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Abstract 

This thesis investigates the way in which information about the structure of a set of 

training data with `natural' characteristics may be used to positively influence the design of 

associative memory neural network models of the Hopfield type. This is done with a 

view to reducing the level of connectivity in models of this type. 

There are three strands to this work. Firstly, an empirical evaluation of the 

implementation of existing theory is given. Secondly, a number of existing theories are 

combined to produce novel network models and training regimes. Thirdly, new strategies 
for constructing and training associative memories based on knowledge of the structure of 

the training data are proposed. 

The first conclusion of this work is that, under certain circumstances, performance benefits 

may be gained by establishing the connectivity in a non-random fashion, guided by the 

knowledge gained from the structure of the training data. These performance 
improvements exist in relation to networks in which sparse connectivity is established in a 

purely random manner. This dilution occurs prior to the training of the network. 

Secondly, it is verified that, as predicted by existing theory, targeted post-training dilution 

of network connectivity provides greater performance when compared with networks in 

which connections are removed at random. 

Finally, an existing tool for the analysis of the attractor performance of neural networks of 

this type has been modified and improved. Furthermore, a novel, comprehensive 

performance analysis tool is proposed. 
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Figure 9.14: The attractor performance of networks initially connected 

using the local neighbourhood strategy and with further symmetric 

connectivity added at random. Training patterns were from the character 

data set. Attractor performance is shown at 5% connectivity intervals. 

The dashed vertical lines represent the level of neighbourhood 

connectivity before either compensatory or additional random 

connectivity was added. The loading on the network is a=0.2500 (100 

patterns) ................................................................................................. 
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1. INTRODUCTION 

1.1. Introduction 

The purpose of this thesis is to answer the question: "What benefits are there to using 

information about the task in guiding the design of the pattern of connectivity of a sparsely 

connected Hopfield-type neural network? ". 

There are three themes to this work: Firstly, the empirical investigation of existing 

theory; secondly, the combining of theories to produce novel network models and 

training regimes; thirdly, the proposal of new strategies for constructing and 

training associative memories. 

Hopfield-type networks used for research purposes are usually trained on random 

bit-patterns and the structure and correlations present in more natural data are not 

taken into account. Little work on relating sparse connectivity to the nature of the 

training data exists and even less is available empirically evaluating any resulting 

network models. Therefore, this thesis is not a theoretical work but rather an 

empirical evaluation of a number of architectural modifications to the original 

Hopfield network. The modifications made however will be shown to be based on 

established, published theory. 

The key results are presented in chapters 8 and 9. It is demonstrated that, under 

certain conditions, correlations in the training data can be exploited through 

particular patterns of connectivity and that this can lead to improved capacity and 

attractor performance. 

Finally, while biological plausibility is not a driving factor in this investigation, 

implausibility is avoided wherever practicable. The results obtained therefore, may 

well be interesting from both an engineering and biological standpoint. 
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1.2. Methodology and Research Goals 

The methodology employed throughout this work is to conduct empirical 

evaluations based on many averaged network simulation runs using both random 

and designed datasets. 

A variety of distinct tasks needed to be completed in order to accomplish the 

overall aim of the investigation. These were: 

1. To investigate the current state of the art with respect to Hopfield-type 

associative memories. High performance learning rules and performance 

metrics were of particular interest. A learning rule was to be chosen for use 
in later experiments. 

2. To develop a neural network simulator suitable for immediate use and 

capable of being extended for later, further experimentation. 

3. To manufacture sets of training data that simulate the structure of natural 

patterns and to investigate the nature of intra- and inter-pattern correlation 
in the manufactured data sets 

4. To investigate the history and current standing of the field of sparsely 

connected associative memory architectures. 

5. To investigate the impact on network performance of post-training removal 

of connectivity. As a simple method of reducing network connectivity, this 

strategy needs to be investigated for purposes of later comparison. 

6. To investigate the effectiveness of two techniques for constructing sparse 

connectivity prior to training. The first of these will be a simple random 

connectivity strategy; the second will create connectivity based on some 

knowledge of the structure of the training data. 

7. To investigate whether the attractor performance of sparsely connected 
networks can be improved with additional connectivity. 
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1.3. Thesis Outline 

The structure of the thesis is as follows: 

Chapter 2 presents a brief history of the Hopfield network together with an 

explanation of the architecture and the dynamics of the network. A review of the 

background literature pertinent to this investigation is included as is a presentation 

of a number of different learning rules applicable to the basic Hopfield architecture. 

An explanation of a method of categorisation of the weight matrices resulting from 

the presented learning rules is given. 

Chapter 3 describes a number of measures used in assessing the performance of the 

networks created in the course of this investigation. Issues with existing tools are 

identified and solutions to them are proposed. Also presented is a new attractor 

performance measure providing the same functionality as existing tools while 

extending and improving the quality and quantity of analytical information 

provided. 

Chapter 4 presents the results of the application of the performance tools described 

in chapter 3 to fully-connected networks trained using the learning rules described 

in chapter 2. The learning rules are evaluated according to their performance and a 

learning rule is chosen for use in further work. 

Chapter 5 introduces the field of sparsely connected associative memory networks. 

A justification of the approach taken in this investigation to establishing sparse 

connectivity is provided based on a number of existing works. Various techniques 

used to establish sparse connectivity are described. A review is then presented of 

the existing literature related to sparse connectivity in the context of associative 

memories. 

Chapter 6 presents the results of a series of experiments using networks in which 

connectivity has been removed after training. Training is carried out using two 
learning rules. The first of these is the learning rule identified for future use in 

chapter 4; the second is another high-performance learning rule from chapter 2, 

included for purposes of comparison. The performance of the networks is 

evaluated with respect to the level of pattern stability and attractor performance at 
each level of connectivity. 
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Chapter 7 presents the results of analyses performed on non-random training data 

carried out in preparation for future work. The pseudo-natural datasets are 

introduced and the characteristics of such data explained. The analysis tools are 

described alongside details of their use. Finally, the results of applying the analysis 

tools are presented and the implications of the results discussed. 

Chapter 8 deals with the subject of creating Hopfield-type associative memories 

with structured sparse connectivity and two methods of creating sparse connectivity 

are described and justified. Networks are trained with various numbers of input 

patterns and results of five types of performance analysis are presented. The 

implications of the results are then discussed. 

Chapter 9 builds on the results of chapter 8 and presents the results of an 

investigation into ways the attractor performance of the networks might be further 

improved once an initial level of connectivity has been established locally. Firstly, a 

technique for correcting networks which exhibit some degree of error in their 

training is investigated. Secondly, the effect of adding further connectivity to the 

networks is examined. The networks are assessed with respect to the attractor 

performance metric described in chapter 3. 

Chapter 10 concludes the thesis and summarises the findings described in the earlier 

chapters. The novel areas of work are identified and some practical implications of 

the work discussed. Finally, some potential avenues for future work are identified. 

1.4. Thesis Format 

The chapters of this thesis are numbered sequentially from 1 and are identified in 

the text by being preceded by the word `chapter'. Sections exist within chapters 

and are identified along with the chapter number to which they belong. Cross- 

references to sections begin with the section symbol §, such that §3.1 would refer 

to the first section in the third chapter. Figures and tables are similarly labelled. For 

example, `figure 4.2' refers to the second figure in the fourth chapter. Tables are 
denoted by using the word `table' in place of `figure' where appropriate. Figures 

and tables are indexed separately. In practice, this means that both `figure 2.1' and 
`table 2.1' could exist in chapter 2, the former referring to the first figure and the 
latter, the first table. 
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1.5. Common Notation 

For convenience, some frequently used notation is identified and defined. 

The letter N is frequently used to represent the number of neurons in a network. 

Neuron indices are usually represented using the letters i and j. 

A network's current state vector is represented by the letter S and the state of an 

individual neuron represented by S. 

An individual training vector is represented by the letter g and an individual bit 

represented by ý,, 

A network's weight matrix is denoted using the character W and individual weight 

are referred to using the notation W. This represents the weight on the 

connection between from neuron j to neuron i. 

The local field of an individual neuron, i, is denoted h, 
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2. A SURVEY OF THE HOPFIELD AND RELATED NETWORK 
MODELS 

2.1. Overview 

It is arguable that the entire modern field of associative memory neural networks 

stems from the seminal work of Hopfield (1982; 1984) in which the physical 

properties of the spin glass provide inspiration for a neural network. Kinzel (1987) 

provides an introduction to the relationship between spin glasses and neural 

networks. In that work spin glasses are described as being disordered magnetic 

materials in which, at low temperatures, the atoms freeze to form a random 

structure. The analogy is formed between the atoms of the spin glass as neurons, 

and the magnetic forces through which they interact as synapses. 

With Hopfield's publications came a resurgent interest in recurrent networks and 

content addressable memories and whilst undeniably the catalyst for this renaissance, 

Hopfield was neither the first nor alone in investigating spin glass-like models. For 

instance, Little (1974) suggested a model bearing similarities to that proposed by 

Hopfield. As observed by Gurney (1997) however, the quantum mechanical slant 

to Little's work may have prevented it from being the genesis of the modern field 

that Hopfield's paper was to become. 

Even earlier than Little's work, Willshaw (1969) proposed a simple associative 

network based on the principles and properties of the hologram. This work bears 

little resemblance to the Hopfield model as it is known today but nevertheless 

incorporates thresholded neurons at its core and so registers as a somewhat distant 

cousin. Gardner-Medwin (1976) examined the similarities with respect to recall 

and update dynamics between the brain and recurrent networks mainly of the 

Hebb (1949) type. 
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2.2. Hopfield Networks 

Hopfield's original network (1982) uses binary or bipolar neurons derived from the 

work of McCulloch and Pitts (1943). A neuron is always in some state. In the case 

of binary neurons the state takes the form of one of the values 0 and 1 and for 

bipolar neurons the state is represented by the values -1 and +1. The current state 

of neuron i is denoted S; where the symbol i indicates the index of the neuron and 

takes the value 1.. N, where N is the number of neurons in the network. The 

current state of the network as a whole is represented by the state vector S. 

Each neuron has an activation threshold against which its input is evaluated. The 

decision as to whether or not an individual neuron should fire is wholly based upon 

the value of the neuron's input relative to the activation threshold. The network is 

fully-connected in that each neuron is connected to all others. This pattern of 
interconnection makes networks of this type recurrent in nature, as connections 
feed information back to other neurons. 

The connections between neurons (often termed synapses) are bidirectional and 
have values associated with them known as weights. The matrix of values 

representing these weights is called the weight matrix and is given the symbol W. 

An individual connection links the output of one neuron to the input of another 

and the weight value can affect the traversal of the connection by some signal 

emitted by the outputting neuron. The process of calculating a neuron's input, the 
determination whether or not it should fire, the value of the signal emitted, and the 

manner of its propagation to the inputs of other neurons is determined by a 

network's update dynamics. 
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2.3. Network Dynamics 

The dynamics of a recurrent network influence its recall characteristics and 

performance. Given some start state, the weights and dynamics of a network 
determine the states through which the network will pass. For networks that 

possess less than full connectivity, the effect of the pattern of connectivity of the 

network on the network dynamics cannot be ignored and rather than specific 

allowance having to be made for such an architecture the absence of a connection 

can be considered as equivalent to the weight on that connection being zero, as 

Hopfield suggests. Such a connection will thus have no effect on the dynamics of 

the network as will be seen below. 

2.3.1. Simple Update Dynamics 

The original Hopfield network is presented as possessing neurons that randomly 

and asynchronously evaluate themselves in parallel with regard to whether or not 

their level of activation, called the net input and termed h; at neuron i, is above or 

below some threshold value denoted 0. 

The calculation of the net input of a neuron is performed as follows: 

N 

IW si (2.1) 
J=t, frj 

The next state S, ' of neuron i is calculated from the net input: 

+1 if h, >0 
S, = S, if h, =0 (2.2) 

-1 if h, <0 

where 0 is normally taken as 0. 

8 



Equation (2.2) represents the neurons' output function and when graphed, 

excepting the special case where h; is equal to zero, looks as follows: 

Since true parallelisation is not possible using computer software simulations on 

non-parallel hardware, sequential equivalents must be employed. Some 

methods by which this can be accomplished are detailed below. 

There are two fundamental methods of updating neurons: synchronous and 

asynchronous. During synchronous update, all the neurons of a network are 

updated at the same time while asynchronous update differs in that neurons are 

updated one by one. 

Regardless of whether the update dynamics are synchronous or asynchronous, 

symmetric weights (W, = W) are required for a valid energy function. The 

presence of an energy function implies simple dynamics in the form of fixed 

points or n-cycles. As the network state evolves according to the rules of the 

dynamics (equations (2.1) and (2.2)) the energy function never increases. The 

implication of this is that the stored patterns form local minima of the energy 

surface described by the combination of equation (2.3) and all 2N possible states 

of the network. The energy function for the standard Hopfield dynamics is as 
follows (Hopfield, 1982): 

E=-1 
N 

ES, h, (2.3) 2 
, _, 
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Synchronous Updates 

The term synchronous update is somewhat misleading in the context of 

software simulations of neural networks. It is not possible to genuinely update 

all neurons simultaneously so an equivalent system must be sought. In 

synchronous updating, the neurons' outputs are calculated en masse before they 

are fed back to act as inputs to those neurons during the next time step. 

Using this method, all neurons are effectively updated simultaneously. This 

can cause the network to fall into 2-cycles with the network's neurons 

collectively switching between 2 distinct states; these states are always some 

pattern and its inverse. 

There are a number of problems with the idea of synchronous updating. The 

notion that all neurons in the brain might update at the same time is clearly 

flawed. The requirement for some centralised clock with which to 

synchronise the updates illustrates this. Also, when updating synchronously, 

there is no opportunity for any neuron to affect the update of any other. It is 

this fact can lead to a network simply flipping between states and not 

converging on a solution. 

Asynchronous Updates 

During asynchronous update, the neurons are selected for update one at a 

time, in either a fixed or random order. It is the order in which the neurons 

are selected that is the primary means of distinguishing between the three 

different ways in which asynchronous updating may be implemented. 

During fixed order asynchronous update, neurons are simply selected in some 
fixed order and the output of each one is calculated. The output is immediately 

available as an input value to neurons yet to be updated. The act of updating all 

the neurons in the network once is termed an update iteration. 

Random order, asynchronous updates guarantee convergence on a stable pattern 

given a symmetric, zero-diagonal weight matrix (Hopfield, 1982). Asymmetric 

weights may result in the network being unable to converge upon a single state. 
When this occurs, the network commonly ends up either cycling around a 
number of states without settling or even wandering chaotically. 
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Two variations of random order asynchronous dynamics exist. The first of these 

represents the closest serial analogy to the parallel dynamics proposed by 

Hopfield. Neurons are randomly chosen for update at discrete time steps. At 

each time step, each neuron has an equal chance of being selected and over a 

sufficiently long period of time all neurons should have been updated 

approximately the same number of times. This variant is termed random update 

with replacement since after update a neuron is replaced in the pool of those 

available to be selected for update. It should be apparent that the concept of an 

update iteration cannot apply to this update method. 

The second random order variant reintroduces the update iteration and specifies 

that each neuron may only be selected for update once in each update iteration. 

In all other aspects this update method operates in the same way as random 

update with replacement. This variant is termed simply random update. 

Throughout this work, asynchronous pseudo-random updates are employed. For 

speed, a large table of random values is precalculated and this table determines 

the order in which neurons are updated. 
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2.3.2. Stochastic Dynamics 

Stochastic neurons are those where the value of the net input to the neuron 

determines not whether the neuron will fire but rather, the probability that the 

neuron will fire. The degree of stochasticity in the network is commonly 

controlled by some notion of `temperature' that may be gradually reduced as 

network update progresses. 

This idea of the `temperature' of a system has its roots in the field of 

thermodynamics where the temperature of an entity is related to the level of 

energy in the system. When applied to neural networks the pseudo-temperature 

regulates the amount of `random' movement in the network. At a temperature 

of 0a network becomes deterministic in nature. These dynamics can be seen in 

alternative associative memory models such as the Boltzmann machine (Hinton 

and Sejnowski, 1983). 

The purpose behind this introduction of noise (the random movement) is to 

prevent the system falling into spurious local energy minima and to aid its 

movement into one of the energy wells of one of the stored patterns. 

A stochastic version of the Hopfield network exists (Hopfield, 1982) whereby 

the convergence state of the network is measured as the average state of each 

neuron over some period of time. In this model, the temperature is not reduced 

and so the network constantly updates with some degree of randomness. 

2.3.3. Continuous Dynamics 

In introducing the network update dynamics it was shown, using equation (2.2), 

that the Hopfield network is often constructed using a step output function. 

Other output functions are possible and are applicable to the Hopfield 

architecture. 

Continuous Hopfield Network 

Hopfield (1984) proposes the construction of a model based on a sigmoidal 

output function. Hopfield shows that, under certain conditions, the stable states 

of the continuous model correspond to those present in the equivalent discrete 

network as, over time, the network saturates out to +1/-1 states. The 

justification of this output function lies in the fact that it may be viewed as 

representing the short-term average of a biological neuron's firing rate. 
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Morita Dynamics 

Morita (1993) presents an interesting modification to the update rule. Whereas 

Hopfield-style associative memories are commonly built using a sigmoid output 

function (continuous Hopfield model) or a step function (discrete Hopfield 

model). Morita presents a non-monotonic output function that, it is claimed, 

provides better performance. 

The output function is given by: 

(u) _ 
1-exp[-cu] 1+ic exp[c'(Iul-h)] (2.4) 
1+exp[-cu] 1+exp[c'(Iul-h)] 

Where, in this case, c, c', and h are positive constants and K is a parameter which 
is usually negative. A graph of this function is shown below (figure 2.2). 

flu) 

Morita states that the use of this output function in both continuous and discrete 

networks greatly improves recollection ability and memory capacity. Morita also 

notes that the continuous model no longer recalls spurious memories with the 

modified dynamics. 

Whilst the claimed attributes of Morita's update rule are undoubtedly of interest, 

a detailed investigation of its implementation is outside the immediate scope of 
this work. 
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2.4. Weight Matrices 

The values possessed by the weight matrix of a particular instance of a Hopfield- 

type network is determined in part by the algorithm employed in embedding the 

patterns which are to be learnt and in part by the patterns themselves. The 

algorithms used to train networks to recognize these patterns are commonly termed 

learning rules. 

The learning rule used to train the original model was inspired by Hebb (1949). 

The assumption is that persistent or repetitive activity at a neural level induces 

lasting (though not necessarily permanent) changes that add to the increased 

embeddedness of the associated pattern. Hebb states this as follows: 

"When an axon of cell A is near enough to excite a cell B and repeatedly or 

persistently takes part in firing it, some growth process or metabolic change 

takes place in one or more cells such that A's efficiency, as one of the cells 

firing B is increased. " 

In its original form above the Hebb proposal is not explicit enough to form part of 

a working model. Quoting from Haykin (Haykin, 1999), the simplest 

interpretation (Stent, 1973; Changeux and Danchin, 1976) of the Hebb proposal 

into a workable training prescription is: 

"7f two neurons on either side of a synapse (connection) are activated 

simultaneously (i. e. synchronously), then the strength of that synapse is 

selectively increased. " 

This method will produce a working weight matrix though it fails to make use of 

all the information available to it. In the prescription outlined above there is no 

distinction between correlation between neurons that are off together (0/0), and 

neurons which are anticorrelated (0/1) in the case of a binary representation. 

The first interpretation of Hebb's proposal then becomes deficient for the purpose 

of generating a suitable weight matrix. The natural evolution of the interpretation 

given above is to take into account the positive and negative activation values 

present in a bipolar representation. This modified scheme is easily presented as a 

system of neural learning based upon the principles of correlation/anti-correlation. 
If two units of a network are in agreement with each other, i. e. are both outputting 
+1 or -1, then the synaptic strength between them, represented in this case by the 
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weight on the connection joining the units, should be increased by some amount. 

If, on the other hand, the two units in question are outputting different values from 

each other then they are in disagreement and the weight should be correspondingly 

decreased. As an equation for forming a weight matrix for the network the 

correlation/anti-correlation method of learning can be represented thus: 

P 

Wý =11 Wl =0 (2.5) 
N N_, 

where W, represents the weight on the connection from neuron j to neuron i and µ 

represents the index of the current training pattern. Summing the correlations over 

all patterns for each neuron pair Y, gives the value for the weight between that pair. 

The condition W, "; =0 enforces the zero diagonal required for guaranteed 

convergence using the asynchronous random network update dynamics described 

in §2.3. 

By training the network in this manner we are reinforcing correct performance and 

`punishing' (through reduction of the weights) the incorrect behaviour. 

The Hopfield model based on Hebbian learning has a relatively low capacity when 

compared with models trained using later algorithms. However, it does have the 

distinction of possessing three important properties that cause it to be generally 

accepted as being a plausible, though unlikely, model of biological neural 

interaction. These three properties (denoted by bold type) are detailed below: 

" The algorithm is local in its use of information. Two forms of locality are 

identified: spatial locality and temporal locality. 

If an algorithm is spatially local, the information that the algorithm requires in 

order to calculate the weight change on the synaptic connection is that which is 

directly available to the two units between which the connection exists. 

For an algorithm to be temporally local, the information that the algorithm uses 

must exist wholly and exclusively at the current point in time and comprise 

only that information contained within the network's state and weights. 

" The algorithm is immediate in its effect. That is, the algorithm requires only a 

single pass through the training set in order to calculate an effective weight 
matrix. A learning rule operating in this way is often called a one-shot learning 
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rule. Other forms of learning rule can require a number of passes through the 

training set before a suitable weight matrix is formed and these are termed 

iterative learning rules. 

" The algorithm is incremental in the way in which it learns new patterns. If a 

learning rule is described as being incremental it is taken to mean that the 

algorithm is capable of embedding new memories in the network without 

reference to, or destroying, those that already exist. 

There exist minor variations on equation (2.5) as shown by Müller and Reinhardt 

(1991). They suggest that for a network that excludes the self-coupling of units a 

normalisation factor of 1/(N- 1) would be appropriate as the summation runs over 

N-1 terms. 

As alluded to in §2.1 the Hebb rule is not the only means by which networks of the 

Hopfield type may be trained. 
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2.4.1. Abbott's Network Classes 

According to Abbott (1990) it has been shown (Abbot and Kepler, 1989) that 

associative memories fall into universality classes identified by the networks' 
behaviour near maximum capacity. Networks may exhibit quite different 

behaviour from each other at lower loadings but those belonging to the same 

class begin to behave similarly as they reach saturation. The importance of 

these universality classes lies in the fact that it becomes less important that the 

model being studied is an absolutely accurate representation of the real system. 

If the model being studied lies in the same class as the real system it is derived 

from then calculations upon the model will elicit the same answers as if they 

were performed on the real system. 

The universality classes are defined by the distribution of stability coefficients 
known as gammas. At first glance, it could seem obvious that the size of the 

local field, It, might be sufficient to indicate the embeddedness of a particular 

pattern at unit i. While it is true that, according to the combination of 

equations (2.1) and (2.2), it is enough for the value h,, termed the aligned local 

field, to be positive to ensure pattern stability; this would imply that simply 

multiplying all the weights of a network would improve the attractor 

performance of the patterns. This is not the case however, as it is not the 

magnitude of the weights that is important for pattern stability but rather the 

size of the weights relative to one another. Scaling every weight by the same 

value will thus have no effect on the stability or otherwise of the patterns in 

the training set. 

Removing the aligned local field's dependence on the magnitude of the 

weights is the key to eliminating this potentially misleading feature. 
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Stability coefficients, as their name implies, provide an indication of the depth 

of embedding of a trained pattern and are calculated as follows: 

µ hNt µ 
__ (2.6) 

where: 

N 
ý/2 

IW, 1= 1Wu (2.7) 
J=I 

The denominator IWI present in equation (2.6) makes the calculation of 

gamma independent of any scaling of the weights. Now, if the gamma values 
for a pattern are all greater than zero then it can be said that that pattern will be a 

stable point of the network. 

In the simplest case, a network consisting of random weights would generate a 
distribution of gammas similar to the following: 
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As might be expected from a matrix of random weights, the distribution of 

gamma values is approximately Gaussian with a zero mean. It can be seen that 

roughly half the values fall below the stability threshold of zero. This worst-case 

class of weight matrices will be termed Class 0. 
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Class 1 

In order to improve the stability of the training set there are two immediate 

strategies that might be employed. They are: shifting the mean of the 

distribution so that a greater number of values become greater than zero, and 

tightening the distribution which will have a similar effect in pulling all the 

values closer together. 

Weight matrices exhibiting these properties can be generated using Hebb-like 

learning rules. Figure 2.4 (below) shows an example of the distribution of 

gammas one might expect from such a matrix. 
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Figure 2.4: Gamma distribution for a network with weights generated using the Hopfield 
learning rule. 

The distribution shown in figure 2.4 has a mean of approximately 2 and a 

smaller proportion of values below the stability threshold. The weight matrix 

that the distribution was produced from was generated by the Hopfield learning 

rule. Weight matrices that have distributions of gamma values similar to that 

above are said to be Class 1 matrices. This category is also known as the Hopfield 

class as it is the distribution of gammas from the Hopfield weight matrix that is 

the archetype of this class. 
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Networks with weight matrices of this type commonly have very low capacities 

of around a=0.15. Abbott's analysis of the Hopfield architecture shows 

however, that a matrix should exist with a narrower Gaussian distribution of 

gammas with a=1.14. Abbott neither specifies nor suggests a technique by 

which such a matrix might be generated. 

With class 1 rules, there is always a non-zero probability that a trained pattern 

may not be stable. 

Learning rules that generate weight matrices of this class are Hebbian learning 

(Hebb, 1949; Hopfield, 1982; Hopfield, 1984) as described above and the rule 
developed by Storkey (1997; 1999). 
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Class 2 

In figure 2.4, the presence of values below the stability threshold indicates that 

not every bit in every pattern is stable for the network from which that 

distribution was obtained. The production of another class of weight matrices is 

possible by learning rules which rectify this situation by moving the distribution 

mean to some positive value (1, in the simplest case) and attempting to make the 

variance of the data zero. 

This class of weight matrices is known as Class 2 or the pseudo-inverse class and 

is so called because the algorithms that fall into this category all calculate or 

approximate the weight matrix based on the calculation of the pseudo-inverse 

of the matrix formed by the training patterns. According to Amit (1989), this 

technique was originally suggested by Kohonen et al (1973) and adapted for 

application to neural networks by Personnaz et al (1986). 

The pseudo-inverse learning rule can be written using matrix notation as 

follows: 

W= M(MTM)-'MT (2.8) 

where W is the connection matrix, and M is the matrix formed by the training 

patterns as column vectors. 

It is important to keep in mind that most weight matrices of this class will be 

generated using algorithms that closely approximate the ideal pseudo-inverse 

weight matrix. Figure 2.5 below, for example, is a distribution of gammas from 

a weight matrix created by the Blatt & Vergini (1991) learning rule. Also, 

Abbott states that a point distribution would only be seen in the extreme case of 

a network of infinite size (N=c0) that has been trained using an infinitely large 

training set (P=te). 
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A typical distribution one might expect to see from weight matrices in this class is 

shown below in figure 2.5 (below): 
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Figure 2.5: Ganuna distribution for a network with weights generated using the Blatt & Vergini 
learning rule. 

As expected, it can be seen in figure 2.5 that the distribution, though tight, 

does not have the zero variance that is stated to be a feature of weight matrices 

based on the pseudo-inverse. As explained above, this is due to the effect only 

being seen as N-- Oo. 

Weight matrices in this class have a capacity of a=1 though at this level of 

loading linear dependencies within the training patterns is inevitable and the 

weight matrix becomes the identity matrix. The maximum practical capacity 

is therefore N-1. 

Learning rules that generate weight matrices of this class are: the pseudo-inverse 

rule, Blatt & Vergini's rule (1991), Iterative Local Learning with Equal Fields 

(Diederich and Opper, 1987). 
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Class 3 

The third class of weight matrices is known as the Gardner class after the 

extensive work on the space of interactions in neural networks by Gardner 

(1988). 

Distributions of gamma values generated from weight matrices in this class have 

all gamma values below some critical value K made at least equal to that value. 

The fact that the correctness of the aligned local field is not enough to 

guarantee that the learned patterns will behave as attractors, as mentioned in 

§2.4.1, is reinforced by Gardner who states that the inequalities: 

E wu4j >x (2.9) 
jti 

subject to the normalisation condition: 

1w' =i (2.10) 
,.; 

should imply larger basins of attraction for larger values of K. Equation (2.10) 

ensures that, by normalising the length of the weight vector, that the aligned 

local fields are themselves the gamma values for the weight matrix. 

So, the larger the value of K of a given weight matrix, the better the attractor 

performance should be. K is directly related to the capacity, a.. (the network 

loading beyond which not all training patterns will be stable), in that a.,,. will 

decrease as K gets larger. It is apparent that the reverse must also be true; for a 

given loading a there exists a maximum value of K, termed K, �.. 
This 

relationship is defined by Gardner as: 

a= 21 
(2.11) 

J eXp -^ Zt (t+xmu )2 dt 

_IC- 
v 
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This relationship is illustrated by the following table showing example values: 

Loading (a) Kmax 

20 

1 0.5 

0.5 1 

0.2 2 

Table 2.1: The relationship between the loading (a) and the maximum possible lower bound for K 
for unbiased random patterns. 

Table 2.1 shows that the maximum loading for networks of this class should be 

close to 2 for unbiased random patterns. Gardner concludes that the maximum 

capacity will increase for correlated patterns. This is an important point and will 
be discussed in greater detail in chapter 5 where the second phase of this work is 

introduced. 

Distributions of gamma values for weight matrices of this class will look similar 

to the graph shown in figure 2.6 (below): 
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Figure 2.6: Gamma distribution for a network with weights generated using a Gardner class 
rule. 
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2.5. Learning Rules 

There is a wide range of learning rules applicable to the architecture described in 

§2.2 and many of these have been mentioned previously in the context of the class 

of weight matrices that they produce. 

What follows is a description of the origin and mechanism of a number of learning 

rules categorised according to the class of weight matrix that they produce. 

2.5.1. Class 1 

The following learning rule all produces a weight matrix that is class 1, or 

Hopfield class. 

Storkey learning rule 

Storkey's learning rule is an attempt to increase the capacity of the original 

Hopfield model without some of the sacrifices brought about by some of the 

more complex algorithms. Storkey's learning rule operates as follows: 

W! ̀ =Wu'-'+N4; ' I -N ; ̀hi, - by 1 (2.12) 

where: 

N 

W; ý 41 (2.13) 
k=l, ksi. J 

where hj is a form of local field or activation at neuron i for pattern µ. The 

extra terms that Storkey's rule possesses over the Hopfield rule have the effect of 

partially unlearning the previously presented pattern. 

The importance of the Storkey algorithm lies in the fact that it, like the Hebb- 

inspired learning employed by Hopfield, is immediate in operation. The 

algorithm is also local with respect to the information it requires to calculate 

the change to the weights. Some temporal non-locality is present however, as 
it is apparent from equation (2.13) that the calculation of the local field for the 

current pattern does not take into account the most recent changes to the 

weight matrix. In order to implement this rule it is necessary to take the 
biologically implausible step of pre-calculating the aligned local fields for the 

entire network for use in training the network on the next pattern at the 

conclusion of training the current one. The biological implications of this 

temporary storage of information at a global level exemplify the importance of 
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temporal locality in a learning rule that is to be a plausible model of neural 
learning. 

2.5.2. Class 2 

The following learning rules all produce weight matrices that are class 2, or 

pseudo-inverse class. 

Iterative Local Learning with Equal Fields 

Diederich & Opper (1987) propose a learning rule that aims to modify the 

weights such that the aligned local fields of every neuron will eventually become 

equal to 1 for every training pattern. The aligned local field is defined as h, S; at 

neuron i where h; is the local field according to equation (2.1). One benefit of 
forcing the aligned fields of deliberately embedded memories to be equal to 1 is 

that it provides a method of distinguishing them from spurious states that might 
be retrieved during recall. 

The algorithm begins with a zero weight matrix and proceeds according to: 

REPEAT UNTIL ERROR <E 

SET THE NETWORK STATE TO ONE OF THE 

FOR EACH NEURON i IN TURN 

UPDATE THE INCOMING WEIGHTS TO NEURON i ACCORDING TO: 

OWu 
ý1-hN ") 4 

N 
(2.14) 

where e is the maximum permitted error across all neurons and patterns and is a 

small positive constant. 

The error is calculated as: 

E=EI1-k4l'I 
t. µ 

(2.15) 

Equation (2.14) is functionally equivalent to the delta rule (Hertz, Krogh et al., 
1991) employed in the training of perceptrons with the learning rate in this case 
being 1 IN. 

The learning rule itself (equation (2.14)) is both temporally and spatially local in 
its use of information during training. The stopping condition, involving 

equation (2.15), is clearly non-local. It could be argued that, because of the 

26 



dependence of the learning rule on the stopping condition, the algorithm as a 

whole is non-local. 

Blatt & Vergini 

Blatt & Vergini (1991) present a learning rule which takes the form of an 

iterative method for approximating the projection matrix. The training 

algorithm is guaranteed to find an appropriate weight matrix within a finite 

number of presentations of each pattern if such a matrix exists. 

The algorithm begins with a zero weight matrix and proceeds according to: 

FOR EACH PATTERN IN TURN 

SETm=1 

REPEAT UNTIL ERROR <E 

APPLY THE PATTERN TO THE NETWORK 

FOR EACH NEURON IN TURN 

UPDATE INCOMING WEIGHTS ACCORDING TO: 

Awy =(k' (ý; ' - hµ) (t 
l- 

hj) (2.16) 
N 

SETm=m+1 

REMOVE ALL SELF-CONNECTIONS 

The error is calculated as: 

E=EIT-h, %i'I (2.17) 
l, µ 

where T is the desired threshold value for the aligned local field. 

As this learning rule generates a weight matrix approximating that generated by 

the pseudo-inverse rule but possessing a non-zero leading diagonal the final step 

of removing the self connections (W; 's) must be taken in order to guarantee 

convergence upon the stored patterns. 

Blatt & Vergini present a formula for calculating the minimum number of 

presentations of the training set to perform in order to achieve aligned local 

fields with values of at least T. The number of presentations, V, is calculated as 

being the smallest integer conforming to: 

NV >_ logk 
1TZ 

(2.18) 
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where k and T are real valued constants such that 1<k <_ 4 and 0 <_ T<1. k 

is referred to as the memory coefficient of the network; the larger it is, the fewer 

steps are required to train the network. 

For efficiency, this work employs a version of the learning rule which pre- 

calculates the number of training set presentations required by using equation 

(2.18). This removes the need for a computationally intensive test for the 

aligned local field being correct to be performed at each iteration. 

The Blatt & Vergini learning rule has the advantage of being local in its use of 

information but crucially it is also incremental. Remarkably, the addition of 
further patterns to the network can be made without harm or disturbance to the 

stored patterns already present. 
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2.5.3. Class 3 

The following learning rules all produce weight matrices that are class 3, or 

Gardner class. 

Gardner's Rule 

Gardner (1988) proposed a learning rule which, provided such a solution exists, 

will find a solution to equation (2.9) which forces all gamma values above some 

specified value, K. 

The algorithm begins with a zero weight matrix and proceeds according to: 

REPEAT UNTIL ALL GAMMA VALUES ARE CORRECT 

FOR EACH PATTERN R IN TURN 

FOR EACH NEURON i IN TURN 

IF Y; <_KTHEN 

UPDATE THE INCOMING WEIGHTS ACCORDING TO: 

AWf =N (2.19) 

where h; is the local field defined by equation (2.1) and I WI, is the length of the 

incoming weight vector at neuron i. 

Gardner offers two choices for the function f (hr) : 

i) The perceptron algorithm: 

fýh"ý=1 (2.20) 

which is guaranteed to converge upon a solution, if one exists, in a finite 

number of training steps. 

ii) The relaxation algorithm (Abbot and Kepler, 1989): 

fýh; =ý(ic-h") IWI, (2.21) 

which, if a solution exists, will converge for 0<X: 5 2 and according to 

Gardner, is most efficient for X=2. 

This algorithm is not considered for implementation in this work due to the 

need to calculate the length of the incoming weight vector at each weight 
change. This is considered, in this work, to be outside the spirit of local 
computation. 
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Iterative Local Learning 

Diederich & Opper (1987) and Forrest (1988) both propose a learning rule that 

is similar in operation to the perceptron rule (Rosenblatt, 1958). This iterative 

scheme aims to drive the local fields for each training pattern to the correct side 

of +T or -T is appropriate. This goal can be formalised in terms of the aligned 

local fields as follows: 

h; ''4; " >_ T for all i, µ (2.22) 

The algorithm begins with a zero weight matrix and proceeds according to: 

REPEAT UNTIL LOCAL FIELDS ARE CORRECT 

SET THE NETWORK STATE TO ONE OF THE 4µ 

FOR EACH NEURON i IN TURN 

IF h, %, " <T THEN UPDATE THE INCOMING WEIGHTS TO NEURON i 

ACCORDING TO: 

ýµýµ 

OWE= 'j 
N 

If one exists, this learning rule will converge upon a suitable weight matrix for 

which all the trained patterns are guaranteed to be stable. This rule is very 

similar to the Gardner rule (previous page) with: 

fýh"ý=1 (2.23) 

Iterative Local Learning is fully local in its use of information and, as its name 
implies, is iterative in operation. 

A symmetric version of this rule exists (Gardner, 1988) in which an weight 

change at each W, is replicated at W;. This has the advantage of ensuring simple 

updates dynamics as described earlier in §2.3. 
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Krauth & Mezard's Learning Rule 

Krauth & Mezard (1987) propose a modification to the iterative local learning 

rule (Diederich and Opper, 1987). This rules differs from the original in that at 

each pattern presentation opportunity the pattern with the smallest aligned local 

field is selected to be the presented. This is in contrast to the undefined 

presentation order of iterative local learning. 

This learning rule will produce a value of K (Gardner, 1988) that tends towards 

Y, as the training threshold, T, increases. 

The algorithm begins with a zero weight matrix and proceeds according to: 

REPEAT UNTIL LOCAL FIELDS ARE CORRECT 

FOR EACH NEURON i IN TURN 

SELECT THE PATTERN WITH THE LOWEST ALIGNED LOCAL FIELD AT THIS UNIT 

THEN UPDATE THE INCOMING WEIGHTS TO NEURON i ACCORDING TO: 

4 "'" ewe- `N' (2.24) 

The advantage that this learning rule has over iterative local learning is that it is 

capable of finding the optimal value for K when using a sufficiently high 

threshold. 

2.5.4. Other Learning Rules 

Other learning rules exist beyond those described in the sections above. Davey 

et at. (2002) identify two worthy of note. The first of these is an alternative 

technique for finding a weight matrix of Gardner class proposed by Athithan 

(1995). In this work Athithan approaches the training of the network as an 

optimisation problem solvable by linear programming techniques. The further 

investigation of this mathematical approach is outside the scope of this project. 

The second rule identified is proposed by Plakhov and Semenov (1994). Their 

technique initialises the weight matrix according to one-shot Hebbian learning 

and proceeds to train further by applying random patterns to the network and 
`unlearning' them. Again, further investigation of this rule is outside the scope 

of this work. 
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2.6. Further Variations 

The set of learning rules described in §2.5 is not intended to be exhaustive but 

rather to encompass a range of what might be considered the most interesting 

algorithms with which to experiment. Work has been conducted on improving 

the performance of networks by changing them further upon conclusion of the 

weight modification process and one of the techniques employed in doing this is 

described below. 

2.6.1. Modification of Neuron Thresholds 

It was seen in §2.3.1 that the original Hopfield network was made up of neurons 

with thresholds set to zero. Modifying the thresholds of a network's neurons 

would be an obvious scheme through which the network performance might be 

improved upon. 

Schultz (1995) proposes a system whereby the threshold of a neuron is set to a 

value exactly halfway between the values of the largest negative and smallest 

positive local fields taken across all patterns. The motivation behind this 

technique is to maximise the `slack' over the set of training patterns. The term 

`slack' is best described using Schultz's own example. 

Consider, for example, a neuron in a trained network. The local field for each 

of four training patterns is: -3, -1,5, and 7. The desired output values at that 

neuron for the training patterns are: -1, -1,1, and 1 respectively. It can be seen 

from the local field of -1 that if the neuron threshold is set at zero then only a 

small amount of corruption (1 unit) in the pattern presented for recall can cause 

that neuron to output the incorrect value (+1) as the local field is pushed above 

the threshold. 

Schultz suggests a value of 2 would be more appropriate for the threshold so as 

to maximise the separation between the positive and negative local fields with 

the smallest magnitudes. This provides greater error correction capability for 

patterns that might otherwise be particularly susceptible to failing at low levels of 

corruption. It is this separation between the local fields that is termed the `slack'. 
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The new threshold value is given by: 

K+h' - h, " =min {hr uhf >0} 
(2.25) 6, = where 

2 ti =max{eIh'<0} 

Results of performance analyses of networks employing this technique may be 

found in Davey et al (2002). 

Buckingham and Willshaw (1993) examine in detail a number of threshold- 

setting strategies both simple and complex based, in part, on Marr's (1971) 

proposal that the value of the threshold should depend on a neuron's input 

activity. The full range of techniques is too wide to cover here and the 

deployment of them outside the scope of this project but both Buckingham and 

Willshaw and Schultz (1995), mentioned above, present opportunities for 

investigating further improving the performance of the networks studied within 

this work. 
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3. NETWORK PERFORMANCE ANALYSIS TOOLS 

3.1. Introduction 

To be able to compare the relative performance of the networks and learning 

rules used throughout this work it was necessary to have a robust set of analysis 

tools. This chapter presents a description of the performance measures used 

throughout this investigation. 

The measures are: pattern stability, capacity, training time, and attractor 

performance. 

3.2. Performance Metrics 

3.2.1. Pattern Stability 

The simplest test is that of pattern stability. A network is placed in a start state 
known to correspond exactly to one of the patterns the network has been 

trained upon. If the network state, upon update of all neurons in accordance 

with the network dynamics, has moved from that initial state to some other, 

then the pattern forming the start state is deemed not to be stable. 

The presence or absence of unstable patterns at a particular loading assists in 

determining the capacity of a network (described below) as well as providing 

an indication of the speed at which a network's memory of a set of training 

patterns fails. 

3.2.2. Pattern Load 

While not in itself a performance metric, the loading placed on the network is 

important in the calculation of metrics such as capacity, described below. The 

loading on a network, denoted by the symbol , 
is calculated according to: 

P 
a =- N 

(3.1) 

where P is the number of patterns in the training set and N is the size of the 

network. 
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3.2.3. Capacity 

The capacity of a network represents the maximum loading that can be placed 

upon the network with all the patterns remaining stable. The capacity, 

denoted by 
max' 

is calculated in the same manner as the loading: 

Umaa (3.2) 

where P is the number of patterns in the training set and N is the size of the 

network. 

The capacity can be determined using the pattern stability measure described 

above. If the number of patterns to be learnt by a network is gradually 

increased and the network retrained each time, the last loading at which all the 

patterns are stable provides a maximum value for Pin equation (3.2). 

3.2.4. Training time 

The training time of a network is reported in terms of the number of iterations 

through the training set that is required for the network to be fully trained. 

This measure is only applicable to networks with those learning rules where 

multiple presentations of patterns are required. 

3.2.5. Attractor Basin Size 

The attractor basin size is a measure designed to indicate the recall ability of a 

network when given, as its start state, a corrupted version of one of the trained 

patterns. The stored pattern is considered to be acting as a final state to which 

the evolving state of the network is attracted through the action of the update 

dynamics. 

The attractor performance of an associative memory can be defined in terms of 

the radii of the basins of attraction of the stored patterns. The analogy is often 

made between a marble started high on the wall of a basin rolling to a standstill 

at the basin's base and the relaxation of networks with Hopfield-type dynamics 

into a state of low energy. The radius of the basin of attraction is 

correspondingly analogous to how far, in Hamming distance, one can move 

the start state of the network away from a stored pattern and still have the 

pattern recalled correctly by the network. 
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As the state space of a network forms a discrete N-dimensional hypercube with 

the states of the network at the vertices it is somewhat incorrect to think of 

attractor performance in this 3-dimensional, continuous fashion. It does 

however, serve as a useful visualisation of the activity of the network (Hertz, 

Krogh et al., 1991). 

3.2.5.1. The Kanter and Sompolinksy Attractor Basin Measure 

Kanter and Sompolinsky (1987) devised a technique for measuring the size of 

the basins of attraction. This measure is effectively an average of the basin sizes 
for all the patterns embedded in the network. Based on the method of 

gradually increasing the corruption of a known stored pattern and attempting 

recall using the corrupted pattern as a network's initial state (Hopfield, 1982), 

the calculation is performed as follows: 

For a given set of P patterns, a network start state is chosen from the training 

data. The first mN bits of the pattern selected are fixed to be equal to those of 

the original pattern. The value, m, represents the proportion of the start state 

that is to remain the same as the stored pattern and is termed the overlap. For 

example, consider a simple network of 10 units: 

We assume some start state: 

-1 1 -1 1 -1 1 -1 1 -1 1 

If we begin with a high overlap, or a value of m=0.9, then our randomly 

corrupted state might be: 

-1 1 -1 1 -1 1 -1 1 -1 -1 

The fixed portion of the states is shown using bold text. This new pattern is 

applied to the network and the network permitted to update until it converges 

upon a pattern. If the updated pattern is equal to the source pattern i. e. the 

uncorrupted original, then the successful start state is recorded. This process is 

repeated for a number of different initial states derived each time from a 
known stored pattern. If all the start states tested converge correctly then the 

current value m is recorded and denoted mo. The value of m is then lowered 

and the process begins again. m,, always represents the furthest successful point 
tested so far at which all, or most, of the sample states flow to the original 
patterns. 
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The above procedure is repeated until an average mo, calculated over different 

sets of patterns, has been obtained. The number of pattern sets is arbitrary 

though the larger the sample set the greater the accuracy of the final measure. 

A value the size of the basin of attraction, R, can now be defined as: 

R=1-(mo) (3.3) 

Kanter and Sompolinsky note that for small values of , where R is close to 1, 

the effect that the size of the network has on the result is not insignificant. In a 

theoretical network of infinite N, the distance between patterns is very large - 

there is no interference between them. At low loadings in a finite size 

network one would expect the R value to be close to the maximum of 1. At 

these low loadings however, the effect that interference might have on the 

result must be taken into account. As loading increases, the importance of the 

effect of pattern interference falls by comparison with other factors affecting 

attractor performance such as spurious memories. 

To partially compensate for the interference, Kanter and Sompolinksy refine 

equation (3.3) so that it becomes: 

[1_ 
R=(< 

1-mo ])) (3.4) 

where m, is the largest overlap of the initial states with the rest of the patterns 

and is calculated using the set of corrupted patterns stored from the first 

procedure. Implementing this involves a record being made of the largest 

overlap each corrupted pattern has with the patterns in the training set that are 

not the original source pattern and these values become the m, 's for use in 

equation (3.4) 

2 

basin 
Ntr 

Figure 3.1: A stylised representation of the attractor basin for an imaginary pattern pl. The next 
nearest pattern to the last successful convergence point is pattern p2. The dashed line represents just 
one successful sample. 
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Figure 3.1 (previous page) shows the various values measured during the 

calculation of the Kanter and Sompolinksy measure. An ideal attractor basin 

around pattern pl is shown. The next nearest pattern to the last successful 

sample state is denoted p2. 

Note that the refined version of the measure no longer acts as a direct measure 

of the attractor basin size but rather becomes a relative measure that takes into 

account the proximity of the patterns to each other. This has the advantage of 

producing a single value for the `goodness' of a network's attractor 

performance based on some knowledge of the dispersal of the patterns in the 

pattern space. The disadvantage is that the absolute measure of the basin size 

in terms of the proportion of corrupt bits correctable has been lost due to the 

normalisation in equation (3.4). 

3.2.5.2. Modified Kanter and Sompolinsky Measure 

Two aspects of the original Kanter and Sompolinksy measure were modified to 

produce the version employed in this work. 

Firstly, when choosing a number of bits to fix in order to produce an overlap 

with a stored pattern, the original measure always fixed the first mN bits. 

Fixing the same bits each time a sample pattern is generated causes the sample 

patterns to be rooted in the same area of the state space. To counteract this, 

the bits which are to be fixed in each sample pattern are chosen at random. 

Secondly, assigning the unfixed bits randomly to be equal to +/-1 does not 

guarantee a sample pattern to be exactly the required distance away from the 

stored pattern. The modification implemented to resolve this was to invert the 

unfixed bits, thus resulting in a sample pattern that is exactly the specified 

distance away each time. 

Inverting rather than flipping the unfixed bits also addresses a disparity in the 

way the pattern overlaps are measured for the values mo and m,. mo is regarded 

as being the overlap of the last successful sample state with the source pattern as 

a proportion of the total length of the pattern. This fails to take into account 

that when randomly flipping the unfixed portion of a sample pattern, half the 
flipped bits will, on average, have the same value as in the original pattern. 
Therefore, the average overlap, when taken over all the samples, will in fact be 

mo + 0.5 (1 - mo). When calculating m,, the value used is genuinely the 
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overlap with the next nearest pattern. Inverting rather than flipping the 

unfixed bits ensures the fact that both overlaps are accurate. 

3.2.5.3. Comprehensive Basin Analysis Measure 

The comprehensive basin analysis measure (CBAM) was developed as part of 

this work in order to address an issue with the Kanter and Sompolinsky 

measure described above. The Kanter and Sompolinksy measure produces a 

single comparative value indicating the overall recall quality of the network but 

loses information related to the absolute attractor performance of the individual 

stored patterns. 

The new measure is based on the notion of having a reference basin for each 

stored memory. The reference basin of a pattern is calculated as being one half 

the Hamming distance between it and the pattern nearest to it. As the inverse 

of one of the intentionally stored patterns may be closer than one of the stored 

patterns themselves then they too are compared against. The reference basin is 

used as a reference because half the distance between a pattern and its nearest 

neighbour is equal to the largest basin size we might reasonably expect for that 

pattern. This is the case because the reference basin represents the furthest one 

can move away from a pattern before becoming closer to some other. 

Once the reference basins have been calculated for the set of stored patterns, a 

predetermined number of walks are taken from each of the stored patterns. 

This is done in a similar way as with the Kanter and Sompolinsky measure 

described above. Sample patterns are generated at increasing Hamming 

distance from the stored pattern and the network allowed to update in order to 

determine whether or not it can recall the original source pattern. A number 

of these walks are undertaken and the maximum distance attained is recorded. 

Having acquired a set of samples for each of the stored patterns, each 

maximum distance achieved is normalised with respect to the reference basin 

size for the corresponding stored pattern. It is not unlikely that non-random 

patterns will be unevenly distributed in the state space. This normalisation 

provides an indication of the attractor performance while taking into account 

the proximity of the stored patterns to each other. In this respect the new 

measure operates in a similar manner to Kanter and Sompolinsky's. 
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The mean of each pattern's set of normalised values provides a value 

representing how well that pattern is performing as an attractor compared with 

the best we might expect of it given the other patterns in the vicinity. The 

variance of the set of normalised values provides an indication of how skewed 

the basin of attraction is. For instance, if the other patterns are evenly 

distributed in the state space then we might expect that the distance achieved 

during each walk would be similar and thus the variance of the samples would 

be small. If however, the patterns are correlated to any degree then each walk 

may well result in quite a different degree of success. This would result in a 

higher variance of the samples and would indicate a more uneven attractor 

basin. 
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Figure 3.2: A stylised representation of the reference basin (blue line) for an imaginary pattern pl. 
Sample walks are shown as dashed lines. The resulting attractor basin (red line) can be seen to be 

non-circular. 

Figure 3.2 portrays the relationship between the reference basin, denoted by a 

blue line, and the resulting attractor basin which is shown using a red line. 

The reference basin is of a diameter equal to one half the distance between 

pattern pl and the next nearest pattern, p7. The sample walks represented by 

the dashed lines can be seen to be of different lengths. It is the variance of 

these lengths that indicates the `skewedness' of the attractor basin. It should be 

kept in mind that figure 3.2 is a 2-dimensional representation of what would 

an N-dimensional space and serves as a visualisation aid only. 
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The double average of the mean normalised values over all the stored patterns 

provides a value analogous to the final Kanter and Sompolinksy measure 

defined by equation (3.4). 

As well as simply providing more information about the attractor behaviour of 

a network than the Kanter and Sompolinsky measure, the CBAM also results 

in a measure that is directly translatable into an absolute figure representing the 

mean number of bits of pattern corruption that a network is capable of 

correcting. 

The finite size effects that are taken into account in Kanter and Sompolinsky's 

measure are implicitly addressed through the use of the reference basin 

concept. 

Although developed as part of this work, the CBAM is not used within it. 

The computational complexity of the measure currently restricts its usefulness. 

It is hoped that optimisation of the implementation and advances in computer 

hardware performance will enable the CBAM to become a valuable 

performance metric for the future. 
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4. PERFORMANCE OF FULLY CONNECTED NETWORKS 

4.1. Introduction 

It is widely known that the original Hopfield network suffers from low capacity and 

unsuitability for correlated patterns. As was seen in chapter 2 however, it is by no 

means the only learning rule which is available for training networks of the 

Hopfield-type. 

The purpose of this chapter therefore, is to present the results of analysing the 

performance of a number of higher performance learning rules. This analysis was 

important to undertake as the identification of a suitable learning rule was critical 
for later work. 

Learning rules that generate weight matrices that belong to one of the three Abbot 

classes described earlier are examined; all three of the classes are represented to 

various degrees. 

The learning rules used are: 

Class 1 

Hopfield (Hopfield, 1982) 

Storkey (Storkey, 1997) 

Class 2 

Iterative Local Learning with Equal Fields (Diederich and Opper, 1987) 

Blatt & Vergini (Blatt and Vergini, 1991) 

Class 3 

Iterative Local Learning (Diederich and Opper, 1987) 

Symmetric Local Learning (Gardner, 1988) 

Krauth & Mezard (Krauth and Mezard, 1987) 

Networks employing these learning rules are assessed with respect to the time taken 

to store a set of training patterns, the stability of the learnt patterns, and the attractor 

performance of the network. 

The training data comprises two classes of randomly generated bipolar patterns. 
The first of these is unbiased, the second constructed with a bias towards +1 of 0.8. 
The networks used are 100 neurons in size (N=100). The values plotted are the 
mean of five experimental runs. 
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Where parameters controlling the training process may he used they were set as 

follows: 

Iterative Local Learning with Equal Fields: the minimum error on the aligned local 

field was required to he <_ 0.1. Preliminary results determined this value to be the 

most appropriate choice from a performance versus training time point of view. 

Blatt and Vergini: the memory coefficient, k, was equal to 4, the maximum 

permitted value. The training threshold, T, was equal to 0.99 where T must be 

<1 for the Blatt and Vergini rule. 

Iterative Local Learning, Symmetric Local Learning, and Krauth and Mezard: the 

value of the training threshold, T, was again determined by preliminary results to be 

best made equal to 10. 

4.2. Training Time 

The networks' training tines were measured in terms of the number of 

presentations of the training set that were required before the patterns where learnt. 

In the case of the Krauth and Mezard learning rule, where the patterns are not 

presented an equal number of times, the time reported is a pseudo-iteration 

calculated as: 

Pseudo-iterations = 
Total number of presentations made 

Number of patterns 
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Figure 4.1: Training time as a number of iterations through the training set for random patterns of bias 0.5. 
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Figure 4.1 (previous page) shows the number of iterations required to learn 

increasing loadings of random unbiased training patterns. It is very clear that the 

fastest learning rules are the one-shot, class 1 rules, Hopheld and Storkey. These 

two rules require only a single iteration through the training set. The next quickest 

learning rule is that of Blatt and Vergini (BV), requiring a constant 10 iterations 

through the training set regardless of the pattern load. 

The Krauth and Mezard (KM) learning rule would appear to be next fastest, 

certainly at higher loadings. The KM rule is however much more computationally 

expensive than any of the other learning rules, requiring a check before each 

presentation for the pattern containing the bit with lowest aligned local field. In 

real time, the KM rule is slower than even Iterative Local Learning with Equal 

Fields at producing a weight matrix. 

Iterative Local Learning with Equal Fields (ILLEq) is, therefore, the next fastest 

learning rule but only up to a loading of a=0.75. Iterative Local Learning (ILL) 

becomes quicker at higher loadings. 

Finally, the symmetric version of Iterative Local Learning (ILL) proves to he the 

slowest learning rule (barring KM) at low loadings but falling somewhere between 

ILL and ILLEq as the loading gets to a=0.83. 
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Figure 4.2: Training time as a number of iterations through the training set for random pattenis of bias O. H. 
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Figure 4.2 shows the number of iterations required to learn increasing loadings of 

random training patterns with bias 0.8. The order in which these networks are 

placed with respect to their relative training times is largely the same as when the 

networks were trained using unbiased random data. 

The training times are consistently longer for networks learning biased data in all 

but only particular instance. The KM learning rule appears to take fewer pseudo- 

iterations to learn a biased training set than it does an unbiased one. This only 

occurs at high loading however. The SLL rule appears to he a more appropriate 

choice for biased patterns than it was for unbiased patterns. Comparing its training 

time with that of ILLEq shows it to become competitive at a much lower loading 

than was seen for the unbiased data. 

4.3. Pattern Stability 

The pattern stability is measured as the percentage of the training patterns that, 

when applied to the network as a start state, result in the network remaining in that 

state upon application of the update dynamics. 
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Figure 4.3: Pattern stability as a percentage of the total number of patterns being learnt for random 
patterns of bias 0.5. 

Figure 4.3 shows the percentage of stored patterns that are stable at each pattern 
load for unbiased random training patterns. The striking feature of this graph is the 

number of learning rules capable of storing the maximum 100 patterns. It is the 

two class 1 learning rules, Hopfield and Storkey, that result in less than near 100% 
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stability at all loadings. The only other learning rule to exhibit any kind of stability 

failure is the Blatt and Vergini rule. The BV rule loses stability slightly at the 

niaxinium loading of a=1 (100 patterns). This is not surprising as the 13V rule is a 

pseudo-inverse rule approximator which, as detailed in 82.4.1, has a maximum 

capacity of a, 1,,,, =1 (N patterns). It is interesting to note that no instability is 

apparent for the other class 2 learning rule, Iterative Local Learning with Equal 

Fields. All the class 3 rules, the Gardner-type algorithms exhibit 100% stability at all 

loadings. Again, this is not surprising as their notional maximum capacity is a, 11,,. =2 

(2N patterns). 

It is worth making a point about the two learning rules that do result in a significant 

drop in pattern stability with loading. The Storkey rule is a direct modification of 

the Hopfield rule and was designed to improved performance without 

compromising the speed of learning of the original. The Storkey rule appears 

capable of storing twice as many patterns as the Hopfield rule for the same level of 

pattern stability. As the Storkey rule retains the one-shot nature of the Hopfield 

rule it would seem to be an excellent choice for learning low numbers of patterns. 
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Figure 4.4: Pattern stability as a percentage of the total number of pattern being learnt for random 
patterns of bias 0.8. 

Figure 4.4 shows the percentage of stored patterns that are stable at each pattern 
load for random training patterns of bias 0.8. The high level of stability exhibited 
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by the class 2 and 3 learning rules for unbiased patterns is again present for biased 

data. 

The weakness of the class 1 learning rules against correlated patterns is clearly 

evident. The Storkey rule does however manage to perforni significantly better 

than the Hopfield; the difference between the two rules is much greater in the case 

of biased data. Networks trained using the Hopfield rule lose all pattern stability at 

around a loading of a=0.04 (4 patterns). The Storkey rule manages to retain some 

pattern stability at up to the maximum loading of a=1 (100 patterns). 

4.4. Attractor Performance 

The attractor performance of the network at various pattern loads was measured 

using the modified version of the Kanter and Sompolinksy (1987) measure 

described in §3.2.5.1. 
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Figure 4.5 shows the attractor performance of networks learning random unbiased 

patterns at various degrees of pattern load. 

It is again clear that the two class 1 learning rules, Hopfield and Storkey, are inferior 

to any of the class 2 or 3 rules and, as was seen to be the case for pattern stability, 

the Storkey rule outperforms the Hopfield at the same pattern load. 

The class 2 and 3 learning rules all result in very similar performance at each pattern 
load level. Closer examination reveals a possible slight edge for the Krauth and 
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Mezard and Iterative Local Learning rules. This only appears to be the case 

between loadings of a=0.40 (40 patterns) and a=0.80 (80 patterns). 

Figure 4.6 shows the attractor performance of networks learning random patterns of 

bias 0.8 at various degrees of pattern load. 

Once again the Hopfield and Storkey learning rules perform poorly when asked to 

store correlated patterns. The Storkey rule outperforms Hopfield but as the 

performance of both rules is poor this makes little real difference. 
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Figure 4.6: Attractor performance of networks learning random patterns of bias 0.8. 

As was seen for unbiased random patterns, the performance of all the class 2 and 3 

learning rules is very similar. The small difference in performance between the pair 

of rules KM and ILL and the rest of the high performance algorithms that was seen 

in figure 4.5 is more evident for biased data. The difference is again only 

discernable over the loading range a=0.40 (40 patterns) to a=0.80 (80 patterns). 

Using the class 2 and 3 learning rules with either unbiased or biased data, a sharp 

initial fall in attractor performance occurs at low loading. Following that, the 

attractor performance falls steadily approaching some minimum level. The non- 

zero minimum value of the attractor performance is likely to he attributable to the 
fact that, as the values for the attractor performance are averaged over 5 networks, it 

is eminently possible that some successful convergences will occur for some of the 

patterns at even high loadings. 
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4.5. Conclusions and Summary 

The results have shown that the class 1 learning rules, Hopfield and Storkey, are not 

appropriate for either high network loadings or correlated patterns. Both learning 

rules suffer from poor pattern stability and a rapid decline in attractor performance 

with increasing pattern loads though the Storkey rule does give better performance 

than Hopfield. They do have the advantage of being extremely rapid in their 

ability to train the network by virtue of their being single-shot learning rules. This 

could make the Storkey rule particularly attractive in situations where the pattern 

load is known to be very low. 

Under certain pattern loadings, both the Krauth and Mezard and Iterative Local 

Learning rules perform slightly better than the class 2 rules with respect to R, and 

have a higher maximum capacity (2N vs. N). The ability of the Blatt and Vergini 

rule to store new patterns without re-training with the whole training set makes it a 

good choice for on-line applications. 

The higher capacity of the class 2 rules makes these prime candidates for use in 

future work. Of these rules, that of Krauth and Mezard appears to be the quickest 

to train and provides excellent attractor performance and pattern stability. As 

mentioned earlier however, the high computational complexity of the Krauth and 

Mezard rule is being masked by the low number of pseudo-iterations through the 

training set. 

Of the two remaining rules, Iterative Local Learning and Symmetric Local 

Learning, ILL has the edge in terms of attractor performance and training time 

especially for the highly biased training patterns. The production of a symmetric 

weight matrix and thus the guarantee of simple network update dynamics is a not 

inconsiderable advantage. Given the relatively small difference in attractor 

performance and the benefit of a symmetric weight matrix, the choice was made to 

use Symmetric Local Learning for future investigations. 

In summary, this chapter has evaluated the performance characteristics of a number 

of learning rules applicable to the Hopfield architecture. It has been demonstrated 

that a clear performance gap exists between the class 1, Hopfield-type learning rules 

and the class 2 and 3, pseudo-inverse approximator and Gardner-type learning 

rules. Symmetric Local Learning was chosen to be the principle learning rule for 

the remainder of this investigation. 
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5. INTRODUCTION TO SPARSE CONNECTIVITY 

5.1. Introduction 

It was noted early in this work (c. f chapter 1) that a strong motivation behind this 

body of research was to try and reduce the cost of implementing Hopfield-type 

associative memories. The form that cost takes depends on the nature of the 

implementation being attempted. If the implementation is in software, the cost is 

usually in CPU time and memory as the storage requirements and computational 

complexity of the networks can often be considerable and scale exponentially with 

the number of neurons being used. If, on the other hand, the implementation is in 

hardware there arise additional physical costs. Implementing a fully-connected 

network as a computer chip will require a large amount of silicon real-estate and 

again the complexity scales exponentially with the size of the network. 

A potential solution to this problem for both software and hardware 

implementations is to reduce the level of complexity of the network. Typically this 

means reducing the number of connections. 

As the link between the connections and the weights is an inseparable one and the 

information stored in networks of the type studied here is contained in the weights 

it seems clear that any reduction in the level of connectivity will impair the ability 

of a network to operate at its full potential. 

It is hoped however, that a balance may be struck between a network's level of 

connectivity and its performance. This phase of the work relies on the fact that, in 

the past, the majority of work analysing the performance of associative memory 

networks has invariably used only random patterns as test data. It will be shown 

that the more structured nature of more `natural' data can aid in circumventing 

some of the negative aspects of a reduction in network connectivity. In the case of 

the work undertaken in this project, natural data takes the form of images of man- 

made constructs, typified by objects of largely the same colour. Doors, cars, 
buildings, are all examples of such constructs. This work uses artificially generated 

patterns to simulate these characteristics. 

Natural data is in many ways different from random data. It will be demonstrated 

that these differences should lead to improved performance under certain 
conditions. 
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5.2. Justification of Approach 

It was seen earlier when analysing the performance of fully-connected networks 
(c. f chapter 4) that the Symmetric Local Learning algorithm of Gardner (1988) was 

a strong performer. Using learning rules of this type allows the individual neurons 

to be trained as if they were perceptrons. 

It is known that the notional maximum capacity of the perceptron is 2N patterns 

for unbiased, random data (Cover, 1965; Gardner, 1988) where N in this case is the 

number of inputs to the perceptron. Gardner has also shown (c. f figure 5.6) 

however, that the capacity of a network of perceptrons increases as the bias of the 

training set rises. For this to be the case, the capacity of the individual perceptrons 

must also rise. 

Lopez et al. (1995) have shown that the increase in capacity is not solely dependant 

on a rise in training set bias but is also strongly related to the correlations present 

within the training patterns. An example illustrates this: 

Input pattern Output value 
1111 -1 11 

-1 111111 

-1 -1 1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 1 -1 

Figure 5.1: A selection of input patterns and the corresponding output values. 

Figure 5.1 shows a selection of input patterns and their corresponding output 

values. It is clear that each individual pattern is highly biased but taken over the 

entire training set the bias evens out; the number of positive and negative values is 

the same. Lopez et al. construct an argument showing that when correlated subsets 

of the input patterns (pairs, triples, etc) also have correlated outputs, then there 

should be an improvement in capacity. This would indicate the data set shown in 
figure 5.1 should be more easily learnable than a set of random patterns. 

In the work of Lopez et al. only pairwise correlation is initially considered. 
Pairwise correlation in this instance does not mean every possible pairing of two 

patterns but rather, for instance, the first pattern with the second and the third 

pattern with the fourth. This is an obvious simplification of the perceptron's 
environment but suffices for the purposes of the proof and is later extended to a 
more general case. 
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Taking the following training set as an extreme example. 

Input pattern Output value 

1 1 1 1 1 1 1 
1 1 1 1 1 1 1 

-1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 

Figure 5.2: An example training set consisting of paired duplicate patterns. 

It should be noted that the training set illustrated by figure 5.2 consists of paired 

duplicate patterns. This extreme case gives Lopez et al. the basis for their argument. 

A term R is defined to describe the similarity of two patterns as a value indicating 

positive or negative overlap between the patterns. 

1 
Rv a 

N 
(5.1) 

where N is the size of the input pattern and the a's are the input patterns 

transformed according to: 

09=T sµ (5.2) 

Care must be taken here as the notation differs slightly from that used elsewhere in 

this work. In equation (5.2), the g's are the input portions of the complete patterns 

and the s's, the outputs. This transformation has the effect of reversing the values of 

an input pattern in the case where the output is -1. This is done so that patterns 

which are identical as regards the input but dissimilar in output are represented in a 

maximally dissimilar way for the purposes of calculating the overlap, R. 

Input pattern Output value 
1 -1 11 -1 11 
1 -1 11 -1 1 -1 

Figure 5.3: An example of a pair of patterns with identical inputs but dissimilar outputs. 

Figure 5.3 (above) shows two example patterns with which this may be illustrated. 

It should be clear that two patterns with identical inputs cannot be classified into 

more than one class by a perceptron. Calculating R for the pair of input patterns as 

they currently are would give a value of 1, indicating that they were the same. 

Transforming the patterns as per equation (5.2) provides a useful means of 

representing pairs of patterns which are unlearnable. 
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The transformed patterns look as follows: 

Input pattern 
1 -1 11 -1 1 

-1 1 -1 -1 1 -1 
Figure 5.4: Transformed form of the input patterns shown in figure 5.3. 

Using the transformed patterns shown in figure 5.4, calculating R now gives us a 

value of -1 indicating the problem that the patterns have the same output value 

without having to further involve the output value in the calculation. 

So, to sununarise the effect of calculating R for a pair of patterns: a value of R equal 

to 0 indicates that there is no correlation between the pair of patterns. A value of 1 

occurs when the patterns are identical. A value of -1 indicates that the input 

portions of the patterns are identical but the outputs are different and so the pair is 

unlearnable. 

R is calculated over all pairs of patterns and is therefore a measure of the mean 

pairwise overlap. 

Having established exactly how the overlap is calculated it is now possible to prove 

the critical capacity a, for various values of R. 

For R=O, the patterns are uncorrelated and a, (R=0)=2, as per the results of Cover 

(1965) and Gardner (1988). 

For R=1, it should be apparent that as the patterns within the pairs are identical 

storing the first pattern of a pair implies the storage of the second. Therefore, in 

this case the capacity is doubled and ; (R=1)=4. 

For R=-1, the implication is that all pairs of patterns are linearly inseparable and so 

the very first pair must also be so. This first pair renders the rest of the patterns 

unlearnable and in this instance a, (R=-1)=O. 

As Lopez et al. 's argument takes place under the condition of N-->cC, for values of R 

even very close to -1 the linear separability of the patterns can be guaranteed. 

The relationship between R and a, is shown as a graph (figure 5.5) of values 

produced by experimental means as part of the work of Lopez et al. 
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R 

Figure 5.5: Graph showing the relationship between the mean pattern overlap, R. and the critical 
capacity ac. 

Lopez et. al. go on to produce a proof that is not restricted to simple pattern pairs 

but involves pairwise correlation between arbitrarily sized m-tuples. The 

implication of this is that if a high degree of correlation exists between patterns 

within a tuple that is sufficiently large, i. e. at or near the size of the set of input 

patterns then the capacity of the perceptron should be much higher than the 

standard 2N. 

Considering again a network of perceptrons, Gardner (1988) showed that as the 

critical capacity (aj of a network improves so does the value of the smallest stability 

coefficient (c. f. §2.4.1), K, as the correlation between the patterns increases. This is 

illustrated by the following graph (figure 5.6) reproduced from Gardner's work. 

a 

Figure 5.6: Graph showing the relationship between the critical capacity a, (y-axis) and the 
minimum stability coefficient, K (x-axis), at increasing levels of pattern correlation indicated by the 
magnetism of the patterns, m. 
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It can be seen from figure 5.6 (previous page) that as the correlation between the 

patterns rises (indicated by the increasing magnetism, m) from 0 to 0.8, the value of 

K at equivalent a, also increases. The magnetism, though analogous, differs slightly 

from the traditional measure of pattern bias in that a value of 0 indicates unbiased 

patterns and rises to 1 for fully biased patterns. 

The magnitude of K is important as it has been shown that larger values of K should 

imply larger basins of attraction (Gardner, 1988; Kepler and Abbot, 1988). 

In summary, when correlated patterns share the same output value it can be 

expected that significantly better performance for perceptrons both in terms of 

capacity and attractor performance will arise. The key idea explored here is that the 

connectivity pattern adopted in a dilute network effectively defines a new training 

set. 

The results of performance analyses on networks learning random data at the same 
level of bias as the locally correlated data will provide an indication of whether or 

not locally correlated data does indeed lend itself favourably to local connection 

topologies. 

5.3. Review of Literature Related to Sparse Connectivity 

Given the unrealistic assumption of full connectivity between neurons it makes 

sense to pose the question as to the effectiveness of Hopfield-type networks within 

which the level of connectivity has been reduced. There are three distinct ways in 

which this may be achieved: 

- Training networks using sparse binary patterns (i. e. patterns with few 1's 

present). The manner in which this reduces the level of connectivity is 

discussed in more detail below. 

- Eliminating connections from a network which has already successfully 
learnt a set of training patterns. This will be termed post-training dilution. 

- Training networks in which sparse connectivity has already been established 
through some strategy or heuristic. This will be termed sparse connectivity. 
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As this work is concerned with simple dynamics, the results of research on 

networks with asymmetric connectivity are not considered in any great detail. The 

presence of such work is acknowledged however and is briefly summarised 

alongside its symmetrical dilution counterparts. 

Training Using Sparse Binary Patterns 

Training networks using sparse binary patterns is a common enough technique in 

the field of associative memories though it is not immediately clear why this should 

have the effect of reducing the level of connectivity of a network. Training a 

network using a set of very sparse binary patterns will result in a weight matrix with 

a large number of zero-valued weights. These weights therefore play no part in the 

network's update dynamics and the connections are effectively non-existent. 

An example of training in this manner can be seen in the work of Levy et al. (1999) 

in which sparse patterns are used in conjunction with a multi-modular network to 

study the effect of storing individual patterns in varying numbers of modules. The 

number of modules a pattern occupies is termed its coding level and they show that 

patterns with larger coding levels are more resilient to intra-module synaptic 
damage. The network is trained using a modified version of the Hebb-style 

learning rule developed by Tsodyks (1989). 

Although of passing interest, Levy et al. 's work is biologically motivated with the 

aim of modelling simple cortical function. Due to the neurobiological bent and the 

use of binary patterns (as opposed to bipolar) to create low effective connectivity 

this technique is not considered further in this work. 
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Diluting Networks Trained using One-Shot Hebbian Learning 

The problem of diluting a network trained using Hebbian learning is exactly 

equivalent to that of training a previously diluted network with the same rule. This 

fact arises due to the independence of each neural bond during training. The 

presence, or otherwise, of a particular bond has no bearing on the training of any 

other. 

One of the earliest examples of the investigation of the effect that dilution of 

connectivity might have on Hopfield-type networks is that of Sompolinsky (1986). 

In this work, synapses are removed from the network symmetrically (i. e. Wy & W) 

and the pairs are chosen at random. The capacity of the network, trained using the 

Hebb rule, was found to fall almost linearly with d, the proportion of connections 

removed. The quality of the recalled patterns, as a function of the overlap of the 

post-retrieval network state with the original pattern, falls far less sharply indicating 

that the level of connectivity in this case has less bearing on the pattern stability than 

on the critical capacity of the network. 

Sompolinksy's work appears to have initiated a burst of activity in the area of 
diluted associative memory models. The next major contribution was that of 
Derrida et al. (1987) in which an asymmetrically diluted model was studied from a 

analytical viewpoint with the aim of better understanding the dynamics of such an 

architecture. Derrida's analysis continued with a further work (Derrida, 1989) in 

which the distribution of neural activities for the stored patterns was examined. 

The effect of random dilution on networks trained using random biased patterns 

was examined by Evans (1989) using networks trained using the modified one-shot 
Hebb-type rule developed by Tsodyks and Feigel'man (1988). Evans notes that 
dilution does not result in stored patterns gradually declining in performance as 

attractors but rather more complex mechanisms occur with the possibility of a 

memory becoming a limit cycle. The potential for this was mentioned previously 
(c. f chapter 2) as a consequence of asymmetric connectivity. 

da Silva et al. (1995) study the generalisation capability of an extreme and 

asymmetrically diluted version of the Hopfield model. Generalisation is the 

ability to group a given set of correlated patterns into distinct classes. They show 
that dilution improves the performance of the network as a categorisation device 

compared with the fully-connected Hopfield model. It is stated within 

57 



da Silva et at. that Derrida et al. (1987) proved that an asymmetric, diluted version 

of the Hopfield model could not only recognise the patterns which had been 

stored but also had greater capacity. Building on that work, da Silva et al. study 

this model further and show that dilution and asymmetry also improve the 

generalisation ability of the model. They conclude that their model is more 
biologically realistic, a fact somewhat justified in that they employ both dilution 

and asymmetric connectivity. The generalisation improvement comes in the 

form of requiring fewer example patterns in order to be able to classify the input 

patterns correctly. 

An important and oft-cited work was produced by Canning and Gardner (1988) 

examining symmetrically dilute models of neural networks trained using the Hebb 

rule. The focus of this work is on more structured topologies motivated by both 

the realisation that fully-connected systems or those possessing long-range 

connections would be difficult to build physically and that beneficial correlations in 

`real' problems are likely to be local. Some biological motivation is present in that 

the topology inherent in a 3-dimensional neural system is acknowledged and 
Gardner-Medwin (1976) is cited as discussing the links between the brain and 

recurrent networks. Canning and Gardner show that random connectivity is the 
best choice of connection architecture for maximising the ratio of the number of 

patterns stored to the input dimensionality of each neuron, a measure which is 

termed storage efficiency within this work and was described in chapter 4. 

Komoda et al. (1991) examine the way in which the robustness of the stored 

patterns fares against random dilution using an already dilute network. The areas of 

performance investigated were the attractor overlap or similarity of the retrieved 

states with the stored ones, attractor basin size, and storage capacity. It is noted that 

the networks used deteriorate on all three counts with increasing dilution and that 
disruption is worst in networks with small aligned local fields (c. f chapter 2). 

Komoda et al. show patterns stored in a network employing a Gardner-class high 

capacity learning rule have a strong robustness at low levels of dilution while for 

networks trained using the Hopfield rule the opposite is true, performance is better 

at higher levels of dilution. Their result should perhaps not be surprising as the 

capacities of these two architectures are very different and it is likely that in the case 

of a network trained to full capacity with a Garder-class rule that any significant 
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degree of perturbation in the weights will lead to recall and capacity degradation as 

is shown by the work of Bouten et al. (1990), summarised in the next section. 

The symmetrically dilute Hopfield network was also examined with regard to the 

network's ability to act as a categorisation device by Krebs and Theumann (1999). 

It is claimed that the categorisation performance is enhanced by the dilution and 

exceeds that of the fully-connected model. This work is not dissimilar to that of da 

Silva et al. (1995), mentioned above in the context of asymmetric dilution. 

Post-Training Dilution of Connectivity 

A considerable amount of the work on the subject of post-training dilution has a 

biological focus. Analogies have often been drawn between neurological disorders 

such as Alzheimer's disease and the effect of the removal of synapses from artificial 

neural networks. These biologically motivated approaches are of interest but differ 

significantly from this work in their goals and are therefore only briefly summarised 

below. 

The work of Ruppin and Reggia (1995) falls into this category. In their work they 

present an `analytical framework' for estimating the functional damage arising from 

the removal of connections in a structured manner using a network trained using 

sparse binary patterns. 

Chechik et al. (1998) are similarly biologically motivated but follow a 
developmental approach, looking at the manner in which the young brain exhibits 

synaptic overgrowth followed by selective reduction of synapses. The reasoning 
behind this is that neural connectivity is expensive in terms of energy and pruning is 

one means by which the body seeks to reduce energy consumption. Chechik et al. 

present several strategies for diluting synapses and show a link between the results of 

their work and certain types of amnesia. 

An extensive review of the range of work being conducted in this area can be 

found in (Ruppin, 1995; Ruppin and Reggia, 1998). 

Non-biologically motivated work on post-training dilution of synapses is far less 

widespread. Prior work on the post-training dilution of networks trained using 

non-Hebb-type rules is summarised below. 

Vishwanathan (1995) studied the fault tolerance of neuronal failure using networks 
of perceptrons by examining the proportion of patterns that continue to be recalled 
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without error when some of the neurons fail. This work is continued in 

(Vishwanathan, 1995) in which the effect of removing synapses of particular 

magnitudes on the recall performance of similar networks is determined by 

mathematical means. It is shown that a best-case upper bound on the amount of 

retrieval error introduced through removal of synapses can be estimated using 

statistical mechanics. 

Sparse Connectivity 

Bouten (1990) examines two strategies for establishing sparse connectivity in 

networks using a high capacity learning rule. The first of these is a simple random 

removal process which, it is shown, leads to a linear dependence on the proportion 

of connections being removed. This result corresponds to that of Sompolinsky 

(1986) who used the Hebb rule to store the patterns in the network. The second 

strategy, termed annealed dilution, chooses the synapses to eliminate based upon the 

nature of the training set, contributing to the storage of the patterns. This form of 
dilution is functionally equivalent to training a fully-connected network and 

removing weights in order of ascending absolute magnitude. 

Annealed dilution is shown to provide a significant capacity improvement over 

random dilution though it should be noted that the resulting architecture is tailored 

very specifically to the actual data being learnt. Bouten's work is theoretical and no 

empirical results are presented. 

Stiefvater et al. (1993) propose a sparsely-connected Hopfield-type network for 

recognising natural, highly correlated data in the form of video images. The 

training data has a high level of both inter-pattern correlation and site correlation, 

terms that will be explained in detail later in this work. Their studies have shown 

that, due to unfavourable correlations in the training data, models originally 

proposed for the processing of correlated random (biased) patterns fail to work on 

the `natural' data. The spatial and temporal continuity of nature causes inter- 

pattern and site correlation to be common features of data derived from real- 

world sources. The network appears to operate on quite heavily pre-processed 
images. Video images have applied to them a `Gabor filter' designed to mimic the 
functionality of simple cells in the visual cortex. 

Stiefvater et al. present the notion of `practical usability'. In order for this to be 

the case for a given network they state that network relaxation (recall) times 
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should be of the order of a few seconds and that learning times should be 

reasonable. Though a definition of `reasonable' is not given it would be 

unreasonable to assume minutes or hours rather than days. 

Stiefvater et al. note Canning and Gardner's (1988) work showing that diluted 

network models are efficient at processing random patterns and the effectiveness 

of Bouten et al. 's (1990) `metastabilization' technique using learning and dilution. 

It is suggested that these techniques might be just as applicable to training patterns 

with a natural correlation structure as the dilution of the network could be 

tailored to match. It was demonstrated that, for random patterns, annealed 

dilution strategies produced networks with larger basins of attraction than might 

be found in networks where the structure forms uniform geometric 

neighbourhoods. Justification for the presence of this phenomenon is given. It is 

stated that in the case of local neighbourhood connectivity, important long-range 

interactions are cut. Quite why these interactions are important is never 

discussed. The question arising from this is whether or not the high-valued 

synapses that would be chosen to be kept during the process of annealed dilution 

are the same as those that would form local neighbourhood connectivity in the 

case of naturally-derived training data. If this turned out to be the case then 

networks created in this way would begin to correspond more closely to their 

biological counterparts since, according to Mallot and von Seelen (1989), 

computation by uniformly structured connections appears to be an important 

factor in neural information processing. A local network topology would also be 

easier to implement in hardware due to the reduced physical `real estate' 

requirements. 

Heuristics were devised and developed by Stiefvater et al. (1993) which would 
create connectivity patterns based on statistical analyses of the training data and it 

was shown to be the case that a local neighbourhood connectivity topology does 

indeed select the highest valued synapses as would occur using the annealing 

technique. Within their work, three novel learning techniques are considered: a 

geometric one, a system dependent on site statistics, and a combination strategy. 
The geometric technique seeks simply to define a regular neighbourhood of 

connectivity for all neurons. The site statistics method attempts to cut 

connections based on the level of cross-pattern activity at each neuron. Neurons 
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with activities close to the mean level of activity are deemed to be the most 
`important' and are kept. 

Neighbourhood connection strategies were also proposed by Karholm (1993) in 

his work on associative memories with short-range, higher order couplings. The 

higher order couplings are capable of computing the product of neuron inputs 

and, it is stated, appear in the brain. 

Karlholm illustrates the problem of linear inseparability of patterns with regard to 

using a local neighbourhood of connections arguing that: "... if the range of 

connections is restricted to a small neighbourhood, it may happen quite often that patterns 
look the same from a single unit's point of view". It is argued that a neighbourhood 

size should be sought that minimises the conflict between the training patterns. 
This is the same argument as was used earlier for the expectation of improved 

performance in the networks used in this work (c. f. §5.2). 

Architectures modelling hierarchical connection topologies have been quite popular 

areas for study. The majority of this research takes as its inspiration the work of 
Marr (1971) and his theory of the function of the mammalian archicortex as a 

memory. 

Sutton et al. (1988) propose a hierarchical model of memory based on the principle 

that regions of the cortex are topographically organised into nested subnetworks. 
The hierarchy has three levels, the first taking the form of a number of individually 

fully-connected but separate Hopfield-type networks. These first-level clusters are 
linked by a subset of connections termed projection elements to form second-level 

clusters. Further connections link second-level clusters together to form third-level 

clusters. 

The technique of Sutton et al. can be continued to establish as deep a network 
hierarchy as is required. The motivation behind the work is to examine not just 

the storage capability of the model but also to develop the model as a tool that may 
be useful in modelling memory loss in neurodegenerative disorders such as 
Alzheimer's disease. The training and update dynamics of this network are 

complex and beyond the scope of this work but Sutton et al. show experimentally 
the results on memory recall of various degrees of dilution of inter-cluster 

connectivity. 
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O'Kane and Treves (1992) take a similar approach to that of Sutton et al. although 

they only consider two levels in their hierarchy. Fully-connected networks, termed 

modules, are joined with each other using a subset of connections distributed at 

random. Patterns are stored on both the short- and long-range connections using 

Hebb-style rules. The attractor states of the network and the storage capacity are 

examined using the statistical physics techniques made popular in this field by 

Derrida et al. (1987). 

O'Kane and Treves conclude that their network is not a viable model for the 

organisation of memory in the cortex. They reason that the storage capacity of a 

neural network scaling with the number of connections per unit rather than with 

the size of the system is `wholly implausible from a biological point of view'. 

A comprehensive review of the field of modular neural networks can be found in 

(Caelli, Guan et al., 1999) in which the authors note the absence of work involving 

the incorporation of geometric structure into neural models. 

Jacobs and Jordan (1992) present an examination of the computational 

consequences of a bias towards short connections in neural networks. While their 

work is not restricted to networks of the Hopfield type they present some 
interesting thoughts on the justification and motivation for such topologies 

primarily related to the speed of electrical signal propagation in biological neural 

connections. Jacobs and Jordan cite evidence suggesting that cognitive processes are 
less localised in newborns than in adults (O'Leary, 1989; Greenfield, 1991). This 

notion of radical topological change during human development was also central to 

the work of Chechik et al. (1998), mentioned earlier. 
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5.4. Summary of Literature Review 

To summarise the important works relevant to this investigation: 

Canning and Gardner (1988) mention the possibility that beneficial correlations are 

likely to be local in natural patterns and that benefits might be gained by creating 

neighbourhood connectivity at the same distance. 

Karlholm (1993) reinforces the hypothesis of Canning and Gardner by stating 

explicitly that patterns that appear similar from an individual neuron's perspective 

might arise by restricting connectivity to a small neighbourhood around each 

neuron. 

Lopez et al. (1995) demonstrate that, for perceptrons, learning patterns with 

correlated inputs and identical outputs will lead to improved capacity. 

It is known from the work of Gardner (1988) that higher capacity in a network of 

perceptrons leads to an increase in the minimum value of the stability coefficients. 

Finally, it has been shown that larger stability coefficients imply larger attractor 
basins and so better attractor performance should result (Gardner, 1988; Kepler and 
Abbot, 1988). 
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6. POST-TRAINING REMOVAL OF SYNAPSES AND ITS EFFECT ON 
NETWORK PERFORMANCE 

6.1. Overview 

In the search for an efficient, reduced level of network connectivity it makes a 

certain amount of sense to examine the effect of removing connections from a 

network that has previously been trained using one or more of the algorithms 

known to be applicable to fully-connected architectures. Success in training 

networks this way could provide a means whereby training could be performed 

off-line, in software, and the weights might then be transferred to a hardware- 

based network. 

While strategies of this nature are going to be unable to deliver any reduction in 

the training time of the networks (indeed, the overhead of subsequently removing 

connections from a trained network contributes to an increase in overall network 

preparation time) there will be savings in terms of the amount of memory 

required to store the remaining connections and weights and a corresponding 

reduction in the hardware costs of any physical realisation of such networks but 

only after dilution has taken place. 

Prior work in this area appears to have been largely restricted to either 

examination of networks trained using Hebbian learning only or random dilution 

strategies (Sompolinsky, 1986; Kothari and Lotlikar, 1997). It has been shown 

that the capacity of such networks falls linearly with the proportion of 

connections removed using such strategies (Sompolinsky, 1986). As justification 

for treating trained networks in this manner, Chechik et al. (1998) pursued the 

biologically motivated notion that synaptic pruning during the development of 

the mammalian brain was an attempt by the brain itself to reduce the energy 

requirements of a system which, when immature, was both infrastructure 

overloaded and energy inefficient. This hypothesis seems appropriate to the 

creation of physical artificial networks also, especially with respect to 
infrastructure complexity. A review of work in this area was presented in 

chapter 5. 

The experiments reported here use networks trained on random data using one of 
two high-performance learning rules. The trained networks are analysed with 
respect to the stability of the patterns being learned, and the ability of the 
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networks to recall original patterns from a corrupt example (attractor 

performance). 

6.2. Experimental Design 

The networks used in this series of experiments were 100 neurons in size and the 

units were fully inter-connected. The weight matrices were generated using 

either the Symmetric Local Learning algorithm (Gardner, Gutfreund et al., 1989) 

or the Blatt and Vergini (1991) method for approximating the pseudo-inverse. 

These learning rules were covered in detail in chapter 2. 

Randomly generated training data at two levels of bias (0.5 and 0.9) were used. 

The choices of biases were made so that one provides unbiased patterns and the 

other patterns that are biased heavily towards +1 values. 

The trained networks are analysed in two ways: The first analysis is that of 

pattern stability. A pattern is stable if, when applied to the network as a start state, 

the network state does not change after all neurons have been updated. The 

proportion of patterns stable at each network loading is reported for various 
degrees of synaptic removal. 

The second analysis is that of attractor performance. This analysis uses the 

modified Kanter and Sompolinsky (1987) measure as detailed in chapter 4. The 

purpose of this analysis is to find out whether or not attractor performance 
decreases gracefully with increasing dilution or a sharper change in performance 

occurs. 
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6.3. Synapse Removal Strategies 

Two synapse removal strategies were employed in this series of experiments: 

random removal and smallest-value-first removal. 

6.3.1. Random Removal 

In the case of random synapse removal a value for the proportion of 

connections to be removed is chosen. This value is multiplied by the number 

of connections within the fully-connected network and then halved to give the 

number of connection pairs to be removed. Then, a pair of units is chosen at 

random and, if a connection between the pair exists, the bi-directional link is 

removed. This is repeated until the desired level of connectivity is achieved. 

Ensuring that the bi-directional link is fully removed maintains symmetry 

within the weight matrix thus ensuring simple update dynamics 

(c. f chapter 2). 

6.3.2. Smallest-Value-First Removal 

The number of connection pairs to be removed is determined in the same way 

as for random removal. The network's connections are then scanned to find 

the weight with the smallest absolute value (that which is closest to zero). 
Once the connection with the smallest weight value has been identified it is 

removed. The process continues until the required number of connections has 

been eliminated. 

A functionally equivalent strategy was proposed by Bouten (1990) and named 

annealed dilution. Bouten presented an analysis of a theoretical network in 

which a number of weights were omitted. The absent weights are the same as 

those that would be removed were smallest-value-first removal performed on a 

trained fully-connected network. 

For brevity, this scheme is henceforth referred to as smallest-first removal. 
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6.4. Results 

This section presents the results of the experiments outlined in Q6.2. The results 

are initially categorised by learning rule and subsequently by analysis type. 

6.4.1. Symmetric Local Learning 

6.4.1.1. Pattern Stability 

0 

0 
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Figure 6.1: The manner in which pattern stability, as a percentage of the total number of 
patterns stored, changes with respect to increasing network load and decreasing levels of 
connectivity. The individual plots represent a) pattern bias 0.5, random removal, b) pattern bias 
0.5, smallest-first removal, c) pattern bias 0.9, random rennoval; d) pattern bias 0.9, smallest-first 
removal. 

Key: Percentage of patterns stable represented by each plot colour. 
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  50.00-60.00   60.00-70.00 Q 70.00-80.00   80 00-90.00   90.00-100 00 
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Figure 6.1 (previous page) shows the following: The plot pairings a-b and c-d 

are for patterns of bias 0.5 and 0.9 respectively. The left-hand plots in each 

pairing represent networks in which random removal was performed while the 

right-hand plots represent those in which smallest-first removal was used. 

The plots are 2-dimensional contour maps of a 3-dimensional surface. The 

dependent variable is the proportion of learnt patterns that remain stable as 

connections are removed. Each value is represented by one of the colours in 

the key. 

All four plots show very clearly that it is not possible to remove the same 

quantity of connections at high loadings as at low loadings and maintain the 

same level of pattern stability. 

Comparing the plots for random removal (a and c) it can be seen that the 
difference in the pattern bias has little effect on the way in which pattern 

stability changes with respect to loading and level of connectivity. This is 

evident from the fact that the plots do not change significantly in structure. 
For both levels of pattern bias, the pattern stability falls more slowly with 
increased removal at low loadings than at high loadings. 

Comparing the plots for smallest-first removal (b and d) the effect of pattern 
bias remains low. In comparison to random removal, the fall in pattern 

stability exhibits quite different behaviour for smallest-first removal. When 

connections were removed randomly it was seen that at low loadings, the fall 

in pattern stability with respect to the level of removal was slower than it was 

at higher loadings. For smallest-first removal the opposite is true; at low 

loadings, the fall in stability occurs quite quickly while at high loadings, the 
decline in pattern stability is slower. 

A crucial point to note is the difference, regardless of the bias of the patterns 
being learnt, between using random and smallest-first removal to reduce the 

connectivity of the network. Comparing the left- and right-hand plots in the 

a-b and c-d pairings it can clearly be seen that the light purple areas 

representing pattern stability in the 90-100% range are much enlarged in the 

case of the right-hand plots which depict the results from the networks affected 
by smallest-first removal. 
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Figure 6.2: The manner in which attractor performance changes with respect to increasing 

network load and a decreasing level of connectivity. The individual plots represent a) pattern 
bias 0.5, random removal; h) pattern bias 0.5, smallest-first removal; c) pattern bias 0.9, random 
removal; d) pattern bias 0.9, smallest-first removal. 

Key: Level of attractor performance represented by each plot colour. 
  0.00-0.05   0.05-0.10 Q 0.10-0.15 Q 0.15-0.20   020-0.25   0.25-0 30   0.30-0.35 
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Figure 6.2 shows the following: The plot pairings a-h and c-d are as for 

pattern stability. The left-hand plots in each pairing again represent networks 

in which random dilution was performed while the right-hand plots represent 

those in which smallest-first removal was used. 

While presented in the same way as were the plots of pattern stability, the 
dependant variable in this case is the attractor performance value as reported by 

the modified Kanter and Somplinksy measure. 
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Comparing the plots for random removal (a and c) it can be seen that the 

change in pattern bias makes a considerable difference to the attractor 

performance of the network. Looking along the line of =0.05, the last point 

at which attractor performance is at least in the range 0.05-0.10 is at 

approximately 82% of connections removed. The corresponding point for 

biased data is at around 64%. At low loading the decline in attractor 

performance clearly occurs sooner when using biased data. If one examines 

the plots along the line =0.70 however, the attractor performance for the 

networks trained using unbiased data has all but disappeared at any degree of 

removal. By contrast, the networks learning biased data manage some attractor 

performance up to a connection removal level of approximately 4%. 

Comparing the plots for smallest-first removal (b and d) it can be seen that 

there is again a difference in the way that attractor performance declines for 

networks trained using random patterns of bias 0.9 compared with that for 

unbiased patterns. The decline in performance for the unbiased patterns (plot 

b) is quite smooth - the contours are fairly evenly spaced. In contrast, the 
decline for biased patterns (plot b) is uneven and erratic. It can be seen 
however, that for biased patterns, some attractor performance is present at the 

highest loading ( =0.95) for up to about 35% removal. It would appear 

therefore, that networks trained with Symmetric Local Learning and learning 

biased patterns are more resilient to a decrease in connectivity than those 
learning unbiased patterns. 

The improvement in attractor performance that can be gained by reducing 

connectivity using smallest-first removal can be illustrated by graphing the 

attractor performance against the proportion of connections removed for specific 
loadings. Figures 7.3 and 7.4 (next page) demonstrate this for patterns of bias 0.5 

and 0.9 respectively. Each graph shows, for loadings of a=0.05,0.30, and 0.50, 

the attractor performance, R, of a series of networks against an decreasing level 

of connectivity. Solid lines represent networks affected by random removal of 

connectivity while dashed lines with the same symbol represent networks where 

the connectivity was removed using the smallest-first method. The graphs 

represent vertical slices, along lines of constant pattern load, of the 3-dimensional 

surface from which the earlier contour plots were created. 
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Figure 6.3: The decline in attractor performance for a number of fixed loading points (a=0.05, 

a=0.30, and a=0.50) using patterns of bias 0.5. The results of both random removal and smallest- 
first removal are shown for comparison. 

Key: Definitions of line styles representing levels of pattern load and type of removal strategy 
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Figure 6.4: The decline in attractor performance for a number of fixed loading points (a=0.05, 
a=0.30, and a=0.50) using patterns of bias 0.9. The results of both random removal and smallest- 
first removal are shown for comparison. 

Key: Definitions of line styles representing levels of pattern load and type of removal strategy 
t5 patterns, random removal ---. ---5 patterns, smallest-first removal 
-&-30 patterns, random removal --- ---30 patterns, smallest-first removal 
-e--50 patterns, random removal ---A, ---50 patterns, smallest-first removal 
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Both graphs show that the strategy used for removing connections makes little 

difference when the network is at low loading («=0.05) for up to 70% removal 

in the case of unbiased patterns and up to approximately 60% removal for 

patterns of bias 0.9. Beyond these levels smallest-first removal begins to show an 

advantage indicated by the corresponding dashed line being higher than the 

solid. 

For the remaining loadings (a=0.30, and 0.50) the advantage of using the 

smallest-first removal strategy is more obvious. At even a very small level of 

connection removal the dashed lines in each of the solid/dashed pairings remain 

well above their solid counterparts. 
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Figure 6.5: The manner in which pattern stability, as a percentage of the total patterns stored, 
changes with respect to increasing network load and decreasing levels of connectivity. The 

individual plots represent a) pattern bias 0.5, random removal; b) pattern bias 0.5, smallest-first 

removal; c) pattern bias 0.9, random removal: d) pattern bias 0.9, smallest-first removal. 

Key: Percentage of patterns stable represented by each plot colour. 
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Figure 6.5 (above) shows the following: As was the case for the results from 

networks trained using Symmetric Local Learning, the plot pairings a-h and c-d 

are for patterns of bias 0.5 and 0.9 respectively. The left-hand plots in each 

pairing represent networks in which random removal was performed while the 

right-hand plots represent those in which smallest-first removal was used. 

The results are very similar to those for Symmetric Local Learning. We again 

see the change in pattern bias from 0.5 to 0.9 making little difference to the way 
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in which the level of pattern stability changes with respect to the increasing 

loading and the decreasing connectivity. 

As was the case for Symmetric Local Learning, it is again evident that it is not 

possible to remove as many connections at high loadings as at low loadings 

whilst maintaining a high level of pattern stability. 

Regardless of the pattern bias the advantage of using smallest-first dilution is 

again apparent with the Blatt and Vergini learning rule. Comparing the plots in 

the pairings a-b and c-d it can be seen that the increase in the area of the purple 

region representing maximum stability is significant when moving from random 

to smallest-first removal. 

A key difference between the plots of pattern stability for Symmetric Local 

Learning and Blatt and Vergini is rate at which pattern stability declines at high 

loadings. At a loading of a=0.95 (95 patterns), Symmetric Local Learning- 

trained networks exhibited approximately 90-100% stability at up to 30% 

removal for unbiased patterns and up to 35% removal for biased patterns. At the 

same loading, Blatt and Vergini-trained networks have 90-100% stability at only 

up to 5% removal. It is concluded therefore, that networks trained using 

Symmetric Local Learning have greater resilience to smallest-first removal at 
high loading than those trained using the Blatt and Vergini algorithm. 
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6.4.2.2. Attractor Performance 
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Figure 6.6: The manner in which attractor performance changes with respect to increasing 

network load and decreasing levels of connectivity. The individual plots represent a) pattern 
bias 0.5, random removal; b) pattern bias 0.5, smallest-first removal; c) pattern bias 0.9, random 
removal; d) pattern bias 0.9, smallest-first removal. 

Key: Level of attractor performance represented by each plot colour. 
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Figure 6.6 (above) shows the following: The plot pairings a-h and c-d are as 

for pattern stability with the left-hand plots in each pair representing networks 

in which the random removal strategy was used while the right-hand plots 

represent networks where connections were removed using the smallest-first 

strategy. 

Comparing the plots for random removal (a and c) it can be seen that the 

change in pattern bias from 0.5 to 0.9 has a small effect on the way in which 
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attractor performance declines with increasing loading and decreasing 

connectivity. 

As was the case with networks trained using the Symmetric Local Learning 

rule, the decline in performance at low loadings takes place slightly faster when 

using patterns of bias 0.9. At higher loadings however, the networks retain 

some attractor performance at low levels of connection removal when trained 

using biased patterns. This retrieval ability does not exist when using unbiased 
data at such loadings. 

Comparing the plots for smallest-first removal (b and d) it can be seen that 

there appears to be a difference in the way in which attractor performance 
declines for networks trained using random patterns of bias 0.9 compared with 

that for unbiased patterns. As was the case for networks trained using the 

Symmetric Local Learning rule, when using biased data the decline in attractor 

performance with respect to increasing loading and decreasing connectivity is 

often not a smooth one. This can be seen in the chaotic nature of the 

contours in plot d. 

It can be again be seen though that, in the case of biased data, the network 

retains some attractor performance at loadings greater than 0.67 whereas the 

networks trained using unbiased pattern possess little to no attractor 

performance beyond that point. So, as was evident with networks trained 

using Symmetric Local Learning, it again appears that networks learning biased 

patterns are more resilient to a decrease in connectivity than those learning 

unbiased patterns when training using the Blatt and Vergini rule. 
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Figure 6.7: The decline in attractor performance (R) for a number of fixed loading points (0.05, 
0.30, and 0.50) using patterns of bias 0.5. The results of both random removal and smallest-first 
removal are superimposed for comparison. 
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Figure 6.8: The decline in attractor performance (R) for a number of fixed loading points (0.05, 
0.30, and 0.50) using patterns of bias 0.9. The results of both random removal and smallest-first 
removal are superimposed for comparison. 
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Figures 6.7 and 6.8 illustrate the way in which attractor performance falls as the 

proportion of connections being removed increases for networks trained using 

the Blatt and Vergini learning rule with patterns of bias 0.5 and 0.9 respectively. 

Each graph shows results for both random and smallest-first removal (represented 

by solid and dashed lines respectively) at loadings of a=0.05,0.30, and 0.50. 

At a loading of 0.05, both graphs show that the attractor performance is often 

better when removing connections from the network at random. This appears 

to be the case for up to approximately 65-70% removal of connections. 

Beyond this point, smallest-first removal becomes more advantageous. 

The situation changes significantly at higher pattern loads. For unbiased 

patterns at a loading of 0.30 smallest-first removal allows around 65-70% of 

connections to be removed before attractor performance disappears completely 

compared with 15-20% removal when performed randomly. At a loading of 

0.50 this falls slightly to 50-55% for smallest-first versus 10% for random 

removal. 

As one might expect from the earlier evidence that the level of bias makes little 

difference to the performance, the values for biased patterns at loadings of 0.30 

and 0.50 are very similar to those for unbiased. The increased irregularity in 

the contours of figure 6.6(d) does not manifest itself in as chaotic a decline in 

performance as might be expected. 

79 



6.5. Discussion 

When read along a line of constant pattern load, the spacing between the 

contours of the plots showing pattern stability against increasing load and 

declining connectivity (figures 6.1 & 6.3) indicates the rate of decline of the 

stability of the patterns learnt by the network. A wider band of colour indicates a 

slower reduction in stability. All the plots showed that when stability began to be 

lost, the networks experienced a rapid fall to a point where stability was 0-10% of 

the trained patterns rather than a gradual decline in stability. This is indicated by 

the plots having a large band of colour representing 90-100% stability before a 

point is reached at which a number of narrow bands appear in succession 

representing a rapid fall in stability before another wide band representing 0-10% 

stability appears. 

Contrasting the removal strategies shows that random removal is clearly out- 

performed by the smallest-first method. This is shown by the area of the plots 

coloured purple and representing 90-100% stability in figures 6.1 and 6.3. 

Comparing between the training algorithms reveals another result. When 

employing smallest-value-first removal the Symmetric Local Learning algorithm 

consistently outperforms the Blatt and Vergini rule with regard to the point at 

which networks begin to lose stability at higher loading/removal levels. It can be 

seen that at a loading of 0.95N the networks trained using the Blatt and Vergini 

rule have lost more than 10% of their patterns with a loss of only 5-10% of their 

connections. The networks trained using Symmetric Local Learning do not 

experience this until the level of connection removal reaches 30-40%. This holds 

true regardless of level of bias in the training patterns. 

Examining the plots of attractor performance against loading and connectivity 
(figures 6.2 & 6.4) two important observations can be made. The first of these is 

that looking from left to right across the plots, i. e. from random to smallest-value- 
first removal strategies, it can be seen that improvement in performance can be 

gained by targeting connection removal towards those with values closest to zero 

rather than selecting them at random. The second point of note is that altering 

the level of bias in the patterns being stored seems to make relatively little 

difference to the attractor performance of the network as can be seen by 

comparing the top and bottom plots of each set. 
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This second point is perhaps unsurprising in the case of the Symmetric Local 

Learning algorithm given that the maximum loading tested is well below the 

notional maximum capacity of 2N patterns (c. f chapter 2) but more so in the case 

of the Blatt and Vergini rule where the maximum capacity is N-1. The 

conclusion that networks trained using Symmetric Local Learning are more 

resilient is reinforced by the increased robustness against connection removal at 

high loadings when considering pattern stability. 

6.6. Conclusions 

The results presented show that, when trained used high-performance learning 

rules, Hopfield-type networks can be highly resilient in terms of maintaining high 

levels of performance even after considerable levels of damage has been done to 

the connectivity of the network. This resilience is, however, highly dependant 

on both the way in which a network's weight matrix has been generated and the 

manner in which the connections have been removed. The results show that of 

those tested, the most effective learning rule is Symmetric Local Learning and the 

best synapse removal strategy is that of smallest-value-first. 

The results for random removal concur with that of Sompolinsky (1986). 

Somplinksy showed that, for networks trained using the Hebb rule, pattern 

stability fell linearly with the proportion of connections removed from the 

network. For the networks used in this investigation this is also the case. The 

level of removal at which stability begins to be lost is dependant on the actual 

pattern load on the network but once instability begins its rise is approximately 
linear with increasing connectivity removal. For non-trivial levels of loading this 
linear decline is also true for attractor performance. 

To conclude, it was demonstrated that a significant amount of connectivity can be 

removed from a trained network without adversely affecting either the pattern 

stability or the attractor performance to any great degree. The reduced 

connectivity brings benefits in terms of the storage requirements of such networks 

when implemented in software and has implications for both hardware 

implementations and the biological plausibility of Hopfield-type associative 

memories. 
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7. DEVELOPMENT AND ANALYSIS OF NON-RANDOM TRAINING 
DATA 

7.1. Introduction 

This chapter is concerned with the development of non-random training data and 

the analysis of the characteristics of that data. The purpose of generating this type 

of data is to attempt to simulate what Müller et al. (1993) term the unfavourable 

correlations inherent in natural or real world data sets that arise from the spatial and 

temporal continuity of nature. According to Müller et al., it is these correlations 

that cause standard fully-connected models to fail prematurely. 

In order to test the hypothesis laid out in chapter 5 regarding the effect of 

structured or correlated data on the ability of an associative memory to efficiently 

store and effectively recall that data it is important that the nature of the data being 

employed be well understood. 

The requirements of a training set comprised of this data are the same as those 

suggested by Müller et al. in that it should possess: 

a) High inter-pattern correlation: The patterns should be relatively similar to 

each other. In practice, this means that identically positioned bits in a set of 

patterns will often have the same value throughout the pattern set. 

b) High site correlations within each pattern: Within each of the patterns, there 

should be areas where the majority of bits are the same value. This would be 

represented by blocks of the same colour within individual patterns. 

Two sets of training patterns were created. All the generated patterns were 400 bits 

in length. The new patterns are four times bigger than those used previously in this 

work and the larger dimensions will permit greater flexibility in establishing 

structured connectivity topologies in networks of the same size in later 

investigations. To facilitate the development of such topologies the training 

patterns are 2-dimensional representations of the 400-dimensional inputs. 

Enforcing spatial proximity within the training patterns gives greater meaning to a 

non-fully-connected system of connectivity through the arising of the potential for 

reflecting training pattern structure in the connectivity topology. This is in contrast 

to the fundamentally unstructured nature of the traditional Hopfield (1982) 

network. 

82 



The first set of training data takes the form of solid geometric shapes placed at 

random within the 2-dimensional representation of a training pattern. The second 

data set comprises images taken from computer character sets, or fonts. 

7.2. Generating Non-Random Data 

This section presents a description of the way in which the different types of non- 

random data were created. Initially, an attempt was made to source suitable 2- 

colour images from clip-art resources. Such images exist but possess two distinct 

disadvantages. Firstly, the images tend to be quite large by comparison with the 

size of the networks being used in this work. Resizing the images caused a lot of 

image detail to be lost and so the natural correlations present were likely to be have 

been destroyed in the process. The second disadvantage arose from the fact that 

where the images were of a suitable size, they were often not square. Scaling the 

images to be square distorted the images in such a way that the correlations were no 

longer the same as those that occurred naturally. 

7.2.1. Geometric Data 

The geometric data set is generated by placing, at random locations, a number of 

solid geometric shapes within the 20 by 20 pixel training pattern. The shapes 

used are triangles, squares, and circles. The choice of shape to place each time is 

also random. The shapes are permitted to overlap and are clipped if a shape 

would overrun an edge. 

Some example patterns are show below: 

Figure 7.1: Two examples of training patterns based on the generated geometric data. 

The patterns shown in figure 7.1 have large areas that are the same colour. This 

provides us with one of our requirements of the data in that the patterns have 

high site correlations. If a bit is picked at random from one of the above 

patterns, there is a high likelihood that its neighbours will be the same colour. 
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The other requirement (the inter-pattern correlation) is more complex to 

analyse and its fulfilment or otherwise is examined in further detail in the section 

on analysis of pattern characteristics, below. 

A selection of the geometric training data is presented in appendix B. 

7.2.2. Character Data 

The character data set is generated by scaling images of letters from computer 

character sets into the 2-dimensional training pattern representation. Although 

the problems with scaling the data were described earlier in the context of 

monochrome clip-art images, scaling the relatively simple characters that make 

up this training data causes no such difficulties. 

Examples of patterns generated this way are shown below: 

Figure 7.2: Two examples of training patterns based on the character data. 

As with the geometric data seen previously it is apparent that the patterns shown 
in figure 7.2 possess large areas of the same colour which again fulfils the 

requirement for high site correlation. 

The full set of character-based training data is presented in appendix C. 
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7.3. Analysis of Training Pattern Characteristics 

The importance of understanding the underlying nature of the training data has 

been mentioned previously. This section provides information about four methods 
by which information about the data may be obtained. These techniques are: 

measuring the bias of the training patterns, calculating local correlation across the 

training set, calculating site correlation within the patterns, and measuring site 

activity across the set. All four techniques are described in detail below. 

7.3.1. Measuring the Bias of a Training Set 

The bias of a set of training patterns gives a measurement of how much the bits 

that make up that set favour a particular value. In the case of the bipolar patterns 

employed in this work, that value may be +1 or -1. 

Unbiased patterns, those whose bits may take the value +1 or -1 with equal 
likelihood, have a bias of 0.5. The bias reflects the probability that any bit, 

chosen at random from patterns in the training set, will have the value +1. 

To illustrate this, some example patterns are shown below: 

Figure 7.3: Two example patterns with bias O. S. 

The example patterns shown in figure 7.3 (above) are both unbiased. The 

convention throughout this work has been to portray +1 bits as black, and -1 as 

white. 

It should be recognised that the bias values are symmetric about the value 0.5. 

That is to say, a pattern with a bias value of 0.2 can be considered to be as 
heavily biased as a pattern with bias 0.8. One pattern will be heavily biased to 
bit values of +1 and the other biased to bit values of -1. 

The bias of a set of training patterns gives an approximate indication, especially 
in the case of random data, of the complexity of the dataset. 
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7.3.2. Calculating the Local Correlation within a Training Pattern 

The level of global correlation of a training pattern indicates how similar, on 

average, each bit is with the other bits in the pattern. In contrast, the local 

correlation of a training pattern provides a measure of how similar each bit is to 

those in its immediate vicinity. Both calculations are averaged over all the bits in 

the pattern. 

In order to calculate local correlation we must have some definition of a locale 

for which it should be calculated. For the purposes of this calculation, the locale 

is defined as being a square neighbourhood around some specified bit. 

For example: 

(a) (b) 

Figure 7.4: (a) An example of a bit with a neighbourhood size (d) equal to 1. 
(b) An example of a bit with a neighbourhood size (d) equal to 3. 

In figure 7.4(a) a neighbourhood around a corner bit is shown. The size of the 

neighbourhood is defined by the distance of the furthest non-diagonal bit and in 

this case the distance, d, is 1. Figure 7.4(b) shows a neighbourhood around a 

more central bit; this time the distance is greater (d=3). The slightly greater 
Euclidian or city-block distances of bits set at a diagonal is ignored for the 

purposes of simplicity of definition. 

Consider the simplest case of a single pattern in which all bits have the same 

value. We would expect this measure to indicate maximal correlation. The 

level of correlation is denoted by a value between 0 and 1. A value of 0 will 

mean there is no local correlation present in the data while a value of 1 will 

mean the opposite, that the correlation is as high as it can be. 
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The correlation for a single bit, i, is calculated as follows: 

1 
c=#Zý0(, ý) (7.1) 

JE Z1 

Where Z; is the set of indices of the bits comprising the neighbourhood of unit i 

and O is the unit Heaviside function. C; is effectively the proportion of a bit's 

neighbours possessing the same value as that bit. If all the neighbouring bits 

have the same value as the bit for which the correlation is being measured then 

C, will equal 1. Correspondingly, if all the neighbouring bits are a different 

value then G will equal 0 though, in practice, the corner and edge bits ensure 

this will only occur as N-º00. 

Having measured the local correlation of one bit, it remains to calculate the local 

correlation for all others in the pattern. The mean of these values is taken to be 

the overall level of local correlation present in the pattern. 

The level of global correlation is calculated in exactly the same way except all 

bits are considered to be in the neighbourhood of the one for which the 

measure is currently being calculated. The mean is again taken and this value is 

the level of global correlation. 

As the level of bias of a pattern increases, so should the level of correlation. For 

random patterns, the level of local and global correlation should be very similar 

as the active sites in each pattern will be evenly distributed. For patterns in 

which the data is more structured, such as the examples of geometric and 

character data shown in §7.2, it would be expected that the local correlation 
level would be significantly greater than that of global correlation. 

A high level of local correlation is important because, as described in chapter 5, 

it implies that if the network is constructed with a connectivity topology 

resembling the neighbourhood locales then a high degree of correlation between 

the desired output for a neuron, and its inputs, will arise. 

The fact that a pattern is locally correlated is often intuitively evident from 

simply seeing the pattern. More important however, is that a set of patterns are 
highly correlated for the same locales in each pattern as this will give rise to an 

advantageous environment as described by Lopez et at. (1995). The next 

measure described identifies whether or not cross-pattern local correlation exists. 
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7.3.3. Calculating the Level of Local Correlation across a Training Set 

It was illustrated in chapter 5 that, for perceptrons, the more similar the patterns 

within a training set are to each other, as long as they share the same output 

value, the easier it becomes to learn them. It is possible to measure this similarity 

by calculating the level of local correlation across a training set. For local 

connectivity to be advantageous, the level of local correlation must be greater 

than that of global correlation. 

The definition of locality is the same for this calculation as that which was used 

for single patterns. The aim of the local version of this measure is to calculate 

the mean local correlation of pattern subsets where the subsets are determined by 

a central bit and those comprising a square neighbourhood around it. A subset 

of a pattern's bits, defined in this way, has been termed a sub pattern. 

To calculate the correlation we first produce a Hebb-style matrix representing 

the mutual pattern correlations. An N-by-N matrix is defined and termed T. 

The matrix element T, represents the proportion of patterns in which bits i and j 

have the same value. The elements are calculated as follows: 

P µýý 
(7.2) 

Once the correlation matrix has been created the global correlation may be 

calculated as follows: 

Correlationg, 
o,, = 21 

ý, Tü 
N -N rj=, j J 

(7.3) 

The resulting value should be almost identical to the overall level of bias present 
but as measuring the bias includes self-correlation some small difference between 

the values will exist. 

The local correlation is calculated by defining a square neighbourhood around a 

specified bit and proceeds as for global correlation but restricted to the 

neighbourhood. 

Correlation,,,,,, =4Z Ty (7'4) 
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As with the measure for a single pattern, Z; is the set of indices of the bits 

comprising the neighbourhood of unit i. T, is the correlation matrix calculated 

according to equation (7.2). 

7.3.4. Measuring Site Activity across a Training Set 

The site activity across a set of training patterns gives a simple indication of the 

importance of a particular bit in terms of its overall contribution in terms of 

information. This measure was used by Stiefvater et al. (1993) in order to 

determine redundant synapses which may be safely cut. A value b, is defined as: 

b, =1ýON P µ=ý 
(7.5) 

where P is the number of patterns in the training set and O is again the unit 

Heaviside function. The value b; can be thought of as the bitwise bias of the 

training set. 

A low value for b; means that, on average, the majority of the patterns in the 

training set have a -1 value at position i. Conversely, a high b; means most of 

the patterns have a +1 value at position i. Stiefvater et al. note that weights 
leading to neurons with a value of b; close to the average bias, b, for the entire 

training set are the most important ones and should be kept. These weights are 
important as they are providing the information required to allow those neurons 

with the most difficult classification tasks to perform accurately. 

The bitwise bias also indicates the degree of cross-pattern similarity at a particular 

site. If an individual bit has a bias of 0.9 across the set of training patterns then it 

is known that in 90% of the patterns that bit has a value of +1. This would 

represent a very high degree of similarity between the patterns at that site. 
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7.4. Results of Training Pattern Analysis 

This section presents the results of analyses performed upon the training data. The 

analyses are: training set bias, cross-pattern local correlation, and site statistics or 

bitwise bias. Results are not presented for the measurement of local correlation on 

a per-pattern basis as the presence or otherwise of this characteristic is adequately 

given by the cross-pattern local correlation measure. 

7.4.1. Training Set Bias 

As mentioned previously (c. f. §7.3.1), the bias of a training set gives a 

rudimentary indication of its structure. The bias of the geometric and character 

data was measured over 5 sample sets of 50 patterns each and the mean bias was 

calculated. 

Data type Bias 
Geometric data 0.52 
Character data 0.20 

Table 7.1: Training data set bias for geometric and character data. 

The figures given in table 7.1 indicate the level of bias in each of the constructed 
data sets. Geometric data has a bias of 0.52 indicating that, on average, about 
half the bits in each pattern have a value of 1. Character data, with a bias of 0.2, 

has one fifth of its bits having a -1 value and four fifths being equal to 1. 

7.4.2. Cross-Pattern Local Correlation 

As noted earlier in chapter 5, although Gardner (1988) presented evidence of the 
fact that the capacity of perceptrons rises with pattern bias, Lopez et al. (1995) 

demonstrated the added importance of the similarity between the training 

patterns. If it can be demonstrated that correlation is greater at a local level for 

natural data than at a global level then connectivity matching the locale at which 

correlation is greatest may provide capacity and performance benefits. An 

example demonstrating why this should be the case is presented later in 

chapter 8. 
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7.4.2.1. Geometric Data 

The following sequence of histograms shows the frequency with which various 

correlation values occur for a set of geometric data at neighbourhood distances, 

d, of 1 to 5. The value for the global correlation in each case is 0.5161. 
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Figure 7.5: Frequency distribution of the cross-pattern local correlation values for 
geometric data at a neighbourhood distance, d=1. 
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Figure 7.6: Frequency distribution of the cross-pattern local correlation values for 
geometric data at a neighbourhood distance, d=2. 
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Figure 7.7: Frequency distribution of the cross-pattern local correlation values for 

geometric data at a neighbourhood distance, d=3. 
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Figure 7.8: Frequency distribution of the cross-pattern local correlation values for 
geometric data at a neighbourhood distance, d=4. 
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Figure 7.9: Frequency distribution of the cross-pattern local correlation values for 

geometric data at a neighbourhood distance, d=5. 

The sequence of histograms above show that, as the sub-pattern area over which 

the correlation is measured increases, the values for local correlation move 

towards the measured value of global correlation. 

Furthermore, it is apparent that the greatest degree of local correlation exists 

when measured using sub-patterns forming a neighbourhood of distance d=1. It 

must be noted that even at the maximum sub-pattern size tested, those forming a 

neighbourhood of d=5, the level of local correlation at every bit is still above 

that of global correlation. This occurs because the correlation measure at d=5 

incorporate the values for local correlation at previous neighbourhoods. 

The way in which the level of local correlation falls with respect to the 

increasing neighbourhood size is best illustrated by plotting the mean local 

correlation values shown in table 7.2. 

Neiihbourhnnd size Mean lnral rnrra1 t; - 

1 0.89 (s. d. =0.02) 
2 0.83 (s. d. =0.03) 
3 0.77 (s. d. =0.03) 

4 0.72 (s. d. =0.03) 
5 0.68 (s. d. =0.03) 

Table 7.2: Mean local correlation values at various neighbourhood 
sizes for geometric training data. 
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Figure 7.10: Mean local correlation against sub-pattern neighbourhood size for 

geometric training data. The level of global correlation is shown for comparison. 

Figure 7.10 (above) shows that the level of global correlation, indicated by the 

red line, lies at 0.5161. The level of local correlation appears to fall linearly with 

respect to the increasing neighbourhood size from a maximum value of 0.89 at a 

neighbourhood size of 1 to 0.67 at a neighbourhood size of 5. 
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7.4.2.2. Character Data 

The following sequence of histograms shows the frequency with which various 

inter-pattern correlation values occur for a set of character data at 

neighbourhood distances, d, of 1 to 5. The value for the global correlation in 

each case is 0.6918. 
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Figure 7.11: Frequency distribution of the cross-pattern local correlation values for 
character data at a neighbourhood distance, d=1. 
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Figure 7.12: Frequency distribution of the cross-pattern local correlation values for 
character data at a neighbourhood distance, d=2. 
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Figure 7.13: Frequency distribution of the cross-pattern local correlation values for 

character data at a neighbourhood distance, d=3. 
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Figure 7.14: Frequency distribution of the cross-pattern local correlation values for 
character data at a neighbourhood distance, d=4. 
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Figure 7.15: Frequency distribution of the cross-pattern local correlation values for 
character data at a neighbourhood distance, d=5. 

The dominant feature of the preceding sequence of histograms is that the 

distributions are now, in contrast to those for geometric data, clearly non- 
Gaussian. The standard deviations of these distributions are also considerably 
larger. 

The histograms show that, in contrast to those for geometric data, the only 

neighbourhood at which all bits exhibit a level of local correlation in excess of 

the global correlation is that at distance 1. As the neighbourhood size increases 

beyond a distance of 1 an increasing proportion of bits are correlated to a degree 

below the global level of 0.6918. 

Re-examining the sample patterns shown in figure 7.2, it can be clearly seen that 

the patterns are made up of relatively thin lines rather than large blocks of black. 

The fact that the lines are thin has a direct impact on the range at which local 

correlation is present. 

There is a cumulative effect introduced by this measure also. Each new 

neighbourhood includes, when calculating the local correlation for that 

neighbourhood, the correlation for the neighbourhoods within it. For example, 

the local correlation figure for a neighbourhood of size 4 includes within it the 
local correlation measures at neighbourhoods of sizes 1,2, and 3. This effect 
could lead to a view that some degree of local correlation exists at a greater range 
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than is really the case. It is important therefore, to take this effect into account 

when considering the degree of local correlation present at any given 

neighbourhood size > 1. 

Neighbourhood size Mean local correlation 
1 0.87 (s. d. = 0.07) 

2 0.78 (s. d. = 0.10) 

3 0.74 (s. d. = 0.10) 

4 0.71 (s. d. =0.10) 

5 0.70 (s. d. =0.09) 

Table 7.3: Mean local correlation values at various neighbourhood 
sizes for character training data. 
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Figure 7.16: Mean local correlation against sub-pattern neighbourhood size for 

character training data. The level of global correlation is shown for comparison. 

The first point of note from figure 7.16 (above) is how much higher the level of 

global correlation is for character training data than it was for the geometric data. 

This increase arises naturally from the increased level of bias across the character 

data set. 

Secondly, at equivalent neighbourhood sizes, the level of local correlation is 

usually lower for character data than for geometric data though the difference is 

slight. A possible explanation for this is the fact that the geometric training 

patterns have large blocky areas of both black and white. This results in a large 

degree of local correlation over the entire pattern. In contrast, the character data 

has large areas of white (-1 hit) interrupted with thin black areas. As these black 
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areas are very thin, they are a) not locally correlated at any significant distance, 

and b) disrupting the local correlation of the white areas through which they 

pass. 

The advantage in correlation gained by measuring sub-patterns of increasing size 

disappears far more quickly for character data than for geometric data. This can 

be seen by the near-convergence of the blue line, indicating local correlation, 

with the red. This is to be expected given the higher level of global correlation 

present in the character data. 

7.4.2.3. Measuring Each Neighbourhood's Contribution to Correlation 

Thus far, the level of local correlation measured at each neighbourhood size has 

been calculated as the cumulative correlation for the entire neighbourhood. It is 

of interest to examine the amount of local correlation contributed by each 

additional level of neighbourhood connectivity. Consider a particular 

neighbourhood size where the local correlation is discovered to be well above 

the level of global correlation. The next neighbourhood size measured will 

include the previous level of correlation plus any correlation now contributed by 

the new connectivity. It is possible that even if the next neighbourhood size 

appears to provide local correlation in excess of global correlation, the 

contribution actually made by the extra connectivity is low. 
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Figure 7.17: The level of local correlation introduced by each new level of neighbourhood 
connectivity for geometric and character data. The global correlation of the geometric and 
character data sets is indicated by the dotted and dot-dashed lines respectively. 
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Figure 7.17 illustrates, for both geometric and character data, the contribution to 

local correlation made by each neighbourhood. The dotted line indicates global 

correlation for the geometric data and the dot-dash line the same for character 

data. 

It can be seen that for geometric data, larger neighbourhoods continue to 

contribute local correlation above the level of global correlation. The amount of 

correlation contributed falls linearly with the increasing neighbourhood size. 

This corresponds to the linear decline in the cumulative local correlation seen 

for geometric data in figure 7.10. 

For character data, the last point at which a neighbourhood increase contributes 

local correlation above the global level is at d=3. Beyond this point larger 

neighbourhoods no longer contribute any greater benefit than would be 

obtained by simply choosing an equivalent number of bits to measure at random. 

The implication of this measurement is that for geometric data, performance 

benefits should be seen when constructing networks with connectivity that 

reflects these neighbourhoods for all of the neighbourhood sizes examined here. 

For character data however, it might be expected that performance benefits 

would drop once neighbourhood connectivity had reached a size above d=3 due 

to the decline in the level of local correlation with bits at that range. 
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7.4.3. Measuring Site Activity within a Training Set 

The following sequences of histograms show, for geometric data, character data, 

and their random data equivalents, the distribution of site activities for each 

training set. The mean values in each case should be equal to that of the overall 

level of pattern bias in the training set. 

7.4.3.1. Geometric Data and Random Data (b=0.5) 
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Figure 7.18: Frequency distribution of the site activity values for random data (b=0.5). 
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Figure 7.19: Frequency distribution of the site activity values for geometric data. 

The 2 preceding histograms show the distribution of site activities for random 

unbiased data (figure 7.18) and geometric data (figure 7.19). As might be 
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expected, the values for random unbiased data are normally distributed with a 

mean value of 0.50. The range of values is from 0.36 to 0.66 and the standard 
deviation is 0.05. 

The distribution of values for geometric data is negatively skewed though the 

mean value is still equal to that of the overall level of bias at 0.52. The range of 

values is from 0.10 to 0.70 and the standard deviation is 0.12. 

From this it can be inferred that while the mean values are very similar and the 

training set bias, when calculated over all the patterns, is roughly 0.5 in each 

case, in the case of the geometric data an individual bit is more likely to have the 

same value throughout the training set when compared with the random data. 

For the geometric data, 32% of bits have a bias either lower than 0.4 or higher 

than 0.64. This means that a full 68% of bits have bias values that fall 

approximately within the entire range of values that were seen for the random 
data. 

The above information shows that the set of data comprised of locally correlated 

patterns has a higher level of inter-pattern similarity, or correlation. 

7.4.3.2. Character Data and Random Data (b=0.8) 
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Figure 7.20: Frequency distribution of the site activity values for random data 
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Figure 7.21: Frequency distribution of the site activity values for character data. 

Figures 7.20 and 7.21 (above) show the distribution of site activities for random 

data with a bias of 0.8 and character data respectively. The values for the 

random data are again normally distributed with a mean value of 0.80. The 

range of values is from 0.68 to 0.91 and the standard deviation is 0.04. 

The distribution of values for the character data is almost bimodal with an early 

peak in the frequency of bias and a remainder which looks approximately 

normal. The range of values is from 0.00 to 0.43 and the standard deviation is 

0.12. 

The slight bimodality of the distribution requires that more care is taken in 

interpreting the results. The initial peak in the distribution represents the fact 

that 17% of a network's neurons will be given the task of outputting a -1 at least 

95% of the time. Close on one quarter of the neurons will be outputting -1 at 

least 90% of the time. It is clear to see that, for a large number of bits, the 

character data is very highly biased. 

While this high degree of bias is evident, it is also the case that 53% of bits have a 
level of bias between the mean value, 0.20, and the upper end of the range of 

values, 0.43. The fact that just over one half of the bits have a level of bias 

below that which would be expected of random data with a similar level of 

overall bias means that the advantages of inter-pattern correlation may not be so 

evident with character data. 
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7.5. Discussion and Summary 

The purpose of this section was to describe an artificially constructed set of training 

data, a set of analysis measures, and the results of their use. 

Having initially identified some important requirements of the data, the manner in 

which the data was generated was described. The analysis tools were presented and 

descriptions of their use given. The design of these tools is to analyse, in a manner 

appropriate to this investigation, the underlying nature of the training data used in 

the remainder of this work. 

The first analysis, which measured the bias of the training set, showed that the 

geometric and character data had levels of bias of 0.52 and 0.2 respectively. This 

indicates that the geometric data is practically unbiased while the character data 

possesses more than four times as many -1 valued bits as +1 ones. 

The cross-pattern local correlation showed how the degree of correlation of a bit 

with those surrounding it varied according to how many of the surrounding bits 

were considered to be `local' to it. This analysis showed that in the case of both 

geometric and character data, there was local correlation present that exceeded the 
level of correlation present in the data due to the pattern bias. The correlation for 

each locale tested was not markedly different when comparing between data types 

but the difference between local correlation and global correlation was greatest for 

geometric data. This arises from the higher level of global correlation already 

present due to the higher pattern bias of the character data. 

Finally, the site activity analysis has showed that a considerable degree of inter- 

pattern similarity exists in both types of data. This similarity is more evident in the 

geometric data than in the character data and in the case of the latter is unlikely to 

present as much of an advantage as it is balanced by a larger degree of dissimilarity 

than was seen to be present in the equivalently biased random data. 

In summary, this section has demonstrated that the natural data employed in this 

work possesses a level of local correlation that is greater than the respective level 

of global correlation. This, coupled with the inter-pattern correlation 
demonstrated using the site activity analysis, should, at least in the case of the 

geometric data, lead to an improvement in performance in networks where the 

connection topology is constructed at a similar range to that at which the local 

correlations exist. The investigation of this is reported in the next chapter. 
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8. ASSOCIATIVE MEMORY ARCHITECTURES WITH SPARSE 
CONNECTIVITY 

8.1. Introduction 

The aim of this series of experiments was to discover whether a topological bias 

towards local connectivity might permit greater performance than can be 

achieved using simple random connectivity when training using patterns 

exhibiting significant levels of local correlation. The possibility of this being a 

worthwhile area of investigation was mentioned by Canning and Gardner (1988) 

in their work on investigating the properties of partially connected neural 

networks. 

There is a clear justification for why local connectivity might provide a 

performance improvement, especially in the area of capacity. Under the class 3, 

Gardner-type learning rules each neuron is trained as a perceptron (c. f chapter 2). 

For individual perceptrons it is known that the maximum capacity for unbiased 

random patterns is equal to twice the number of incoming connections (Cover, 

1965; Gardner, 1988). For a fully-connected network of perceptrons the 

theoretical maximum capacity is therefore 2(N) for N, where N is the size of 

the network. Furthermore, it was also shown by Gardner that the capacity will 
increase for patterns which are biased. 

As described in chapter 5, Lopez and Schroder (1995) showed that it is not only 

the bias of the patterns that is important in increasing capacity but it is important 

that pairs or groups of correlated patterns have correlated outputs. In the case of 

the fully-connected networks this can be achieved by simply increasing the bias of 

the training patterns. 

Consider training patterns of the types shown in §7.2. It was shown in the 

previous section that patterns of those types possessed a significant degree of local 

correlation on both an individual and an aggregate basis. High local correlation 
implies that individual bits often share the same value as their neighbours. If a bit 

in a particular position has the same value for a number of patterns in the training 

set then the correlation between the patterns should result in an environment in 

which Lopez and Schroder state that the associated perceptron should show 
improved capacity. 
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It is recognised that reducing the number of incoming connections to each 

perceptron will reduce the theoretical maximum capacity of each of them but it is 

hoped that this will be offset by the expected capacity improvements arising from 

the local correlations. 

The performance of the networks is judged with respect to training time and 

capacity, connection storage efficiency, attractor performance, and the rate at 

which individual neurons failed with respect to increasing pattern load. In order 

to establish whether or not a performance improvement arises from using locally 

correlated data with local connectivity, networks with different styles of 

connectivity were trained using data within which local correlation is present, and 
data within which it is not or is very low. 

This chapter considers a series of evaluative experiments measuring the 

performance of the networks. The critical result presented is that of useful capacity, 

a term described in detail in §8.4.2. 

8.2. Network Architecture, Learning Rule, and Training Data 

The networks employed in this series of experiments were of size N=400 and the 

neurons are considered to be arranged as if on a 20-by-20 grid. Connectivity 

between neurons was established through the use of one of two strategies 
described below. 

The networks' weight matrices were generated using the Symmetric Local 

Learning algorithm described in §2.2. 

Two categories of training data were used over the course of these experiments. 

a) Artificially generated non-random data. This data was generated as described 

in chapter 7. Two different types of data were employed; data derived 

from computer character sets and data artificially generated using random 

placement of small geometric shapes within the 2-dimensional training 

pattern representation. 

b) Randomly generated data. This was generated as required with levels of bias 

0.5 and 0.8. These levels of bias are very close to that present within the 

geometric shape data and character data summarised above (c. f chapter 7). 
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8.3. Network Performance Analysis 

The performance of the trained networks was assessed according to four criteria: 

training time, capacity, the ability of the stored patterns to act as attractors, and 

the rate at which the number of neurons which fail to train rises as pattern load 

increases. 

Training time is taken to be the number of presentations of the training set 

required to successfully train the network. The upper bound of the number of 

presentations, beyond which a network is deemed to have failed to train, is 1000. 

This value was chosen to be well in excess of that ordinarily required to train 

fully-connected networks with the same learning rule (c. f chapter 4). 

Storage efficiency is defined as being the ratio of the number of successfully stored 

patterns to the mean number of incoming connections to each neuron. 

Attractor performance was assessed using the modified version of the measure 

developed by Kanter & Sompolinsky (1987) and described in detail in chapter 3. 

Neuron failure rate is taken as a count of the neurons that fail to achieve an 

aligned local field that exceeds the training threshold within some prescribed 

number of iterations as load is increased. 
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8.4. Establishing Connectivity 

To establish whether or not the structure of the networks' connectivity has any 

significant effect on the performance characteristics of the network, two 

connection strategies were employed. These strategies are termed random 

connectivity and nearest neighbour connectivity and are described in detail below. 

8.4.1. Random Connectivity 

Random connectivity is established as follows: The number of connections 

that would be present if the network were to be fully-connected is calculated 

as 

N* (N - 1). A proportion of this value is taken to be the desired level of 

connectivity within the new network. This figure is divided by two to give 

the total number of connection pairs required to achieve this level of 

connectivity. Connection pairs are specified in order that symmetry within the 

weight matrix may be maintained and so the presence of simple update 

dynamics may be relied upon (c. f. §2.3). 

Having established a figure for the number of connection pairs required, pairs 

of neurons are selected at random. Once selected, should a connection not 

already be present, a bi-directional connection is created between them. This 

process continues until the specified level of connectivity has been reached. 

Example 

Number of neurons (N) = 400 

Number of connections in fully connected network = 159,600 

Required level of connectivity = 0.5 

Connection pairs in sparse network = (0.5 * 159,600) /2 

= 39,900 
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Figure 8.1: A pictorial representation of a small network within which random connectivity 
has been established. Connections are shown for two neurons as an example. 

8.4.2. Nearest Neighbour Connectivity 

The generation of neighbourhood-based connectivity is carried out in a 

slightly different manner to random connectivity, above. The neurons are 

arranged in a conceptual grid corresponding to pixel positions in pictorial data. 

A distance, d, for the neighbourhood is chosen in the same manner as used for 

calculating local correlation in training patterns (c. f. chapter 7). Next, network 

neurons are taken in sequence from the top left of the grid and an incoming 

connection is established to the current neuron from all neurons at or closer 

than d neurons away. Here, unidirectional connections are created as 

symmetry arises naturally from the creation of the connectivity of subsequent 

neurons. 

Connectivity does not wrap-around at the edges of the grid. This requirement 

ensures that the structure of the connectivity reflects the way in which the 
local correlation within the training patterns is calculated. 

Neurons with a reduced neighbourhood i. e. those at the edges and corners of 

the network, will have a lower level of connectivity than those which possess a 
full neighbourhood. This further reduction in connectivity could cause those 

neurons affected to fail much sooner than those with larger neighbourhoods or 

neurons with random connectivity. 
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Figure 8.2: A pictorial representation of a small network within which neighbourhood 
connectivity has been established at a distance (d) of 1. Connections are shown for two neurons 
as an example. 

Local connectivity changes the appearance of the training set from the 

perspective of individual neurons (Karlholm, 1993). Critically, the locally 

correlated nature of the training data means that neurons will have input patterns 

that are individually both highly biased and correlated with the associated 

output. The idea is that when an individual pixel in any pattern is on, there is a 

good chance that many of the surrounding pixels will also he on due to the 

spatial continuity of real images. Local connectivity should therefore, according 

to the work of Lopez and Schroder (1995), lead to increased capacity for a large 

number of neurons and which should, in turn, lead to a relatively low number 

of neurons failing to train. 

The presence of a reduced number of failed neurons assists in the definition of 

the term useful capacity. In later work, the effect of adding additional 

connections after attempting a first phase of training was investigated. The 

additional connections are added in order to try and assist failed neurons in 

successfully learning their input patterns. High useful capacity occurs for 

networks where only a small number of failed neurons occur as the loading 

rises past the point at which all the training patterns are stable. The small 

numbers of failed neurons allow the networks to be compensated with extra 

connectivity at low cost in terms of additional connections. 
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8.5. Experimental Structure 

As the training data and connectivity strategies fall into two groups, so does the 

structure of the experiment itself. The groups follow the similarity between the 

levels of bias within each of the random data sets and the bias, b, of the non- 

random data. These groups are: 

a) Random data (b=0.5) with random connectivity 

Geometric data with random connectivity 

Random data (b=0.5) with neighbourhood connectivity 

Geometric data with neighbourhood connectivity 

b) Random data (b=0.8) with random connectivity 

Character data with random connectivity 

Random data (b=0.8) with neighbourhood connectivity 

Character data with neighbourhood connectivity 

In each group there are networks with random connectivity and neighbourhood 

connectivity. Neighbourhood sizes of 1 to 5 were employed. The random 

connectivity was created such that the overall level of connectivity as a proportion 

of the number of connections present if the network were fully-connected would 

be equal to the levels of connectivity using neighbourhoods. These equivalences 

are as follows: 

Neighbourhood Mean 

distance (c) Connectivity connections 
per neuron 

1 0.0185 7.41 

2 0.0527 21.09 

3 0.0999 39.96 

4 0.1575 63 

5 0.2231 89.25 

Table 8.1: Connectivity level equivalences between connectivity established by random means 
and that established using neighbourhood connectivity. Also shown is the corresponding mean 
number of connection at each neuron for each level of connectivity. 

The last column in the table above, the number of mean connections per neuron 
(MCPN), provides a method of referring to the level of connectivity in any given 

network without the need for specifying the nature of the pattern of connectivity. 
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It is important to note that neurons with a reduced neighbourhood, i. e. those at 

the edges and corners of the network, will have a lower level of connectivity than 

the mean stated in the table above. As mentioned earlier, it is this further 

reduction in connectivity that may cause those neurons affected to fail much 

sooner than those with larger neighbourhoods or neurons with random 

connectivity. 

8.6. Results 

It is important to note that these results require careful interpretation in the 

context of the known issues regarding the likely early failure of corner and edge 

neurons in the case of neighbourhood connectivity. 

It is expected that capacity and attractor performance will often appear to be 

worse for networks with neighbourhood connectivity than for those with random 

connectivity due to this early neuron failure. 

As the capacity finds the first point at which at least one neuron fails to train it is a 
fallible guide to actual capacity in these networks with low levels of connectivity. 
Low connectivity may lead to high variability in the observed capacity. A more 

meaningful measure of capacity, useful capacity, was given in §8.4.2. 

Moreover, for the networks with neighbourhood connectivity, the edge and 

particularly corner neurons will grossly distort this measured capacity as they are 

very likely to fail quickly. For example, at a neighbourhood size of d=1, corner 

neurons only have 3 inputs. 

The important results in this chapter are those detailing the number of failed 

neurons at various degrees of pattern load, as it is networks with small numbers of 
failed neurons that may be compensated cheaply with extra connectivity (c. f 

chapter 9). 

8.6.1. Capacity and Training Time 

Capacity and training time results are presented as summary tables for 

conciseness. The full results tables from which the summaries have been 

produced may be found in appendix D. Each value used in creating the 
summary represents is averaged over five simulation runs. 
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8.6.1.1. Results for Random (b=0.5) and Geometric Data 

Tables 8.2 and 8.3 show the capacity and training time result summaries for 

networks learning random data (bias 0.5) and geometric data. Results for each 

of the levels of connectivity described in table 8.1 are shown. The networks 

are compared in two ways: firstly, the effect that the type of training data has 

on capacity and training time is examined (figure 8.2). The training data type 

resulting in the highest capacity and shortest training time is given for each of 

the two connectivity types. 

Secondly, the effect of the connectivity strategy is examined with respect to 

the two types of training data (figure 8.3). The connectivity strategy resulting 

in the highest capacity and shortest training time is given for each of the two 

data types. 

Comparing between random data (b=0.5) and geometric data 

MCPN Random connectivity 
Neighbourhood 

connectivity 

Capacity Failed to train Failed to train 
7.41 

Training Failed to train Failed to train time 

Capacity Higher for random data Higher for random data 

21.09 
Training Inconclusive Inconclusive 
time 

Capacity 
Higher for geometric Higher for geometric 
data data 

39.96 
Training 
time 

Shorter for random data Shorter for random data 

Capacity 
Higher for geometric Higher for random data 

63 
Training 
time 

Shorter for random data Shorter for random data 

Capacity Higher for random data Higher for random data 

89.25 Shorter for random data 
Training at low loadings. Shorter 
time for geometric data at 

Shorter for random data 

higher loadin 

Table 8.2: Results of capacity and training time comparisons between random (b=0.5) and 
geometric data types at each of five levels of random or neighbourhood connectivity. The type 
of data resulting in the highest capacity or lowest training time is given for each case. 
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Table 8.2 shows that network capacity is usually higher when learning random 

data rather than geometric data regardless of the connectivity strategy used. 

This is the case for levels of connectivity of 21.09 and 89.25 MCPN. At 39.96 

MCPN the capacity is higher for geometric data on both types of connectivity. 

An interesting point of note occurs at 63 MCPN where the capacity is higher 

for geometric data on random connectivity and higher for random data on 

neighbourhood connectivity. 

The results for training time from table 8.2 indicate that where numerical 

results exist, random data almost always trains more quickly than geometric 

data. The exception to this is at 89.25 MCPN where the training time is 

shorter for random connectivity at low loadings but becomes longer as the 

number of patterns on which the network is trained increases (see figure 8.3). 

This is contrary to what might be intuitively expected from the network. If 

local connectivity is to provide some benefit in performance it would be 

expected that both types of data would produce similar results on random 

connectivity. Effects such as this and potential causes and reasons for their 

existence are discussed at the end of this chapter. 
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Figure 8.3: Training time against pattern load for networks with random connectivity learning 
random (b=0.5) and geometric data. Training time is shorter for random data (solid line) at low 
loadings (< 0.1500) but shorter for geometric data (dashed line) at higher loadings. 

Table 8.3 (below) shows that, at every level of connectivity for which 

numerical results exist, the capacity of networks created with random 

/- 
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connectivity is greater than or equal to those where connectivity was establish 

using the neighbourhood method regardless of the data type being learnt. 

The training time results are not what one might expect given the capacity 

summaries. Neighbourhood connectivity results in a shorter training time 

when using either data type at 21.09 or 39.96 MCPN but training time is 

shorter for random connectivity at 63 and 89.25 MCPN. 

For training time, at 39.96 MCPN a similar effect as was described using figure 

8.3 is observed. Although neighbourhood connectivity eventually results in 

shorter training time with geometric data, at low loadings the training times 

are faster for random data. 

Comparing between random connectivity and neighbourhood connectivity 
MCPN Random (b=0.5) data Geometric data 

Capacity Failed to train Failed to train 
7 41 . Training Failed to train Failed to train time 

Capacity Same for both strategies 
Higher for random 
connectivity 

21.09 
Training 

Shorter for Shorter for 

time neighbourhood neighbourhood 
connectivity connectivity 

Capacity 
Higher for random Higher for random 
connectivity connectivity 

Shorter for random 
39.96 Shorter for connectivity at low 

Training 
neighbourhood 

loadings. Shorter for 
time 

connectivity neighbourhood 
connectivity at higher 
loadings 

Capacity 
Higher for random Higher for random 
connectivity connectivity 

63 Shorter for random 
Training Shorter for random connectivity at low 
time connectivity loadings. Inconclusive 

at higher loadings 

Capacity Higher for random Higher for random 

89 25 
connectivity connectivity 

. Training Shorter for random Shorter for random 
time connectivity connectivity 

Table 8.3: Results of capacity and training time comparisons between random and 
neighbourhood connectivity strategies at each of five levels of connectivity for networks 
learning random data (b=0.5) and geometric data. The pattern of connectivity resulting in the 
highest capacity or shortest training time is given for each case. 
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8.6.1.2. Results for Random (h=0.8) and Character Data 

Table 8.4 shows, in the same manner as for random (bias 0.5) and geometric 

data, capacity and training time results for random data with bias 0.8 and 

character data. 

Comparing between random data (b=0.8) and character data 

MCPN 
Random Neighbourhood 

connectivity connectivity 

Capacity Failed to train Failed to train 

7.41 
Training 
time 

Failed to train Failed to train 

Capacity Higher for random data Higher for random data 

21.09 
Training 
time 

Inconclusive Inconclusive 

Capacity Higher for random data Same for both data types 

39.96 
Training 
time 

Shorter for random 
data 

Shorter for character data 

Capacity Higher for random data Same for both data types 

63 
Training 
time 

Shorter for random data 
Shorter for random data at low 
loadings. Shorter for character 
data at higher loadings 

Capacity Higher for random data Higher for random data 

89.25 
Training 
time 

Shorter for random data Shorter for random data 

Table 8.4: Results of capacity and training time comparisons between random (b=0.8) and 
character data at each of five levels of random or neighbourhood connectivity. The type of data 

resulting in the highest capacity or shortest training time is given for each case. 

Table 8.4 shows that, for all levels of connectivity at which numerical results 

exist, the capacity of networks learning random (b=0.5) data is greater than 

equal to that of those learning character data regardless of the connectivity 

strategy used. 

The training time results show that for 39.96 and 63 MCPN, the training time 

is shorter for random data on random connectivity but it is shorter for 

character data on neighbourhood connectivity. At 63 MCPN however, this 

latter result only becomes true at higher pattern loadings. At 89.25 MCPN it 

would appear that the larger neighbourhood has lost any advantage that may 
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have been present at lower levels of connectivity and random data again results 

in the quickest training time. 

Comparing between random connectivity and neighbourhood connectivity 

MCPN Random data (b=0.8) Character data 

Capacity Failed to train Failed to train 

7.41 
Training Failed to train Failed to train time 

Capacity Same for both strategies Failed to train 
21.09 

Training Shorter for random Failed to train 
time connectivity 

Higher for random Higher for neighbourhood Capacity 
connectivity connectivity 

39.96 
Training Shorter for random Shorter for neighbourhood 
time connectivity connectivity 

Capacity 
Higher for random Higher for random 
connectivity connectivity 

63 
Training Shorter for random Shorter for neighbourhood 
time connectivity connectivity 

Capacity Higher for random Higher for random 
connectivity connectivity 

89.25 
Training Shorter for random Shorter for neighbourhood 
time connectivity connectivity 

Table 8.5: Results of capacity and training time comparisons between random and 
neighbourhood connectivity strategies at each of five levels of connectivity for networks 
learning random data (b=0.8) and character data. The pattern of connectivity resulting in the 
highest capacity or shortest training time is given for each case. 

Table 8.5 shows that, in capacity terms, random connectivity generally appears 

to be a more advantageous connectivity strategy than neighbourhood 

connectivity whether the data being learnt is the random (b=0.8) set or the 

character data. This can be seen in the summary of capacity results for levels of 

connectivity of 63 and 89.25 MCPN. A different result exists for 39.96 

MCPN. At this level of connectivity capacity is higher for random 

connectivity when learning random data and higher for neighbourhood 

connectivity when learning character data. Given the fact that when learning 

character data, the lowest level of connectivity at which the networks where 

capable of being successfully trained was 39.96 MCPN, this would seem to 

indicate that, at least in this case where the data is highly biased, as small a 

neighbourhood as is possible is preferable when learning locally correlated data. 
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The results for training time show a clear correlation between the type of data 

being learnt and the connectivity strategy resulting in the shortest training 

time. The networks only produced enough results for comparison at loadings 

of 39.96,63, and 89.25 MCPN. At these loadings, the training time is shorter 
for random connectivity when learning random data and shorter for 

neighbourhood connectivity when learning character data. 

8.6.2. Storage Efficiency 

Storage efficiency is taken to be the ratio of the maximum number of patterns 

successfully stored to the mean number of connections per neuron. This value 

should provide an indication of how efficient a particular level of connectivity 

is when learning a certain type of training data. The results used are the same 

as those for the previous section on training time and capacity. Therefore, the 

capacity values used are once again the mean of five simulation runs. 

8.6.2.1. Results for Random (b=0.5) and Geometric Data 

Random connectivity Neighbourhood connectivity 

MCPN 
Random Geometric data Random data Geometric data data 

7.41 Failed to train Failed to train Failed to train Failed to train 

21.09 0.71 0.47 0.71 0.23 

39.96 0.75 0.88 0.25 0.50 

63 0.87 1.11 0.56 0.32 

89.25 0.95 1.12 0.50 0.28 

Table 8.6: Storage efficiency values calculated as the ratio of the number of successfully trained 
patterns to the mean number of connections per neuron. Values highlighted with bold text are 
the maximum value for each data/connectivity type pairing. 

Table 8.6 shows the following: For each network (defined by the pairing of a 

set of training data and connectivity type) the storage efficiency is shown for a 

number of levels of connectivity (mean number of connections per neuron). 
The peak efficiency for each network is highlighted using bold text. As with 
the training time results, no values are present for networks with 7.41 MCPN. 

No network managed to store the minimum of five patterns with such a low 
level of connectivity. 

It can be seen from the table that, for networks with random connectivity, the 

efficiency increases with the level of connectivity. However, for networks 
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employing neighbourhood connectivity and learning geometric data there is a 

clear peak in efficiency at a connectivity level of 39.96 MCPN. From table 

8.1 it can be seen that this level of neighbourhood connectivity is equivalent to 

a neighbourhood size, d, of 3. 

As stated in §2.4.1, it is known (Gardner, 1988) that the maximum capacity for 

a network being trained on uncorrelated patterns with Gardner class rules is 

2N, where N is the input dimensionality of the neurons. It is clear from the 

data that none of the networks are even close to that figure. There are a 

number of reasons why this might be the case. The first of these is that the 

theoretical maximum capacity figure of 2N will only be seen in the limit 

N (Gardner, Gutfreund et al., 1989). It is therefore reasonable to expect 

that the networks being examined in this work will perform below this 

maximum value. 

A compounding factor is that the connectivity level quoted is the mean number 

of connections per neuron. Due to the pattern of connections for the 

networks employing neighbourhood connectivity some neurons, namely those 

at the corners and edges, will have substantially less connections than the mean 
figure might suggest. As it is only required that one neuron fail for the entire 

network to be considered to have failed to train it is likely that these edge and 

corner neurons are at least partially responsible for lower storage efficiency 
figures than might be expected. 

8.6.2.2. Results for Random (b=0.8) and Character Data 

Random connectivity Neighbourhood connectivity 
Random 

Connectivity data Character data Random data Character data 

7.41 Failed to train Failed to train Failed to train Failed to train 

21.09 0.24 Failed to train 0.24 Failed to train 

39.96 0.90 0.38 0.50 0.50 

63 1.03 0.71 0.48 0.48 

89.25 1.06 0.67 0.73 0.50 

Table 8.7: Storage efficiency values calculated as the ratio of the number of successfully trained 
patterns to the mean number of connections per neuron. Values highlighted with bold text are 
the maximum value for each data/connectivity type pairing. 
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Table 8.7 shows that, as was the case for unbiased random and geometric data, 

the storage efficiency tends to increase with the level of connectivity for 

networks with random connectivity trained using random data. The storage 

efficiency for these networks is higher for random data than for geometric data 

at equivalent loadings and while it is difficult to say for certain, it would appear 

that for both data types any significant improvement in storage efficiency 

disappears above 63 MCPN. 

Networks created with neighbourhood connectivity demonstrate a steady rise 

in storage efficiency with increasing connectivity when training with random 

data though at no stage does the efficiency exceed that of the networks created 

with random connectivity at equivalent loadings. The results for networks 
learning the character data are particularly interesting as it appears that the 

storage efficiency remains largely the same as the level of connectivity 

increases. It is perhaps not surprising that little benefit is seen from the higher 

levels of connectivity given that it was shown earlier (c. f. §7.4.2) that the level 

of local correlation at neighbourhood sizes of 3 and above is very close to the 

measured level of global correlation. 
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8.6.3. Attractor Performance 

One of the most common performance indicators is that of the ability of the 

fundamental memories of a network to act as attractors. The measure used is 

that of Kanter and Sompolinsky (1987) modified as described in chapter 3. 

The results from which the summaries have been generated are the mean of 

five simulation runs. The full tables may be found in appendix D. 

8.6.3.1. Results for Random (b=0.5) and Geometric Data 

Tables 8.8 and 8.9 show the attractor performance analysis summaries for 

networks learning random data (bias 0.5) and geometric data. Results for each 

of the levels of connectivity described in table 8.1 are shown. The networks 

are compared in two ways: Firstly, the effect that the type of training data has 

on attractor performance is examined (table 8.8). Secondly, the effect of the 

connectivity strategy is examined with respect to the two types of training data 

(table 8.9). 

The type of data or pattern of connectivity providing the highest attractor 

performance is given in each case. 

Comparing between random data (b=0.5) and geometric data 

MCPN Random connectivity 
Neighbourhood 

connectivity 

7.41 Failed to train Failed to train 

No non-trivial attractor No non-trivial attractor 
21.09 performance using either performance using either 

data type data type 

Similar at low loadings. No non-trivial attractor 
39.96 Decreases more quickly performance using either 

for geometric data data type 

Similar at low loadings. 
63 Decreases more quickly Higher for random data 

for geometric data 

Similar at low loadings. 
89.25 Decreases more quickly Higher for random data 

for geometric data 

Table 8.8: Results of attractor performance comparisons between random 
(b=0.5) and geometric data at each of five levels of random or neighbourhood 
connectivity. The type of data resulting in the highest attractor performance is 
given for each case. 

Table 8.8 summarises, for networks with random or neighbourhood 

connectivity, the results of comparing the attractor performance of those 

networks when learning random (b=0.5) data and geometric data. 
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Networks with random connectivity, where they succeed to train and produce 

results suitable for study, have attractor performance which is the same at low 

loadings for both types of data being learnt. The level of attractor performance 

decreases more rapidly with respect to the loading for the networks that were 

trained using the geometric data. 

For neighbourhood connectivity, the attractor performance is higher for 

random data than for character data at each of the loadings where a non-trivial 

attractor performance was achieved. 

These results are in line with expectations. Random connectivity should, to a 

certain degree, nullify any effect that local correlation in the data might have 

and cause each neuron to see input patterns biased at 0.5 regardless of the data 

type. It was seen in the analysis of the training data (c. f chapter 7) however, 

that the site analysis of the geometric training data revealed that a number of 
bits had a level of bias throughout the training set above that for the pattern set 

as a whole. This could account for the quicker fall in attractor performance for 

the geometric data on random connectivity. 

The results for neighbourhood connectivity are unsurprising for a similar 

reason. Where results exist, the attractor performance is higher for random 
data than for geometric data. The input patterns seen by each neuron are far 

more similar to each other when using neighbourhood connectivity with 

geometric data as when random connectivity is used. Random connectivity 

allows each neuron to see input patterns that are biased at approximately the 
level of the whole dataset. The less biased patterns permit the neurons, as 

perceptrons, to have greater generalisation ability resulting in greater overall 

attractor performance. 
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Comparing between random connectivity and neighbourhood 
connectivity 

MCPN Random data (b=0.5) Geometric data 

7.41 Failed to train Failed to train 

No non-trivial attractor No non-trivial attractor 
21.09 performance using either performance using either 

connectivity strategy connectivity strategy 

Higher for random Higher for random 39.96 
connectivity connectivity 

Higher for random Higher for random 63 
connectivity connectivity 

Higher for random Higher for random 89.25 
connectivity connectivity 

Table 8.9: Results of attractor performance comparisons between random and 
neighbourhood connectivity strategies at each of five levels of connectivity for 

networks learning random data (b=0.5) and geometric data.. The pattern of 
connectivity resulting in the highest attractor performance is given for each case. 

Table 8.9 again shows results in line with expectations. When learning 

random data, random connectivity appears to consistently provide better 

attractor performance in the cases where the results are suitable for analysis. 

This is easily explained by considering the mean number of connections per 

neuron. For random connectivity, the actual number of connections for each 

neuron will be very close to the mean number. For neighbourhood 

connectivity the constraint that connectivity may not wrap-around at the edges 

of the network causes corner an edge neurons to have connectivity that is, at 

times, far below the mean level. It is very likely that it is this reduced 

connectivity that results in poorer attractor performance for networks 

connected using a neighbourhood strategy. 

The explanation for geometric data is the same as that given above for random 
data. In addition to the reduced edge and corner connectivity though, we 

now have the extra problem of highly biased input patterns in the case of 

neighbourhood connectivity, as was described in the explanation of the results 
for table 8.8. 
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8.6.3.2. Results for Random (b=0.8) and Character Data 

Tables 8.10 and 8.11 show the attractor performance analysis summaries for 

networks learning random data (bias 0.8) and character data. Results for each 

of the levels of connectivity described in table 8.1 are shown. The networks 

are compared in the same way as those learning random data (bias 0.5) and 

geometric data. 

The type of data or pattern of connectivity providing the highest attractor 

performance is given in each case. 

Comparing between random data (b=0.8) and character data 

MCPN Random connectivity 
Neighbourhood 

rnnnertivity 

7.41 Failed to train Failed to train 

No non-trivial attractor No non-trivial attractor 21.09 
performance performance 

39.96 Higher for random data Higher for character data 

63 Higher for random data Higher for character data 

89.25 Higher for random data Similar for both data 
types 

Table 8.10: Results of attractor performance comparisons between random 
(b=0.8) and geometric data at each of five levels of random or neighbourhood 
connectivity. The type of data resulting in the highest attractor performance is 

given for each case. 

The results shown in table 8.10 are broadly in line with expectations. 

Networks exhibit better attractor performance when random data is coupled 

with random connectivity. These results are similar to those shown for 

unbiased random data trained on networks with random connectivity in that 

those networks showed similar attractor performance at low loadings but the 

performance declined faster with increasing pattern load for geometric data. In 

this case, where biased random patterns and character data have been used, the 

benefit of random data manifests itself in higher attractor performance values. 

It can be seen in the results for networks with neighbourhood connectivity 

that local connectivity is providing attractor performance benefits when the 

network is being trained on the locally correlated character data. This is in 

contrast to the results with unbiased random patterns and geometric data. 
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Comparing between random connectivity and neighbourhood 
connectivity 

MCPN Random data (b=0.8) Character data 

7.41 Failed to train Failed to train 

No non-trivial attractor No non-trivial attractor 
21.09 performance using either performance using either 

connectivity strategy connectivity strategy 

Higher for random 
Higher for 

39.96 neighbourhood connectivity connectivity 

Higher for random Higher for random 63 
connectivity connectivity 

Higher for random Higher for random 89.25 
connectivity connectivity 

Table 8.11: Results of attractor performance comparisons between random and 
neighbourhood connectivity strategies at each of five levels of connectivity for 

networks learning random data (b=0.8) and character data.. The pattern of 
connectivity resulting in the highest attractor performance is given for each case. 

Table 8.11 again shows that random data is best paired with random 

connectivity. For all levels of connectivity where a result exists and is non- 

trivial it can be seen that random connectivity produces higher attractor 

performance in conjunction with random connectivity. 

When learning character data, the effect of the pattern of connectivity is less 

conclusive. Neighbourhood connectivity results in higher attractor 

performance in only one case, 39.96 MCPN. Interestingly, this corresponds to 

the last neighbourhood size at which additional local correlation was seen, 

according to the training data analysis results presented in §7.4.2.3. Beyond 

this level of connectivity, random connectivity again appears to be the most 

beneficial. 
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8.6.4. Neuron Failure Count 

The rate at which neurons fail to learn their particular input patterns once a 

network's loading gets too high for training to be successful is of particular 

interest. As mentioned earlier (c. f. §8.4.2), if the rate at which neurons fail 

with increasing pattern load can be kept low then it is hoped that a small 

number of additional connections might be sufficient to compensate for the 

failure and allow a network to stabilise all patterns. 

As with previous measures, all values are the mean of 5 simulation runs. The 

results are presented graphically for this measure so as to better illustrate the 

rate of increase in neuron failure. 

8.6.4.1. Results for Random (b=0.5) and Geometric Data 

The following 2 graphs show the rate at which neurons fail to successfully 
learn their input patterns when attempting to learn random data of bias O. S. 

The first graph shows this rate for networks in which random connectivity has 

been established. The second graph shows the same for networks in which the 

connectivity forms a local neighbourhood. Each graph shows results for the 5 

different levels of connectivity being used. 

Random Data - Random Connectivity 
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Figure 8.4: Failed neuron count against increasing pattern load for networks constructed with 
random connectivity at levels of 7.41,21.09,39.96,63, and 89.25 mean connections per 
neuron and trained using random (b=0.5) data. 
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Figure 8.5: Failed neuron count against increasing pattern load for networks constructed with 
neighbourhood connectivity at levels of 7.41,21.09,39.96,63, and 89.25 mean connections 
per neuron and trained using random (b=0.5) data. 

The immediate observation from the graphs shown in figures 8.4 and 8.5 

(above) is that there is not a great deal of difference in the rate at which 

neurons fail with increasing pattern load for networks learning random (b=0.5) 

data. This is the case regardless of whether or not the networks have been 

constructed with random or neighbourhood connectivity. This is entirely as 

might be expected. The random nature of the data causes the localised 

structured connectivity to have little or no effect on the rate of neuron failure. 

Examining the graphs more closely does reveal a slight difference between the 

networks. At low levels of connectivity (7.41 and 21.09 MCPN), the failure 

rates are near identical. As the level of connectivity increases, the rate of 
failure becomes gentler. This can be seen in the difference between the graphs 

when comparing the lines representing 39.96,63, and 89.25 MCPN. In 

general, for the networks constructed with neighbourhood connectivity, the 

point of first failure occurs at a lower loading than for randomly connected 

networks with the same level of connectivity. An example of this can be 

clearly seen by examining, in each graph, the line representing a level of 

connectivity of 39.96 MCPN. For randomly connected networks the point of 
first failure occurs around a loading of 0.0750 whereas for networks with 

neighbourhood connectivity failure begins at a loading of approximately 
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0.0500. This early initial failure is likely to be due to the reduced levels of 

connectivity of corner and edge neurons. 
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Figure 8.6: Failed neuron count against increasing pattern load for networks constructed with 
random connectivity at levels of 7.41,21.09,39.96,63, and 89.25 mean connections per 
neuron and trained using geometric data. 
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Figure 8.7: Failed neuron count against increasing pattern load for networks constructed with 
neighbourhood connectivity at levels of 7.41,21.09,39.96,63, and 89.25 mean connections 
per neuron and trained using geometric data. 

There is a marked difference in appearance between the graphs shown in 

figures 8.6 and 8.7. The graphs respectively show geometric data trained on 
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networks with various degrees of random connectivity and on networks 

created with equivalent levels of neighbourhood connectivity. 

The networks with random connectivity follow a similar pattern to that seen 

for random data on both random and neighbourhood connectivity. Once a 

loading has been reached at which at least 1 neuron has failed to train, the 

failure count at subsequent loadings rises rapidly. Although the quantity of 

failed neurons increases rapidly, this increase becomes less dramatic as the 

connectivity of the network rises. This can be clearly seen by observing the 

slope of the lines representing level of connectivity of 39.96 and 63 MCPN. 

The absence of data for networks with 89.25 MCPN indicates that the 

network learnt the training patterns successfully even at the highest loading of 

0.25 (100 patterns). 

The networks with neighbourhood connectivity exhibit particularly interesting 

characteristics. At the lowest level of connectivity (7.41 MCPN) it can be seen 

that the speed at which the count of failed neurons increases with respect to 

increasing pattern load is far less than was seen for any of the other training 

data/connectivity combinations at the same level of connectivity. This 

remains true for the 2 subsequent levels of connectivity (21.09 and 39.96 

MCPN). 

The point of first failure consistently occurs at lower loadings for networks 

with neighbourhood connectivity then it does for randomly connected 

networks. All the networks with neighbourhood connectivity exhibit some 
degree of neuron failure at the lowest loading attempted ( =0.0125) regardless 

of the level of connectivity that has been established. 

It can be seen that, for levels of neighbourhood connectivity greater than 39.96 

MCPN, there is little further advantage to be gained in termed of the rate of 
increase in neuron failure count. 
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8.6.4.2. Results for Random (b=0.8) and Character Data 

The following 2 graphs show the neuron failure count against increasing 

pattern load when attempting to learn random data of bias 0.8. The first graph 

shows this rate for networks in which random connectivity has been 

established. The second graph shows the same for networks in which the 

connectivity forms local neighbourhoods. Each graph shows results for the 5 

different levels of connectivity being used. 
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Figure 8.8: Failed neuron count against increasing pattern load for networks constructed with 
random connectivity at levels of 7.41,21.09,39.96,63, and 89.25 mean connections per 
neuron and trained using random (b=0.8) data. 

As was the case for networks with unbiased random data there is a strong 

similarity between the rate of increase in neuron failure count for networks 

with random and neighbourhood connection topologies at levels of 

connectivity equal to 7.41,21.09, and 39.96 MCPN. 

At higher levels of connectivity, the networks with neighbourhood 

connectivity begin to exhibit signs of a lower rate of increase than their 

randomly connected counterparts. This is evident from the line representing a 

level of connectivity of 63 MCPN which, in the case of the graph for 

networks with neighbourhood connectivity, rises more slowly than that for 

network that are randomly connected. 
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Random Data - Neighbourhood Connectivity 
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Figure 8.9: Failed neuron count against increasing pattern load for networks constructed with 
neighbourhood connectivity at levels of 7.41,21.09,39.96,63, and 89.25 mean connections 
per neuron and trained using random (b=0.8) data. 

Finally, due to the fact that randomly connected networks consistently manage 

a higher point of first failure, the line representing the highest level of 

connectivity (89.25 MCPN), is incomplete in the case of figure 8.8. On 

previous evidence however, it would not be unreasonable to expect a similar 

rise in neuron failure as was seen at lower levels of connectivity. 
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The following 2 graphs show the neuron failure count against increasing 

pattern load when attempting to learn character data. The first graph 

represents networks with random connectivity whereas the second graph 

shows results for networks in which the connectivity forms local 

neighbourhoods. 
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Figure 8.10: Failed neuron count against increasing pattern load for networks constructed 

with random connectivity at levels of 7.41,21.09,39.96,63, and 89.25 mean connections per 

neuron and trained using character data. 

There is a clear difference in appearance between figures 8.10 and 8.11. For 

networks with random connectivity, at the lowest level of connectivity (7.41 

MCPN) the rate of increase in the number of failed neurons is initially steep 

but becomes more shallow beyond a loading of approximately 0.05 (20 

patterns). By contrast, the equivalent line for networks with neighbourhood 

connectivity slopes much more gently and rises roughly linearly with pattern 

load. 

A more stark difference between the 2 types of connectivity can be seen for 

higher levels of connectivity. The rate of increase in neuron failure count at a 

level of connectivity of 21.09 MCPN is vastly lower for the locally connected 

network than for the randomly connected one. A further fall in the rate of 

increase is seen when moving to neighbourhood connectivity at a level of 

39.96 mean connections per neuron. The comparison with the equivalent 
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level of random connectivity again shows a large difference in favour of 

neighbourhood connectivity. 
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Figure 8.11: Failed neuron count against increasing pattern load for networks constructed 
with neighbourhood connectivity at levels of 7.41,21.09,39.96,63, and 89.25 mean 
connections per neuron and trained using character data. 

The advantage in adding further local connectivity seems to be less when the 

level is increased to either 63 or 89.25 MCPN. A level of connectivity of 

39.96 MCPN using neighbourhood connectivity is enough to better, in terms 

of neuron failure count, the higher levels of random connectivity. 

As was noted earlier for networks learning geometric data, the networks 

created with neighbourhood connectivity generally have a point of first failure 

that occurs much sooner than for randomly connected networks. This does 

not happen so much with networks learning character data. It can be seen 

from figures 8.10 and 8.11 that the networks have their point of first failure in 

roughly the same area. 
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8.7. Summary and Conclusions 

This chapter has reported the results of several performance metrics: capacity, 

training time, storage efficiency, attractor performance, and neuron failure rate. 

An evaluation was made for each metric as to the way in which the networks' 

performance was affected by both the type of data being learnt and the pattern of 

connectivity in the network. 

Capacity 

It was seen that the capacity of the networks tested was usually higher when 
learning random data rather than locally correlated data and this was the case 

regardless of the pattern of connectivity. In the case of neighbourhood 

connectivity this result was anticipated due to the likely early failure of corner and 

edge neurons. The fact that it was also the case for random connectivity is 

unexpected. It might be assumed that the random connectivity would prevent 

any local correlation within the patterns having any effect on the network. It was 

observed however, during the analysis of the training data (c. f. §7.4.3), that some 
bits in the training data had a higher than average level of activity when examined 

across the whole training set. It is possible that this could account for the 
difference in capacity between random and locally correlated data with random 

connectivity. 

There are occasional instances of geometric data resulting in higher capacity than 

unbiased random data. These are at neighbourhood sizes of 3 and above. It is 

possible that the reduced contribution made to local correlation by bits at such 
distances (c. f. §7.4.2.3) could be enough to make the resulting input patterns 

appear quite random to individual neurons. This would have the effect of 
levelling the playing field somewhat between the geometric and unbiased random 
data, especially given that both datasets have the same overall level of bias. 

It was mentioned earlier (c. f. 8.6) that capacity does not fully represent the storage 

capability of locally connected networks due to the reduced edge and corner 

connectivity. Therefore, these results, while of interest, are not of major 
importance in evaluating the performance of such networks. 
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Training Time 

Combined with the capacity analysis was the measuring of network training time. 

For the networks learning either geometric or unbiased random data it was seen 

that training time was always shorter for random data. 

When comparing training times between connectivity topologies it is seen that 

training time is often shorter for random connectivity but is occasional better for 

neighbourhood connectivity even when training using unbiased random data. 

The networks learning character or biased random data usually exhibit shorter 

training times for random data regardless of the connection topology. Training 

time was shorter for character data in only one instance of neighbourhood 

connectivity - 39.96 MCPN (d=3). 

Comparing between connectivity topologies for these two types of data it was 

seen that random connectivity clearly aided the learning of random data. 

Correspondingly, local neighbourhood connectivity resulted in shorter training 

times when character data was being learnt. 

Storage Efficiency 

The results for measuring storage efficiency clearly indicate that the storage 

efficiency rises with the mean number of connections per neuron for networks 

with random connectivity. As the connections are evenly distributed throughout 

the network this is not surprising. 

The notional theoretical maximum capacity for networks of this type is equal to 

twice the input dimensionality of the neurons in the network. This would be 

equal to a storage efficiency value of 2. As the theoretical maximum capacity is 

true only for networks of infinite size it makes sense that the storage efficiency of 

the randomly connected networks used in this work gets closer to the theoretical 

maximum as the MCPN rises. 

For networks with local connectivity the situation is not so clear. The relatively 

poor storage efficiency can be linked directly to the seemingly poor capacity. The 

early failure of some neurons is again affecting the performance of locally 

correlated networks. 
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Attractor Performance 

The attractor performance of the networks investigated was almost universally 

higher for random data than for locally correlated data of either type. Equally, 

random connectivity appeared to provide better attractor performance than local 

neighbourhood connectivity regardless of the type of data being learnt. 

It would therefore seem, at first glance, obvious to view the reduced attractor 

performance of the locally connected networks as a failure. It is crucial to realise 

however that two topologies being employed cause individual neurons to see very 

different types of data. In the randomly connected network the patterns should 

be regularly spaced in their reduced dimensionality state spaces. In the case of the 

locally connected systems, the patterns are highly correlated and will be close to 

one another in the state space. This is likely to have a large impact on the 

attractor basin size as it directly affects the number of bits one can change in any 

given pattern before ending up closer to some other pattern. 

This is a possible explanation for the greater attractor performance of random data 

on locally connected networks. The local correlation present in the 

geometric/character data that causes the similarities when applied to locally 

connected architectures simply is not present in the random data. The local 

correlation, while helping to improve the capacity of the neurons as per the 

theory of Lopez and Schroder (1995), is likely to be detrimentally affecting the 

generalisation performance of each neuron. 

Neuron Failure Count 

The concept of useful capacity was introduced earlier (c. f. §8.4.2) in order to 

provide a measure of capacity that took into account the likely early failure of 

edge and corner neurons. The rate at which the number of neurons which fail to 

train rises as pattern load increases provides us with this measure. 

This result is the critical point to be made from this chapter. The graphs of 

neuron failure clearly showed that, for random connectivity, once a level of 
loading had been reach at which at least one neuron failed to train, the number of 
failed neurons at subsequent loadings rose very quickly. This was true for both 

random and locally correlated data. Random data also fared badly on local 

neighbourhood connectivity. 

136 



The key result appears when locally correlated data is trained on networks with 
local connectivity. For small neighbourhoods (d=1 and d=2) the rate of increase 

in neuron failure is quite high. However, when locally correlated data is trained 

on networks with local connectivity, a dramatic change in the rate at which 

neurons fail to train occurs. At a neighbourhood size greater than d=2, a very 

slow rate of increase in failed neurons is observed. The implications of this are as 

follows: for networks with neighbourhoods of d=3 and a loading of =0.2500, 

100 patterns are being stored by most neurons with only around 40 inputs to each 

neuron. This loading is in excess of the 2N notional maximum capacity even in 

the small networks examined as part of this work. 

In conclusion, the really significant result in this chapter is the difference in useful 

capacity between networks with random connectivity and those that are locally 

connected when learning patterns that exhibit both intra- and inter-pattern local 

correlation. This strongly suggests that it is possible to tailor connectivity to a 

particular type of data and particularly for image data, which is likely to possess 

considerable local correlation as a consequence of the spatial and temporal 

continuity of nature, local connectivity seems especially useful. 

The investigation of the way in which networks with small numbers of failed 

neurons might be compensated for such failure is the subject of the following 

chapter. 
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9. INCREASING PERFORMANCE THROUGH INCREASING 
CONNECTIVITY 

9.1. Introduction 

The previous chapter successfully demonstrated a particular advantage to using local 

connectivity in networks to be used to learn patterns possessing local correlation. 

The results showed that, for networks with local connectivity, the rise in the 

number of failed neurons present at increasing levels of pattern load was slower than 

was the case for networks with identical levels of random connectivity although the 

point of first failure occurred sooner. 

Two points need to be made regarding neuron failure: 

a) The point of first failure is not as important as might be initially thought 

because of the relatively small input dimensionality to each neuron 
introduced by the sparse connectivity. This is particularly evident at the 

edges and corners of the network. The point of first failure only becomes 

relevant if its location is consistent over a very large number of training sets. 

b) The rate at which the number of neurons that fail at each pattern load 

increases with respect to the rising pattern load is important because this value 
is considered over a large number of network sites. 

The failed neuron count and pattern load can be used together to develop the 

concept of useful capacity (c. f. §8.4.2). The useful capacity is high when a large 

number of patterns can be stored with few neuron failures occurring as the failed 

neurons can likely be corrected at relatively low cost in terms of extra connectivity. 

As some neurons do fail to train this chapter is concerned with the investigation of 

a technique by which it might be possible to compensate for this failure. 

The results in the previous chapter showed that the greatest fall in the rate of 

neuron failure count occurred when using neighbourhood connectivity between 

networks with d=1 and d=2, and between those with d=2 and d=3, when learning 

the geometric data. The same was true of character data but the fall was less 

marked between d=2 and d=3 than it was for the geometric data. Despite the large 

number of failed neurons at the lower levels of connectivity it remains a possibility 

that even after correcting the failed neurons the overall level of connectivity might 
still be extremely low. 
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9.2. Structure of the Investigation 

This investigation is presented in two stages. Stage one involves the stabilisation of 

training patterns in networks where a number of neurons have failed to train. Stage 

two examines the way in which attractor performance changes with respect to 

increasing levels of connectivity beyond that required to simply stabilise the 

patterns. 

The core of the investigation involves a modified version of the Symmetric Local 

Learning rule used in earlier work. Training occurs in phases: the first phase trains 

the network using the existing connectivity. The neurons that fail to learn their 

input patterns are recorded and passed to the second phase. 

The second training phase takes the list of failed neurons and adds a new 

connection between each of them and some other neuron chosen at random to 

which a connection does not already exist. The symmetry of connections is 

maintained for the sake of the network dynamics. Having added an extra 

connection to each of the failed neurons the network undergoes a new training 

phase with all weights re-initialised. 

The two phases are repeated until the training phase reports that all neurons are 

correctly classifying their input patterns. Upon successful training, the attractor 

performance is measured using the modified Kanter & Sompolinsky measure 
described in chapter 4. As the training patterns have only just been stabilised it is 

expected that the attractor performance will be very low. It is not the attractor 

performance that is of primary interest however; the key measure is the quantity of 

extra connectivity required in order to stabilise the training patterns. 

The second stage of the investigation covered by this chapter looks at the effect of 
further, additional connectivity on attractor performance. Having established a 

pattern of connectivity suitable for stabilising the training patterns, additional 

random connectivity is added. At regular intervals, the network is retrained and the 

attractor performance measured. As the initial level of local connectivity can be 

established using relatively few connections it is hoped that, at similar levels of 

connectivity, the networks where connections have initially been created locally 

and where further connectivity has then been added will outperform those where 

the connectivity is totally random. 
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9.3. Stabilising Training Patterns in Networks with Failed Neurons 

In the previous chapter it was shown that training networks with sparse local 

connectivity and a high loading of correlated data resulted in a much lower failed 

neuron count when compared with networks with random connectivity or those 

being trained with random patterns. The question to be answered by the first stage 

of the investigation presented in this chapter is how much extra connectivity is 

required to permit the neurons that failed previously to now correctly classify the 

set of input patterns presented to them? 

The networks used were again 400 neurons in size, arranged on a 20-by-20 grid. 

The training patterns used are the geometric and character data introduced in 

chapter 8. Connectivity is initially established as a square neighbourhood around 

each neuron at distances ranging from 1 to 5. 

Several results are presented: 

a) The mean number of connections per neuron (MCPN) after stabilisation. 

This result indicates how much random connectivity was required to be 

added to the network in order to allow the failed neurons to classify their 

input patterns correctly. 

b) The post-stabilisation storage efficiency of the network. This result shows the 

storage efficiency of the network taking into account the extra connectivity 

that was added to correct the failed neurons. 

c) The post-stabilisation attractor performance of the network. Using the 

modified Kanter and Sompolinsky measure described in chapter 4, this result 

shows the attractor performance of the network once the failed neurons have 

been corrected. 

d) The number of training phases required to stabilise the training patterns. As 

the correction of failed neurons takes place in phases as described in the 

previous section, the number of these phases that were necessary is reported. 

The values used at each of the pattern loading and neighbourhood sizes is the mean 

of five simulation runs using a different set of training data in each instance. 
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9.3.1. Geometric Data 
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Figure 9.1: Mean number of connections per neuron after stabilisation of failed neurons for 

geometric data pattern loads of 0.0125 to 0.2500 learnt by networks with initial neighbourhood 
connectivity established at distances 1 to 5. 

Figure 9.1 shows the mean number of connections per neuron at the point at 

which all failed neurons have been stabilised. Geometric data pattern loads of 

0.0125 to 0.2500 (5 to 100 patterns) were used on networks in which 

neighbourhood connectivity was initially established at sizes from 1 to S. 

The graph shows that only networks with neighbourhoods of size d=1 and d=2 

required more than a trivial amount of extra connectivity to stabilise the failed 

neurons. At d=1, the networks required more than a doubling in connectivity 

by the time the loading had reached 0.2500 (100 patterns). At d=2, the increase 

required is not so great being only approximately 25%. 

The amount of connectivity required to stabilise 100 patterns in the d=1 

networks is approximately equal to the level of pre-stabilisation connectivity in 

networks with neighbourhoods at d=2. 

It is apparent, therefore, that the networks with the lowest level of initial 

connectivity, despite requiring a large amount of extra connectivity in order to 

stabilise failed neurons, require less overall connectivity to make their training 

sets stable. This occurs because the extra connectivity is targeted specifically at 

those neurons that have failed and this will result in a non-uniform distribution 

of connections throughout the network. 
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Figure 9.2: Post-stabilisation storage efficiency for geometric data pattern loads of 0.0125 to 
0.2500 using networks with initial neighbourhood connectivity established at distances 1 to 5. 

Figure 9.2 shows the storage efficiency of each network calculated as the ratio of 

the number of successfully stored patterns to the mean number of connections 

per neuron. Each value represents a network created with a level of initial 

neighbourhood connectivity ranging from d=1 to d=5 and trained using a 

pattern load of between 0.0125 and 0.2500 (5 and 100 patterns). 

The most efficient networks at any of the tested pattern loads were those created 

with neighbourhood connectivity at d=1. Networks with subsequent 

neighbourhood sizes become progressively less efficient as the level of 

connectivity increases. 

It is interesting to note that, despite the large amount of extra connectivity 

required for the networks with the smallest neighbourhoods, the final level of 

connectivity permits these networks to be the most efficient. 

In every case, the efficiency rises as the pattern load increases. The rise in the 

efficiency of networks with neighbourhood connectivity at d=1 however, 

appears to slow significantly at around a loading of 0.1125 (45 patterns) and gives 

the appearance of beginning to level off. 

142 



0.12 -1 -- ------- -- --- -- ----- 

0.1 

o. c 

60i 

rO 

0. ( 

0.1 

0.00 +- 
0.00 

Loading (P N) 

-+- d=1 --@--d=2 -+- d=3 --M- d=4 --"- d=5 

Figure 9.3: Post-stabilisation attractor performance for geometric data pattern loads of 0.0125 to 
0.2500 using networks with initial neighbourhood connectivity established at distances 1 to 5. 

Figure 9.3 shows the attractor performance of the networks measured after all 

neurons that initially failed have been corrected. The fact that the attractor 

performance is at a very similar non-zero level for a significant number of the 

values obtained could be indicative of either random successes or rounding error 

in the calculation of the measure. This phenomenon was also seen in the 

investigation of sparsely connected networks (c. f chapter 8) where the attractor 

performance measured also fell to a non-zero value below which it would fall no 

further. The ability of a network to correct a single corrupt bit in a single stored 

pattern is sufficient to produce a non-zero value using the Kanter and 

Sompolinsky (1987) measure. As each value in the figure 9.3 is itself the mean 

of five simulation runs and the connectivity is somewhat tailored to the training 

data it is unlikely that a true zero value will occur at the pattern loading levels 

being used. 

Attractor performance above the minimum level exists only for the highest 

neighbourhood sizes of d=4 and d=5, and the lowest pattern loads of 0.0125 and 
0.0250 (5 and 10 patterns). As the networks have only just reached a point 

where all the training patterns are stable, poor attractor performance is 

unsurprising. 
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Figure 9.4: Mean number of training phases for geometric data pattern loads of 0.0125 to 
0.2500 using networks with initial neighbourhood connectivity established at distances 1 to 5. 

Figure 9.4 shows that whilst it is evident that there is a great deal of variability 

in the results despite the averaging; plotting the number of training phases results 
in an increase in the number of training phases required as the pattern loading 

increases. 

The lowest number of phases occurs when the pattern load is low and the initial 

neighbourhood connectivity is high (d=5). The greatest number of phases is 

required at the opposite end of the scale where the pattern load is at its highest 

and the neighbourhood size is low (d=1). 

The number of training phases required to stabilise the training patterns is 

dependant therefore, on both the pattern load and the distance at which the 
initial neighbourhood connectivity is established. 
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9.3.2. Character Data 
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Figure 9.5: Mean number of connections per neuron after stabilisation of failed neurons for 

character data pattern loads of 0.0125 to 0.2500 learnt by networks with initial neighbourhood 
connectivity established at distances I to S. 

Figure 9.5 shows the mean number of connections per neuron at the point at 

which all failed neurons have been stabilised. Character data pattern loads of 

0.0125 to 0.2500 were used on networks in which neighbourhood connectivity 

was initially established at sizes from 1 to 5. 

The results for character data are very similar to those shown earlier (c. f. figure 

9.1) for geometric data. 

Only networks with initial neighbourhood connectivity at d=1 and d=2 require 

a significant amount of extra connectivity in order to stabilise the failed neurons. 

Again, the post-compensation level of connectivity for d=1 at a=0.2500 (100 

patterns) is very close to the pre-compensation connectivity for networks with 
d=2. 
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Figure 9.6: Post-stabilisation storage efficiency for character data pattern loads of 0.0125 to 
0.2500 using networks with initial neighbourhood connectivity established at distances I to S. 

Figure 9.6 shows the storage efficiency of each network calculated as the ratio of 

the number of successfully stored patterns to the mean number of connections 

per neuron. Each value represents a network created with a level of initial 

neighbourhood connectivity ranging from d=1 to d=5 and trained using a 

pattern load of between 0.0125 (5 patterns) and 0.2500 (100 patterns). 

The most storage efficient network at any of the tested levels of pattern loading 

were those in which the initial level of neighbourhood connectivity was at a 

minimum (d=1). As was seen to be the case when training with pattern sets 

based on the geometric data, the overall final level of connectivity in these 

networks was below that of networks with larger initial neighbourhoods despite 

the large proportion of extra connectivity required in order to stabilise the 

training set. 

As the level of local neighbourhood connectivity increases, the requirement for 

extra connectivity falls (c. f figure 9.5) but the total level of connectivity is such 

that the storage efficiency is always less than for those with neighbourhoods of 
d=1. 
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Figure 9.7: Post-stabilisation attractor performance for character data pattern loads of 0.0125 to 
0.2500 using networks with initial neighbourhood connectivity established at distances 1 to 5. 

Figure 9.7 shows the attractor performance of the networks measured after all 

neurons that initially failed have been corrected. The levelling out of the 

attractor performance to a consistent non-zero value was seen earlier for the 

geometric data and can be attributed to the same causes. 

The results for geometric data showed attractor performance above this 

minimum level for only very low loadings and large neighbourhood sizes and 

similar behaviour is evident for character data. Attractor performance above the 

minimum level only occurs for networks with initial neighbourhood 

connectivity at sizes d=3,4, and 5 and all easily discernable attractor performance 

has vanished by a loading of 0.0500 (20 patterns) in the best case of d=5. 

No attractor performance of any significance is present for networks with initial 

neighbourhood connectivity at distances d=1 and d=2. This was also the case 
for networks learning geometric data. 

Where the attractor performance is non-negligible it is consistently higher for 

the character data than for the geometric data at equivalent pattern loads and 

neighbourhood size. 
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Figure 9.8: Mean training phase count for character data pattern loads of 0.0125 to 0.2500 using 
networks with initial neighbourhood connectivity established at distances 1 to 5. 

Figure 9.8 shows the mean training phase count for five simulation runs at each 

combination of pattern load and neighbourhood size. 

In examining figure 9.8 it should be borne in mind that the phase count range 
has doubled from that which was used for the geometric data earlier (c. f. figure 

9.4). Using geometric data the number of phases required ranged from 0 to 30. 

For character data this range increases and is now between 0 and 60. 

The feature of figure 9.8 that is of most interest is the similarity it bears to figure 

9.4 which represents the same information for geometric training data. Given 

that the number of phases axis represents twice the range as in figure 9.4 the 

implication is that at equivalent loadings and neighbourhood sizes the number of 

training phases required is approximately double that required for geometric 

data. 

025 
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9.4. Improving Attractor Performance with Further Connectivity 

The previous set of experiments was designed to investigate the amount of extra 

connectivity required to stabilise any neurons that might have failed when 

connectivity was initially established following a strict neighbourhood strategy. 

The second stage of this investigation examined how the attractor performance 

improved when, after having added connectivity into the network to compensate 
for the failed neurons, further connectivity was introduced. 

It was hoped that by initially establishing the connectivity using the neighbourhood 

strategy, an improvement in attractor performance would be seen over those 

networks where the same level of connectivity was established purely randomly. 

The networks used were 400 neurons in size, arranged as if on a 20-by-20 grid. 

The training patterns used were derived from the geometric and character data 

introduced in chapter 8. Connectivity was initially established as a square 

neighbourhood around each neuron at distances ranging from 1 to 5. The 

networks were then trained using the Symmetric Local Learning rule and any failed 

neurons compensated with extra connectivity as per the previous experiment. 

Once a stable network was obtained, more random connectivity was gradually 

added to it. At particular levels of connectivity, the network was retrained and the 

attractor performance measured at that point. The levels at which attractor 

performance should be re-measured was set to be 5% connectivity intervals. The 

new connectivity was added symmetrically to maintain simple update dynamics. 

The justification for adding this extra connectivity is as follows. It is likely that, 

with the exception of neurons that have been compensated with extra connectivity, 

the neurons will be seeing input patterns which look very similar. It is in fact 

possible that a neuron, as a perceptron, might be being required to classifying a set 

of input patterns that fall into only a single class, i. e. all the patterns have the same 

output. If either of these situation is the case, the generalisation performance of the 

neurons could be very poor and will result in the network displaying 

correspondingly poor attractor performance. 

It was seen in previous work (c. £ §8.6.3) that random connectivity resulted in 

either greater attractor performance or that the attractor performance decreased 

more slowly with rising pattern load than was the case with neighbourhood 
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connectivity. This further supports the idea that some random connectivity might 
be essential for reasonable attractor performance. 

Graphs of the results of networks trained at loadings of a=0.0125,0.1250, and 

0.2500 are presented. These loadings correspond to 5,50, and 100 patterns 

respectively. Values for all loadings tested may be found in appendix E. The values 

in the tables and those plotted here are taken as the mean of 5 network simulations. 

Results for networks with neighbourhood sizes d=1 to d=5 are shown. 

Additionally, the results for networks with purely random connectivity are shown 

for comparison, these have been denoted d=0. 

9.4.1. Geometric Data 
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Figure 9.9: The attractor performance of networks initially connected using the local 
neighbourhood strategy and with further symmetric connectivity added at random. Training 
patterns were from the geometric data set. Attractor performance is shown at 5% connectivity 
intervals. The dashed vertical lines represent the level of neighbourhood connectivity before 
either compensatory or additional random connectivity was added. The loading on the network 
is a=0.0125 (5 patterns). 

Figure 9.9 shows the effect of additional random symmetric connectivity on the 

attractor performance of networks in which connectivity was initially established 

using a local neighbourhood strategy. The loading on the network is a=0.0125 
(5 pattems). 

The clearest point to be made from figure 9.9 is that none of the networks, 
regardless of the level of initial local connectivity, were able achieve a level of 
attractor performance in excess of RzO. 80. It is very likely that with this level of 
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loading, this is the maximum attainable attractor performance. The lowest level 

of connectivity at which this level of attractor performance was reached was for 

networks in which the connectivity was established wholly at random, d=0. 

The level of connectivity required was 0.15. 

Networks with the smallest neighbourhoods (d=1) achieve almost the same level 

of attractor performance at the same loading. The level of connectivity initially 

established using the local neighbourhood strategy is only 0.01 however. The 

quantity of extra random connectivity added in order to obtain near-maximum 

attractor performance will have dwarfed that which is part of the local 

neighbourhoods. It is highly probable that this network is almost 

indistinguishable from it's totally randomly connected counterpart in terms of 

the pattern of connections. 

The requirement for large amounts of random connectivity in order to achieve 
high attractor performance exists for networks of all the neighbourhood sizes 

examined. 

An interesting, though easily explained, point should be made regarding 

networks with initial neighbourhoods of d=4 and d=5. The proximity of the 

corresponding dashed vertical lines, representing the initial connectivity levels, to 

the first plotted value for those networks would seem to indicate that little extra 

random connectivity was required in order to obtain some non-trivial attractor 

performance. This is somewhat misleading; the local neighbourhoods for these 

networks are larger than the range at which significant local correlations exist in 

the training data (c. f chapter 7). This means the individual neurons may see 
input patterns that incorporate some non-correlated portions of the training data. 

This is not dissimilar to having a network with smaller local neighbourhoods in 

which some random compensation has taken place to correct failed neurons. In 

short, the networks with neighbourhoods of size d=4 and d=5 already possess a 
degree of effectively random connectivity even though no compensatory 

connectivity has been required to stabilise the training patterns. 
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Figure 9.10: The attractor performance of networks initially connected using the local 

neighbourhood strategy and with further symmetric connectivity added at random. Training 

patterns were from the geometric data set. Attractor performance is shown at 5% connectivity 
intervals. The dashed vertical lines represent the level of neighbourhood connectivity before 

either compensatory or additional random connectivity was added. The loading on the network 
is =0.1250 (50 patterns). 

Figure 9.10 is as 9.9 (previous page) but represents networks with a loading of 

a=0.1250 (50 patterns). 

As different as the plots for networks with a loading of a=0.0125 were, the most 

obvious feature of figure 9.10 is the similarity shown between networks with 

some degree of initial neighbourhood connectivity. If the same is true at this 
loading as at the previous then it can be assumed that the d=0 network indicated 

the maximum attractor performance attainable. If this is indeed the case, it can 
be seen that none of the locally connected networks achieve the maximum 

attractor performance until they are very nearly fully connected. By contrast, 

the randomly connected network, d=0, reaches a value close to its maximum at 

a level of connectivity of 0.55. 

It would seem that, despite the large amount of random connectivity being 

introduced to the networks, the effect of the local connectivity may be to fix 

some of the individual input patterns to the neurons in a small area of the pattern 

space. These input patterns can therefore not help but be closer together than 

would be the case if all the input sources are chosen at random. The closer 

proximity of the input patterns detrimentally affects the generalisation 
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performance of each neuron and this affects the attractor performance of the 

network as a whole. 
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Figure 9.11: The attractor performance of networks initially connected using the local 

neighbourhood strategy and with further symmetric connectivity added at random. Training 

patterns were from the geometric data set. Attractor performance is shown at 5% connectivity 
intervals. The dashed vertical lines represent the level of neighbourhood connectivity before 

either compensatory or additional random connectivity was added. The loading on the network 
is "=0.2500 (100 patterns). 

Figure 9.11 is as 9.10 (previous page) but represents networks with a loading of 

a=0.2500 (100 patterns). 

It can be seen from the above figure that very little exists to differentiate 

between the performances of the networks with partial local connectivity. 

There is, however, a range of connectivity where all of the partially locally 

connected networks outperform the random connected ones. Between levels of 

connectivity of 0.35 and 0.55 the line representing randomly connected 

networks is below those of the locally connected networks. As the level of 

random connectivity increases, there becomes less to disambiguate between the 

pattern of connectivity in each of the networks and the performance of the 

randomly connected networks actually rises above that of the others. 
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9.4.2. Character Data 
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Figure 9.12: The attractor performance of networks initially connected using the local 

neighbourhood strategy and with further symmetric connectivity added at random. Training 

patterns were from the character data set. Attractor performance is shown at 5% connectivity 
intervals. The dashed vertical lines represent the level of neighbourhood connectivity before 

either compensatory or additional random connectivity was added. The loading on the network 
is a=0.0125 (5 patterns). 

Figure 9.12 shows the effect of additional random symmetric connectivity on 

the attractor performance of networks in which connectivity was initially 

established using a local neighbourhood strategy. The loading on the network is 

a=0.0125 (5 patterns). The training patterns used were those derived from the 

character data set. 

Comparing figure 9.12 with the corresponding graph for geometric data (figure 

9.9) it can be seen that the similarity between the lines plotted is much greater 

than was the case for geometric data. The likely cause of this is the increased 

level of global correlation in the data compared with that present in the 

geometric data. The increased global correlation may be mitigating the impact 

of having a neighbourhood size larger than the range at which local correlation 

is greatest. The increased global correlation will only have an effect for medium 

range connectivity however. It was seen when analysing the training data (c. f 

chapter 7) that neighbourhood sizes greater than d=3 for character data would 

begin to introduce local correlation at a level below that of global correlation. 

This is the probable reason that the lines representing initial neighbourhood 

connectivity at d=4 and d=5 stand apart from the others. 
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It is interesting to note that at the lowest level of connectivity for which the 

attractor performance was measured, the value for the attractor performance is 

greater than that of the networks learning geometric data. It is likely that this is 

due to the overall level of bias of the training data which, once the level of 

random connectivity is sufficiently high, will be close to that of the reduced 

dimensionality input patterns to each neuron. It is known from Gardner (1988) 

that patterns with higher bias should result in greater attractor performance. 

This was shown to be the case in the experimental results of Davey and Hunt 

(2000). 
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Figure 9.13: The attractor performance of networks initially connected using the local 
neighbourhood strategy and with further symmetric connectivity added at random. Training 
patterns were from the character data set. Attractor performance is shown at 5% connectivity 
intervals. The dashed vertical lines represent the level of neighbourhood connectivity before 
either compensatory or additional random connectivity was added. The loading on the network 
is =0.1250 (50 patterns). 

Figure 9.13 demonstrates the same effect as was seen for higher loadings of 

geometric data. The networks exhibit much the same performance regardless of 

the initial level of neighbourhood connectivity. The combination of 

compensatory and extra random connectivity is, in all probability, again masking 

the initial local connectivity. 

The point at which the networks begin to exhibit non-trivial attractor 

performance is, in all cases barring d=0, between connectivity levels of 0.20 and 
0.30. The maximum attractor performance achieved by any network is 

approximately R=0.34 when using purely random connectivity. 
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Crucially, it can now be seen that a benefit in attractor performance is obtained 
by establishing the initial level of connectivity using a local neighbourhood 

strategy. While there appears to be no great benefit in extending the local 

neighbourhood beyond d=1, having some local connectivity does provide better 

attractor performance than is produced from purely random connectivity. 

It is probable that the benefit of local connectivity was not apparent at the lower 

loading of a=0.0125 (5 patterns) because the small number of patterns was easily 

learnt regardless of the connectivity topology. 
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Figure 9.14: The attractor performance of networks initially connected using the local 
neighbourhood strategy and with further symmetric connectivity added at random. Training 
patterns were from the character data set. Attractor performance is shown at 5% connectivity 
intervals. The dashed vertical lines represent the level of neighbourhood connectivity before 
either compensatory or additional random connectivity was added. The loading on the network 
is "=0.2500 (100 patterns). 

Figure 9.14 is as the previous graphs but shows results for networks with a 

pattern load of a=0.2500 (100 patterns). The poorer performance of randomly 

connected networks is clearly shown with the line representing d=0 falling 

below those representing networks with degrees of local connectivity. It is 

interesting, though expected, that the attractor performance of the randomly 

connected network rises to meet that of the partially locally connected networks 

as the level of connectivity in all the networks approaches maximum. 

156 

1.00 , 
a1 st ea V ass 



9.5. Summary and Conclusions 

This chapter has presented the results of two sets of experimental work. The first 

set of experiments was designed to examine the degree of compensatory 

connectivity required by networks in which the initial connectivity was established 

using a local neighbourhood strategy. The compensatory connectivity was used to 

allow neurons which had failed to correctly classify their input patterns during an 

earlier phase of training to now classify them correctly. Once the networks had 

been compensated, they were analysed with respect to their storage efficiency and 

attractor performance. 

Regardless of the type of data being learnt, the greatest amount of compensatory 

connectivity required was for networks with neighbourhoods of sizes d=1 and d=2. 

At no point however was the amount of compensatory connectivity enough to 

increase total connectivity above the level of pre-compensation connectivity in 

networks with neighbourhoods of size d=3. 

It is clear however, that for both geometric and character training patterns, the local 

connectivity is permitting capacities well in excess of the notional maximum of 2N. 

This is only the case though for networks with local neighbourhoods of sizes d=1, 

d=2, and d=3. These are the ranges at which local correlation both within and 
between the training patterns were shown to be greatest (c. f chapter 7). These 

experimental results confirm the theoretical predictions of Lopez et al. (1995) 

described in §5.2. It should, however, be noted that in the case of networks with 

neighbourhoods of size d=1, this improvement in capacity comes at the expense of 

a large amount of compensatory connectivity which is necessarily tailored to the 
dataset being trained upon. This should not detract from the excellent capacities 

also seen in the case of networks with neighbourhoods of sizes d=2 and d=3 where 

the amount of compensatory connectivity required was negligible. 

The attractor performance of the networks immediately post-stabilisation of the 
failed neurons was as expected. At low loadings, where the networks with large 

local neighbourhoods require no compensation, some non-trivial attractor 

performance exists. For any reasonable pattern load however, the attractor 

performance is, for all practical purposes, non-existent 

The final set of results presented from the first phase of experiments showed the 

number of compensation/training phases required for various pattern loads. As 
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would be expected, the most phases were required when neighbourhood 

connectivity was at its minimum of d=1 and the loading was at its greatest, 

a=0.2500 (100 patterns). Correspondingly, the fewest training phases were 

required with large local neighbourhoods of d=5 and few training patterns, 

a=0.0125 (5 patterns). This was again true for both types of training data, 

geometric and character. 

The second set of experiments was designed to investigate the way in which the 

networks' attractor performance might be enhanced post-compensation by adding 

additional random connectivity to each network. This was done in an attempt to 

counter the poor attractor performance exhibited by the just-compensated 

networks. 

For either data type, a loading of a=0.0125 (5 patterns) does not appear to be 

enough for local connectivity to provide any particular advantage in terms of 

attractor performance. As the initial neighbourhood connectivity increases, the 

attractor performance at any given level of connectivity decreases. The probable 

cause of this is the proportion of random connectivity. For example, a network 

with initial neighbourhood connectivity at d=1 has a pre-compensation level of 

connectivity equal to approximately 0.02 of potential maximum connectivity. A 

network with neighbourhoods of size d=3 has a pre-compensation level of 

connectivity at around 0.1 of maximum. If the total connectivity after 

compensatory and supplementary connections have been added is 0.15, it is clear 

that random connectivity must form a greater proportion of that in the case of 

network with neighbourhoods of size d=1. This further supports the idea the some 

non-random connectivity may be important for good attractor performance. 

Furthermore, at any particular level of connectivity, the attractor performance of 

the networks learning character data appears to be higher than that of those learning 

geometric data at a loading of a=0.0125 (5 patterns). This can be explained using 
Gardner's (1988) hypothesis that biased patterns should lead to higher attractor 

performance and is supported by the work of Davey and Hunt (2000) in which this 
is experimentally shown to be the case. 

At a pattern load of a=0.1250 (50 patterns), it becomes much harder to distinguish 

between the performances of each of the locally connected networks. Apart from 

the poorer maximum attractor performance in the case of networks trained on 
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character data, one clear difference exists between the two sets of networks. For 

networks trained on geometric data, the attractor performance for networks with 

purely random connectivity (d=0) is consistently higher than for those where some 

of the connectivity has been established locally. For networks trained on character 

data it can be seen that, between levels of connectivity of 0.35 and 0.65, the 

attractor performance of the randomly connected networks is below that of any of 

those with a degree of local neighbourhood connectivity. 

At a loading of a=0.2500 (100 patterns), there is a difference in performance 

between networks with only random connectivity and those with some 

neighbourhood connectivity. For the character data, the neighbourhood 

connectivity provides clearly superior attractor performance and the geometric data 

shows a tangible but less clear advantage. The difference in the two datasets can be 

attributed to the differing levels of bias in the data. 

The experiments in this chapter have shown that there is a demonstrable benefit to 

establishing some of the connectivity locally before compensating failed neurons as 

per the scheme described in this chapter. It has been shown that, in the case of the 

networks investigated in this work, only a small amount of local connectivity is 

required in order for this benefit to be seen. 

The performance improvement has only been shown to exist between particular 

connectivity ranges and when the pattern loading is fairly high. The effect was 

shown to be greater in the case of the character-based training data. 
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10. CONCLUSIONS 

10.1. Introduction 

The purpose of this final section is to draw attention to the conclusions that may be 

inferred from this body of work. Practical implications of this work are also 

discussed. Finally, suggestions for directions in which future, derived work might 

be taken are given. 

10.2. Summary of Achievements 

Through performing this investigation I have produced a number of clearly 

identifiable achievements. I have: 

" Investigated variants of the Hopfield network with specific focus on 

high performance learning rules. 

In chapter 2, I presented a review of the field of Hopfield-type associative 

memories. I demonstrated that alongside the standard Hopfield learning rule 

based on Hebbian principles, a number of high performance learning rules exist 

which provide higher capacity and stronger attractor performance. I classified 

the resulting networks in accordance with the categories suggested by Abbott 

(1990). 

" Comparatively evaluated the learning rules presented in chapter 2. 

Using a number of the performance metrics outlined in chapter 3, I carried out 

a comparative evaluation of the learning rules presented in chapter 2. The 

performance metrics were used to determine which of the rules might be most 

suitable for use in later work. Based on the results of the performance metrics I 

concluded that the most suitable rule was Gardner's Symmetric Local Learning 

algorithm (1988). 

I presented the results of this work at ICAANGA 2001 in Prague, Czech 

Republic (Turvey, Hunt et al., 2001). 

" Investigated existing measures and analysis tools and proposed a novel 

network performance metric. 

In chapter 3, I presented an introduction to a number of common performance 

metrics suitable for the analysis of Hopfield-type associative memories. Two 

modifications to an existing attractor performance measure, that of Kanter and 
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Sompolinksy (1987), were proposed to address inconsistencies in the calculation 

of the original measure. 

I proposed a new measure that provides a more intuitive evaluation of the 

attractor performance of a network. The new measure permits a 

comprehensive analysis of the size and shape of the attractor basins of a 

network's stored patterns on an individual basis while maintaining the ability to 

produce a comparable measure for a network as a whole. 

" Produced a suite of investigative tools for the purpose of studying the 

performance of associative memory architectures. 

During the course of this investigation I developed an extensible neural 

network simulator that permitted the easy addition of new learning rules and 

analysis tools. The flexibility of the simulator's architecture makes it readily 

adaptable to future avenues of research in this area. 

" Investigated the intra- and inter-pattern correlation of a selection of 

non-random training data. 

In Chapter 7,1 presented the results of an investigation into the structural 

nature of two sets of artificially generated non-random training data. I showed 

that, in non-random training data, significant levels of local correlation existed 

when measured both within and between training patterns. The variability in 

local correlation between two different data sets was demonstrated. 

Additionally, information was gathered as to the level of site activity present in 

the training patterns; information that might potentially be useful in further 

research. 
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" Empirically evaluated post-training dilution techniques. 

In chapter 6,1 examined the effect of post-training synaptic removal. The 

diluted networks were extensively analysed with respect to several performance 

metncs. 

I evaluated two post-training removal techniques. The first removed 

connections at random; the second used information about the values of the 

weights on the connections to determine those that should be removed. I 

termed this smallest-first dilution. The strategy providing the best performance 

with respect to the performance metrics used was shown to be smallest-first. 

The investigation of a non-random removal strategy in conjunction with high- 

performance learning rules represents novel work and I presented the results of 

this at RASC 2002 in Nottingham, UK (Turvey, Hunt et al., 2002). 

" Empirically evaluated two techniques for establishing sparse 

connectivity prior to training. 

In chapter 8, I presented the evaluation of two strategies for establishing sparse 

connectivity prior to training. The first of these strategies was simple random 

connectivity; the second, a technique whereby individual neurons were 

connected to others in their local neighbourhoods. This work was based on the 

proposal of Garner (1988) who suggested that connectivity might be established 

at ranges corresponding to those at which strong local correlation was observed 
in the training patterns. The work of Lopez et al. (1995) gave further 

indication as to specific benefits this approach might provide. 

I demonstrated that particular benefits were possible when combining local 

connectivity with locally correlated training patterns. This work forms the key 

novel aspect of this thesis. 

" Proposed, modelled, and evaluated a technique for establishing 

structured connectivity. 

Building on the work presented in chapter 8, in chapter 9I examined one 

strategy by which the attractor performance of sparsely connected networks 

might be further improved through the addition of further connectivity. 
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The performance results from networks with identical levels of connectivity 

established with differing degrees of `localness' were compared. I demonstrated 

that, under certain conditions, networks with a measure of local connectivity 

exhibited better attractor performance than did those with only random 

connectivity. 

This crucial result corresponds with the hypothesis and justification of the 

approach taken that was set out in chapter 5. 

10.3. Practical Implications 

While it was stated at the outset (c. f chapter 1) that biological plausibility was not a 

primary goal of this work, it was suggested that, where practicable, obvious 

implausibility might be avoided. For example, features of the final networks such as 

symmetric connectivity, while biologically implausible, were introduced for 

practical reasons. Sparse connectivity however, has been a key concern throughout 

the investigation. 

Sparse connectivity also has implications for the implementation of associative 

memory neural networks in hardware. While it is acknowledged that a degree of 

random connectivity has been added to the networks investigated in chapter 9, it 

was shown that a quantity of the overall connectivity could be beneficially 

established locally. Overall, sparsely connected networks should be easier to 

implement in hardware than fully-connected ones due to the reduced physical 

costs. 

10.4. Future Work 

While this investigation has not arrived at any definite heuristic for the construction 

of structured, sparse connectivity, it has raised several interesting questions. To 

conclude this thesis, some potential avenues for future work are: 

Asymmetric connectivity: symmetric connectivity was chosen as a key 

constraint based on it being one of Hopfield's three requirements for the existence 
of point attractors (Hopfield, 1982) and a desire to kept the network update 
dynamics as simple as possible. The biological implausibility of this requirement 

and the fact that it is somewhat wasteful of the available connectivity suggests the 

pursuit of mechanisms by which this constraint could be removed or relaxed might 
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be beneficial. Experimental work (Davey, 2003) has suggested that symmetric 

connectivity might not be as imperative as has been previously thought. 

Scalability - larger networks: one of the motivations behind this work was 

stated to be a desire to make the creation of large networks (> 1,000,000 neurons) a 

more practical proposition. To this end, the relatively small networks employed in 

this work serve as a test bed and proof-of-concept for techniques that might be 

useful in constructing larger networks. Crucially, the work carried out in this thesis 

has demonstrated the success of connectivity strategies providing O(N) scaling with 

respect to the network size rather than the 0(N2) scaling that is seen in fully- 

connected networks. 

Increasing the network size would significantly reduce the problems due to edge 

effects. In a network 1000 neurons square, neighbourhood sizes that are small 

when compared with the total size of the network will provide input patterns with 

large dimensionality. This has the potential to reduce the possibility of introducing 

the linear inseparabilities that occur when input dimensionalities are very small. 

Perfect attractor, performance: as the size of implemented networks increases, 

the impact of a single incorrect neuron on the resemblance of a recalled pattern to 

the originally stored pattern becomes increasingly less. Throughout the work 
described in this report the requirement has been for recalled patterns to exactly 

match the corresponding stored memory. Permitting a number of failed neurons 
has the potential to further increase recall ability of these networks and the manner 
in which the attractor performance analysis tools might be modified to take this into 

account may be worthy of investigation. 

New compensation strategies: the technique for correcting failed neurons used 
in the work presented in chapter 9 was an unsophisticated one. Further 

investigation into techniques whereby the new incoming connections are chosen 

with consideration given to the information they will provide may be possible. 
The site activity analysis demonstrated in chapter 8 is one example of the type of 
information that might be taken into account. Some work of this nature has been 

investigated by Stiefvater et al. (1993). 
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Supplementary connectivity strategies: again, the strategy for adding 

supplementary connectivity in an effort to improve attractor performance post- 

compensation (c. f chapter 9) is a nave one. It may be possible to target additional 

connectivity such that the information provided by each new pre-synaptic neuron 

creates a maximally beneficial training set. 
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A. DEVELOPING AN ASSOCIATIVE MEMORY SIMULATOR 

A. I. Overview 

In order to carry out the series of experiments that were required for this work it was 

necessary to develop software for the purpose of simulating the architectures and 
learning rules being used. This section endeavours to give an overview of the 

requirements of such a simulator and an insight into some of the factors that had to be 

considered in its design and implementation. 

In total, three simulators were built, each evolving from the last as deficiencies were 
found or requirements outstripped capabilities. The first of these was built around a 

very simple monolithic design. The purpose of this first attempt was more about 
familiarisation with the problems of constructing such a simulator than about building 

something genuinely useful. It was, if you will, a prototype designed to fulfil the 

maxim that "you never really understand a problem until you've attempted a solution". 

The second simulator was significantly more complex the first. It was highly 

parameterised and flexible and is discussed in some detail below. This simulator was, 
however, not without its flaws and eventually gave way to the third and final version 

which, while not perfect, served its purpose well. It is this simulator that is the subject 

of examination in the latter part of this section. 

All three of the simulators were developed in Java. The rationale for this was that the 

small sacrifice in terms of speed of execution would be offset by the advantages brought 

by the cross-platform capabilities of Java. 
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A. 2. A Simple Associative Memory Simulator 

The first simulator implementation was a simple monolithic design. Parameters to the 

simulator were hard-coded into the program source. Each learning rule implemented 

was represented by a new program. While this had the advantage of high speed and 

simplicity of design, there was the huge disadvantage of being unable to modify 

simulation parameters without recompilation of the entire program. 

A. 3. Simulator 2: A First Stab at Flexibility 

It was clear from the start that the monolithic prototype simulator was going to be 

unsuitable for running the gamut of learning rules and analyses that would be required 
for this project. Parameterising the simulator was going to be essential if it was ever to 

be flexible enough to run multiple experimental runs without significant intervention 

or alteration each time. 

A. M. Design and Implementation 

Strictly speaking, the second simulator was also monolithic though an attempt was 

made to separate out different areas of functionality into distinct classes/files. The 

core of the simulator is formed by the NeuralNetwork class which takes responsibility 
for managing a network's weights, state, and training set. `Running' the network as 

per the update dynamics is also handled by this class. 

Rather than being an entity in its own right, a new learning rule is considered to be 

a type of network and so inherits from the base NeuralNetwork class. This enables 
learning rules to directly access and manipulate both the weights and the training set 

associated with the network. These learning rule/network classes are dynamically 

loaded as required according to the command line parameters. 

Analysis tools are kept separate in their own class and operate on, rather than form 

part of, network objects. 

Finally, the entire system is controlled by a class which is responsible for instantiating 

a network and executing analysis tools as specified by parameters which may be 

passed to it on the command line. 
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A. M. Advantages and Disadvantages 

The parameterisation which initially was an asset and made the simulator extensible 
later became a problem. The requirement that each new parameter identifier be 

hard-coded into the simulator meant that the entire system needed recompiling for 

what were often relatively minor changes. Similarly, when a new learning rule was 

added to the system its name also had to be hard-coded in a list of network models 

that were available for selection via the command line parameters. The class 

representing the model named was dynamically loaded at runtime and made 

available within the Java namespace. 

Over time, the number of parameter identifiers required in order to provide all the 

information necessary to all of the simulator's functionality became unwieldy and 

difficult to manage. Compounding this was the fact that not all simulations 

followed the same pattern of execution; some produced values which were means of 

multiple runs while others simply returned a Boolean true or false. 

Eventually, managing the simulator was taking up more time than it was economical 

to invest. 

Nothing written above should detract from the positive aspects of both the 

experience of implementing the simulator and the eventual product. The 

parameterisation was initially an asset and much time was saved compared with the 

alternative of coding individual single-use programs. The dynamic class loading 

infrastructure paved the way for what was to become a full-blown system of plug-in 

extensions in the final simulator and much was learnt about the most appropriate 

way in which to permit scripting or parameterisation of the software. 

173 



A. 4. NetSim: a Flexible Associative Memory Simulation Architecture 

The deficiencies in the second simulator having become intolerable, work began on 

developing the next generation of the software. From the beginning it was designed to 

be both fully scriptable and extensible. This enabled the final move away from having 

to recompile the entire simulator should a new analysis tool be developed or a extra 

parameter required for a new learning rule. 

In the manner in which the very first simulator had acted as a prototype or scratchpad 

for the technologies incorporated in the second, so the second acted likewise for the 

technologies and features built into the third. The mechanism by which learning rules, 

modelled as independent architectures built upon a generic network framework, could 

be dynamically loaded at run-time evolved into the plug-in system that provides the 

new simulator with the majority of its power with respect to extensibility without 

recompilation. In a similar manner, the parameterisation system of the second 

simulator and the flaws within it gave rise to the need for and development of the new 

scripting engine. 

The third simulator was also the first with a specific name, NetSim. 

A. 4.1. Benefits of an Object-Oriented Approach 

Traditionally, an object-orientated approach has been regarded as being unsuitable 
for the design of neural network simulators. The level of interaction required 
between very large numbers of components is such that the overheads of 

communication between objects are likely to be significant. Nevertheless, the 
inherent structure of associative memory neural networks lends itself very naturally 

to being modelled as classes of objects. The requirement for ease of extension and 

maintainability adds further weight to the merit of such an approach. 

A. 4.2. Design and Implementation 

Any discussion of the operation of the NetSim simulator must begin with the 

scripting engine since it is this that specifies the run-time environment and controls 

the running of any learning rules, tools, and utilities. 

The language of choice for scripting NetSim was the Extensible Mark-up Language 

(XML). The simplicity with which one may develop a configuration/scripting 
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language within XML belies the full power of XML itself. This ease of use, coupled 

with native support for XML within Java, made it the only sensible option. 

A discussion of XML itself is beyond the scope of this document but further 

information, if required, may be found at http: //www. w3. org/XML/. 

As XML permits the creation of arbitrary tags it was straightforward to specify 

control blocks would hold the parameters for specific areas of simulator 

functionality. 

In order to develop an understanding of the flexibility of the NetSim software it is 

important that the scripting engine itself is understood. All other functions flow 

from what is specified within the NetSim configuration file. 

Each control block takes, as its first parameter, the name of a plug-in class which 

will provide the necessary functionality. For instance, some names of plug-in classes 

which can be used in the LearningRule control block are: BipolarHopfield, ILL 

(Iterative Local Learning), BV (Blatt & Vergini). When the configuration file parser 

encounters a plug-in name it loads and links it dynamically from the file system. 

The control blocks available are: 

Controller : This is the main control block. Plug-ins specified here are responsible 
for managing the creation of networks, the execution of learning rules, and the 

performing of any analyses on the resulting weight matrices. Also delegated to these 

plug-ins is the creation of training sets. In some cases training data is randomly 

generated according to specified parameters; in others, it is loaded from data files on 
disk. 

Network : This control block has no corresponding plug-ins. It's purpose is to allow 

parameters general to all networks to be defined. Currently these parameters are 
limited to specifying the dimensions of the network. 

ConnectionStrategy : Plug-ins specified by this control block control the pattern of 

connectivity of the network. Examples of these are the plug-ins AlwaysConnect, 

RandomlyConnect, and NeighbourhoodConnect2D. 
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InputFunction : This control block specifies the plug-in that will provide the input 

function for each neuron in the network. The input function will determine the 

activation value of the neuron. Currently, the only input function plug-in is 

StandardLWS which computes the linear weighted sum of a neuron's inputs. 

OutputFunction : The output function control block specifies the plug-in 
implementing the output function for each neuron. Using the activation value 

obtained from the input function the plug-in calculates a neuron's output value. 
Currently, only the plug-in BipolarStep is available which implements a bipolar step 
function. 

UpdateRule : The update rule control block specifies the plug-in implementing the 

network's update dynamics. Currently these include RandomAsync (random 

asynchronous updates), RandomAsyncReplace (random asynchronous updates with 

replacement), and PseudoRandomAsync (a high performance implementation of 

random asynchronous updating employing a pre-generated lookup table of random 

numbers). 

LearningRule : This control block determines the learning rule plug-in to be used in 

training the network. Plug-ins exist for most of the learning rules examined in §2.5. 

PreTraining : This is the first control block for which multiple instances are 
permitted. Plug-ins specified by this block are executed prior to the network being 

trained. Certain analysis tools, such as those that operate on the training set, might 
be run at this point or the display of certain network information might be handled 
by these plug-ins. Examples of these plug-ins are: ClteckConncctionSyrnrnetry (an 

analysis of the pattern of connectivity to ensure symmetry) or TrainingSetBias (an 

analysis of the tendency of the training set towards a particular value). 

PostTraining : Multiple instances of this control block are also permitted. Specified 

within are plug-ins designed to operate after the network has been trained. For this 
reason most plug-ins specified here perform some type of analysis of the network's 
weight matrix. Example are: A11Stable (test that all training patterns have been 

successfully learnt), DisplayGammas (an calculation of the weight matrix's gamma 
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values, and KanterSompolinsky (an analysis of the consistency of size and shape of the 

basins of attraction of the network) 

To fulfil the requirement for extensibility without recompilation it was necessary to 

devise a system whereby parameters could be passed to new plug-ins without having 

to check for their validity within the configuration file parser. To this end, it was 

decided that responsibility for parameter validation would rest with the plug-ins 

themselves; the configuration file parser would simply pass the parameter 

name/value pairs to the plug-in named in the control block and ask whether or not 

that pair should be considered valid. 

A. 4.3. Advantages and Disadvantages 

The key advantage of the NetSim simulator is the sheer flexibility and extensibility 

of the architecture. New learning rules, analysis tools, input functions, and output 

functions may all be specified as plug-ins to be loaded at run time and used as 

specified in the main configuration file. 

The increased modularisation of the architecture lead to great benefits in the 

maintainability of the simulator's source code. Once the framework was in position 
for permit the creation and loading of plug-in modules, the core infrastructure code 

rarely needed modification. 

The only major disadvantage of the NetSim simulator occurred when a pattern of 

experimentation did not quite fit the model of execution that the simulator was 
designed around. As with all software projects, constraints have to be established as 

to a program's domain of operation. Occasionally, experiments were required to be 

run that strayed outside of the established framework. It is thanks to the 

maintainability of the core code, as a result of the modularisation, that adding the 

extra functionality to the simulator was never particularly painful. 
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B. A SELECTION OF GEOMETRIC TRAINING DATA 

The images below represent a selection of the geometric training data that was used 

throughout this work. 
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C. A SELECTION OF CHARACTER TRAINING DATA 

The images below represent a selection of the character-based training data that was 

used throughout this work. 
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D. DATA TABLES - SPARSE CONNECTIVITY 

This appendix contains the tables of data from which the summary tables in chapter 8 

were generated. Each values represents the mean of 5 individual simulation runs. 

Random data (bias=0.5) 
Loading Train. Tim. Aaracctor Perf. Failed Units 

0.0125 - - 57.00 

0.0250 - - 229.00 

0.0375 - - 378.20 

0.0500 - - 39280 

0.0625 - - 398.00 

0.0750 - - 39780 

0.0875 - - 399.40 

0.1000 - - 399.20 

0.1125 - - 399.80 

0.1250 - - 399.40 

0.1375 - - 400.00 

0.1500 - - 400.00 

0.1625 - - 400"00 

0.1750 - - 400.00 

0.1875 - - 400.00 

O_xW - - 400.00 

0.2125 - - x. 00 

0.2250 - - 400.00 

0.2375 - - 400.00 

0.2500 - - 400.00 

Table D. 1: Performan ce metrics for net works with 
7.4 9 MCPN 

Loading Train. Tim. Attractor Perf. Failed Units 

0.0125 31.80 0.7519 - 

0.0250 57.40 0.4013 - 

0.0375 118.00 0.0055 - 

0.0500 198 40 0.0056 - 

0.0625 288.80 0.0056 - 

0,0750 640.75 0.0057 1.00 

0.0875 - - 2.80 

0.1000 - - 25.20 

0.1125 - - 198.00 

0.1250 - - 322.60 

0.1375 - - 387.80 

0.1500 - - 39840 

0.1625 - - 399.80 

0.1750 - - 399.60 

0.1875 - - 400.00 

02000 - - 400.00 

0.2125 - - 400.00 

0.2250 - - 400.00 

0.2375 - - 400.00 

0.2500 - - 400.00 

Table D. 3: Performa nce metrics for n etworks with 
39. 96 MCPN 

Loading Tram. Time Auracar Perl Failed Units 

0.0125 94.80 0.0087 - 

0.0250 374.00 0.0055 - 
0.0375 767.00 0.0056 1.33 

0.0500 - - 23.80 

0.0625 - - 196.40 

0.0750 - - 360.20 

0.0875 - - 395.20 

0.1000 - - 398.80 

0.1125 - - 400.00 

0.1250 - - 400.00 

0.1375 - - 400.00 

0.1500 - - 4410.00 

0.1625 - - 41). 00 

0.1750 - - 400.00 

0.1875 - - 400.00 

02000 - - 400.00 

0.2125 - - 400.00 

02250 - - 400.00 

0.2375 - - 400.00 

02500 - - 400.00 

Table D. 2: Performa nce metrics for ne tworks with 
21. 09 MCPN 

Loading Train. Tim. Ataactor P. v Failed Units 

0.0125 21.20 0.7990 - 
0.0250 32.40 0.7234 - 

0.0375 48.80 0.5764 - 
0.0500 75.00 0.1817 - 
0.0625 101.20 0.0146 - 
0.0750 13600 0.6080 

0.0875 19580 0,0057 - 
0.1000 295.60 0.0057 - 
0.1125 421.20 0.0057 - 
0.1250 481.20 0.0057 - 
0.1375 831,20 0.0057 - 
0.1500 - - 3.20 

0.1625 - - 45.60 

0.1750 - - 211.80 

0.1875 - - 320.40 

0.2000 - - 37840 

02125 - - 393.40 

02250 - - 39860 
02375 - - 418.00 

02500 - - 4110.00 

Table D. 4: Performa nce metrics for ne tworks with 
6 3 MCPN 
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Loading Train. Time Attractor Pere Failed Units 

00125 18.40 0.7949 - 
0.0250 2540 0.7774 - 
0.0375 41.20 0.7046 - 
0.0500 43.00 0.6066 

00625 6020 04765 - 

0.0750 69.20 0.3068 - 
0.0875 87.00 0.1152 - 
0.1000 121.40 0.0423 - 
0.1125 136.60 0.0137 - 
0.1250 163.20 0.0080 - 

0.1375 210.40 0.0057 - 
0.1500 272.80 0.0057 - 
0.1625 362.80 0.0057 - 
0.1750 473.80 0.0058 - 

0.1875 613.20 0.0058 - 
0.2000 741.60 0.0058 - 
0.2125 973.75 0.0058 1.00 

0.2250 - - 7.00 

0.2375 - - 95.60 

0.2500 - - 227.80 

Table D. 5: Performan ce metrics for net works with 
89.2 5 MCPN 
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Random data (bias=0.8) 
Loading Train. Tim. Attractor Perf. Failed Units 

00125 - - 76.20 

0.0250 - 217.20 

0.0375 - - 332.60 

0.0500 - - 378.00 

70.0625 - - 395.60 

0.0750 - - 397.80 

0.0875 - - 399 80 

0.1000 - - 400.00 

0.1125 - - 400.00 

0.1250 - - 400.00 

0.1375 - - 400.00 

0.1500 - - 400.00 

0.1625 - - 400.00 

0.1750 - - 400.00 

0.1875 - - 400.00 

0.2000 - - 400.00 

02125 - - 400.00 

0.2250 - - 400.00 

0.2375 - - 400.00 

0.2500 - - 400.00 

Table D. 6: Performan ce metrics for net works with 
7.4 9 MCPN 

Loading Train. Tim. Attractor Perf. Failed Units 

0.0125 65.40 0.7334 - 

0.0250 150.20 0.0153 - 

0.0375 212.20 0.0087 - 

0.0500 512.50 0.0088 1.00 

0.0625 621.80 0.0089 - 
0.0750 903.67 0.0089 1.00 

0.0875 969.00 0.0090 1.33 

0.1000 - - 6.20 

0.1125 - - 30.80 

0.1250 - - 92.60 

0.1375 - - 192.00 

0.1500 - - 280.00 

0.1625 - - 332.80 

0.1750 - - 369.40 

0.1875 - - 385.20 

011" - - 393.00 

0.2125 - - 398.00 

0.2250 - - 399.60 

0.2375 - - 400.00 

02500 - - 400.00 

Table D. 8: Performa nce metrics for ne tworks with 
39. 96 MCPN 

Loading Tm.. Tims Att a for Pa# Failed Units 

0.0125 165.00 0.0082 1.50 

0.0250 - - 4.20 

0.0375 - - 9.20 

0.0500 - - 31.60 

0.0625 - - 11120 

0.0750 - - 212.60 

0.0875 - - 311.40 

0.1000 - - 367.00 

0.1125 - - 387.40 

0.1250 - - 397.40 

0.1375 - - 397.60 

0.1500 - - 399.80 

0.1625 - - 399.60 

0.1750 - - 400.00 

0.1875 - - 399.80 

02000 - - 411). 00 

02125 - - 400.00 

0.2-150 - - 4(6.00 

0.2375 - - 400.00 

0.2500 - - 400.00 

Table D. 7: Performan ce metrics for net works with 
21.0 9 MCPN 

Loading Train. runs, Attractot Pv1 Riled Unit, 

0.0125 43.80 0.7611 - 
0.0250 77.80 0.6987 - 

0.0375 99.80 0.5696 - 
0.0500 117.60 0.1423 - 
0.0625 181.00 0.0158 - 
0.0750 274.20 0.0089 - 
0.0875 263.20 0.0090 - 
0.1000 363.80 0.0090 - 
0.1125 664.20 0.0091 - 
0.1250 609.80 0.0091 - 
0.1375 805.80 0.0091 - 
0.1500 821.40 0.0091 

0.1625 983.50 00091 2.33 
0.1750 - - 9.20 
0.1875 - - 21.80 
02000 - - 55.40 

0.2125 - - 158.60 
0.22 - - 234.80 

0.2375 - - 311.80 
02500 - - 343.60 

Table D. 9: Performa nce metrics for ne tworks with 
6 3 MCPN 
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Loading Train. Tin. Attnctor Ped. Failed Units 

0.0125 30.40 0.7841 #N/A 

0.0250 51.20 0.7326 #N/A 

0.0375 63.00 0.7095 #N/A 

0.0500 79.20 0.6130 #N/A 

0.0625 92.40 0.5641 #N/A 

0.0750 110.40 03091 # N/A 

0.0875 136.40 0.1711 #N/A 

0.1000 159.40 0.0288 #N/A 

0.1125 174.20 0.0144 #N/A 

0.1250 219.80 0.0090 #N/A 

0.1375 279-80 0.0090 #N/A 

0.1500 31220 0.0091 #N/A 

0.1625 370.80 0.0091 #N/A 

0.1750 39620 0.0092 #N/A 

0.1875 452.20 0.0092 #N/A 

0.2000 661.00 0.0092 #N/A 

02125 714.80 0.0092 #N/A 

0.2250 863.75 0.0091 1.00 

0.2375 942.75 0.0092 1.00 

0.2500 #N/A #N/A 1.60 

Table D. 10: Performa nce metrics for ne tworks with 
89. 25 MCPN 
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Character Data 
Loading Train. Tims Atowtor Perf. Failed Units 

00125 - - 78.60 

0.0250 - - 190.40 

0.0375 - - 254.00 

0.0500 - - 293.80 

0.0625 - - 330.60 

0.0750 - - 332.00 

0.0875 - - 345.80 

0.1000 - - 355.60 

0.1125 - - 360.20 

0.1250 - - 363.80 

0.1375 - - 369.00 

0.1500 - - 37300 

0.1625 - - 369.00 

0.1750 - - 381.80 

0.1875 - - 37880 

0.2000 - - 383.20 

0.2125 - - 38340 

0.2250 - - 382.80 

0.2375 - - 387.40 

0.2500 - - 388.00 

Table D . 11: Performa nce metrics for ne tworks with 
7.4 9 MCPN 

Loading Train. Tim. Attractor Perf. Failed Units 

0.0125 127.80 0.0921 - 
0.0250 403.00 0.0121 1.00 

0.0375 538.50 0.0140 2.00 

0.0500 - - 4.00 

0.0625 - - 8.60 

0.0750 - - 16.20 

0.0875 - - 23.80 

0.1000 - - 4280 

0.1125 - - 66.40 

0.1250 - - 114.60 

0.1375 - - 139.80 

0.1500 - - 173.00 

0.1625 - - 198,20 

0.1750 - - 211.20 

0.1875 - - 224.40 

0.2000 - - 236.20 

0.2125 - - 243.00 

0.2250 - - 249.20 

0.2375 - - 253.00 

0.2500 - - 260.40 

Table D . 13: Performa nce metrics for ne tworks with 
39. 96 MCPN 

Loading Train. Tons Atascar Perl Failed Units 

0.0125 - - 3.20 

0.0250 - - 1460 

0.0375 - - 33.20 

0.0500 - - 75.20 

0.0625 - - 107.40 

0.0750 - - 163.00 

0.0875 - - 208.80 

0.1000 - - 237.20 

0.1125 - - 252.60 

0.1250 - - 269.40 

0.1375 - - 271.20 

0.1500 - - 284.00 

0.1625 - - 289.80 

0.1750 - - 297.00 

01975 - - 295.40 
02000 - - 307.60 

0.2125 - - 30920 

0.2250 - - 313.00 

0.2375 - 318.60 

0.2500 320.80 

Table D 
. 
12: Performa nce metrics for ne tworks with 

21.0 9 MCPN 

Loading Tnm. Time Attractor Perl: Failed Units 

0.0125 81.20 0.6940 #N/A 
0.0250 243.20 0.3480 #N/A 
0.0375 309.60 0.0179 #N/A 
0.0500 35667 0.0135 1.50 
0.0625 687.00 0.0134 1.50 
0.0750 810.33 0.0153 2.00 
0.0875 766.50 0.0158 1.67 
0.1000 - #N/A 1.60 
0.1125 938.00 0.0158 3.25 
0.1250 - - 6.00 

0.1375 
- 1420 

0.1500 - - 21.20 
0.1625 - - 38.80 
0.1750 - - 56.60 

0.1875 - - 71.00 

02000 - - 91.00 
02125 - - 11800 
0.2250 - - 133.20 
02375 - - 156 81 
02500 - - 176.40 

Table D . 14: Performa nce metrics for ne tworks with 
63 MCPN 
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Loading Train. Tim. Attractor Perf. Failed Units 

0.0125 68.40 0.7482 #N/A 

0.0250 104.00 0.6950 #N/A 

0.0375 300.00 0.3580 #N/A 

0.0500 229.20 02246 #N/A 

0.0625 293.75 0.0181 100 

0.0750 338.50 0.0198 2.00 

0.0875 607.33 0.0156 1.50 

0.1000 587.00 0.0162 200 

0.1125 757.00 0.0157 3.33 

0.1230 100000 0.0161 3.00 

0.1375 - - 3.20 

0.1500 100000 0.0167 3 67 

0.1625 - - 2 80 

0.1750 - - 2.80 

0.1875 - - 4 80 

0.2000 - - 5.00 

0.2125 - - 1100 

0.2250 - - 15.60 

0.2375 - - 23.20 

0.2500 - - 32.80 

Table D . 15: Performa nce metrics for ne tworks with 
89.2 5 MCPN 
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Geometric Data 
Loading Train. Time Attractor Perf. Failed Units 

0.0125 - 56.20 

0.0250 - - 197.40 

0.0375 - - 328.60 

0.0500 - - 374.20 

0.0625 - - 39080 

0.0750 - - 394.60 

0.0875 - - 397.00 

0.1000 - - 399.00 

0.1125 - - 398.80 

0.1250 - - 398.60 

0.1375 - - 399.60 

0.1500 - - 40000 

0.1625 - - 400.00 

0.1750 - - 400.00 

0.1875 - - 400.00 

02000 - - 400.00 

0.2125 - - 400.00 

0.2250 - - 400.00 

0.2375 - - 400.00 

0.2500 - - 400.00 

Table D . 16: Performa nce metrics for ne tworks with 
7.4 9 MCPN 

Loading Train. Tim. Attractor Perf. Failed Unite 

0.0125 41.80 0.7741 - 

0.0250 120? 0 0.0274 - 

0.0375 16400 0.0099 - 

0.0500 392.40 0.0086 - 

0.0625 49820 0.0092 - 

0.0750 756.00 0.0092 1.00 

0.0875 91900 0.0091 1.00 

0.1000 - - 2.40 

0.1125 - - 480 

0.1250 - - 13.40 

0.1375 - - 34.60 

0.1500 - - 61.40 

0.1625 - - 106.40 

0.1750 - - 169.20 

0.1875 - - 20880 

Olf" - - 24340 

0.2125 - - 271.80 

0.2250 - - 301.00 

0.2375 - - 324.20 

0.2500 - - 344.40 

Table D. 18: Performa nce metrics for n etworks with 
39. 96 MCPN 

Tonding 

0.0125 

0.0250 

0.0375 

0.0500 

0.0625 

0.0750 

0.0875 

0.1000 

0.1125 

0.1250 

0.1375 

01500 

0.1625 

0.1750 

0.1875 

02000 

0.2125 

02250 

0.2375 

0.2500 

Tnm. Tines 

10620 

2'»1.50 

Att utor Pal: 

0.01 X19 

0.0080 

Failed Units 

2.00 

3.40 

15.60 

4380 

126.20 

221.40 

272.00 

338.00 

355.60 

379.40 

38480 

389.60 

395.20 

39800 

397.80 

398.00 

399.60 

399.60 

399.80 

Table D. 17: Performance metrics for networks with 
21.09 MCPN 

Loading Train. Time Attnctor P. rf Failed Units 
0.0125 30.40 0.7948 . 

0.0250 70.20 0.7044 - 
0.0375 9000 0.5119 - 
0.0500 16540 0.0_206 . 
0.0625 163.60 0.0111 

0.0750 203 40 0.0093 

0.0875 246.80 00092 - 
0.1000 410.60 0.0097 
0.1125 390.20 0d096 

0.1250 542.20 0.0099 - 
0.1375 801.20 0.0997 - 
0.1500 742.40 0.0098 

0.1625 841.00 0.0103 1.00 

0.1750 1000.00 - 1.50 
0.1875 - - 2.00 

0 - - 3.20 

0.2125 - - SAO 

02250 - - 12.00 

02375 - 16.00 
02500 - - 29.40 

Table D. 19: Performa nce metrics for ne tworks with 
6 3 MCPN 

186 



Loading Train. Tim. Aaractor Pmt. Failed Units 

0.0125 2560 0.8094 - 

0.0250 4880 0.7386 - 
0.0375 5860 0.6970 - 
0.0500 9360 0.5592 - 
0.0625 116.20 03829 - 
0.0750 126.40 0.0860 - 
0.0875 144.00 0.0183 - 
0.1000 176.60 0.0116 - 
0.1125 23480 0.0116 - 
0.1250 279.20 0.0140 - 
0.1375 315.60 0.0098 - 
0.1500 263.80 0.0101 - 

0.1625 317.80 00102 - 
0.1750 405.80 0.0124 - 
0.1875 506.20 0.0103 - 
0.2000 480.60 0.0102 - 
0.2125 521.40 0.0105 - 
0.2250 608.60 00103 - 
0.2375 756.60 0.0107 - 

0.2500 797.00 0.0104 - 

Table D . 20: Performa nce metrics for ne tworks with 
89.2 5 MCPN 
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E. DATA TABLES - COMPENSATORY CONNECTIVITY 

This appendix contains the tables of data from which the results tables in chapter 9 

were generated. Each values represents the mean of 5 individual simulation runs. 

Network Stabilisation - Character data 

Loading MCPN 
I Attrector 

Performance 
Training 
Phases 

Storage 
Efficiency 

0.0125 7.4440 0.01 5 0.67 

0.0250 7. 'P-30 0.01 11 1.29 

0.0375 81340 0.01 19 1.84 

0.0500 8.6440 0.01 19 2.31 

0.0625 9.1000 0.02 29 2.75 

0.0750 9.5810 0.02 24 3.13 

0.0875 10 4670 0.02 32 3.34 

0.1000 10.7290 0.02 33 3.73 

0.1125 11 8370 0 02 31 3.80 

0.1250 12.3150 0.02 35 4.06 

0.1375 13.1460 0.02 39 4.18 

0.1500 14.4310 0.02 39 4.16 

0.1625 15.3130 0.02 46 4.24 

0.1750 16.0770 0.02 41 4.35 

0.1875 17.1640 0.02 52 4.37 

0.2000 17.7313 0.02 44 4.51 

0.2125 19.2920 0.02 37 4.41 

0.2250 20.3940 0.02 38 4.41 

0.2375 22.2330 0.02 48 4.27 

0.2500 22.5800 0.02 45 4.43 

Table E. 1: Perf ormance metri cs for netw orks with 
7.49 MCP N 

Attrectoe Training storage 
Loading MCPN Perfoe'tunce Pha EBicienc; 

0.0125 39.9610 0.16 00000 013 

0.0250 39.9740 0.02 0.0004 015 

0.0375 39.9860 0.01 0.0007 0.38 

0.0500 39.9660 0.01 0,0002 0.50 

0.0625 40.0290 0.02 0.0017 0.62 

0.0750 40.0410 0.02 0.0020 0.75 

0.0875 40.2060 0.02 0.0062 087 

0.1000 40.1530 0.02 0.0048 1.00 

0.1125 40.3020 0.02 0.0086 1.12 

0.1250 40.2490 0.02 0.0072 1.24 

0.1375 40.2630 0.02 0.0076 1.37 

0.1500 403300 0.02 0.0143 148 

0.1625 40.4030 0.02 0.0111 1.61 

0.1750 40.4520 0.02 0.0123 1.73 

0.1875 40.4460 0.02 0.0122 1.85 

02000 40.6430 0.02 0.0171 1.97 

0.2125 40.5870 0.02 0.0157 2.09 

0.2250 40.8960 0.02 0.0234 2.20 

0.2375 40.8080 0.02 0.0212 2.33 

0.2500 40.9320 0.02 0.0243 2.44 

Tabl e E. 3: Per formance metr ics for netwo rks with 
39.96 MCP N 

Loading MCPN 
Adnctor 

PerComunc. 
Training 

Phases 
Storage 

Efficiency 

0.0125 21.0910 0.02 1 0.24 

0.0250 21.1020 0.01 3 0.47 

0.0375 21.1760 0.01 12 0.71 

0.0500 21.1660 0.01 8 0.94 

0.0625 21.2890 0.02 18 1.17 

0.0750 21.3270 0.02 17 1.41 

0.0875 21.3950 0.02 29 1.64 

0.1000 21.4840 0.02 25 1.86 

0.1125 21.6190 0.02 21 2.08 

0.1250 21.7770 0.02 32 2.30 

0.1375 21.6850 0.02 23 2.54 

0.1500 22.0850 0.02 32 2.72 

0.1625 220875 0.02 41 2.94 

0.1750 22.2170 0.02 37 3.15 

0.1875 22.4750 0.02 42 3.34 

0.2000 22.6860 0.02 34 3.53 

02125 22.7340 0.02 41 3.74 

0.2250 23.0450 0.02 40 3.91 

0.2375 23.3590 0.02 39 4.07 

0.2500 23.5890 0.02 31 4.24 

Table E. 2: Perfo rmance metric s for netw orks with 
21.09 MCP N 

Loading MCPN Attractor Training Sung. 
PMbin ance Pluw Efficiency 

0.0125 63.0000 0.27 t 0.08 

0.0250 63.0000 0.10 1 0.16 
0.0375 63.0360 0.02 8 0.24 

0.0500 63.0260 0.02 4 0.32 

0.0625 63.0070 0.02 2 0.40 

0.0750 63.0540 0.02 t0 0.48 

0.0875 63.1010 0.02 13 0.55 

0.1000 63.1700 0.02 16 0.63 

0.1125 63.1780 0.02 17 0.71 

0.1250 63.1990 0.02 20 0.79 

0.1375 63.1650 0.02 16 0.87 

0.1500 63.1890 0.02 14 0.95 

0.1625 63.2550 0.02 23 1.03 

0.1750 63.2940 0.02 21 1.11 

0.1875 63.3990 0.02 31 1.18 

0.2000 63.3680 0.02 20 1.26 
0.2125 63.4410 0.02 24 1.34 

0.2250 63.6313 0.02 33 1.41 

0.2375 63.3788 0.02 24 1.50 

0.2500 63.5863 0.02 22 1.57 

Table E. 4: Per formance metr ics for netw orks with 
63 MCPN 
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Loading MCPN 
Attrector 

Performance 
Training 

Phases 
Storage 

Efficiency 

0.0125 892500 0.43 1 0.06 

0.0250 89.2500 0.19 1 0.11 

0.0375 89.2600 0.05 3 0.17 

0.0500 89.2560 0.02 2 0.22 

00625 891530 0 02 2 028 

0.0750 892790 0.02 7 0.34 

0.0875 89.3000 0.02 5 0.39 

0.1000 894640 0.02 17 0.45 

0.1125 892760 0.02 4 0.50 

0.1250 89.4290 0.02 17 0.56 

0.1375 892760 0.02 6 062 

0.1500 89.4050 0.02 13 0.67 

0.1625 89.4030 0.02 15 0 73 

0.1750 89.3840 0.02 10 0.78 

0.1875 89.4230 0.02 15 0.84 

0.2000 89.4860 0.02 18 0.89 

0.2125 89.5610 0.02 26 0.95 

0.2250 89.5790 0.02 27 1.00 

0.2375 89.6120 0.02 30 1.06 

0.2500 89.5600 0.02 21 1.12 

Table E. 5: Perfo rmance metric s for netwo rks with 
89.25 MCPN 
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Network Stabilisation - Geometric Data 

Loading MCPN 
Attractor 

Perfomunce 
Training 

Phases 
Storage 

Efficiency 

0.0125 7.4680 0.01 5 0.67 

0.0250 7.6780 0.01 8 1.30 

0.0375 8.0230 0.01 12 1.87 

0.0500 8.4560 0.01 13 2.37 

0.0625 8.8030 0.01 17 2.84 

0.0750 94170 0.01 16 3.19 

0.0875 9.9750 0.01 15 3.51 

0.1000 10.5450 0.01 18 3.79 

0.1125 11.0600 0.01 19 407 

0.1250 11.7930 0.01 16 4.24 

0.1375 125800 0.01 21 4.37 

0.1500 13.6280 0.01 23 4.40 

0.1625 14.0870 0.01 22 4.61 

0.1750 15.0500 0.01 20 4.65 

0.1875 15.6810 0.01 23 4.78 

0_2100 16.8050 0.01 22 4.76 

0.2125 17.9940 0.01 26 4.72 

0.2250 18.8940 0.01 22 4.76 

0.2375 195910 0.01 25 4.85 

0.2500 21.0030 0.01 28 4.76 

Table E. 6: Perf ormance metric s for netwo rks with 
7.49 MCPN 

Attractor Training Storage 
Loading MCPN Pedorrtunce Phases Efficiency 

0.0125 39.9660 0.01 2 0.13 

0.0250 39.9890 0.01 5 0.25 

0.0375 39.9880 0.01 5 0.38 

0.0500 40.0060 0.01 5 0.50 

0.0625 40.0490 0.01 8 0.62 

0.0750 40.1470 0.01 10 0.75 

0.0875 40.1140 0.01 9 0.87 

0.1000 40.1590 0.01 13 1.00 

0.1125 40.1870 0.01 it 1.12 

0.1250 40.1980 0.01 11 1.24 

0.1375 40.2610 0.01 14 1.37 

0.1500 40.2920 0.01 12 1.49 

0.1625 40.3520 0.01 18 1.61 

0.1750 40.3360 0.01 15 1.74 

0.1875 40.4490 0.01 21 1.85 

0,2000 40.4850 0.01 14 1.98 

0.2125 40.5590 0.01 19 2.10 

0.2250 40.5610 0.01 15 2.22 

0.2375 40.6910 0.01 16 2.33 

02500 40.6290 0.01 18 2.46 

Tabl e E. 8: Per formance metri cs for netwo rks with 
39.96 MCP N 

I. oaain9 MCPN 
I An-&- 

Pofomwrce 
Tnin, g 
Ph"" 

Sang. 
E1Ueimcr 

0.0125 21.1000 0.01 2 0.24 

0.0250 21.1550 0.01 7 0.47 

0.0375 212090 0.01 7 0.71 

0.0500 21.3450 0.01 10 0.94 

0.0625 21.4830 0.01 10 1.16 

0.0750 21.7250 0.01 12 1.38 

0.0875 21.8770 0.01 17 1.60 

0.1000 21.9230 0.01 IS 1.82 

0.1125 22.21-30 0.01 14 2.03 

0.1250 22.2510 0.01 13 225 

0.1375 22.6870 0.01 17 2.42 

0.1500 22.7470 0.01 13 2.64 

0.1625 22.9230 0.01 19 264 

0.1750 21.4140 0.01 17 2.99 

0.1875 23.5960 0.01 18 3.18 

0.2000 23.9750 0.01 19 3.34 

02125 24.0350 0.01 22 3.54 

02250 24.5650 0.01 18 3.66 

02375 24 8170 0.01 22 3.83 

0.2500 25.1780 0.01 23 3.97 

Table E. 7: Perfo rmance metric s for netwo rks with 
21.09 MCPN 

Lo. di. g MCP" Attr. ewr Tninina Song. 
Pmfomuec. Phew fllk6nq 

0.0125 63.0090 0.03 3 0.08 

0.0250 63.0120 0.01 3 0.16 

0.0375 63.0150 0.01 3 024 

0.0500 63.0450 0.01 6 0.32 
0.0625 63.0540 0.01 7 0.40 

0.0750 63.1050 0.01 9 0.48 

0.0875 63.0930 0.01 8 0.55 
0.1000 63.0980 0.01 7 0.63 
0.1125 63.1530 0.01 12 0.71 

0.1250 63.1630 0.01 IS 0.79 
0.1375 63.1810 0.01 11 0.87 

0.1500 63.2060 0.01 14 0.95 

0.1625 63.2610 0.01 14 1.03 

0.1750 63.2570 0.01 11 1.11 

0.1875 63.2970 0.01 17 1.18 

02000 63.3200 0.01 is 1.26 

02125 63.3300 0.01 IS 1.34 

02250 63.3460 0.01 14 1.42 

0.2375 63.4070 0.01 14 1.50 
02500 63.4310 0.01 IS 1.5$ 

Table E. 9: Perf ormance metri cs for netw orks with 
63 MCPN 
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Loading MCPN 
Attrector 

Perfo -e 

Training 
Phases 

Storage 
Efficiency 

0.0125 89.2510 0.11 1 0.06 

0.0250 89.2580 0.02 3 0.11 

0.0375 89.2570 0.01 2 0.17 

0.0500 89.2730 0.01 4 0.22 

0.0625 89.2690 0.01 3 0.28 

0.0750 893290 0.01 9 0.34 

0.0875 892960 0.01 8 0.39 

0.1000 893090 0.01 7 0 45 

0.1125 893140 0.01 8 0.50 

0.1250 89.3080 0.01 6 0.56 

0.1375 893320 0.01 10 0.62 

0.1500 893450 0.01 8 0.67 

0.1625 89.4180 0.01 16 0.73 

0.1750 89.4030 0.01 12 0.78 

0.1875 89.4040 0.01 12 0.84 

0.2000 89 4290 0.01 14 0.89 

0.2125 89.4560 0.01 13 0.95 

0.2250 89.4000 0.01 13 1.01 

0.2375 89.4470 0.01 12 1.06 

0.2500 89.4710 0.01 13 1.12 

Table E. 10: Perf ormance metri cs for netw orks with 
89.25 MCPN 
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Performance Enhancement - Character Data 
Conn. ctvIty 

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 080 0.85 0.90 0.95 

0.0125 - 0.2773 0.7105 0.7468 0.7714 0.7642 0.7730 0.7621 0.7838 0.7899 0.7845 0.7931 0.7842 0.7854 0.7990 0.7869 0.7956 0.7898 0.7911 

0.0250 0.0122 0.3054 0.6815 0.7096 0.7408 0.7514 0.7444 0.7488 0.7563 0.7753 0.7697 0.7580 0.7714 0.7688 0.7639 0.7778 0.7769 0.7771 

0.0375 0.0207 0.2205 0.6142 0.6479 0.6577 0.6753 0.6646 0.7051 0.7127 0.7387 0.7298 0.7324 0.6882 0.7113 0.7106 0.7219 0.7084 

0.0500 0.0130 0 0140 0.0357 0.3088 0.6227 0.6240 0.6705 0.6807 0.6964 0,7136 0.6976 0.6893 0.6866 0.7071 0.7160 0.7039 0.7253 0.8963 

0.0625 0.0148 0.0224 0.0243 0.2651 0.3449 0.3738 0.5666 0.5008 0.5798 0.5645 0.5454 0.5802 0.5895 0.5982 0.6176 0.6095 0.5903 

0.0750 0.0150 0.0161 0.0278 0.0748 0.2679 0.4750 0.4782 0.5264 0.5173 0.5863 0.5823 0.5567 O S771 0.6001 0.6344 0.5807 0.5921 

0.0875 0.0156 0.0212 0.0412 0.2296 0.2895 0.3402 0.3581 0.3770 0.4591 0.3772 0.3842 0.4253 0.4002 0.4240 0.4039 0.4670 

0.1000 --0.0161 00160 0.0201 0.0330 0.1123 0.2687 0.3874 0.5000 0.5823 0.4853 0.4956 0.5386 0.5268 0.5015 0.5259 0.5475 0.5403 

0.1125 --0.0153 0.0163 0.0162 0.0194 0.1216 0.1506 0.4050 0.1917 0.3076 0.3410 0.5108 0.3683 0.3589 0.4445 0.4423 0.4214 

r 0.1250 --0.0178 0.0169 0.0158 0.0164 0.0442 0.1472 0.1130 0.1530 0.1762 0.2440 0.2739 0.3418 0.2557 0259D 0.2647 0.2685 
0.1375 - 0.0176 0.0184 0.0180 0.0177 0.0691 0.1165 0.2134 0.1585 0.2257 0.2875 0.2421 0.2928 0.3063 0.3107 0.3448 

"ý 0.1500 --0.0168 0.0171 0.0169 0.0170 0.0271 0.0410 0.0439 0.1644 0.1072 0.2218 0.1814 0.1899 0.2569 0.2864 0.2443 0.2418 
0.1625 ---0.0173 0.0178 0.0180 0.0269 0.0396 0.0778 0.0832 0.3140 0.2124 0.3170 0.2098 0.2061 0.2152 0.3697 0.2541 
0.1750 ----0.0174 0.0176 0.0180 0.0251 0.0526 0.0551 0.0614 0.1825 0.2154 0.2560 0.1822 0.2465 0.2655 0.3049 
0.1875 - 0.0186 0.0182 0.0262 0,0181 0.0431 0.0404 0.0695 0.1215 0.1329 0.1575 0.1274 0.1671 0.2276 0.2160 
0.2000 --0.0181 0.0186 0.0183 0.0182 0.0272 0.0264 0.0569 0.0856 0.1557 0.1861 0.1481 0.1785 0.2426 0.2694 0.2522 
0.2125 ---0.0174 - 0.0180 0.0236 0.0399 0.0364 0.0618 0.1033 0.1488 0.1026 0.1238 0.1674 0.2203 
0.2250 ---0.0187 0.0188 0.0192 0.0242 0.0273 0.0407 0.0780 0.0730 0.1554 0.1596 0.1214 0.2374 0.2076 
0.2375 0.0196 0.0187 0.0189 0.0189 0.0187 0.0281 0.0341 0.0739 0.0973 0.1645 0.1718 0.1529 0.1944 0.2285 
0.2500 ---0.0194 - 0.0191 0.0193 0.0377 0.0460 0.0483 0.0734 0.0944 0.1275 0.1229 0.2343 

Table E. 11: Attractor performance by connectivity and loading level for networks with initial 

neighbourhoods of size 0. 

Conn. o6vity 
0.05 0.10 0.15 0.20 0.25 0.30 0.35 040 0.45 0.50 O S5 0.60 0.65 0.70 0.75 080 0 65 090 0.95 

0.0125 0.0137 0.3630 0.6950 0.7441 0.7239 0.7423 0.7615 0.7582 0.7334 0.7734 0.7647 0.7619 0.7601 0.7541 0.7691 0.7716 0.7686 0.7815 0.7718 
0.0250 0.0127 0.0656 0.3471 0.6137 0.6747 0.7159 0.7195 0.7173 0.7318 0.7164 0.7299 0.7453 0.7568 0.7383 0.7468 0.7455 0.7431 0.7482 0.7516 
0.0375 0.0131 0.0131 0.0555 0.2289 0.5931 0.6148 0,6669 0.6457 0.6540 0.6935 0.6581 0.6838 0.8790 0.7020 0.6987 0.8694 0.6957 0.6935 0.7097 
0.0500 0.0139 0.0138 0.0308 0.1463 0.2067 0.4476 0.5408 0.5438 0.6187 0.6313 0.6514 0.6738 0.6531 0.6570 0.6847 0.7015 0.6701 0.6662 0.6758 
0.0625 0.0149 0.0148 0.0148 0.0653 0.1018 0.2304 0.3045 0.3672 0.4037 0.4934 0.5462 0.5247 0.5572 0.5656 0.5429 0.5743 0.5656 0.5777 0.5661 
0.0750 0.0160 0.0160 0.0193 0.0219 0.0928 0.1360 0.1999 0.2847 0.3227 0.4558 0.4015 0.4349 0.5088 0.5747 0.5733 0.5653 0.5679 0.6038 0.5834 
0.0875 0.0158 0.0160 0.0158 0.0256 0.0405 0.1094 0.1677 0.2302 0.3478 0.3930 0.4029 0.3921 0.3371 0.3997 0.4187 0.3983 0.4317 0.4544 0.3987 
0.1000 0.0159 0.0160 0.0162 0.0229 0.0559 0.1284 0.1910 0.2202 0.3040 0.3629 0.4622 0.4881 0.4669 0.5153 0.5064 0.4905 0.5242 0.5310 0.5108 
0.1125 0.0164 0.0183 0.0163 0.0162 0.0263 0.0700 0.1291 0.1674 0.1967 0.2205 0.2041 0.2769 0.3193 0.3289 0.3692 0.4091 0.3607 0.3794 0.4069 
0.1250 0.0168 0.0187 0.0168 0.0166 0.0300 0.0324 0.1009 0.1284 0.2020 0.1807 0.2302 0.2193 0.2310 0.2278 0.2410 0.2338 0.2352 0.2758 0.2493 
0.1375 0.0175 0.0176 0.0177 0.0176 0.0212 0.0248 0.0818 0.1137 0.1316 0.1439 0.1671 0.1835 0.2338 0.1783 0.2231 0.1944 0.2414 0.2498 0.2647 
0.1500 0.0196 0.0175 0.0177 0.0176 0.0177 0.0283 0.0344 0.0716 0.1573 0.1347 0.1191 0.1228 0.2687 0.2010 0.2244 0.2143 0.2776 0.3021 0.3033 
0.1625 - 0.0178 0.0179 0.0181 0.0179 0.0218 0.0216 0.0621 0.1277 0.1464 0.1416 0.2078 0.2094 0.2644 0.2561 0.2822 0.2798 0.2652 0.3144 
0,1750 - 0.0183 0.0181 0.0180 0.0182 0.0179 0.0182 0.0558 0.0962 0.1535 0.1529 0.1808 0.1800 0.1751 0.2387 0.2330 0.1982 0.2210 0.2192 
0.1875 - 0.0184 0.0185 0.0183 0.0185 0.0185 0.0220 0.0466 0.0562 0.0757 0.1119 0.1496 0.1311 0.1664 0.1648 0.1824 0.2001 0.1960 0.1842 
0.2000 - 0.0185 0.0185 0.0184 0.0185 0.0185 0.0223 0.0428 0.0596 0.0769 0.1193 0.1218 0.1838 0.1829 0.1868 0.1870 0.1907 0.1934 0.2379 
0.2125 - 0.0182 0.0184 0.0182 0.0186 0.0183 0.0184 0.0286 0.0587 0.0670 0.1071 0.1063 0.1311 0.1406 0.1726 0.1856 0.1783 0.1872 0.2138 
0.2250 0.0188 0.0191 0.0188 0.0189 0.0188 0.0187 0.0263 0.0335 0.0509 0.0652 0.1257 0.1179 0.1425 0.1696 0.1668 0.1277 0.2080 0.1876 
0.2375 - 0.0193 0.0189 0.0190 0.0191 0.0190 0.0189 0.0224 0.0387 0.0546 0.0758 0.1174 0.1254 0.1354 0.1523 0.1893 0.1976 0.2063 0.2290 
0.2500 0.0195 0.0192 0.0194 0.0192 0.0191 0.0192 0.0192 0.0229 0.0600 0.0702 0.0981 0.1044 0.1197 0.1152 0.1782 0.1512 0.1776 0.1609 

Table E. 12: Attractor performance by connectivity and loading level for networks with initial 

neighbourhoods of size 1. 

Conrnetvlty 
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 050 0.55 060 06S 0.70 0 75 0 80 0.85 090 6§8 

0.0125 
0.0250 
0.0375 
0.0500 
0.0625 
0.0750 
0.0875 
0.1000 
0.1125 
0.1250 
0.1375 
0.1500 
0.1625 
0.1750 
0.1875 
0.2000 
0.2125 
0.2250 
0.2375 
0.2500 

- "v " """""""" "aV. / /I V. I1W V. IIýV Y. //[/ 

- 0.0350 0.3088 0.5669 0.6508 0.6996 0.7074 0.7048 0.7176 0.7431 0.7455 0.7605 0.7455 0.7501 0.7620 0.7635 0.7446 0.7698 0.7509 
0.0131 0.1015 0.3043 0.4345 0.5936 0.6483 0.6571 0.6687 0.6691 0.6655 0.6863 0.8936 0.6842 0.7080 0.7167 0.6999 0.7036 0.6841 
0.0139 0.0489 0.1228 0.2564 0.4256 0.5451 0.5757 0.6647 0,6530 0.6790 0.7107 0.7017 0.6839 0.7060 0.7060 0.8912 0.6840 0.7002 
0.0147 0.0328 0.1024 0.2115 0.2768 0.3316 0.4243 0.3937 0.4162 0.4706 0.4820 0.4800 0.4670 0.4732 0.5100 0.5033 0.4848 0.5097 

- 0.0160 0.0192 0.0515 0.1377 0.2202 0.2048 0.3130 0.4163 0.4095 0.4585 0.5165 0.6613 0.5465 0.5488 0.5384 0.5566 0.5817 0.6013 
0.0160 0.0160 0.0368 0.1120 0.1977 0.1654 0.2590 0.2509 0.3318 0.3384 0.3984 0.4285 0.3484 0.3863 0.3690 0.3859 0.4222 0.3811 
0.0160 0.0160 0.0292 0.0707 0.1302 0.2016 0.2393 0.3053 0.3939 0.3735 0.4400 0.4500 0.4713 0.4522 0.5174 0.4660 0.5179 0.4843 
0.0164 0.0163 0.0163 0.0261 0.0682 0.1129 0.1502 0.2140 0.2365 0.2624 0.3166 0.3292 0.2785 0.3328 0.4023 0.3669 0.3677 0.3849 
0.0167 0.0167 0.0168 0.0269 0.0793 0.1200 0.1567 0.2095 0.2255 0.2347 0.2549 0.2530 0.2929 0.2782 0.2614 0.3010 0.2683 0.2862 
0.0178 0.0178 0.0175 0.0281 0.0347 0.1043 0.1248 0.1573 0.1810 0.1674 0.2145 0.2450 0.2475 0.2153 0.2320 0.2996 0.2491 0.2665 
0.0176 0.0175 0.0175 0.0209 0.0385 0.0558 0.1194 0.1438 0.1487 0.2004 0.2069 0.2395 0.2614 0.2925 0.2869 0.2496 0.2888 0.2608 
0.0178 0.0178 0.0180 0.0210 0.0316 0.0457 0.0711 0.0999 0.1261 0.1743 0.1629 0.2279 0.2122 0.2596 0.2947 0.2923 0.2610 0.3004 
0.0180 0.0181 0.0181 0.0181 0.0182 0.0455 0.0792 0.1376 0.1415 0.1270 0.1567 0.1694 0.2159 0.1956 0.2354 0.1953 0.1878 0.1910 
0.0183 0.0186 0.0186 0.0164 0.0185 0.0369 0.0607 0,1315 0.0865 0.1294 0.1612 0.1876 0.1758 0.1620 0.2000 0.1983 0.1872 0.2301 
0.0183 0.0185 0.0185 0.0185 0.0183 0.0295 0.0568 0.0933 0.1313 0.1289 0.1424 0.1438 0.1632 0.2228 0.2339 0.2316 0.2337 0.1975 
0.0183 0.0185 0.0185 0.0188 0.0185 0.0362 0.0541 0.0643 0.1181 0.1017 0.1522 0.1349 0.1474 0.1792 0.1566 0.1942 0.1968 0.2177 
0.0187 0.0189 0.0190 0.0190 0.0188 0.0226 0.0224 0.0787 0.0721 0.0954 0.1466 0.1053 0.1419 0.1983 0.1727 0.1698 0.1719 0.1736 
0.0192 0.0189 0.0189 0.0189 0.0190 0.0191 0.0225 0.0587 0.0762 0.1093 0.1470 0.1150 0.1749 0.1772 0.1627 0.1676 0.1923 0.1870 
0.0192 0.0195 0.0192 0.0194 0.0193 0.0192 00191 0.0375 0.0698 0.0878 0.1163 0.1126 0.1184 0.1342 0.1135 0.1440 0.1333 0.1790 

Table E. 12: Attractor performance by connectivity and loading level for networks with initial 
neighbourhoods of size 2. 
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Connectivity 
0.05 0.10 0.15 0 20 0.25 0.30 0 35 0.40 0.45 0.50 0.55 060 0 65 0 70 0.75 080 085 090 0.95 

0.0125 - 0.1202 0.4118 0.6533 0.7106 0.7558 0.7549 0.7737 0.7794 0.7878 0.7905 0.8050 0.8035 0.8003 0.7973 0.7976 0.8015 0.7914 0.7947 
0.0250 - 0.0164 0.1497 0.3681 0.5878 0.6245 0.7255 0.7141 0.7360 0.7428 0.7486 0.7423 0.7491 0.7473 0.7555 0.7535 0.7375 0.7394 0.7532 
0.0375 0.0131 0.0736 0.1777 0.3525 0.5906 0.5957 0.6626 0.6742 0.6911 0.6761 0.7032 0.6773 0.7004 0.7001 0.6981 0.7064 0.7214 0.7147 
0.0500 - 0.0139 0.0337 0.1207 0.2407 0.3978 0.5304 0.5478 0.6190 0.6666 0.6916 0.6828 0.6986 0.6945 0.7131 0.7047 0.6857 0.7315 0.6998 
0.0625 - 0.0148 0.0299 0.1058 0.1679 0.2566 0.3315 0.3263 0.4212 0.4486 0.5271 0.4946 0.4723 0.4799 0.4796 0.5147 0.5650 0.5834 0.5760 
0.0750 - 0.0147 0.0218 0.0312 0.1151 0.2139 0.2865 0.3550 0.4561 0.4590 0.4622 05054 0.5179 0.5203 0.5066 0.5176 0.5259 0.5382 0.5617 
0.0875 --0.0193 0.0341 0.0993 0.1687 0.2215 0.3107 0.3126 0.3684 0.3735 0.3495 0.3693 0.4003 0.3603 0.4009 0.4326 0.3985 0.3956 
0.1000 - 0.0152 0.0161 0.0192 0.0803 0.1365 0.1882 0.2589 0.3029 0.3670 0.4405 0.4371 0.4404 0.4932 0.5249 0.5180 0.4996 0.5156 0.5270 
0.1125 0.0164 0.0195 0.0472 0.0724 0.1222 0.1574 0.2044 0.2104 0.2498 0.2592 0.3017 0.3479 0.3408 0.2978 0.3719 0.3800 0.3551 
0.1250 --0.0167 0.0187 0.0395 0.0769 0.1418 0.1597 0.1680 0.2185 0.1887 0.2237 0.2446 0.2821 0.2529 0.2845 0.2736 0.3168 0.2838 
0.1375 --0.0177 0.0178 0.0310 0.0554 0.1120 0.1351 0.1674 0.1966 0.2340 0.2024 0.2113 0.2386 0.2633 0.2700 0.2942 0.2885 0.3205 
0.1500 0.0176 0.0214 0.0311 0.0545 0.0624 0.1130 0.1436 0.1689 0.2305 0.2288 0.2370 0.2313 0.2385 0.2724 0.3041 0.3314 0.2989 
0.1625 - 0.0179 0.0180 0.0178 0.0447 0.0649 0.1057 0.0941 0.1244 0.1876 0.1734 0.2221 0.2133 0.2393 0.2481 0.2424 0.2703 0.3016 
0.1750 - 0.0180 0.0181 0.0218 0.0220 0.0427 0.0874 0.1109 0.1236 0.1669 0.1688 0.2187 0.1929 0.2040 0.1871 0.1953 0.2320 0.2399 
0.1875 --0.0186 0.0186 0.0184 0.0222 0.0501 0.0780 0.1138 0.1105 0.1538 0.1502 0.1765 0.1592 0.2025 0.1861 0.2194 0.1691 0.2241 
0.2000 0.0183 0.0184 0.0185 0.0185 0.0496 0.0493 0.0838 0.1281 0.1283 0.1601 0.1691 0.1887 0.1531 0.1763 0.2349 0.1770 0.2502 
0.2125 0.0185 0.0184 0.0183 0.0185 0.0291 0.0611 0.0936 0.1058 0.1196 0.1341 0.1662 0.1508 0.1587 0.1629 0.1478 0.1884 0.1870 
0.2250 - 0.0190 0.0191 0.0190 0.0190 0.0262 0.0446 0.0681 0.0985 0.1159 0.0938 0.1433 0.1361 0.1602 0.1449 0.1832 0.1903 0.2109 
0.2375 - 0.0191 0.0189 0.0188 0.0189 0.0227 0.0302 0.0553 0.0784 0.0997 0.1115 0.1307 0.1743 0.1681 0.1887 0.2220 0.1848 0.2284 
0.2500 - 0.0194 0.0191 0.0194 0.0194 0.0193 0.0379 0.0450 0.0663 0.0901 0.1012 0.1344 0.1065 0.1451 0.1364 0.1393 0.1686 0.1438 

Table E. 13: Attractor performance by connectivity and loading level for networks with initial 
neighbourhoods of size 3- 

Connectivity 
005 0 10 0.15 0.20 0.25 0.30 0.35 040 0.45 050 0 55 0.60 0 65 0.70 0.75 0.80 0.85 090 0 95 

0.0125 --0.4946 0.6064 0.7118 0.7130 0.7412 0.7379 0.7347 0.7485 0.7483 0.7420 0.7595 0.7483 0.7514 0.7504 0,7547 0.7357 
0.0250 - 0.2024 0.4715 0.6466 0.6483 0.7061 0.7418 0.7438 0.7259 0.7143 0.7456 0.7523 0.7545 0.7411 0.7458 0.7324 0.7491 
0.0375 - 0.1636 0.3335 0.4982 0.6031 0.6817 0.6817 0.6989 0.7185 0,7090 0.7269 0.7126 0.6956 0.7220 0.7022 0.6896 0.7079 
0.0500 ---0.0680 0.2219 0.2778 0.4977 0.5492 0.5568 0.6232 0.6763 0.6448 0.6776 0.6674 0.6707 0.6965 0,6624 0.7089 0.6834 
0.0625 --0.0442 0.1882 0.2557 0.3807 0.4377 0.4545 0.4595 0.4741 0.5137 0.5126 0.5267 0.5212 0.5284 0.5313 0.5578 0.5818 
0.0750 --0.0413 0.1459 0.1949 0.2620 0.3537 0.4169 0.4652 0.4791 0.4966 0.5035 0.5465 0.5529 0.5257 0.5628 0.5528 0.5717 
0.0875 --0.0366 0.0763 0.1080 0.2140 0.2946 0.2906 0.3559 0.3811 0.3524 0.4301 0.3800 0.4191 0.3793 0.4146 0.3987 0.4263 
0.1000 ---0.0226 0.0562 0.0810 0.1927 0.2745 0.3815 0.3871 0.4223 0.4911 0.4965 0.4918 0.4979 0.5556 0.5382 0.5308 0.4994 
0.1125 --0.0163 0.0331 0.0898 0.1713 0.2080 0.2572 0.2746 0.2223 0.3422 0.3210 0.3163 0.3632 0.4241 0.3890 0.3353 0.4128 
0.1250 0.0167 0.0260 0.0775 0.1182 0.1422 0.2152 0.2485 0.1995 0.2095 0.2446 0.2525 0.2360 0.2809 0.2486 0.2793 0.2665 
0.1375 0.0175 0.0176 0.0278 0.0926 0.1013 0.1721 0.1831 0.1876 0.2259 0.2415 0,2696 0.2648 0,2810 0.2798 0.2652 0.2907 
0.1500 ---0.0177 0.0207 0.0511 0.0613 0.1006 0.1559 0.1834 0.1947 0.2117 0.2527 0.2467 0.2810 0.2718 0.2954 0.3143 0.2731 
0.1625 - 0.0177 0.0177 0.0315 0.0786 0.0960 Q1748 0.1367 0.1868 0.2507 0.2592 0.2175 0.2985 0.2714 0.2699 0.3289 0.2715 
0.1750 --0.0181 0.0180 0.0327 0.0492 0.0821 0.1338 0.1450 0.2011 0,1950 0.1859 0,1564 0.1647 0.1642 0.2277 0.1793 0.1885 
0.1875 --0.0186 0.0184 0.0260 0.0364 0.0637 0.0911 0.1227 0.1127 0,1471 0.1468 0.1631 0.1691 0.2170 0.2251 0.2076 0.2324 
0.2000 ---0.0185 0.0184 0.0220 0.0185 0.0558 0.0796 0.1136 0.1183 a1385 0.1739 0.1532 0.1855 0.2035 0.2518 0.2344 0.2334 
0.2125 ---0.0184 0.0184 0.0186 0.0219 0.0433 0.0899 0.1276 0.1271 0.1429 0.1462 0.1576 0.1627 0.1577 0.1671 0,1531 0.2173 
0.2250 --0.0189 0.0189 0.0189 0.0189 0.0481 0.0925 0.0924 0.1279 0.1375 0.1428 0.1238 0.1387 0,1413 0.1592 0.1760 0.1822 
0.2375 ---0.0189 0.0191 0.0190 0.0228 0.0303 0.0647 0.0900 0.1157 0.1309 0.0947 0.1256 0.1408 0.1802 0.1684 0,1937 0.1838 
0.2500 --0.0191 0.0192 0.0193 0.0194 0.0304 0.0376 0.0872 0.0869 0,1172 0.1319 0.1356 0.1323 0.1634 0.1503 0.1692 0,1892 

Table E. 14: Attractor performance by connectivity and loading level for networks with initial 
neighbourhoods of size 4. 

Connectivity 
0.05 010 0.15 0 20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 060 0.65 0 70 0 75 060 0 85 0 90 093 

0.0125 ---0.5032 0.6305 0.7119 0.7430 0.7507 0.7722 0.7714 0.7619 0.7559 0.768 00,7633 0.7649 0.7591 0.7722 0.7722 
0.0250 ---0.2353 0.5273 0.6338 0.7158 0.7308 0.7505 0.7471 07359 0.7434 0.7573 0.7490 0.7596 0.7520 0.7545 0.7487 
0.0375 ---0.1498 0.3501 0.5720 0.6350 0.6680 0 6866 0.6847 0.6799 0.6841 0.6899 0.6993 0.7099 0.6972 0.6897 0.7076 
0.0500 --0.0747 0.1884 0.4329 0.5510 0.5443 0.5852 0.6505 0.6556 0.6800 0.6628 0.6863 0.8890 0.6850 0.6958 0.7089 
0.0625 --0.0402 0.1391 0.2873 0.3966 0.4113 0.4575 0.5220 0.5138 0.5196 0.5821 0.4887 0.6741 0.5696 0.6474 0.5593 
0.0750 --0.0409 0.1138 0.2486 0.2966 0.3843 0.4283 0.4851 0.5091 0.5210 0.5318 0.5812 0.6419 0,6885 0.6331 0.5826 
0.0875 - 0.0314 0.1008 0.1473 0.2181 0.2707 0.3383 0.3748 0.4294 0.4494 0.4078 0.4055 0.4085 0.4254 0.4496 0.4237 
0.1000 --0.0162 0.0769 0.1242 0.1887 0.2681 0.3235 0.4244 0.4565 0.4733 0.4838 0.4883 0.5383 0.4888 0.5271 0.6261 
0.1125 --0.0194 0.0678 0.1198 0.1701 0.1853 0.2396 0.2734 0.3423 0.3288 0.3445 0.3628 0.3533 0.3610 0.4341 0.4407 
0.1250 0.0167 0.0456 0.1137 0.1688 0.1707 0.1990 0.2111 0.2133 0.2427 02611 0.2436 0.2255 0.2556 0.2569 0.3058 
0.1375 0.0176 0.0347 0.0926 0.1257 0.1486 0.1821 0.2203 0.2533 0.2534 0.2554 0.2800 0.2911 0.2350 0.3151 0.2987 

-' 0.1500 ---0.0209 0.0212 0.0776 0.1134 0.1518 0.1626 0.1669 0.1770 0.2291 0.1865 0.2678 0.2421 0.2536 0.2403 0.2794 
0.1625 - 0.0178 0.0179 0.0320 0.0849 0.1535 0.1398 0.1831 0.2520 0.2554 0.2419 0.2774 0.2863 0.2794 0.3022 0.2790 
0.1750 - 0.0181 0.0286 0.0318 0.0804 0.1050 0.1125 0.1704 0.1787 0.1710 0.1759 0.2064 0.2106 0.2204 0.2356 0.2199 
0.1675 ----0.0185 0.0184 0.0291 0.0324 0.0834 0.1324 0.1274 0.1399 0.1768 0.1802 0.1921 0.2160 0.2306 0.2472 0.2337 
0.2000 ---0.0186 0.0182 0.0189 0.0489 0.0876 0.1037 0.1291 0.1635 0.1397 0.2170 0.1533 0.1744 0.2052 0.1936 0.1621 
0.2125 --0.0186 0.0185 0.0256 0.0575 0.0805 0.1005 0.1320 0.1304 0.1573 0.1771 0.1727 0.1689 0.1843 0.1641 0.1522 
0.2250 --0.0188 0.0189 0.0262 0.0369 0.0509 0.0888 0.0953 0.1375 0.1277 0.1341 0.0748 0.1412 0.1157 0.1536 0.1466 
0.2375 --0.0191 0.0188 0.0261 0.0264 0.0616 0.0995 0.0990 0.1536 0.1385 0,1588 0.1906 0.1841 0.1606 0.1629 0.1617 
0.2500 - 0.0192 0.0193 0.0190 0.0266 0.0451 0.0762 0.0975 0.1015 0.1131 01392 0.1642 0.1350 0.1886 a1440 0.1145 

Table E. 15: Attractor performance by connectivity and loading level for networks with initial 
neighbourhoods of size S. 
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Performance Enhancement - Geometric Data 

Connectvlty 
0.05 0.10 015 0.20 0.25 0.30 0.35 0.40 0 45 0.50 0 55 0.60 0 65 0.70 0.75 0.80 0.85 090 095 

0.0125 0.0210 0.7555 0.7887 0.7883 0.8038 0.7957 0.8117 0.7942 0.8089 0.8108 0.8020 0.7894 0.8035 0.8157 0.7787 0.7887 0.8003 0.7882 0.7886 
0.0250 0.0075 0.3048 0.7269 0.7301 0.7629 0.7719 0.7649 0.7427 0.7874 0.7709 0.7850 0.7824 0.7863 0.7877 0.7928 0.7876 0.7663 0.7880 0.7955 
0.0375 0.0081 0.0084 0.4769 0 6808 0.6871 0.7332 0.7439 0.7269 0.7392 0.7318 0.7507 0.7649 0.7560 0.7571 0.7618 0.7728 0.7633 0.7509 0.7580 
0.0500 - 0.0068 0.0125 0.3192 0.6271 0.6508 0.6929 0.7074 0.7105 0.7088 0.7128 0.6654 0.6825 0.7229 0.6929 0.7163 0.7117 0.7188 0.7059 
0.0625 0.0094 0.0093 0.1156 0.5611 0.6315 0.6278 0.6245 0.6588 0.6616 0.6798 0.6840 0.6207 0.6892 0.7189 0.6799 0.6753 0.7029 0.6829 
0.0750 - 0.0093 0.0094 0.0203 0.2384 0.5089 0.6110 0.5889 0.5992 0.6408 0.6431 0.5885 0.6316 0.6122 0.6397 0.6413 0.6314 0.6602 0.6427 
0.0875 - 0.0093 0.0092 0.0092 0.0579 0.3140 0.4390 0.5427 0.5390 0.5615 0.5581 0.5180 0.5414 0.5855 0.5848 0.5932 0.6009 0.5766 0.5577 
0.1000 - 0.0095 0.0096 0.0115 0.0231 0.1486 0.3822 0.4895 0.5061 0.4867 0.5399 0.5421 0.5404 0.5386 0.5248 0.5691 0.5634 0.5021 0.5517 

p 0.1125 1-0.0099 0.0098 0.0098 0.0194 0.0395 0.1738 0.4451 0.4280 0.4495 0.4958 0.4751 0.5128 0.4987 0.5175 0.5189 0.5355 0.5036 0.5016 
0.1250 0.0099 0.0099 0.0119 0.0367 0.1523 0.2825 Q3367 0.4299 0.4945 0.4624 0.4806 0.4852 0.4769 0.4823 0.5103 0.5059 0.4777 
0.1375 0.0096 0.0098 0.0098 0.0157 0.0858 0.2212 Q3038 0.3966 0.4153 0.4104 0.4425 0.4703 0.4462 0.4661 0.4767 0.4435 0.4815 
0.1500 - 0.0098 0.0099 0.0099 0.0139 0.0311 0.1711 0.1752 0.3510 0.3459 0.3434 0.3707 0.4201 0.3789 0.4552 0.4165 0.4076 0.4547 
0.1625 --0.0102 0.0102 0.0102 0.0142 0.0263 0.0540 0.1885 0.2720 0.2953 0.4006 0.3569 0.3889 0.3832 0.3927 0.4054 0.4292 0.4055 
0.1750 - 0.0100 0.0101 0.0102 0.0102 0.0203 0.0606 Q1014 0.2343 0.2306 0.3268 0.3751 0.3444 0.3792 0.3745 0.3649 0.3764 0.3821 
0.1875 --0.0103 0.0102 0.0103 0.0123 0.0341 0.1023 0.1857 0.2057 0.2597 0.2996 0.3022 0.3550 0.3291 0.3524 0.3522 0.3537 
0.2000 --0.0102 0.0102 0.0103 0.0122 0.0281 0.0681 0.1130 0.1709 0.1925 0.2622 0.3275 0.2948 0.3259 0.3400 0.3249 0.3182 
0.2125 ---0.0106 0.0105 0.0104 0.0105 0.0147 0.0210 0.1125 0.1285 0.2082 0.2848 0.2715 0.3072 0.3180 0.3139 0.3364 0.3268 
0.2250 ---0.0103 0.0103 0.0103 0.0103 0.0124 0.0642 0.1112 0.1513 0.1899 0.2054 0.2519 0.3145 0.2584 0.2807 0.3172 0.3210 
0.2375 - 0.0105 0.0105 0.0105 0.0105 0.0165 0.0266 0.0894 0.1479 0.1806 0.1765 0.2582 0.2636 0.2553 0.3172 0.2964 0.3017 
0.2500 --0.0104 0.0105 0.0105 0.0105 0.0125 0.0208 0.0428 0.1303 0.1730 0.1978 0.2108 0.2258 0.2725 0.2587 0.2902 0.2987 

Table E. 16: Attractor performance by connectivity and loading level for networks with initial 

neighbourhoods of size 0. 

Connectivity 
0.05 0.10 0.15 0 20 0 25 0.30 0.35 0.40 0.45 050 065 060 06S 0.70 0.75 0.80 O es 090 0 95 

0.0125 0.0443 0.6172 0.7659 0.7583 0.7606 0.7612 0.7735 0.7728 0.7750 0.7782 0.7680 0.7659 0.7856 0.7825 0.7800 0.7760 0.7814 0.7725 0.7784 
0.0250 0.0078 0.1634 0.5539 0.7124 0.7233 0.7293 0.7505 0.7429 0.7341 0.7641 0.7599 0.7710 0.7666 0.7507 0.7594 0.7519 0.7651 0.7642 0.7667 
0.0375 0.0084 0.0509 0.2221 0.4590 0.6065 0.6831 0.6907 0.6917 0.7115 0.7098 0.7397 0.7443 0.7384 0.7355 0.7515 0.7253 0.7381 0.7082 0.7329 
0.0500 0.0088 0.0158 0.0804 0.2786 0.4527 0.5982 0.5932 0.6210 0.6200 0.6487 0.6538 0.6884 0.6757 06840 0.6695 0.6667 0.6776 0.8880 0.6909 
0.0625 0.0093 0.0094 0.0569 0.1306 0.2435 0.4260 0.5184 0.5682 0.6153 0.6319 0.6080 0.6243 0.6366 0.6501 0.6681 0.6353 0.6717 0.6796 0.6698 
0.0750 0.0094 0.0094 0.0243 0.1014 0.2477 0.3027 0.4326 0.5100 0.4990 0.5594 0.5310 0.5490 0.6059 0.5975 0.5885 0.5238 0.5813 0.6003 0.5784 
0.0875 0.0092 0.0092 0.0149 0.0347 0.1038 0.1710 0.3406 0.4478 0.3814 0.4598 0.4755 0.5170 0.5292 0.5157 0.5262 0.5844 0.5722 0.5792 0.5429 
0.1000 0.0096 0.0096 0.0115 0.0341 0.0913 0.1838 0.2654 0.3410 0.4078 0.4583 0.4733 0.4829 0.4718 04928 0.5308 0.5432 0.5324 0.5309 0.5228 

a 0.1125 0.0098 0.0098 0.0098 0.0175 0.0816 0.1174 0.2417 0.2711 0.3770 0.4270 0.3997 0.4185 0.4748 0.4547 0.4428 0.4851 0.4759 0.5023 0.5175 
r 0.1250 0.0098 0.0099 0.0099 0.0158 0.0397 0.1179 0.1813 0.2002 0.2802 0.3203 0.3688 0.3940 0.4150 0.4101 0.4553 0.4686 0.4531 0.5109 0.4865 

0.1375 0.0098 0.0098 0.0096 0.0156 0.0482 0.0759 0.1483 0.1753 0.2235 0.2654 0.3044 0.3414 0.3526 03605 0.3774 0.3601 0.4115 0.3862 0.4021 
0.1500 0.0097 0.0099 0.0099 0.0099 0.0195 0.0839 0.1162 0.1645 0.2067 0.2603 0.2319 0.3142 0.3149 0.3283 0.3990 0.3872 0.3695 0.4106 0.4230 
0.1625 0.0102 0.0102 0.0102 0.0122 0.0162 0.0340 0.0976 0.1487 0.1735 0.1901 0.2711 0.2439 0.3011 0.3096 0.3364 0.3466 0.3824 0.3448 0.3694 
0.1750 0.0102 0.0102 0.0102 0.0102 0.0202 0.0460 0.0975 0.1337 0.1234 0.1846 0.2244 0.2303 0.2324 0.3390 0.3231 0.3247 0.3139 0.3176 0.3531 
0.1875 . 0.0102 0.0102 0.0102 0.0102 0.0183 0.0514 0.0899 0.1226 0.1750 0.1898 0.2357 0.2642 0.2764 0.2964 0.2695 0.3031 0.3390 0.3125 
0.2000 0.0102 0.0102 0.0102 0.0102 0.0102 0.0183 0.0787 0.1008 0.1396 0.1762 0.1931 0.2568 0,2406 0.2884 0.2875 0.3012 0.3038 0.3332 
0.2125 - 0.0105 0.0105 0.0105 0.0105 0.0168 0.0513 0.0694 0.0842 0.1505 0.1243 0.2307 0.2226 0.2445 0.2417 0.2822 0.2952 0.2903 0.2950 
0.2250 - 0.0103 0.0103 0.0103 0.0103 0.0145 0.0185 0.0601 0.0930 0.1040 0.1356 0.1364 0.1694 0.2152 0.2096 0.2444 0.2763 0.2912 0.3022 
0.2375 0.0105 0.0105 0.0105 0.0105 0.0105 0.0186 0.0479 0.0917 0.1025 0.1328 0.1270 0.1856 0.1767 0.2295 0.2669 0.2500 0.2715 0.2540 
0.2500 0.0104 0.0105 0.0105 0.0105 0.0105 0.0125 0.0349 0.0507 0.1039 0.1164 0.1402 0.1675 01706 0.2004 0.2089 0.1984 0.2484 0.2635 

Table E. 17: Attractor performance by connectivity and loading level for networks with initial 
neighbourhoods of size 1. 

Connectivity 
005 010 015 0.20 0 25 0.30 0.35 040 0 45 0.50 0 55 060 0 65 0.70 0 75 060 0 65 090 095 

0.0125 
0.0250 
0.0373 
0.0500 
0.0625 
0.0750 
0.0875 
0.1000 
0.1125 
0.1250 
0.1375 
0.1500 
0.1625 
0.1750 
0.1875 
0.2000 
0.2125 
0.2250 
0.2375 
0.2500 

. ýý ý "ý ý. "^ý "^^v. iaia u. ioa1 U. fwf U. 1004 U. b1W U. (UW 0.7503 
0.0798 0.2531 0.5536 0.6398 0.7222 0.7716 0.7366 0.7528 0.7654 0.7612 0.7663 0.7609 0.7621 0.7830 0.7465 0.7787 0.7895 0.7813 

- 0.0325 0.2135 0.2748 0.4302 0.4193 0.5801 0.5854 0.7097 0.7547 0.6957 0.7429 0.7421 0.7578 0.7462 0.7424 0.7698 0.7254 0.7120 
0.0085 0.1300 0.2340 0.2892 0.3988 0.4815 0.4939 0.5591 0.6429 0.6003 0.5329 0.6329 0.5681 0.7037 0.6258 0.6777 0.7057 0.6872 
0.0092 0.0976 0.1413 0.1231 0.3201 0.2122 0.3842 0 4238 0.4670 0.5199 0.4916 0.5089 0.5557 0.5757 0.5924 0.5160 0.5060 0.5354 
0.0091 0.0181 0.0799 0.1132 0.2898 0.4281 0.4445 0.4100 0.4936 0.4192 0.4636 0.5537 0.6028 0.5382 0.6337 0.6176 0.6383 0.6344 
0.0089 0.0266 0.0526 0.1436 0.1665 0.1899 0.4530 0.4170 0.4303 0.5170 0.4718 0.4762 0.5411 0.5218 0.5508 0.5408 0.6125 0.6021 

" 0.0101 0.0204 0.0689 0.1173 0.1524 0.2511 0.2591 0.3050 0.3351 0.3780 0.4670 0.4743 0.4895 0.5538 0.4729 0.5936 0.5153 0,5444 
0.0099 0.0099 0.0482 0.0848 0.1805 0.0577 0.2296 0.2303 0.3590 0.2362 0.4060 0.4007 0.3329 0.3980 0.4938 0.4408 0.4176 0.4462 
0.0102 0.0102 0.0103 0.0304 0.1353 0.1785 0.2280 0.3195 0.3508 0.2976 0.3576 0.3829 0.3565 0.4833 0.4746 0.4259 0.4111 0.5103 
0.0096 0.0096 0.0285 0.0566 0.1614 0.1701 0.1014 0.2657 0.2721 0.3440 0.3219 0.3369 0.4000 0.4055 0.4313 0.4376 0.4360 0.4438 
0.0097 0.0097 0.0098 0.0290 0.0940 0.1374 0.1372 0.1365 0.2509 0.2206 0.2889 0.3475 0.4327 0.4316 0A520 0.4273 0.4382 0.4333 
0.0099 0.0101 0.0101 0.0200 0.0598 0.1320 0.1585 0.1406 0.2024 0.2869 0.3092 0.2869 0.3167 0.3012 0.3254 0.2874 0.3310 0.3810 
0.0103 0.0103 0.0102 0.0303 0.0302 0.1341 0.0973 0.0595 0.1710 0.1431 0.2818 0.2594 0.2653 0.3697 0.3561 0.2982 0.3505 0.2451 
0.0101 0.0101 0.0101 0.0199 0.0781 0.1157 0.1239 0.1243 0.1239 0.1587 0.1927 0.2418 0.2363 0.2571 0.2338 0.3391 0.2110 0.3256 
0.0100 0.0099 0.0099 0.0197 0.0397 0.0759 0.1319 0.1743 0.1494 0.1653 0.2241 0.1760 0.2484 0.2567 0.2764 0.2927 0.2842 0.3449 
0.0103 0.0104 0.0103 0.0207 0.0210 0.0408 0.0903 0.1269 0.1085 0.1369 0.1384 0.2653 0.2467 0.1996 0.3039 0.2866 0.2872 0.2951 
0.0103 0.0102 0.0101 0.0204 0.0305 0.0883 0.0881 0.1079 0.1158 0.1439 0.1790 0.2122 0.1608 0.2348 0.2744 0.2516 0.3245 0.2909 
0.0102 0.0103 0.0103 0.0103 0.0204 0.0603 0.0305 0.0694 0.0691 0.1075 0.1606 0.1955 0.2367 0.2366 0.1779 0.2285 0.2920 0.2362 

" 0.0103 0.0102 0.0103 0.0102 0.0204 0.0202 0.0407 0.1352 0.1344 0.1535 0.1171 0.1696 0.2129 0.2124 0.2127 0.3216 0.2920 0.2537 

Table E. 18: Attractor performance by connectivity and loading level for networks with initial 
neighbourhoods of size 2. 
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Conn. clvity 
0.05 0.10 0.15 0.20 0 25 0.30 0.35 0.40 0 45 0.50 ass 0.60 0.65 0 70 0.75 0 80 0.85 0.90 095 

0.0125 - 0.0188 0.3014 0.5734 0.7360 0.7733 0.7695 0.7801 0.7746 0.7805 0.7812 0.7902 0.7917 0.7764 0.7798 0.7870 0.7823 0.7857 0.7724 
0.0250 - 0.0078 0.1181 0.3700 0.4809 0.5483 0.6532 0.6467 0.7244 0.7492 0.7658 0.7604 0.7688 0.7762 0.7595 0.7770 0.7471 0.7572 0.7745 
0.0375 - 0.0082 0.0657 0.1954 0.3429 0.4662 0.5745 0.5991 0.6474 0.6574 0.6954 0.7147 0.6917 0.7208 0.7105 0.7225 0.7103 0.7368 0.7226 
0.0500 0.0089 0.0326 0.1052 0.2822 0.3748 0.4270 0.5030 0.5651 0.5985 0.6331 0.6296 0.6530 0.6494 0.6593 0.6574 0.6650 0.6841 0.6805 
0.0625 - 0.0100 0.0112 0.0978 0.1750 0.3447 0.3463 0.4679 0.4805 0.5400 0.5632 0.5925 0.6436 0.6096 0.6207 0.6287 0.6492 0.6457 0.6513 
0.0750 - 0.0150 0.0560 0.1743 0.2331 0.2885 0.3922 0.4192 0.4655 0.4643 0.5171 0.4957 0.5648 0.5853 0.5507 0.5550 0.5641 0.5730 
0.0875 --0.0111 0.0452 0.1195 0.1798 0.2481 0.3145 0.3734 0.4006 0.4307 0.4335 0.4975 0.5227 0.5072 0.5422 0.5495 0.5376 0.5930 
0.1000 - 0.0096 0.0339 0.0878 0.1701 0.2214 0.2264 0.3299 0.3558 0.4004 0.4077 0.4561 0.4611 0.4546 0.4841 0.5026 0.5225 0.5118 
0.1125 0.0098 0.0213 0.0704 0.1422 0.2068 0.2275 0.3048 0.3120 0.3638 0.4022 0.4010 0.4573 0.4259 0.4487 0.5000 0.4863 0.4955 
0.1250 - 0.0099 0.0238 0.0363 0.0681 0.1821 0.2390 0.2962 0.3018 0.2772 0.3978 0.4032 0.3941 0.3914 0.4261 0.4336 0.3775 0.4465 
0.1375 - 0.0098 0.0098 0.0626 0.1225 0.1733 0.1954 0.2335 0.2764 0.3257 0.2814 0.3718 0.3660 0.3632 0.4283 0.3753 0.4378 0.4552 
0.1500 - 0.0099 0.0119 0.0256 0.0577 0.1118 0.1505 0.1813 0.2107 0.2608 0.2908 0.3134 0.3094 0.3761 0.3982 0.4193 0.4069 0.4307 
0.1625 - 0.0102 0.0142 0.0340 0.0856 0.1104 0.1804 0.1663 0.2347 0.2592 0.2912 0.2676 0.3229 0.3010 0.3271 0.3465 0.3787 0.3643 
0.1750 --0.0101 0.0102 0.0182 0.0457 0.0898 0.1289 0.1697 0.1835 0.2155 0.2476 0.2552 0.3055 0.3165 0.3229 0.3364 0.3724 0.3542 
0.1875 0.0102 0.0102 0.0162 0.0224 0.0594 0.1052 0.1285 0.1499 0.2054 0.2131 0.2598 0.2393 0.2769 0.2814 0.2923 0.3374 0.3208 
0.2000 --0.0103 0.0102 0.0123 0.0461 0.0561 0.0879 0.1406 0.1682 0.1736 0.2149 0.2118 0.2140 0.2733 0.2900 0.2704 0.2793 0.3289 
0.2125 - 0.0105 0.0105 0.0188 0.0512 0.0634 0.0711 0.1187 0.1660 0.1540 0.2084 0.2034 0.2072 0.2369 0.2903 0.2851 0.3011 0.3050 
0.2250 0.0104 0.0103 0.0124 0.0267 0.0426 0.0950 0.0911 0.1318 0.1613 0.1725 0.1940 0.2084 0.2403 0.2539 0.2412 0.2367 0.2459 
0.2375 - 0.0105 0.0105 0.0147 0.0229 0.0349 0.0673 0.1016 0.1256 0.1394 0.1802 0.1528 0.2336 0.2236 0.2304 0.2419 0.2914 0.2443 
0.2500 - 0.0105 0.0104 0.0105 0.0146 0.0390 0.0432 0.0799 0.1261 0.1259 0.1410 0.1840 0.1918 0.2109 0.2030 0.2440 0.1968 0.2581 

Table E. 19: Attractor performance by connectivity and loading level for networks with initial 
neighbourhoods of size 3. 

Conn. ctvity 
0.05 0.10 0.15 0.20 0.25 0.30 0.35 040 0 45 0.50 0 55 0.60 0.65 0.70 0.75 0.80 0 85 0.90 095 

0.0125 -. 0.3476 0.5620 0.6858 0.7612 0.7738 0.7642 0.7862 0.7921 0.7893 0.7817 0.7794 0.7717 0.7603 0 7682 0.7777 0.7714 
0.0250 - 0.1732 0.3628 0.5170 0.6357 0.6643 0.6933 0.7249 0.7572 0.7690 0.7668 0.7750 0.7726 0.7553 0.7621 0.7542 0.7655 
0.0375 --0.0794 0.2837 0.3985 0.4601 0.4992 0.5905 0.6194 0.6580 0.6669 0.6914 0.7128 0.7153 0.7157 0.7314 0.7327 0.7482 
0.0500 ---0.0419 0.1905 0.2879 0.3946 0.4669 0.4835 0.5590 0.6214 0.6055 0.6457 0.6354 0.6679 0.6733 0.6776 0.6854 0.6834 
0.0625 - 0.0246 0.1273 0.2028 0.3121 0.4055 0.4464 0.5065 0.5640 0.5757 0.5902 0.8010 0.6239 0.6153 0.6333 0.6611 06721 
0.0750 - 0.0257 0.1041 0.2309 0.3081 0.3658 0.3943 0.4560 0.4205 0,5228 0.5192 0.5098 0.5291 0.5639 0.5709 0.5810 0.6074 
0.0875 0.0185 0.0721 0.1600 0.2206 0.2866 0.3329 0.3999 0.4725 0.4601 0.4930 0.4839 0.5060 0.4898 0.5161 0.5147 0.5448 
0.1000 0.0115 0.0432 0.1101 0.1840 0.2393 0.2889 0.3472 0.3388 0.4163 0.4623 0.4735 0.5010 0.4903 0.5377 0.5201 0.5195 
0.1125 0.0136 0.0272 0.1096 0.1611 0.2186 0.2472 0.2943 0.3090 0.3752 0.4270 0.4108 0.4014 0.4607 0.4691 0.4944 0.4732 
0.1250 0.0099 0.0328 0.0617 0.1375 0.2196 0.2338 0.3001 0.3265 0.3364 0.3954 0.4162 0.3985 0.4196 0.4255 0.4805 0.4600 
0.1375 0.0098 0.0233 0.0905 0.0975 0.1964 0.2198 0.2238 0.2966 0.2600 0.3186 0.3300 0.3880 0.3822 0.4019 0.4119 0.4039 

-ý 0.1500 --0.0118 0.0179 0.0354 0.0994 0.1444 0.2010 0.2218 0.2675 0.2904 0.2997 0.3257 0.3828 0.3832 0.3893 0.3929 0.4305 
0.1625 - 0.0102 0.0204 0.0438 0.1069 0.1428 0.1729 0.1840 0.2469 0.2724 0.2820 0.3057 0.3047 0.3242 0.3516 0.3350 0.3850 
0.1750 - 0.0102 0.0101 0.0420 0.0802 0.1201 0.1476 0.1900 0.2219 0.2377 0.2995 0.2937 0.2995 0.3278 0.3309 0.3223 0.3821 
0.1875 - 0.0102 0.0123 0.0264 0.0579 0.0995 0.1137 0.1258 0.1833 0.1962 0.2012 0.2700 0.2524 0.2480 0.3354 0.2938 0.3433 
0.2000 ---0.0102 0.0102 0.0323 0.0499 0.0743 0.1304 0.1569 0.1772 0.1323 0.2044 0.2169 0.2115 0.2760 0.2651 0.2518 0.2600 
0.2125 - 0.0105 0.0127 0.0188 0.0453 0.0949 0.1092 0.1374 0.1506 0.1835 0.2245 0.2378 0.1961 0.2106 0.2881 0.2824 0.2794 
0.2250 - 0.0103 0.0103 0.0165 0.0403 0.0603 0.0932 0.1004 0.1135 0.1543 0.1713 0.2335 0.2088 0.2374 0.2248 0.2634 0.2773 
0.2375 - 0.0105 0.0105 0.0188 0.0310 0.0650 0.0938 0.1130 0.1388 0.1497 0.1543 0.2081 0.1929 0.2371 0,2678 0.2233 0.2518 
0.2500 0.0105 0.0105 0.0168 0.0208 0.0432 0.0710 0.1114 0.1188 0.1402 0.1327 0.1145 0.1788 0.2074 0.2246 0.2350 0,2753 

Table E. 20: Attractor performance by connectivity and loading level for networks with initial 
neighbourhoods of size 4. 

Conn. etvlty 
0.05 010 OAS 0.20 0 25 0.30 0.35 0.40 0.45 0.50 0 55 060 0 63 070 0 75 080 ass 090 096 

0.0125 --0.4519 0.5328 0.6579 0.7403 0.7624 0.7641 0.7777 0.7992 0.7723 0.7821 0.7856 0.7175 0.7497 0.7277 0.7637 
0.0250 ---0.1166 0.4658 0.4993 0.6240 0.6840 06591 0.7337 0.7415 0.7463 0.7404 0.7490 0.7460 0.8097 0.7835 0.7326 
0.0375 - 0.0702 0.0955 0.3467 0.5474 0.5912 0.6363 0.6561 0.6869 0.6527 0.7320 0.7714 0.6713 0.6870 0.7222 0.7319 
0.0500 ---0.1392 0.1935 0.3318 0.3671 0.3971 0.5420 0.6885 0.6289 0.6801 0.6318 0.6974 0.7437 0.8889 0.6745 0.7585 
0.0625 - 0.0363 0.2029 0.2763 0.2892 0.4484 0.5645 0.5809 0.5647 0.6183 0.6266 0.6122 0.6478 0.6544 0.6510 0.6261 
0.0750 --0.0098 0.1042 0.2053 0.2586 0.3725 0.3973 0.3872 0.3800 0.4069 0.4257 0.4080 0.4652 0.4640 0,3876 0.5350 
0,0875 ---0.0094 0.1188 0.1758 0.1681 0.3217 0.3141 0.3461 0.3745 0.5136 0.5221 0.5388 0.5206 0.5158 0.5264 0.5912 
0.1000 --0.0182 0.1296 0.1385 0.3097 0.2466 0.3446 0.3631 0.3586 0.3509 0.5158 0.3958 0.5154 0.4567 0.4636 0.4599 
0.1125 ---0.0304 0.1438 0.1869 0.2121 0.2910 0.3239 0.3599 0.4482 0.4044 0.3363 0.6034 0.4829 0.4252 0.6452 0.4715 

C 0.1250 - 0.0094 0.0373 0.1343 0.1432 0.2224 0.2074 0.3490 0.3202 0.3339 0.3553 0.4084 0.4761 0.4652 0.3955 0.4454 
0.1375 ---0.0202 0.0302 0.1260 0.1161 0.2840 0.2212 0.3053 0.3857 0.3583 0,3408 0.4516 0.4201 0.4119 0.4131 0.4122 
0.1500 - 0.0103 0.0303 0.0503 0.1254 01860 0.2430 0.2514 0.3128 0.2838 0.3337 0.3256 0.3569 0.3354 0.2852 0.2360 
0.1625 - 0.0100 0.0101 0.0493 0.0867 0.1926 0.2425 0.2174 0.3161 0.3187 0.3505 0.3916 0.2471 0.3553 0.3959 0.3468 
0.1750 - 0.0102 0.0202 0.0102 0.0803 0.1970 0.1793 0.1612 0.1970 0.2135 0.2860 0.3079 0.3781 0.2543 0.4196 0.2993 
0.1875 ----0.0201 0.0102 0.0201 0.1161 0.1336 0.1155 0.1506 0.1701 0.1681 0.2085 0.1496 0.1772 0.2421 0.2826 0.3357 
0.2000 - 0.0104 0.0103 0.0103 0.1081 0.1254 0.1620 0.1695 0.1977 0.2226 0.1614 0.2309 0.2935 0.2303 0.3214 0.2223 
0.2125 - 0.0107 0.0108 0.0107 0.0828 0.0728 0.1025 0.0924 0.1215 0.1857 0.2192 0.1770 0.2795 0.2375 0.2776 0.3225 
0.2250 --0.0105 0.0104 0.0208 0.0411 0.0997 0.0803 0.1364 0.1987 0.1816 0.2481 0.3118 0.2314 0.2644 0.3551 0.3341 
0.2375 ---0.0104 0.0104 0.0306 0.0205 0.0700 0.1091 0.1721 0.1892 0.1561 0.2791 0.1636 0.1809 0.2711 0.1183 0.2457 
0.2500 - 0.0105 0.0105 0.0104 0.0413 0.0104 0.1000 0.1644 0.1101 0.2338 0.1819 0.1550 0.2251 0.2399 0.2578 0.2174 

Table E. 21: Attractor performance by connectivity and loading level for networks with initial 
neighbourhoods of size 5. 
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An experimental assessment of the performance of several associative memory models. 
S. P. Turvey, S. P. Hunt, N. Davey, R. J. Frank 1 

Abstract 
The performance characteristics of four different 
associative memory models are examined. The models 
differ in the training algorithm employed, although all 
four employ algorithms that are iterative, and use local 
information. They are classified using the method of 
Abbott [1], their attractor performance is examined, 
and the time taken to train them is measured. 

1. Introduction 
The dynamics and performance of the Hopfield 

associative memory model have been thoroughly 
investigated and are well understood. Several 

alternative training algorithms have been proposed, 
each of which leads to an increase in capacity over the 
original Hopfield model, and an improvement in 

attractor performance, usually at the expense of an 
increase in training time. 

This paper compares the performance of a number of 
such high capacity models, with respect to training 
time, attractor performance and the stability of stored 
patterns. The work has two goals. First, to classify the 
models in question using the method developed by 
Abbott [1]. Second, to evaluate the models against a 
consistent set of criteria in order to ascertain which of 
them gives the best balance of performance. 

2. Models examined 
2.1 Common properties 
Each model employs a fully connected network of N 
bipolar (+1/-1) processing elements, as used in the 
11opfield model. Each network is trained using a set, 
II, of N-ary, bipolar pattern vectors, {l; P}. The N by N 
weight matrix which results will be denoted by W, and 
the state (output) of the i'th unit by S1. 

The local field (input) of the i'th unit, hi , is given by: 

hi = EwijSj 
jsi 

The aligned local field of the i'th unit for pattern k' is 

P 

If all aligned local fields for a tP are non-negative it is 
guaranteed to be stable. 

The temporal evolution of unit states during recall is 
governed by: 

1 ifh, >0 

-1 if h, <0 
S, if h, =0 

Unit states may be updated either synchronously or 
asynchronously. All models investigated here employ 
asynchronous, random-order updates, and updating 
continues until the network reaches a stable state. 
These dynamics, coupled with a symmetric weight 
matrix, guarantee simple point attractors [2]. 

Each l; P that is a stable state of the trained network is 
known as a fundamental memory. The capacity of a 
network, C, is the maximum number of fundamental 
memories it can hold. The loading of a network, a, is 
a measure of the size of the training set relative to the 
number of processing elements in the network, giving 

a= and ax =C 

2.2 The Iterative Local Learning rule (ILL) 
This learning rule, devised by Diederich and Oppcr 
[3], is similar to the perceptron convergence 
procedure. The algorithm attempts to push the values 
of all units' aligned local fields to be greater than or 
equal to the training threshold, T. for all 
Algorithmically, this rule is as follows: 

Beginning with a zero weight matrLr 
Repeat until all aligned local fields are correct 

For each training pattern, io, in turn 
Clamp the pattern onto the network 
For each processing element in turn 

If h f; f<T, change the weights on 
connections into unit i according to: 

41P P 
ýw; j 0- (l"1) 

N 

Note that the resulting %V will have a zero diagonal, 
but is unlikely to be symmetric. A variant of this rule 
exists that enforces z'= bwjj for each weight change, 
thus guaranteeing symmetry and, hence, simple point 

Department of Computer Science, University of Hertfordshire, Hatfield, Ilerts, AL10 9AB. United Kingdom 
e-mail: ( s. p. turvey, s. p. hunt, n. davey, r. j. frank) @herts. ac. uk 
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attractors. We have chosen not to examine it here 
because its attractor performance is not markedly 
superior to the ILL rule (see [4] for details). 
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2.3 The Iterative Local Learning with Equal 
Fields rule (ILL-Eq) 

Diederich and Opper [3] proposed a modification to 
ILL in which weights are changed so that the aligned 
local fields of all units asymptotically approach 1 for 

every pattern. In the implementation employed here, 
training continues until the value of every aligned local 
field falls within the range 0.998 

.. 
1.002. 

Training proceeds as follows: 

Beginning with a zero weight matrix 
Repeat until all aligned local fields are correct 

For each training pattern, j', in turn 
Clamp the pattern onto the network 
For each processing element in turn 

Update incoming weights according to: 
1- hipSP °Sý 

Aw, j =N (i0j) 

Performance may be varied by changing the 
acceptable range of values for aligned local fields. 
The effect this has on attractor performance and 
training time is the subject of work to be published. 

2.4 The Krauth - Mezard learning rule (KM) 

Another modification to ILL, this rule was proposed 
by Krauth and Mezard [5]. It attempts to present each 
training pattern an optimal number of times. At each 
unit, the pattern with the smallest aligned local field is 
chosen for presentation. Once again, weights are 
changed until all aligned local fields are greater than or 
equal to the training threshold, T: 

Beginning with a zero weight matrix 
Repeat until all aligned local fields are correct 

For each unit, i, in turn 
Select the pattern, i; °, with the smallest 
aligned local field for this unit 
Update the incoming weights according to: 

PP 
Awiý_N(i0j) 

This rule has been shown produce optimal y values, y 
is described in section 3.1. 

2.5 The Blatt - Vergini learning rule (BV) 

Blatt and Vergini [61 propose a training algorithm that 
is guaranteed to find an appropriate weight matrix 
within a finite number of presentations of each pattern. 
The minimum number of presentations to perform, P, 
is calculated as being the smallest integer conforming 
to: 

Pz log, Nz 
(1-T) 

where k and T are real valued constants such that 
1<k: 5 4 and 0: 5 T< 1, and Nis the number of units in 
the network. k is referred to as the memory coefficient 

of the network, because the larger it is, the fewer steps 
are required to train the network. In this work, k=4 
and T=0.5 for all networks trained by this rule. 
The algorithm is as follows: 

Beginning with a zero weight matrix 
For each pattern in turn 

Clamp the pattern onto the network 
Form: =I to P 

For each processing element in turn 
Update incoming weights according to: 

k m-1 
Aw, ý =N(, f 4X1 -hj) 

Remove all self-connections 
Note that patterns are added incrementally without 
interfering with patterns learnt previously. 
2.6 Relationship to the pseudo-inverse rule 
The algorithms employed in the ILL-Eq and BV 
models are both designed to generate weight matrices 
that are approximations of the weight matrix generated 
by the pseudo-inverse rule of Personnaz et al (7]. 
According to this rule W=!! t 

, where - is the matrix 
whose columns are the 1f, and !t is its pseudo- 
inverse. 

ILL-Eq and BV both employ iterative learning 
algorithms that use local information to generate a 
weight matrix, W- ! mot, with its diagonal set to zero. 
Whilst the BV rule guarantees a solution to the 
problem within a finite, and calculable, number of 
iterations through the training set, there is no upper 
bound on the number of iterations that may be required 
for the ILL-Eq to satisfy its stopping criterion. Blatt 
and Vergini also state there to be no restrictions on the 
training set with respect to correlation or linear 
dependency. 

Interestingly, Gorodnichy [81 has demonstrated that 
optimum performance in pseudo-inverse trained 
networks is obtained when the weight matrix has a 
non-zero diagonal (specifically, a scaled-down version 
of the diagonal generated by the pseudo-inverse rule). 
We considered modifying the BV rule to take this into 
account, but chose not to do so since we have found 
the improvements to be relatively small. 
3. Experimental procedure 
3.1 y distribution analysis 
Abbott (1] identified three classes of associative 
memory, characterised by the distribution of y values 
for a trained network. The y value for unit ! for the 
pattern, 4', is obtained by dividing the aligned local 
field by the magnitude of the incoming weight vector: 

h? D 

7' ̀ Iw I 
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For each network we may obtain a set, r, containing 
the y values for all the network's fundamental 

memories. 

Abbott's classification system is based upon the 
distribution of y values in r. The three classes are: 

1) Networks with a Gaussian distribution of y values 

2) Networks with all y values the same (VY1 " Yj = Yo) 

3) Networks with a clipped Gaussian distribution of y 
values, where Vy1 " y; ? Ymm 

Class 1 includes networks trained using Hopfield's 
algorithm, so they are referred to as Hopfield-type 

networks. Interestingly, Abbott calculates that the 
upper bound for cx1 in Class 1 is 1.4, which is much 
higher than a,,, for the `vanilla' Hopfield network. 

Class 2 is made up of networks trained using the 
pseudo-inverse rule, or derivatives thereof. The 
capacity of networks trained using this rule is N 
linearly independent patterns (giving a=1). 

Class 3 is known as the Gardner class, after the work 
of Gardner [9], whose training algorithm gives 
networks with a,. =2. 
3.2 Attractor performance 

Kanter and Sompolinsky's [10] R value is used as a 
measure of attractor performance: 

R= -m0 . L1-mý 

A series of sample starting states are chosen, each of 
which is a partially corrupted fundamental memory 
state, which acts as the target final state for the 
network. mo is the proportion of each sample pattern 
which must be the same as its target state in order that 
all sample patterns will converge upon their targets. 
m, is the greatest overlap of each sample state with the 
fundamental memories of the network other than the 
one on which it is based. Details of the method used 
for calculating this value are presented in [11]. 

3.3 Training time 

The time taken to train a network is measured in two 
ways. Firstly, the number of iterations through the 
training set is measured and secondly, the mean time 
taken to perform an iteration is calculated. A mean 
value is calculated for the real training time as the time 
taken to perform a single iteration changes for some of 
the models as they near their stopping criteria. 
Performing both measurements allows us to take into 
account the differing computational complexity of 
each learning rule. 

Measurements were conducted on a Wintel-compatible 
PC with a 600M1ia AMD Athlon CPU and 128MB of 
RAM, running Windows 98SE. All simulations were 

written and run in Java, using the Sun JDK 1.3 with 
the Hotspot performance engine. 
3.4 Network parameters 
All networks were of size N=100. Each model was 
tested by training networks with sets containing 50 
random training patterns (i. e. at a loading of (x=0.5). 
The y distribution analyses were performed on single 
networks. The R calculations are averaged over 50 
networks, and the training time calculations are 
averaged over 100 networks in each case 

4. Results 

4.1 y distribution analysis 

Plotting the distribution of the y; values allows us to 
confirm the class to which each network belongs from 
the shape of the distribution. As might be expected, 
the two pseudo-inverse approximators have very 
similar y distributions, as shown below. 

7GAn 

2 

Figure 1. Distribution of y; values for ILL-Eq and 13V 
networks. 

Whilst it is clear that in neither case are all y values the 
same, Figure 1 shows very tight distributions of y 
values for the ILL-Eq and BV networks. This is not 
surprising as both these models are designed to lind 
weight matrices that approximate !! t. Thus. we place 
them in Class 2. 

Plotting the distribution of the y, values for the ILL 
and KM models gives us: 

"enn 

c 
0 
u 
n 
t 

Figure 2. Distribution of yjvalues for ILL and KM networks. 
From Figure 2, it is confirmed that the ILL and KM 
models fall into Class 3. 
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4.2 Attractor performance 

Table 1 shows R values for 
including the ILL and KM 
different training thresholds: 

Model 
JLL (T=1) 
ILL (T=10) 
ILL (T=100) 

KM (T=1) 
KM (T=10) 
KM (T=100) 

II, L-Eq 

The KM (T=100) rule seems best if the sole gauge of 
performance is to be R. However, the time taken to 

the different models, train this network is around 24 minutes (Table 2). 

models at a range of Whilst this is not a prohibitively long time, it has to be 
acknowledged that the increase in R that results when 

R T is changed from 1 to 100 is relatively small, and the 
trade-off is probably not worthwhile. 0.196 

0.246 The ability of the BV rule to learn new fundamental 
memories without re-training with the whole training 

0.262 set makes it a better choice for on-line applications. A 
0.253 further investigation of the behaviour of these models 
0 254 is warranted, taking into account such issues as the 

. nature and number of spurious attractor states, in order 0.270 to determine just how important these relatively small 
0.215 differences in R values are. 

BV 1 0.214 
Table 1. Values of R for a range of models and parameters 

In terms of attractor performance, the model with the 
highest R and therefore `best' attractor performance 
would appear to be KM with T=100. 

4.3 Training time 

Ave. no. Ave. time to Approx. time 
Model 

lof 

epochs train (secs) per epoch (secs) 

ILL (T=1) 16.5 1.6 0.1 

(T=10) 95.6 9.8 0.1 

(T=100) 895.4 91.4 0.1 

KM (T=1) 4.6 18.7 4.1 

(T=10) 33.4 144.7 4.3 

(T=100) 320.5 1416.5 4.4 

ILL-Eq 52.9 18.6 0.4 

BV 4.0 2.2 0.6 
Table 2. Training times for a range of models/parameters 

The first two columns of figures are the mean number 
of times the training set needed to be presented to 
complete training. and the mean total training time. 
The final column is derived from the first two to give 
an indication of the time taken for each pass through 
the training set. It should be noted that the KM model 
does not run through the entire training set in the same 
way as the other models, so the KM figures represent 
the time taken to present 50 patterns. 

S. Discussion 

A number of interesting observations may be made 
from the above results. Firstly, for the models where a 
training threshold is used it is clear that R increases 
with T indicating that this is one means of improving 
performance, though at the expense of training time. 
Secondly, the KM rule performs better than the ILL 
rule, though only marginally so at the higher 
thresholds. Thirdly, both KM and ILL generally 
perform better than the pseudo-inverse rules with 
respect to R, and have a higher maximum capacity (2N 
vs M. 

6 References 
[1] L. F. Abbott, "Learning in Neural Network 

Memories" Network. Comp. Neural Sys. vol. 1, 
pp. 105-122,1990 

[2] D. J. Amit, Modelling brain function: the world of 
attractor neural networks. Cambridge, UK: 
Cambridge University Press, 1989 

[3] S. Diederich and M. Opper, "Learning of 
Correlated Patterns in Spin-Glass Networks by 
Local Learning Rules" Physical Review Letters 
vol. 58, pp. 949-952,1987 

[4] N. Davey, R. G. Adams, S. P. Iiunt, "Iiigh 
performance associative memory models and 
symmetric connections", Proceedings of ISA 
2000, to be published December 2000 

[5] W. Krauth and M. Mczard, "Learning algorithms 
with optimal stability for neural networks" J. 
Phys. vol. A20, pp. L745-L752,1987 

[6] M. G. Blatt and E. G. Vergini (1991). "Neural 
Networks: A Local Learning Prescription for 
Arbitrary Correlated Patterns", Physical Review 
Letters, vol. 66, pp. 1793-1797 

[7] L. Pcrsonnaz, I. Guyon, and G. Dreyfus, 
"Collective Computational Properties of Neural 
Networks: New Learning Mechanisms" Physical 
Review A vol. 34, pp. 4217-4228,1986 

[8] D. Gorodnichy, 'The optimal value of self. 
connection". Proceedings of IJCNN'99,1999 

[9] E. Gardncr, 'The space of interactions in neural 
network models" Journal of Physics vol. A21, 
pp. 257-270,1988 

[10] I. Kanter and 11. Sompolinsky, "Associative 
Recall of Memory without Errors". Physical 
Review A vol. 35, pp. 380.392,1987 

[11] N. Davey and S. P. Ilunt, 'The Capacity and 
Attractor Basins of Associative Memory 
Models", Proceedings of I WANN99,1999 

200 



Non-Random Weight Dilution in High Performance 
Associative Memories 

S. P Turvey, S. P. Hunt, N. Davey, R. J. Frank 

Department of Computer Science, 
University of Hertfordshire, 

College Lane, Hatfield, ALIO 9AB. United Kingdom 

s. p. turvey@herts. ac. uk, s. p. hunt@herts. ac. uk, n. davey@herts. ac. uk, r. j. frank@herts. ac. uk 

Abstract The consequences of two techniques for 

symmetrically diluting the weights of the standard 
Hopfield architecture associative memory model, 

trained using a non-Hebbian learning rule, are 

examined. This paper reports experimental 
investigations into the effect of dilution on factors 

such as: pattern stability and attractor performance. 
It is concluded that these networks maintain a 

reasonable level of performance at fairly high 

dilution rates. 

Key-Words Associative Memory, Hop field 
Networks, Weight Dilution, Capacity, Basins of 
Attraction, Perceptron Learning. 

1 Introduction 
The associative memories examined in this paper are 
neural networks based around the standard Ilopfield 

architecture [10]. It has been known for some time 
[1] that it is possible to build networks with superior 
performance to that of the original model. This 
improved performance is achieved by replacing 
Hopfield's one-shot Ilebbian learning rule, either 
with a rule that finds an approximation to the 

projection weight matrix, or else with a rule that 
implements perceptron-style learning. (See [5,6,14] 
for a comparison of performance of different 

models). 
Weight dilution is a technique for reducing the 
degree of connectivity within what would otherwise 
be fully-connected networks. Connections are 
removed after training has taken place (post-training 
dilution). It has even been suggested that an 
associative memory may be trained by starting with 
a fully connected network with random fixed 

weights and systematically removing a fraction of 
the connections [ 12]. 

For one-shot Hebbian learning it is known [13] that 
capacity drops linearly with the fraction of 
connections removed. 

2 Models Examined 
In each experiment we take a network of N units 
which we train with a set of N-ary, bipolar (+1/-1) 

training vectors, {°}. The N by N weight matrix is 
denoted by W. and the state (output) of the i'th unit 
is denoted by S, 
The high-capacity model studied here is a 
straightforward modification of the standard 
Hopfield network. The net input, or local field, of a 
unit, is given by: 

1:, = F'wVSj 
jot 

where wy is the weight on the connection from unit j 

to unit i. The next state of a unit is derived from its 
local field and its current state: 

1 ifhj>01 
x= -1 ifh1<01 

Si if hi =a 
where the threshold, 0, , is normally taken as zero. 
Unit states may be updated synchronously or 
asynchronously. Isere we use asynchronous, random 
order updates. These network dynamics and a 
symmetric weight matrix guarantee simple point 
attractors in the network's state space. 
A training vector, ý, will be a stable state of the 
network if the aligned local fields, h, ý are non- 
negative for all i (assuming all ß are zero). Each 
training vector that is a stable state is known as a 
fundamental memory of the trained network. The 
capacity of a network is the maximum number of 
fundamental memories it can store. The loading, o:, 
on a network is calculated by dividing the number of 
vectors in the training set by the number of units in 
the network, N. 

201 



2.1 Learning Rules 

Two learning rules have been employed in this work. 
The first approximates the projection matrix 
generated using the pseudo-inverse rule described by 
Diederich & Opper [7]. The second is Gardner's 
perceptron-like symmetric local learning rule [8]. 

2.1.1 Blatt & Vergini 

Blatt & Vergini [3] present a learning rule which 
takes the form of an iterative method for 

approximating the projection matrix. The training 
algorithm is guaranteed to find an appropriate weight 
matrix within a finite number of presentations of 
each pattern if such a matrix exists. 
The minimum number of presentations of the 
training set to perform, P, is calculated as being the 
smallest integer conforming to: 

PzlogA 
N2 

(1-T) 

where k and T are real valued constants such that 
1<k: 5 4 and 0: 5 T<1, and N is the number of units 
in the network. k is referred to as the memory 
coefficient of the network; the larger it is, the fewer 
steps are required to train the network. In this work, 
k=4 and T=0.5 for all networks trained by this rule. 
The algorithm is as follows: 

BEGINNING WMi A ZERO WEIGHT MATRIX 

FOR EACH PATZERN IN TURN 

APPLY 771E PATTERN ONTO THE NETWORK 
FORm: -ITOp 

FOR EACH PROCESSING ELEMENT IN TURN 

UPDATE INCOMING WEIGHTS ACCORDING TO: 

Aw; ý =I%. 
) 

(i 
-l«X -'i) 

REMOVE ALL SELF-CONNECTIONS 

Note that patterns are added incrementally without 
corrupting patterns learnt previously. 

2.1.2 Symmetric Local Learning 

Gardner [9] pointed out that an iterative perceptron- 
like training rule could be made to produce 
symmetric weights by simply updating both wij and 
WI, when either changes. Gardner also showed that 
such algorithms would find a symmetric weight 
matrix, if one existed, for a particular training set. 

The symmetric local learning rule is given by: 

BEGQV WITH A ZERO WEIGHT MATRIX 

REPEAT UNTIL ALL LOCAL FIELDS ARE CORRECT 

SET THE STATE OF NETWORK TO ONE OPINE IV 

FOR EACH UNIT, I, IN TURN 

cAUui. A, E hf r' 
IF THIS IS LESS THAN T THEN CHANGE THE WEIGHTS ON 

CONNECTIONS INTO AND OUT OF UNIT I ACCORDING TO: 

ýIpýp 

Awu =Awl =N 

2.2 Weight Dilution 
We present two approaches to weight dilution. The 
first involves the removal of a proportion of the 
connections chosen at random, the second involves 
selecting the connections to be removed based upon 
some heuristic by which it is hoped that the most 
efficacious connections are retained [2,41. 

2.2.1 Random Dilution 

A value for the proportion of connections to be 
removed is chosen. This value is multiplied by the 
number of connections within the fully-connected 
network and then halved to give the number of 
connection pairs to be removed. Then, pairs of units 
are chosen at random and, if a connection between 
each pair exists, the bi-directional link is removed. 
Ensuring that the bi-directional link is fully removed 
maintains symmetry within the individual 
connections themselves. This is an important pre- 
requisite to being able to guarantee that the network 
will converge upon some stable state when allowed 
to update freely. 

2.2.2 Informed Dilution 

Informed dilution operates in much the same way as 
random dilution in that once a connection is found 
the bi-directional link is severed. The difference, 
however, is in the manner in which the connections 
are chosen. A value for the proportion of 
connections to be removed is chosen. This value is 
again multiplied by the number of connections 
within the fully-connected network and halved to 
give the number of connection pairs to be removed. 
Then, the network's connections are scanned to rind 
the smallest weight value (that which is closest to 
zero). Once the units with the smallest weight value 
have been identified the connections between them 
are removed. The process continues until the 
required number of connections has been eliminated. 

3 Analysing Performance 
For an associative memory model to be effective, the 
training patterns should not only be stable states of 
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the network, but should also act as attractors in the 
network's state space. 
As stated above, the perceptron-type learning rule 
will store a set of training vectors in the network 
when the aligned local fields of those vectors have 

all been driven to be non-negative. Moreover, the 
larger these aligned local fields become, the better 

the attractor performance should be. We examine 
the performance of our networks while varying the 
loading, a. 

We also consider the effect of correlations in the 
training patterns. An uncorrelated training set is one 
in which the patterns are completely random. 
Correlation can be increased by varying the 
probability that a given bit in a training pattern is +1 
(or -1). We refer to the probability of any bit being 

+1 in each the training vector as the bias, b, on the 
training set. So: Vi, p " prob ( '=+1) = b, Thus, a 
bias of 0.5 corresponds to an uncorrelated training 
set and a bias of 1 corresponds to a completely 
correlated one, as does a bias of 0. 

3.1 Pattern Stability 

A pattern is deemed stable if, when applied to the 
network and the network permitted to run to 
convergence, the resultant state is equal to the start 
state. In other words, a stable pattern is a fixed point 
of the network dynamics. 
Pattern stability provides a good indicator of the 
ability of a particular network to withstand dilution. 
It is calculated by performing this operation using 
each of the training patterns as a start state and is 
given as a proportion of the total number of patterns, 
i. e. if half the trained patterns are stable then 
stability=0.5 . 

3.2 Attractor Performance 

We use, R, the normalized mean radius of the basins 
of attraction [11], as a measure of attractor 
performance. It is defined as: 

1_^\ 
R= _Mn 

where mo is the minimum overlap an initial state 
must have with a fundamental memory for the 
network to converge on that fundamental memory, 
and m, is the largest overlap of the initial state with 
the rest of the fundamental memories. The angled 
braces denote an average over sets of training 
patterns. Details of the algorithm used can be found 
in [11]. 

4 Results 

experiments were carried out on networks of size 
N=100 trained using patterns of bias 0.5 and 0.9 and 
at a fixed loading point of ct=0.50. 

4.1 Pattern Stability 

In this section we present the results measuring the 
stability of the trained patterns while varying the 
degree of weight dilution within the network. 

4.1.1 Blatt & Vergini 
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Figure 1: Pattern stability for network trained with Blatt & Vergini 
under a loading aß. 50 (N=100) using uncorrelated patterns 
(bß. 5). The upper line represents informed dilution. 
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Figure 2: Pattern stability for network trained with Blatt & Vergini 
under a loading a-0.50 (No 100) using correlated patterns (b. 0.9), 
The upper line represents informed dilution. 
4.1.2 Symmetric Local Learning 
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In this section we present the results of the Figure 3: Pattcrn stability for nctwork trained with Symmetric 
performance analyses outlined in section 3. All Local Learning undcr it loading «-0.50 (N 100) using 
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uncorrelated patterns (bß. 5). The upper line represents informed 

dilution. 
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Figure 4: Pattern stability for network trained with Symmetric 

Local Learning under a loading aß. 50 (N=100) using correlated 

patterns (bß. 9). The upper fine represents informed dilution. 

4.13 Observations 

There are four key observations that can be made 
from the preceding set of results: 

1) Informed dilution gives a clear and significant 
improvement in pattern stability over simple 
random dilution. These improvements take the 
form of an increase in the level of dilution at 
which the networks retain memory of all the 
trained patterns. 

2) It is possible to remove up to approximately 50% 
of the networks' connectivity without a serious 
decline in the stability of the trained patterns. 

3) The bias of the trained patterns makes very little 
difference to the pattern stability. All four plots 
describe remarkably similar behaviour. 

4) The algorithm used, in the case of these 
experiments, also appears to make very little 
difference to the effect of dilution on pattern 
stability. 

4.2 Attractor Performance 

In this section we present the results measuring the 
attractor performance of the networks while varying 
the degree of weight dilution. 

4.2.1 Blatt & Vergini 
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Figure 5: Attractor performance for network trained with Blatt & 
Vergini under a loading cz=0.50 (N=100) using uncorrclated 
patterns (b=0.5). The upper line represents informed dilution. 
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Figure 6: Attractor performance for network trained with Blatt & 
Vergini under a loading a, -0.50 (N lOO) using uncorrelatcd 
patterns (b-0.9). The upper line represents informed dilution. 
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4.2.2 Symmetric Local Learning 
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Figure 7: Attractor performance for network trained with 
Symmetric Local Learning under a loading x=0.50 (N=l00) using 

uncorrelated patterns (bß. 5). The upper line represents informed 

dilution. 
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Figure 8: Attractor performance for network trained with 
Symmetric Local Learning under a loading a=0.50 (N=100) using 

uncorrelated patterns (bß. 9). The upper line represents informed 

dilution. 

4.2.3 Observations 

The pattern of the attractor performance results is 
similar to that of pattern stability. Specifically: 

1) Informed dilution significantly better than simple 
random dilution. 

2) It is possible to remove up to approximately 40% 
of the networks' connectivity without serious 
damage to the attractor performance of the 
network. 

3) The bias of the trained patterns makes very little 
difference to the attractor performance. 

4) The algorithm used, in the case of these 
experiments, also appears to make very little 
difference to the effect of dilution on attractor 
performance. 

5 Discussion 
This paper reports two important results: 
1) Informed dilution is markedly better than random 

dilution. 
2) Informed dilution demonstrates that a large 

number of connections are redundant in networks 
of this type and at these loadings. 

As the loading of these networks is a=0.5 they are 
below their maximum storage capacity; it may be of 
interest to repeat these experiments at higher 
loadings where the networks may be under greater 
stress with regard their maximum capacity. 
It is interesting to note that, for both performance 
measures, failure, when it occurs, proceeds with 
great rapidity. There is a sharp decrease in both 
proportion of stable patterns and attractor 
performance once the networks begin to lose their 
stability and ability to act as attractors. In this 
respect, our results differ from those of 
Sompolinksy, whose work on randomly diluting the 
traditional Fiopfield network [? ] resulted in a linear 
decline in pattern stability. 
The system of informed dilution we have presented 
is very simple; no re-training of the network is 
required. It is possible that in biological systems 
complex strategies may be similarly unnecessary. 
Chechik et al [4] have noted that during brain 
maturation there is a reduction in connectivity that is 
expensive to maintain from an energy perspective. It 
is interesting that our artificial system also 
demonstrates levels of redundancy in connectivity 
albeit in a much simpler model. 
Our current work has focused on networks that have 
been created as sparsely-connected tabula rasa. 
Training these networks has presented new 
challenges and performance characteristics. We 
hope to be able to present these new findings at a 
later date. 
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