoming closer to some other.

Once the reference basins have been calculated for the set of stored patterns, a

predetermined number of walks are taken from each of the stored patterns.

This is done in a similar way as with the Kanter and Sompolinsky measure

described above. Sample patterns are generated at increasing Hamming

distance from the stored pattern and the network allowed to update in order to

determine whether or not it can recall the original source pattern. A number

of these walks are undertaken and the maximum distance attained is recorded.

Having acquired a set of samples for each of the stored patterns, each

maximum distance achieved is normalised with respect to the reference basin

size for the corresponding stored pattern. It is not unlikely that non-random

patterns will be unevenly distributed in the state space. This normalisation

provides an indication of the attractor performance while taking into account

the proximity of the stored patterns to each other. In this respect the new

measure operates in a similar manner to Kanter and Sompolinsky's.

39

The mean of each pattern's set of normalised values provides a value

representing how well that pattern is performing as an attractor compared with

the best we might expect of it given the other patterns in the vicinity. The

variance of the set of normalised values provides an indication of how skewed

the basin of attraction is. For instance, if the other patterns are evenly

distributed in the state space then we might expect that the distance achieved

during each walk would be similar and thus the variance of the samples would

be small. If however, the patterns are correlated to any degree then each walk

may well result in quite a different degree of success. This would result in a

higher variance of the samples and would indicate a more uneven attractor

basin.

+p2

PTI
+p3

4

o4

tt

Pa

IFS

Figure 3.2: A stylised representation of the reference basin (blue line) for an imaginary pattern pl.
Sample walks are shown as dashed lines. The resulting attractor basin (red line) can be seen to be

non-circular.

Figure 3.2 portrays the relationship between the reference basin, denoted by a

blue line, and the resulting attractor basin which is shown using a red line.

The reference basin is of a diameter equal to one half the distance between

pattern pl and the next nearest pattern, p7. The sample walks represented by

the dashed lines can be seen to be of different lengths. It is the variance of

these lengths that indicates the `skewedness' of the attractor basin. It should be

kept in mind that figure 3.2 is a 2-dimensional representation of what would

an N-dimensional space and serves as a visualisation aid only.

40

The double average of the mean normalised values over all the stored patterns

provides a value analogous to the final Kanter and Sompolinksy measure

defined by equation (3.4).

As well as simply providing more information about the attractor behaviour of

a network than the Kanter and Sompolinsky measure, the CBAM also results

in a measure that is directly translatable into an absolute figure representing the

mean number of bits of pattern corruption that a network is capable of

correcting.

The finite size effects that are taken into account in Kanter and Sompolinsky's

measure are implicitly addressed through the use of the reference basin

concept.

Although developed as part of this work, the CBAM is not used within it.

The computational complexity of the measure currently restricts its usefulness.

It is hoped that optimisation of the implementation and advances in computer

hardware performance will enable the CBAM to become a valuable

performance metric for the future.

41

4. PERFORMANCE OF FULLY CONNECTED NETWORKS

4.1. Introduction

It is widely known that the original Hopfield network suffers from low capacity and

unsuitability for correlated patterns. As was seen in chapter 2 however, it is by no

means the only learning rule which is available for training networks of the

Hopfield-type.

The purpose of this chapter therefore, is to present the results of analysing the

performance of a number of higher performance learning rules. This analysis was

important to undertake as the identification of a suitable learning rule was critical
for later work.

Learning rules that generate weight matrices that belong to one of the three Abbot

classes described earlier are examined; all three of the classes are represented to

various degrees.

The learning rules used are:

Class 1

Hopfield (Hopfield, 1982)

Storkey (Storkey, 1997)

Class 2

Iterative Local Learning with Equal Fields (Diederich and Opper, 1987)

Blatt & Vergini (Blatt and Vergini, 1991)

Class 3

Iterative Local Learning (Diederich and Opper, 1987)

Symmetric Local Learning (Gardner, 1988)

Krauth & Mezard (Krauth and Mezard, 1987)

Networks employing these learning rules are assessed with respect to the time taken

to store a set of training patterns, the stability of the learnt patterns, and the attractor

performance of the network.

The training data comprises two classes of randomly generated bipolar patterns.
The first of these is unbiased, the second constructed with a bias towards +1 of 0.8.
The networks used are 100 neurons in size (N=100). The values plotted are the
mean of five experimental runs.

42

Where parameters controlling the training process may he used they were set as

follows:

Iterative Local Learning with Equal Fields: the minimum error on the aligned local

field was required to he <_ 0.1. Preliminary results determined this value to be the

most appropriate choice from a performance versus training time point of view.

Blatt and Vergini: the memory coefficient, k, was equal to 4, the maximum

permitted value. The training threshold, T, was equal to 0.99 where T must be

<1 for the Blatt and Vergini rule.

Iterative Local Learning, Symmetric Local Learning, and Krauth and Mezard: the

value of the training threshold, T, was again determined by preliminary results to be

best made equal to 10.

4.2. Training Time

The networks' training tines were measured in terms of the number of

presentations of the training set that were required before the patterns where learnt.

In the case of the Krauth and Mezard learning rule, where the patterns are not

presented an equal number of times, the time reported is a pseudo-iteration

calculated as:

Pseudo-iterations =
Total number of presentations made

Number of patterns

1000

900

800

700

600

500

0
c 400
4

3W

200

100

0.00

Figure 4.1: Training time as a number of iterations through the training set for random patterns of bias 0.5.

43

0.10 020 030 040 050 060 070 080 090 100
Loading (PIN)

tHoal'ield --Storkey -+-ILLEq -'0- BV -H- ILL SLL -, 9- KM

Figure 4.1 (previous page) shows the number of iterations required to learn

increasing loadings of random unbiased training patterns. It is very clear that the

fastest learning rules are the one-shot, class 1 rules, Hopheld and Storkey. These

two rules require only a single iteration through the training set. The next quickest

learning rule is that of Blatt and Vergini (BV), requiring a constant 10 iterations

through the training set regardless of the pattern load.

The Krauth and Mezard (KM) learning rule would appear to be next fastest,

certainly at higher loadings. The KM rule is however much more computationally

expensive than any of the other learning rules, requiring a check before each

presentation for the pattern containing the bit with lowest aligned local field. In

real time, the KM rule is slower than even Iterative Local Learning with Equal

Fields at producing a weight matrix.

Iterative Local Learning with Equal Fields (ILLEq) is, therefore, the next fastest

learning rule but only up to a loading of a=0.75. Iterative Local Learning (ILL)

becomes quicker at higher loadings.

Finally, the symmetric version of Iterative Local Learning (ILL) proves to he the

slowest learning rule (barring KM) at low loadings but falling somewhere between

ILL and ILLEq as the loading gets to a=0.83.

1000

900

800

700

600

z
E 500
C

C
Z 400

300

200

100

0.00

Figure 4.2: Training time as a number of iterations through the training set for random pattenis of bias O. H.

44

0.10 020 030 040 050 060 070 080 090 100
Loading (P/N)

-*-Hopfield tStorkey - ILLEq -, *-BV -W-ILL SLL -t KM

Figure 4.2 shows the number of iterations required to learn increasing loadings of

random training patterns with bias 0.8. The order in which these networks are

placed with respect to their relative training times is largely the same as when the

networks were trained using unbiased random data.

The training times are consistently longer for networks learning biased data in all

but only particular instance. The KM learning rule appears to take fewer pseudo-

iterations to learn a biased training set than it does an unbiased one. This only

occurs at high loading however. The SLL rule appears to he a more appropriate

choice for biased patterns than it was for unbiased patterns. Comparing its training

time with that of ILLEq shows it to become competitive at a much lower loading

than was seen for the unbiased data.

4.3. Pattern Stability

The pattern stability is measured as the percentage of the training patterns that,

when applied to the network as a start state, result in the network remaining in that

state upon application of the update dynamics.

IDO

90

80

70

0 80

E 50

n
40

30

20

10

Figure 4.3: Pattern stability as a percentage of the total number of patterns being learnt for random
patterns of bias 0.5.

Figure 4.3 shows the percentage of stored patterns that are stable at each pattern
load for unbiased random training patterns. The striking feature of this graph is the

number of learning rules capable of storing the maximum 100 patterns. It is the

two class 1 learning rules, Hopfield and Storkey, that result in less than near 100%

45

o-
000 0.10 0.20 0.30 0.40 050 0.60 0.70 0.80 0.90 1.00

Loading (PM)

-10- Hopfiel0 t Storkey -- ILLEq --*-- BV - ILL SLL t KM

stability at all loadings. The only other learning rule to exhibit any kind of stability

failure is the Blatt and Vergini rule. The BV rule loses stability slightly at the

niaxinium loading of a=1 (100 patterns). This is not surprising as the 13V rule is a

pseudo-inverse rule approximator which, as detailed in 82.4.1, has a maximum

capacity of a, 1,,,, =1 (N patterns). It is interesting to note that no instability is

apparent for the other class 2 learning rule, Iterative Local Learning with Equal

Fields. All the class 3 rules, the Gardner-type algorithms exhibit 100% stability at all

loadings. Again, this is not surprising as their notional maximum capacity is a, 11,,. =2

(2N patterns).

It is worth making a point about the two learning rules that do result in a significant

drop in pattern stability with loading. The Storkey rule is a direct modification of

the Hopfield rule and was designed to improved performance without

compromising the speed of learning of the original. The Storkey rule appears

capable of storing twice as many patterns as the Hopfield rule for the same level of

pattern stability. As the Storkey rule retains the one-shot nature of the Hopfield

rule it would seem to be an excellent choice for learning low numbers of patterns.

100

90

80

70

s 60 a

50
"
a
't 40

30

20

10

Figure 4.4: Pattern stability as a percentage of the total number of pattern being learnt for random
patterns of bias 0.8.

Figure 4.4 shows the percentage of stored patterns that are stable at each pattern
load for random training patterns of bias 0.8. The high level of stability exhibited

46

o
o. oo 0.10 0.20 0.30 0.40 050 060 0.70 0.80 0.90 100

Loading (PIN)

- -Hopfield --*- Slorkey -+-ILLEq tBV --ILL SLL fKM

by the class 2 and 3 learning rules for unbiased patterns is again present for biased

data.

The weakness of the class 1 learning rules against correlated patterns is clearly

evident. The Storkey rule does however manage to perforni significantly better

than the Hopfield; the difference between the two rules is much greater in the case

of biased data. Networks trained using the Hopfield rule lose all pattern stability at

around a loading of a=0.04 (4 patterns). The Storkey rule manages to retain some

pattern stability at up to the maximum loading of a=1 (100 patterns).

4.4. Attractor Performance

The attractor performance of the network at various pattern loads was measured

using the modified version of the Kanter and Sompolinksy (1987) measure

described in §3.2.5.1.

,. 00

0.90

0.80

070

ÄF O. ÖO

O

g 050

Ö
Ü

OAO

0.30

0.20

0.10

Figure 4.5 shows the attractor performance of networks learning random unbiased

patterns at various degrees of pattern load.

It is again clear that the two class 1 learning rules, Hopfield and Storkey, are inferior

to any of the class 2 or 3 rules and, as was seen to be the case for pattern stability,

the Storkey rule outperforms the Hopfield at the same pattern load.

The class 2 and 3 learning rules all result in very similar performance at each pattern
load level. Closer examination reveals a possible slight edge for the Krauth and

47

0.00+-
0.00 0.10 020 0 30 040 050 060 0 70 080 090 100

Loading (PIN)

-*-HOpfield -I- Storkey -. - ILLEq t BV -*-ILL SLL --S- KM

Figure 4.5: Attractor performance of networks learning random patterns of bias 0.5.

Mezard and Iterative Local Learning rules. This only appears to be the case

between loadings of a=0.40 (40 patterns) and a=0.80 (80 patterns).

Figure 4.6 shows the attractor performance of networks learning random patterns of

bias 0.8 at various degrees of pattern load.

Once again the Hopfield and Storkey learning rules perform poorly when asked to

store correlated patterns. The Storkey rule outperforms Hopfield but as the

performance of both rules is poor this makes little real difference.

100

090

080

070

0 60

050

040

030

0.20

0.16

Figure 4.6: Attractor performance of networks learning random patterns of bias 0.8.

As was seen for unbiased random patterns, the performance of all the class 2 and 3

learning rules is very similar. The small difference in performance between the pair

of rules KM and ILL and the rest of the high performance algorithms that was seen

in figure 4.5 is more evident for biased data. The difference is again only

discernable over the loading range a=0.40 (40 patterns) to a=0.80 (80 patterns).

Using the class 2 and 3 learning rules with either unbiased or biased data, a sharp

initial fall in attractor performance occurs at low loading. Following that, the

attractor performance falls steadily approaching some minimum level. The non-

zero minimum value of the attractor performance is likely to he attributable to the
fact that, as the values for the attractor performance are averaged over 5 networks, it

is eminently possible that some successful convergences will occur for some of the

patterns at even high loadings.

48

0.00
0.00 0,10 0.20 0.30 0.40 0.50 060 0.70 0.80 090 1.00

Loading (P/N)

-U- Hopfield + Storkey t ILLEg --*- BV -K- ILL SLL t KM

4.5. Conclusions and Summary

The results have shown that the class 1 learning rules, Hopfield and Storkey, are not

appropriate for either high network loadings or correlated patterns. Both learning

rules suffer from poor pattern stability and a rapid decline in attractor performance

with increasing pattern loads though the Storkey rule does give better performance

than Hopfield. They do have the advantage of being extremely rapid in their

ability to train the network by virtue of their being single-shot learning rules. This

could make the Storkey rule particularly attractive in situations where the pattern

load is known to be very low.

Under certain pattern loadings, both the Krauth and Mezard and Iterative Local

Learning rules perform slightly better than the class 2 rules with respect to R, and

have a higher maximum capacity (2N vs. N). The ability of the Blatt and Vergini

rule to store new patterns without re-training with the whole training set makes it a

good choice for on-line applications.

The higher capacity of the class 2 rules makes these prime candidates for use in

future work. Of these rules, that of Krauth and Mezard appears to be the quickest

to train and provides excellent attractor performance and pattern stability. As

mentioned earlier however, the high computational complexity of the Krauth and

Mezard rule is being masked by the low number of pseudo-iterations through the

training set.

Of the two remaining rules, Iterative Local Learning and Symmetric Local

Learning, ILL has the edge in terms of attractor performance and training time

especially for the highly biased training patterns. The production of a symmetric

weight matrix and thus the guarantee of simple network update dynamics is a not

inconsiderable advantage. Given the relatively small difference in attractor

performance and the benefit of a symmetric weight matrix, the choice was made to

use Symmetric Local Learning for future investigations.

In summary, this chapter has evaluated the performance characteristics of a number

of learning rules applicable to the Hopfield architecture. It has been demonstrated

that a clear performance gap exists between the class 1, Hopfield-type learning rules

and the class 2 and 3, pseudo-inverse approximator and Gardner-type learning

rules. Symmetric Local Learning was chosen to be the principle learning rule for

the remainder of this investigation.

49

5. INTRODUCTION TO SPARSE CONNECTIVITY

5.1. Introduction

It was noted early in this work (c. f chapter 1) that a strong motivation behind this

body of research was to try and reduce the cost of implementing Hopfield-type

associative memories. The form that cost takes depends on the nature of the

implementation being attempted. If the implementation is in software, the cost is

usually in CPU time and memory as the storage requirements and computational

complexity of the networks can often be considerable and scale exponentially with

the number of neurons being used. If, on the other hand, the implementation is in

hardware there arise additional physical costs. Implementing a fully-connected

network as a computer chip will require a large amount of silicon real-estate and

again the complexity scales exponentially with the size of the network.

A potential solution to this problem for both software and hardware

implementations is to reduce the level of complexity of the network. Typically this

means reducing the number of connections.

As the link between the connections and the weights is an inseparable one and the

information stored in networks of the type studied here is contained in the weights

it seems clear that any reduction in the level of connectivity will impair the ability

of a network to operate at its full potential.

It is hoped however, that a balance may be struck between a network's level of

connectivity and its performance. This phase of the work relies on the fact that, in

the past, the majority of work analysing the performance of associative memory

networks has invariably used only random patterns as test data. It will be shown

that the more structured nature of more `natural' data can aid in circumventing

some of the negative aspects of a reduction in network connectivity. In the case of

the work undertaken in this project, natural data takes the form of images of man-

made constructs, typified by objects of largely the same colour. Doors, cars,
buildings, are all examples of such constructs. This work uses artificially generated

patterns to simulate these characteristics.

Natural data is in many ways different from random data. It will be demonstrated

that these differences should lead to improved performance under certain
conditions.

50

5.2. Justification of Approach

It was seen earlier when analysing the performance of fully-connected networks
(c. f chapter 4) that the Symmetric Local Learning algorithm of Gardner (1988) was

a strong performer. Using learning rules of this type allows the individual neurons

to be trained as if they were perceptrons.

It is known that the notional maximum capacity of the perceptron is 2N patterns

for unbiased, random data (Cover, 1965; Gardner, 1988) where N in this case is the

number of inputs to the perceptron. Gardner has also shown (c. f figure 5.6)

however, that the capacity of a network of perceptrons increases as the bias of the

training set rises. For this to be the case, the capacity of the individual perceptrons

must also rise.

Lopez et al. (1995) have shown that the increase in capacity is not solely dependant

on a rise in training set bias but is also strongly related to the correlations present

within the training patterns. An example illustrates this:

Input pattern Output value
1111 -1 11

-1 111111

-1 -1 1 -1 -1 -1 -1
-1 -1 -1 -1 -1 1 -1

Figure 5.1: A selection of input patterns and the corresponding output values.

Figure 5.1 shows a selection of input patterns and their corresponding output

values. It is clear that each individual pattern is highly biased but taken over the

entire training set the bias evens out; the number of positive and negative values is

the same. Lopez et al. construct an argument showing that when correlated subsets

of the input patterns (pairs, triples, etc) also have correlated outputs, then there

should be an improvement in capacity. This would indicate the data set shown in
figure 5.1 should be more easily learnable than a set of random patterns.

In the work of Lopez et al. only pairwise correlation is initially considered.
Pairwise correlation in this instance does not mean every possible pairing of two

patterns but rather, for instance, the first pattern with the second and the third

pattern with the fourth. This is an obvious simplification of the perceptron's
environment but suffices for the purposes of the proof and is later extended to a
more general case.

51

Taking the following training set as an extreme example.

Input pattern Output value

1 1 1 1 1 1 1
1 1 1 1 1 1 1

-1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1

Figure 5.2: An example training set consisting of paired duplicate patterns.

It should be noted that the training set illustrated by figure 5.2 consists of paired

duplicate patterns. This extreme case gives Lopez et al. the basis for their argument.

A term R is defined to describe the similarity of two patterns as a value indicating

positive or negative overlap between the patterns.

1
Rv a

N
(5.1)

where N is the size of the input pattern and the a's are the input patterns

transformed according to:

09=T sµ (5.2)

Care must be taken here as the notation differs slightly from that used elsewhere in

this work. In equation (5.2), the g's are the input portions of the complete patterns

and the s's, the outputs. This transformation has the effect of reversing the values of

an input pattern in the case where the output is -1. This is done so that patterns

which are identical as regards the input but dissimilar in output are represented in a

maximally dissimilar way for the purposes of calculating the overlap, R.

Input pattern Output value
1 -1 11 -1 11
1 -1 11 -1 1 -1

Figure 5.3: An example of a pair of patterns with identical inputs but dissimilar outputs.

Figure 5.3 (above) shows two example patterns with which this may be illustrated.

It should be clear that two patterns with identical inputs cannot be classified into

more than one class by a perceptron. Calculating R for the pair of input patterns as

they currently are would give a value of 1, indicating that they were the same.

Transforming the patterns as per equation (5.2) provides a useful means of

representing pairs of patterns which are unlearnable.

52

The transformed patterns look as follows:

Input pattern
1 -1 11 -1 1

-1 1 -1 -1 1 -1
Figure 5.4: Transformed form of the input patterns shown in figure 5.3.

Using the transformed patterns shown in figure 5.4, calculating R now gives us a

value of -1 indicating the problem that the patterns have the same output value

without having to further involve the output value in the calculation.

So, to sununarise the effect of calculating R for a pair of patterns: a value of R equal

to 0 indicates that there is no correlation between the pair of patterns. A value of 1

occurs when the patterns are identical. A value of -1 indicates that the input

portions of the patterns are identical but the outputs are different and so the pair is

unlearnable.

R is calculated over all pairs of patterns and is therefore a measure of the mean

pairwise overlap.

Having established exactly how the overlap is calculated it is now possible to prove

the critical capacity a, for various values of R.

For R=O, the patterns are uncorrelated and a, (R=0)=2, as per the results of Cover

(1965) and Gardner (1988).

For R=1, it should be apparent that as the patterns within the pairs are identical

storing the first pattern of a pair implies the storage of the second. Therefore, in

this case the capacity is doubled and ; (R=1)=4.

For R=-1, the implication is that all pairs of patterns are linearly inseparable and so

the very first pair must also be so. This first pair renders the rest of the patterns

unlearnable and in this instance a, (R=-1)=O.

As Lopez et al. 's argument takes place under the condition of N-->cC, for values of R

even very close to -1 the linear separability of the patterns can be guaranteed.

The relationship between R and a, is shown as a graph (figure 5.5) of values

produced by experimental means as part of the work of Lopez et al.

53

R

Figure 5.5: Graph showing the relationship between the mean pattern overlap, R. and the critical
capacity ac.

Lopez et. al. go on to produce a proof that is not restricted to simple pattern pairs

but involves pairwise correlation between arbitrarily sized m-tuples. The

implication of this is that if a high degree of correlation exists between patterns

within a tuple that is sufficiently large, i. e. at or near the size of the set of input

patterns then the capacity of the perceptron should be much higher than the

standard 2N.

Considering again a network of perceptrons, Gardner (1988) showed that as the

critical capacity (aj of a network improves so does the value of the smallest stability

coefficient (c. f. §2.4.1), K, as the correlation between the patterns increases. This is

illustrated by the following graph (figure 5.6) reproduced from Gardner's work.

a

Figure 5.6: Graph showing the relationship between the critical capacity a, (y-axis) and the
minimum stability coefficient, K (x-axis), at increasing levels of pattern correlation indicated by the
magnetism of the patterns, m.

54

It can be seen from figure 5.6 (previous page) that as the correlation between the

patterns rises (indicated by the increasing magnetism, m) from 0 to 0.8, the value of

K at equivalent a, also increases. The magnetism, though analogous, differs slightly

from the traditional measure of pattern bias in that a value of 0 indicates unbiased

patterns and rises to 1 for fully biased patterns.

The magnitude of K is important as it has been shown that larger values of K should

imply larger basins of attraction (Gardner, 1988; Kepler and Abbot, 1988).

In summary, when correlated patterns share the same output value it can be

expected that significantly better performance for perceptrons both in terms of

capacity and attractor performance will arise. The key idea explored here is that the

connectivity pattern adopted in a dilute network effectively defines a new training

set.

The results of performance analyses on networks learning random data at the same
level of bias as the locally correlated data will provide an indication of whether or

not locally correlated data does indeed lend itself favourably to local connection

topologies.

5.3. Review of Literature Related to Sparse Connectivity

Given the unrealistic assumption of full connectivity between neurons it makes

sense to pose the question as to the effectiveness of Hopfield-type networks within

which the level of connectivity has been reduced. There are three distinct ways in

which this may be achieved:

- Training networks using sparse binary patterns (i. e. patterns with few 1's

present). The manner in which this reduces the level of connectivity is

discussed in more detail below.

- Eliminating connections from a network which has already successfully
learnt a set of training patterns. This will be termed post-training dilution.

- Training networks in which sparse connectivity has already been established
through some strategy or heuristic. This will be termed sparse connectivity.

55

As this work is concerned with simple dynamics, the results of research on

networks with asymmetric connectivity are not considered in any great detail. The

presence of such work is acknowledged however and is briefly summarised

alongside its symmetrical dilution counterparts.

Training Using Sparse Binary Patterns

Training networks using sparse binary patterns is a common enough technique in

the field of associative memories though it is not immediately clear why this should

have the effect of reducing the level of connectivity of a network. Training a

network using a set of very sparse binary patterns will result in a weight matrix with

a large number of zero-valued weights. These weights therefore play no part in the

network's update dynamics and the connections are effectively non-existent.

An example of training in this manner can be seen in the work of Levy et al. (1999)

in which sparse patterns are used in conjunction with a multi-modular network to

study the effect of storing individual patterns in varying numbers of modules. The

number of modules a pattern occupies is termed its coding level and they show that

patterns with larger coding levels are more resilient to intra-module synaptic
damage. The network is trained using a modified version of the Hebb-style

learning rule developed by Tsodyks (1989).

Although of passing interest, Levy et al. 's work is biologically motivated with the

aim of modelling simple cortical function. Due to the neurobiological bent and the

use of binary patterns (as opposed to bipolar) to create low effective connectivity

this technique is not considered further in this work.

56

Diluting Networks Trained using One-Shot Hebbian Learning

The problem of diluting a network trained using Hebbian learning is exactly

equivalent to that of training a previously diluted network with the same rule. This

fact arises due to the independence of each neural bond during training. The

presence, or otherwise, of a particular bond has no bearing on the training of any

other.

One of the earliest examples of the investigation of the effect that dilution of

connectivity might have on Hopfield-type networks is that of Sompolinsky (1986).

In this work, synapses are removed from the network symmetrically (i. e. Wy & W)

and the pairs are chosen at random. The capacity of the network, trained using the

Hebb rule, was found to fall almost linearly with d, the proportion of connections

removed. The quality of the recalled patterns, as a function of the overlap of the

post-retrieval network state with the original pattern, falls far less sharply indicating

that the level of connectivity in this case has less bearing on the pattern stability than

on the critical capacity of the network.

Sompolinksy's work appears to have initiated a burst of activity in the area of
diluted associative memory models. The next major contribution was that of
Derrida et al. (1987) in which an asymmetrically diluted model was studied from a

analytical viewpoint with the aim of better understanding the dynamics of such an

architecture. Derrida's analysis continued with a further work (Derrida, 1989) in

which the distribution of neural activities for the stored patterns was examined.

The effect of random dilution on networks trained using random biased patterns

was examined by Evans (1989) using networks trained using the modified one-shot
Hebb-type rule developed by Tsodyks and Feigel'man (1988). Evans notes that
dilution does not result in stored patterns gradually declining in performance as

attractors but rather more complex mechanisms occur with the possibility of a

memory becoming a limit cycle. The potential for this was mentioned previously
(c. f chapter 2) as a consequence of asymmetric connectivity.

da Silva et al. (1995) study the generalisation capability of an extreme and

asymmetrically diluted version of the Hopfield model. Generalisation is the

ability to group a given set of correlated patterns into distinct classes. They show
that dilution improves the performance of the network as a categorisation device

compared with the fully-connected Hopfield model. It is stated within

57

da Silva et at. that Derrida et al. (1987) proved that an asymmetric, diluted version

of the Hopfield model could not only recognise the patterns which had been

stored but also had greater capacity. Building on that work, da Silva et al. study

this model further and show that dilution and asymmetry also improve the

generalisation ability of the model. They conclude that their model is more
biologically realistic, a fact somewhat justified in that they employ both dilution

and asymmetric connectivity. The generalisation improvement comes in the

form of requiring fewer example patterns in order to be able to classify the input

patterns correctly.

An important and oft-cited work was produced by Canning and Gardner (1988)

examining symmetrically dilute models of neural networks trained using the Hebb

rule. The focus of this work is on more structured topologies motivated by both

the realisation that fully-connected systems or those possessing long-range

connections would be difficult to build physically and that beneficial correlations in

`real' problems are likely to be local. Some biological motivation is present in that

the topology inherent in a 3-dimensional neural system is acknowledged and
Gardner-Medwin (1976) is cited as discussing the links between the brain and

recurrent networks. Canning and Gardner show that random connectivity is the
best choice of connection architecture for maximising the ratio of the number of

patterns stored to the input dimensionality of each neuron, a measure which is

termed storage efficiency within this work and was described in chapter 4.

Komoda et al. (1991) examine the way in which the robustness of the stored

patterns fares against random dilution using an already dilute network. The areas of

performance investigated were the attractor overlap or similarity of the retrieved

states with the stored ones, attractor basin size, and storage capacity. It is noted that

the networks used deteriorate on all three counts with increasing dilution and that
disruption is worst in networks with small aligned local fields (c. f chapter 2).

Komoda et al. show patterns stored in a network employing a Gardner-class high

capacity learning rule have a strong robustness at low levels of dilution while for

networks trained using the Hopfield rule the opposite is true, performance is better

at higher levels of dilution. Their result should perhaps not be surprising as the

capacities of these two architectures are very different and it is likely that in the case

of a network trained to full capacity with a Garder-class rule that any significant

58

degree of perturbation in the weights will lead to recall and capacity degradation as

is shown by the work of Bouten et al. (1990), summarised in the next section.

The symmetrically dilute Hopfield network was also examined with regard to the

network's ability to act as a categorisation device by Krebs and Theumann (1999).

It is claimed that the categorisation performance is enhanced by the dilution and

exceeds that of the fully-connected model. This work is not dissimilar to that of da

Silva et al. (1995), mentioned above in the context of asymmetric dilution.

Post-Training Dilution of Connectivity

A considerable amount of the work on the subject of post-training dilution has a

biological focus. Analogies have often been drawn between neurological disorders

such as Alzheimer's disease and the effect of the removal of synapses from artificial

neural networks. These biologically motivated approaches are of interest but differ

significantly from this work in their goals and are therefore only briefly summarised

below.

The work of Ruppin and Reggia (1995) falls into this category. In their work they

present an `analytical framework' for estimating the functional damage arising from

the removal of connections in a structured manner using a network trained using

sparse binary patterns.

Chechik et al. (1998) are similarly biologically motivated but follow a
developmental approach, looking at the manner in which the young brain exhibits

synaptic overgrowth followed by selective reduction of synapses. The reasoning
behind this is that neural connectivity is expensive in terms of energy and pruning is

one means by which the body seeks to reduce energy consumption. Chechik et al.

present several strategies for diluting synapses and show a link between the results of

their work and certain types of amnesia.

An extensive review of the range of work being conducted in this area can be

found in (Ruppin, 1995; Ruppin and Reggia, 1998).

Non-biologically motivated work on post-training dilution of synapses is far less

widespread. Prior work on the post-training dilution of networks trained using

non-Hebb-type rules is summarised below.

Vishwanathan (1995) studied the fault tolerance of neuronal failure using networks
of perceptrons by examining the proportion of patterns that continue to be recalled

59

without error when some of the neurons fail. This work is continued in

(Vishwanathan, 1995) in which the effect of removing synapses of particular

magnitudes on the recall performance of similar networks is determined by

mathematical means. It is shown that a best-case upper bound on the amount of

retrieval error introduced through removal of synapses can be estimated using

statistical mechanics.

Sparse Connectivity

Bouten (1990) examines two strategies for establishing sparse connectivity in

networks using a high capacity learning rule. The first of these is a simple random

removal process which, it is shown, leads to a linear dependence on the proportion

of connections being removed. This result corresponds to that of Sompolinsky

(1986) who used the Hebb rule to store the patterns in the network. The second

strategy, termed annealed dilution, chooses the synapses to eliminate based upon the

nature of the training set, contributing to the storage of the patterns. This form of
dilution is functionally equivalent to training a fully-connected network and

removing weights in order of ascending absolute magnitude.

Annealed dilution is shown to provide a significant capacity improvement over

random dilution though it should be noted that the resulting architecture is tailored

very specifically to the actual data being learnt. Bouten's work is theoretical and no

empirical results are presented.

Stiefvater et al. (1993) propose a sparsely-connected Hopfield-type network for

recognising natural, highly correlated data in the form of video images. The

training data has a high level of both inter-pattern correlation and site correlation,

terms that will be explained in detail later in this work. Their studies have shown

that, due to unfavourable correlations in the training data, models originally

proposed for the processing of correlated random (biased) patterns fail to work on

the `natural' data. The spatial and temporal continuity of nature causes inter-

pattern and site correlation to be common features of data derived from real-

world sources. The network appears to operate on quite heavily pre-processed
images. Video images have applied to them a `Gabor filter' designed to mimic the
functionality of simple cells in the visual cortex.

Stiefvater et al. present the notion of `practical usability'. In order for this to be

the case for a given network they state that network relaxation (recall) times

60

should be of the order of a few seconds and that learning times should be

reasonable. Though a definition of `reasonable' is not given it would be

unreasonable to assume minutes or hours rather than days.

Stiefvater et al. note Canning and Gardner's (1988) work showing that diluted

network models are efficient at processing random patterns and the effectiveness

of Bouten et al. 's (1990) `metastabilization' technique using learning and dilution.

It is suggested that these techniques might be just as applicable to training patterns

with a natural correlation structure as the dilution of the network could be

tailored to match. It was demonstrated that, for random patterns, annealed

dilution strategies produced networks with larger basins of attraction than might

be found in networks where the structure forms uniform geometric

neighbourhoods. Justification for the presence of this phenomenon is given. It is

stated that in the case of local neighbourhood connectivity, important long-range

interactions are cut. Quite why these interactions are important is never

discussed. The question arising from this is whether or not the high-valued

synapses that would be chosen to be kept during the process of annealed dilution

are the same as those that would form local neighbourhood connectivity in the

case of naturally-derived training data. If this turned out to be the case then

networks created in this way would begin to correspond more closely to their

biological counterparts since, according to Mallot and von Seelen (1989),

computation by uniformly structured connections appears to be an important

factor in neural information processing. A local network topology would also be

easier to implement in hardware due to the reduced physical `real estate'

requirements.

Heuristics were devised and developed by Stiefvater et al. (1993) which would
create connectivity patterns based on statistical analyses of the training data and it

was shown to be the case that a local neighbourhood connectivity topology does

indeed select the highest valued synapses as would occur using the annealing

technique. Within their work, three novel learning techniques are considered: a

geometric one, a system dependent on site statistics, and a combination strategy.
The geometric technique seeks simply to define a regular neighbourhood of

connectivity for all neurons. The site statistics method attempts to cut

connections based on the level of cross-pattern activity at each neuron. Neurons

61

with activities close to the mean level of activity are deemed to be the most
`important' and are kept.

Neighbourhood connection strategies were also proposed by Karholm (1993) in

his work on associative memories with short-range, higher order couplings. The

higher order couplings are capable of computing the product of neuron inputs

and, it is stated, appear in the brain.

Karlholm illustrates the problem of linear inseparability of patterns with regard to

using a local neighbourhood of connections arguing that: "... if the range of

connections is restricted to a small neighbourhood, it may happen quite often that patterns
look the same from a single unit's point of view". It is argued that a neighbourhood

size should be sought that minimises the conflict between the training patterns.
This is the same argument as was used earlier for the expectation of improved

performance in the networks used in this work (c. f. §5.2).

Architectures modelling hierarchical connection topologies have been quite popular

areas for study. The majority of this research takes as its inspiration the work of
Marr (1971) and his theory of the function of the mammalian archicortex as a

memory.

Sutton et al. (1988) propose a hierarchical model of memory based on the principle

that regions of the cortex are topographically organised into nested subnetworks.
The hierarchy has three levels, the first taking the form of a number of individually

fully-connected but separate Hopfield-type networks. These first-level clusters are
linked by a subset of connections termed projection elements to form second-level

clusters. Further connections link second-level clusters together to form third-level

clusters.

The technique of Sutton et al. can be continued to establish as deep a network
hierarchy as is required. The motivation behind the work is to examine not just

the storage capability of the model but also to develop the model as a tool that may
be useful in modelling memory loss in neurodegenerative disorders such as
Alzheimer's disease. The training and update dynamics of this network are

complex and beyond the scope of this work but Sutton et al. show experimentally
the results on memory recall of various degrees of dilution of inter-cluster

connectivity.

62

O'Kane and Treves (1992) take a similar approach to that of Sutton et al. although

they only consider two levels in their hierarchy. Fully-connected networks, termed

modules, are joined with each other using a subset of connections distributed at

random. Patterns are stored on both the short- and long-range connections using

Hebb-style rules. The attractor states of the network and the storage capacity are

examined using the statistical physics techniques made popular in this field by

Derrida et al. (1987).

O'Kane and Treves conclude that their network is not a viable model for the

organisation of memory in the cortex. They reason that the storage capacity of a

neural network scaling with the number of connections per unit rather than with

the size of the system is `wholly implausible from a biological point of view'.

A comprehensive review of the field of modular neural networks can be found in

(Caelli, Guan et al., 1999) in which the authors note the absence of work involving

the incorporation of geometric structure into neural models.

Jacobs and Jordan (1992) present an examination of the computational

consequences of a bias towards short connections in neural networks. While their

work is not restricted to networks of the Hopfield type they present some
interesting thoughts on the justification and motivation for such topologies

primarily related to the speed of electrical signal propagation in biological neural

connections. Jacobs and Jordan cite evidence suggesting that cognitive processes are
less localised in newborns than in adults (O'Leary, 1989; Greenfield, 1991). This

notion of radical topological change during human development was also central to

the work of Chechik et al. (1998), mentioned earlier.

63

5.4. Summary of Literature Review

To summarise the important works relevant to this investigation:

Canning and Gardner (1988) mention the possibility that beneficial correlations are

likely to be local in natural patterns and that benefits might be gained by creating

neighbourhood connectivity at the same distance.

Karlholm (1993) reinforces the hypothesis of Canning and Gardner by stating

explicitly that patterns that appear similar from an individual neuron's perspective

might arise by restricting connectivity to a small neighbourhood around each

neuron.

Lopez et al. (1995) demonstrate that, for perceptrons, learning patterns with

correlated inputs and identical outputs will lead to improved capacity.

It is known from the work of Gardner (1988) that higher capacity in a network of

perceptrons leads to an increase in the minimum value of the stability coefficients.

Finally, it has been shown that larger stability coefficients imply larger attractor
basins and so better attractor performance should result (Gardner, 1988; Kepler and
Abbot, 1988).

64

6. POST-TRAINING REMOVAL OF SYNAPSES AND ITS EFFECT ON
NETWORK PERFORMANCE

6.1. Overview

In the search for an efficient, reduced level of network connectivity it makes a

certain amount of sense to examine the effect of removing connections from a

network that has previously been trained using one or more of the algorithms

known to be applicable to fully-connected architectures. Success in training

networks this way could provide a means whereby training could be performed

off-line, in software, and the weights might then be transferred to a hardware-

based network.

While strategies of this nature are going to be unable to deliver any reduction in

the training time of the networks (indeed, the overhead of subsequently removing

connections from a trained network contributes to an increase in overall network

preparation time) there will be savings in terms of the amount of memory

required to store the remaining connections and weights and a corresponding

reduction in the hardware costs of any physical realisation of such networks but

only after dilution has taken place.

Prior work in this area appears to have been largely restricted to either

examination of networks trained using Hebbian learning only or random dilution

strategies (Sompolinsky, 1986; Kothari and Lotlikar, 1997). It has been shown

that the capacity of such networks falls linearly with the proportion of

connections removed using such strategies (Sompolinsky, 1986). As justification

for treating trained networks in this manner, Chechik et al. (1998) pursued the

biologically motivated notion that synaptic pruning during the development of

the mammalian brain was an attempt by the brain itself to reduce the energy

requirements of a system which, when immature, was both infrastructure

overloaded and energy inefficient. This hypothesis seems appropriate to the

creation of physical artificial networks also, especially with respect to
infrastructure complexity. A review of work in this area was presented in

chapter 5.

The experiments reported here use networks trained on random data using one of
two high-performance learning rules. The trained networks are analysed with
respect to the stability of the patterns being learned, and the ability of the

65

networks to recall original patterns from a corrupt example (attractor

performance).

6.2. Experimental Design

The networks used in this series of experiments were 100 neurons in size and the

units were fully inter-connected. The weight matrices were generated using

either the Symmetric Local Learning algorithm (Gardner, Gutfreund et al., 1989)

or the Blatt and Vergini (1991) method for approximating the pseudo-inverse.

These learning rules were covered in detail in chapter 2.

Randomly generated training data at two levels of bias (0.5 and 0.9) were used.

The choices of biases were made so that one provides unbiased patterns and the

other patterns that are biased heavily towards +1 values.

The trained networks are analysed in two ways: The first analysis is that of

pattern stability. A pattern is stable if, when applied to the network as a start state,

the network state does not change after all neurons have been updated. The

proportion of patterns stable at each network loading is reported for various
degrees of synaptic removal.

The second analysis is that of attractor performance. This analysis uses the

modified Kanter and Sompolinsky (1987) measure as detailed in chapter 4. The

purpose of this analysis is to find out whether or not attractor performance
decreases gracefully with increasing dilution or a sharper change in performance

occurs.

66

6.3. Synapse Removal Strategies

Two synapse removal strategies were employed in this series of experiments:

random removal and smallest-value-first removal.

6.3.1. Random Removal

In the case of random synapse removal a value for the proportion of

connections to be removed is chosen. This value is multiplied by the number

of connections within the fully-connected network and then halved to give the

number of connection pairs to be removed. Then, a pair of units is chosen at

random and, if a connection between the pair exists, the bi-directional link is

removed. This is repeated until the desired level of connectivity is achieved.

Ensuring that the bi-directional link is fully removed maintains symmetry

within the weight matrix thus ensuring simple update dynamics

(c. f chapter 2).

6.3.2. Smallest-Value-First Removal

The number of connection pairs to be removed is determined in the same way

as for random removal. The network's connections are then scanned to find

the weight with the smallest absolute value (that which is closest to zero).
Once the connection with the smallest weight value has been identified it is

removed. The process continues until the required number of connections has

been eliminated.

A functionally equivalent strategy was proposed by Bouten (1990) and named

annealed dilution. Bouten presented an analysis of a theoretical network in

which a number of weights were omitted. The absent weights are the same as

those that would be removed were smallest-value-first removal performed on a

trained fully-connected network.

For brevity, this scheme is henceforth referred to as smallest-first removal.

67

6.4. Results

This section presents the results of the experiments outlined in Q6.2. The results

are initially categorised by learning rule and subsequently by analysis type.

6.4.1. Symmetric Local Learning

6.4.1.1. Pattern Stability

0

0

ut5 U45 0" o 6-`. ... _ uc: U 00, oi5 U__ a3C UUG d55 u45 u,, UUL u55
Loading Loading

c) d)

Figure 6.1: The manner in which pattern stability, as a percentage of the total number of
patterns stored, changes with respect to increasing network load and decreasing levels of
connectivity. The individual plots represent a) pattern bias 0.5, random removal, b) pattern bias
0.5, smallest-first removal, c) pattern bias 0.9, random rennoval; d) pattern bias 0.9, smallest-first
removal.

Key: Percentage of patterns stable represented by each plot colour.
 0.00-10.00 10.00-20.00 Q 20.00-30.00 Q 30 00-40.00 40.00-50 00

 50.00-60.00 60.00-70.00 Q 70.00-80.00 80 00-90.00 90.00-100 00

68

L. dny

1)i

1-1-I-L_' IIa or
345 355 [: S G'5 ._ 395

Leading

Figure 6.1 (previous page) shows the following: The plot pairings a-b and c-d

are for patterns of bias 0.5 and 0.9 respectively. The left-hand plots in each

pairing represent networks in which random removal was performed while the

right-hand plots represent those in which smallest-first removal was used.

The plots are 2-dimensional contour maps of a 3-dimensional surface. The

dependent variable is the proportion of learnt patterns that remain stable as

connections are removed. Each value is represented by one of the colours in

the key.

All four plots show very clearly that it is not possible to remove the same

quantity of connections at high loadings as at low loadings and maintain the

same level of pattern stability.

Comparing the plots for random removal (a and c) it can be seen that the
difference in the pattern bias has little effect on the way in which pattern

stability changes with respect to loading and level of connectivity. This is

evident from the fact that the plots do not change significantly in structure.
For both levels of pattern bias, the pattern stability falls more slowly with
increased removal at low loadings than at high loadings.

Comparing the plots for smallest-first removal (b and d) the effect of pattern
bias remains low. In comparison to random removal, the fall in pattern

stability exhibits quite different behaviour for smallest-first removal. When

connections were removed randomly it was seen that at low loadings, the fall

in pattern stability with respect to the level of removal was slower than it was

at higher loadings. For smallest-first removal the opposite is true; at low

loadings, the fall in stability occurs quite quickly while at high loadings, the
decline in pattern stability is slower.

A crucial point to note is the difference, regardless of the bias of the patterns
being learnt, between using random and smallest-first removal to reduce the

connectivity of the network. Comparing the left- and right-hand plots in the

a-b and c-d pairings it can clearly be seen that the light purple areas

representing pattern stability in the 90-100% range are much enlarged in the

case of the right-hand plots which depict the results from the networks affected
by smallest-first removal.

69

C

2

a

39

i

3

a
3

2

3

9

z
a
I

I

ML lm T-
--r--r-r-T '- II- r---r +., " 1-1-4 ice. 4-i" --+--ý 11 a- { T4 om

775 0 15 025 035 00 55 C 00 0 05 005 L :f 320 11 15 U! ,ý ý5 L sS _ 065 0'5 3% 035
1 eadlný 1 eading4^

c) d)

Figure 6.2: The manner in which attractor performance changes with respect to increasing

network load and a decreasing level of connectivity. The individual plots represent a) pattern
bias 0.5, random removal; h) pattern bias 0.5, smallest-first removal; c) pattern bias 0.9, random
removal; d) pattern bias 0.9, smallest-first removal.

Key: Level of attractor performance represented by each plot colour.
 0.00-0.05 0.05-0.10 Q 0.10-0.15 Q 0.15-0.20 020-0.25 0.25-0 30 0.30-0.35
130.35-0 40 0 40-0.45 0 45-0.50 Q0 50-0 55 0 55-0 60 0.60-0 65 0 65-0 70
 0.70-0 75 0.75-0.80 0.80-0.85 O&M-0 90 Q 0.90-0.95 Q 0.95-1.00

Figure 6.2 shows the following: The plot pairings a-h and c-d are as for

pattern stability. The left-hand plots in each pairing again represent networks

in which random dilution was performed while the right-hand plots represent

those in which smallest-first removal was used.

While presented in the same way as were the plots of pattern stability, the
dependant variable in this case is the attractor performance value as reported by

the modified Kanter and Somplinksy measure.

70

6.4.1.2. Attractor Performance

0D5 va
L oading

3)5 01 YL
Lading

li

Comparing the plots for random removal (a and c) it can be seen that the

change in pattern bias makes a considerable difference to the attractor

performance of the network. Looking along the line of =0.05, the last point

at which attractor performance is at least in the range 0.05-0.10 is at

approximately 82% of connections removed. The corresponding point for

biased data is at around 64%. At low loading the decline in attractor

performance clearly occurs sooner when using biased data. If one examines

the plots along the line =0.70 however, the attractor performance for the

networks trained using unbiased data has all but disappeared at any degree of

removal. By contrast, the networks learning biased data manage some attractor

performance up to a connection removal level of approximately 4%.

Comparing the plots for smallest-first removal (b and d) it can be seen that

there is again a difference in the way that attractor performance declines for

networks trained using random patterns of bias 0.9 compared with that for

unbiased patterns. The decline in performance for the unbiased patterns (plot

b) is quite smooth - the contours are fairly evenly spaced. In contrast, the
decline for biased patterns (plot b) is uneven and erratic. It can be seen
however, that for biased patterns, some attractor performance is present at the

highest loading (=0.95) for up to about 35% removal. It would appear

therefore, that networks trained with Symmetric Local Learning and learning

biased patterns are more resilient to a decrease in connectivity than those
learning unbiased patterns.

The improvement in attractor performance that can be gained by reducing

connectivity using smallest-first removal can be illustrated by graphing the

attractor performance against the proportion of connections removed for specific
loadings. Figures 7.3 and 7.4 (next page) demonstrate this for patterns of bias 0.5

and 0.9 respectively. Each graph shows, for loadings of a=0.05,0.30, and 0.50,

the attractor performance, R, of a series of networks against an decreasing level

of connectivity. Solid lines represent networks affected by random removal of

connectivity while dashed lines with the same symbol represent networks where

the connectivity was removed using the smallest-first method. The graphs

represent vertical slices, along lines of constant pattern load, of the 3-dimensional

surface from which the earlier contour plots were created.

71

--- ----- ----

0. m ---- - ----- --------------------- - --------- - ------ ----_. -

0.60 _ ý- -- --- ---

i 0.550 -. _--- -_ b
J040

-

...... #..... -1-... "...... ...

r

---- - -- --- - -------

0.00
000 0.10 0.20 0.30 040 050 060 070 080 090

Piopoidon of connections removal

Figure 6.3: The decline in attractor performance for a number of fixed loading points (a=0.05,

a=0.30, and a=0.50) using patterns of bias 0.5. The results of both random removal and smallest-
first removal are shown for comparison.

Key: Definitions of line styles representing levels of pattern load and type of removal strategy

s5 patterns, random removal ---r--5 patterns, smallest-first removal
-. -30 patterns, random removal ---. ---30 patterns, smallest-first removal

-k-50 patterns, random removal ---A---50 patterns, smallest-first removal

1.00 -- -- - --- --- -- --

090.

080.

0 70 ---------------... -------- ----------- ------ --

X
060

e
ýö 050
b
Ö ",

040

0.30

020 ý.
ý. , -ý ý"

010 ---------4-., . o. .. *.... 0.. - -- -

0.00
""r .. Y, . ý.

.r

0.00 010 0.20 030 040 050 0.60 0.70 080 0.90
Proponlon of couuodlom romov. d

Figure 6.4: The decline in attractor performance for a number of fixed loading points (a=0.05,
a=0.30, and a=0.50) using patterns of bias 0.9. The results of both random removal and smallest-
first removal are shown for comparison.

Key: Definitions of line styles representing levels of pattern load and type of removal strategy
t5 patterns, random removal ---. ---5 patterns, smallest-first removal
-&-30 patterns, random removal --- ---30 patterns, smallest-first removal
-e--50 patterns, random removal ---A, ---50 patterns, smallest-first removal

72

Both graphs show that the strategy used for removing connections makes little

difference when the network is at low loading («=0.05) for up to 70% removal

in the case of unbiased patterns and up to approximately 60% removal for

patterns of bias 0.9. Beyond these levels smallest-first removal begins to show an

advantage indicated by the corresponding dashed line being higher than the

solid.

For the remaining loadings (a=0.30, and 0.50) the advantage of using the

smallest-first removal strategy is more obvious. At even a very small level of

connection removal the dashed lines in each of the solid/dashed pairings remain

well above their solid counterparts.

73

35 045 055 065 0'5 055 095 005 U15 L", 035 U4'. US5 555 315 051 ulý_

Loading Loading

a) b)

Lo, a, g

C)

Figure 6.5: The manner in which pattern stability, as a percentage of the total patterns stored,
changes with respect to increasing network load and decreasing levels of connectivity. The

individual plots represent a) pattern bias 0.5, random removal; b) pattern bias 0.5, smallest-first

removal; c) pattern bias 0.9, random removal: d) pattern bias 0.9, smallest-first removal.

Key: Percentage of patterns stable represented by each plot colour.
 0.00-10.00 10.00-20.00 Q 20 00-30 00 Q 30 00-40.00 40 00-50.00

 50.00-60.00 60.00-70.00 Q 70.00-80 00 80.00-90.00 90 00-100 00

Figure 6.5 (above) shows the following: As was the case for the results from

networks trained using Symmetric Local Learning, the plot pairings a-h and c-d

are for patterns of bias 0.5 and 0.9 respectively. The left-hand plots in each

pairing represent networks in which random removal was performed while the

right-hand plots represent those in which smallest-first removal was used.

The results are very similar to those for Symmetric Local Learning. We again

see the change in pattern bias from 0.5 to 0.9 making little difference to the way

74

o d, oa

d)

6.4.2. Blatt and Vergini

6.4.2.1. Pattern Stability

in which the level of pattern stability changes with respect to the increasing

loading and the decreasing connectivity.

As was the case for Symmetric Local Learning, it is again evident that it is not

possible to remove as many connections at high loadings as at low loadings

whilst maintaining a high level of pattern stability.

Regardless of the pattern bias the advantage of using smallest-first dilution is

again apparent with the Blatt and Vergini learning rule. Comparing the plots in

the pairings a-b and c-d it can be seen that the increase in the area of the purple

region representing maximum stability is significant when moving from random

to smallest-first removal.

A key difference between the plots of pattern stability for Symmetric Local

Learning and Blatt and Vergini is rate at which pattern stability declines at high

loadings. At a loading of a=0.95 (95 patterns), Symmetric Local Learning-

trained networks exhibited approximately 90-100% stability at up to 30%

removal for unbiased patterns and up to 35% removal for biased patterns. At the

same loading, Blatt and Vergini-trained networks have 90-100% stability at only

up to 5% removal. It is concluded therefore, that networks trained using

Symmetric Local Learning have greater resilience to smallest-first removal at
high loading than those trained using the Blatt and Vergini algorithm.

75

6.4.2.2. Attractor Performance

F

3

1

3

3

l l'fi ý5 O_5 X735 045 055 065 075 085 095 Q05 0 005 il 1 11 41 055 065 075 035 695
L . 4din9 I oadin9

c) d)

Figure 6.6: The manner in which attractor performance changes with respect to increasing

network load and decreasing levels of connectivity. The individual plots represent a) pattern
bias 0.5, random removal; b) pattern bias 0.5, smallest-first removal; c) pattern bias 0.9, random
removal; d) pattern bias 0.9, smallest-first removal.

Key: Level of attractor performance represented by each plot colour.

 0.00-0.05 0 05-0.10 Q 0.10-0.15 Q 0.15-0.20 0.20-0.25 0.25-0.30 0.30-0.35
Q 0.35-0.40 0 40-0.45 0 45-0.50 0 0.50-0.55 0.55-0.60 0.60-0 65 0.65-0.70
 0.70-0.75 0.75-0.80 0.80.0.85 Q 0.85-0.90 Q 0.90-0.95 Q 0.95-1.00

Figure 6.6 (above) shows the following: The plot pairings a-h and c-d are as

for pattern stability with the left-hand plots in each pair representing networks

in which the random removal strategy was used while the right-hand plots

represent networks where connections were removed using the smallest-first

strategy.

Comparing the plots for random removal (a and c) it can be seen that the

change in pattern bias from 0.5 to 0.9 has a small effect on the way in which

76

0D 015 0

l oadfng

hl

0D5 015 025 335 045 uC6= ul`_OaS C5

L. di. 9

l)

attractor performance declines with increasing loading and decreasing

connectivity.

As was the case with networks trained using the Symmetric Local Learning

rule, the decline in performance at low loadings takes place slightly faster when

using patterns of bias 0.9. At higher loadings however, the networks retain

some attractor performance at low levels of connection removal when trained

using biased patterns. This retrieval ability does not exist when using unbiased
data at such loadings.

Comparing the plots for smallest-first removal (b and d) it can be seen that

there appears to be a difference in the way in which attractor performance
declines for networks trained using random patterns of bias 0.9 compared with

that for unbiased patterns. As was the case for networks trained using the

Symmetric Local Learning rule, when using biased data the decline in attractor

performance with respect to increasing loading and decreasing connectivity is

often not a smooth one. This can be seen in the chaotic nature of the

contours in plot d.

It can be again be seen though that, in the case of biased data, the network

retains some attractor performance at loadings greater than 0.67 whereas the

networks trained using unbiased pattern possess little to no attractor

performance beyond that point. So, as was evident with networks trained

using Symmetric Local Learning, it again appears that networks learning biased

patterns are more resilient to a decrease in connectivity than those learning

unbiased patterns when training using the Blatt and Vergini rule.

77

- ----- ---- 100 -
090.

080 -

070-

ý'-'- -+- ----------- -- --_--
e

050 --- -- - -- - --- -- - -- - ---- --- -- - ------ o' ý- -- -----
o`
`e
X

040
a

- ------- -- ------- --- -- 0.30

020

0.10 --- --- -- -- ý---""-ý...
yRV,

000

0.00 0 10 020 0.30 040 050 060 0.70 080 090

PtopaNon of connoaiono nnmovod

Figure 6.7: The decline in attractor performance (R) for a number of fixed loading points (0.05,
0.30, and 0.50) using patterns of bias 0.5. The results of both random removal and smallest-first
removal are superimposed for comparison.

Key: Definitions of line styles representing levels of pattern load and type of removal strategy

"5 patterns, random removal ---. ---5 patterns, smallest-first removal
---. -30 patterns, random removal --- "--30 patterns, smallest-first removal

-", k-50 patterns, random removal ---A"--50 patterns, smallest-first removal

1.00

oso

0 e0

070

050 -- -- ---- ---

- -------- ----
Ö

040

0.30 . _.... , _. --. ----- ,_«. _ ... -_ ... _

020-

000.

k" .r..
Ya,,

cý __'
ý- `o' f ,\

0.10 - --- - ---- -- ----- --- -- --- --- `c----- - 'c "

0.00 0.10 0.20 0.90 040 0.50 0.60 0.70 0.80 0.90
Puopottlon of connoclIont 19movod

Figure 6.8: The decline in attractor performance (R) for a number of fixed loading points (0.05,
0.30, and 0.50) using patterns of bias 0.9. The results of both random removal and smallest-first
removal are superimposed for comparison.

Key: Definitions of line styles representing levels of pattern load and type of removal strategy
"5 patterns, random removal ---*---5 patterns, smallest-first removal

-a--30 patterns, random removal ---. ---30 patterns, smallest-first removal
--, r-50 patterns, random removal ---A---50 patterns, smallest-first removal

78

Figures 6.7 and 6.8 illustrate the way in which attractor performance falls as the

proportion of connections being removed increases for networks trained using

the Blatt and Vergini learning rule with patterns of bias 0.5 and 0.9 respectively.

Each graph shows results for both random and smallest-first removal (represented

by solid and dashed lines respectively) at loadings of a=0.05,0.30, and 0.50.

At a loading of 0.05, both graphs show that the attractor performance is often

better when removing connections from the network at random. This appears

to be the case for up to approximately 65-70% removal of connections.

Beyond this point, smallest-first removal becomes more advantageous.

The situation changes significantly at higher pattern loads. For unbiased

patterns at a loading of 0.30 smallest-first removal allows around 65-70% of

connections to be removed before attractor performance disappears completely

compared with 15-20% removal when performed randomly. At a loading of

0.50 this falls slightly to 50-55% for smallest-first versus 10% for random

removal.

As one might expect from the earlier evidence that the level of bias makes little

difference to the performance, the values for biased patterns at loadings of 0.30

and 0.50 are very similar to those for unbiased. The increased irregularity in

the contours of figure 6.6(d) does not manifest itself in as chaotic a decline in

performance as might be expected.

79

6.5. Discussion

When read along a line of constant pattern load, the spacing between the

contours of the plots showing pattern stability against increasing load and

declining connectivity (figures 6.1 & 6.3) indicates the rate of decline of the

stability of the patterns learnt by the network. A wider band of colour indicates a

slower reduction in stability. All the plots showed that when stability began to be

lost, the networks experienced a rapid fall to a point where stability was 0-10% of

the trained patterns rather than a gradual decline in stability. This is indicated by

the plots having a large band of colour representing 90-100% stability before a

point is reached at which a number of narrow bands appear in succession

representing a rapid fall in stability before another wide band representing 0-10%

stability appears.

Contrasting the removal strategies shows that random removal is clearly out-

performed by the smallest-first method. This is shown by the area of the plots

coloured purple and representing 90-100% stability in figures 6.1 and 6.3.

Comparing between the training algorithms reveals another result. When

employing smallest-value-first removal the Symmetric Local Learning algorithm

consistently outperforms the Blatt and Vergini rule with regard to the point at

which networks begin to lose stability at higher loading/removal levels. It can be

seen that at a loading of 0.95N the networks trained using the Blatt and Vergini

rule have lost more than 10% of their patterns with a loss of only 5-10% of their

connections. The networks trained using Symmetric Local Learning do not

experience this until the level of connection removal reaches 30-40%. This holds

true regardless of level of bias in the training patterns.

Examining the plots of attractor performance against loading and connectivity
(figures 6.2 & 6.4) two important observations can be made. The first of these is

that looking from left to right across the plots, i. e. from random to smallest-value-
first removal strategies, it can be seen that improvement in performance can be

gained by targeting connection removal towards those with values closest to zero

rather than selecting them at random. The second point of note is that altering

the level of bias in the patterns being stored seems to make relatively little

difference to the attractor performance of the network as can be seen by

comparing the top and bottom plots of each set.

80

This second point is perhaps unsurprising in the case of the Symmetric Local

Learning algorithm given that the maximum loading tested is well below the

notional maximum capacity of 2N patterns (c. f chapter 2) but more so in the case

of the Blatt and Vergini rule where the maximum capacity is N-1. The

conclusion that networks trained using Symmetric Local Learning are more

resilient is reinforced by the increased robustness against connection removal at

high loadings when considering pattern stability.

6.6. Conclusions

The results presented show that, when trained used high-performance learning

rules, Hopfield-type networks can be highly resilient in terms of maintaining high

levels of performance even after considerable levels of damage has been done to

the connectivity of the network. This resilience is, however, highly dependant

on both the way in which a network's weight matrix has been generated and the

manner in which the connections have been removed. The results show that of

those tested, the most effective learning rule is Symmetric Local Learning and the

best synapse removal strategy is that of smallest-value-first.

The results for random removal concur with that of Sompolinsky (1986).

Somplinksy showed that, for networks trained using the Hebb rule, pattern

stability fell linearly with the proportion of connections removed from the

network. For the networks used in this investigation this is also the case. The

level of removal at which stability begins to be lost is dependant on the actual

pattern load on the network but once instability begins its rise is approximately
linear with increasing connectivity removal. For non-trivial levels of loading this
linear decline is also true for attractor performance.

To conclude, it was demonstrated that a significant amount of connectivity can be

removed from a trained network without adversely affecting either the pattern

stability or the attractor performance to any great degree. The reduced

connectivity brings benefits in terms of the storage requirements of such networks

when implemented in software and has implications for both hardware

implementations and the biological plausibility of Hopfield-type associative

memories.

81

7. DEVELOPMENT AND ANALYSIS OF NON-RANDOM TRAINING
DATA

7.1. Introduction

This chapter is concerned with the development of non-random training data and

the analysis of the characteristics of that data. The purpose of generating this type

of data is to attempt to simulate what Müller et al. (1993) term the unfavourable

correlations inherent in natural or real world data sets that arise from the spatial and

temporal continuity of nature. According to Müller et al., it is these correlations

that cause standard fully-connected models to fail prematurely.

In order to test the hypothesis laid out in chapter 5 regarding the effect of

structured or correlated data on the ability of an associative memory to efficiently

store and effectively recall that data it is important that the nature of the data being

employed be well understood.

The requirements of a training set comprised of this data are the same as those

suggested by Müller et al. in that it should possess:

a) High inter-pattern correlation: The patterns should be relatively similar to

each other. In practice, this means that identically positioned bits in a set of

patterns will often have the same value throughout the pattern set.

b) High site correlations within each pattern: Within each of the patterns, there

should be areas where the majority of bits are the same value. This would be

represented by blocks of the same colour within individual patterns.

Two sets of training patterns were created. All the generated patterns were 400 bits

in length. The new patterns are four times bigger than those used previously in this

work and the larger dimensions will permit greater flexibility in establishing

structured connectivity topologies in networks of the same size in later

investigations. To facilitate the development of such topologies the training

patterns are 2-dimensional representations of the 400-dimensional inputs.

Enforcing spatial proximity within the training patterns gives greater meaning to a

non-fully-connected system of connectivity through the arising of the potential for

reflecting training pattern structure in the connectivity topology. This is in contrast

to the fundamentally unstructured nature of the traditional Hopfield (1982)

network.

82

The first set of training data takes the form of solid geometric shapes placed at

random within the 2-dimensional representation of a training pattern. The second

data set comprises images taken from computer character sets, or fonts.

7.2. Generating Non-Random Data

This section presents a description of the way in which the different types of non-

random data were created. Initially, an attempt was made to source suitable 2-

colour images from clip-art resources. Such images exist but possess two distinct

disadvantages. Firstly, the images tend to be quite large by comparison with the

size of the networks being used in this work. Resizing the images caused a lot of

image detail to be lost and so the natural correlations present were likely to be have

been destroyed in the process. The second disadvantage arose from the fact that

where the images were of a suitable size, they were often not square. Scaling the

images to be square distorted the images in such a way that the correlations were no

longer the same as those that occurred naturally.

7.2.1. Geometric Data

The geometric data set is generated by placing, at random locations, a number of

solid geometric shapes within the 20 by 20 pixel training pattern. The shapes

used are triangles, squares, and circles. The choice of shape to place each time is

also random. The shapes are permitted to overlap and are clipped if a shape

would overrun an edge.

Some example patterns are show below:

Figure 7.1: Two examples of training patterns based on the generated geometric data.

The patterns shown in figure 7.1 have large areas that are the same colour. This

provides us with one of our requirements of the data in that the patterns have

high site correlations. If a bit is picked at random from one of the above

patterns, there is a high likelihood that its neighbours will be the same colour.

83

The other requirement (the inter-pattern correlation) is more complex to

analyse and its fulfilment or otherwise is examined in further detail in the section

on analysis of pattern characteristics, below.

A selection of the geometric training data is presented in appendix B.

7.2.2. Character Data

The character data set is generated by scaling images of letters from computer

character sets into the 2-dimensional training pattern representation. Although

the problems with scaling the data were described earlier in the context of

monochrome clip-art images, scaling the relatively simple characters that make

up this training data causes no such difficulties.

Examples of patterns generated this way are shown below:

Figure 7.2: Two examples of training patterns based on the character data.

As with the geometric data seen previously it is apparent that the patterns shown
in figure 7.2 possess large areas of the same colour which again fulfils the

requirement for high site correlation.

The full set of character-based training data is presented in appendix C.

84

7.3. Analysis of Training Pattern Characteristics

The importance of understanding the underlying nature of the training data has

been mentioned previously. This section provides information about four methods
by which information about the data may be obtained. These techniques are:

measuring the bias of the training patterns, calculating local correlation across the

training set, calculating site correlation within the patterns, and measuring site

activity across the set. All four techniques are described in detail below.

7.3.1. Measuring the Bias of a Training Set

The bias of a set of training patterns gives a measurement of how much the bits

that make up that set favour a particular value. In the case of the bipolar patterns

employed in this work, that value may be +1 or -1.

Unbiased patterns, those whose bits may take the value +1 or -1 with equal
likelihood, have a bias of 0.5. The bias reflects the probability that any bit,

chosen at random from patterns in the training set, will have the value +1.

To illustrate this, some example patterns are shown below:

Figure 7.3: Two example patterns with bias O. S.

The example patterns shown in figure 7.3 (above) are both unbiased. The

convention throughout this work has been to portray +1 bits as black, and -1 as

white.

It should be recognised that the bias values are symmetric about the value 0.5.

That is to say, a pattern with a bias value of 0.2 can be considered to be as
heavily biased as a pattern with bias 0.8. One pattern will be heavily biased to
bit values of +1 and the other biased to bit values of -1.

The bias of a set of training patterns gives an approximate indication, especially
in the case of random data, of the complexity of the dataset.

85

7.3.2. Calculating the Local Correlation within a Training Pattern

The level of global correlation of a training pattern indicates how similar, on

average, each bit is with the other bits in the pattern. In contrast, the local

correlation of a training pattern provides a measure of how similar each bit is to

those in its immediate vicinity. Both calculations are averaged over all the bits in

the pattern.

In order to calculate local correlation we must have some definition of a locale

for which it should be calculated. For the purposes of this calculation, the locale

is defined as being a square neighbourhood around some specified bit.

For example:

(a) (b)

Figure 7.4: (a) An example of a bit with a neighbourhood size (d) equal to 1.
(b) An example of a bit with a neighbourhood size (d) equal to 3.

In figure 7.4(a) a neighbourhood around a corner bit is shown. The size of the

neighbourhood is defined by the distance of the furthest non-diagonal bit and in

this case the distance, d, is 1. Figure 7.4(b) shows a neighbourhood around a

more central bit; this time the distance is greater (d=3). The slightly greater
Euclidian or city-block distances of bits set at a diagonal is ignored for the

purposes of simplicity of definition.

Consider the simplest case of a single pattern in which all bits have the same

value. We would expect this measure to indicate maximal correlation. The

level of correlation is denoted by a value between 0 and 1. A value of 0 will

mean there is no local correlation present in the data while a value of 1 will

mean the opposite, that the correlation is as high as it can be.

86

The correlation for a single bit, i, is calculated as follows:

1
c=#Zý0(, ý) (7.1)

JE Z1

Where Z; is the set of indices of the bits comprising the neighbourhood of unit i

and O is the unit Heaviside function. C; is effectively the proportion of a bit's

neighbours possessing the same value as that bit. If all the neighbouring bits

have the same value as the bit for which the correlation is being measured then

C, will equal 1. Correspondingly, if all the neighbouring bits are a different

value then G will equal 0 though, in practice, the corner and edge bits ensure

this will only occur as N-º00.

Having measured the local correlation of one bit, it remains to calculate the local

correlation for all others in the pattern. The mean of these values is taken to be

the overall level of local correlation present in the pattern.

The level of global correlation is calculated in exactly the same way except all

bits are considered to be in the neighbourhood of the one for which the

measure is currently being calculated. The mean is again taken and this value is

the level of global correlation.

As the level of bias of a pattern increases, so should the level of correlation. For

random patterns, the level of local and global correlation should be very similar

as the active sites in each pattern will be evenly distributed. For patterns in

which the data is more structured, such as the examples of geometric and

character data shown in §7.2, it would be expected that the local correlation
level would be significantly greater than that of global correlation.

A high level of local correlation is important because, as described in chapter 5,

it implies that if the network is constructed with a connectivity topology

resembling the neighbourhood locales then a high degree of correlation between

the desired output for a neuron, and its inputs, will arise.

The fact that a pattern is locally correlated is often intuitively evident from

simply seeing the pattern. More important however, is that a set of patterns are
highly correlated for the same locales in each pattern as this will give rise to an

advantageous environment as described by Lopez et at. (1995). The next

measure described identifies whether or not cross-pattern local correlation exists.

87

7.3.3. Calculating the Level of Local Correlation across a Training Set

It was illustrated in chapter 5 that, for perceptrons, the more similar the patterns

within a training set are to each other, as long as they share the same output

value, the easier it becomes to learn them. It is possible to measure this similarity

by calculating the level of local correlation across a training set. For local

connectivity to be advantageous, the level of local correlation must be greater

than that of global correlation.

The definition of locality is the same for this calculation as that which was used

for single patterns. The aim of the local version of this measure is to calculate

the mean local correlation of pattern subsets where the subsets are determined by

a central bit and those comprising a square neighbourhood around it. A subset

of a pattern's bits, defined in this way, has been termed a sub pattern.

To calculate the correlation we first produce a Hebb-style matrix representing

the mutual pattern correlations. An N-by-N matrix is defined and termed T.

The matrix element T, represents the proportion of patterns in which bits i and j

have the same value. The elements are calculated as follows:

P µýý
(7.2)

Once the correlation matrix has been created the global correlation may be

calculated as follows:

Correlationg,
o,, = 21

ý, Tü
N -N rj=, j J

(7.3)

The resulting value should be almost identical to the overall level of bias present
but as measuring the bias includes self-correlation some small difference between

the values will exist.

The local correlation is calculated by defining a square neighbourhood around a

specified bit and proceeds as for global correlation but restricted to the

neighbourhood.

Correlation,,,,,, =4Z Ty (7'4)

88

As with the measure for a single pattern, Z; is the set of indices of the bits

comprising the neighbourhood of unit i. T, is the correlation matrix calculated

according to equation (7.2).

7.3.4. Measuring Site Activity across a Training Set

The site activity across a set of training patterns gives a simple indication of the

importance of a particular bit in terms of its overall contribution in terms of

information. This measure was used by Stiefvater et al. (1993) in order to

determine redundant synapses which may be safely cut. A value b, is defined as:

b, =1ýON P µ=ý
(7.5)

where P is the number of patterns in the training set and O is again the unit

Heaviside function. The value b; can be thought of as the bitwise bias of the

training set.

A low value for b; means that, on average, the majority of the patterns in the

training set have a -1 value at position i. Conversely, a high b; means most of

the patterns have a +1 value at position i. Stiefvater et al. note that weights
leading to neurons with a value of b; close to the average bias, b, for the entire

training set are the most important ones and should be kept. These weights are
important as they are providing the information required to allow those neurons

with the most difficult classification tasks to perform accurately.

The bitwise bias also indicates the degree of cross-pattern similarity at a particular

site. If an individual bit has a bias of 0.9 across the set of training patterns then it

is known that in 90% of the patterns that bit has a value of +1. This would

represent a very high degree of similarity between the patterns at that site.

89

7.4. Results of Training Pattern Analysis

This section presents the results of analyses performed upon the training data. The

analyses are: training set bias, cross-pattern local correlation, and site statistics or

bitwise bias. Results are not presented for the measurement of local correlation on

a per-pattern basis as the presence or otherwise of this characteristic is adequately

given by the cross-pattern local correlation measure.

7.4.1. Training Set Bias

As mentioned previously (c. f. §7.3.1), the bias of a training set gives a

rudimentary indication of its structure. The bias of the geometric and character

data was measured over 5 sample sets of 50 patterns each and the mean bias was

calculated.

Data type Bias
Geometric data 0.52
Character data 0.20

Table 7.1: Training data set bias for geometric and character data.

The figures given in table 7.1 indicate the level of bias in each of the constructed
data sets. Geometric data has a bias of 0.52 indicating that, on average, about
half the bits in each pattern have a value of 1. Character data, with a bias of 0.2,

has one fifth of its bits having a -1 value and four fifths being equal to 1.

7.4.2. Cross-Pattern Local Correlation

As noted earlier in chapter 5, although Gardner (1988) presented evidence of the
fact that the capacity of perceptrons rises with pattern bias, Lopez et al. (1995)

demonstrated the added importance of the similarity between the training

patterns. If it can be demonstrated that correlation is greater at a local level for

natural data than at a global level then connectivity matching the locale at which

correlation is greatest may provide capacity and performance benefits. An

example demonstrating why this should be the case is presented later in

chapter 8.

90

7.4.2.1. Geometric Data

The following sequence of histograms shows the frequency with which various

correlation values occur for a set of geometric data at neighbourhood distances,

d, of 1 to 5. The value for the global correlation in each case is 0.5161.

180

160

140

120

100
d

80

60

40

20

0

h`lýOh`'ýOph
pýo000ro`ýOOroy00roýý

'1000O
KP 4000000`ßy l lqp ýI;

p SPo, `1y00SP
pp000

O" O" O" OOOOOOOOOOOOOOOO 'ý

Local correlation

Figure 7.5: Frequency distribution of the cross-pattern local correlation values for
geometric data at a neighbourhood distance, d=1.

180

160

140

120

100

d 80
U.

60

40

20

0

OO
hýOOhOOOh1 ooOO oýýOro0oO 0100'10

OOO 4O00OOOti00hOO01bOoOOOO`LOOOhOoO'1 oOOOo
000000 O' O' OOOo00oOooO 'ý

Local correlation

Figure 7.6: Frequency distribution of the cross-pattern local correlation values for
geometric data at a neighbourhood distance, d=2.

91

180

160

140

120

c 100

E! 80
U.

60

40

20

0

00 00 00 00 00 00 00 00 ýO 00 ýO 00 ýO 00 ýO 00 y0 00 ýO 00
yý' Oh 01 ro0 ro`b ýo`o ro'ý

..
'1h 1'1 00 0ý' 0h 0'ý 00 0ý' Oh O'1 00

O" O" O" O" O" O" O" O" O" O. O" O" O" O" O" O" O" O" O" 'ý"

Local correlation

Figure 7.7: Frequency distribution of the cross-pattern local correlation values for

geometric data at a neighbourhood distance, d=3.

180

160

140

120

100

E! 80
U-

60

40

20

0

h`ýpO00ppO, ýýjpOpp06`ý4jp foOp04p ßp00h0
ph00pp0L000pO, 1, pppo, ̀1t, ýpOO, ýyOpppO

OOOOOOOOOOOOO O" O O" O" O" O"

Local correlation

Figure 7.8: Frequency distribution of the cross-pattern local correlation values for
geometric data at a neighbourhood distance, d=4.

92

180

160

140

120

c 100
d

E 80

60

40

20

0

h0 00
O0

00 h0 00 h0 00 h0 00 h0 00 h0 00 h0 00 h0 00 h0 00
hf hh I O"

O
O" ro0 rod' 6h ýo'ý '10 1`1' 'lh 1'1 00 Off' 0h 0'1 00 Off' 0h 0'1 00

" O" O" O O" O" O" O' OOOOOOOOO 'ý

Local correlation

Figure 7.9: Frequency distribution of the cross-pattern local correlation values for

geometric data at a neighbourhood distance, d=5.

The sequence of histograms above show that, as the sub-pattern area over which

the correlation is measured increases, the values for local correlation move

towards the measured value of global correlation.

Furthermore, it is apparent that the greatest degree of local correlation exists

when measured using sub-patterns forming a neighbourhood of distance d=1. It

must be noted that even at the maximum sub-pattern size tested, those forming a

neighbourhood of d=5, the level of local correlation at every bit is still above

that of global correlation. This occurs because the correlation measure at d=5

incorporate the values for local correlation at previous neighbourhoods.

The way in which the level of local correlation falls with respect to the

increasing neighbourhood size is best illustrated by plotting the mean local

correlation values shown in table 7.2.

Neiihbourhnnd size Mean lnral rnrra1 t; -

1 0.89 (s. d. =0.02)
2 0.83 (s. d. =0.03)
3 0.77 (s. d. =0.03)

4 0.72 (s. d. =0.03)
5 0.68 (s. d. =0.03)

Table 7.2: Mean local correlation values at various neighbourhood
sizes for geometric training data.

93

1.00

0.95

0.90

0.85

0.80

0.75
ö 0.70

0.65

0.60

0.55

0.50
12345

Neighbourhood size (d)

-ý Mean local correlation Global correlation

Figure 7.10: Mean local correlation against sub-pattern neighbourhood size for

geometric training data. The level of global correlation is shown for comparison.

Figure 7.10 (above) shows that the level of global correlation, indicated by the

red line, lies at 0.5161. The level of local correlation appears to fall linearly with

respect to the increasing neighbourhood size from a maximum value of 0.89 at a

neighbourhood size of 1 to 0.67 at a neighbourhood size of 5.

94

7.4.2.2. Character Data

The following sequence of histograms shows the frequency with which various

inter-pattern correlation values occur for a set of character data at

neighbourhood distances, d, of 1 to 5. The value for the global correlation in

each case is 0.6918.

180

160

140

120

c 100
d
d 80

60

40

20

0

OýOo OOO01OO6OOOOý0000&6ýýý,
O

OKp ý, O OO4jO00IOcO0p4OO00O ýOO00OO,,
O000

O" O" O" O" O" O" O" O" O" O" O" O" OP OOOO 'Oý

Local correlation

Figure 7.11: Frequency distribution of the cross-pattern local correlation values for
character data at a neighbourhood distance, d=1.

180

160

140

120

c 100
d
d 80
U.

60

40

20

0

hýgOhOpOh,
tOropOO0ýhO

oOOro,
hO'1pO 9O OO hOOp00p,

byOh00O, yOgpOOtiýOohOOo' OpOOO

O' O' O' O' O' OO O' O" O' OOOOOOOO O' 'ý

Local correlation

Figure 7.12: Frequency distribution of the cross-pattern local correlation values for
character data at a neighbourhood distance, d=2.

95

180

160

140

120

c 100
d
m 80
U.

60

40

20

0

(P 00 y0 00 00 00 CO 00 e 00 y0 00 AO 00 e 00 eO 00 ýO 00
Iti ýh 01 00 6ti `oh ý°1 10 1ti 14' , ý1 00 Oti ýh 01 °ýO °ý1" 9 °ý'l 00 O" O" O" O" O" O" O O" O" O" O' OOOOOOOO 'ý

Local correlation

Figure 7.13: Frequency distribution of the cross-pattern local correlation values for

character data at a neighbourhood distance, d=3.

180

160

140

120

100

d 80
U.

60

40

20

0

hýýphOOpI:
p d0 OO

roýroOpproýý 'ý000'ý'100'1ýp ''1y00p000'1yZ
sz0 'ýOpoýOS

poý`1 ps poý'\4p00

0000000 O" OOOO O" O" O" O" O" O" O" 'p0ý"
Local correlation

Figure 7.14: Frequency distribution of the cross-pattern local correlation values for
character data at a neighbourhood distance, d=4.

96

180

160

140

120

100
d
E! 80

60

40

20

0

00 ýo 00 ýo 00O" ýoO00 bo 00 , moo 00 ý, 0)O" 4, o 00 4p Z0 0) <p
O'. ýh y1 ro0 ýoý' soh ro'ý 'ýO '" '" 'fi't 00 O O" 0l O', 00 01' OOýj OO'l 00

" O" O" O" O" O" O' O" O" O" O" " O" "" ý"
Local correlation

Figure 7.15: Frequency distribution of the cross-pattern local correlation values for
character data at a neighbourhood distance, d=5.

The dominant feature of the preceding sequence of histograms is that the

distributions are now, in contrast to those for geometric data, clearly non-
Gaussian. The standard deviations of these distributions are also considerably
larger.

The histograms show that, in contrast to those for geometric data, the only

neighbourhood at which all bits exhibit a level of local correlation in excess of

the global correlation is that at distance 1. As the neighbourhood size increases

beyond a distance of 1 an increasing proportion of bits are correlated to a degree

below the global level of 0.6918.

Re-examining the sample patterns shown in figure 7.2, it can be clearly seen that

the patterns are made up of relatively thin lines rather than large blocks of black.

The fact that the lines are thin has a direct impact on the range at which local

correlation is present.

There is a cumulative effect introduced by this measure also. Each new

neighbourhood includes, when calculating the local correlation for that

neighbourhood, the correlation for the neighbourhoods within it. For example,

the local correlation figure for a neighbourhood of size 4 includes within it the
local correlation measures at neighbourhoods of sizes 1,2, and 3. This effect
could lead to a view that some degree of local correlation exists at a greater range

97

than is really the case. It is important therefore, to take this effect into account

when considering the degree of local correlation present at any given

neighbourhood size > 1.

Neighbourhood size Mean local correlation
1 0.87 (s. d. = 0.07)

2 0.78 (s. d. = 0.10)

3 0.74 (s. d. = 0.10)

4 0.71 (s. d. =0.10)

5 0.70 (s. d. =0.09)

Table 7.3: Mean local correlation values at various neighbourhood
sizes for character training data.

1.00

0.95

0.90

0.85

0.80
go 0.75

ö 0.70

0.65

0.60
0.55

0.50

Neighbourhood size (d)

t Mean local correlation Global correlation

Figure 7.16: Mean local correlation against sub-pattern neighbourhood size for

character training data. The level of global correlation is shown for comparison.

The first point of note from figure 7.16 (above) is how much higher the level of

global correlation is for character training data than it was for the geometric data.

This increase arises naturally from the increased level of bias across the character

data set.

Secondly, at equivalent neighbourhood sizes, the level of local correlation is

usually lower for character data than for geometric data though the difference is

slight. A possible explanation for this is the fact that the geometric training

patterns have large blocky areas of both black and white. This results in a large

degree of local correlation over the entire pattern. In contrast, the character data

has large areas of white (-1 hit) interrupted with thin black areas. As these black

98

12345

areas are very thin, they are a) not locally correlated at any significant distance,

and b) disrupting the local correlation of the white areas through which they

pass.

The advantage in correlation gained by measuring sub-patterns of increasing size

disappears far more quickly for character data than for geometric data. This can

be seen by the near-convergence of the blue line, indicating local correlation,

with the red. This is to be expected given the higher level of global correlation

present in the character data.

7.4.2.3. Measuring Each Neighbourhood's Contribution to Correlation

Thus far, the level of local correlation measured at each neighbourhood size has

been calculated as the cumulative correlation for the entire neighbourhood. It is

of interest to examine the amount of local correlation contributed by each

additional level of neighbourhood connectivity. Consider a particular

neighbourhood size where the local correlation is discovered to be well above

the level of global correlation. The next neighbourhood size measured will

include the previous level of correlation plus any correlation now contributed by

the new connectivity. It is possible that even if the next neighbourhood size

appears to provide local correlation in excess of global correlation, the

contribution actually made by the extra connectivity is low.

1.00

0.95

0.90

0.85

0.80

0.75

Uj 0.70

0.65

0.60

0.55

0.50

-. -- Geometric -+-- Character

Figure 7.17: The level of local correlation introduced by each new level of neighbourhood
connectivity for geometric and character data. The global correlation of the geometric and
character data sets is indicated by the dotted and dot-dashed lines respectively.

99

12345

Neighbourhood size (d)

Figure 7.17 illustrates, for both geometric and character data, the contribution to

local correlation made by each neighbourhood. The dotted line indicates global

correlation for the geometric data and the dot-dash line the same for character

data.

It can be seen that for geometric data, larger neighbourhoods continue to

contribute local correlation above the level of global correlation. The amount of

correlation contributed falls linearly with the increasing neighbourhood size.

This corresponds to the linear decline in the cumulative local correlation seen

for geometric data in figure 7.10.

For character data, the last point at which a neighbourhood increase contributes

local correlation above the global level is at d=3. Beyond this point larger

neighbourhoods no longer contribute any greater benefit than would be

obtained by simply choosing an equivalent number of bits to measure at random.

The implication of this measurement is that for geometric data, performance

benefits should be seen when constructing networks with connectivity that

reflects these neighbourhoods for all of the neighbourhood sizes examined here.

For character data however, it might be expected that performance benefits

would drop once neighbourhood connectivity had reached a size above d=3 due

to the decline in the level of local correlation with bits at that range.

100

7.4.3. Measuring Site Activity within a Training Set

The following sequences of histograms show, for geometric data, character data,

and their random data equivalents, the distribution of site activities for each

training set. The mean values in each case should be equal to that of the overall

level of pattern bias in the training set.

7.4.3.1. Geometric Data and Random Data (b=0.5)

200

180

160

140
120

c
loo

80

60

40

20

0

Figure 7.18: Frequency distribution of the site activity values for random data (b=0.5).

200

180

160

140

120
c

100
c LL 80

60

40

20

0

Figure 7.19: Frequency distribution of the site activity values for geometric data.

The 2 preceding histograms show the distribution of site activities for random

unbiased data (figure 7.18) and geometric data (figure 7.19). As might be

101

In o ýn C) '4) o 1n o U') C) Un C) In Co 1n o Un 0 In o
OrNN Cl) Cl) ct IRt LO U) CO (D N. r- 00 00 0) cO

ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ

Bias

Lt) 0 L() O to 0 U) 0O to 0 (C) O Lo 0 l() 0 (C) O'-'- NNMM IRT It (C) U (D Cp (-- ti pp CO OO
OÖOOÖOÖOOÖÖÖÖpppppp

Bias

expected, the values for random unbiased data are normally distributed with a

mean value of 0.50. The range of values is from 0.36 to 0.66 and the standard
deviation is 0.05.

The distribution of values for geometric data is negatively skewed though the

mean value is still equal to that of the overall level of bias at 0.52. The range of

values is from 0.10 to 0.70 and the standard deviation is 0.12.

From this it can be inferred that while the mean values are very similar and the

training set bias, when calculated over all the patterns, is roughly 0.5 in each

case, in the case of the geometric data an individual bit is more likely to have the

same value throughout the training set when compared with the random data.

For the geometric data, 32% of bits have a bias either lower than 0.4 or higher

than 0.64. This means that a full 68% of bits have bias values that fall

approximately within the entire range of values that were seen for the random
data.

The above information shows that the set of data comprised of locally correlated

patterns has a higher level of inter-pattern similarity, or correlation.

7.4.3.2. Character Data and Random Data (b=0.8)

200

180

160

140

120

Z 100
C.

80

60

40

20

0

Figure 7.20: Frequency distribution of the site activity values for random data

102

Lt) O L[) O LC) O to O tf) O tt) 0 to O U) OO 1) ONNMC tt st U') LO ca cp p- ti ap ap OO OÖÖÖOddOOÖÖÖÖÖÖÖÖOÖ

Bias

200

180

160

140

120
c

100
a.

80

60

40

20

0

Figure 7.21: Frequency distribution of the site activity values for character data.

Figures 7.20 and 7.21 (above) show the distribution of site activities for random

data with a bias of 0.8 and character data respectively. The values for the

random data are again normally distributed with a mean value of 0.80. The

range of values is from 0.68 to 0.91 and the standard deviation is 0.04.

The distribution of values for the character data is almost bimodal with an early

peak in the frequency of bias and a remainder which looks approximately

normal. The range of values is from 0.00 to 0.43 and the standard deviation is

0.12.

The slight bimodality of the distribution requires that more care is taken in

interpreting the results. The initial peak in the distribution represents the fact

that 17% of a network's neurons will be given the task of outputting a -1 at least

95% of the time. Close on one quarter of the neurons will be outputting -1 at

least 90% of the time. It is clear to see that, for a large number of bits, the

character data is very highly biased.

While this high degree of bias is evident, it is also the case that 53% of bits have a
level of bias between the mean value, 0.20, and the upper end of the range of

values, 0.43. The fact that just over one half of the bits have a level of bias

below that which would be expected of random data with a similar level of

overall bias means that the advantages of inter-pattern correlation may not be so

evident with character data.

103

Lo o Un CD Un 0 ºn 0 Un 0 Un 0 U) CD Un C5 Un o ºn o 0 '" -NNc) C) IT IT U) LO (O CD 1'- t- CO co O) Q) 0
ooÖ C) ÖooÖÖÖÖÖÖÖÖÖÖÖdr

BIBS

7.5. Discussion and Summary

The purpose of this section was to describe an artificially constructed set of training

data, a set of analysis measures, and the results of their use.

Having initially identified some important requirements of the data, the manner in

which the data was generated was described. The analysis tools were presented and

descriptions of their use given. The design of these tools is to analyse, in a manner

appropriate to this investigation, the underlying nature of the training data used in

the remainder of this work.

The first analysis, which measured the bias of the training set, showed that the

geometric and character data had levels of bias of 0.52 and 0.2 respectively. This

indicates that the geometric data is practically unbiased while the character data

possesses more than four times as many -1 valued bits as +1 ones.

The cross-pattern local correlation showed how the degree of correlation of a bit

with those surrounding it varied according to how many of the surrounding bits

were considered to be `local' to it. This analysis showed that in the case of both

geometric and character data, there was local correlation present that exceeded the
level of correlation present in the data due to the pattern bias. The correlation for

each locale tested was not markedly different when comparing between data types

but the difference between local correlation and global correlation was greatest for

geometric data. This arises from the higher level of global correlation already

present due to the higher pattern bias of the character data.

Finally, the site activity analysis has showed that a considerable degree of inter-

pattern similarity exists in both types of data. This similarity is more evident in the

geometric data than in the character data and in the case of the latter is unlikely to

present as much of an advantage as it is balanced by a larger degree of dissimilarity

than was seen to be present in the equivalently biased random data.

In summary, this section has demonstrated that the natural data employed in this

work possesses a level of local correlation that is greater than the respective level

of global correlation. This, coupled with the inter-pattern correlation
demonstrated using the site activity analysis, should, at least in the case of the

geometric data, lead to an improvement in performance in networks where the

connection topology is constructed at a similar range to that at which the local

correlations exist. The investigation of this is reported in the next chapter.

104

8. ASSOCIATIVE MEMORY ARCHITECTURES WITH SPARSE
CONNECTIVITY

8.1. Introduction

The aim of this series of experiments was to discover whether a topological bias

towards local connectivity might permit greater performance than can be

achieved using simple random connectivity when training using patterns

exhibiting significant levels of local correlation. The possibility of this being a

worthwhile area of investigation was mentioned by Canning and Gardner (1988)

in their work on investigating the properties of partially connected neural

networks.

There is a clear justification for why local connectivity might provide a

performance improvement, especially in the area of capacity. Under the class 3,

Gardner-type learning rules each neuron is trained as a perceptron (c. f chapter 2).

For individual perceptrons it is known that the maximum capacity for unbiased

random patterns is equal to twice the number of incoming connections (Cover,

1965; Gardner, 1988). For a fully-connected network of perceptrons the

theoretical maximum capacity is therefore 2(N) for N, where N is the size of

the network. Furthermore, it was also shown by Gardner that the capacity will
increase for patterns which are biased.

As described in chapter 5, Lopez and Schroder (1995) showed that it is not only

the bias of the patterns that is important in increasing capacity but it is important

that pairs or groups of correlated patterns have correlated outputs. In the case of

the fully-connected networks this can be achieved by simply increasing the bias of

the training patterns.

Consider training patterns of the types shown in §7.2. It was shown in the

previous section that patterns of those types possessed a significant degree of local

correlation on both an individual and an aggregate basis. High local correlation
implies that individual bits often share the same value as their neighbours. If a bit

in a particular position has the same value for a number of patterns in the training

set then the correlation between the patterns should result in an environment in

which Lopez and Schroder state that the associated perceptron should show
improved capacity.

105

It is recognised that reducing the number of incoming connections to each

perceptron will reduce the theoretical maximum capacity of each of them but it is

hoped that this will be offset by the expected capacity improvements arising from

the local correlations.

The performance of the networks is judged with respect to training time and

capacity, connection storage efficiency, attractor performance, and the rate at

which individual neurons failed with respect to increasing pattern load. In order

to establish whether or not a performance improvement arises from using locally

correlated data with local connectivity, networks with different styles of

connectivity were trained using data within which local correlation is present, and
data within which it is not or is very low.

This chapter considers a series of evaluative experiments measuring the

performance of the networks. The critical result presented is that of useful capacity,

a term described in detail in §8.4.2.

8.2. Network Architecture, Learning Rule, and Training Data

The networks employed in this series of experiments were of size N=400 and the

neurons are considered to be arranged as if on a 20-by-20 grid. Connectivity

between neurons was established through the use of one of two strategies
described below.

The networks' weight matrices were generated using the Symmetric Local

Learning algorithm described in §2.2.

Two categories of training data were used over the course of these experiments.

a) Artificially generated non-random data. This data was generated as described

in chapter 7. Two different types of data were employed; data derived

from computer character sets and data artificially generated using random

placement of small geometric shapes within the 2-dimensional training

pattern representation.

b) Randomly generated data. This was generated as required with levels of bias

0.5 and 0.8. These levels of bias are very close to that present within the

geometric shape data and character data summarised above (c. f chapter 7).

106

8.3. Network Performance Analysis

The performance of the trained networks was assessed according to four criteria:

training time, capacity, the ability of the stored patterns to act as attractors, and

the rate at which the number of neurons which fail to train rises as pattern load

increases.

Training time is taken to be the number of presentations of the training set

required to successfully train the network. The upper bound of the number of

presentations, beyond which a network is deemed to have failed to train, is 1000.

This value was chosen to be well in excess of that ordinarily required to train

fully-connected networks with the same learning rule (c. f chapter 4).

Storage efficiency is defined as being the ratio of the number of successfully stored

patterns to the mean number of incoming connections to each neuron.

Attractor performance was assessed using the modified version of the measure

developed by Kanter & Sompolinsky (1987) and described in detail in chapter 3.

Neuron failure rate is taken as a count of the neurons that fail to achieve an

aligned local field that exceeds the training threshold within some prescribed

number of iterations as load is increased.

107

8.4. Establishing Connectivity

To establish whether or not the structure of the networks' connectivity has any

significant effect on the performance characteristics of the network, two

connection strategies were employed. These strategies are termed random

connectivity and nearest neighbour connectivity and are described in detail below.

8.4.1. Random Connectivity

Random connectivity is established as follows: The number of connections

that would be present if the network were to be fully-connected is calculated

as

N* (N - 1). A proportion of this value is taken to be the desired level of

connectivity within the new network. This figure is divided by two to give

the total number of connection pairs required to achieve this level of

connectivity. Connection pairs are specified in order that symmetry within the

weight matrix may be maintained and so the presence of simple update

dynamics may be relied upon (c. f. §2.3).

Having established a figure for the number of connection pairs required, pairs

of neurons are selected at random. Once selected, should a connection not

already be present, a bi-directional connection is created between them. This

process continues until the specified level of connectivity has been reached.

Example

Number of neurons (N) = 400

Number of connections in fully connected network = 159,600

Required level of connectivity = 0.5

Connection pairs in sparse network = (0.5 * 159,600) /2

= 39,900

108

Figure 8.1: A pictorial representation of a small network within which random connectivity
has been established. Connections are shown for two neurons as an example.

8.4.2. Nearest Neighbour Connectivity

The generation of neighbourhood-based connectivity is carried out in a

slightly different manner to random connectivity, above. The neurons are

arranged in a conceptual grid corresponding to pixel positions in pictorial data.

A distance, d, for the neighbourhood is chosen in the same manner as used for

calculating local correlation in training patterns (c. f. chapter 7). Next, network

neurons are taken in sequence from the top left of the grid and an incoming

connection is established to the current neuron from all neurons at or closer

than d neurons away. Here, unidirectional connections are created as

symmetry arises naturally from the creation of the connectivity of subsequent

neurons.

Connectivity does not wrap-around at the edges of the grid. This requirement

ensures that the structure of the connectivity reflects the way in which the
local correlation within the training patterns is calculated.

Neurons with a reduced neighbourhood i. e. those at the edges and corners of

the network, will have a lower level of connectivity than those which possess a
full neighbourhood. This further reduction in connectivity could cause those

neurons affected to fail much sooner than those with larger neighbourhoods or

neurons with random connectivity.

109

Figure 8.2: A pictorial representation of a small network within which neighbourhood
connectivity has been established at a distance (d) of 1. Connections are shown for two neurons
as an example.

Local connectivity changes the appearance of the training set from the

perspective of individual neurons (Karlholm, 1993). Critically, the locally

correlated nature of the training data means that neurons will have input patterns

that are individually both highly biased and correlated with the associated

output. The idea is that when an individual pixel in any pattern is on, there is a

good chance that many of the surrounding pixels will also he on due to the

spatial continuity of real images. Local connectivity should therefore, according

to the work of Lopez and Schroder (1995), lead to increased capacity for a large

number of neurons and which should, in turn, lead to a relatively low number

of neurons failing to train.

The presence of a reduced number of failed neurons assists in the definition of

the term useful capacity. In later work, the effect of adding additional

connections after attempting a first phase of training was investigated. The

additional connections are added in order to try and assist failed neurons in

successfully learning their input patterns. High useful capacity occurs for

networks where only a small number of failed neurons occur as the loading

rises past the point at which all the training patterns are stable. The small

numbers of failed neurons allow the networks to be compensated with extra

connectivity at low cost in terms of additional connections.

110

8.5. Experimental Structure

As the training data and connectivity strategies fall into two groups, so does the

structure of the experiment itself. The groups follow the similarity between the

levels of bias within each of the random data sets and the bias, b, of the non-

random data. These groups are:

a) Random data (b=0.5) with random connectivity

Geometric data with random connectivity

Random data (b=0.5) with neighbourhood connectivity

Geometric data with neighbourhood connectivity

b) Random data (b=0.8) with random connectivity

Character data with random connectivity

Random data (b=0.8) with neighbourhood connectivity

Character data with neighbourhood connectivity

In each group there are networks with random connectivity and neighbourhood

connectivity. Neighbourhood sizes of 1 to 5 were employed. The random

connectivity was created such that the overall level of connectivity as a proportion

of the number of connections present if the network were fully-connected would

be equal to the levels of connectivity using neighbourhoods. These equivalences

are as follows:

Neighbourhood Mean

distance (c) Connectivity connections
per neuron

1 0.0185 7.41

2 0.0527 21.09

3 0.0999 39.96

4 0.1575 63

5 0.2231 89.25

Table 8.1: Connectivity level equivalences between connectivity established by random means
and that established using neighbourhood connectivity. Also shown is the corresponding mean
number of connection at each neuron for each level of connectivity.

The last column in the table above, the number of mean connections per neuron
(MCPN), provides a method of referring to the level of connectivity in any given

network without the need for specifying the nature of the pattern of connectivity.

111

It is important to note that neurons with a reduced neighbourhood, i. e. those at

the edges and corners of the network, will have a lower level of connectivity than

the mean stated in the table above. As mentioned earlier, it is this further

reduction in connectivity that may cause those neurons affected to fail much

sooner than those with larger neighbourhoods or neurons with random

connectivity.

8.6. Results

It is important to note that these results require careful interpretation in the

context of the known issues regarding the likely early failure of corner and edge

neurons in the case of neighbourhood connectivity.

It is expected that capacity and attractor performance will often appear to be

worse for networks with neighbourhood connectivity than for those with random

connectivity due to this early neuron failure.

As the capacity finds the first point at which at least one neuron fails to train it is a
fallible guide to actual capacity in these networks with low levels of connectivity.
Low connectivity may lead to high variability in the observed capacity. A more

meaningful measure of capacity, useful capacity, was given in §8.4.2.

Moreover, for the networks with neighbourhood connectivity, the edge and

particularly corner neurons will grossly distort this measured capacity as they are

very likely to fail quickly. For example, at a neighbourhood size of d=1, corner

neurons only have 3 inputs.

The important results in this chapter are those detailing the number of failed

neurons at various degrees of pattern load, as it is networks with small numbers of
failed neurons that may be compensated cheaply with extra connectivity (c. f

chapter 9).

8.6.1. Capacity and Training Time

Capacity and training time results are presented as summary tables for

conciseness. The full results tables from which the summaries have been

produced may be found in appendix D. Each value used in creating the
summary represents is averaged over five simulation runs.

112

8.6.1.1. Results for Random (b=0.5) and Geometric Data

Tables 8.2 and 8.3 show the capacity and training time result summaries for

networks learning random data (bias 0.5) and geometric data. Results for each

of the levels of connectivity described in table 8.1 are shown. The networks

are compared in two ways: firstly, the effect that the type of training data has

on capacity and training time is examined (figure 8.2). The training data type

resulting in the highest capacity and shortest training time is given for each of

the two connectivity types.

Secondly, the effect of the connectivity strategy is examined with respect to

the two types of training data (figure 8.3). The connectivity strategy resulting

in the highest capacity and shortest training time is given for each of the two

data types.

Comparing between random data (b=0.5) and geometric data

MCPN Random connectivity
Neighbourhood

connectivity

Capacity Failed to train Failed to train
7.41

Training Failed to train Failed to train time

Capacity Higher for random data Higher for random data

21.09
Training Inconclusive Inconclusive
time

Capacity
Higher for geometric Higher for geometric
data data

39.96
Training
time

Shorter for random data Shorter for random data

Capacity
Higher for geometric Higher for random data

63
Training
time

Shorter for random data Shorter for random data

Capacity Higher for random data Higher for random data

89.25 Shorter for random data
Training at low loadings. Shorter
time for geometric data at

Shorter for random data

higher loadin

Table 8.2: Results of capacity and training time comparisons between random (b=0.5) and
geometric data types at each of five levels of random or neighbourhood connectivity. The type
of data resulting in the highest capacity or lowest training time is given for each case.

113

Table 8.2 shows that network capacity is usually higher when learning random

data rather than geometric data regardless of the connectivity strategy used.

This is the case for levels of connectivity of 21.09 and 89.25 MCPN. At 39.96

MCPN the capacity is higher for geometric data on both types of connectivity.

An interesting point of note occurs at 63 MCPN where the capacity is higher

for geometric data on random connectivity and higher for random data on

neighbourhood connectivity.

The results for training time from table 8.2 indicate that where numerical

results exist, random data almost always trains more quickly than geometric

data. The exception to this is at 89.25 MCPN where the training time is

shorter for random connectivity at low loadings but becomes longer as the

number of patterns on which the network is trained increases (see figure 8.3).

This is contrary to what might be intuitively expected from the network. If

local connectivity is to provide some benefit in performance it would be

expected that both types of data would produce similar results on random

connectivity. Effects such as this and potential causes and reasons for their

existence are discussed at the end of this chapter.

1000 .1- -- -- --- . -- -- -, - -- -- -- ---- --- -- ---- - --- -- -- -- --

9004---- --- --

am 4-- --- -- --- --

goo -- ----- - ---

eoo -
c

9

T_

400

H

300 4

200

tooi---

0-
0000 0

.............

02500
Loading (P: N)

-Random data (b-0 6) Goomotna data

Figure 8.3: Training time against pattern load for networks with random connectivity learning
random (b=0.5) and geometric data. Training time is shorter for random data (solid line) at low
loadings (< 0.1500) but shorter for geometric data (dashed line) at higher loadings.

Table 8.3 (below) shows that, at every level of connectivity for which

numerical results exist, the capacity of networks created with random

/-

114

0 0500 01000 0.1gp0 0 2000

connectivity is greater than or equal to those where connectivity was establish

using the neighbourhood method regardless of the data type being learnt.

The training time results are not what one might expect given the capacity

summaries. Neighbourhood connectivity results in a shorter training time

when using either data type at 21.09 or 39.96 MCPN but training time is

shorter for random connectivity at 63 and 89.25 MCPN.

For training time, at 39.96 MCPN a similar effect as was described using figure

8.3 is observed. Although neighbourhood connectivity eventually results in

shorter training time with geometric data, at low loadings the training times

are faster for random data.

Comparing between random connectivity and neighbourhood connectivity
MCPN Random (b=0.5) data Geometric data

Capacity Failed to train Failed to train
7 41 . Training Failed to train Failed to train time

Capacity Same for both strategies
Higher for random
connectivity

21.09
Training

Shorter for Shorter for

time neighbourhood neighbourhood
connectivity connectivity

Capacity
Higher for random Higher for random
connectivity connectivity

Shorter for random
39.96 Shorter for connectivity at low

Training
neighbourhood

loadings. Shorter for
time

connectivity neighbourhood
connectivity at higher
loadings

Capacity
Higher for random Higher for random
connectivity connectivity

63 Shorter for random
Training Shorter for random connectivity at low
time connectivity loadings. Inconclusive

at higher loadings

Capacity Higher for random Higher for random

89 25
connectivity connectivity

. Training Shorter for random Shorter for random
time connectivity connectivity

Table 8.3: Results of capacity and training time comparisons between random and
neighbourhood connectivity strategies at each of five levels of connectivity for networks
learning random data (b=0.5) and geometric data. The pattern of connectivity resulting in the
highest capacity or shortest training time is given for each case.

115

8.6.1.2. Results for Random (h=0.8) and Character Data

Table 8.4 shows, in the same manner as for random (bias 0.5) and geometric

data, capacity and training time results for random data with bias 0.8 and

character data.

Comparing between random data (b=0.8) and character data

MCPN
Random Neighbourhood

connectivity connectivity

Capacity Failed to train Failed to train

7.41
Training
time

Failed to train Failed to train

Capacity Higher for random data Higher for random data

21.09
Training
time

Inconclusive Inconclusive

Capacity Higher for random data Same for both data types

39.96
Training
time

Shorter for random
data

Shorter for character data

Capacity Higher for random data Same for both data types

63
Training
time

Shorter for random data
Shorter for random data at low
loadings. Shorter for character
data at higher loadings

Capacity Higher for random data Higher for random data

89.25
Training
time

Shorter for random data Shorter for random data

Table 8.4: Results of capacity and training time comparisons between random (b=0.8) and
character data at each of five levels of random or neighbourhood connectivity. The type of data

resulting in the highest capacity or shortest training time is given for each case.

Table 8.4 shows that, for all levels of connectivity at which numerical results

exist, the capacity of networks learning random (b=0.5) data is greater than

equal to that of those learning character data regardless of the connectivity

strategy used.

The training time results show that for 39.96 and 63 MCPN, the training time

is shorter for random data on random connectivity but it is shorter for

character data on neighbourhood connectivity. At 63 MCPN however, this

latter result only becomes true at higher pattern loadings. At 89.25 MCPN it

would appear that the larger neighbourhood has lost any advantage that may

116

have been present at lower levels of connectivity and random data again results

in the quickest training time.

Comparing between random connectivity and neighbourhood connectivity

MCPN Random data (b=0.8) Character data

Capacity Failed to train Failed to train

7.41
Training Failed to train Failed to train time

Capacity Same for both strategies Failed to train
21.09

Training Shorter for random Failed to train
time connectivity

Higher for random Higher for neighbourhood Capacity
connectivity connectivity

39.96
Training Shorter for random Shorter for neighbourhood
time connectivity connectivity

Capacity
Higher for random Higher for random
connectivity connectivity

63
Training Shorter for random Shorter for neighbourhood
time connectivity connectivity

Capacity Higher for random Higher for random
connectivity connectivity

89.25
Training Shorter for random Shorter for neighbourhood
time connectivity connectivity

Table 8.5: Results of capacity and training time comparisons between random and
neighbourhood connectivity strategies at each of five levels of connectivity for networks
learning random data (b=0.8) and character data. The pattern of connectivity resulting in the
highest capacity or shortest training time is given for each case.

Table 8.5 shows that, in capacity terms, random connectivity generally appears

to be a more advantageous connectivity strategy than neighbourhood

connectivity whether the data being learnt is the random (b=0.8) set or the

character data. This can be seen in the summary of capacity results for levels of

connectivity of 63 and 89.25 MCPN. A different result exists for 39.96

MCPN. At this level of connectivity capacity is higher for random

connectivity when learning random data and higher for neighbourhood

connectivity when learning character data. Given the fact that when learning

character data, the lowest level of connectivity at which the networks where

capable of being successfully trained was 39.96 MCPN, this would seem to

indicate that, at least in this case where the data is highly biased, as small a

neighbourhood as is possible is preferable when learning locally correlated data.

117

The results for training time show a clear correlation between the type of data

being learnt and the connectivity strategy resulting in the shortest training

time. The networks only produced enough results for comparison at loadings

of 39.96,63, and 89.25 MCPN. At these loadings, the training time is shorter
for random connectivity when learning random data and shorter for

neighbourhood connectivity when learning character data.

8.6.2. Storage Efficiency

Storage efficiency is taken to be the ratio of the maximum number of patterns

successfully stored to the mean number of connections per neuron. This value

should provide an indication of how efficient a particular level of connectivity

is when learning a certain type of training data. The results used are the same

as those for the previous section on training time and capacity. Therefore, the

capacity values used are once again the mean of five simulation runs.

8.6.2.1. Results for Random (b=0.5) and Geometric Data

Random connectivity Neighbourhood connectivity

MCPN
Random Geometric data Random data Geometric data data

7.41 Failed to train Failed to train Failed to train Failed to train

21.09 0.71 0.47 0.71 0.23

39.96 0.75 0.88 0.25 0.50

63 0.87 1.11 0.56 0.32

89.25 0.95 1.12 0.50 0.28

Table 8.6: Storage efficiency values calculated as the ratio of the number of successfully trained
patterns to the mean number of connections per neuron. Values highlighted with bold text are
the maximum value for each data/connectivity type pairing.

Table 8.6 shows the following: For each network (defined by the pairing of a

set of training data and connectivity type) the storage efficiency is shown for a

number of levels of connectivity (mean number of connections per neuron).
The peak efficiency for each network is highlighted using bold text. As with
the training time results, no values are present for networks with 7.41 MCPN.

No network managed to store the minimum of five patterns with such a low
level of connectivity.

It can be seen from the table that, for networks with random connectivity, the

efficiency increases with the level of connectivity. However, for networks

118

employing neighbourhood connectivity and learning geometric data there is a

clear peak in efficiency at a connectivity level of 39.96 MCPN. From table

8.1 it can be seen that this level of neighbourhood connectivity is equivalent to

a neighbourhood size, d, of 3.

As stated in §2.4.1, it is known (Gardner, 1988) that the maximum capacity for

a network being trained on uncorrelated patterns with Gardner class rules is

2N, where N is the input dimensionality of the neurons. It is clear from the

data that none of the networks are even close to that figure. There are a

number of reasons why this might be the case. The first of these is that the

theoretical maximum capacity figure of 2N will only be seen in the limit

N (Gardner, Gutfreund et al., 1989). It is therefore reasonable to expect

that the networks being examined in this work will perform below this

maximum value.

A compounding factor is that the connectivity level quoted is the mean number

of connections per neuron. Due to the pattern of connections for the

networks employing neighbourhood connectivity some neurons, namely those

at the corners and edges, will have substantially less connections than the mean
figure might suggest. As it is only required that one neuron fail for the entire

network to be considered to have failed to train it is likely that these edge and

corner neurons are at least partially responsible for lower storage efficiency
figures than might be expected.

8.6.2.2. Results for Random (b=0.8) and Character Data

Random connectivity Neighbourhood connectivity
Random

Connectivity data Character data Random data Character data

7.41 Failed to train Failed to train Failed to train Failed to train

21.09 0.24 Failed to train 0.24 Failed to train

39.96 0.90 0.38 0.50 0.50

63 1.03 0.71 0.48 0.48

89.25 1.06 0.67 0.73 0.50

Table 8.7: Storage efficiency values calculated as the ratio of the number of successfully trained
patterns to the mean number of connections per neuron. Values highlighted with bold text are
the maximum value for each data/connectivity type pairing.

119

Table 8.7 shows that, as was the case for unbiased random and geometric data,

the storage efficiency tends to increase with the level of connectivity for

networks with random connectivity trained using random data. The storage

efficiency for these networks is higher for random data than for geometric data

at equivalent loadings and while it is difficult to say for certain, it would appear

that for both data types any significant improvement in storage efficiency

disappears above 63 MCPN.

Networks created with neighbourhood connectivity demonstrate a steady rise

in storage efficiency with increasing connectivity when training with random

data though at no stage does the efficiency exceed that of the networks created

with random connectivity at equivalent loadings. The results for networks
learning the character data are particularly interesting as it appears that the

storage efficiency remains largely the same as the level of connectivity

increases. It is perhaps not surprising that little benefit is seen from the higher

levels of connectivity given that it was shown earlier (c. f. §7.4.2) that the level

of local correlation at neighbourhood sizes of 3 and above is very close to the

measured level of global correlation.

120

8.6.3. Attractor Performance

One of the most common performance indicators is that of the ability of the

fundamental memories of a network to act as attractors. The measure used is

that of Kanter and Sompolinsky (1987) modified as described in chapter 3.

The results from which the summaries have been generated are the mean of

five simulation runs. The full tables may be found in appendix D.

8.6.3.1. Results for Random (b=0.5) and Geometric Data

Tables 8.8 and 8.9 show the attractor performance analysis summaries for

networks learning random data (bias 0.5) and geometric data. Results for each

of the levels of connectivity described in table 8.1 are shown. The networks

are compared in two ways: Firstly, the effect that the type of training data has

on attractor performance is examined (table 8.8). Secondly, the effect of the

connectivity strategy is examined with respect to the two types of training data

(table 8.9).

The type of data or pattern of connectivity providing the highest attractor

performance is given in each case.

Comparing between random data (b=0.5) and geometric data

MCPN Random connectivity
Neighbourhood

connectivity

7.41 Failed to train Failed to train

No non-trivial attractor No non-trivial attractor
21.09 performance using either performance using either

data type data type

Similar at low loadings. No non-trivial attractor
39.96 Decreases more quickly performance using either

for geometric data data type

Similar at low loadings.
63 Decreases more quickly Higher for random data

for geometric data

Similar at low loadings.
89.25 Decreases more quickly Higher for random data

for geometric data

Table 8.8: Results of attractor performance comparisons between random
(b=0.5) and geometric data at each of five levels of random or neighbourhood
connectivity. The type of data resulting in the highest attractor performance is
given for each case.

Table 8.8 summarises, for networks with random or neighbourhood

connectivity, the results of comparing the attractor performance of those

networks when learning random (b=0.5) data and geometric data.

121

Networks with random connectivity, where they succeed to train and produce

results suitable for study, have attractor performance which is the same at low

loadings for both types of data being learnt. The level of attractor performance

decreases more rapidly with respect to the loading for the networks that were

trained using the geometric data.

For neighbourhood connectivity, the attractor performance is higher for

random data than for character data at each of the loadings where a non-trivial

attractor performance was achieved.

These results are in line with expectations. Random connectivity should, to a

certain degree, nullify any effect that local correlation in the data might have

and cause each neuron to see input patterns biased at 0.5 regardless of the data

type. It was seen in the analysis of the training data (c. f chapter 7) however,

that the site analysis of the geometric training data revealed that a number of
bits had a level of bias throughout the training set above that for the pattern set

as a whole. This could account for the quicker fall in attractor performance for

the geometric data on random connectivity.

The results for neighbourhood connectivity are unsurprising for a similar

reason. Where results exist, the attractor performance is higher for random
data than for geometric data. The input patterns seen by each neuron are far

more similar to each other when using neighbourhood connectivity with

geometric data as when random connectivity is used. Random connectivity

allows each neuron to see input patterns that are biased at approximately the
level of the whole dataset. The less biased patterns permit the neurons, as

perceptrons, to have greater generalisation ability resulting in greater overall

attractor performance.

122

Comparing between random connectivity and neighbourhood
connectivity

MCPN Random data (b=0.5) Geometric data

7.41 Failed to train Failed to train

No non-trivial attractor No non-trivial attractor
21.09 performance using either performance using either

connectivity strategy connectivity strategy

Higher for random Higher for random 39.96
connectivity connectivity

Higher for random Higher for random 63
connectivity connectivity

Higher for random Higher for random 89.25
connectivity connectivity

Table 8.9: Results of attractor performance comparisons between random and
neighbourhood connectivity strategies at each of five levels of connectivity for

networks learning random data (b=0.5) and geometric data.. The pattern of
connectivity resulting in the highest attractor performance is given for each case.

Table 8.9 again shows results in line with expectations. When learning

random data, random connectivity appears to consistently provide better

attractor performance in the cases where the results are suitable for analysis.

This is easily explained by considering the mean number of connections per

neuron. For random connectivity, the actual number of connections for each

neuron will be very close to the mean number. For neighbourhood

connectivity the constraint that connectivity may not wrap-around at the edges

of the network causes corner an edge neurons to have connectivity that is, at

times, far below the mean level. It is very likely that it is this reduced

connectivity that results in poorer attractor performance for networks

connected using a neighbourhood strategy.

The explanation for geometric data is the same as that given above for random
data. In addition to the reduced edge and corner connectivity though, we

now have the extra problem of highly biased input patterns in the case of

neighbourhood connectivity, as was described in the explanation of the results
for table 8.8.

123

8.6.3.2. Results for Random (b=0.8) and Character Data

Tables 8.10 and 8.11 show the attractor performance analysis summaries for

networks learning random data (bias 0.8) and character data. Results for each

of the levels of connectivity described in table 8.1 are shown. The networks

are compared in the same way as those learning random data (bias 0.5) and

geometric data.

The type of data or pattern of connectivity providing the highest attractor

performance is given in each case.

Comparing between random data (b=0.8) and character data

MCPN Random connectivity
Neighbourhood

rnnnertivity

7.41 Failed to train Failed to train

No non-trivial attractor No non-trivial attractor 21.09
performance performance

39.96 Higher for random data Higher for character data

63 Higher for random data Higher for character data

89.25 Higher for random data Similar for both data
types

Table 8.10: Results of attractor performance comparisons between random
(b=0.8) and geometric data at each of five levels of random or neighbourhood
connectivity. The type of data resulting in the highest attractor performance is

given for each case.

The results shown in table 8.10 are broadly in line with expectations.

Networks exhibit better attractor performance when random data is coupled

with random connectivity. These results are similar to those shown for

unbiased random data trained on networks with random connectivity in that

those networks showed similar attractor performance at low loadings but the

performance declined faster with increasing pattern load for geometric data. In

this case, where biased random patterns and character data have been used, the

benefit of random data manifests itself in higher attractor performance values.

It can be seen in the results for networks with neighbourhood connectivity

that local connectivity is providing attractor performance benefits when the

network is being trained on the locally correlated character data. This is in

contrast to the results with unbiased random patterns and geometric data.

124

Comparing between random connectivity and neighbourhood
connectivity

MCPN Random data (b=0.8) Character data

7.41 Failed to train Failed to train

No non-trivial attractor No non-trivial attractor
21.09 performance using either performance using either

connectivity strategy connectivity strategy

Higher for random
Higher for

39.96 neighbourhood connectivity connectivity

Higher for random Higher for random 63
connectivity connectivity

Higher for random Higher for random 89.25
connectivity connectivity

Table 8.11: Results of attractor performance comparisons between random and
neighbourhood connectivity strategies at each of five levels of connectivity for

networks learning random data (b=0.8) and character data.. The pattern of
connectivity resulting in the highest attractor performance is given for each case.

Table 8.11 again shows that random data is best paired with random

connectivity. For all levels of connectivity where a result exists and is non-

trivial it can be seen that random connectivity produces higher attractor

performance in conjunction with random connectivity.

When learning character data, the effect of the pattern of connectivity is less

conclusive. Neighbourhood connectivity results in higher attractor

performance in only one case, 39.96 MCPN. Interestingly, this corresponds to

the last neighbourhood size at which additional local correlation was seen,

according to the training data analysis results presented in §7.4.2.3. Beyond

this level of connectivity, random connectivity again appears to be the most

beneficial.

125

8.6.4. Neuron Failure Count

The rate at which neurons fail to learn their particular input patterns once a

network's loading gets too high for training to be successful is of particular

interest. As mentioned earlier (c. f. §8.4.2), if the rate at which neurons fail

with increasing pattern load can be kept low then it is hoped that a small

number of additional connections might be sufficient to compensate for the

failure and allow a network to stabilise all patterns.

As with previous measures, all values are the mean of 5 simulation runs. The

results are presented graphically for this measure so as to better illustrate the

rate of increase in neuron failure.

8.6.4.1. Results for Random (b=0.5) and Geometric Data

The following 2 graphs show the rate at which neurons fail to successfully
learn their input patterns when attempting to learn random data of bias O. S.

The first graph shows this rate for networks in which random connectivity has

been established. The second graph shows the same for networks in which the

connectivity forms a local neighbourhood. Each graph shows results for the 5

different levels of connectivity being used.

Random Data - Random Connectivity

400

350

300

e 250

z 8
V 7

200
ö

150
z

100

so

0.00
Loading (PIN)

-4-741 MCPN -*-21.09 MCPN -+-39 96 MCPN -N-63 º CPN -*-. 89.23 MCPN

Figure 8.4: Failed neuron count against increasing pattern load for networks constructed with
random connectivity at levels of 7.41,21.09,39.96,63, and 89.25 mean connections per
neuron and trained using random (b=0.5) data.

126

0 05 0.10 0.15 0.20 0.25

Random Data - Neighbourhood Connectivity
400

350

Loading (PM)

t7 41 MCPN -f- 2109 MCPN -+-3996 MCPN -*-63 MCPN -*-89.25 MCPN

300

250

x
200

3
0

150
E

2

100

50

Figure 8.5: Failed neuron count against increasing pattern load for networks constructed with
neighbourhood connectivity at levels of 7.41,21.09,39.96,63, and 89.25 mean connections
per neuron and trained using random (b=0.5) data.

The immediate observation from the graphs shown in figures 8.4 and 8.5

(above) is that there is not a great deal of difference in the rate at which

neurons fail with increasing pattern load for networks learning random (b=0.5)

data. This is the case regardless of whether or not the networks have been

constructed with random or neighbourhood connectivity. This is entirely as

might be expected. The random nature of the data causes the localised

structured connectivity to have little or no effect on the rate of neuron failure.

Examining the graphs more closely does reveal a slight difference between the

networks. At low levels of connectivity (7.41 and 21.09 MCPN), the failure

rates are near identical. As the level of connectivity increases, the rate of
failure becomes gentler. This can be seen in the difference between the graphs

when comparing the lines representing 39.96,63, and 89.25 MCPN. In

general, for the networks constructed with neighbourhood connectivity, the

point of first failure occurs at a lower loading than for randomly connected

networks with the same level of connectivity. An example of this can be

clearly seen by examining, in each graph, the line representing a level of

connectivity of 39.96 MCPN. For randomly connected networks the point of
first failure occurs around a loading of 0.0750 whereas for networks with

neighbourhood connectivity failure begins at a loading of approximately

127

0
0.00 005 0.10 0.15 020 025

0.0500. This early initial failure is likely to be due to the reduced levels of

connectivity of corner and edge neurons.

Geometric Data - Random Connectivity

400,

350

300

S
250

200

Ö

M
150

E
3 z

100

5C

o
000 0.05 0.10 0.15 0 20 0.25

Loading (PIN)

--0-7.41 MCPN -F-21.09 MCPN -a-39 96 MCPN -W-63 MCPN -*-89 25 MCPN

Figure 8.6: Failed neuron count against increasing pattern load for networks constructed with
random connectivity at levels of 7.41,21.09,39.96,63, and 89.25 mean connections per
neuron and trained using geometric data.

Geometric Data - Neighbourhood Connectivity
400 1--

350

300

250

200

ök
150

E
Z

100

50

0---
0.00 0 05 0.10 015 0.20 0.25

Loading (PIN)

-x-7.41 MCPN t21 09 MCPN -+-39.96 MCPN --N-63 MCPN --r-89.25 MCPN

Figure 8.7: Failed neuron count against increasing pattern load for networks constructed with
neighbourhood connectivity at levels of 7.41,21.09,39.96,63, and 89.25 mean connections
per neuron and trained using geometric data.

There is a marked difference in appearance between the graphs shown in

figures 8.6 and 8.7. The graphs respectively show geometric data trained on

128

networks with various degrees of random connectivity and on networks

created with equivalent levels of neighbourhood connectivity.

The networks with random connectivity follow a similar pattern to that seen

for random data on both random and neighbourhood connectivity. Once a

loading has been reached at which at least 1 neuron has failed to train, the

failure count at subsequent loadings rises rapidly. Although the quantity of

failed neurons increases rapidly, this increase becomes less dramatic as the

connectivity of the network rises. This can be clearly seen by observing the

slope of the lines representing level of connectivity of 39.96 and 63 MCPN.

The absence of data for networks with 89.25 MCPN indicates that the

network learnt the training patterns successfully even at the highest loading of

0.25 (100 patterns).

The networks with neighbourhood connectivity exhibit particularly interesting

characteristics. At the lowest level of connectivity (7.41 MCPN) it can be seen

that the speed at which the count of failed neurons increases with respect to

increasing pattern load is far less than was seen for any of the other training

data/connectivity combinations at the same level of connectivity. This

remains true for the 2 subsequent levels of connectivity (21.09 and 39.96

MCPN).

The point of first failure consistently occurs at lower loadings for networks

with neighbourhood connectivity then it does for randomly connected

networks. All the networks with neighbourhood connectivity exhibit some
degree of neuron failure at the lowest loading attempted (=0.0125) regardless

of the level of connectivity that has been established.

It can be seen that, for levels of neighbourhood connectivity greater than 39.96

MCPN, there is little further advantage to be gained in termed of the rate of
increase in neuron failure count.

129

8.6.4.2. Results for Random (b=0.8) and Character Data

The following 2 graphs show the neuron failure count against increasing

pattern load when attempting to learn random data of bias 0.8. The first graph

shows this rate for networks in which random connectivity has been

established. The second graph shows the same for networks in which the

connectivity forms local neighbourhoods. Each graph shows results for the 5

different levels of connectivity being used.

Loading (PM)

-4-7.41 MCPN -0-21.09 MCPN -*-39 96 MCPN -x-63 MCPN -i--89 25 MCPN

Random Data - Random Connectivity
4001

350

300

ö 250

ä 200
0

Z
E 150
z

,a

5C

Figure 8.8: Failed neuron count against increasing pattern load for networks constructed with
random connectivity at levels of 7.41,21.09,39.96,63, and 89.25 mean connections per
neuron and trained using random (b=0.8) data.

As was the case for networks with unbiased random data there is a strong

similarity between the rate of increase in neuron failure count for networks

with random and neighbourhood connection topologies at levels of

connectivity equal to 7.41,21.09, and 39.96 MCPN.

At higher levels of connectivity, the networks with neighbourhood

connectivity begin to exhibit signs of a lower rate of increase than their

randomly connected counterparts. This is evident from the line representing a

level of connectivity of 63 MCPN which, in the case of the graph for

networks with neighbourhood connectivity, rises more slowly than that for

network that are randomly connected.

130

0
0.00 0.05 010 0.15 0.20 0.25'

Random Data - Neighbourhood Connectivity
400-1

350

300

250
3

200
ö
E
E
ý

150
z

100

so

0
0.00 0 05 0.10 0.15 0.20 0.25

Loading (PIN)

-*-141 MCPN i-21.09 MCPN -1-3996 MCPN -*-63 MCPN --01-8925 MCPN

Figure 8.9: Failed neuron count against increasing pattern load for networks constructed with
neighbourhood connectivity at levels of 7.41,21.09,39.96,63, and 89.25 mean connections
per neuron and trained using random (b=0.8) data.

Finally, due to the fact that randomly connected networks consistently manage

a higher point of first failure, the line representing the highest level of

connectivity (89.25 MCPN), is incomplete in the case of figure 8.8. On

previous evidence however, it would not be unreasonable to expect a similar

rise in neuron failure as was seen at lower levels of connectivity.

131

The following 2 graphs show the neuron failure count against increasing

pattern load when attempting to learn character data. The first graph

represents networks with random connectivity whereas the second graph

shows results for networks in which the connectivity forms local

neighbourhoods.

Character Data - Random Connectivity
4001

350

Loading (PIN)

-0-7 41 MCPN t21 09 MCPN -e-39 96 MCPN --w-63 MCPN -41-89 25 MCPN

300

C

250

200

ö7ý

E 1ßQ
E
I
2

ba

u

Figure 8.10: Failed neuron count against increasing pattern load for networks constructed

with random connectivity at levels of 7.41,21.09,39.96,63, and 89.25 mean connections per

neuron and trained using character data.

There is a clear difference in appearance between figures 8.10 and 8.11. For

networks with random connectivity, at the lowest level of connectivity (7.41

MCPN) the rate of increase in the number of failed neurons is initially steep

but becomes more shallow beyond a loading of approximately 0.05 (20

patterns). By contrast, the equivalent line for networks with neighbourhood

connectivity slopes much more gently and rises roughly linearly with pattern

load.

A more stark difference between the 2 types of connectivity can be seen for

higher levels of connectivity. The rate of increase in neuron failure count at a

level of connectivity of 21.09 MCPN is vastly lower for the locally connected

network than for the randomly connected one. A further fall in the rate of

increase is seen when moving to neighbourhood connectivity at a level of

39.96 mean connections per neuron. The comparison with the equivalent

132

04-
0.00 0.05 010 0.15 0.20 0.25

level of random connectivity again shows a large difference in favour of

neighbourhood connectivity.

Character Data - Neighbourhood Connectivity

Loading (PM)

-e~-7.14 MCPN -B-21.09 MCPN -º-39.96 MCPN -44-63 MCPN -'-89 25 MCPN

400

350

300

250

200

Ö

8
150

z

100

5c

Figure 8.11: Failed neuron count against increasing pattern load for networks constructed
with neighbourhood connectivity at levels of 7.41,21.09,39.96,63, and 89.25 mean
connections per neuron and trained using character data.

The advantage in adding further local connectivity seems to be less when the

level is increased to either 63 or 89.25 MCPN. A level of connectivity of

39.96 MCPN using neighbourhood connectivity is enough to better, in terms

of neuron failure count, the higher levels of random connectivity.

As was noted earlier for networks learning geometric data, the networks

created with neighbourhood connectivity generally have a point of first failure

that occurs much sooner than for randomly connected networks. This does

not happen so much with networks learning character data. It can be seen

from figures 8.10 and 8.11 that the networks have their point of first failure in

roughly the same area.

133

0
0.00 0.05 0.10 0.15 0.20 0 25

8.7. Summary and Conclusions

This chapter has reported the results of several performance metrics: capacity,

training time, storage efficiency, attractor performance, and neuron failure rate.

An evaluation was made for each metric as to the way in which the networks'

performance was affected by both the type of data being learnt and the pattern of

connectivity in the network.

Capacity

It was seen that the capacity of the networks tested was usually higher when
learning random data rather than locally correlated data and this was the case

regardless of the pattern of connectivity. In the case of neighbourhood

connectivity this result was anticipated due to the likely early failure of corner and

edge neurons. The fact that it was also the case for random connectivity is

unexpected. It might be assumed that the random connectivity would prevent

any local correlation within the patterns having any effect on the network. It was

observed however, during the analysis of the training data (c. f. §7.4.3), that some
bits in the training data had a higher than average level of activity when examined

across the whole training set. It is possible that this could account for the
difference in capacity between random and locally correlated data with random

connectivity.

There are occasional instances of geometric data resulting in higher capacity than

unbiased random data. These are at neighbourhood sizes of 3 and above. It is

possible that the reduced contribution made to local correlation by bits at such
distances (c. f. §7.4.2.3) could be enough to make the resulting input patterns

appear quite random to individual neurons. This would have the effect of
levelling the playing field somewhat between the geometric and unbiased random
data, especially given that both datasets have the same overall level of bias.

It was mentioned earlier (c. f. 8.6) that capacity does not fully represent the storage

capability of locally connected networks due to the reduced edge and corner

connectivity. Therefore, these results, while of interest, are not of major
importance in evaluating the performance of such networks.

134

Training Time

Combined with the capacity analysis was the measuring of network training time.

For the networks learning either geometric or unbiased random data it was seen

that training time was always shorter for random data.

When comparing training times between connectivity topologies it is seen that

training time is often shorter for random connectivity but is occasional better for

neighbourhood connectivity even when training using unbiased random data.

The networks learning character or biased random data usually exhibit shorter

training times for random data regardless of the connection topology. Training

time was shorter for character data in only one instance of neighbourhood

connectivity - 39.96 MCPN (d=3).

Comparing between connectivity topologies for these two types of data it was

seen that random connectivity clearly aided the learning of random data.

Correspondingly, local neighbourhood connectivity resulted in shorter training

times when character data was being learnt.

Storage Efficiency

The results for measuring storage efficiency clearly indicate that the storage

efficiency rises with the mean number of connections per neuron for networks

with random connectivity. As the connections are evenly distributed throughout

the network this is not surprising.

The notional theoretical maximum capacity for networks of this type is equal to

twice the input dimensionality of the neurons in the network. This would be

equal to a storage efficiency value of 2. As the theoretical maximum capacity is

true only for networks of infinite size it makes sense that the storage efficiency of

the randomly connected networks used in this work gets closer to the theoretical

maximum as the MCPN rises.

For networks with local connectivity the situation is not so clear. The relatively

poor storage efficiency can be linked directly to the seemingly poor capacity. The

early failure of some neurons is again affecting the performance of locally

correlated networks.

135

Attractor Performance

The attractor performance of the networks investigated was almost universally

higher for random data than for locally correlated data of either type. Equally,

random connectivity appeared to provide better attractor performance than local

neighbourhood connectivity regardless of the type of data being learnt.

It would therefore seem, at first glance, obvious to view the reduced attractor

performance of the locally connected networks as a failure. It is crucial to realise

however that two topologies being employed cause individual neurons to see very

different types of data. In the randomly connected network the patterns should

be regularly spaced in their reduced dimensionality state spaces. In the case of the

locally connected systems, the patterns are highly correlated and will be close to

one another in the state space. This is likely to have a large impact on the

attractor basin size as it directly affects the number of bits one can change in any

given pattern before ending up closer to some other pattern.

This is a possible explanation for the greater attractor performance of random data

on locally connected networks. The local correlation present in the

geometric/character data that causes the similarities when applied to locally

connected architectures simply is not present in the random data. The local

correlation, while helping to improve the capacity of the neurons as per the

theory of Lopez and Schroder (1995), is likely to be detrimentally affecting the

generalisation performance of each neuron.

Neuron Failure Count

The concept of useful capacity was introduced earlier (c. f. §8.4.2) in order to

provide a measure of capacity that took into account the likely early failure of

edge and corner neurons. The rate at which the number of neurons which fail to

train rises as pattern load increases provides us with this measure.

This result is the critical point to be made from this chapter. The graphs of

neuron failure clearly showed that, for random connectivity, once a level of
loading had been reach at which at least one neuron failed to train, the number of
failed neurons at subsequent loadings rose very quickly. This was true for both

random and locally correlated data. Random data also fared badly on local

neighbourhood connectivity.

136

The key result appears when locally correlated data is trained on networks with
local connectivity. For small neighbourhoods (d=1 and d=2) the rate of increase

in neuron failure is quite high. However, when locally correlated data is trained

on networks with local connectivity, a dramatic change in the rate at which

neurons fail to train occurs. At a neighbourhood size greater than d=2, a very

slow rate of increase in failed neurons is observed. The implications of this are as

follows: for networks with neighbourhoods of d=3 and a loading of =0.2500,

100 patterns are being stored by most neurons with only around 40 inputs to each

neuron. This loading is in excess of the 2N notional maximum capacity even in

the small networks examined as part of this work.

In conclusion, the really significant result in this chapter is the difference in useful

capacity between networks with random connectivity and those that are locally

connected when learning patterns that exhibit both intra- and inter-pattern local

correlation. This strongly suggests that it is possible to tailor connectivity to a

particular type of data and particularly for image data, which is likely to possess

considerable local correlation as a consequence of the spatial and temporal

continuity of nature, local connectivity seems especially useful.

The investigation of the way in which networks with small numbers of failed

neurons might be compensated for such failure is the subject of the following

chapter.

137

9. INCREASING PERFORMANCE THROUGH INCREASING
CONNECTIVITY

9.1. Introduction

The previous chapter successfully demonstrated a particular advantage to using local

connectivity in networks to be used to learn patterns possessing local correlation.

The results showed that, for networks with local connectivity, the rise in the

number of failed neurons present at increasing levels of pattern load was slower than

was the case for networks with identical levels of random connectivity although the

point of first failure occurred sooner.

Two points need to be made regarding neuron failure:

a) The point of first failure is not as important as might be initially thought

because of the relatively small input dimensionality to each neuron
introduced by the sparse connectivity. This is particularly evident at the

edges and corners of the network. The point of first failure only becomes

relevant if its location is consistent over a very large number of training sets.

b) The rate at which the number of neurons that fail at each pattern load

increases with respect to the rising pattern load is important because this value
is considered over a large number of network sites.

The failed neuron count and pattern load can be used together to develop the

concept of useful capacity (c. f. §8.4.2). The useful capacity is high when a large

number of patterns can be stored with few neuron failures occurring as the failed

neurons can likely be corrected at relatively low cost in terms of extra connectivity.

As some neurons do fail to train this chapter is concerned with the investigation of

a technique by which it might be possible to compensate for this failure.

The results in the previous chapter showed that the greatest fall in the rate of

neuron failure count occurred when using neighbourhood connectivity between

networks with d=1 and d=2, and between those with d=2 and d=3, when learning

the geometric data. The same was true of character data but the fall was less

marked between d=2 and d=3 than it was for the geometric data. Despite the large

number of failed neurons at the lower levels of connectivity it remains a possibility

that even after correcting the failed neurons the overall level of connectivity might
still be extremely low.

138

9.2. Structure of the Investigation

This investigation is presented in two stages. Stage one involves the stabilisation of

training patterns in networks where a number of neurons have failed to train. Stage

two examines the way in which attractor performance changes with respect to

increasing levels of connectivity beyond that required to simply stabilise the

patterns.

The core of the investigation involves a modified version of the Symmetric Local

Learning rule used in earlier work. Training occurs in phases: the first phase trains

the network using the existing connectivity. The neurons that fail to learn their

input patterns are recorded and passed to the second phase.

The second training phase takes the list of failed neurons and adds a new

connection between each of them and some other neuron chosen at random to

which a connection does not already exist. The symmetry of connections is

maintained for the sake of the network dynamics. Having added an extra

connection to each of the failed neurons the network undergoes a new training

phase with all weights re-initialised.

The two phases are repeated until the training phase reports that all neurons are

correctly classifying their input patterns. Upon successful training, the attractor

performance is measured using the modified Kanter & Sompolinsky measure
described in chapter 4. As the training patterns have only just been stabilised it is

expected that the attractor performance will be very low. It is not the attractor

performance that is of primary interest however; the key measure is the quantity of

extra connectivity required in order to stabilise the training patterns.

The second stage of the investigation covered by this chapter looks at the effect of
further, additional connectivity on attractor performance. Having established a

pattern of connectivity suitable for stabilising the training patterns, additional

random connectivity is added. At regular intervals, the network is retrained and the

attractor performance measured. As the initial level of local connectivity can be

established using relatively few connections it is hoped that, at similar levels of

connectivity, the networks where connections have initially been created locally

and where further connectivity has then been added will outperform those where

the connectivity is totally random.

139

9.3. Stabilising Training Patterns in Networks with Failed Neurons

In the previous chapter it was shown that training networks with sparse local

connectivity and a high loading of correlated data resulted in a much lower failed

neuron count when compared with networks with random connectivity or those

being trained with random patterns. The question to be answered by the first stage

of the investigation presented in this chapter is how much extra connectivity is

required to permit the neurons that failed previously to now correctly classify the

set of input patterns presented to them?

The networks used were again 400 neurons in size, arranged on a 20-by-20 grid.

The training patterns used are the geometric and character data introduced in

chapter 8. Connectivity is initially established as a square neighbourhood around

each neuron at distances ranging from 1 to 5.

Several results are presented:

a) The mean number of connections per neuron (MCPN) after stabilisation.

This result indicates how much random connectivity was required to be

added to the network in order to allow the failed neurons to classify their

input patterns correctly.

b) The post-stabilisation storage efficiency of the network. This result shows the

storage efficiency of the network taking into account the extra connectivity

that was added to correct the failed neurons.

c) The post-stabilisation attractor performance of the network. Using the

modified Kanter and Sompolinsky measure described in chapter 4, this result

shows the attractor performance of the network once the failed neurons have

been corrected.

d) The number of training phases required to stabilise the training patterns. As

the correction of failed neurons takes place in phases as described in the

previous section, the number of these phases that were necessary is reported.

The values used at each of the pattern loading and neighbourhood sizes is the mean

of five simulation runs using a different set of training data in each instance.

140

9.3.1. Geometric Data
100 --------- - ------------------

W. -

70-
1. ý MM

60 ------- . _.... _ - _-. __-___...

50-
M

40

2E 30

20

0
000 005 010 015 020 0.25

Leading (P-N)

ß-d=1 -+-d=2 ßd"3 --. --d=4 -. -d-i

Figure 9.1: Mean number of connections per neuron after stabilisation of failed neurons for

geometric data pattern loads of 0.0125 to 0.2500 learnt by networks with initial neighbourhood
connectivity established at distances 1 to 5.

Figure 9.1 shows the mean number of connections per neuron at the point at

which all failed neurons have been stabilised. Geometric data pattern loads of

0.0125 to 0.2500 (5 to 100 patterns) were used on networks in which

neighbourhood connectivity was initially established at sizes from 1 to S.

The graph shows that only networks with neighbourhoods of size d=1 and d=2

required more than a trivial amount of extra connectivity to stabilise the failed

neurons. At d=1, the networks required more than a doubling in connectivity

by the time the loading had reached 0.2500 (100 patterns). At d=2, the increase

required is not so great being only approximately 25%.

The amount of connectivity required to stabilise 100 patterns in the d=1

networks is approximately equal to the level of pre-stabilisation connectivity in

networks with neighbourhoods at d=2.

It is apparent, therefore, that the networks with the lowest level of initial

connectivity, despite requiring a large amount of extra connectivity in order to

stabilise failed neurons, require less overall connectivity to make their training

sets stable. This occurs because the extra connectivity is targeted specifically at

those neurons that have failed and this will result in a non-uniform distribution

of connections throughout the network.

141

5.0

4.5 -

4.0

3.5

Z 30
o:

ü
EK
d

2.0

10

OS -

0.0
n nn nrg

Loading (PM)

tdi -. -d=2 A d=3 -«-d=4 -. -d5

Figure 9.2: Post-stabilisation storage efficiency for geometric data pattern loads of 0.0125 to
0.2500 using networks with initial neighbourhood connectivity established at distances 1 to 5.

Figure 9.2 shows the storage efficiency of each network calculated as the ratio of

the number of successfully stored patterns to the mean number of connections

per neuron. Each value represents a network created with a level of initial

neighbourhood connectivity ranging from d=1 to d=5 and trained using a

pattern load of between 0.0125 and 0.2500 (5 and 100 patterns).

The most efficient networks at any of the tested pattern loads were those created

with neighbourhood connectivity at d=1. Networks with subsequent

neighbourhood sizes become progressively less efficient as the level of

connectivity increases.

It is interesting to note that, despite the large amount of extra connectivity

required for the networks with the smallest neighbourhoods, the final level of

connectivity permits these networks to be the most efficient.

In every case, the efficiency rises as the pattern load increases. The rise in the

efficiency of networks with neighbourhood connectivity at d=1 however,

appears to slow significantly at around a loading of 0.1125 (45 patterns) and gives

the appearance of beginning to level off.

142

0.12 -1 -- ------- -- --- -- -----

0.1

o. c

60i

rO

0. (

0.1

0.00 +-
0.00

Loading (P N)

-+- d=1 --@--d=2 -+- d=3 --M- d=4 --"- d=5

Figure 9.3: Post-stabilisation attractor performance for geometric data pattern loads of 0.0125 to
0.2500 using networks with initial neighbourhood connectivity established at distances 1 to 5.

Figure 9.3 shows the attractor performance of the networks measured after all

neurons that initially failed have been corrected. The fact that the attractor

performance is at a very similar non-zero level for a significant number of the

values obtained could be indicative of either random successes or rounding error

in the calculation of the measure. This phenomenon was also seen in the

investigation of sparsely connected networks (c. f chapter 8) where the attractor

performance measured also fell to a non-zero value below which it would fall no

further. The ability of a network to correct a single corrupt bit in a single stored

pattern is sufficient to produce a non-zero value using the Kanter and

Sompolinsky (1987) measure. As each value in the figure 9.3 is itself the mean

of five simulation runs and the connectivity is somewhat tailored to the training

data it is unlikely that a true zero value will occur at the pattern loading levels

being used.

Attractor performance above the minimum level exists only for the highest

neighbourhood sizes of d=4 and d=5, and the lowest pattern loads of 0.0125 and
0.0250 (5 and 10 patterns). As the networks have only just reached a point

where all the training patterns are stable, poor attractor performance is

unsurprising.

143

30, ---- ------ - --- - ----

25 1

20
se 1s
ä

t
15

Z

10

5ý

0
0.00 0.05 0.10 0.15 0.20 0.25

Loading JP: N)

t tit -a- d=2 -e- d=3 --.. - d=4 -. - d=5

Figure 9.4: Mean number of training phases for geometric data pattern loads of 0.0125 to
0.2500 using networks with initial neighbourhood connectivity established at distances 1 to 5.

Figure 9.4 shows that whilst it is evident that there is a great deal of variability

in the results despite the averaging; plotting the number of training phases results
in an increase in the number of training phases required as the pattern loading

increases.

The lowest number of phases occurs when the pattern load is low and the initial

neighbourhood connectivity is high (d=5). The greatest number of phases is

required at the opposite end of the scale where the pattern load is at its highest

and the neighbourhood size is low (d=1).

The number of training phases required to stabilise the training patterns is

dependant therefore, on both the pattern load and the distance at which the
initial neighbourhood connectivity is established.

144

9.3.2. Character Data

100

90. -- -

eo ----- -- --

7o

60.
i s

e 50 ----

30

20 -

0
000 005 010 0.15 020 025

Loading (P H)

-°- d=1 -+- d-2 -+- d3 --. - d=4 -°- d=5

Figure 9.5: Mean number of connections per neuron after stabilisation of failed neurons for

character data pattern loads of 0.0125 to 0.2500 learnt by networks with initial neighbourhood
connectivity established at distances I to S.

Figure 9.5 shows the mean number of connections per neuron at the point at

which all failed neurons have been stabilised. Character data pattern loads of

0.0125 to 0.2500 were used on networks in which neighbourhood connectivity

was initially established at sizes from 1 to 5.

The results for character data are very similar to those shown earlier (c. f. figure

9.1) for geometric data.

Only networks with initial neighbourhood connectivity at d=1 and d=2 require

a significant amount of extra connectivity in order to stabilise the failed neurons.

Again, the post-compensation level of connectivity for d=1 at a=0.2500 (100

patterns) is very close to the pre-compensation connectivity for networks with
d=2.

145

- -' - 5.0 -

" -' -'

4.0

3.5 ---
z
UU

N
rr

1.0 - --- -----

0.5

0.0
0.00 0.05 0.10 0.15 0.20 0.25

Loading (VN)

-. - d=1 -+- d=2 -a- d=3 -o- d=4 -. - d=5

Figure 9.6: Post-stabilisation storage efficiency for character data pattern loads of 0.0125 to
0.2500 using networks with initial neighbourhood connectivity established at distances I to S.

Figure 9.6 shows the storage efficiency of each network calculated as the ratio of

the number of successfully stored patterns to the mean number of connections

per neuron. Each value represents a network created with a level of initial

neighbourhood connectivity ranging from d=1 to d=5 and trained using a

pattern load of between 0.0125 (5 patterns) and 0.2500 (100 patterns).

The most storage efficient network at any of the tested levels of pattern loading

were those in which the initial level of neighbourhood connectivity was at a

minimum (d=1). As was seen to be the case when training with pattern sets

based on the geometric data, the overall final level of connectivity in these

networks was below that of networks with larger initial neighbourhoods despite

the large proportion of extra connectivity required in order to stabilise the

training set.

As the level of local neighbourhood connectivity increases, the requirement for

extra connectivity falls (c. f figure 9.5) but the total level of connectivity is such

that the storage efficiency is always less than for those with neighbourhoods of
d=1.

146

0 45 --- ---- ------

0 40 ----- -------- - --- "'------------- ----------- -------- ---- --- --- -- ---------- ----- -------- -- ---- -- --

0.35 ---- -- ---

030

025

1

A.
0.20 - -- --''

E

015 --

010 --

005

000
000 005 0.10 015 0.20 0

Loading (P N)

-. -d=1 -. -d--2 -*-d=3 -d 4 --. -d-5

Figure 9.7: Post-stabilisation attractor performance for character data pattern loads of 0.0125 to
0.2500 using networks with initial neighbourhood connectivity established at distances 1 to 5.

Figure 9.7 shows the attractor performance of the networks measured after all

neurons that initially failed have been corrected. The levelling out of the

attractor performance to a consistent non-zero value was seen earlier for the

geometric data and can be attributed to the same causes.

The results for geometric data showed attractor performance above this

minimum level for only very low loadings and large neighbourhood sizes and

similar behaviour is evident for character data. Attractor performance above the

minimum level only occurs for networks with initial neighbourhood

connectivity at sizes d=3,4, and 5 and all easily discernable attractor performance

has vanished by a loading of 0.0500 (20 patterns) in the best case of d=5.

No attractor performance of any significance is present for networks with initial

neighbourhood connectivity at distances d=1 and d=2. This was also the case
for networks learning geometric data.

Where the attractor performance is non-negligible it is consistently higher for

the character data than for the geometric data at equivalent pattern loads and

neighbourhood size.

147

60

so

40

i
a

30
$

a

20

10

0-
0.00 006 0.10 015 020

Loading (P`N)

t tk1 -+- d=2 -e- d=3 -.. - d=4 -. - d=5

Figure 9.8: Mean training phase count for character data pattern loads of 0.0125 to 0.2500 using
networks with initial neighbourhood connectivity established at distances 1 to 5.

Figure 9.8 shows the mean training phase count for five simulation runs at each

combination of pattern load and neighbourhood size.

In examining figure 9.8 it should be borne in mind that the phase count range
has doubled from that which was used for the geometric data earlier (c. f. figure

9.4). Using geometric data the number of phases required ranged from 0 to 30.

For character data this range increases and is now between 0 and 60.

The feature of figure 9.8 that is of most interest is the similarity it bears to figure

9.4 which represents the same information for geometric training data. Given

that the number of phases axis represents twice the range as in figure 9.4 the

implication is that at equivalent loadings and neighbourhood sizes the number of

training phases required is approximately double that required for geometric

data.

025

148

9.4. Improving Attractor Performance with Further Connectivity

The previous set of experiments was designed to investigate the amount of extra

connectivity required to stabilise any neurons that might have failed when

connectivity was initially established following a strict neighbourhood strategy.

The second stage of this investigation examined how the attractor performance

improved when, after having added connectivity into the network to compensate
for the failed neurons, further connectivity was introduced.

It was hoped that by initially establishing the connectivity using the neighbourhood

strategy, an improvement in attractor performance would be seen over those

networks where the same level of connectivity was established purely randomly.

The networks used were 400 neurons in size, arranged as if on a 20-by-20 grid.

The training patterns used were derived from the geometric and character data

introduced in chapter 8. Connectivity was initially established as a square

neighbourhood around each neuron at distances ranging from 1 to 5. The

networks were then trained using the Symmetric Local Learning rule and any failed

neurons compensated with extra connectivity as per the previous experiment.

Once a stable network was obtained, more random connectivity was gradually

added to it. At particular levels of connectivity, the network was retrained and the

attractor performance measured at that point. The levels at which attractor

performance should be re-measured was set to be 5% connectivity intervals. The

new connectivity was added symmetrically to maintain simple update dynamics.

The justification for adding this extra connectivity is as follows. It is likely that,

with the exception of neurons that have been compensated with extra connectivity,

the neurons will be seeing input patterns which look very similar. It is in fact

possible that a neuron, as a perceptron, might be being required to classifying a set

of input patterns that fall into only a single class, i. e. all the patterns have the same

output. If either of these situation is the case, the generalisation performance of the

neurons could be very poor and will result in the network displaying

correspondingly poor attractor performance.

It was seen in previous work (c. £ §8.6.3) that random connectivity resulted in

either greater attractor performance or that the attractor performance decreased

more slowly with rising pattern load than was the case with neighbourhood

149

connectivity. This further supports the idea that some random connectivity might
be essential for reasonable attractor performance.

Graphs of the results of networks trained at loadings of a=0.0125,0.1250, and

0.2500 are presented. These loadings correspond to 5,50, and 100 patterns

respectively. Values for all loadings tested may be found in appendix E. The values

in the tables and those plotted here are taken as the mean of 5 network simulations.

Results for networks with neighbourhood sizes d=1 to d=5 are shown.

Additionally, the results for networks with purely random connectivity are shown

for comparison, these have been denoted d=0.

9.4.1. Geometric Data

1 00 i an at
-

as a. 4 as

0.90

080

0.70

E
0 60

IL 0.50

0.40

0.90

0 20

0.10

000
000 0.10 020 030 0.40 050 0.60 0.70 0.80 0.90

Connectivity

--d0 -a-d"1 -+-d"2 --+-d"3 -W-d-4 -*-d"5

Figure 9.9: The attractor performance of networks initially connected using the local
neighbourhood strategy and with further symmetric connectivity added at random. Training
patterns were from the geometric data set. Attractor performance is shown at 5% connectivity
intervals. The dashed vertical lines represent the level of neighbourhood connectivity before
either compensatory or additional random connectivity was added. The loading on the network
is a=0.0125 (5 patterns).

Figure 9.9 shows the effect of additional random symmetric connectivity on the

attractor performance of networks in which connectivity was initially established

using a local neighbourhood strategy. The loading on the network is a=0.0125
(5 pattems).

The clearest point to be made from figure 9.9 is that none of the networks,
regardless of the level of initial local connectivity, were able achieve a level of
attractor performance in excess of RzO. 80. It is very likely that with this level of

150

loading, this is the maximum attainable attractor performance. The lowest level

of connectivity at which this level of attractor performance was reached was for

networks in which the connectivity was established wholly at random, d=0.

The level of connectivity required was 0.15.

Networks with the smallest neighbourhoods (d=1) achieve almost the same level

of attractor performance at the same loading. The level of connectivity initially

established using the local neighbourhood strategy is only 0.01 however. The

quantity of extra random connectivity added in order to obtain near-maximum

attractor performance will have dwarfed that which is part of the local

neighbourhoods. It is highly probable that this network is almost

indistinguishable from it's totally randomly connected counterpart in terms of

the pattern of connections.

The requirement for large amounts of random connectivity in order to achieve
high attractor performance exists for networks of all the neighbourhood sizes

examined.

An interesting, though easily explained, point should be made regarding

networks with initial neighbourhoods of d=4 and d=5. The proximity of the

corresponding dashed vertical lines, representing the initial connectivity levels, to

the first plotted value for those networks would seem to indicate that little extra

random connectivity was required in order to obtain some non-trivial attractor

performance. This is somewhat misleading; the local neighbourhoods for these

networks are larger than the range at which significant local correlations exist in

the training data (c. f chapter 7). This means the individual neurons may see
input patterns that incorporate some non-correlated portions of the training data.

This is not dissimilar to having a network with smaller local neighbourhoods in

which some random compensation has taken place to correct failed neurons. In

short, the networks with neighbourhoods of size d=4 and d=5 already possess a
degree of effectively random connectivity even though no compensatory

connectivity has been required to stabilise the training patterns.

151

1.001 a1 d. 2 113 e14 as

0.90

0.80

0.70

060

L050
ö

0 40

0.30

020

0.10

000 -
0.00 0.10 020 030 040 0.50 0.60 070 080 0.90

Conmetlvky

td=0 -- -d-1 td-2 -+-d. 3 -iI-d-4 -*-d"5

Figure 9.10: The attractor performance of networks initially connected using the local

neighbourhood strategy and with further symmetric connectivity added at random. Training

patterns were from the geometric data set. Attractor performance is shown at 5% connectivity
intervals. The dashed vertical lines represent the level of neighbourhood connectivity before

either compensatory or additional random connectivity was added. The loading on the network
is =0.1250 (50 patterns).

Figure 9.10 is as 9.9 (previous page) but represents networks with a loading of

a=0.1250 (50 patterns).

As different as the plots for networks with a loading of a=0.0125 were, the most

obvious feature of figure 9.10 is the similarity shown between networks with

some degree of initial neighbourhood connectivity. If the same is true at this
loading as at the previous then it can be assumed that the d=0 network indicated

the maximum attractor performance attainable. If this is indeed the case, it can
be seen that none of the locally connected networks achieve the maximum

attractor performance until they are very nearly fully connected. By contrast,

the randomly connected network, d=0, reaches a value close to its maximum at

a level of connectivity of 0.55.

It would seem that, despite the large amount of random connectivity being

introduced to the networks, the effect of the local connectivity may be to fix

some of the individual input patterns to the neurons in a small area of the pattern

space. These input patterns can therefore not help but be closer together than

would be the case if all the input sources are chosen at random. The closer

proximity of the input patterns detrimentally affects the generalisation

152

performance of each neuron and this affects the attractor performance of the

network as a whole.

100 °'4 ax r 1" r

090

0 80

0 70 -

060

050

040-

0.30

0.20

0.10 --

0.00 a- --+ý*-_ -ý
0.00 0.10 0.20 030 040 050 060 0.70 0 80 0.90

Connectivity

td-0 -d"1 -4-dß -*a. 3 --"-d-4 -W-d-5

Figure 9.11: The attractor performance of networks initially connected using the local

neighbourhood strategy and with further symmetric connectivity added at random. Training

patterns were from the geometric data set. Attractor performance is shown at 5% connectivity
intervals. The dashed vertical lines represent the level of neighbourhood connectivity before

either compensatory or additional random connectivity was added. The loading on the network
is "=0.2500 (100 patterns).

Figure 9.11 is as 9.10 (previous page) but represents networks with a loading of

a=0.2500 (100 patterns).

It can be seen from the above figure that very little exists to differentiate

between the performances of the networks with partial local connectivity.

There is, however, a range of connectivity where all of the partially locally

connected networks outperform the random connected ones. Between levels of

connectivity of 0.35 and 0.55 the line representing randomly connected

networks is below those of the locally connected networks. As the level of

random connectivity increases, there becomes less to disambiguate between the

pattern of connectivity in each of the networks and the performance of the

randomly connected networks actually rises above that of the others.

153

9.4.2. Character Data

100 ,
an a: d-3 ar as

090

0.80

070
8

060

0 goso

S
ro 0 40

0.30

0.20

0.10

-*-d-0 --t-d-1 --*-d. 2 -*--d-3 -*-d-4 --*-d-3

Figure 9.12: The attractor performance of networks initially connected using the local

neighbourhood strategy and with further symmetric connectivity added at random. Training

patterns were from the character data set. Attractor performance is shown at 5% connectivity
intervals. The dashed vertical lines represent the level of neighbourhood connectivity before

either compensatory or additional random connectivity was added. The loading on the network
is a=0.0125 (5 patterns).

Figure 9.12 shows the effect of additional random symmetric connectivity on

the attractor performance of networks in which connectivity was initially

established using a local neighbourhood strategy. The loading on the network is

a=0.0125 (5 patterns). The training patterns used were those derived from the

character data set.

Comparing figure 9.12 with the corresponding graph for geometric data (figure

9.9) it can be seen that the similarity between the lines plotted is much greater

than was the case for geometric data. The likely cause of this is the increased

level of global correlation in the data compared with that present in the

geometric data. The increased global correlation may be mitigating the impact

of having a neighbourhood size larger than the range at which local correlation

is greatest. The increased global correlation will only have an effect for medium

range connectivity however. It was seen when analysing the training data (c. f

chapter 7) that neighbourhood sizes greater than d=3 for character data would

begin to introduce local correlation at a level below that of global correlation.

This is the probable reason that the lines representing initial neighbourhood

connectivity at d=4 and d=5 stand apart from the others.

154

0.00
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0 70 0 80 090

Conn. ctMty

It is interesting to note that at the lowest level of connectivity for which the

attractor performance was measured, the value for the attractor performance is

greater than that of the networks learning geometric data. It is likely that this is

due to the overall level of bias of the training data which, once the level of

random connectivity is sufficiently high, will be close to that of the reduced

dimensionality input patterns to each neuron. It is known from Gardner (1988)

that patterns with higher bias should result in greater attractor performance.

This was shown to be the case in the experimental results of Davey and Hunt

(2000).

00 i
1, ax as sr as

0.90

080

0.70

060
0 g 0.50
ö
>s 0 40

0.30

0 20

0.10

0.00 -
0.00 0.10 0.20 0.30 0.10 050 0 60 0.70 0 80 0.90

Connectivity

-0-d"0 *-d. 1 -ß-dß -+-d"3 -W-d-4 -f--d-5

Figure 9.13: The attractor performance of networks initially connected using the local
neighbourhood strategy and with further symmetric connectivity added at random. Training
patterns were from the character data set. Attractor performance is shown at 5% connectivity
intervals. The dashed vertical lines represent the level of neighbourhood connectivity before
either compensatory or additional random connectivity was added. The loading on the network
is =0.1250 (50 patterns).

Figure 9.13 demonstrates the same effect as was seen for higher loadings of

geometric data. The networks exhibit much the same performance regardless of

the initial level of neighbourhood connectivity. The combination of

compensatory and extra random connectivity is, in all probability, again masking

the initial local connectivity.

The point at which the networks begin to exhibit non-trivial attractor

performance is, in all cases barring d=0, between connectivity levels of 0.20 and
0.30. The maximum attractor performance achieved by any network is

approximately R=0.34 when using purely random connectivity.

155

Crucially, it can now be seen that a benefit in attractor performance is obtained
by establishing the initial level of connectivity using a local neighbourhood

strategy. While there appears to be no great benefit in extending the local

neighbourhood beyond d=1, having some local connectivity does provide better

attractor performance than is produced from purely random connectivity.

It is probable that the benefit of local connectivity was not apparent at the lower

loading of a=0.0125 (5 patterns) because the small number of patterns was easily

learnt regardless of the connectivity topology.

0.90

0 80

0 70

E
060

ä

0.50

0.40

0.30

0 20

010

000
0.00 0.10 0.20 030 0 40 050 060 0.70 0 80 090

Conn. ctvky

-+-d-0 -d1 --d"2 td. 3 -N--d 4 mit-d. 5

Figure 9.14: The attractor performance of networks initially connected using the local
neighbourhood strategy and with further symmetric connectivity added at random. Training
patterns were from the character data set. Attractor performance is shown at 5% connectivity
intervals. The dashed vertical lines represent the level of neighbourhood connectivity before
either compensatory or additional random connectivity was added. The loading on the network
is "=0.2500 (100 patterns).

Figure 9.14 is as the previous graphs but shows results for networks with a

pattern load of a=0.2500 (100 patterns). The poorer performance of randomly

connected networks is clearly shown with the line representing d=0 falling

below those representing networks with degrees of local connectivity. It is

interesting, though expected, that the attractor performance of the randomly

connected network rises to meet that of the partially locally connected networks

as the level of connectivity in all the networks approaches maximum.

156

1.00 ,
a1 st ea V ass

9.5. Summary and Conclusions

This chapter has presented the results of two sets of experimental work. The first

set of experiments was designed to examine the degree of compensatory

connectivity required by networks in which the initial connectivity was established

using a local neighbourhood strategy. The compensatory connectivity was used to

allow neurons which had failed to correctly classify their input patterns during an

earlier phase of training to now classify them correctly. Once the networks had

been compensated, they were analysed with respect to their storage efficiency and

attractor performance.

Regardless of the type of data being learnt, the greatest amount of compensatory

connectivity required was for networks with neighbourhoods of sizes d=1 and d=2.

At no point however was the amount of compensatory connectivity enough to

increase total connectivity above the level of pre-compensation connectivity in

networks with neighbourhoods of size d=3.

It is clear however, that for both geometric and character training patterns, the local

connectivity is permitting capacities well in excess of the notional maximum of 2N.

This is only the case though for networks with local neighbourhoods of sizes d=1,

d=2, and d=3. These are the ranges at which local correlation both within and
between the training patterns were shown to be greatest (c. f chapter 7). These

experimental results confirm the theoretical predictions of Lopez et al. (1995)

described in §5.2. It should, however, be noted that in the case of networks with

neighbourhoods of size d=1, this improvement in capacity comes at the expense of

a large amount of compensatory connectivity which is necessarily tailored to the
dataset being trained upon. This should not detract from the excellent capacities

also seen in the case of networks with neighbourhoods of sizes d=2 and d=3 where

the amount of compensatory connectivity required was negligible.

The attractor performance of the networks immediately post-stabilisation of the
failed neurons was as expected. At low loadings, where the networks with large

local neighbourhoods require no compensation, some non-trivial attractor

performance exists. For any reasonable pattern load however, the attractor

performance is, for all practical purposes, non-existent

The final set of results presented from the first phase of experiments showed the

number of compensation/training phases required for various pattern loads. As

157

would be expected, the most phases were required when neighbourhood

connectivity was at its minimum of d=1 and the loading was at its greatest,

a=0.2500 (100 patterns). Correspondingly, the fewest training phases were

required with large local neighbourhoods of d=5 and few training patterns,

a=0.0125 (5 patterns). This was again true for both types of training data,

geometric and character.

The second set of experiments was designed to investigate the way in which the

networks' attractor performance might be enhanced post-compensation by adding

additional random connectivity to each network. This was done in an attempt to

counter the poor attractor performance exhibited by the just-compensated

networks.

For either data type, a loading of a=0.0125 (5 patterns) does not appear to be

enough for local connectivity to provide any particular advantage in terms of

attractor performance. As the initial neighbourhood connectivity increases, the

attractor performance at any given level of connectivity decreases. The probable

cause of this is the proportion of random connectivity. For example, a network

with initial neighbourhood connectivity at d=1 has a pre-compensation level of

connectivity equal to approximately 0.02 of potential maximum connectivity. A

network with neighbourhoods of size d=3 has a pre-compensation level of

connectivity at around 0.1 of maximum. If the total connectivity after

compensatory and supplementary connections have been added is 0.15, it is clear

that random connectivity must form a greater proportion of that in the case of

network with neighbourhoods of size d=1. This further supports the idea the some

non-random connectivity may be important for good attractor performance.

Furthermore, at any particular level of connectivity, the attractor performance of

the networks learning character data appears to be higher than that of those learning

geometric data at a loading of a=0.0125 (5 patterns). This can be explained using
Gardner's (1988) hypothesis that biased patterns should lead to higher attractor

performance and is supported by the work of Davey and Hunt (2000) in which this
is experimentally shown to be the case.

At a pattern load of a=0.1250 (50 patterns), it becomes much harder to distinguish

between the performances of each of the locally connected networks. Apart from

the poorer maximum attractor performance in the case of networks trained on

158

character data, one clear difference exists between the two sets of networks. For

networks trained on geometric data, the attractor performance for networks with

purely random connectivity (d=0) is consistently higher than for those where some

of the connectivity has been established locally. For networks trained on character

data it can be seen that, between levels of connectivity of 0.35 and 0.65, the

attractor performance of the randomly connected networks is below that of any of

those with a degree of local neighbourhood connectivity.

At a loading of a=0.2500 (100 patterns), there is a difference in performance

between networks with only random connectivity and those with some

neighbourhood connectivity. For the character data, the neighbourhood

connectivity provides clearly superior attractor performance and the geometric data

shows a tangible but less clear advantage. The difference in the two datasets can be

attributed to the differing levels of bias in the data.

The experiments in this chapter have shown that there is a demonstrable benefit to

establishing some of the connectivity locally before compensating failed neurons as

per the scheme described in this chapter. It has been shown that, in the case of the

networks investigated in this work, only a small amount of local connectivity is

required in order for this benefit to be seen.

The performance improvement has only been shown to exist between particular

connectivity ranges and when the pattern loading is fairly high. The effect was

shown to be greater in the case of the character-based training data.

159

10. CONCLUSIONS

10.1. Introduction

The purpose of this final section is to draw attention to the conclusions that may be

inferred from this body of work. Practical implications of this work are also

discussed. Finally, suggestions for directions in which future, derived work might

be taken are given.

10.2. Summary of Achievements

Through performing this investigation I have produced a number of clearly

identifiable achievements. I have:

" Investigated variants of the Hopfield network with specific focus on

high performance learning rules.

In chapter 2, I presented a review of the field of Hopfield-type associative

memories. I demonstrated that alongside the standard Hopfield learning rule

based on Hebbian principles, a number of high performance learning rules exist

which provide higher capacity and stronger attractor performance. I classified

the resulting networks in accordance with the categories suggested by Abbott

(1990).

" Comparatively evaluated the learning rules presented in chapter 2.

Using a number of the performance metrics outlined in chapter 3, I carried out

a comparative evaluation of the learning rules presented in chapter 2. The

performance metrics were used to determine which of the rules might be most

suitable for use in later work. Based on the results of the performance metrics I

concluded that the most suitable rule was Gardner's Symmetric Local Learning

algorithm (1988).

I presented the results of this work at ICAANGA 2001 in Prague, Czech

Republic (Turvey, Hunt et al., 2001).

" Investigated existing measures and analysis tools and proposed a novel

network performance metric.

In chapter 3, I presented an introduction to a number of common performance

metrics suitable for the analysis of Hopfield-type associative memories. Two

modifications to an existing attractor performance measure, that of Kanter and

160

Sompolinksy (1987), were proposed to address inconsistencies in the calculation

of the original measure.

I proposed a new measure that provides a more intuitive evaluation of the

attractor performance of a network. The new measure permits a

comprehensive analysis of the size and shape of the attractor basins of a

network's stored patterns on an individual basis while maintaining the ability to

produce a comparable measure for a network as a whole.

" Produced a suite of investigative tools for the purpose of studying the

performance of associative memory architectures.

During the course of this investigation I developed an extensible neural

network simulator that permitted the easy addition of new learning rules and

analysis tools. The flexibility of the simulator's architecture makes it readily

adaptable to future avenues of research in this area.

" Investigated the intra- and inter-pattern correlation of a selection of

non-random training data.

In Chapter 7,1 presented the results of an investigation into the structural

nature of two sets of artificially generated non-random training data. I showed

that, in non-random training data, significant levels of local correlation existed

when measured both within and between training patterns. The variability in

local correlation between two different data sets was demonstrated.

Additionally, information was gathered as to the level of site activity present in

the training patterns; information that might potentially be useful in further

research.

161

" Empirically evaluated post-training dilution techniques.

In chapter 6,1 examined the effect of post-training synaptic removal. The

diluted networks were extensively analysed with respect to several performance

metncs.

I evaluated two post-training removal techniques. The first removed

connections at random; the second used information about the values of the

weights on the connections to determine those that should be removed. I

termed this smallest-first dilution. The strategy providing the best performance

with respect to the performance metrics used was shown to be smallest-first.

The investigation of a non-random removal strategy in conjunction with high-

performance learning rules represents novel work and I presented the results of

this at RASC 2002 in Nottingham, UK (Turvey, Hunt et al., 2002).

" Empirically evaluated two techniques for establishing sparse

connectivity prior to training.

In chapter 8, I presented the evaluation of two strategies for establishing sparse

connectivity prior to training. The first of these strategies was simple random

connectivity; the second, a technique whereby individual neurons were

connected to others in their local neighbourhoods. This work was based on the

proposal of Garner (1988) who suggested that connectivity might be established

at ranges corresponding to those at which strong local correlation was observed
in the training patterns. The work of Lopez et al. (1995) gave further

indication as to specific benefits this approach might provide.

I demonstrated that particular benefits were possible when combining local

connectivity with locally correlated training patterns. This work forms the key

novel aspect of this thesis.

" Proposed, modelled, and evaluated a technique for establishing

structured connectivity.

Building on the work presented in chapter 8, in chapter 9I examined one

strategy by which the attractor performance of sparsely connected networks

might be further improved through the addition of further connectivity.

162

The performance results from networks with identical levels of connectivity

established with differing degrees of `localness' were compared. I demonstrated

that, under certain conditions, networks with a measure of local connectivity

exhibited better attractor performance than did those with only random

connectivity.

This crucial result corresponds with the hypothesis and justification of the

approach taken that was set out in chapter 5.

10.3. Practical Implications

While it was stated at the outset (c. f chapter 1) that biological plausibility was not a

primary goal of this work, it was suggested that, where practicable, obvious

implausibility might be avoided. For example, features of the final networks such as

symmetric connectivity, while biologically implausible, were introduced for

practical reasons. Sparse connectivity however, has been a key concern throughout

the investigation.

Sparse connectivity also has implications for the implementation of associative

memory neural networks in hardware. While it is acknowledged that a degree of

random connectivity has been added to the networks investigated in chapter 9, it

was shown that a quantity of the overall connectivity could be beneficially

established locally. Overall, sparsely connected networks should be easier to

implement in hardware than fully-connected ones due to the reduced physical

costs.

10.4. Future Work

While this investigation has not arrived at any definite heuristic for the construction

of structured, sparse connectivity, it has raised several interesting questions. To

conclude this thesis, some potential avenues for future work are:

Asymmetric connectivity: symmetric connectivity was chosen as a key

constraint based on it being one of Hopfield's three requirements for the existence
of point attractors (Hopfield, 1982) and a desire to kept the network update
dynamics as simple as possible. The biological implausibility of this requirement

and the fact that it is somewhat wasteful of the available connectivity suggests the

pursuit of mechanisms by which this constraint could be removed or relaxed might

163

be beneficial. Experimental work (Davey, 2003) has suggested that symmetric

connectivity might not be as imperative as has been previously thought.

Scalability - larger networks: one of the motivations behind this work was

stated to be a desire to make the creation of large networks (> 1,000,000 neurons) a

more practical proposition. To this end, the relatively small networks employed in

this work serve as a test bed and proof-of-concept for techniques that might be

useful in constructing larger networks. Crucially, the work carried out in this thesis

has demonstrated the success of connectivity strategies providing O(N) scaling with

respect to the network size rather than the 0(N2) scaling that is seen in fully-

connected networks.

Increasing the network size would significantly reduce the problems due to edge

effects. In a network 1000 neurons square, neighbourhood sizes that are small

when compared with the total size of the network will provide input patterns with

large dimensionality. This has the potential to reduce the possibility of introducing

the linear inseparabilities that occur when input dimensionalities are very small.

Perfect attractor, performance: as the size of implemented networks increases,

the impact of a single incorrect neuron on the resemblance of a recalled pattern to

the originally stored pattern becomes increasingly less. Throughout the work
described in this report the requirement has been for recalled patterns to exactly

match the corresponding stored memory. Permitting a number of failed neurons
has the potential to further increase recall ability of these networks and the manner
in which the attractor performance analysis tools might be modified to take this into

account may be worthy of investigation.

New compensation strategies: the technique for correcting failed neurons used
in the work presented in chapter 9 was an unsophisticated one. Further

investigation into techniques whereby the new incoming connections are chosen

with consideration given to the information they will provide may be possible.
The site activity analysis demonstrated in chapter 8 is one example of the type of
information that might be taken into account. Some work of this nature has been

investigated by Stiefvater et al. (1993).

164

Supplementary connectivity strategies: again, the strategy for adding

supplementary connectivity in an effort to improve attractor performance post-

compensation (c. f chapter 9) is a nave one. It may be possible to target additional

connectivity such that the information provided by each new pre-synaptic neuron

creates a maximally beneficial training set.

165

Abbot, L. F. (1990). "Learning in Neural Networks. " Network: Computation in
Neural Systems 1: 105-122.

Abbot, L. F. and T. B. Kepler (1989). "Optimal learning in neural network
memories. " Journal of Physics A: Mathematical and General 22: L711-L717.

Abbot, L. F. and T. B. Kepler (1989). "Universality in the space of interactions for

network models. " Journal of Physics A: Mathematical and General 22: 2031-2038.

Amit, D. J. (1989). Modeling Brain Function: The world of attractor neural networks.
Cambridge, Cambridge University Press.

Athithan, G. (1995). "A comparative study of two learning rules for associative
memory. " Pramana: Journal of Physics 45(6): 569-582.

Blatt, M. G. and E. G. Vergini (1991). "Neural Networks: A Local Learning
Prescription for Arbitrary Correlated Patterns. " Physical Review Letters 66(13): 1793-
1796.

Bouten, M. (1990). "Storage Capacity of Diluted Neural Networks. " lecture Notes in
Physics 368: 225-236.

Bouten, M., A. Engel, et al. (1990). "Quenched versus annealed dilution in neural
networks. " Journal of Physics A: Mathematical and General 23: 4643-4657.

Buckingham, J. and D. J. Willshaw (1993). "On setting unit thresholds in an
incompletely connected associative net. " Network: Computation in Neural Systems 4:
441-459.

Caelli., T., L. Guan, et al. (1999). "Modularity in Neural Compution. " Proceedings of
the IEEE 87(9): 1497-1518.

Canning, A. and E. Gardner (1988). "Partially connected models of neural networks. "
journal of Physics A: Mathematical and General 21: 3275-3284.

Changeux, J. P. and A. Danchin (1976). "Selective stabilization of developing synapses
as a mechanism for the specification of neural networks. " Nature 264: 705-712.

Chechik, G., I. Meilijson, et at (1998). "Synaptic Pruning in Development: A
Computational Account. " Neural Computation 10: 1759-1777.

Cover, T. M. (1965). "Geometrical and statistical properties of systems of linear
inequalities with applications in pattern recognition. " IEEE Transactions on
Electronic Computers EC-14: 326-334.

da Silva, C. R., F. A. Tamarit, et al. (1995). "Generalization in a diluted neural
network. " Journal of Physics A: Mathematical and General 28: 1593-1602.

Davey, N. (2003). "Sign-constrained high capacity associative memory models. "
Unpublished manuscript.

166

Davey, N. and S. P. Hunt (2000). A Comparative Analysis of High Performance
Associative Memory Models. Proceedings of the 2nd International ICSC Symposium

on Neural Computation (NC'2000).

Davey, N., S. P. Hunt, et al. (2002). "High Capacity Recurrent Associative Memories. "
Unpublished manuscript.

Derrida, B. (1989). "Distribution of the activities in a diluted neural network. " journal

of Physics A: Mathematical and General 22: 2069-2080.

Derrida, B., E. Gardner, et al. (1987). "An Exactly Solvable Asymmetric Neural
Network Model. " Europhysics Letters 4(2): 167-173.

Diederich, S. and M. Opper (1987). "Learning of Correlated Patterns in Spin-Glass
Networks by Local Learning Rules. " Physical Review Letters 58(9): 949-951.

Evans, M. R. (1989). "Random dilution in a neural network for biased patterns. "
journal of Physics A: Mathematical and General 22: 2103-2118.

Forrest, B. M. (1988). "Content-addressability and learning in neural networks. "
Tournal of Physics A: Mathematical and General 21: 245-255.

Gardner, E. (1988). "The space of interactions in neural network models. " Journal o
Physics A: Mathematical and General 21: 257-270.

Gardner, E., H. Gutfreund, et al. (1989). "The phase space of interactions in neural
networks with definite symmetry. " journal of Physics A: Mathematical and General
22: 1995-2008.

Gardner-Medwin, A. R. (1976). "The Recall of Events through the Learning of
Associations between their Parts. " Proceedings of the Royal Society of London.
Series B. Biological Sciences 194(1116): 375-402.

Greenfield, P. M. (1991). "Language, tools, and brain: The ontogeny and phylogeny of
hierarchically organized sequentional behaviour. " Behavioural and Brain Sciences 14:
531-595.

Gurney, K. (1997). An Introduction to Neural Networks. London, UCL Press.

Haykin, S. (1999). Neural networks: a comprehensive foundation. Upper Saddle
River, NJ, Prentice-Hall.

Hebb, D. O. (1949). The Organisation of Behaviour. New York, Wiley.

Hertz, J., A. Krogh, et al. (1991). Introduction to the Theory of Neural Comp t _at_ion. Redwood City, CA, Addison-Wesley Publishing Company.

Hinton, G. E. and T. J. Sejnowski (1983). Learning and relearning in Boltzmann
machines. Parallel Distributed Processing: Explorations in Micros nueture of
Co ition. D. E. Rumelhart and J. L. McClelland. Cambridge, MA, MIT Press.

167

Hopfield, J. J. (1982). "Neural networks and physical systems with emergent collective
computational abilities. " Proceedings of the National Academy of Sciences of the
United States of America - Biological Sciences 79: 2554-2558.

Hopfield, J. J. (1984). "Neurons with graded response have collective computational
properties like those of two-state neurons. " Proceedings of the National Academy of
Sciences of the United States of America - Biological Sciences 81: 3088-3092.

Jacobs, R. A. and M. I. Jordan (1992). "Computational Consequences of a Bias toward
Short Connections. " journal of Cognitive Neuroscience 4(4): 323-336.

Kanter, I. and H. Sompolinsky (1987). "Associative recall of memory without errors. "
Physical Review A 35(1): 380-392.

Karlholm, J. M. (1993). "Associative Memories with Short-Range, Higher Order
Couplings. " Neural Networks 6: 409-421.

Kepler, T. B. and L. F. Abbot (1988). "Domains of attraction in neural networks. "
journal of Physics: France 49: 1657-1662.

Kinzel, W. (1987). "Spin Glasses and Memory. " Physica Scripta 35: 398-401.

Kohonen, T. and M. Rouhonen (1973). "Representation of associated data by matrix
operators. " IEEE Transactions on Computers 22: 701.

Komoda, A., R. Serneels, et al. (1991). "Robustness against random dilution in
attractor neural networks. " Journal of Physics A: Mathematical and General 24: L743-
L749.

Kothari, R. and R. Lotlikar (1997). Effect of Pruning Small Weights in Correlation
Associative Memories. IEEE International Conference on Neural Networks, Texas,
USA.

Krauth, W. and M. Mezard (1987). "Learning algorithms with optimal stability in
neural networks. " Journal of Physics A: Mathematical and General 20: L745-L752.

Krebs, P. R. and W. K. Theumann (1999). "Categorization in the symmetrically dilute
Hopfield network. " Physical Review E: Statistical. Nonlinear. and Soft Matter Physics
60(4): 4580-4587.

Levy, N., D. Horn, et al. (1999). "Associative Memory in a Multi-modular Network. "
Neural Computation 11: 1717-1737.

Little, W. A. (1974). "The existence of persistent states in the brain. " Mathematical
Biosciences 19: 101-120.

Lopez, B., M. Schroder, et al. (1995). "Storage of correlated patterns in a perccptron. "
journal of Physics A: Mathematical and General 28: L447-L452.

168

Mallot, H. A. and W. von Seelen (1989). Why cortices? Neural networks for visual
information processing. Visuomotor Coordination: Amphibians. Comparisons.
Models and Robots. J. -P. Ewert and M. Arbib. New York, Plenum Press: 357-382.

Marr, D. (1971). "Simple memory: a theory for archicortex. " Philosophical
Transactions of The Royal Society. London 176: 23-81.

McCulloch, W. S. and W. Pitts (1943). "A logical calculus of the ideas immanent in

nervous activity. " Bulletin of Mathematical Biophysics 5: 115-133.

Morita, M. (1993). "Associative Memory with Nonmonotone Dynamics. " Neural
Networks 6: 115-126.

Muller, B. and J. Reinhardt (1991). Neural Networks: An Introduction. Berlin,
Springer-Verlag.

Müller, K. -R., T. Stiefvater, et al. (1993). Associative Storage and Retrieval of Highly
Correlated Natural Pattern Sets in Diluted Hopfield Networks. IEEE International
Conference on Neural Networks, San Francisco, USA.

O'Kane, D. and A. Treves (1992). "Short- and long-range connections in

autoassociative memory. " Journal of Physics A: Mathematical and General 25: 5055-
5069.

O'Leary, D. D. M. (1989). "Do cortical areas emerge from a protocortex? " Trends
Neurosciences 12: 400-406.

Personnaz, L., I. Guyon, et al. (1986). "Collective computational properties of neural
networks: New learning mechanisms. " Physical Review A: Atomic. Molecular and
Optical Physics 34(5): 4217-4228.

Plakhov, A. Y. and S. A. Semenov (1994). "Neural networks: iterative unlearning
algorithm converging to the projector rule matrix. " Journal de Physique France 4:
253-260.

Rosenblatt, F. (1958). "The Perceptron: A probabilistic model for information storage
and organization in the brain. " Psychological Review 65: 386-408.

Ruppin, E. (1995). "Neural Modelling of Psychiatric Disorders. " Network:
Computation in Neural Systems 6(4): 635-656.

Ruppin, E. and J. A. Reggia (1995). "Patterns of Functional Damage in Neural
Network Models of Associative Memory. " Neural Computation 7: 1105-1127.

Ruppin, E. and J. A. Reggia (1998). "Seeking order in disorder. computational studies
of neurologic and psychiatric diseases. " Artificial Intelligence in Medicine 13: 1-12.

Schultz, A. (1995). "Five Variations of Hopfield Associative Memory. " IDur nJ, i-qf
Artificial Neural Networks 2(3): 285-294.

169

Sompolinsky, H. (1986). "Neural networks with nonlinear synapses and a static
noise. " Physical Review A: Atomic. Molecular_ and Optical Physics 34(3): 2571-2574.

Stent, G. S. (1973). "A Physiological Mechanism for Hebb's Postulate of Learning. "
Proceedings of the National Academy of Sciences of the United States of America 70:
997-1001.

Stiefvater, T., K. -R. Müller, et al. (1993). "Sparsely Connected Hopfield Networks for
the Recognition of Correlated Pattern Sets. " Network: Computation in Neural
System s 4: 313-336.

Storkey, A. J. (1997). "Increasing the capacity of a Hopfield network without
sacrificing functionality. " Proceedings of the International Conference on Artificial
Neural Networks: 451-456.

Storkey, A. J. and A. Valabregue (1999). "The basins of attraction of a new Hopfield
learning rule. " Neural Networks 12: 869-876.

Sutton, J. P., J. S. Beis, et al. (1988). "Hierarchical model of memory and memory
loss. " Journal of Physics A: Mathematical and General 31: 4443-4454.

Tsodyks, M. V. (1989). "Associative memory in neural networks with the Hebbian
learning rule. " Modern Physics Letters B 3(7): 555-560.

Tsodyks, M. V. and M. V. Feigel'man (1988). "The enhanced storage capacity in
neural networks with low activity level. " Europhysics Letters 6: 101-105.

Turvey, S. P., S. P. Hunt, et al. (2001). "An Experimental Assessment of the
Performance of Several Associative Memory Models. " Proceedings of 5th
International Conference on Artificial Neural Networks and Genetic Algorithms
(LCANNGAI: 70-73.

Turvey, S. P., S. P. Hunt, et al. (2002). "Non-Random Weight Dilution in High
Performance Associative Memories. " Proceedings of 4th International Conference on
Recent Advances in Soft Computing: 37-42.

Vishwanathan, R. It. (1995). "Fault tolerance in simple perceptrons. " Physics letters
A 188: 55.

Vishwanathan, R. R. (1995). "Synapse removal in discrete neural networks. " Journal
of Physics A: Mathematical and General 28: L25-31.

Willshaw, D. J., O. P. Buneman, et al. (1969). "Non-Holographic Associative
Memory. " Nature (London) 222: 960-962.

170

Appendices

171

A. DEVELOPING AN ASSOCIATIVE MEMORY SIMULATOR

A. I. Overview

In order to carry out the series of experiments that were required for this work it was

necessary to develop software for the purpose of simulating the architectures and
learning rules being used. This section endeavours to give an overview of the

requirements of such a simulator and an insight into some of the factors that had to be

considered in its design and implementation.

In total, three simulators were built, each evolving from the last as deficiencies were
found or requirements outstripped capabilities. The first of these was built around a

very simple monolithic design. The purpose of this first attempt was more about
familiarisation with the problems of constructing such a simulator than about building

something genuinely useful. It was, if you will, a prototype designed to fulfil the

maxim that "you never really understand a problem until you've attempted a solution".

The second simulator was significantly more complex the first. It was highly

parameterised and flexible and is discussed in some detail below. This simulator was,
however, not without its flaws and eventually gave way to the third and final version

which, while not perfect, served its purpose well. It is this simulator that is the subject

of examination in the latter part of this section.

All three of the simulators were developed in Java. The rationale for this was that the

small sacrifice in terms of speed of execution would be offset by the advantages brought

by the cross-platform capabilities of Java.

171

A. 2. A Simple Associative Memory Simulator

The first simulator implementation was a simple monolithic design. Parameters to the

simulator were hard-coded into the program source. Each learning rule implemented

was represented by a new program. While this had the advantage of high speed and

simplicity of design, there was the huge disadvantage of being unable to modify

simulation parameters without recompilation of the entire program.

A. 3. Simulator 2: A First Stab at Flexibility

It was clear from the start that the monolithic prototype simulator was going to be

unsuitable for running the gamut of learning rules and analyses that would be required
for this project. Parameterising the simulator was going to be essential if it was ever to

be flexible enough to run multiple experimental runs without significant intervention

or alteration each time.

A. M. Design and Implementation

Strictly speaking, the second simulator was also monolithic though an attempt was

made to separate out different areas of functionality into distinct classes/files. The

core of the simulator is formed by the NeuralNetwork class which takes responsibility
for managing a network's weights, state, and training set. `Running' the network as

per the update dynamics is also handled by this class.

Rather than being an entity in its own right, a new learning rule is considered to be

a type of network and so inherits from the base NeuralNetwork class. This enables
learning rules to directly access and manipulate both the weights and the training set

associated with the network. These learning rule/network classes are dynamically

loaded as required according to the command line parameters.

Analysis tools are kept separate in their own class and operate on, rather than form

part of, network objects.

Finally, the entire system is controlled by a class which is responsible for instantiating

a network and executing analysis tools as specified by parameters which may be

passed to it on the command line.

172

A. M. Advantages and Disadvantages

The parameterisation which initially was an asset and made the simulator extensible
later became a problem. The requirement that each new parameter identifier be

hard-coded into the simulator meant that the entire system needed recompiling for

what were often relatively minor changes. Similarly, when a new learning rule was

added to the system its name also had to be hard-coded in a list of network models

that were available for selection via the command line parameters. The class

representing the model named was dynamically loaded at runtime and made

available within the Java namespace.

Over time, the number of parameter identifiers required in order to provide all the

information necessary to all of the simulator's functionality became unwieldy and

difficult to manage. Compounding this was the fact that not all simulations

followed the same pattern of execution; some produced values which were means of

multiple runs while others simply returned a Boolean true or false.

Eventually, managing the simulator was taking up more time than it was economical

to invest.

Nothing written above should detract from the positive aspects of both the

experience of implementing the simulator and the eventual product. The

parameterisation was initially an asset and much time was saved compared with the

alternative of coding individual single-use programs. The dynamic class loading

infrastructure paved the way for what was to become a full-blown system of plug-in

extensions in the final simulator and much was learnt about the most appropriate

way in which to permit scripting or parameterisation of the software.

173

A. 4. NetSim: a Flexible Associative Memory Simulation Architecture

The deficiencies in the second simulator having become intolerable, work began on

developing the next generation of the software. From the beginning it was designed to

be both fully scriptable and extensible. This enabled the final move away from having

to recompile the entire simulator should a new analysis tool be developed or a extra

parameter required for a new learning rule.

In the manner in which the very first simulator had acted as a prototype or scratchpad

for the technologies incorporated in the second, so the second acted likewise for the

technologies and features built into the third. The mechanism by which learning rules,

modelled as independent architectures built upon a generic network framework, could

be dynamically loaded at run-time evolved into the plug-in system that provides the

new simulator with the majority of its power with respect to extensibility without

recompilation. In a similar manner, the parameterisation system of the second

simulator and the flaws within it gave rise to the need for and development of the new

scripting engine.

The third simulator was also the first with a specific name, NetSim.

A. 4.1. Benefits of an Object-Oriented Approach

Traditionally, an object-orientated approach has been regarded as being unsuitable
for the design of neural network simulators. The level of interaction required
between very large numbers of components is such that the overheads of

communication between objects are likely to be significant. Nevertheless, the
inherent structure of associative memory neural networks lends itself very naturally

to being modelled as classes of objects. The requirement for ease of extension and

maintainability adds further weight to the merit of such an approach.

A. 4.2. Design and Implementation

Any discussion of the operation of the NetSim simulator must begin with the

scripting engine since it is this that specifies the run-time environment and controls

the running of any learning rules, tools, and utilities.

The language of choice for scripting NetSim was the Extensible Mark-up Language

(XML). The simplicity with which one may develop a configuration/scripting

174

language within XML belies the full power of XML itself. This ease of use, coupled

with native support for XML within Java, made it the only sensible option.

A discussion of XML itself is beyond the scope of this document but further

information, if required, may be found at http: //www. w3. org/XML/.

As XML permits the creation of arbitrary tags it was straightforward to specify

control blocks would hold the parameters for specific areas of simulator

functionality.

In order to develop an understanding of the flexibility of the NetSim software it is

important that the scripting engine itself is understood. All other functions flow

from what is specified within the NetSim configuration file.

Each control block takes, as its first parameter, the name of a plug-in class which

will provide the necessary functionality. For instance, some names of plug-in classes

which can be used in the LearningRule control block are: BipolarHopfield, ILL

(Iterative Local Learning), BV (Blatt & Vergini). When the configuration file parser

encounters a plug-in name it loads and links it dynamically from the file system.

The control blocks available are:

Controller : This is the main control block. Plug-ins specified here are responsible
for managing the creation of networks, the execution of learning rules, and the

performing of any analyses on the resulting weight matrices. Also delegated to these

plug-ins is the creation of training sets. In some cases training data is randomly

generated according to specified parameters; in others, it is loaded from data files on
disk.

Network : This control block has no corresponding plug-ins. It's purpose is to allow

parameters general to all networks to be defined. Currently these parameters are
limited to specifying the dimensions of the network.

ConnectionStrategy : Plug-ins specified by this control block control the pattern of

connectivity of the network. Examples of these are the plug-ins AlwaysConnect,

RandomlyConnect, and NeighbourhoodConnect2D.

175

InputFunction : This control block specifies the plug-in that will provide the input

function for each neuron in the network. The input function will determine the

activation value of the neuron. Currently, the only input function plug-in is

StandardLWS which computes the linear weighted sum of a neuron's inputs.

OutputFunction : The output function control block specifies the plug-in
implementing the output function for each neuron. Using the activation value

obtained from the input function the plug-in calculates a neuron's output value.
Currently, only the plug-in BipolarStep is available which implements a bipolar step
function.

UpdateRule : The update rule control block specifies the plug-in implementing the

network's update dynamics. Currently these include RandomAsync (random

asynchronous updates), RandomAsyncReplace (random asynchronous updates with

replacement), and PseudoRandomAsync (a high performance implementation of

random asynchronous updating employing a pre-generated lookup table of random

numbers).

LearningRule : This control block determines the learning rule plug-in to be used in

training the network. Plug-ins exist for most of the learning rules examined in §2.5.

PreTraining : This is the first control block for which multiple instances are
permitted. Plug-ins specified by this block are executed prior to the network being

trained. Certain analysis tools, such as those that operate on the training set, might
be run at this point or the display of certain network information might be handled
by these plug-ins. Examples of these plug-ins are: ClteckConncctionSyrnrnetry (an

analysis of the pattern of connectivity to ensure symmetry) or TrainingSetBias (an

analysis of the tendency of the training set towards a particular value).

PostTraining : Multiple instances of this control block are also permitted. Specified

within are plug-ins designed to operate after the network has been trained. For this
reason most plug-ins specified here perform some type of analysis of the network's
weight matrix. Example are: A11Stable (test that all training patterns have been

successfully learnt), DisplayGammas (an calculation of the weight matrix's gamma

176

values, and KanterSompolinsky (an analysis of the consistency of size and shape of the

basins of attraction of the network)

To fulfil the requirement for extensibility without recompilation it was necessary to

devise a system whereby parameters could be passed to new plug-ins without having

to check for their validity within the configuration file parser. To this end, it was

decided that responsibility for parameter validation would rest with the plug-ins

themselves; the configuration file parser would simply pass the parameter

name/value pairs to the plug-in named in the control block and ask whether or not

that pair should be considered valid.

A. 4.3. Advantages and Disadvantages

The key advantage of the NetSim simulator is the sheer flexibility and extensibility

of the architecture. New learning rules, analysis tools, input functions, and output

functions may all be specified as plug-ins to be loaded at run time and used as

specified in the main configuration file.

The increased modularisation of the architecture lead to great benefits in the

maintainability of the simulator's source code. Once the framework was in position
for permit the creation and loading of plug-in modules, the core infrastructure code

rarely needed modification.

The only major disadvantage of the NetSim simulator occurred when a pattern of

experimentation did not quite fit the model of execution that the simulator was
designed around. As with all software projects, constraints have to be established as

to a program's domain of operation. Occasionally, experiments were required to be

run that strayed outside of the established framework. It is thanks to the

maintainability of the core code, as a result of the modularisation, that adding the

extra functionality to the simulator was never particularly painful.

177

B. A SELECTION OF GEOMETRIC TRAINING DATA

The images below represent a selection of the geometric training data that was used

throughout this work.

0
6

11

4 llAl
0

-2

-1

ra
All

AL
lu ro

ok
'all!

iho

so

& 401

olq ht
op

A

ik

09 AkE M I*
I it

178

C. A SELECTION OF CHARACTER TRAINING DATA

The images below represent a selection of the character-based training data that was

used throughout this work.

0 A u 9 B

C 8 A D 7

6 5 $ E 4

- Q & - 3

2 1 0 - - a

179

D. DATA TABLES - SPARSE CONNECTIVITY

This appendix contains the tables of data from which the summary tables in chapter 8

were generated. Each values represents the mean of 5 individual simulation runs.

Random data (bias=0.5)
Loading Train. Tim. Aaracctor Perf. Failed Units

0.0125 - - 57.00

0.0250 - - 229.00

0.0375 - - 378.20

0.0500 - - 39280

0.0625 - - 398.00

0.0750 - - 39780

0.0875 - - 399.40

0.1000 - - 399.20

0.1125 - - 399.80

0.1250 - - 399.40

0.1375 - - 400.00

0.1500 - - 400.00

0.1625 - - 400"00

0.1750 - - 400.00

0.1875 - - 400.00

O_xW - - 400.00

0.2125 - - x. 00

0.2250 - - 400.00

0.2375 - - 400.00

0.2500 - - 400.00

Table D. 1: Performan ce metrics for net works with
7.4 9 MCPN

Loading Train. Tim. Attractor Perf. Failed Units

0.0125 31.80 0.7519 -

0.0250 57.40 0.4013 -

0.0375 118.00 0.0055 -

0.0500 198 40 0.0056 -

0.0625 288.80 0.0056 -

0,0750 640.75 0.0057 1.00

0.0875 - - 2.80

0.1000 - - 25.20

0.1125 - - 198.00

0.1250 - - 322.60

0.1375 - - 387.80

0.1500 - - 39840

0.1625 - - 399.80

0.1750 - - 399.60

0.1875 - - 400.00

02000 - - 400.00

0.2125 - - 400.00

0.2250 - - 400.00

0.2375 - - 400.00

0.2500 - - 400.00

Table D. 3: Performa nce metrics for n etworks with
39. 96 MCPN

Loading Tram. Time Auracar Perl Failed Units

0.0125 94.80 0.0087 -

0.0250 374.00 0.0055 -
0.0375 767.00 0.0056 1.33

0.0500 - - 23.80

0.0625 - - 196.40

0.0750 - - 360.20

0.0875 - - 395.20

0.1000 - - 398.80

0.1125 - - 400.00

0.1250 - - 400.00

0.1375 - - 400.00

0.1500 - - 4410.00

0.1625 - - 41). 00

0.1750 - - 400.00

0.1875 - - 400.00

02000 - - 400.00

0.2125 - - 400.00

02250 - - 400.00

0.2375 - - 400.00

02500 - - 400.00

Table D. 2: Performa nce metrics for ne tworks with
21. 09 MCPN

Loading Train. Tim. Ataactor P. v Failed Units

0.0125 21.20 0.7990 -
0.0250 32.40 0.7234 -

0.0375 48.80 0.5764 -
0.0500 75.00 0.1817 -
0.0625 101.20 0.0146 -
0.0750 13600 0.6080

0.0875 19580 0,0057 -
0.1000 295.60 0.0057 -
0.1125 421.20 0.0057 -
0.1250 481.20 0.0057 -
0.1375 831,20 0.0057 -
0.1500 - - 3.20

0.1625 - - 45.60

0.1750 - - 211.80

0.1875 - - 320.40

0.2000 - - 37840

02125 - - 393.40

02250 - - 39860
02375 - - 418.00

02500 - - 4110.00

Table D. 4: Performa nce metrics for ne tworks with
6 3 MCPN

180

Loading Train. Time Attractor Pere Failed Units

00125 18.40 0.7949 -
0.0250 2540 0.7774 -
0.0375 41.20 0.7046 -
0.0500 43.00 0.6066

00625 6020 04765 -

0.0750 69.20 0.3068 -
0.0875 87.00 0.1152 -
0.1000 121.40 0.0423 -
0.1125 136.60 0.0137 -
0.1250 163.20 0.0080 -

0.1375 210.40 0.0057 -
0.1500 272.80 0.0057 -
0.1625 362.80 0.0057 -
0.1750 473.80 0.0058 -

0.1875 613.20 0.0058 -
0.2000 741.60 0.0058 -
0.2125 973.75 0.0058 1.00

0.2250 - - 7.00

0.2375 - - 95.60

0.2500 - - 227.80

Table D. 5: Performan ce metrics for net works with
89.2 5 MCPN

181

Random data (bias=0.8)
Loading Train. Tim. Attractor Perf. Failed Units

00125 - - 76.20

0.0250 - 217.20

0.0375 - - 332.60

0.0500 - - 378.00

70.0625 - - 395.60

0.0750 - - 397.80

0.0875 - - 399 80

0.1000 - - 400.00

0.1125 - - 400.00

0.1250 - - 400.00

0.1375 - - 400.00

0.1500 - - 400.00

0.1625 - - 400.00

0.1750 - - 400.00

0.1875 - - 400.00

0.2000 - - 400.00

02125 - - 400.00

0.2250 - - 400.00

0.2375 - - 400.00

0.2500 - - 400.00

Table D. 6: Performan ce metrics for net works with
7.4 9 MCPN

Loading Train. Tim. Attractor Perf. Failed Units

0.0125 65.40 0.7334 -

0.0250 150.20 0.0153 -

0.0375 212.20 0.0087 -

0.0500 512.50 0.0088 1.00

0.0625 621.80 0.0089 -
0.0750 903.67 0.0089 1.00

0.0875 969.00 0.0090 1.33

0.1000 - - 6.20

0.1125 - - 30.80

0.1250 - - 92.60

0.1375 - - 192.00

0.1500 - - 280.00

0.1625 - - 332.80

0.1750 - - 369.40

0.1875 - - 385.20

011" - - 393.00

0.2125 - - 398.00

0.2250 - - 399.60

0.2375 - - 400.00

02500 - - 400.00

Table D. 8: Performa nce metrics for ne tworks with
39. 96 MCPN

Loading Tm.. Tims Att a for Pa# Failed Units

0.0125 165.00 0.0082 1.50

0.0250 - - 4.20

0.0375 - - 9.20

0.0500 - - 31.60

0.0625 - - 11120

0.0750 - - 212.60

0.0875 - - 311.40

0.1000 - - 367.00

0.1125 - - 387.40

0.1250 - - 397.40

0.1375 - - 397.60

0.1500 - - 399.80

0.1625 - - 399.60

0.1750 - - 400.00

0.1875 - - 399.80

02000 - - 411). 00

02125 - - 400.00

0.2-150 - - 4(6.00

0.2375 - - 400.00

0.2500 - - 400.00

Table D. 7: Performan ce metrics for net works with
21.0 9 MCPN

Loading Train. runs, Attractot Pv1 Riled Unit,

0.0125 43.80 0.7611 -
0.0250 77.80 0.6987 -

0.0375 99.80 0.5696 -
0.0500 117.60 0.1423 -
0.0625 181.00 0.0158 -
0.0750 274.20 0.0089 -
0.0875 263.20 0.0090 -
0.1000 363.80 0.0090 -
0.1125 664.20 0.0091 -
0.1250 609.80 0.0091 -
0.1375 805.80 0.0091 -
0.1500 821.40 0.0091

0.1625 983.50 00091 2.33
0.1750 - - 9.20
0.1875 - - 21.80
02000 - - 55.40

0.2125 - - 158.60
0.22 - - 234.80

0.2375 - - 311.80
02500 - - 343.60

Table D. 9: Performa nce metrics for ne tworks with
6 3 MCPN

182

Loading Train. Tin. Attnctor Ped. Failed Units

0.0125 30.40 0.7841 #N/A

0.0250 51.20 0.7326 #N/A

0.0375 63.00 0.7095 #N/A

0.0500 79.20 0.6130 #N/A

0.0625 92.40 0.5641 #N/A

0.0750 110.40 03091 # N/A

0.0875 136.40 0.1711 #N/A

0.1000 159.40 0.0288 #N/A

0.1125 174.20 0.0144 #N/A

0.1250 219.80 0.0090 #N/A

0.1375 279-80 0.0090 #N/A

0.1500 31220 0.0091 #N/A

0.1625 370.80 0.0091 #N/A

0.1750 39620 0.0092 #N/A

0.1875 452.20 0.0092 #N/A

0.2000 661.00 0.0092 #N/A

02125 714.80 0.0092 #N/A

0.2250 863.75 0.0091 1.00

0.2375 942.75 0.0092 1.00

0.2500 #N/A #N/A 1.60

Table D. 10: Performa nce metrics for ne tworks with
89. 25 MCPN

183

Character Data
Loading Train. Tims Atowtor Perf. Failed Units

00125 - - 78.60

0.0250 - - 190.40

0.0375 - - 254.00

0.0500 - - 293.80

0.0625 - - 330.60

0.0750 - - 332.00

0.0875 - - 345.80

0.1000 - - 355.60

0.1125 - - 360.20

0.1250 - - 363.80

0.1375 - - 369.00

0.1500 - - 37300

0.1625 - - 369.00

0.1750 - - 381.80

0.1875 - - 37880

0.2000 - - 383.20

0.2125 - - 38340

0.2250 - - 382.80

0.2375 - - 387.40

0.2500 - - 388.00

Table D . 11: Performa nce metrics for ne tworks with
7.4 9 MCPN

Loading Train. Tim. Attractor Perf. Failed Units

0.0125 127.80 0.0921 -
0.0250 403.00 0.0121 1.00

0.0375 538.50 0.0140 2.00

0.0500 - - 4.00

0.0625 - - 8.60

0.0750 - - 16.20

0.0875 - - 23.80

0.1000 - - 4280

0.1125 - - 66.40

0.1250 - - 114.60

0.1375 - - 139.80

0.1500 - - 173.00

0.1625 - - 198,20

0.1750 - - 211.20

0.1875 - - 224.40

0.2000 - - 236.20

0.2125 - - 243.00

0.2250 - - 249.20

0.2375 - - 253.00

0.2500 - - 260.40

Table D . 13: Performa nce metrics for ne tworks with
39. 96 MCPN

Loading Train. Tons Atascar Perl Failed Units

0.0125 - - 3.20

0.0250 - - 1460

0.0375 - - 33.20

0.0500 - - 75.20

0.0625 - - 107.40

0.0750 - - 163.00

0.0875 - - 208.80

0.1000 - - 237.20

0.1125 - - 252.60

0.1250 - - 269.40

0.1375 - - 271.20

0.1500 - - 284.00

0.1625 - - 289.80

0.1750 - - 297.00

01975 - - 295.40
02000 - - 307.60

0.2125 - - 30920

0.2250 - - 313.00

0.2375 - 318.60

0.2500 320.80

Table D
.
12: Performa nce metrics for ne tworks with

21.0 9 MCPN

Loading Tnm. Time Attractor Perl: Failed Units

0.0125 81.20 0.6940 #N/A
0.0250 243.20 0.3480 #N/A
0.0375 309.60 0.0179 #N/A
0.0500 35667 0.0135 1.50
0.0625 687.00 0.0134 1.50
0.0750 810.33 0.0153 2.00
0.0875 766.50 0.0158 1.67
0.1000 - #N/A 1.60
0.1125 938.00 0.0158 3.25
0.1250 - - 6.00

0.1375
- 1420

0.1500 - - 21.20
0.1625 - - 38.80
0.1750 - - 56.60

0.1875 - - 71.00

02000 - - 91.00
02125 - - 11800
0.2250 - - 133.20
02375 - - 156 81
02500 - - 176.40

Table D . 14: Performa nce metrics for ne tworks with
63 MCPN

184

Loading Train. Tim. Attractor Perf. Failed Units

0.0125 68.40 0.7482 #N/A

0.0250 104.00 0.6950 #N/A

0.0375 300.00 0.3580 #N/A

0.0500 229.20 02246 #N/A

0.0625 293.75 0.0181 100

0.0750 338.50 0.0198 2.00

0.0875 607.33 0.0156 1.50

0.1000 587.00 0.0162 200

0.1125 757.00 0.0157 3.33

0.1230 100000 0.0161 3.00

0.1375 - - 3.20

0.1500 100000 0.0167 3 67

0.1625 - - 2 80

0.1750 - - 2.80

0.1875 - - 4 80

0.2000 - - 5.00

0.2125 - - 1100

0.2250 - - 15.60

0.2375 - - 23.20

0.2500 - - 32.80

Table D . 15: Performa nce metrics for ne tworks with
89.2 5 MCPN

185

Geometric Data
Loading Train. Time Attractor Perf. Failed Units

0.0125 - 56.20

0.0250 - - 197.40

0.0375 - - 328.60

0.0500 - - 374.20

0.0625 - - 39080

0.0750 - - 394.60

0.0875 - - 397.00

0.1000 - - 399.00

0.1125 - - 398.80

0.1250 - - 398.60

0.1375 - - 399.60

0.1500 - - 40000

0.1625 - - 400.00

0.1750 - - 400.00

0.1875 - - 400.00

02000 - - 400.00

0.2125 - - 400.00

0.2250 - - 400.00

0.2375 - - 400.00

0.2500 - - 400.00

Table D . 16: Performa nce metrics for ne tworks with
7.4 9 MCPN

Loading Train. Tim. Attractor Perf. Failed Unite

0.0125 41.80 0.7741 -

0.0250 120? 0 0.0274 -

0.0375 16400 0.0099 -

0.0500 392.40 0.0086 -

0.0625 49820 0.0092 -

0.0750 756.00 0.0092 1.00

0.0875 91900 0.0091 1.00

0.1000 - - 2.40

0.1125 - - 480

0.1250 - - 13.40

0.1375 - - 34.60

0.1500 - - 61.40

0.1625 - - 106.40

0.1750 - - 169.20

0.1875 - - 20880

Olf" - - 24340

0.2125 - - 271.80

0.2250 - - 301.00

0.2375 - - 324.20

0.2500 - - 344.40

Table D. 18: Performa nce metrics for n etworks with
39. 96 MCPN

Tonding

0.0125

0.0250

0.0375

0.0500

0.0625

0.0750

0.0875

0.1000

0.1125

0.1250

0.1375

01500

0.1625

0.1750

0.1875

02000

0.2125

02250

0.2375

0.2500

Tnm. Tines

10620

2'»1.50

Att utor Pal:

0.01 X19

0.0080

Failed Units

2.00

3.40

15.60

4380

126.20

221.40

272.00

338.00

355.60

379.40

38480

389.60

395.20

39800

397.80

398.00

399.60

399.60

399.80

Table D. 17: Performance metrics for networks with
21.09 MCPN

Loading Train. Time Attnctor P. rf Failed Units
0.0125 30.40 0.7948 .

0.0250 70.20 0.7044 -
0.0375 9000 0.5119 -
0.0500 16540 0.0_206 .
0.0625 163.60 0.0111

0.0750 203 40 0.0093

0.0875 246.80 00092 -
0.1000 410.60 0.0097
0.1125 390.20 0d096

0.1250 542.20 0.0099 -
0.1375 801.20 0.0997 -
0.1500 742.40 0.0098

0.1625 841.00 0.0103 1.00

0.1750 1000.00 - 1.50
0.1875 - - 2.00

0 - - 3.20

0.2125 - - SAO

02250 - - 12.00

02375 - 16.00
02500 - - 29.40

Table D. 19: Performa nce metrics for ne tworks with
6 3 MCPN

186

Loading Train. Tim. Aaractor Pmt. Failed Units

0.0125 2560 0.8094 -

0.0250 4880 0.7386 -
0.0375 5860 0.6970 -
0.0500 9360 0.5592 -
0.0625 116.20 03829 -
0.0750 126.40 0.0860 -
0.0875 144.00 0.0183 -
0.1000 176.60 0.0116 -
0.1125 23480 0.0116 -
0.1250 279.20 0.0140 -
0.1375 315.60 0.0098 -
0.1500 263.80 0.0101 -

0.1625 317.80 00102 -
0.1750 405.80 0.0124 -
0.1875 506.20 0.0103 -
0.2000 480.60 0.0102 -
0.2125 521.40 0.0105 -
0.2250 608.60 00103 -
0.2375 756.60 0.0107 -

0.2500 797.00 0.0104 -

Table D . 20: Performa nce metrics for ne tworks with
89.2 5 MCPN

187

E. DATA TABLES - COMPENSATORY CONNECTIVITY

This appendix contains the tables of data from which the results tables in chapter 9

were generated. Each values represents the mean of 5 individual simulation runs.

Network Stabilisation - Character data

Loading MCPN
I Attrector

Performance
Training
Phases

Storage
Efficiency

0.0125 7.4440 0.01 5 0.67

0.0250 7. 'P-30 0.01 11 1.29

0.0375 81340 0.01 19 1.84

0.0500 8.6440 0.01 19 2.31

0.0625 9.1000 0.02 29 2.75

0.0750 9.5810 0.02 24 3.13

0.0875 10 4670 0.02 32 3.34

0.1000 10.7290 0.02 33 3.73

0.1125 11 8370 0 02 31 3.80

0.1250 12.3150 0.02 35 4.06

0.1375 13.1460 0.02 39 4.18

0.1500 14.4310 0.02 39 4.16

0.1625 15.3130 0.02 46 4.24

0.1750 16.0770 0.02 41 4.35

0.1875 17.1640 0.02 52 4.37

0.2000 17.7313 0.02 44 4.51

0.2125 19.2920 0.02 37 4.41

0.2250 20.3940 0.02 38 4.41

0.2375 22.2330 0.02 48 4.27

0.2500 22.5800 0.02 45 4.43

Table E. 1: Perf ormance metri cs for netw orks with
7.49 MCP N

Attrectoe Training storage
Loading MCPN Perfoe'tunce Pha EBicienc;

0.0125 39.9610 0.16 00000 013

0.0250 39.9740 0.02 0.0004 015

0.0375 39.9860 0.01 0.0007 0.38

0.0500 39.9660 0.01 0,0002 0.50

0.0625 40.0290 0.02 0.0017 0.62

0.0750 40.0410 0.02 0.0020 0.75

0.0875 40.2060 0.02 0.0062 087

0.1000 40.1530 0.02 0.0048 1.00

0.1125 40.3020 0.02 0.0086 1.12

0.1250 40.2490 0.02 0.0072 1.24

0.1375 40.2630 0.02 0.0076 1.37

0.1500 403300 0.02 0.0143 148

0.1625 40.4030 0.02 0.0111 1.61

0.1750 40.4520 0.02 0.0123 1.73

0.1875 40.4460 0.02 0.0122 1.85

02000 40.6430 0.02 0.0171 1.97

0.2125 40.5870 0.02 0.0157 2.09

0.2250 40.8960 0.02 0.0234 2.20

0.2375 40.8080 0.02 0.0212 2.33

0.2500 40.9320 0.02 0.0243 2.44

Tabl e E. 3: Per formance metr ics for netwo rks with
39.96 MCP N

Loading MCPN
Adnctor

PerComunc.
Training

Phases
Storage

Efficiency

0.0125 21.0910 0.02 1 0.24

0.0250 21.1020 0.01 3 0.47

0.0375 21.1760 0.01 12 0.71

0.0500 21.1660 0.01 8 0.94

0.0625 21.2890 0.02 18 1.17

0.0750 21.3270 0.02 17 1.41

0.0875 21.3950 0.02 29 1.64

0.1000 21.4840 0.02 25 1.86

0.1125 21.6190 0.02 21 2.08

0.1250 21.7770 0.02 32 2.30

0.1375 21.6850 0.02 23 2.54

0.1500 22.0850 0.02 32 2.72

0.1625 220875 0.02 41 2.94

0.1750 22.2170 0.02 37 3.15

0.1875 22.4750 0.02 42 3.34

0.2000 22.6860 0.02 34 3.53

02125 22.7340 0.02 41 3.74

0.2250 23.0450 0.02 40 3.91

0.2375 23.3590 0.02 39 4.07

0.2500 23.5890 0.02 31 4.24

Table E. 2: Perfo rmance metric s for netw orks with
21.09 MCP N

Loading MCPN Attractor Training Sung.
PMbin ance Pluw Efficiency

0.0125 63.0000 0.27 t 0.08

0.0250 63.0000 0.10 1 0.16
0.0375 63.0360 0.02 8 0.24

0.0500 63.0260 0.02 4 0.32

0.0625 63.0070 0.02 2 0.40

0.0750 63.0540 0.02 t0 0.48

0.0875 63.1010 0.02 13 0.55

0.1000 63.1700 0.02 16 0.63

0.1125 63.1780 0.02 17 0.71

0.1250 63.1990 0.02 20 0.79

0.1375 63.1650 0.02 16 0.87

0.1500 63.1890 0.02 14 0.95

0.1625 63.2550 0.02 23 1.03

0.1750 63.2940 0.02 21 1.11

0.1875 63.3990 0.02 31 1.18

0.2000 63.3680 0.02 20 1.26
0.2125 63.4410 0.02 24 1.34

0.2250 63.6313 0.02 33 1.41

0.2375 63.3788 0.02 24 1.50

0.2500 63.5863 0.02 22 1.57

Table E. 4: Per formance metr ics for netw orks with
63 MCPN

188

Loading MCPN
Attrector

Performance
Training

Phases
Storage

Efficiency

0.0125 892500 0.43 1 0.06

0.0250 89.2500 0.19 1 0.11

0.0375 89.2600 0.05 3 0.17

0.0500 89.2560 0.02 2 0.22

00625 891530 0 02 2 028

0.0750 892790 0.02 7 0.34

0.0875 89.3000 0.02 5 0.39

0.1000 894640 0.02 17 0.45

0.1125 892760 0.02 4 0.50

0.1250 89.4290 0.02 17 0.56

0.1375 892760 0.02 6 062

0.1500 89.4050 0.02 13 0.67

0.1625 89.4030 0.02 15 0 73

0.1750 89.3840 0.02 10 0.78

0.1875 89.4230 0.02 15 0.84

0.2000 89.4860 0.02 18 0.89

0.2125 89.5610 0.02 26 0.95

0.2250 89.5790 0.02 27 1.00

0.2375 89.6120 0.02 30 1.06

0.2500 89.5600 0.02 21 1.12

Table E. 5: Perfo rmance metric s for netwo rks with
89.25 MCPN

189

Network Stabilisation - Geometric Data

Loading MCPN
Attractor

Perfomunce
Training

Phases
Storage

Efficiency

0.0125 7.4680 0.01 5 0.67

0.0250 7.6780 0.01 8 1.30

0.0375 8.0230 0.01 12 1.87

0.0500 8.4560 0.01 13 2.37

0.0625 8.8030 0.01 17 2.84

0.0750 94170 0.01 16 3.19

0.0875 9.9750 0.01 15 3.51

0.1000 10.5450 0.01 18 3.79

0.1125 11.0600 0.01 19 407

0.1250 11.7930 0.01 16 4.24

0.1375 125800 0.01 21 4.37

0.1500 13.6280 0.01 23 4.40

0.1625 14.0870 0.01 22 4.61

0.1750 15.0500 0.01 20 4.65

0.1875 15.6810 0.01 23 4.78

0_2100 16.8050 0.01 22 4.76

0.2125 17.9940 0.01 26 4.72

0.2250 18.8940 0.01 22 4.76

0.2375 195910 0.01 25 4.85

0.2500 21.0030 0.01 28 4.76

Table E. 6: Perf ormance metric s for netwo rks with
7.49 MCPN

Attractor Training Storage
Loading MCPN Pedorrtunce Phases Efficiency

0.0125 39.9660 0.01 2 0.13

0.0250 39.9890 0.01 5 0.25

0.0375 39.9880 0.01 5 0.38

0.0500 40.0060 0.01 5 0.50

0.0625 40.0490 0.01 8 0.62

0.0750 40.1470 0.01 10 0.75

0.0875 40.1140 0.01 9 0.87

0.1000 40.1590 0.01 13 1.00

0.1125 40.1870 0.01 it 1.12

0.1250 40.1980 0.01 11 1.24

0.1375 40.2610 0.01 14 1.37

0.1500 40.2920 0.01 12 1.49

0.1625 40.3520 0.01 18 1.61

0.1750 40.3360 0.01 15 1.74

0.1875 40.4490 0.01 21 1.85

0,2000 40.4850 0.01 14 1.98

0.2125 40.5590 0.01 19 2.10

0.2250 40.5610 0.01 15 2.22

0.2375 40.6910 0.01 16 2.33

02500 40.6290 0.01 18 2.46

Tabl e E. 8: Per formance metri cs for netwo rks with
39.96 MCP N

I. oaain9 MCPN
I An-&-

Pofomwrce
Tnin, g
Ph""

Sang.
E1Ueimcr

0.0125 21.1000 0.01 2 0.24

0.0250 21.1550 0.01 7 0.47

0.0375 212090 0.01 7 0.71

0.0500 21.3450 0.01 10 0.94

0.0625 21.4830 0.01 10 1.16

0.0750 21.7250 0.01 12 1.38

0.0875 21.8770 0.01 17 1.60

0.1000 21.9230 0.01 IS 1.82

0.1125 22.21-30 0.01 14 2.03

0.1250 22.2510 0.01 13 225

0.1375 22.6870 0.01 17 2.42

0.1500 22.7470 0.01 13 2.64

0.1625 22.9230 0.01 19 264

0.1750 21.4140 0.01 17 2.99

0.1875 23.5960 0.01 18 3.18

0.2000 23.9750 0.01 19 3.34

02125 24.0350 0.01 22 3.54

02250 24.5650 0.01 18 3.66

02375 24 8170 0.01 22 3.83

0.2500 25.1780 0.01 23 3.97

Table E. 7: Perfo rmance metric s for netwo rks with
21.09 MCPN

Lo. di. g MCP" Attr. ewr Tninina Song.
Pmfomuec. Phew fllk6nq

0.0125 63.0090 0.03 3 0.08

0.0250 63.0120 0.01 3 0.16

0.0375 63.0150 0.01 3 024

0.0500 63.0450 0.01 6 0.32
0.0625 63.0540 0.01 7 0.40

0.0750 63.1050 0.01 9 0.48

0.0875 63.0930 0.01 8 0.55
0.1000 63.0980 0.01 7 0.63
0.1125 63.1530 0.01 12 0.71

0.1250 63.1630 0.01 IS 0.79
0.1375 63.1810 0.01 11 0.87

0.1500 63.2060 0.01 14 0.95

0.1625 63.2610 0.01 14 1.03

0.1750 63.2570 0.01 11 1.11

0.1875 63.2970 0.01 17 1.18

02000 63.3200 0.01 is 1.26

02125 63.3300 0.01 IS 1.34

02250 63.3460 0.01 14 1.42

0.2375 63.4070 0.01 14 1.50
02500 63.4310 0.01 IS 1.5$

Table E. 9: Perf ormance metri cs for netw orks with
63 MCPN

190

Loading MCPN
Attrector

Perfo -e

Training
Phases

Storage
Efficiency

0.0125 89.2510 0.11 1 0.06

0.0250 89.2580 0.02 3 0.11

0.0375 89.2570 0.01 2 0.17

0.0500 89.2730 0.01 4 0.22

0.0625 89.2690 0.01 3 0.28

0.0750 893290 0.01 9 0.34

0.0875 892960 0.01 8 0.39

0.1000 893090 0.01 7 0 45

0.1125 893140 0.01 8 0.50

0.1250 89.3080 0.01 6 0.56

0.1375 893320 0.01 10 0.62

0.1500 893450 0.01 8 0.67

0.1625 89.4180 0.01 16 0.73

0.1750 89.4030 0.01 12 0.78

0.1875 89.4040 0.01 12 0.84

0.2000 89 4290 0.01 14 0.89

0.2125 89.4560 0.01 13 0.95

0.2250 89.4000 0.01 13 1.01

0.2375 89.4470 0.01 12 1.06

0.2500 89.4710 0.01 13 1.12

Table E. 10: Perf ormance metri cs for netw orks with
89.25 MCPN

191

Performance Enhancement - Character Data
Conn. ctvIty

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 080 0.85 0.90 0.95

0.0125 - 0.2773 0.7105 0.7468 0.7714 0.7642 0.7730 0.7621 0.7838 0.7899 0.7845 0.7931 0.7842 0.7854 0.7990 0.7869 0.7956 0.7898 0.7911

0.0250 0.0122 0.3054 0.6815 0.7096 0.7408 0.7514 0.7444 0.7488 0.7563 0.7753 0.7697 0.7580 0.7714 0.7688 0.7639 0.7778 0.7769 0.7771

0.0375 0.0207 0.2205 0.6142 0.6479 0.6577 0.6753 0.6646 0.7051 0.7127 0.7387 0.7298 0.7324 0.6882 0.7113 0.7106 0.7219 0.7084

0.0500 0.0130 0 0140 0.0357 0.3088 0.6227 0.6240 0.6705 0.6807 0.6964 0,7136 0.6976 0.6893 0.6866 0.7071 0.7160 0.7039 0.7253 0.8963

0.0625 0.0148 0.0224 0.0243 0.2651 0.3449 0.3738 0.5666 0.5008 0.5798 0.5645 0.5454 0.5802 0.5895 0.5982 0.6176 0.6095 0.5903

0.0750 0.0150 0.0161 0.0278 0.0748 0.2679 0.4750 0.4782 0.5264 0.5173 0.5863 0.5823 0.5567 O S771 0.6001 0.6344 0.5807 0.5921

0.0875 0.0156 0.0212 0.0412 0.2296 0.2895 0.3402 0.3581 0.3770 0.4591 0.3772 0.3842 0.4253 0.4002 0.4240 0.4039 0.4670

0.1000 --0.0161 00160 0.0201 0.0330 0.1123 0.2687 0.3874 0.5000 0.5823 0.4853 0.4956 0.5386 0.5268 0.5015 0.5259 0.5475 0.5403

0.1125 --0.0153 0.0163 0.0162 0.0194 0.1216 0.1506 0.4050 0.1917 0.3076 0.3410 0.5108 0.3683 0.3589 0.4445 0.4423 0.4214

r 0.1250 --0.0178 0.0169 0.0158 0.0164 0.0442 0.1472 0.1130 0.1530 0.1762 0.2440 0.2739 0.3418 0.2557 0259D 0.2647 0.2685
0.1375 - 0.0176 0.0184 0.0180 0.0177 0.0691 0.1165 0.2134 0.1585 0.2257 0.2875 0.2421 0.2928 0.3063 0.3107 0.3448

"ý 0.1500 --0.0168 0.0171 0.0169 0.0170 0.0271 0.0410 0.0439 0.1644 0.1072 0.2218 0.1814 0.1899 0.2569 0.2864 0.2443 0.2418
0.1625 ---0.0173 0.0178 0.0180 0.0269 0.0396 0.0778 0.0832 0.3140 0.2124 0.3170 0.2098 0.2061 0.2152 0.3697 0.2541
0.1750 ----0.0174 0.0176 0.0180 0.0251 0.0526 0.0551 0.0614 0.1825 0.2154 0.2560 0.1822 0.2465 0.2655 0.3049
0.1875 - 0.0186 0.0182 0.0262 0,0181 0.0431 0.0404 0.0695 0.1215 0.1329 0.1575 0.1274 0.1671 0.2276 0.2160
0.2000 --0.0181 0.0186 0.0183 0.0182 0.0272 0.0264 0.0569 0.0856 0.1557 0.1861 0.1481 0.1785 0.2426 0.2694 0.2522
0.2125 ---0.0174 - 0.0180 0.0236 0.0399 0.0364 0.0618 0.1033 0.1488 0.1026 0.1238 0.1674 0.2203
0.2250 ---0.0187 0.0188 0.0192 0.0242 0.0273 0.0407 0.0780 0.0730 0.1554 0.1596 0.1214 0.2374 0.2076
0.2375 0.0196 0.0187 0.0189 0.0189 0.0187 0.0281 0.0341 0.0739 0.0973 0.1645 0.1718 0.1529 0.1944 0.2285
0.2500 ---0.0194 - 0.0191 0.0193 0.0377 0.0460 0.0483 0.0734 0.0944 0.1275 0.1229 0.2343

Table E. 11: Attractor performance by connectivity and loading level for networks with initial

neighbourhoods of size 0.

Conn. o6vity
0.05 0.10 0.15 0.20 0.25 0.30 0.35 040 0.45 0.50 O S5 0.60 0.65 0.70 0.75 080 0 65 090 0.95

0.0125 0.0137 0.3630 0.6950 0.7441 0.7239 0.7423 0.7615 0.7582 0.7334 0.7734 0.7647 0.7619 0.7601 0.7541 0.7691 0.7716 0.7686 0.7815 0.7718
0.0250 0.0127 0.0656 0.3471 0.6137 0.6747 0.7159 0.7195 0.7173 0.7318 0.7164 0.7299 0.7453 0.7568 0.7383 0.7468 0.7455 0.7431 0.7482 0.7516
0.0375 0.0131 0.0131 0.0555 0.2289 0.5931 0.6148 0,6669 0.6457 0.6540 0.6935 0.6581 0.6838 0.8790 0.7020 0.6987 0.8694 0.6957 0.6935 0.7097
0.0500 0.0139 0.0138 0.0308 0.1463 0.2067 0.4476 0.5408 0.5438 0.6187 0.6313 0.6514 0.6738 0.6531 0.6570 0.6847 0.7015 0.6701 0.6662 0.6758
0.0625 0.0149 0.0148 0.0148 0.0653 0.1018 0.2304 0.3045 0.3672 0.4037 0.4934 0.5462 0.5247 0.5572 0.5656 0.5429 0.5743 0.5656 0.5777 0.5661
0.0750 0.0160 0.0160 0.0193 0.0219 0.0928 0.1360 0.1999 0.2847 0.3227 0.4558 0.4015 0.4349 0.5088 0.5747 0.5733 0.5653 0.5679 0.6038 0.5834
0.0875 0.0158 0.0160 0.0158 0.0256 0.0405 0.1094 0.1677 0.2302 0.3478 0.3930 0.4029 0.3921 0.3371 0.3997 0.4187 0.3983 0.4317 0.4544 0.3987
0.1000 0.0159 0.0160 0.0162 0.0229 0.0559 0.1284 0.1910 0.2202 0.3040 0.3629 0.4622 0.4881 0.4669 0.5153 0.5064 0.4905 0.5242 0.5310 0.5108
0.1125 0.0164 0.0183 0.0163 0.0162 0.0263 0.0700 0.1291 0.1674 0.1967 0.2205 0.2041 0.2769 0.3193 0.3289 0.3692 0.4091 0.3607 0.3794 0.4069
0.1250 0.0168 0.0187 0.0168 0.0166 0.0300 0.0324 0.1009 0.1284 0.2020 0.1807 0.2302 0.2193 0.2310 0.2278 0.2410 0.2338 0.2352 0.2758 0.2493
0.1375 0.0175 0.0176 0.0177 0.0176 0.0212 0.0248 0.0818 0.1137 0.1316 0.1439 0.1671 0.1835 0.2338 0.1783 0.2231 0.1944 0.2414 0.2498 0.2647
0.1500 0.0196 0.0175 0.0177 0.0176 0.0177 0.0283 0.0344 0.0716 0.1573 0.1347 0.1191 0.1228 0.2687 0.2010 0.2244 0.2143 0.2776 0.3021 0.3033
0.1625 - 0.0178 0.0179 0.0181 0.0179 0.0218 0.0216 0.0621 0.1277 0.1464 0.1416 0.2078 0.2094 0.2644 0.2561 0.2822 0.2798 0.2652 0.3144
0,1750 - 0.0183 0.0181 0.0180 0.0182 0.0179 0.0182 0.0558 0.0962 0.1535 0.1529 0.1808 0.1800 0.1751 0.2387 0.2330 0.1982 0.2210 0.2192
0.1875 - 0.0184 0.0185 0.0183 0.0185 0.0185 0.0220 0.0466 0.0562 0.0757 0.1119 0.1496 0.1311 0.1664 0.1648 0.1824 0.2001 0.1960 0.1842
0.2000 - 0.0185 0.0185 0.0184 0.0185 0.0185 0.0223 0.0428 0.0596 0.0769 0.1193 0.1218 0.1838 0.1829 0.1868 0.1870 0.1907 0.1934 0.2379
0.2125 - 0.0182 0.0184 0.0182 0.0186 0.0183 0.0184 0.0286 0.0587 0.0670 0.1071 0.1063 0.1311 0.1406 0.1726 0.1856 0.1783 0.1872 0.2138
0.2250 0.0188 0.0191 0.0188 0.0189 0.0188 0.0187 0.0263 0.0335 0.0509 0.0652 0.1257 0.1179 0.1425 0.1696 0.1668 0.1277 0.2080 0.1876
0.2375 - 0.0193 0.0189 0.0190 0.0191 0.0190 0.0189 0.0224 0.0387 0.0546 0.0758 0.1174 0.1254 0.1354 0.1523 0.1893 0.1976 0.2063 0.2290
0.2500 0.0195 0.0192 0.0194 0.0192 0.0191 0.0192 0.0192 0.0229 0.0600 0.0702 0.0981 0.1044 0.1197 0.1152 0.1782 0.1512 0.1776 0.1609

Table E. 12: Attractor performance by connectivity and loading level for networks with initial

neighbourhoods of size 1.

Conrnetvlty
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 050 0.55 060 06S 0.70 0 75 0 80 0.85 090 6§8

0.0125
0.0250
0.0375
0.0500
0.0625
0.0750
0.0875
0.1000
0.1125
0.1250
0.1375
0.1500
0.1625
0.1750
0.1875
0.2000
0.2125
0.2250
0.2375
0.2500

- "v " """""""" "aV. / /I V. I1W V. IIýV Y. //[/

- 0.0350 0.3088 0.5669 0.6508 0.6996 0.7074 0.7048 0.7176 0.7431 0.7455 0.7605 0.7455 0.7501 0.7620 0.7635 0.7446 0.7698 0.7509
0.0131 0.1015 0.3043 0.4345 0.5936 0.6483 0.6571 0.6687 0.6691 0.6655 0.6863 0.8936 0.6842 0.7080 0.7167 0.6999 0.7036 0.6841
0.0139 0.0489 0.1228 0.2564 0.4256 0.5451 0.5757 0.6647 0,6530 0.6790 0.7107 0.7017 0.6839 0.7060 0.7060 0.8912 0.6840 0.7002
0.0147 0.0328 0.1024 0.2115 0.2768 0.3316 0.4243 0.3937 0.4162 0.4706 0.4820 0.4800 0.4670 0.4732 0.5100 0.5033 0.4848 0.5097

- 0.0160 0.0192 0.0515 0.1377 0.2202 0.2048 0.3130 0.4163 0.4095 0.4585 0.5165 0.6613 0.5465 0.5488 0.5384 0.5566 0.5817 0.6013
0.0160 0.0160 0.0368 0.1120 0.1977 0.1654 0.2590 0.2509 0.3318 0.3384 0.3984 0.4285 0.3484 0.3863 0.3690 0.3859 0.4222 0.3811
0.0160 0.0160 0.0292 0.0707 0.1302 0.2016 0.2393 0.3053 0.3939 0.3735 0.4400 0.4500 0.4713 0.4522 0.5174 0.4660 0.5179 0.4843
0.0164 0.0163 0.0163 0.0261 0.0682 0.1129 0.1502 0.2140 0.2365 0.2624 0.3166 0.3292 0.2785 0.3328 0.4023 0.3669 0.3677 0.3849
0.0167 0.0167 0.0168 0.0269 0.0793 0.1200 0.1567 0.2095 0.2255 0.2347 0.2549 0.2530 0.2929 0.2782 0.2614 0.3010 0.2683 0.2862
0.0178 0.0178 0.0175 0.0281 0.0347 0.1043 0.1248 0.1573 0.1810 0.1674 0.2145 0.2450 0.2475 0.2153 0.2320 0.2996 0.2491 0.2665
0.0176 0.0175 0.0175 0.0209 0.0385 0.0558 0.1194 0.1438 0.1487 0.2004 0.2069 0.2395 0.2614 0.2925 0.2869 0.2496 0.2888 0.2608
0.0178 0.0178 0.0180 0.0210 0.0316 0.0457 0.0711 0.0999 0.1261 0.1743 0.1629 0.2279 0.2122 0.2596 0.2947 0.2923 0.2610 0.3004
0.0180 0.0181 0.0181 0.0181 0.0182 0.0455 0.0792 0.1376 0.1415 0.1270 0.1567 0.1694 0.2159 0.1956 0.2354 0.1953 0.1878 0.1910
0.0183 0.0186 0.0186 0.0164 0.0185 0.0369 0.0607 0,1315 0.0865 0.1294 0.1612 0.1876 0.1758 0.1620 0.2000 0.1983 0.1872 0.2301
0.0183 0.0185 0.0185 0.0185 0.0183 0.0295 0.0568 0.0933 0.1313 0.1289 0.1424 0.1438 0.1632 0.2228 0.2339 0.2316 0.2337 0.1975
0.0183 0.0185 0.0185 0.0188 0.0185 0.0362 0.0541 0.0643 0.1181 0.1017 0.1522 0.1349 0.1474 0.1792 0.1566 0.1942 0.1968 0.2177
0.0187 0.0189 0.0190 0.0190 0.0188 0.0226 0.0224 0.0787 0.0721 0.0954 0.1466 0.1053 0.1419 0.1983 0.1727 0.1698 0.1719 0.1736
0.0192 0.0189 0.0189 0.0189 0.0190 0.0191 0.0225 0.0587 0.0762 0.1093 0.1470 0.1150 0.1749 0.1772 0.1627 0.1676 0.1923 0.1870
0.0192 0.0195 0.0192 0.0194 0.0193 0.0192 00191 0.0375 0.0698 0.0878 0.1163 0.1126 0.1184 0.1342 0.1135 0.1440 0.1333 0.1790

Table E. 12: Attractor performance by connectivity and loading level for networks with initial
neighbourhoods of size 2.

192

Connectivity
0.05 0.10 0.15 0 20 0.25 0.30 0 35 0.40 0.45 0.50 0.55 060 0 65 0 70 0.75 080 085 090 0.95

0.0125 - 0.1202 0.4118 0.6533 0.7106 0.7558 0.7549 0.7737 0.7794 0.7878 0.7905 0.8050 0.8035 0.8003 0.7973 0.7976 0.8015 0.7914 0.7947
0.0250 - 0.0164 0.1497 0.3681 0.5878 0.6245 0.7255 0.7141 0.7360 0.7428 0.7486 0.7423 0.7491 0.7473 0.7555 0.7535 0.7375 0.7394 0.7532
0.0375 0.0131 0.0736 0.1777 0.3525 0.5906 0.5957 0.6626 0.6742 0.6911 0.6761 0.7032 0.6773 0.7004 0.7001 0.6981 0.7064 0.7214 0.7147
0.0500 - 0.0139 0.0337 0.1207 0.2407 0.3978 0.5304 0.5478 0.6190 0.6666 0.6916 0.6828 0.6986 0.6945 0.7131 0.7047 0.6857 0.7315 0.6998
0.0625 - 0.0148 0.0299 0.1058 0.1679 0.2566 0.3315 0.3263 0.4212 0.4486 0.5271 0.4946 0.4723 0.4799 0.4796 0.5147 0.5650 0.5834 0.5760
0.0750 - 0.0147 0.0218 0.0312 0.1151 0.2139 0.2865 0.3550 0.4561 0.4590 0.4622 05054 0.5179 0.5203 0.5066 0.5176 0.5259 0.5382 0.5617
0.0875 --0.0193 0.0341 0.0993 0.1687 0.2215 0.3107 0.3126 0.3684 0.3735 0.3495 0.3693 0.4003 0.3603 0.4009 0.4326 0.3985 0.3956
0.1000 - 0.0152 0.0161 0.0192 0.0803 0.1365 0.1882 0.2589 0.3029 0.3670 0.4405 0.4371 0.4404 0.4932 0.5249 0.5180 0.4996 0.5156 0.5270
0.1125 0.0164 0.0195 0.0472 0.0724 0.1222 0.1574 0.2044 0.2104 0.2498 0.2592 0.3017 0.3479 0.3408 0.2978 0.3719 0.3800 0.3551
0.1250 --0.0167 0.0187 0.0395 0.0769 0.1418 0.1597 0.1680 0.2185 0.1887 0.2237 0.2446 0.2821 0.2529 0.2845 0.2736 0.3168 0.2838
0.1375 --0.0177 0.0178 0.0310 0.0554 0.1120 0.1351 0.1674 0.1966 0.2340 0.2024 0.2113 0.2386 0.2633 0.2700 0.2942 0.2885 0.3205
0.1500 0.0176 0.0214 0.0311 0.0545 0.0624 0.1130 0.1436 0.1689 0.2305 0.2288 0.2370 0.2313 0.2385 0.2724 0.3041 0.3314 0.2989
0.1625 - 0.0179 0.0180 0.0178 0.0447 0.0649 0.1057 0.0941 0.1244 0.1876 0.1734 0.2221 0.2133 0.2393 0.2481 0.2424 0.2703 0.3016
0.1750 - 0.0180 0.0181 0.0218 0.0220 0.0427 0.0874 0.1109 0.1236 0.1669 0.1688 0.2187 0.1929 0.2040 0.1871 0.1953 0.2320 0.2399
0.1875 --0.0186 0.0186 0.0184 0.0222 0.0501 0.0780 0.1138 0.1105 0.1538 0.1502 0.1765 0.1592 0.2025 0.1861 0.2194 0.1691 0.2241
0.2000 0.0183 0.0184 0.0185 0.0185 0.0496 0.0493 0.0838 0.1281 0.1283 0.1601 0.1691 0.1887 0.1531 0.1763 0.2349 0.1770 0.2502
0.2125 0.0185 0.0184 0.0183 0.0185 0.0291 0.0611 0.0936 0.1058 0.1196 0.1341 0.1662 0.1508 0.1587 0.1629 0.1478 0.1884 0.1870
0.2250 - 0.0190 0.0191 0.0190 0.0190 0.0262 0.0446 0.0681 0.0985 0.1159 0.0938 0.1433 0.1361 0.1602 0.1449 0.1832 0.1903 0.2109
0.2375 - 0.0191 0.0189 0.0188 0.0189 0.0227 0.0302 0.0553 0.0784 0.0997 0.1115 0.1307 0.1743 0.1681 0.1887 0.2220 0.1848 0.2284
0.2500 - 0.0194 0.0191 0.0194 0.0194 0.0193 0.0379 0.0450 0.0663 0.0901 0.1012 0.1344 0.1065 0.1451 0.1364 0.1393 0.1686 0.1438

Table E. 13: Attractor performance by connectivity and loading level for networks with initial
neighbourhoods of size 3-

Connectivity
005 0 10 0.15 0.20 0.25 0.30 0.35 040 0.45 050 0 55 0.60 0 65 0.70 0.75 0.80 0.85 090 0 95

0.0125 --0.4946 0.6064 0.7118 0.7130 0.7412 0.7379 0.7347 0.7485 0.7483 0.7420 0.7595 0.7483 0.7514 0.7504 0,7547 0.7357
0.0250 - 0.2024 0.4715 0.6466 0.6483 0.7061 0.7418 0.7438 0.7259 0.7143 0.7456 0.7523 0.7545 0.7411 0.7458 0.7324 0.7491
0.0375 - 0.1636 0.3335 0.4982 0.6031 0.6817 0.6817 0.6989 0.7185 0,7090 0.7269 0.7126 0.6956 0.7220 0.7022 0.6896 0.7079
0.0500 ---0.0680 0.2219 0.2778 0.4977 0.5492 0.5568 0.6232 0.6763 0.6448 0.6776 0.6674 0.6707 0.6965 0,6624 0.7089 0.6834
0.0625 --0.0442 0.1882 0.2557 0.3807 0.4377 0.4545 0.4595 0.4741 0.5137 0.5126 0.5267 0.5212 0.5284 0.5313 0.5578 0.5818
0.0750 --0.0413 0.1459 0.1949 0.2620 0.3537 0.4169 0.4652 0.4791 0.4966 0.5035 0.5465 0.5529 0.5257 0.5628 0.5528 0.5717
0.0875 --0.0366 0.0763 0.1080 0.2140 0.2946 0.2906 0.3559 0.3811 0.3524 0.4301 0.3800 0.4191 0.3793 0.4146 0.3987 0.4263
0.1000 ---0.0226 0.0562 0.0810 0.1927 0.2745 0.3815 0.3871 0.4223 0.4911 0.4965 0.4918 0.4979 0.5556 0.5382 0.5308 0.4994
0.1125 --0.0163 0.0331 0.0898 0.1713 0.2080 0.2572 0.2746 0.2223 0.3422 0.3210 0.3163 0.3632 0.4241 0.3890 0.3353 0.4128
0.1250 0.0167 0.0260 0.0775 0.1182 0.1422 0.2152 0.2485 0.1995 0.2095 0.2446 0.2525 0.2360 0.2809 0.2486 0.2793 0.2665
0.1375 0.0175 0.0176 0.0278 0.0926 0.1013 0.1721 0.1831 0.1876 0.2259 0.2415 0,2696 0.2648 0,2810 0.2798 0.2652 0.2907
0.1500 ---0.0177 0.0207 0.0511 0.0613 0.1006 0.1559 0.1834 0.1947 0.2117 0.2527 0.2467 0.2810 0.2718 0.2954 0.3143 0.2731
0.1625 - 0.0177 0.0177 0.0315 0.0786 0.0960 Q1748 0.1367 0.1868 0.2507 0.2592 0.2175 0.2985 0.2714 0.2699 0.3289 0.2715
0.1750 --0.0181 0.0180 0.0327 0.0492 0.0821 0.1338 0.1450 0.2011 0,1950 0.1859 0,1564 0.1647 0.1642 0.2277 0.1793 0.1885
0.1875 --0.0186 0.0184 0.0260 0.0364 0.0637 0.0911 0.1227 0.1127 0,1471 0.1468 0.1631 0.1691 0.2170 0.2251 0.2076 0.2324
0.2000 ---0.0185 0.0184 0.0220 0.0185 0.0558 0.0796 0.1136 0.1183 a1385 0.1739 0.1532 0.1855 0.2035 0.2518 0.2344 0.2334
0.2125 ---0.0184 0.0184 0.0186 0.0219 0.0433 0.0899 0.1276 0.1271 0.1429 0.1462 0.1576 0.1627 0.1577 0.1671 0,1531 0.2173
0.2250 --0.0189 0.0189 0.0189 0.0189 0.0481 0.0925 0.0924 0.1279 0.1375 0.1428 0.1238 0.1387 0,1413 0.1592 0.1760 0.1822
0.2375 ---0.0189 0.0191 0.0190 0.0228 0.0303 0.0647 0.0900 0.1157 0.1309 0.0947 0.1256 0.1408 0.1802 0.1684 0,1937 0.1838
0.2500 --0.0191 0.0192 0.0193 0.0194 0.0304 0.0376 0.0872 0.0869 0,1172 0.1319 0.1356 0.1323 0.1634 0.1503 0.1692 0,1892

Table E. 14: Attractor performance by connectivity and loading level for networks with initial
neighbourhoods of size 4.

Connectivity
0.05 010 0.15 0 20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 060 0.65 0 70 0 75 060 0 85 0 90 093

0.0125 ---0.5032 0.6305 0.7119 0.7430 0.7507 0.7722 0.7714 0.7619 0.7559 0.768 00,7633 0.7649 0.7591 0.7722 0.7722
0.0250 ---0.2353 0.5273 0.6338 0.7158 0.7308 0.7505 0.7471 07359 0.7434 0.7573 0.7490 0.7596 0.7520 0.7545 0.7487
0.0375 ---0.1498 0.3501 0.5720 0.6350 0.6680 0 6866 0.6847 0.6799 0.6841 0.6899 0.6993 0.7099 0.6972 0.6897 0.7076
0.0500 --0.0747 0.1884 0.4329 0.5510 0.5443 0.5852 0.6505 0.6556 0.6800 0.6628 0.6863 0.8890 0.6850 0.6958 0.7089
0.0625 --0.0402 0.1391 0.2873 0.3966 0.4113 0.4575 0.5220 0.5138 0.5196 0.5821 0.4887 0.6741 0.5696 0.6474 0.5593
0.0750 --0.0409 0.1138 0.2486 0.2966 0.3843 0.4283 0.4851 0.5091 0.5210 0.5318 0.5812 0.6419 0,6885 0.6331 0.5826
0.0875 - 0.0314 0.1008 0.1473 0.2181 0.2707 0.3383 0.3748 0.4294 0.4494 0.4078 0.4055 0.4085 0.4254 0.4496 0.4237
0.1000 --0.0162 0.0769 0.1242 0.1887 0.2681 0.3235 0.4244 0.4565 0.4733 0.4838 0.4883 0.5383 0.4888 0.5271 0.6261
0.1125 --0.0194 0.0678 0.1198 0.1701 0.1853 0.2396 0.2734 0.3423 0.3288 0.3445 0.3628 0.3533 0.3610 0.4341 0.4407
0.1250 0.0167 0.0456 0.1137 0.1688 0.1707 0.1990 0.2111 0.2133 0.2427 02611 0.2436 0.2255 0.2556 0.2569 0.3058
0.1375 0.0176 0.0347 0.0926 0.1257 0.1486 0.1821 0.2203 0.2533 0.2534 0.2554 0.2800 0.2911 0.2350 0.3151 0.2987

-' 0.1500 ---0.0209 0.0212 0.0776 0.1134 0.1518 0.1626 0.1669 0.1770 0.2291 0.1865 0.2678 0.2421 0.2536 0.2403 0.2794
0.1625 - 0.0178 0.0179 0.0320 0.0849 0.1535 0.1398 0.1831 0.2520 0.2554 0.2419 0.2774 0.2863 0.2794 0.3022 0.2790
0.1750 - 0.0181 0.0286 0.0318 0.0804 0.1050 0.1125 0.1704 0.1787 0.1710 0.1759 0.2064 0.2106 0.2204 0.2356 0.2199
0.1675 ----0.0185 0.0184 0.0291 0.0324 0.0834 0.1324 0.1274 0.1399 0.1768 0.1802 0.1921 0.2160 0.2306 0.2472 0.2337
0.2000 ---0.0186 0.0182 0.0189 0.0489 0.0876 0.1037 0.1291 0.1635 0.1397 0.2170 0.1533 0.1744 0.2052 0.1936 0.1621
0.2125 --0.0186 0.0185 0.0256 0.0575 0.0805 0.1005 0.1320 0.1304 0.1573 0.1771 0.1727 0.1689 0.1843 0.1641 0.1522
0.2250 --0.0188 0.0189 0.0262 0.0369 0.0509 0.0888 0.0953 0.1375 0.1277 0.1341 0.0748 0.1412 0.1157 0.1536 0.1466
0.2375 --0.0191 0.0188 0.0261 0.0264 0.0616 0.0995 0.0990 0.1536 0.1385 0,1588 0.1906 0.1841 0.1606 0.1629 0.1617
0.2500 - 0.0192 0.0193 0.0190 0.0266 0.0451 0.0762 0.0975 0.1015 0.1131 01392 0.1642 0.1350 0.1886 a1440 0.1145

Table E. 15: Attractor performance by connectivity and loading level for networks with initial
neighbourhoods of size S.

193

Performance Enhancement - Geometric Data

Connectvlty
0.05 0.10 015 0.20 0.25 0.30 0.35 0.40 0 45 0.50 0 55 0.60 0 65 0.70 0.75 0.80 0.85 090 095

0.0125 0.0210 0.7555 0.7887 0.7883 0.8038 0.7957 0.8117 0.7942 0.8089 0.8108 0.8020 0.7894 0.8035 0.8157 0.7787 0.7887 0.8003 0.7882 0.7886
0.0250 0.0075 0.3048 0.7269 0.7301 0.7629 0.7719 0.7649 0.7427 0.7874 0.7709 0.7850 0.7824 0.7863 0.7877 0.7928 0.7876 0.7663 0.7880 0.7955
0.0375 0.0081 0.0084 0.4769 0 6808 0.6871 0.7332 0.7439 0.7269 0.7392 0.7318 0.7507 0.7649 0.7560 0.7571 0.7618 0.7728 0.7633 0.7509 0.7580
0.0500 - 0.0068 0.0125 0.3192 0.6271 0.6508 0.6929 0.7074 0.7105 0.7088 0.7128 0.6654 0.6825 0.7229 0.6929 0.7163 0.7117 0.7188 0.7059
0.0625 0.0094 0.0093 0.1156 0.5611 0.6315 0.6278 0.6245 0.6588 0.6616 0.6798 0.6840 0.6207 0.6892 0.7189 0.6799 0.6753 0.7029 0.6829
0.0750 - 0.0093 0.0094 0.0203 0.2384 0.5089 0.6110 0.5889 0.5992 0.6408 0.6431 0.5885 0.6316 0.6122 0.6397 0.6413 0.6314 0.6602 0.6427
0.0875 - 0.0093 0.0092 0.0092 0.0579 0.3140 0.4390 0.5427 0.5390 0.5615 0.5581 0.5180 0.5414 0.5855 0.5848 0.5932 0.6009 0.5766 0.5577
0.1000 - 0.0095 0.0096 0.0115 0.0231 0.1486 0.3822 0.4895 0.5061 0.4867 0.5399 0.5421 0.5404 0.5386 0.5248 0.5691 0.5634 0.5021 0.5517

p 0.1125 1-0.0099 0.0098 0.0098 0.0194 0.0395 0.1738 0.4451 0.4280 0.4495 0.4958 0.4751 0.5128 0.4987 0.5175 0.5189 0.5355 0.5036 0.5016
0.1250 0.0099 0.0099 0.0119 0.0367 0.1523 0.2825 Q3367 0.4299 0.4945 0.4624 0.4806 0.4852 0.4769 0.4823 0.5103 0.5059 0.4777
0.1375 0.0096 0.0098 0.0098 0.0157 0.0858 0.2212 Q3038 0.3966 0.4153 0.4104 0.4425 0.4703 0.4462 0.4661 0.4767 0.4435 0.4815
0.1500 - 0.0098 0.0099 0.0099 0.0139 0.0311 0.1711 0.1752 0.3510 0.3459 0.3434 0.3707 0.4201 0.3789 0.4552 0.4165 0.4076 0.4547
0.1625 --0.0102 0.0102 0.0102 0.0142 0.0263 0.0540 0.1885 0.2720 0.2953 0.4006 0.3569 0.3889 0.3832 0.3927 0.4054 0.4292 0.4055
0.1750 - 0.0100 0.0101 0.0102 0.0102 0.0203 0.0606 Q1014 0.2343 0.2306 0.3268 0.3751 0.3444 0.3792 0.3745 0.3649 0.3764 0.3821
0.1875 --0.0103 0.0102 0.0103 0.0123 0.0341 0.1023 0.1857 0.2057 0.2597 0.2996 0.3022 0.3550 0.3291 0.3524 0.3522 0.3537
0.2000 --0.0102 0.0102 0.0103 0.0122 0.0281 0.0681 0.1130 0.1709 0.1925 0.2622 0.3275 0.2948 0.3259 0.3400 0.3249 0.3182
0.2125 ---0.0106 0.0105 0.0104 0.0105 0.0147 0.0210 0.1125 0.1285 0.2082 0.2848 0.2715 0.3072 0.3180 0.3139 0.3364 0.3268
0.2250 ---0.0103 0.0103 0.0103 0.0103 0.0124 0.0642 0.1112 0.1513 0.1899 0.2054 0.2519 0.3145 0.2584 0.2807 0.3172 0.3210
0.2375 - 0.0105 0.0105 0.0105 0.0105 0.0165 0.0266 0.0894 0.1479 0.1806 0.1765 0.2582 0.2636 0.2553 0.3172 0.2964 0.3017
0.2500 --0.0104 0.0105 0.0105 0.0105 0.0125 0.0208 0.0428 0.1303 0.1730 0.1978 0.2108 0.2258 0.2725 0.2587 0.2902 0.2987

Table E. 16: Attractor performance by connectivity and loading level for networks with initial

neighbourhoods of size 0.

Connectivity
0.05 0.10 0.15 0 20 0 25 0.30 0.35 0.40 0.45 050 065 060 06S 0.70 0.75 0.80 O es 090 0 95

0.0125 0.0443 0.6172 0.7659 0.7583 0.7606 0.7612 0.7735 0.7728 0.7750 0.7782 0.7680 0.7659 0.7856 0.7825 0.7800 0.7760 0.7814 0.7725 0.7784
0.0250 0.0078 0.1634 0.5539 0.7124 0.7233 0.7293 0.7505 0.7429 0.7341 0.7641 0.7599 0.7710 0.7666 0.7507 0.7594 0.7519 0.7651 0.7642 0.7667
0.0375 0.0084 0.0509 0.2221 0.4590 0.6065 0.6831 0.6907 0.6917 0.7115 0.7098 0.7397 0.7443 0.7384 0.7355 0.7515 0.7253 0.7381 0.7082 0.7329
0.0500 0.0088 0.0158 0.0804 0.2786 0.4527 0.5982 0.5932 0.6210 0.6200 0.6487 0.6538 0.6884 0.6757 06840 0.6695 0.6667 0.6776 0.8880 0.6909
0.0625 0.0093 0.0094 0.0569 0.1306 0.2435 0.4260 0.5184 0.5682 0.6153 0.6319 0.6080 0.6243 0.6366 0.6501 0.6681 0.6353 0.6717 0.6796 0.6698
0.0750 0.0094 0.0094 0.0243 0.1014 0.2477 0.3027 0.4326 0.5100 0.4990 0.5594 0.5310 0.5490 0.6059 0.5975 0.5885 0.5238 0.5813 0.6003 0.5784
0.0875 0.0092 0.0092 0.0149 0.0347 0.1038 0.1710 0.3406 0.4478 0.3814 0.4598 0.4755 0.5170 0.5292 0.5157 0.5262 0.5844 0.5722 0.5792 0.5429
0.1000 0.0096 0.0096 0.0115 0.0341 0.0913 0.1838 0.2654 0.3410 0.4078 0.4583 0.4733 0.4829 0.4718 04928 0.5308 0.5432 0.5324 0.5309 0.5228

a 0.1125 0.0098 0.0098 0.0098 0.0175 0.0816 0.1174 0.2417 0.2711 0.3770 0.4270 0.3997 0.4185 0.4748 0.4547 0.4428 0.4851 0.4759 0.5023 0.5175
r 0.1250 0.0098 0.0099 0.0099 0.0158 0.0397 0.1179 0.1813 0.2002 0.2802 0.3203 0.3688 0.3940 0.4150 0.4101 0.4553 0.4686 0.4531 0.5109 0.4865

0.1375 0.0098 0.0098 0.0096 0.0156 0.0482 0.0759 0.1483 0.1753 0.2235 0.2654 0.3044 0.3414 0.3526 03605 0.3774 0.3601 0.4115 0.3862 0.4021
0.1500 0.0097 0.0099 0.0099 0.0099 0.0195 0.0839 0.1162 0.1645 0.2067 0.2603 0.2319 0.3142 0.3149 0.3283 0.3990 0.3872 0.3695 0.4106 0.4230
0.1625 0.0102 0.0102 0.0102 0.0122 0.0162 0.0340 0.0976 0.1487 0.1735 0.1901 0.2711 0.2439 0.3011 0.3096 0.3364 0.3466 0.3824 0.3448 0.3694
0.1750 0.0102 0.0102 0.0102 0.0102 0.0202 0.0460 0.0975 0.1337 0.1234 0.1846 0.2244 0.2303 0.2324 0.3390 0.3231 0.3247 0.3139 0.3176 0.3531
0.1875 . 0.0102 0.0102 0.0102 0.0102 0.0183 0.0514 0.0899 0.1226 0.1750 0.1898 0.2357 0.2642 0.2764 0.2964 0.2695 0.3031 0.3390 0.3125
0.2000 0.0102 0.0102 0.0102 0.0102 0.0102 0.0183 0.0787 0.1008 0.1396 0.1762 0.1931 0.2568 0,2406 0.2884 0.2875 0.3012 0.3038 0.3332
0.2125 - 0.0105 0.0105 0.0105 0.0105 0.0168 0.0513 0.0694 0.0842 0.1505 0.1243 0.2307 0.2226 0.2445 0.2417 0.2822 0.2952 0.2903 0.2950
0.2250 - 0.0103 0.0103 0.0103 0.0103 0.0145 0.0185 0.0601 0.0930 0.1040 0.1356 0.1364 0.1694 0.2152 0.2096 0.2444 0.2763 0.2912 0.3022
0.2375 0.0105 0.0105 0.0105 0.0105 0.0105 0.0186 0.0479 0.0917 0.1025 0.1328 0.1270 0.1856 0.1767 0.2295 0.2669 0.2500 0.2715 0.2540
0.2500 0.0104 0.0105 0.0105 0.0105 0.0105 0.0125 0.0349 0.0507 0.1039 0.1164 0.1402 0.1675 01706 0.2004 0.2089 0.1984 0.2484 0.2635

Table E. 17: Attractor performance by connectivity and loading level for networks with initial
neighbourhoods of size 1.

Connectivity
005 010 015 0.20 0 25 0.30 0.35 040 0 45 0.50 0 55 060 0 65 0.70 0 75 060 0 65 090 095

0.0125
0.0250
0.0373
0.0500
0.0625
0.0750
0.0875
0.1000
0.1125
0.1250
0.1375
0.1500
0.1625
0.1750
0.1875
0.2000
0.2125
0.2250
0.2375
0.2500

. ýý ý "ý ý. "^ý "^^v. iaia u. ioa1 U. fwf U. 1004 U. b1W U. (UW 0.7503
0.0798 0.2531 0.5536 0.6398 0.7222 0.7716 0.7366 0.7528 0.7654 0.7612 0.7663 0.7609 0.7621 0.7830 0.7465 0.7787 0.7895 0.7813

- 0.0325 0.2135 0.2748 0.4302 0.4193 0.5801 0.5854 0.7097 0.7547 0.6957 0.7429 0.7421 0.7578 0.7462 0.7424 0.7698 0.7254 0.7120
0.0085 0.1300 0.2340 0.2892 0.3988 0.4815 0.4939 0.5591 0.6429 0.6003 0.5329 0.6329 0.5681 0.7037 0.6258 0.6777 0.7057 0.6872
0.0092 0.0976 0.1413 0.1231 0.3201 0.2122 0.3842 0 4238 0.4670 0.5199 0.4916 0.5089 0.5557 0.5757 0.5924 0.5160 0.5060 0.5354
0.0091 0.0181 0.0799 0.1132 0.2898 0.4281 0.4445 0.4100 0.4936 0.4192 0.4636 0.5537 0.6028 0.5382 0.6337 0.6176 0.6383 0.6344
0.0089 0.0266 0.0526 0.1436 0.1665 0.1899 0.4530 0.4170 0.4303 0.5170 0.4718 0.4762 0.5411 0.5218 0.5508 0.5408 0.6125 0.6021

" 0.0101 0.0204 0.0689 0.1173 0.1524 0.2511 0.2591 0.3050 0.3351 0.3780 0.4670 0.4743 0.4895 0.5538 0.4729 0.5936 0.5153 0,5444
0.0099 0.0099 0.0482 0.0848 0.1805 0.0577 0.2296 0.2303 0.3590 0.2362 0.4060 0.4007 0.3329 0.3980 0.4938 0.4408 0.4176 0.4462
0.0102 0.0102 0.0103 0.0304 0.1353 0.1785 0.2280 0.3195 0.3508 0.2976 0.3576 0.3829 0.3565 0.4833 0.4746 0.4259 0.4111 0.5103
0.0096 0.0096 0.0285 0.0566 0.1614 0.1701 0.1014 0.2657 0.2721 0.3440 0.3219 0.3369 0.4000 0.4055 0.4313 0.4376 0.4360 0.4438
0.0097 0.0097 0.0098 0.0290 0.0940 0.1374 0.1372 0.1365 0.2509 0.2206 0.2889 0.3475 0.4327 0.4316 0A520 0.4273 0.4382 0.4333
0.0099 0.0101 0.0101 0.0200 0.0598 0.1320 0.1585 0.1406 0.2024 0.2869 0.3092 0.2869 0.3167 0.3012 0.3254 0.2874 0.3310 0.3810
0.0103 0.0103 0.0102 0.0303 0.0302 0.1341 0.0973 0.0595 0.1710 0.1431 0.2818 0.2594 0.2653 0.3697 0.3561 0.2982 0.3505 0.2451
0.0101 0.0101 0.0101 0.0199 0.0781 0.1157 0.1239 0.1243 0.1239 0.1587 0.1927 0.2418 0.2363 0.2571 0.2338 0.3391 0.2110 0.3256
0.0100 0.0099 0.0099 0.0197 0.0397 0.0759 0.1319 0.1743 0.1494 0.1653 0.2241 0.1760 0.2484 0.2567 0.2764 0.2927 0.2842 0.3449
0.0103 0.0104 0.0103 0.0207 0.0210 0.0408 0.0903 0.1269 0.1085 0.1369 0.1384 0.2653 0.2467 0.1996 0.3039 0.2866 0.2872 0.2951
0.0103 0.0102 0.0101 0.0204 0.0305 0.0883 0.0881 0.1079 0.1158 0.1439 0.1790 0.2122 0.1608 0.2348 0.2744 0.2516 0.3245 0.2909
0.0102 0.0103 0.0103 0.0103 0.0204 0.0603 0.0305 0.0694 0.0691 0.1075 0.1606 0.1955 0.2367 0.2366 0.1779 0.2285 0.2920 0.2362

" 0.0103 0.0102 0.0103 0.0102 0.0204 0.0202 0.0407 0.1352 0.1344 0.1535 0.1171 0.1696 0.2129 0.2124 0.2127 0.3216 0.2920 0.2537

Table E. 18: Attractor performance by connectivity and loading level for networks with initial
neighbourhoods of size 2.

194

Conn. clvity
0.05 0.10 0.15 0.20 0 25 0.30 0.35 0.40 0 45 0.50 ass 0.60 0.65 0 70 0.75 0 80 0.85 0.90 095

0.0125 - 0.0188 0.3014 0.5734 0.7360 0.7733 0.7695 0.7801 0.7746 0.7805 0.7812 0.7902 0.7917 0.7764 0.7798 0.7870 0.7823 0.7857 0.7724
0.0250 - 0.0078 0.1181 0.3700 0.4809 0.5483 0.6532 0.6467 0.7244 0.7492 0.7658 0.7604 0.7688 0.7762 0.7595 0.7770 0.7471 0.7572 0.7745
0.0375 - 0.0082 0.0657 0.1954 0.3429 0.4662 0.5745 0.5991 0.6474 0.6574 0.6954 0.7147 0.6917 0.7208 0.7105 0.7225 0.7103 0.7368 0.7226
0.0500 0.0089 0.0326 0.1052 0.2822 0.3748 0.4270 0.5030 0.5651 0.5985 0.6331 0.6296 0.6530 0.6494 0.6593 0.6574 0.6650 0.6841 0.6805
0.0625 - 0.0100 0.0112 0.0978 0.1750 0.3447 0.3463 0.4679 0.4805 0.5400 0.5632 0.5925 0.6436 0.6096 0.6207 0.6287 0.6492 0.6457 0.6513
0.0750 - 0.0150 0.0560 0.1743 0.2331 0.2885 0.3922 0.4192 0.4655 0.4643 0.5171 0.4957 0.5648 0.5853 0.5507 0.5550 0.5641 0.5730
0.0875 --0.0111 0.0452 0.1195 0.1798 0.2481 0.3145 0.3734 0.4006 0.4307 0.4335 0.4975 0.5227 0.5072 0.5422 0.5495 0.5376 0.5930
0.1000 - 0.0096 0.0339 0.0878 0.1701 0.2214 0.2264 0.3299 0.3558 0.4004 0.4077 0.4561 0.4611 0.4546 0.4841 0.5026 0.5225 0.5118
0.1125 0.0098 0.0213 0.0704 0.1422 0.2068 0.2275 0.3048 0.3120 0.3638 0.4022 0.4010 0.4573 0.4259 0.4487 0.5000 0.4863 0.4955
0.1250 - 0.0099 0.0238 0.0363 0.0681 0.1821 0.2390 0.2962 0.3018 0.2772 0.3978 0.4032 0.3941 0.3914 0.4261 0.4336 0.3775 0.4465
0.1375 - 0.0098 0.0098 0.0626 0.1225 0.1733 0.1954 0.2335 0.2764 0.3257 0.2814 0.3718 0.3660 0.3632 0.4283 0.3753 0.4378 0.4552
0.1500 - 0.0099 0.0119 0.0256 0.0577 0.1118 0.1505 0.1813 0.2107 0.2608 0.2908 0.3134 0.3094 0.3761 0.3982 0.4193 0.4069 0.4307
0.1625 - 0.0102 0.0142 0.0340 0.0856 0.1104 0.1804 0.1663 0.2347 0.2592 0.2912 0.2676 0.3229 0.3010 0.3271 0.3465 0.3787 0.3643
0.1750 --0.0101 0.0102 0.0182 0.0457 0.0898 0.1289 0.1697 0.1835 0.2155 0.2476 0.2552 0.3055 0.3165 0.3229 0.3364 0.3724 0.3542
0.1875 0.0102 0.0102 0.0162 0.0224 0.0594 0.1052 0.1285 0.1499 0.2054 0.2131 0.2598 0.2393 0.2769 0.2814 0.2923 0.3374 0.3208
0.2000 --0.0103 0.0102 0.0123 0.0461 0.0561 0.0879 0.1406 0.1682 0.1736 0.2149 0.2118 0.2140 0.2733 0.2900 0.2704 0.2793 0.3289
0.2125 - 0.0105 0.0105 0.0188 0.0512 0.0634 0.0711 0.1187 0.1660 0.1540 0.2084 0.2034 0.2072 0.2369 0.2903 0.2851 0.3011 0.3050
0.2250 0.0104 0.0103 0.0124 0.0267 0.0426 0.0950 0.0911 0.1318 0.1613 0.1725 0.1940 0.2084 0.2403 0.2539 0.2412 0.2367 0.2459
0.2375 - 0.0105 0.0105 0.0147 0.0229 0.0349 0.0673 0.1016 0.1256 0.1394 0.1802 0.1528 0.2336 0.2236 0.2304 0.2419 0.2914 0.2443
0.2500 - 0.0105 0.0104 0.0105 0.0146 0.0390 0.0432 0.0799 0.1261 0.1259 0.1410 0.1840 0.1918 0.2109 0.2030 0.2440 0.1968 0.2581

Table E. 19: Attractor performance by connectivity and loading level for networks with initial
neighbourhoods of size 3.

Conn. ctvity
0.05 0.10 0.15 0.20 0.25 0.30 0.35 040 0 45 0.50 0 55 0.60 0.65 0.70 0.75 0.80 0 85 0.90 095

0.0125 -. 0.3476 0.5620 0.6858 0.7612 0.7738 0.7642 0.7862 0.7921 0.7893 0.7817 0.7794 0.7717 0.7603 0 7682 0.7777 0.7714
0.0250 - 0.1732 0.3628 0.5170 0.6357 0.6643 0.6933 0.7249 0.7572 0.7690 0.7668 0.7750 0.7726 0.7553 0.7621 0.7542 0.7655
0.0375 --0.0794 0.2837 0.3985 0.4601 0.4992 0.5905 0.6194 0.6580 0.6669 0.6914 0.7128 0.7153 0.7157 0.7314 0.7327 0.7482
0.0500 ---0.0419 0.1905 0.2879 0.3946 0.4669 0.4835 0.5590 0.6214 0.6055 0.6457 0.6354 0.6679 0.6733 0.6776 0.6854 0.6834
0.0625 - 0.0246 0.1273 0.2028 0.3121 0.4055 0.4464 0.5065 0.5640 0.5757 0.5902 0.8010 0.6239 0.6153 0.6333 0.6611 06721
0.0750 - 0.0257 0.1041 0.2309 0.3081 0.3658 0.3943 0.4560 0.4205 0,5228 0.5192 0.5098 0.5291 0.5639 0.5709 0.5810 0.6074
0.0875 0.0185 0.0721 0.1600 0.2206 0.2866 0.3329 0.3999 0.4725 0.4601 0.4930 0.4839 0.5060 0.4898 0.5161 0.5147 0.5448
0.1000 0.0115 0.0432 0.1101 0.1840 0.2393 0.2889 0.3472 0.3388 0.4163 0.4623 0.4735 0.5010 0.4903 0.5377 0.5201 0.5195
0.1125 0.0136 0.0272 0.1096 0.1611 0.2186 0.2472 0.2943 0.3090 0.3752 0.4270 0.4108 0.4014 0.4607 0.4691 0.4944 0.4732
0.1250 0.0099 0.0328 0.0617 0.1375 0.2196 0.2338 0.3001 0.3265 0.3364 0.3954 0.4162 0.3985 0.4196 0.4255 0.4805 0.4600
0.1375 0.0098 0.0233 0.0905 0.0975 0.1964 0.2198 0.2238 0.2966 0.2600 0.3186 0.3300 0.3880 0.3822 0.4019 0.4119 0.4039

-ý 0.1500 --0.0118 0.0179 0.0354 0.0994 0.1444 0.2010 0.2218 0.2675 0.2904 0.2997 0.3257 0.3828 0.3832 0.3893 0.3929 0.4305
0.1625 - 0.0102 0.0204 0.0438 0.1069 0.1428 0.1729 0.1840 0.2469 0.2724 0.2820 0.3057 0.3047 0.3242 0.3516 0.3350 0.3850
0.1750 - 0.0102 0.0101 0.0420 0.0802 0.1201 0.1476 0.1900 0.2219 0.2377 0.2995 0.2937 0.2995 0.3278 0.3309 0.3223 0.3821
0.1875 - 0.0102 0.0123 0.0264 0.0579 0.0995 0.1137 0.1258 0.1833 0.1962 0.2012 0.2700 0.2524 0.2480 0.3354 0.2938 0.3433
0.2000 ---0.0102 0.0102 0.0323 0.0499 0.0743 0.1304 0.1569 0.1772 0.1323 0.2044 0.2169 0.2115 0.2760 0.2651 0.2518 0.2600
0.2125 - 0.0105 0.0127 0.0188 0.0453 0.0949 0.1092 0.1374 0.1506 0.1835 0.2245 0.2378 0.1961 0.2106 0.2881 0.2824 0.2794
0.2250 - 0.0103 0.0103 0.0165 0.0403 0.0603 0.0932 0.1004 0.1135 0.1543 0.1713 0.2335 0.2088 0.2374 0.2248 0.2634 0.2773
0.2375 - 0.0105 0.0105 0.0188 0.0310 0.0650 0.0938 0.1130 0.1388 0.1497 0.1543 0.2081 0.1929 0.2371 0,2678 0.2233 0.2518
0.2500 0.0105 0.0105 0.0168 0.0208 0.0432 0.0710 0.1114 0.1188 0.1402 0.1327 0.1145 0.1788 0.2074 0.2246 0.2350 0,2753

Table E. 20: Attractor performance by connectivity and loading level for networks with initial
neighbourhoods of size 4.

Conn. etvlty
0.05 010 OAS 0.20 0 25 0.30 0.35 0.40 0.45 0.50 0 55 060 0 63 070 0 75 080 ass 090 096

0.0125 --0.4519 0.5328 0.6579 0.7403 0.7624 0.7641 0.7777 0.7992 0.7723 0.7821 0.7856 0.7175 0.7497 0.7277 0.7637
0.0250 ---0.1166 0.4658 0.4993 0.6240 0.6840 06591 0.7337 0.7415 0.7463 0.7404 0.7490 0.7460 0.8097 0.7835 0.7326
0.0375 - 0.0702 0.0955 0.3467 0.5474 0.5912 0.6363 0.6561 0.6869 0.6527 0.7320 0.7714 0.6713 0.6870 0.7222 0.7319
0.0500 ---0.1392 0.1935 0.3318 0.3671 0.3971 0.5420 0.6885 0.6289 0.6801 0.6318 0.6974 0.7437 0.8889 0.6745 0.7585
0.0625 - 0.0363 0.2029 0.2763 0.2892 0.4484 0.5645 0.5809 0.5647 0.6183 0.6266 0.6122 0.6478 0.6544 0.6510 0.6261
0.0750 --0.0098 0.1042 0.2053 0.2586 0.3725 0.3973 0.3872 0.3800 0.4069 0.4257 0.4080 0.4652 0.4640 0,3876 0.5350
0,0875 ---0.0094 0.1188 0.1758 0.1681 0.3217 0.3141 0.3461 0.3745 0.5136 0.5221 0.5388 0.5206 0.5158 0.5264 0.5912
0.1000 --0.0182 0.1296 0.1385 0.3097 0.2466 0.3446 0.3631 0.3586 0.3509 0.5158 0.3958 0.5154 0.4567 0.4636 0.4599
0.1125 ---0.0304 0.1438 0.1869 0.2121 0.2910 0.3239 0.3599 0.4482 0.4044 0.3363 0.6034 0.4829 0.4252 0.6452 0.4715

C 0.1250 - 0.0094 0.0373 0.1343 0.1432 0.2224 0.2074 0.3490 0.3202 0.3339 0.3553 0.4084 0.4761 0.4652 0.3955 0.4454
0.1375 ---0.0202 0.0302 0.1260 0.1161 0.2840 0.2212 0.3053 0.3857 0.3583 0,3408 0.4516 0.4201 0.4119 0.4131 0.4122
0.1500 - 0.0103 0.0303 0.0503 0.1254 01860 0.2430 0.2514 0.3128 0.2838 0.3337 0.3256 0.3569 0.3354 0.2852 0.2360
0.1625 - 0.0100 0.0101 0.0493 0.0867 0.1926 0.2425 0.2174 0.3161 0.3187 0.3505 0.3916 0.2471 0.3553 0.3959 0.3468
0.1750 - 0.0102 0.0202 0.0102 0.0803 0.1970 0.1793 0.1612 0.1970 0.2135 0.2860 0.3079 0.3781 0.2543 0.4196 0.2993
0.1875 ----0.0201 0.0102 0.0201 0.1161 0.1336 0.1155 0.1506 0.1701 0.1681 0.2085 0.1496 0.1772 0.2421 0.2826 0.3357
0.2000 - 0.0104 0.0103 0.0103 0.1081 0.1254 0.1620 0.1695 0.1977 0.2226 0.1614 0.2309 0.2935 0.2303 0.3214 0.2223
0.2125 - 0.0107 0.0108 0.0107 0.0828 0.0728 0.1025 0.0924 0.1215 0.1857 0.2192 0.1770 0.2795 0.2375 0.2776 0.3225
0.2250 --0.0105 0.0104 0.0208 0.0411 0.0997 0.0803 0.1364 0.1987 0.1816 0.2481 0.3118 0.2314 0.2644 0.3551 0.3341
0.2375 ---0.0104 0.0104 0.0306 0.0205 0.0700 0.1091 0.1721 0.1892 0.1561 0.2791 0.1636 0.1809 0.2711 0.1183 0.2457
0.2500 - 0.0105 0.0105 0.0104 0.0413 0.0104 0.1000 0.1644 0.1101 0.2338 0.1819 0.1550 0.2251 0.2399 0.2578 0.2174

Table E. 21: Attractor performance by connectivity and loading level for networks with initial
neighbourhoods of size 5.

195

An experimental assessment of the performance of several associative memory models.
S. P. Turvey, S. P. Hunt, N. Davey, R. J. Frank 1

Abstract
The performance characteristics of four different
associative memory models are examined. The models
differ in the training algorithm employed, although all
four employ algorithms that are iterative, and use local
information. They are classified using the method of
Abbott [1], their attractor performance is examined,
and the time taken to train them is measured.

1. Introduction
The dynamics and performance of the Hopfield

associative memory model have been thoroughly
investigated and are well understood. Several

alternative training algorithms have been proposed,
each of which leads to an increase in capacity over the
original Hopfield model, and an improvement in

attractor performance, usually at the expense of an
increase in training time.

This paper compares the performance of a number of
such high capacity models, with respect to training
time, attractor performance and the stability of stored
patterns. The work has two goals. First, to classify the
models in question using the method developed by
Abbott [1]. Second, to evaluate the models against a
consistent set of criteria in order to ascertain which of
them gives the best balance of performance.

2. Models examined
2.1 Common properties
Each model employs a fully connected network of N
bipolar (+1/-1) processing elements, as used in the
11opfield model. Each network is trained using a set,
II, of N-ary, bipolar pattern vectors, {l; P}. The N by N
weight matrix which results will be denoted by W, and
the state (output) of the i'th unit by S1.

The local field (input) of the i'th unit, hi , is given by:

hi = EwijSj
jsi

The aligned local field of the i'th unit for pattern k' is

P

If all aligned local fields for a tP are non-negative it is
guaranteed to be stable.

The temporal evolution of unit states during recall is
governed by:

1 ifh, >0

-1 if h, <0
S, if h, =0

Unit states may be updated either synchronously or
asynchronously. All models investigated here employ
asynchronous, random-order updates, and updating
continues until the network reaches a stable state.
These dynamics, coupled with a symmetric weight
matrix, guarantee simple point attractors [2].

Each l; P that is a stable state of the trained network is
known as a fundamental memory. The capacity of a
network, C, is the maximum number of fundamental
memories it can hold. The loading of a network, a, is
a measure of the size of the training set relative to the
number of processing elements in the network, giving

a= and ax =C

2.2 The Iterative Local Learning rule (ILL)
This learning rule, devised by Diederich and Oppcr
[3], is similar to the perceptron convergence
procedure. The algorithm attempts to push the values
of all units' aligned local fields to be greater than or
equal to the training threshold, T. for all
Algorithmically, this rule is as follows:

Beginning with a zero weight matrLr
Repeat until all aligned local fields are correct

For each training pattern, io, in turn
Clamp the pattern onto the network
For each processing element in turn

If h f; f<T, change the weights on
connections into unit i according to:

41P P
ýw; j 0- (l"1)

N

Note that the resulting %V will have a zero diagonal,
but is unlikely to be symmetric. A variant of this rule
exists that enforces z'= bwjj for each weight change,
thus guaranteeing symmetry and, hence, simple point

Department of Computer Science, University of Hertfordshire, Hatfield, Ilerts, AL10 9AB. United Kingdom
e-mail: (s. p. turvey, s. p. hunt, n. davey, r. j. frank) @herts. ac. uk

196

attractors. We have chosen not to examine it here
because its attractor performance is not markedly
superior to the ILL rule (see [4] for details).

197

2.3 The Iterative Local Learning with Equal
Fields rule (ILL-Eq)

Diederich and Opper [3] proposed a modification to
ILL in which weights are changed so that the aligned
local fields of all units asymptotically approach 1 for

every pattern. In the implementation employed here,
training continues until the value of every aligned local
field falls within the range 0.998

..
1.002.

Training proceeds as follows:

Beginning with a zero weight matrix
Repeat until all aligned local fields are correct

For each training pattern, j', in turn
Clamp the pattern onto the network
For each processing element in turn

Update incoming weights according to:
1- hipSP °Sý

Aw, j =N (i0j)

Performance may be varied by changing the
acceptable range of values for aligned local fields.
The effect this has on attractor performance and
training time is the subject of work to be published.

2.4 The Krauth - Mezard learning rule (KM)

Another modification to ILL, this rule was proposed
by Krauth and Mezard [5]. It attempts to present each
training pattern an optimal number of times. At each
unit, the pattern with the smallest aligned local field is
chosen for presentation. Once again, weights are
changed until all aligned local fields are greater than or
equal to the training threshold, T:

Beginning with a zero weight matrix
Repeat until all aligned local fields are correct

For each unit, i, in turn
Select the pattern, i; °, with the smallest
aligned local field for this unit
Update the incoming weights according to:

PP
Awiý_N(i0j)

This rule has been shown produce optimal y values, y
is described in section 3.1.

2.5 The Blatt - Vergini learning rule (BV)

Blatt and Vergini [61 propose a training algorithm that
is guaranteed to find an appropriate weight matrix
within a finite number of presentations of each pattern.
The minimum number of presentations to perform, P,
is calculated as being the smallest integer conforming
to:

Pz log, Nz
(1-T)

where k and T are real valued constants such that
1<k: 5 4 and 0: 5 T< 1, and Nis the number of units in
the network. k is referred to as the memory coefficient

of the network, because the larger it is, the fewer steps
are required to train the network. In this work, k=4
and T=0.5 for all networks trained by this rule.
The algorithm is as follows:

Beginning with a zero weight matrix
For each pattern in turn

Clamp the pattern onto the network
Form: =I to P

For each processing element in turn
Update incoming weights according to:

k m-1
Aw, ý =N(, f 4X1 -hj)

Remove all self-connections
Note that patterns are added incrementally without
interfering with patterns learnt previously.
2.6 Relationship to the pseudo-inverse rule
The algorithms employed in the ILL-Eq and BV
models are both designed to generate weight matrices
that are approximations of the weight matrix generated
by the pseudo-inverse rule of Personnaz et al (7].
According to this rule W=!! t

, where - is the matrix
whose columns are the 1f, and !t is its pseudo-
inverse.

ILL-Eq and BV both employ iterative learning
algorithms that use local information to generate a
weight matrix, W- ! mot, with its diagonal set to zero.
Whilst the BV rule guarantees a solution to the
problem within a finite, and calculable, number of
iterations through the training set, there is no upper
bound on the number of iterations that may be required
for the ILL-Eq to satisfy its stopping criterion. Blatt
and Vergini also state there to be no restrictions on the
training set with respect to correlation or linear
dependency.

Interestingly, Gorodnichy [81 has demonstrated that
optimum performance in pseudo-inverse trained
networks is obtained when the weight matrix has a
non-zero diagonal (specifically, a scaled-down version
of the diagonal generated by the pseudo-inverse rule).
We considered modifying the BV rule to take this into
account, but chose not to do so since we have found
the improvements to be relatively small.
3. Experimental procedure
3.1 y distribution analysis
Abbott (1] identified three classes of associative
memory, characterised by the distribution of y values
for a trained network. The y value for unit ! for the
pattern, 4', is obtained by dividing the aligned local
field by the magnitude of the incoming weight vector:

h? D

7' ̀ Iw I

198

For each network we may obtain a set, r, containing
the y values for all the network's fundamental

memories.

Abbott's classification system is based upon the
distribution of y values in r. The three classes are:

1) Networks with a Gaussian distribution of y values

2) Networks with all y values the same (VY1 " Yj = Yo)

3) Networks with a clipped Gaussian distribution of y
values, where Vy1 " y; ? Ymm

Class 1 includes networks trained using Hopfield's
algorithm, so they are referred to as Hopfield-type

networks. Interestingly, Abbott calculates that the
upper bound for cx1 in Class 1 is 1.4, which is much
higher than a,,, for the `vanilla' Hopfield network.

Class 2 is made up of networks trained using the
pseudo-inverse rule, or derivatives thereof. The
capacity of networks trained using this rule is N
linearly independent patterns (giving a=1).

Class 3 is known as the Gardner class, after the work
of Gardner [9], whose training algorithm gives
networks with a,. =2.
3.2 Attractor performance

Kanter and Sompolinsky's [10] R value is used as a
measure of attractor performance:

R= -m0 . L1-mý

A series of sample starting states are chosen, each of
which is a partially corrupted fundamental memory
state, which acts as the target final state for the
network. mo is the proportion of each sample pattern
which must be the same as its target state in order that
all sample patterns will converge upon their targets.
m, is the greatest overlap of each sample state with the
fundamental memories of the network other than the
one on which it is based. Details of the method used
for calculating this value are presented in [11].

3.3 Training time

The time taken to train a network is measured in two
ways. Firstly, the number of iterations through the
training set is measured and secondly, the mean time
taken to perform an iteration is calculated. A mean
value is calculated for the real training time as the time
taken to perform a single iteration changes for some of
the models as they near their stopping criteria.
Performing both measurements allows us to take into
account the differing computational complexity of
each learning rule.

Measurements were conducted on a Wintel-compatible
PC with a 600M1ia AMD Athlon CPU and 128MB of
RAM, running Windows 98SE. All simulations were

written and run in Java, using the Sun JDK 1.3 with
the Hotspot performance engine.
3.4 Network parameters
All networks were of size N=100. Each model was
tested by training networks with sets containing 50
random training patterns (i. e. at a loading of (x=0.5).
The y distribution analyses were performed on single
networks. The R calculations are averaged over 50
networks, and the training time calculations are
averaged over 100 networks in each case

4. Results

4.1 y distribution analysis

Plotting the distribution of the y; values allows us to
confirm the class to which each network belongs from
the shape of the distribution. As might be expected,
the two pseudo-inverse approximators have very
similar y distributions, as shown below.

7GAn

2

Figure 1. Distribution of y; values for ILL-Eq and 13V
networks.

Whilst it is clear that in neither case are all y values the
same, Figure 1 shows very tight distributions of y
values for the ILL-Eq and BV networks. This is not
surprising as both these models are designed to lind
weight matrices that approximate !! t. Thus. we place
them in Class 2.

Plotting the distribution of the y, values for the ILL
and KM models gives us:

"enn

c
0
u
n
t

Figure 2. Distribution of yjvalues for ILL and KM networks.
From Figure 2, it is confirmed that the ILL and KM
models fall into Class 3.

199

4.2 Attractor performance

Table 1 shows R values for
including the ILL and KM
different training thresholds:

Model
JLL (T=1)
ILL (T=10)
ILL (T=100)

KM (T=1)
KM (T=10)
KM (T=100)

II, L-Eq

The KM (T=100) rule seems best if the sole gauge of
performance is to be R. However, the time taken to

the different models, train this network is around 24 minutes (Table 2).

models at a range of Whilst this is not a prohibitively long time, it has to be
acknowledged that the increase in R that results when

R T is changed from 1 to 100 is relatively small, and the
trade-off is probably not worthwhile. 0.196

0.246 The ability of the BV rule to learn new fundamental
memories without re-training with the whole training

0.262 set makes it a better choice for on-line applications. A
0.253 further investigation of the behaviour of these models
0 254 is warranted, taking into account such issues as the

. nature and number of spurious attractor states, in order 0.270 to determine just how important these relatively small
0.215 differences in R values are.

BV 1 0.214
Table 1. Values of R for a range of models and parameters

In terms of attractor performance, the model with the
highest R and therefore `best' attractor performance
would appear to be KM with T=100.

4.3 Training time

Ave. no. Ave. time to Approx. time
Model

lof

epochs train (secs) per epoch (secs)

ILL (T=1) 16.5 1.6 0.1

(T=10) 95.6 9.8 0.1

(T=100) 895.4 91.4 0.1

KM (T=1) 4.6 18.7 4.1

(T=10) 33.4 144.7 4.3

(T=100) 320.5 1416.5 4.4

ILL-Eq 52.9 18.6 0.4

BV 4.0 2.2 0.6
Table 2. Training times for a range of models/parameters

The first two columns of figures are the mean number
of times the training set needed to be presented to
complete training. and the mean total training time.
The final column is derived from the first two to give
an indication of the time taken for each pass through
the training set. It should be noted that the KM model
does not run through the entire training set in the same
way as the other models, so the KM figures represent
the time taken to present 50 patterns.

S. Discussion

A number of interesting observations may be made
from the above results. Firstly, for the models where a
training threshold is used it is clear that R increases
with T indicating that this is one means of improving
performance, though at the expense of training time.
Secondly, the KM rule performs better than the ILL
rule, though only marginally so at the higher
thresholds. Thirdly, both KM and ILL generally
perform better than the pseudo-inverse rules with
respect to R, and have a higher maximum capacity (2N
vs M.

6 References
[1] L. F. Abbott, "Learning in Neural Network

Memories" Network. Comp. Neural Sys. vol. 1,
pp. 105-122,1990

[2] D. J. Amit, Modelling brain function: the world of
attractor neural networks. Cambridge, UK:
Cambridge University Press, 1989

[3] S. Diederich and M. Opper, "Learning of
Correlated Patterns in Spin-Glass Networks by
Local Learning Rules" Physical Review Letters
vol. 58, pp. 949-952,1987

[4] N. Davey, R. G. Adams, S. P. Iiunt, "Iiigh
performance associative memory models and
symmetric connections", Proceedings of ISA
2000, to be published December 2000

[5] W. Krauth and M. Mczard, "Learning algorithms
with optimal stability for neural networks" J.
Phys. vol. A20, pp. L745-L752,1987

[6] M. G. Blatt and E. G. Vergini (1991). "Neural
Networks: A Local Learning Prescription for
Arbitrary Correlated Patterns", Physical Review
Letters, vol. 66, pp. 1793-1797

[7] L. Pcrsonnaz, I. Guyon, and G. Dreyfus,
"Collective Computational Properties of Neural
Networks: New Learning Mechanisms" Physical
Review A vol. 34, pp. 4217-4228,1986

[8] D. Gorodnichy, 'The optimal value of self.
connection". Proceedings of IJCNN'99,1999

[9] E. Gardncr, 'The space of interactions in neural
network models" Journal of Physics vol. A21,
pp. 257-270,1988

[10] I. Kanter and 11. Sompolinsky, "Associative
Recall of Memory without Errors". Physical
Review A vol. 35, pp. 380.392,1987

[11] N. Davey and S. P. Ilunt, 'The Capacity and
Attractor Basins of Associative Memory
Models", Proceedings of I WANN99,1999

200

Non-Random Weight Dilution in High Performance
Associative Memories

S. P Turvey, S. P. Hunt, N. Davey, R. J. Frank

Department of Computer Science,
University of Hertfordshire,

College Lane, Hatfield, ALIO 9AB. United Kingdom

s. p. turvey@herts. ac. uk, s. p. hunt@herts. ac. uk, n. davey@herts. ac. uk, r. j. frank@herts. ac. uk

Abstract The consequences of two techniques for

symmetrically diluting the weights of the standard
Hopfield architecture associative memory model,

trained using a non-Hebbian learning rule, are

examined. This paper reports experimental
investigations into the effect of dilution on factors

such as: pattern stability and attractor performance.
It is concluded that these networks maintain a

reasonable level of performance at fairly high

dilution rates.

Key-Words Associative Memory, Hop field
Networks, Weight Dilution, Capacity, Basins of
Attraction, Perceptron Learning.

1 Introduction
The associative memories examined in this paper are
neural networks based around the standard Ilopfield

architecture [10]. It has been known for some time
[1] that it is possible to build networks with superior
performance to that of the original model. This
improved performance is achieved by replacing
Hopfield's one-shot Ilebbian learning rule, either
with a rule that finds an approximation to the

projection weight matrix, or else with a rule that
implements perceptron-style learning. (See [5,6,14]
for a comparison of performance of different

models).
Weight dilution is a technique for reducing the
degree of connectivity within what would otherwise
be fully-connected networks. Connections are
removed after training has taken place (post-training
dilution). It has even been suggested that an
associative memory may be trained by starting with
a fully connected network with random fixed

weights and systematically removing a fraction of
the connections [12].

For one-shot Hebbian learning it is known [13] that
capacity drops linearly with the fraction of
connections removed.

2 Models Examined
In each experiment we take a network of N units
which we train with a set of N-ary, bipolar (+1/-1)

training vectors, {°}. The N by N weight matrix is
denoted by W. and the state (output) of the i'th unit
is denoted by S,
The high-capacity model studied here is a
straightforward modification of the standard
Hopfield network. The net input, or local field, of a
unit, is given by:

1:, = F'wVSj
jot

where wy is the weight on the connection from unit j

to unit i. The next state of a unit is derived from its
local field and its current state:

1 ifhj>01
x= -1 ifh1<01

Si if hi =a
where the threshold, 0, , is normally taken as zero.
Unit states may be updated synchronously or
asynchronously. Isere we use asynchronous, random
order updates. These network dynamics and a
symmetric weight matrix guarantee simple point
attractors in the network's state space.
A training vector, ý, will be a stable state of the
network if the aligned local fields, h, ý are non-
negative for all i (assuming all ß are zero). Each
training vector that is a stable state is known as a
fundamental memory of the trained network. The
capacity of a network is the maximum number of
fundamental memories it can store. The loading, o:,
on a network is calculated by dividing the number of
vectors in the training set by the number of units in
the network, N.

201

2.1 Learning Rules

Two learning rules have been employed in this work.
The first approximates the projection matrix
generated using the pseudo-inverse rule described by
Diederich & Opper [7]. The second is Gardner's
perceptron-like symmetric local learning rule [8].

2.1.1 Blatt & Vergini

Blatt & Vergini [3] present a learning rule which
takes the form of an iterative method for

approximating the projection matrix. The training
algorithm is guaranteed to find an appropriate weight
matrix within a finite number of presentations of
each pattern if such a matrix exists.
The minimum number of presentations of the
training set to perform, P, is calculated as being the
smallest integer conforming to:

PzlogA
N2

(1-T)

where k and T are real valued constants such that
1<k: 5 4 and 0: 5 T<1, and N is the number of units
in the network. k is referred to as the memory
coefficient of the network; the larger it is, the fewer
steps are required to train the network. In this work,
k=4 and T=0.5 for all networks trained by this rule.
The algorithm is as follows:

BEGINNING WMi A ZERO WEIGHT MATRIX

FOR EACH PATZERN IN TURN

APPLY 771E PATTERN ONTO THE NETWORK
FORm: -ITOp

FOR EACH PROCESSING ELEMENT IN TURN

UPDATE INCOMING WEIGHTS ACCORDING TO:

Aw; ý =I%.
)

(i
-l«X -'i)

REMOVE ALL SELF-CONNECTIONS

Note that patterns are added incrementally without
corrupting patterns learnt previously.

2.1.2 Symmetric Local Learning

Gardner [9] pointed out that an iterative perceptron-
like training rule could be made to produce
symmetric weights by simply updating both wij and
WI, when either changes. Gardner also showed that
such algorithms would find a symmetric weight
matrix, if one existed, for a particular training set.

The symmetric local learning rule is given by:

BEGQV WITH A ZERO WEIGHT MATRIX

REPEAT UNTIL ALL LOCAL FIELDS ARE CORRECT

SET THE STATE OF NETWORK TO ONE OPINE IV

FOR EACH UNIT, I, IN TURN

cAUui. A, E hf r'
IF THIS IS LESS THAN T THEN CHANGE THE WEIGHTS ON

CONNECTIONS INTO AND OUT OF UNIT I ACCORDING TO:

ýIpýp

Awu =Awl =N

2.2 Weight Dilution
We present two approaches to weight dilution. The
first involves the removal of a proportion of the
connections chosen at random, the second involves
selecting the connections to be removed based upon
some heuristic by which it is hoped that the most
efficacious connections are retained [2,41.

2.2.1 Random Dilution

A value for the proportion of connections to be
removed is chosen. This value is multiplied by the
number of connections within the fully-connected
network and then halved to give the number of
connection pairs to be removed. Then, pairs of units
are chosen at random and, if a connection between
each pair exists, the bi-directional link is removed.
Ensuring that the bi-directional link is fully removed
maintains symmetry within the individual
connections themselves. This is an important pre-
requisite to being able to guarantee that the network
will converge upon some stable state when allowed
to update freely.

2.2.2 Informed Dilution

Informed dilution operates in much the same way as
random dilution in that once a connection is found
the bi-directional link is severed. The difference,
however, is in the manner in which the connections
are chosen. A value for the proportion of
connections to be removed is chosen. This value is
again multiplied by the number of connections
within the fully-connected network and halved to
give the number of connection pairs to be removed.
Then, the network's connections are scanned to rind
the smallest weight value (that which is closest to
zero). Once the units with the smallest weight value
have been identified the connections between them
are removed. The process continues until the
required number of connections has been eliminated.

3 Analysing Performance
For an associative memory model to be effective, the
training patterns should not only be stable states of

202

the network, but should also act as attractors in the
network's state space.
As stated above, the perceptron-type learning rule
will store a set of training vectors in the network
when the aligned local fields of those vectors have

all been driven to be non-negative. Moreover, the
larger these aligned local fields become, the better

the attractor performance should be. We examine
the performance of our networks while varying the
loading, a.

We also consider the effect of correlations in the
training patterns. An uncorrelated training set is one
in which the patterns are completely random.
Correlation can be increased by varying the
probability that a given bit in a training pattern is +1
(or -1). We refer to the probability of any bit being

+1 in each the training vector as the bias, b, on the
training set. So: Vi, p " prob ('=+1) = b, Thus, a
bias of 0.5 corresponds to an uncorrelated training
set and a bias of 1 corresponds to a completely
correlated one, as does a bias of 0.

3.1 Pattern Stability

A pattern is deemed stable if, when applied to the
network and the network permitted to run to
convergence, the resultant state is equal to the start
state. In other words, a stable pattern is a fixed point
of the network dynamics.
Pattern stability provides a good indicator of the
ability of a particular network to withstand dilution.
It is calculated by performing this operation using
each of the training patterns as a start state and is
given as a proportion of the total number of patterns,
i. e. if half the trained patterns are stable then
stability=0.5 .

3.2 Attractor Performance

We use, R, the normalized mean radius of the basins
of attraction [11], as a measure of attractor
performance. It is defined as:

1_^\
R= _Mn

where mo is the minimum overlap an initial state
must have with a fundamental memory for the
network to converge on that fundamental memory,
and m, is the largest overlap of the initial state with
the rest of the fundamental memories. The angled
braces denote an average over sets of training
patterns. Details of the algorithm used can be found
in [11].

4 Results

experiments were carried out on networks of size
N=100 trained using patterns of bias 0.5 and 0.9 and
at a fixed loading point of ct=0.50.

4.1 Pattern Stability

In this section we present the results measuring the
stability of the trained patterns while varying the
degree of weight dilution within the network.

4.1.1 Blatt & Vergini

1.00

". a

1. a
A
N SAO

1. p

Figure 1: Pattern stability for network trained with Blatt & Vergini
under a loading aß. 50 (N=100) using uncorrelated patterns
(bß. 5). The upper line represents informed dilution.

1.00

".. o

1. w

0.20

Figure 2: Pattern stability for network trained with Blatt & Vergini
under a loading a-0.50 (No 100) using correlated patterns (b. 0.9),
The upper line represents informed dilution.
4.1.2 Symmetric Local Learning

I. "

.ýI.
w

Jai ß. 4o

a20

In this section we present the results of the Figure 3: Pattcrn stability for nctwork trained with Symmetric
performance analyses outlined in section 3. All Local Learning undcr it loading «-0.50 (N 100) using

203

t. 00 m---------
coo &20 040 0 60 too

Dilution

4. a
000 6.20 040 "40 460

Dilution

900 "1$ 046 664 LN
Dilution

uncorrelated patterns (bß. 5). The upper line represents informed

dilution.

,. 00

S...

.... w

OAO

0.20

too
too 0.20 040 0.60 &eo

Dilution

Figure 4: Pattern stability for network trained with Symmetric

Local Learning under a loading aß. 50 (N=100) using correlated

patterns (bß. 9). The upper fine represents informed dilution.

4.13 Observations

There are four key observations that can be made
from the preceding set of results:

1) Informed dilution gives a clear and significant
improvement in pattern stability over simple
random dilution. These improvements take the
form of an increase in the level of dilution at
which the networks retain memory of all the
trained patterns.

2) It is possible to remove up to approximately 50%
of the networks' connectivity without a serious
decline in the stability of the trained patterns.

3) The bias of the trained patterns makes very little
difference to the pattern stability. All four plots
describe remarkably similar behaviour.

4) The algorithm used, in the case of these
experiments, also appears to make very little
difference to the effect of dilution on pattern
stability.

4.2 Attractor Performance

In this section we present the results measuring the
attractor performance of the networks while varying
the degree of weight dilution.

4.2.1 Blatt & Vergini

1. oo

0.00

0. w

0.40

0.20

e. 00
0.00 0.70 0.20 0.10 OAS 0.00 0.60 0.70 8.94 0.00

Dllutlon

Figure 5: Attractor performance for network trained with Blatt &
Vergini under a loading cz=0.50 (N=100) using uncorrclated
patterns (b=0.5). The upper line represents informed dilution.

1. w

0.00

e. w
a

0.40

0.20

". 00
0.00 0.10 0.20 am 0A0 0.60 0.60 4.19 0.04 090

Dilution

Figure 6: Attractor performance for network trained with Blatt &
Vergini under a loading a, -0.50 (N lOO) using uncorrelatcd
patterns (b-0.9). The upper line represents informed dilution.

204

ýP ri¬ m- Inlnfined

4.2.2 Symmetric Local Learning

too

". w

s. eo
19

1. IO

0.20

-P nrlnm - In/-A

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.00 0.00

Dilution

Figure 7: Attractor performance for network trained with
Symmetric Local Learning under a loading x=0.50 (N=l00) using

uncorrelated patterns (bß. 5). The upper line represents informed

dilution.

1.00

too

0.00
oC

0. Ao

0.20

- o--ý - W--A

Figure 8: Attractor performance for network trained with
Symmetric Local Learning under a loading a=0.50 (N=100) using

uncorrelated patterns (bß. 9). The upper line represents informed

dilution.

4.2.3 Observations

The pattern of the attractor performance results is
similar to that of pattern stability. Specifically:

1) Informed dilution significantly better than simple
random dilution.

2) It is possible to remove up to approximately 40%
of the networks' connectivity without serious
damage to the attractor performance of the
network.

3) The bias of the trained patterns makes very little
difference to the attractor performance.

4) The algorithm used, in the case of these
experiments, also appears to make very little
difference to the effect of dilution on attractor
performance.

5 Discussion
This paper reports two important results:
1) Informed dilution is markedly better than random

dilution.
2) Informed dilution demonstrates that a large

number of connections are redundant in networks
of this type and at these loadings.

As the loading of these networks is a=0.5 they are
below their maximum storage capacity; it may be of
interest to repeat these experiments at higher
loadings where the networks may be under greater
stress with regard their maximum capacity.
It is interesting to note that, for both performance
measures, failure, when it occurs, proceeds with
great rapidity. There is a sharp decrease in both
proportion of stable patterns and attractor
performance once the networks begin to lose their
stability and ability to act as attractors. In this
respect, our results differ from those of
Sompolinksy, whose work on randomly diluting the
traditional Fiopfield network [?] resulted in a linear
decline in pattern stability.
The system of informed dilution we have presented
is very simple; no re-training of the network is
required. It is possible that in biological systems
complex strategies may be similarly unnecessary.
Chechik et al [4] have noted that during brain
maturation there is a reduction in connectivity that is
expensive to maintain from an energy perspective. It
is interesting that our artificial system also
demonstrates levels of redundancy in connectivity
albeit in a much simpler model.
Our current work has focused on networks that have
been created as sparsely-connected tabula rasa.
Training these networks has presented new
challenges and performance characteristics. We
hope to be able to present these new findings at a
later date.

References:

[1] Abbott, L. F., Learning in neural network
memories. Network: Computational Neural
Systems, 1990.1: p. 105-122.

[2] Barbato, D. M. L. and O. Kinouchi, (2000)
Optimal pruning in neural networks, Physical
Review E 62(6), 8387-8394

[3) Blatt, M. G. and E. G. Vcrgini, Neural networks:
a local learning prescription for arbitrary
correlated patterns. Physical Review Letters,
1991.66(13): p. 1793-1797.

[41 Chcchik, G., I. Meilijson and l:. Ruppin (1998)
Synaptic Pruning in Development: A
Computational Account, Neural Computation
10,1759-1777

205

0.00
too 0.10 0.20 0.30 0.40 6.50 0.60 0.70 0.10 000

Dilution

[5] Davey, N. and R. Adams (2001). High
Performance Associative Memory Models and
Sign Constraints Proceedings of Neural
Networks and Applications (NNA 2001), 416-
420,2001

[6] Davey, N. and S. P. Hunt (2000). A Comparative
Analysis of High Performance Associative
Memory Models. Proceedings of 2nd
International ICSC Symposium on Neural
Computation (NC 2000) 55-61

[7] Diederich, S. and M. Opper (1987). Learning of
Correlated Patterns in Spin-Glass Networks by
Local Learning Rules. Physical Review Letters
58,949-952

[8] Gardner, E. (1988). The space of interactions in
neural network models, J. Phys. A 21,257-270;

[9] Gardner, E., H. Gutfreund and I. Yekutieli
(1989). The Phase Space of Interactions in
Neural Networks with definite Symmetry,
J. Phys. A 22,

[10] Hopfield, J. J., Neural networks and physical
systems with emergent collective
computational abilities. Proceedings of the
National Academy of Sciences (USA), 1982.
79: p. 2554-2558.

[11] Kanter, I. and H. Sompolinsky, Associative
Recall of Memory Without Errors. Physical
Review A, 1987.35(1): p. 380-392.

[12] Krauth, W., J: P. Nadal and M. Mezard (1988),
The role of stability and symmetry in the
dynamics of neural networks, J. Phys. A21,
2995-3011.

[13] Lbpez, B. and W. Kinzel (1997) Learning by
dilution in a neural network, J. Phys. A 30 7753-
7764

[14] Sompolinsky, H. (1986), Neural Networks with
nonlinear synapses and a static noise, Physics
Review A 34, L519-L523.

[15] Turvey, S. P., S. P. Hunt, N. Davey & R. J. Frank.
An experimental assessment of the performance
of several associative memory models. in
International Conference on Artificial Neural
Networks and Genetic Algorithms (ICANNGA
2001). 2001.

206

