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Abstract

We report some experience with optimization methods applied to an inverse light

scattering problem for spherical, homogeneous particles. Such particles can be iden-

tified from experimental data using a least squares global optimization method. How-

ever, if there is significant noise in the data, the “best” solution may not correspond

well to the “actual” particle. We suggest a way in which the original least squares

solution may be improved by using a constrained optimization calculation which

considers the position of peaks in the data. This approach is applied first to multi-

angle data with varying amounts of artificially introduced noise and then to examples

of single-particle experimental data patterns characterized by high noise levels.
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1 Introduction

Substantial advances have been made over the last hundred or so years in the development

of the theory of light scattering from particulate matter. Computation of the properties

of scattered electromagnetic fields - the direct scattering problem - is now possible in

many situations. Rigorous solutions exist for particle types such as homogeneous and

inhomogeneous spheres, ellipsoids, cylinders with various cross-sections and generalized

axisymmetric particles. Of far greater practical importance, however, is the determination

of properties of scatterers from the knowledge of scattered fields - the inverse scattering

problem. This arises in applications, ranging from astronomy and remote sensing, through

aerosol and emulsion characterization, to non-destructive analysis of single particles and

living cells [1, 2, 3, 4, 5, 6, 7, 8].

The inverse problem has proved to be much harder to solve, even for the simplest par-

ticle shapes. Lack of rigorous solutions has motivated the development of methods based

on approximate models of scattering, for example, assuming that the particles are weak

(Rayleigh-Debye) scatterers or that diffraction or even geometrical optics can adequately

describe the interaction process [3, 5, 9, 10, 11, 12]. However, when such methods are in-

appropriate, empirical procedures have to be used which are based on generating solutions

to the direct problem (after making assumptions concerning the shape, internal structure

of the particle etc.) and matching these solutions to experimental data [1, 2, 4, 13, 14].

Combining empirical and analytical (eigenfunction) methods can provide particle size dis-

tributions as well as complex refractive indices under some constraining conditions [12].

Such procedures can be slow, difficult to implement rigorously and often require sub-

stantial computing resources. More rapid solutions can be obtained using neural network

methods which take advantage of the capability of radial basis function neural networks to

approximate multidimensional functions [15] and use one or two hidden-layer networks

trained by back-propagation [7, 8]. An analytical method which directly yields particle

radius but may eventually lead to a full inverse solution is based on expanding scattering

data in terms of Legendre or Gegenbauer polynomials [16, 17]. Several approaches based

on numerical optimization have also been reported [18, 19, 20].

Experimental data are inevitably distorted by the presence of noise and numerous

sources of error, for example optical aberrations, nonlinearity of the detection system,

multiple scattering or particle nonsphericity. All existing inversion algorithms are sen-
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sitive to such distortion to a greater or lesser extent, which results in error [3, 11]. This

problem is especially acute in, but not limited to, measurements on single particles. There-

fore, the sensitivity of the inversion to error in input data should be properly considered for

all new techniques. The present paper focuses on an approach to inverse light-scattering

based on global optimization previously reported in [18, 19] and introduces a refinement

procedure which can sometimes be used to compensate for the influence of noise in input

data. This new approach is then applied both to multi-angle data with varying amounts of

artificially introduced noise and also to representative examples of single-particle experi-

mental data sets some of which are characterized by high noise levels.

In choosing to use a global optimization approach for particle identification, we are

assuming that the inverse light scattering problem for homogeneous spheres has a unique

solution. If this were not so and the error function had several global minima then there

would still be ambiguity about the true properties of the scattering particle. Mireles [21]

has shown that a unique solution does exist for the very closely related problem of infinite

circular cylinders; and this, together with other more intuitive reasons, leads to a general

consensus in the field of particle characterization that multi-angle light scattering data can

give unique solutions to the homogeneous sphere problem as long as a sufficient number

of measurements is available. Recent investigations confirm that this is the case [22]. On

the other hand, the theoretical question of uniqueness of inverse scattering may not be

very relevant to practical problems of particle identification in which there is the addi-

tional complication of accuracy and the discrete character of experimental measurements.

These complications may arise, for instance, due to finite sampling density and aliasing,

incompleteness of data, as well as the presence of noise. Further discussion of these these

issues is available elsewhere [15, 18, 19].

A good starting point for the development of methods for solving the inverse light scat-

tering problem for small particles is the case of a homogeneous, isotropic, non-absorbing

sphere. If a plane incident wave of known wavelength and state of polarization and a

known medium surrounding the particle are assumed, the particle can be completely de-

scribed using its radius r and refractive index n. In the scattering geometry considered

in the present study (see Figure 1), the intensity of the light scattered by the particle is

measured in one plane only and can, therefore, be described by a function of the scattering

angle

I1(θ) = ϕ(θ;r;n) (1)
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where θ is defined as the angle between the direction of propagation of the incident wave

and the direction of observation. This arrangement leads to a one-dimensional scattering

pattern which is representative of the properties of the particle and has been used as a

basis for characterization of single particles and particle distributions in both routine and

research applications [1, 2, 3, 4, 5, 7, 8, 12].
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Figure 1: Scattering geometry

More practical detail about such experimental measurements can be found in [23]. A

typical scattering pattern is shown in Figure 2.

The direct problem of computing a scattering pattern for a spherical particle can be

solved using the series expansions of Lorenz-Mie theory [10]. We now give a brief outline

of the Lorenz-Mie model of intensity to indicate the work involved in a typical function

evaluation in the global optimization calculations discussed in subsequent sections. Sup-

pose the incident light has intensity I0 and wavelength in vacuo λ. Suppose also that the

refractive index of the scattering medium is n0. Then the intensity of scattered light is

given by

I1 =
I0

k2R2 jS1j2

where R is the radial coordinate, k = 2πn0=λ and S1 is defined by

S1 = ∑
j

2 j+1
j( j+1)

(a jπ j +b jτ j): (2)

The values of π j and τ j depend on the scattering angle θ and are obtained from recurrence

relations involving Legendre polynomials Pj. Specifically

π j = (2 j�1)Pj +π j�2 τ j = j( j+1)Pj�π j cosθ

with initial conditions π0 = 0; π1 = 1; τ0 = 0; τ1 = cosθ. The values of a j; b j depend

on Bessel-Ricatti functions

ψ j(x) =
p

xJj+1=2(x) χ j(x) =
p

xYj+1=2(x)
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where J;Y respectively denote half-order Bessel functions of the first and second kinds.

If we now define the relative refractive index

nr =
n
n0

and let ξ j(x) denote the complex function ψ j(x)+ iχ j(x) then

a j =
nrψ j(nrx)ψ0

j(x)�ψ j(x)ψ0

j(nrx)

nrψ j(nrx)ξ0j(x)�ξ j(x)ψ0

j(nrx)

and

b j =
ψ j(nrx)ψ0

j(x)�nrψ j(x)ψ0

j(nrx)

ψ j(nrx)ξ0j(x)�nrξ j(x)ψ0

j(nrx)
:

The summation in (2) continues until the imaginary parts of a j and b j become sufficiently

small.

2 Identification using least-squares data fitting

Suppose we have experimental measures of scattered light intensity

I1(θ1); I1(θ2); :::; I1(θm)

and we wish to determine corresponding values for particle radius r and refractive index

n. A standard approach involves finding r and n to minimize

E1 =
m

∑
i=1

(I1(θi)� k �ϕ(θi;r;n))
2 (3)

where ϕ is the function appearing in the Lorenz-Mie model (1). The additional variable k

appears because experimental measurements usually determine relative intensities at each

θi and so a scaling is necessary to match the model values.

In practice, because the intensities vary widely in magnitude over the range 0Æ � θi �
180Æ, it may be advisable to consider an objective function of the form

E2 =
m

∑
i=1

(i(θi)�ψ(θi;r;n)� c)2
; (4)

where i denotes log I1, ψ denotes log ϕ and c = log k. Experimental results are often

presented in this form in order to give increased weighting to scattering at large angles.

There are a number of optimization techniques which can be used to minimize (3) or

(4). An obvious possibility is the Gauss-Newton method which is designed to deal with

functions of the form

F(x) =
m

∑
i=1

fi(x)
2
:
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It uses the fact that

∇F(x) = 2J(x)T f (x) and ∇2F(x) = 2J(x)T J(x)+
m

∑
i=1

fi(x)∇2 fi(x)

where f (x) = ( f1(x); :::; f (m(x))T and J(x) is the Jacobian matrix whose (i; j)-th element

is ∂ fi(x)=∂x j. If the minimum value of F is near-zero and/or the subfunctions fi are

near-linear the second term in ∇2F(x) may be neglected and hence the iteration

x(k+1) = x(k)+d(k) = x(k)� J(x(k))T J(x(k))�1J(x(k))T f (x(k)) (5)

can be regarded as an approximate form of the Newton method for minimizing F(x).

Practical implementations of the Gauss-Newton algorithm include a line search so that

x(k+1) = x(k)+αd(k), where α is a scalar chosen to ensure F(x(k+1))< F(x(k)).

The minimization of either E1 (or E2) can be regarded as a three-variable or a two-

variable problem. In the case of E1 we can write

∂E1=∂k =�2
m

∑
i=1

ϕ(θi;r;n) � (I1(θi)� k �ϕ(θi;r;n)); (6)

and since ∂E1=∂k = 0 at the minimum, we can obtain the optimal value of k in terms of

the other two variables as

k =
∑m

i=1(I1(θi) �ϕ(θi;r;n))

∑m
i=1 ϕ(θi;r;n)2 : (7)

Similarly, the optimal value for c in (4) is

c =
∑m

i=1(i(θi)�ψ(θi;r;n))
m

: (8)

We have discussed elsewhere [18, 19] the application of a Gauss-Newton method

to the minimization of (3) and (4) in order to identify r and n from perfect scattering

data – i.e. values of i(θ) which have been generated from the Lorenz-Mie model. In

this relatively simple case (3) and (4) both have a global minimum of zero (and hence the

Gauss-Newton method can be expected to work well). However, it turns out to be difficult

to obtain the correct values of r and n because (3) and (4) have many local minima. For

instance, if we use perfect data derived from the Lorenz-Mie model with n = 1:525; r =

1:475 then the function (4) has six local minima within the region 1:475 � n � 1:575

and 1:375 � r � 1:575. In such a case, the region of convergence for the Gauss-Newton

method about the global solution is relatively small. In practice we may not have good

estimates of the optimum values of n and r and so we will need to use a global rather than

a local optimization technique.
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2.1 Global optimization of (3) and (4)

One possibility, considered in [19], is to use the Gauss-Newton method within the frame-

work of a multi-start approach due to Rinooy Kan & Timmer [24, 25]. Essentially, this

uses many local optimizations from different starting points in order to seek all the min-

ima within the region of interest. The Rinooy Kan & Timmer algorithm includes tests

(based on cluster analysis) designed to avoid redundant local searches by rejecting start-

ing points which are too close to each other or are near to areas where a local minimum

has already been found. Termination occurs when the number of minima actually found

is sufficiently close to a Bayesian estimate of the total number of minima.

In this paper we shall also use an alternative global optimization method DIRECT

[26]. DIRECT (which is an acronym for DIviding RECTangles) is a non-gradient method

which minimizes a function F(x) in some chosen hyperbox li � xi � ui. It proceeds by

systematic subdivision of this region into smaller hyperboxes. This is done quite effi-

ciently by only subdividing boxes which pass a test for potential optimality.

DIRECT begins with a given hyperbox defined by its centre point, c0, the value of the

objective function, F0 = F(c0), and the n vector of displacements s0. These displacements

are such that li = c0i� s0i and ui = c0i + s0i for i = 1; ::;n. This initial hyperbox is then

systematically split into smaller ones, using the procedure subdivide described below.

For each hyperbox, j;(= 1; :::;J) we have a centre c j (where the function value is Fj) and

a vector of semi-sides s j. Hyperboxes are grouped according to a size parameter δ j, which

is the distance from centre to any corner. We shall suppose that among the J hyperboxes

there are only KJ � J different size values.

When the procedure subdivide is applied to an existing hyperbox characterized by

(c j;Fj;s j;δ j) it only shrinks the longest edges. If there is a unique longest edge then

DIRECT replaces the existing box j by three new ones, constructed by trisecting the

appropriate side. If several edges of hyperbox j all have the same “longest” length, then

the trisection process is repeated for each of them. (It should be noted, however, that the

boxes created by establishing new centres parallel to the second and subsequent sides will

be smaller than the boxes created by division along the first one. It is suggested in [26]

that the order in which long edges are dealt with should be based on some exploratory

function evaluations, with a view to enclosing the smallest new function values in the

largest of the new hyperboxes.)
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At each iteration of DIRECT, some of the current hyperboxes j = 1; :::;J are selected

for further subdivision. The aim is to explore the whole region efficiently by only com-

puting extra function values in regions which can be termed “potentially optimal”. Po-

tentially optimal hyperboxes are chosen via the procedure identify given below. We note

first of all, however, that we need only examine KJ of the hyperboxes – i.e. for each of

the different δ j-sized candidates we need only consider the one whose centre has the least

function value.

We now explain how the procedure identify selects from the current set of hyperboxes

those which are worth further exploration. Suppose first that Ω is a Lipschitz constant for

the function F – i.e. that jj∇Fjj< Ω. Then a lower bound for F inside the hyperbox j is

given by F j = Fj�Ωδ j. Hence the most promising box would be the one for which F j is

smallest. This argument, of course, assumes that a valid Lipschitz constant Ω is known –

which will not usually be the case. The basis of DIRECT is therefore to consider whether

there exists any Lipschitz constant such that box j could contain a lower function value

than any other box. Thus, box j is more promising than box k if there exists a positive Ω

such that

Fj�Ωδ j < Fk�Ωδk:

We note that no such Ω exists if δ j = δk and Fj � Fk. Hence, as mentioned above, we

only need to test the potential optimality of the box with size δ j the smallest F value. If

δ j > δk then box j can be potentially optimal only if

Ω > Ωmink =
Fj�Fk

δ j�δk
;

while if δ j < δk then box j the corresponding condition is

Ω < Ωmaxk =
f j� fk

δ j�δk
:

We can calculate Ωmink or Ωmaxk for the smallest-valued hyperbox for each size δk (6=
δ j) and then set Ωmin = maxfΩminkg; Ωmax = minfΩmaxkg. Box j can then only be

potentially optimal if Ωmax > 0 and Ωmin < Ωmax.

Even if there is a valid range [Ωmin;Ωmax] we can apply a further filter to try and

reduce the number of boxes to be subdivided. We only treat box j as potentially optimal

if it might produce a worthwhile decrease in Fmin, the least function value found so far.

Thus we test

Fj�Ωmaxδ j < Fmin� εjFminj
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where ε is a user-specified parameter. If this inequality fails then box j is judged to be not

worth further subdivision at the present time.

Successful experience with DIRECT on practical problems is reported in [20, 27].

2.2 The effect of noise in experimental data

We now consider how the global solution of (4) can be affected by the presence of noise

in real-life experimental data. One obvious point is that the global solution for noisy data

will not now be characterized by E2 = 0. A consequence of this may be to cast doubt

upon the connection between the global minimum of (4) and a true identification of the

particle. Consider for instance the real-life scattering dataset py12log (Figure 2) which is

discussed more fully in a later section.
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Figure 2: Scattering pattern py12log

Because this scattering pattern shows some truncation or flattening of the intensity

measurements in the region of θ = 0o and θ = 180o, the identification is based only on

readings in the range 20o � θ � 160o. With this data, the function (4) turns out to have

(at least) three minima all of which correspond quite well to prior knowledge about the

particle which produced the pattern. These minima are:

n � 1:5032; r � 1:8014 giving E2 � 19:07

n � 1:4737; r � 1:8210 giving E2 � 19:62

n � 1:4909; r � 1:8219 giving E2 � 19:88

Here the global solution is not very much better than its two nearby competitors. In fact,

the differences in the values of E2 are probably small in relation to the experimental errors
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which cause the minimum of (4) to be so much greater than zero. Therefore we might not

be sure that the least value of E2 defines the particle very precisely.

The error function (4) for the dataset py12log is visualised in Figures 3 and 4 below.
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Figure 3: Contour plot of error function (4) for py12log

In the contour plot – which shows the local minima quite well – the dark areas repre-

sent sharp peaks. These can be seen more clearly in the surface plot in Figure 4.
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Figure 4: Surface plot of error function (4) for py12log

The dataset py12log provides an even more damaging piece of evidence about the

dangers of blindly associating the global minimum of (4) with an identification of the

“actual” particle. By enlarging the search region for the global optimization methods we

find that there are two more optima of E2 which are “better” than the ones quoted in the
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previous paragraph. These are:

n � 1:6604; r � 0:5328 giving E2 � 16:1

n � 0:8951; r � 0:4352 giving E2 � 12:2.

However, neither of these “solutions” is physically acceptable. The first is inconsistent

with what is known about the radius of the particle; and the second is completely outside

the bounds of possibility set by the experimental conditions.

To look at the question of experimental noise in a more general way, suppose that the

particle has radius and refractive index r� and n� but that there are errors εi (with zero

mean and standard deviation σm) in the log-intensity measurements ii(= ψi + εi). If we

calculate ψi using the correct value of x�(= (n�;r�;c)), the expected value of E2 is

E2(x
�) = ∑

i
ε2

i = m �σ2
m (9)

where m is the number of measurements. If we had an estimate of σm then we might use

it to put bounds on the value of E2 rather than trying to minimize it. (Indeed, if we make

E2 “too small” then we may be modelling the noise rather than the underlying intensity

pattern.) We can deduce a plausible value for σm for a particular data set once we have

found x̂ as the global optimum of E2. If we assume experimental errors are normally

distributed with zero mean then, by (9), we can approximate the standard deviation of the

errors by the root-mean-square value

σm � Erms
2 (x̂) =

p
(E2(x̂)=m):

Hence we may wish to consider solutions x = (n;r) such that

Erms
2 (x̂)� Erms

2 (x)� (1+ τ)Erms
2 (x̂) (10)

for some small positive τ. If we have a priori estimates x̄1 and x̄2 for the refractive index

and radius then, as suggested by Dixon [28], we could consider minimizing

e1(x) =
2

∑
i=1

(xi� x̄i)
2 (11)

subject to the constraints (10). This can be thought of as trying to find a better match to

our expectations about the solution without causing too much of an increase in the least-

squares error function. For certain particles a “good estimate” x̄ can sometimes be made

– examples include microbial cells or microparticles produced in an industrial process.

However it seems inadvisable to rely overmuch on the availability of prior information

and in the next section we shall present a more general approach.
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2.3 Using peak-matching in identification

If we do not have reliable initial estimates of n and r then we can use ideas which mimic

a visual approach to particle identification. There are occasions when visual comparison

of experimental and theoretical data – i.e., exploiting intrinsic feature-selection and data-

processing capabilities of the human brain – can produce satisfactory results, even where

least squares methods fail [2]. In particular, it has been found that positions of intensity

peaks can be useful in particle identification procedures [2, 4, 14, 29]. As an example of

this, consider Figures 5 and 6.
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Figure 5: Theoretical and experimental scattering patterns for py12log
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Figure 6: Theoretical and experimental scattering patterns for py12log

Figure 5 shows the scattering pattern py12log (solid line) together with the pattern
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produced by the Lorenz-Mie model with n = 1:5032;r = 1:8014. Figure 6 gives a simi-

lar comparison between the dataset and theoretical model when n = 1:6604;r = 0:5328.

Although the dotted line in Figure 6 is a better fit to the data in the simple least-squares

sense, it is clear that it does not correspond at all well to the essential shape of the given

pattern. Hence we now consider a way of including peak-matching in the solution of the

inverse light-scattering problem.

For brevity we let ik denote the data value i(θk) = log I1(θk). We also let K be the set

of indices of reference angles θk at which the given log-intensities satisfy

ik�2 < ik�1 < ik and ik > ik+1 > ik+2:

These conditions suggest the data has a peak near θk. (In practice, for noisy data, this is

more reliable than deducing peak positions simply on the basis of ik > ik�1 and ik > ik+1.)

If δθ is the spacing between the θ-values in the data then we can estimate first and second

derivatives by the second order formulae

i0k =
ik+1� ik�1

2δθ
and i00k =

ik+1�2ik + ik�1

δθ2 :

More accurately we can use fourth-order formulae

i0k =
8(ik+1� ik�1)� (ik+2� ik�2)

12δθ

i00k =
16(ik+1+ ik�1�2ik)� (ik+2+ ik�2�2ik)

4δθ2 :

These have proved more effective in the numerical examples quoted later. By Newton’s

method we can then deduce the peak position as occurs at

θ̂k � θk�
i0k
i00k
:

For all k 2 K, corresponding peaks in the model data will be at

θ̄k(n;r)� θk� ψ0(n;r;θk)

ψ00(n;r;θk)

where the expressions for ψ0 and ψ00 are similar to those for i0 and i00. We can now define

an error function

E3 = ∑
k2K

(θ̄k(n;r)� θ̂k)
2
: (12)

As an illustration we consider the dataset py12log again. At the least-squares solution

x̂ � (1:5032;1:8014) the value of (12) is E3 � 70:7. This is large compared with the
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corresponding E2 = 19:07 and suggests that a better identification might be obtained by

seeking x = (n;r) to solve a problem of the form

Minimize E3(x) s.t. Erms
2 (x)� (1+ τ)Erms

2 (x̂): (13)

For small values of τ, problem (13) can be seen as a way of seeking values for radius

and refractive index to give good agreement about the peak positions while limiting the

amount by which the overall error E2 can exceed its minimum value.

Bearing in mind the fact that E2 (and perhaps E3) can be highly non-convex we shall

want to seek a global solution of (13). One way to do this is by applying an unconstrained

global optimizer to an exact penalty function. For (13) we can use

F1(x) = E3(x)+ρjmax(0;Erms
2 (x)� (1+ τ)Erms

2 (x̂))j (14)

where ρ is a positive penalty parameter. Provided ρ is “sufficiently large”, the function

(14) has a global minimum at the global solution of (13). (In practice we minimize (14)

for an increasing sequence of ρ values until we get the same feasible solution for two

successive values of ρ.)

Since F1 is non-smooth we must use a non-derivative global optimization method and

a suitable candidate is DIRECT [26], already outlined in an earlier section.

3 Tests with artificial data

In order to consider how problem (13) might be used in practice, we carry out some pre-

liminary tests using artificially noisy data. In the following examples we have taken per-

fect data from the Lorenz-Mie model (with n = 1:525; r = 1:475) and then superimposed

different noise distributions to create pseudo-experimental data. The noise distributions

all have mean zero but with different standard deviations. The names noise2*, noise3*

distinguish two basic noise patterns; and the second subscript indicates the standard devi-

ation – i.e. noise*k has σm = k�0:15.

In Table 1, the first five columns give information about the solution obtained by

(global) minimization of the error function (4) – i.e. the root-mean-square values of E2

and E3, the particle parameters n̂ and r̂ and the identification error defined as

D =
p
((n̂�1:525)2+(r̂�1:475)2):
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The last two columns give the root-mean-square values of E2 and E3 corresponding to

n = 1:525;r = 1:475, the parameters of the “true” particle.

Problem Erms
2 (x̂) Erms

3 (x̂) n̂ r̂ D Erms
2 (x�) Erms

3 (x�)

noise21 0.1496 0.294 1.5244 1.4750 6�10�4 0.150 0.295

noise31 0.1479 0.237 1.5237 1.4746 1:4�10�3 0.150 0.244

noise22 0.2993 1.166 1.5238 1.4750 1:2�10�3 0.300 0.863

noise32 0.2963 0.354 1.5220 1.4748 3�10�3 0.300 0.358

noise23 0.4491 1.366 1.5233 1.4750 1:7�10�3 0.450 0.876

noise33 0.4441 0.551 1.5193 1.4754 5:7�10�3 0.450 0.473

noise24 0.5988 1.680 1.5229 1.4751 2:1�10�3 0.600 1.179

noise34 0.5911 0.742 1.5161 1.4761 9�10�3 0.600 0.624

Table 1: Errors at the least-squares and exact solutions of artificial problems

We comment first of all that the approach based on global minimization of (4) seems

fairly robust. Even at high levels of noise we get quite good identification of the actual

particle. The worst results are for datasets noise34, noise33, noise23 and noise24; and

there are particularly large values for Erms
3 at the computed least-squares solutions for

noise22, noise23 and noise24. For these three cases the solution of (13) might be expected

to provide a better identification than that given by the solution of (4). On the other hand,

if we compare the values of Erms
3 in the final column with those in column two then we see

that, in several cases, the peak-matching errors are smaller at the least-squares solution

than at the true solution. In these instances it seems unlikely that the use of (13) will yield

a better identification.

If we consider noise22 and solve (13) with the constraint Erms
2 (x)� 0:3 we get

n � 1:5247; r � 1:4755 with Erms
3 � 0:827.

Since we know the “true” solution we can see that this is an appreciable improvement in

the identification of the particle compared with that given by minimizing (4). However,

even without such prior knowledge we can infer that the solution of (13) is better if we

look at the relative changes in E3 and E2. We let x̂ denote the global minimum of (4) and

x̃ the solution of (13) and consider the ratio

κ =
Erms

3 (x̃)

Erms
3 (x̂)

: (15)
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For this problem we find that κ � 0:71, indicating that there has been about a 30% im-

provement in peak-matching. This has been obtained at the expense of a small (less than

0:3%) increase in the least-squares error function. Therefore it seems reasonable to regard

x̃ as a better solution to the identification problem.

Of course, in a real problem, we would not know in advance that Erms
2 (x) � 0:3 is

an appropriate limit to use in (13). A more general way of looking at the situation is

suggested by the remark at the end of the previous paragraph. The improvement in peak-

matching due to going from x̂ to x̃ is given by

∆3(x̃) = 1� Erms
3 (x̃)

Erms
3 (x̂)

while the loss of accuracy in overall data-matching is given by

∆2(x̃) =
Erms

2 (x̃)

Erms
2 (x̂)

�1:

Since we want the change in E2 to be small relative to the change in E3 we can replace

the constraint in (13) by the requirement that ∆2(x̃) < ε∆3(x̃) where ε is a small positive

constant. Thus we obtain a more general problem instead of (13), namely

Minimize E3(x) s.t.
Erms

2 (x̃)

Erms
2 (x̂)

�1 � ε(1� Erms
3 (x̃)

Erms
3 (x̂)

): (16)

The global solution of this constrained optimization problem can be obtained if we apply

DIRECT to an exact penalty function of similar form to (14).

Table 2 shows the results of solving (16) with ε = 0:01 for some of the noisy datasets

considered above. (For the other datasets the refinement procedure makes no significant

change to the original least-squares solution x̂.)

Problem Erms
2 (x̂) Erms

3 (x̂) n̂ r̂ D

noise22 0.3 0.793 1.5249 1.4756 6�10�4

noise23 0.45 0.704 1.5254 1.4759 9:8�10�4

noise33 0.444 0.52 1.5200 1.4757 5�10�3

noise24 0.601 1.061 1.5256 1.4741 1:1�10�3

noise34 0.592 0.689 1.5173 1.4765 7:8�10�3

Table 2: Errors at solutions of (16) for artificial problems

From our knowledge of the “true” solution to these particular examples we can see

that the refinement process gives a worthwhile improvement in the computed estimates of
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n and r. It is worth noting that, on these examples at least, it is the estimate of refractive

index more than the estimate of radius that is improved by the use of (16). Specifically,

for noise23 both the peak match and the accuracy of the estimated (n;r) improve by about

40% while for noise24 a peak-match improvement of about 37% yields a 48% reduction

in the errors in (n;r). On the other hand, however, the refinement makes, at best, only

small improvements to n when the peak-matching errors at x̂ are relatively small. We

can get slightly better results from (16) in the cases involving noise33 and noise34 if we

change ε to 0.02. We then obtain for noise33 the results:

n � 1:5207; r � 1:4760 with Erms
2 � 0:445; Erms

3 � 0:501, D � 4:4�10�3

while for noise34 we get

n � 1:5183; r � 1:4767 with Erms
2 � 0:592; Erms

3 � 0:661, D � 6:9�10�3

In both cases the peak-match is improved by about 10% and the error in the computed

(n;r) is reduced by about 40%. This indicates that the choice of ε in (16) may be some-

what problem dependent. If, for instance, we use ε = 0:02 for the cases noise23 and

noise24 then the refinement process over-corrects and produces worse estimates of both

n and r. Notwithstanding these remarks, however, the experience reported in this section

seems sufficiently encouraging that we shall now turn our attention to problems involving

real-life experimental data.

4 Experimental data results

We now consider four sets of experimental data. The first two sets (py12log, lp29log)

are scattering patterns for fungal spores and the second two (n1log, p1log) are measure-

ments from polystyrene microspheres. All patterns were obtained from single particles

suspended in water [2, 4], leading to the presence of distortion and/or noise at quite high

levels in some cases. In these realistic situations we have, at best, only a rough estimate

of the “true” solution.

Figure 2 shows the scattering pattern py12log. Knowledge of the original experiment

suggests that this particle has refractive index n � 1:5 and radius r � 1:8 µm. As we

observed earlier, the identification is based only on data points in the range 20Æ� 160o

because the intensity measurements appear to have been truncated at low and high scat-

tering angles.

Figure 7 shows the scattering pattern lp29log in the range 20Æ�160Æ. Prior knowledge
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in this case suggests a particle with n � 1:5 and r � 1:5 µm.
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Figure 7: Scattering pattern lp29log

The third data set, n1log, for which the expected values are n � 1:6 and r � 1:0 µm,

is shown in Figure 8. Here we only have reliable measurements in the range 20Æ�140Æ.
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Figure 8: Scattering pattern n1log

The last data set, p1log is shown in Figure 9 where measurements are confined to the

range 10o� 120Æ. The expected values of the refractive index and radius in this case are

n � 1:6 and r � 0:6 µm.

The last two patterns came from particles which were known to have good sphericity

and homogeneity of refractive index; the refractive index was larger than for the first

two particles, leading to a relatively stronger scattering pattern with respect to noise. In
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Figure 9: Scattering pattern p1log

addition, n1log came from a larger particle than p1log, giving a further improvement in

the signal-to-noise ratio.

4.1 The dataset py12log

Since we believe that the data comes from a particle with n � 1:5 and r � 1:8, the ranges

1:4 � n � 1:6; 1:7 � r � 1:9 were chosen for the global optimization of (4). It turns out

that there are 19 local optima in this region. As already mentioned, the best three solu-

tions are:

n � 1:5032; r � 1:8014 giving Erms
2 � 0:368;Erms

3 � 1:979

n � 1:4737; r � 1:8210 giving Erms
2 � 0:373;Erms

3 � 2:002

n � 1:4909; r � 1:8219 giving Erms
2 � 0:376;Erms

3 � 3:679

While these candidate solutions are relatively close in terms of E2, none of them are very

satisfactory in terms of the peak-matching error E3. Therefore we solve problem (16),

taking x̂ as the best of the three quoted minima of E2 and using ε = 0:01. We get

n � 1:5007; r � 1:8002 giving Erms
2 � 0:371; Erms

3 � 0:522

Here the values of n and r have moved nearer to the expected value and, as a more objec-

tive comment, the peak match error Erms
3 is reduced by over 70% compared with what it

was at the least-squares solution.

If we solve (16) with x̂ taken as the second of the local optima we obtain

n � 1:4993; r � 1:7989 giving Erms
2 � 0:376; Erms

3 � 0:372

In other words, peak-matching considerations have moved the solution substantially away
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from the second-best local minimum of (4) and we can now have more confidence that,

to two decimal places at least, the refractive index and radius of the particle can be taken

as 1.50 and 1.80.

4.2 The dataset lp29log

Because of our expectations about this particle, the search ranges 1:4� n� 1:6 and 1:3�
r � 1:7 were used for the global optimization of (4). At least thirteen local minima exist

in this region, of which the best two are

n � 1:5428; r � 1:6218 giving Erms
2 � 0:3555; Erms

3 � 3:079

n � 1:5373; r � 1:4411 giving Erms
2 � 0:3562; Erms

3 � 0:884

These two solutions are very close in terms of E2, although the first is inferior in terms

of peak-matching. Both solutions are plausible in terms of our limited prior knowledge

about the particle.

When we solve (16), using ε = 0:01 and taking x̂ as the better of the local solutions

above we obtain

n � 1:5448; r � 1:6240 giving Erms
2 � 0:359; Erms

3 � 0:431.

This gives about an 85% reduction in Erms
3 . Moreover, if we base (16) on the second-best

candidate solution it produces virtually the same result. Once again, we have been able to

use peak-matching to distinguish between two quite similar solutions to the identification

problem and hence to deduce that the refractive index and radius can be taken as about

1.54 and 1.62, respectively.

4.3 The dataset n1log

On the basis of a priori information, a search region 1:5 � n � 1:7; 0:8 � r � 1:5 was

used for the global minimization of (4). There are 29 local minima in this box, but in this

case the global solution is clearly distinct from the rest. It is

n � 1:5869; r � 1:1082 giving Erms
2 � 0:1165;Erms

3 � 0:242.

If we take this point as x̂ and solve (16) with ε = 0:01 we get no significant change in

the computed values of n and r which indicates that peak-matching cannot improve this

already quite good solution.

20



4.4 The dataset p1log

For this problem, the range for global optimization of (4) was 1:5� n� 1:7; 0:4� r� 0:7.

The result obtained is

n � 1:6537; r � 0:5811 giving Erms
2 � 0:17Erms

3 � 0:818

If we base problem (16) on this point and use ε = 0:01 we get the result

n � 1:6538; r � 0:5805 giving Erms
2 � 0:17; Erms

3 � 0:77.

This small shift in n and r represents only about a 5% improvement in peak matching

compared with the original least-squares solution. Hence we have a reasonable indication

that the particle has already been quite well identified by the basic least-squares approach.

5 Discussion

We have considered a standard least squares approach to the solution of an inverse light

scattering problem and noted that, for noisy data, it may not always give satisfactory re-

sults. Hence we have considered an alternative technique using a constrained optimization

problem (16) which is based on the idea of minimizing a “peak-matching” function sub-

ject to constraints on the least-squares error function (4). Some initial tests of (16) have

been performed using data sets which include artificial noise. In cases where the solution

obtained by global optimization of (4) does not agree very well with the position of in-

tensity peaks in the data, (16) has been shown to be quite successful in producing better

estimates of refractive index and radius which give better correspondence to the “shape”

of the scattering data.

Based on these ideas, we have developed a composite approach to the identification

of particles from ‘real-world’ experimental data, which may be strongly distorted and/or

contain high levels of noise. The first phase finds the global optimum of (4) to get a

trial solution (n̂; r̂) for refractive index and radius. The constrained problem (16) is then

solved to find (ñ; r̃) to minimize a peak matching error function subject to a restriction on

the permitted increase in the overall error function (4). This increase is in turn dependent

on the amount of improvement in the peak-matching error function.

The new composite approach performs quite well in compensating for noise that is

artificially imposed on “perfect” scattering data. However, it is clear that fitting real ex-

perimental data is a more difficult problem. Figure 2, for example, shows that real data
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can be subject to distortions – such as truncation of extreme values – which may not cor-

respond very well to the normally-distributed artificial noise applied to the perfect data

in section 3. In practice, detailed information concerning noise levels and/or filtration

may be either unavailable or unreliable – as, for example, when adaptive noise reduction

precedures are used to allow dealing with variable noise levels in raw data. The effects of

the distortion may be only partly alleviated by our strategy of basing the identification on

a restricted range of the data.

In using our refinement procedure on real-life examples we have found that it can

sometimes produce significant improvements to the least-squares estimates of the particle

parameters; but in other cases it makes little or no difference to the results. The diffi-

culty in assessing the effectiveness of the changes that are (or are not) made is that we

only know approximately what the “right answer” should be! Comparison between the

Lorenz-Mie scattering patterns generated at the solutions of (4) and (16) shows that the

differences are quite subtle. Re-positioning of peaks at the solution of (16) seems mainly

to be restricted to the angular range from about 80o to about 110o. Hence it is partly

on the basis of measurably useful performance on the artificial data that we are inclined

to believe that the refined solutions from (16) are in fact better than the ones from the

original least-squares approach. Conversely, if refinement based on (16) does not make a

significant change to the solution then we take it as some degree of confirmation that the

particle has been identified reasonably well. We can say that the use of (16) has helped to

resolve ambiguities in the solutions obtained using (4) alone.

Of course, it it is not only the presence of noise which adversely affects solutions

to the inverse light-scattering problem. Some difficulties may arise due to the common

practice of fitting intensity data in logarithmic form, as this type of scaling can have the

undesirable effect of emphasizing noise. Since evidence has recently been provided that

logarithmic scaling can be inferior to linear scaling, future studies should examine the

benefits of using linearly scaled data with various angular weighting functions, such as

sin(θ)4. [15]

Another source of difficulty in identifying real particles from experimental data is

of course that our scattering model is strictly appropriate for homogeneous, spherical

particles. We are not alone in making the working assumption that the Lorenz-Mie model

will be adequate for practical purposes [1, 8, 13, 29]. Other models exist, however, such

as the one describing a coated sphere - i.e. a particle which has one refractive index in
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an outer ”shell” and a different refractive index from the center out to a radius r2. Such

a particle is therefore described by four parameters and it is possible that this somewhat

more complex model could be adjusted by an optimization process to match physical data

more closely, whatever form of error criterion is being used. It would not add significantly

to the difficulty of the problem to increase the number of variables by two. Although the

number of shapes for which scattering solutions can be obtained is limited, there are other

forms for which rigorous solutions exist, such as ellipsoids. The extension of all the

techniques used in this paper to deal with coated spherical or ellipsoidal particles would

be a worthwhile investigation.

Finally, the study confirms the intuitive assertion that while a small number of data

points can be used for accurate inversion of angular scattering data in the case of low-

noise input – about 10 points for a 2-parameter solution with an average accuracy of

0.1 % [15] – a much greater amount of data may be needed when significant levels of

noise are present.

References

[1] P. J. Wyatt, Some chemical, physical and optical properties of fly ash particles, Appl.

Opt. 7, 975 (1980).

[2] Z. J. Ulanowski, Investigations of microbial physiology and cell structure using

laser diffractometry, PhD thesis, Hatfield Polytechnic (1988).

[3] G. Gousbet and G. Grehan, Optical particle sizing (Plenum, New York, 1988).

[4] Z. J. Ulanowski and I. K. Ludlow, Water distribution, size and wall thickness in

Lycoperdon pyriforme spores. Mycolog. Res. 93, 28 (1989).

[5] H. G. Barth and S. T. Sun, Particle-size analysis, Anal. Chem. 63, R1 (1991).

[6] L. A. de Pieri, I. K. Ludlow, and W. M. Waites, The application of laser diffractom-

etry to study the water content of spores of Bacillus sphaericus with different heat

resistances, J. Appl. Bacteriol. 74, 578 (1993).

[7] C. A. O. Nascimento, R. Guardani and M. Giulietti, Use of neural networks in the

analysis of particle size distributions by laser diffraction, Powd. Technol. 90, 89

(1997).

23



[8] P. G. Hull and M. Quinby-Hunt, A neural-network to extract size parameter from

light-scattering data, SPIE Proc. 2963, 448 (1997).

[9] L. P. Bayvel and A. R. Jones, Electromagnetic scattering and its applications (Ap-

plied Science Publishers, London, 1981).

[10] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small parti-

cles (Wiley, New York, 1983).

[11] K. Shimizu and A. Ishimaru, Differential Fourier-transform technique for the inverse

scattering problem, Appl. Opt. 29, 3428 (1990).

[12] M. R. Jones, B. P. Curry, M. Q. Brewster and K. H. Leong, Inversion of light -

scattering measurements for particle size and optical constants: theoretical study,

Appl. Opt. 33, 4025 (1994).

[13] G. M. Quist and P. J. Wyatt, Empirical solution to the inverse light scattering prob-

lem by the optical strip - map technique, J. Opt. Soc. Am. A 2, 1979 (1985).

[14] V. P. Maltsev and V. N. Lopatin, Parametric solution of the inverse light-scattering

problem for individual spherical particles, Appl. Opt. 36, 6102 (1997).

[15] Z. J. Ulanowski, Z. Wang, P. H. Kaye and I. K. Ludlow, Application of neural

networks to the inverse light scattering problem for spheres, Appl. Opt. 37, 4027

(1998).

[16] I. K. Ludlow and J. Everitt, The application of Gegenbauer analysis to light scatter-

ing from spheres, theory, Phys. Rev. E 51, 2516 (1995).

[17] I. K. Ludlow and J. Everitt, Systematic behavior of the Mie scattering coefficients

of spheres as a function of order, Phys. Rev. E 53, 2909 (1996).

[18] S. Zakovic, Global optimization applied to an inverse light scattering problem, PhD

thesis, University of Hertfordshire (1997).

[19] S. Zakovic, Z. J. Ulanowski, and M. C. Bartholomew-Biggs, Application of global

optimization to particle identification using light scattering, Inverse Problems 14,

1053 (1998).

24



[20] S. Zakovic, Z.J. Ulanowski and M.C. Bartholomew-Biggs Particle identification

using light scattering: a global optimization problem Technical Report, Numerical

Optimisation Centre, University of Hertfordshire, 2002

[21] R. Mireles, The inverse problem of electromagnetic theory. I. Uniqueness theorem

for cylinders, J. Mathematics Phys. (MIT) 45, 179 (1966).

[22] I. K. Ludlow and J. Everitt The inverse Mie problem, J. Opt. Soc. Am. A (submitted)

[23] Z. Ulanowski, R.S. Greenaway, P.H. Kaye & I.K. Ludlow, Laser diffractometer for

single-particle scattering measurements, Measurement Science and Technology 13,

292-296 (2002)

[24] A. Rinnooy Kan and G. T. Timmer, Stochastic global optimization methods. Part I:

Clustering methods, Math. Program. 39, 27 (1987).

[25] A. Rinnooy Kan and G. T. Timmer, Stochastic global optimization methods. Part II:

Multilevel methods, Math. Program. 39, 57 (1987).

[26] D.R.Jones, C.D. Perttunen and B.E.Stuckman, Lipschitzian optimization without

the Lipschitz constant, Journal of Optimization Theory and Applications, vol 79,

pp157-181, 1993

[27] M.C. Bartholomew-Biggs, S.C. Parkhurst and S.P. Wilson Using DIRECT to solve

an aircraft routing problem, Computational Optimization and Applications, Vol 21,

pp 311-323, 2002.

[28] L. C. W. Dixon, personal communication (1996).

[29] F. Robillard and A. J. Patitsas, Determination of size, size distribution and refractive

index of Dow latexes EP-1358-38 by the Mie scattering method, Can. J. Phys. 52,

1571 (1974).

25


