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ABSTRACT 
 
Percentage error (relative to the observed value) is often felt to be more 
meaningful than the absolute error in isolation. The mean absolute 
percentage error (MAPE) is widely used in forecasting as a basis of 
comparison, and regression models can be fitted which minimize this 
criterion. Unfortunately, no formula exists for the coefficients, and 
models for a given data set may not be unique. We instead explore least 
squares regression based on the percentage error. We are able to derive 
exact expressions for the regression coefficients when the model is 
linear in these coefficients. Another advantage of this approach over 
MAPE is that the solution is unique. Furthermore, it has been shown 
that this approach provides strongly consistent coefficient estimates, and 
is superior to ordinary least squares when the data does not possess 
constant variance.   
For the practitioner we demonstrate that percentage regression models 
can easily be fitted using ordinary regression software, as well as by 
spreadsheets, using simple transformation of the data.  
Finally, we show that when the relative error is normally distributed, 
least squares percentage regression provides maximum likelihood 
estimates. 
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1. INTRODUCTION 
 
When a regression model is to be used for prediction, the size of the 
error is obviously of interest. However, the magnitude of an error is not 
meaningful in isolation – it needs to be viewed in relation to the size of 
the observed or actual value. Percentage errors are often used for this 
purpose. We shall use the following definition of percentage error:   100 
× (observed value − predicted value)/(observed value). This is the 
standard definition that is used in the field of forecasting/time series 
analysis. In traditional least squares regression, an error of one unit is 
treated equally whether the dependent variable has a value of ten or a 
hundred - despite the fact that in percentage terms an error of one in ten 
would usually be considered more serious than an error of one in a 
hundred. For this reason we intend to adapt the method of least squares 
regression so that it deals with percentage errors. We note that there is a 
separate body of work which deals with minimizing the mean absolute 
percentage error (MAPE), (see for example Narula and Wellington, 
1977). This suffers from at least two deficiencies: there is no formula for 
the coefficients (one must solve a linear programming problem to find 
them), and the resulting parameter estimates may not be unique. The 
work that we present here does not have these drawbacks. 
 
It is important to highlight a difference between the standard definition 
of relative error that we shall use here, and another, namely: (observed 
value − predicted value)/(predicted value). The latter has been used by 
Book and Lao (1999) and Goldberg and Touw (2003). The question is, 
should we compare the error with the actual observed value or the value 
predicted from the model? The following may be one way of choosing. 
If one is dealing with a controlled scientific situation where the 
functional form of the underlying theoretical model is known, then any 
departures from the predictions may be due to measurement error; in 
this case, it may make sense to consider the error relative to the 
predicted value. If instead, we are unsure what the underlying model is, 
or even whether we have included all explanatory variables, then we 
cannot know what the ‘true’ value should be. This is the norm in 
finance, economics, psychology and the other social sciences. For 
example, when forecasting the value of investments traded on the stock 
market it makes sense to relate prediction errors to the observed values. 
The same argument usually applies in the area of cost estimation. The 
people who are paying the costs will find it more meaningful to assess 
the predictive ability of a cost-estimating relation (CER) using the error 
relative to what they actually paid, not relative to what the model 
predicted. Similarly, on an individual level, a prediction that a salary 
bonus would be $10k, but which actually turned out to be $5k 
corresponds to an error of 100% by the definition used in this paper, 
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whereas the other definition would rate this as only a 50% error in 
prediction. 
 
The definition of relative error that we use also has computational 
advantages over the other form. The minimisation of the sum of squares 
of the other form cannot be solved exactly. Indeed the normal equations 
now become a nonlinear system. Book and Lao (1999) have studied this, 
and note that numerical optimization techniques are usually necessary to 
find the coefficients; they point out that due to multiple local minima 
‘unreasonable solutions must be excluded, and the solution that is most 
plausible “physically” selected’. Moreover, the resulting estimators are 
inconsistent. Goldberg and Touw (2003, p.62) explain the reason for 
this: ‘simply inflating the predictions in the denominator [of the relative 
error] will tend to deflate the percentage errors, at the expense of 
worsening the fit’. This problem does not arise if we use the standard 
definition of relative error. 
 
Before proceeding to derive the necessary equations for the coefficients, 
we shall look at approaches which some might think would achieve the 
same effect as what we propose to do.  
Consider the simple case where a scatter plot of the data indicates that 
fitting a straight line (y = a + bx) is appropriate. One suggestion might 
be to use logarithms in the following way: regress ln(y) against x. The 
trouble with this is that the resulting model would not be a linear 
relationship between y and x, instead it would have ln(y) linearly related 
to x, and so y would be exponentially related to x. Admittedly this does 
correspond to a straight line when the exponent is zero, but the slope of 
the line is forced to be zero. It is in fact a common misconception that 
regressing ln (y) is equivalent to minimising the squared relative errors; 
it is approximately true only if all the errors are small, as then ln (ŷ/y) ≈ 
(ŷ/y) −1. 
 
Now let’s instead try regressing ln(y) on ln(x). The fitted model will be: 
 
ln(y) = A + B ln(x) 
 
hence y = exp[A + B ln (x)] = exp(A) xB  
 
which is again not a straight line but a power law. For the case B = 1 
this does correspond to a line, but this time it is forced to have a zero 
intercept and so passes through the origin. 
Hence, both of these approaches involving log transformations are 
inadequate because they depart from a linear model in the original 
variables, which is our assumed starting point. Another suggestion 
might be to regress ln (y) on ln (a + bx), this is a non-linear problem 
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requiring iterative computational procedures – by contrast, what we 
shall propose is much more elegant because exact expressions for the 
coefficients are available.  
 

 
2. DERIVATION OF FORMULAE FOR THE COEFFICIENTS 

 
We now derive exact expressions for the coefficients for percentage 
least squares regression. Let X be a matrix in which each column 
contains the data for one of the explanatory variables, and the first 
column contains the value 1 in each position. We aim to obtain a 
coefficient bi for each column variable, and the coefficient associated 
with the first column will be the constant.  
The values of the dependent variable are contained in a column vector y, 
which is assumed strictly positive. The data in the i’th row of the matrix 
is associated with the i’th element of the y vector. 
 
Traditionally we would minimise the sum of squared errors, eTe , where 
e denotes the vector of errors, y − Xb. (Superscript T denotes the 
transpose.) However, we are interested in the relative errors r 
(percentage error = 100 times relative error), so each error ei needs to be 
divided by yi , so ri = ei /yi. Carrying out this division on the form y −Xb 
requires that the i’th row of X be divided by yi ; this is achieved using 
the form r = Dy − DXb  where D is an n by n diagonal ‘division’ matrix 
containing the value 1/yi in the ith diagonal position and zeros elsewhere. 
D can be viewed as a matrix of weights. 
 
Now we wish to minimise the sum of squares of relative errors ∑ri

2
 

which, in vector notation, becomes 
 

rTr = (Dy − DXb)T(Dy − DXb)  
  = (Dy)TDy  − (Dy)T DXb − (DXb)TDy + bT XT D2Xb 

 
To find the minimum we differentiate this with respect to b and equate 
to zero: 
 

−(Dy)T Dx + XT D2Xb = 0 
 
This is the matrix equivalent of the normal equations of ordinary least 
squares regression. Notice that these equations have the great 
convenience of being linear in b and so can be easily solved.  
Rearranging the previous equation:  XT D2Xb = (DX)T Dy,  for which 
the solution is given by: 
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b = (XT D2X)−1 (DX)T Dy = (XT D2X)−1 XT D2 y   (1) 
  

 
To our knowledge this formula has not previously appeared as a solution 
for relative least squares. 
For those who use spreadsheets for their calculations, the vector b can 
be easily computed directly using the matrix functions MINVERSE, 
MMULT (to multiply) and TRANSPOSE.  
 
To satisfy the second order condition for a minimum we require the 
second derivative of rTr with respect to b to be positive definite. This 
derivative equals XT D2X or (DX)T DX. This square matrix will be 
positive definite if the columns of DX are linearly independent. Thus we 
shall have the required unique minimum provided that no column of DX 
is expressible as a linear combination of the remaining columns.  
 
If we compare (1) with the expression for ordinary least squares 
coefficients: (XTX)−1XTy, 
we observe that X has been replaced by DX, and y has been replaced by 
the vector Dy. Thus D acts as a matrix of weights − we discuss this in a 
later section. 
 
In the important paper by Ferreira et al (2000) on relative least squares 
regression, expressions are derived for the coefficients, and also for their 
variance. They point out the connection between weighted least squares 
and relative least squares. Their formulae for the coefficients are in 
terms of ratios of determinants. These are less compact and less 
computationally convenient than the above formula (1), because a 
separate matrix has to be set up for each coefficient. In any case, we 
shall show a more practical computational method than either of these in 
a later section – one that can be applied using any standard software 
regression routine. 
 
The consistency properties of relative least squares coefficients have 
been studied by Khoshgoftaar et al (1992). Using mild non-
distributional assumptions such as independent error terms, a finite 
value for the expected measure of goodness of fit, and compact 
coefficient space, they prove that the coefficients are strongly consistent. 
That is, (apart from a set of probability-measure zero) the coefficients 
will converge to the true values as the sample size increases. 
 
In a different vein, Park and Stefanski (1998) have also studied the best 
mean squared relative error prediction of y given x. Rather than provide 
formulae for coefficients, they assume that some underlying distribution 



for y is given, and derive an expression for the predictor in terms of 
conditional inverse moments: 
 

ŷ = E[y−1⏐x] / E[y−2⏐x]. 
 

They then apply this using the lognormal and gamma distributions. They 
also show that the mean squared relative prediction error is: 

var (y−1⏐x) / E[y −2⏐x]. 
 

It is worth observing that in their experience “engineers often think in 
terms of relative error”, and that they were motivated to explore relative 
least squares by a consulting problem with environmental engineers, 
who “citing engineering and political reasons, were steadfast in their 
dissatisfaction with the usual prediction methods, that too frequently 
resulted in unacceptably large relative errors. They wanted a “simple, 
easily implemented, and generally applicable approach to predicting”. In 
a separate paper, Park and Shin (2005) apply the above to stationary 
ARMA time series. 
 
 
Returning to expression (1) for b and focusing on the simple straight-
line case, it follows from the above that the slope for percentage 
regression is given by 
 

b = 
2
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(Note: all summations in this paper are from 1 to n, where n is the 
number of data points.) 
 
The intercept is given by 
 

a = 
2
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1
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y
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The normal equation arising from differentiating rTr with respect to the 
intercept can be written in the form: 
 

       02 =Σ
y
e          (4) 
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This expression tells us that the mean weighted error is zero if the 
weights are 1/y2. In vector terms this corresponds to E[D2 e] = 0. 
 
From (4)  
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from which it follows that there is a point through which the line will 
always pass (this would be the centroid of the data when using the 
ordinary least squares line). This is the point with coordinates given by 
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3. EASY COMPUTATION BY TRANSFORMING THE MODEL 
EQUATION  

 
Suppose we take the model equation yi = a + bxi + ei and divide through 
by yi , we obtain 

       1 = 
i

i

i

i

i y
e

y
x

b
y
a

++    (5) 

 
If we then use ordinary least squares to regress the constant left hand 
side on the first two terms on the right, (notice there is now no constant 
term), then we shall once again be minimising the sum of squared 
relative errors Σ(ei/yi)2.  Therefore, we shall again obtain the same 
coefficients. This is a much more convenient method of estimation, as 
even the Excel spreadsheet regression tool (part of the Analysis 
Toolpack) has the option to hold the constant to zero. Naturally, the 
above estimation approach carries over to the case of multiple 
explanatory variables. 
 
The regression represented by (5) can be viewed as a novel form of 
‘weighted least squares’ with weights 1/y. Weighted least squares is a 
standard way of dealing with unequal variances (heteroscedasticity). 
Traditionally in some disciplines (e.g. econometrics), the 
heteroscedasticity problem has been dealt with by using weights which 
are a function of one of the explanatory variables and so some element 
of trial and error variable has been required to select this variable. (See, 
for example, Greene 2003, section 11.5). However, in our treatment, one 
no longer needs to be concerned with choosing from the explanatory 
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variables for the transformation − the single dependent variable is used 
instead.  
 
Saez and Rittmann (1992) have carried out Monte Carlo investigations 
of relative least squares regression where the y-data does not have 
constant variance but does have constant relative variance. By using 
generated data they could compare estimated parameters with the known 
values from the generating model. They found that the 90% confidence 
regions for the coefficients were approximately centred on the true 
values, whereas this was not the case for ordinary least squares – in fact 
the OLS confidence regions did not even always include the true values. 
The relative least squares confidence regions were also much smaller 
than those for OLS. They concluded that relative least squares was 
superior to OLS for such heteroscedastic data.  
 
 
4. ANALYSIS OF RELATIVE VARIANCE AND GOODNESS OF 
FIT 
 
In ordinary least squares the disturbance term is orthogonal to each of 
the explanatory variables. From (5) the equivalent orthogonal relations 
for our weighted regression are:  
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The disturbance term is also orthogonal to the predicted dependent 
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Let us define the relative variance as: 
 

2)(1
y

yy
n

−∑  

 
Ignoring the 1/n , this can be written as 
 

∑ −+−
2

2)ˆˆ(
y

yyyy
 = ∑∑ ∑ −−

+
−

+
−

22

2

2

2 )ˆ)(ˆ()ˆ()ˆ(
y

yyyy
y

yy
y

yy
 

 
The final term in the previous expression is zero as a consequence of the 
normal equation (6). We thus have: 
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Total relative variation = Explained relative variation + Unexplained 
relative variation,  
 
which is a decomposition of the relative variance.  
From this we can now define a statistic to measure the goodness of fit of 
our model, akin to r2: 
thus the ‘coefficient of relative determination’ is the ratio:   
 

variationrelativeTotal
 variationrelative Explained

 
 
This ratio gives the proportion of the relative variation that is explained 
by the model. One can see that this will have a value in the range zero to 
one. 
 
 
5. A NOTE ON MEASUREMENT SCALE 
 
If all values of the dependent variable are re-scaled by multiplying by a 
positive constant, then the percentage errors remain unchanged. 
Consequently the resulting percentage least squares model will be 
equivalent to the original model, and it will provide equivalent 
predictions. For example if the y-variable is multiplied by 10 (e.g. due to 
conversion from centimetres to millimetres), then all coefficients in the 
fitted model equation will also be multiplied by 10.  
 
If however, a constant is added to each value of the dependent variable 
then the percentage errors will not be the same as before. In this case the 
model fitted using percentage least squares will not be equivalent to the 
previously estimated model. The situation is akin to speaking of 
percentage changes in Fahrenheit temperature and percentage changes 
measured on the Celsius scale – the two are not the same because these 
scales do not share a common zero point. In short, the dependent 
variable needs to be measured on a ratio scale when using percentage 
regression. This is because a percentage is not meaningful if one is 
permitted to shift the zero of the scale.  
 
 
6. MAXIMUM LIKELIHOOD 
 
We now deal with the following question: is there a distribution for 
which the above estimators are maximum likelihood estimators?  
 
Consider the following multiplicative representation 
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y = Xβu      (7) 



 
where u is multiplicative error factor, as opposed to an additive error 
term. Obviously, we want the expected value of u to be unity – hence 
the choice of the symbol u. We would like to have E[y] = Xβ , so we 
assume that the error factor is independent of the explanatory variables 
so that E[y] = E[Xβ] E[u] = E[Xβ] = y 
so that the estimate of the mean response will be unbiased. 
 
Let us define vi   = 1/ ui 
Once we have an estimator b, our conditional estimate of the mean of y 
is ŷ = Xb ,  then  

vi = E[yi]/yi         (8) 
An error is indicated by this ratio differing from unity. Notice that 1− vi 
= ri  , which is the relative error. We now assume that the relative error 
is normally distributed with mean zero and constant variance (σ2). This 
implies that v is normally distributed with mean value unity and 
constant variance (σ2). [See the Appendix for the implications regarding 
the conditional distribution of y.] From (8), for any given xi there is a 
one to one relationship between y and v. For a given data sample the 
likelihood function in terms of v is given by 
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and in terms of y, the negative of the log likelihood becomes 
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The summand is the square of the relative error, so it is now apparent 
that if we choose the coefficient values which maximise the log 
likelihood we shall obtain the same estimates for the coefficients as we 
had previously in (1).  
Thus we have the important result that when the relative error is 
normally distributed N(1,σ2) the least squares percentage regression 
estimators are maximum likelihood estimators. 
 
We can estimate σ2 in the same way by differentiating the log likelihood 
with respect to σ2 and setting the derivative to zero: 
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If we also substitute our estimators for β, we obtain the following as our 
estimator for σ2 
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From (9) the log likelihood contains the sum of squared relative errors. 
If these are independent and identically distributed then for large n we 
can apply the central limit theorem. This can be used to deduce a 
confidence interval for the coefficients (see Lloyd 1984, page 
 
 
7.  UNBIASEDNESS 
 
We now show that our estimator for β is unbiased. From (1) 
E[b] = E[(XT D2X)−1 XT D2 y] = E[(XT D2X)−1 XT D2 X βu] = E[βu] 
Assuming that the error factor is independent of β, we have: 
E[b] = E[β] E[u] = E[β] = β. Hence b isan unbiased estimator of β. 
 
 
8.  CONCLUSION 
 
This paper is aimed at those who wish to construct predictive models 
based on least squares regression where the user feels that reducing 
percentage errors is more important, more useful, or more meaningful 
than reducing absolute errors. We have derived, from first principles, 
exact expressions for the regression coefficients based on percentage 
errors for a linear model. These percentage errors are relative to the 
observed values - this is the standard definition of percentage error used 
in forecasting. When making predictions it usually makes more sense to 
relate the size of the error to the actual observation to measure its 
relative size. This is a departure from some of the existing literature on 
relative error least squares regression (e.g. Book and Lao (1999), and 
Goldberg and Touw (2003)) where the error relative to the predicted 
value has been used. The latter approach suffers on two counts. Firstly, 
because the predicted values appear in the denominator of the fitting 
criterion, its value can be improved by inflating the predicted values – 
despite the fact that this worsens the fit i.e. it gives biased estimates. 
Secondly, even for a linear model, estimation requires iteratively re-
weighted least squares. 
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We have shown that the proposed method is equivalent to a form of 
weighted least squares – where, unusually, the weights depend on the 
dependent variable. This connection allowed us to develop a form which 
had great ease of computation. Indeed the models can easily be fitted 
using standard spreadsheet software. In comparing ordinary least 
squares with percentage least squares, the key difference is that the latter 
places greater weight on smaller values of the dependent variable, 
whereas the former places greater weight on the larger values.  
 
We also showed that for a normally distributed multiplicative error 
model the least squares percentage estimators are maximum likelihood 
estimators. In short, the standard additive error model is linked to 
ordinary least squares regression in the same way that the multiplicative 
error model is linked to least squares percentage regression. 
 



Appendix 
The distribution of y when the relative error is normally distributed 
 
In deducing the maximum likelihood estimates we assumed that the 
relative error (ri =1 − µy/yi ) was normally distributed, N(0, σ2). What 
does this imply about the conditional distribution of y? From (8) we 
have ri =1−vi = 1 − µy/yi and thus vi ~N(1, σ2) . The conditional value of 
y should therefore follow the reciprocal normal distribution (not to be 
confused with the inverse normal). Specifically, we can use the change 
of variable rule to deduce the distribution of yi for a given xi (Greene, 
2003, Appendix B6): 
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Where σ is the standard deviation of the relative error, here assumed to 
have mean value unity. Figure 1 charts this density function for two 
values of σ. 
 

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5

 
 
Figure 1. Probability density of y when the relative error is normally 
distributed with mean unity and σ = 20% (upper curve) and σ = 40% . 
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