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Abstract: Disinfection of nosocomial pathogens in hospitals is crucial to combat healthcare-acquired 11 

infections which can be acquired by patients, visitors, and health care workers. However, the pres- 12 

ence of a wide range of pathogens and biofilms, combined with the indiscriminate use of antibiotics, 13 

present infection control teams in healthcare facilities with ongoing challenges in the selection of 14 

biocides and application methods. This necessitates the development of biocides and innovative 15 

disinfection methods that overcome the shortcomings of conventional methods. This comprehen- 16 

sive review finds the use of hydrogen peroxide vapour as a superior alternative to conventional 17 

methods. Motivated by these observations, herein we provide a comprehensive overview on the 18 

utilisation of hydrogen peroxide vapour as a superior high-level disinfection alternative in hospital 19 

settings. This review finds hydrogen peroxide vapour very close to an ideal disinfectant due to its 20 

proven efficacy against a wide range of microorganisms, safe to use, lack of toxicity concerns, and 21 

good material compatibility. The superiority of hydrogen peroxide vapour was recently demon- 22 

strated in the case of decontamination of N95/FFP2 masks for reuse to address the critical shortage 23 

caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the Covid-19 24 

pandemic. Despite the significant number of studies demonstrating antimicrobial activity, there re- 25 

mains a need to critically understand the mechanism by performing studies which simultaneously 26 

measure the damage to all bacterial cell components, and a correlation of this damage with a reduc- 27 

tion in viable cell count. This can lead to improvement in antimicrobial efficacy and foster the real- 28 

isation of superior approaches. 29 
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 32 

1. Introduction 33 

Disinfection is described as a process that eliminates many or all pathogenic micro- 34 

organisms on inanimate objects with the exception of bacterial endospores [1]. Disinfec- 35 
tion is usually carried by chemical or physical means [1]. Among other settings, disinfec- 36 
tion is of utmost importance in hospital environments due to pathogens living on hospital 37 

surfaces being the direct cause for hospital-acquired infections (HAIs). HAIs, also referred 38 
to as health care acquired infections [2], are infections that are not present or are not incu- 39 

bating at the time of hospital admission [3]; these can be acquired by patients, visitors and 40 
health care staff. HAIs also include infections acquired in healthcare settings outside hos- 41 
pitals; such settings include ambulatory care, care homes and family clinics [4]. These in- 42 

fections can appear 48 hours after hospital admission or within 30 days of receiving care 43 
[3]. HAIs have been one of the major causes of increases in deaths among patients receiv- 44 

ing care in health care settings [2]. HAIs are a major risk not only to patient health but also 45 
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to occupational care staff and hospital visitors. The number of patients acquiring HAIs 46 
when in hospital care within the National Health Service in the United Kingdom is esti- 47 
mated to be 300,000 per annum [5]. Infections acquired in hospitals have an adverse effect 48 

on patient outcomes (increase in the duration of hospital stay and exposure to new infec- 49 
tions) and increase the mortality rate and the costs associated with patient care [2, 6]. In 50 

the United States alone, HAIs are estimated to impact two million patients each year re- 51 
sulting in around 90,000 deaths per year and an estimated direct cost of US$28 to US$45 52 
billion [6].  An exponential growth in the number of HAIs has been observed since the 53 

1980s mainly due to the emergence of multi-drug resistant bacteria [7-9]. The indiscrimi- 54 
nate use of antibiotics is a major contributing factor to this as it has led to some bacteria 55 

acquiring drug resistance. The increasing number of HAIs is a matter of serious concern 56 
as they can lead to severe illness, death and high health care costs.  57 

Pathogens causing HAIs can spread through the touch of infected surfaces. Some 58 

studies have shown that pathogens can infect and survive on an inanimate surface from 59 
a period of a few hours to years [10, 11]. For example, Escherichia coli (E. coli) can survive 60 

on dry inanimate surfaces from 1.5 hours to 16 months, while Clostridium difficile (C. dif- 61 
ficile) can survive on dry inanimate surfaces and hospital floors for a period of up to 5 62 
months [10, 12]. E. coli spreads through ingestion of contaminated food, milk or water as 63 

well as through person-to-person transmission leading to blood and urinary tract infec- 64 
tions [13]. C. difficile spreads through extensive surface contamination and causes diar- 65 

rhoea and colitis [12, 14]. The ability of these clinically relevant nosocomial pathogens to 66 
survive on hospital surfaces has led to the need for disinfection or in simple terms to the 67 
need to kill these disease-causing micro-organisms. Indeed clinical studies have shown 68 

that poor environmental hygiene can lead to transmission of the pathogens [15].  Patho- 69 
gens living on surfaces or on shared and non-shared equipment in hospitals can lead to 70 

hand contamination (upon contact) and to further transmission to equipment, patients 71 
and high-touch surfaces [16].  Pathogen transmission occurs via patients and healthcare 72 
staff by coming into contact with high-touch surfaces such as door handles, beds, taps and 73 

telephone receivers [16]. Further transmission can also occur by commonly shared clinical 74 
equipment like stethoscopes which come into contact with intact skin. In addition, during 75 

the procedure of urinary catheterization and gastrointestinal endoscopy, medical instru- 76 
ments come into contact with sterile or mucous tissues and thus both of these can lead to 77 
increasing infections. This is of particular concern because 25% of hospitalised patients in 78 

the United States need catheterization, while 10 million gastrointestinal endoscopies  are 79 
carried out every year [17]. Records show that 30% of patients receiving urinary catheter- 80 

ization show systemic symptoms which relate to catheter-associated urinary tract infec- 81 
tions caused by HAIs [18]. Urinary tract infections (UTIs) are the second most common 82 
type of HAIs in the United Kingdom accounting for 17.2 % of all HAIs, while pneumonia 83 

and other respiratory tract infections account for 22.8% of the total [5]. 84 
 Critical evaluation of the available literature on HAIs highlights the need for effec- 85 

tive and efficient disinfection methods and biocides followed by the correct use of disin- 86 
fection techniques/methods. The literature contains a significant number of studies which 87 
document the efficacy of disinfectants and their antimicrobial action. However, not all 88 

biocides are effective against all types of pathogens. Furthermore, not all disinfection 89 
methods were seen to be effective [19-21]; in fact in one investigation, ready-to-use anti- 90 

bacterial wipes were observed to act as pathogen spreaders instead of eradicating the 91 
pathogens [22]. Hence both the selection of the biocide and the method of disinfection are 92 
important in determining the correct disinfection strategy. New and efficient approaches 93 

are therefore required particularly in the case of some multi-drug resistant organisms that 94 
are found on hospital surfaces in communities known as biofilms. Biofilms act as a reser- 95 

voir of pathogens and their intrinsic properties make them resilient against disinfectants. 96 
Biofilms are multicellular communities held together by a self-produced extracellular ma- 97 
trix [23]. Such bacterial biofilms have been shown to be 1500 times more resistant to bio- 98 

cides than planktonic bacteria growing in liquid cultures [24]. Along these lines, 99 
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Vickery et al. [25] carried out a study on bacterial biofilms by disinfecting clinical samples 100 
using chlorine-based disinfectants and noticed the presence of biofilms for periods of 12 101 
months even after routine cleaning. These observations refer to the consideration that it is 102 

not just the types of organisms present but the form they are in (e.g., in biofilms) that can 103 
impact the efficacy of a biocide. In addition to antimicrobial activity, infection control 104 

teams must assess a biocide for selection based on its safety to the user and the environ- 105 
ment and consider the compatibility of the biocide with the treated materials. Among the 106 
large variety of biocides used and reported to date, hydrogen peroxide (H2O2) denotes an 107 

attractive option due to its demonstrated wide-range sterilant activity, its surface material 108 
compatibility and safety to the end user [26].  109 

This review critically discusses the use of H2O2 as a biocide in hospital environments, 110 
its antimicrobial activity against clinically relevant pathogens, mechanism of action as 111 
well as its recent use for the decontamination of N95/FFP2 face masks for reuse to address 112 

the critical shortage caused due to the occurrence of severe acute respiratory syndrome 113 
coronavirus 2 (SARS -CoV-2).  114 

2. Hydrogen peroxide vapour as a biocide 115 

Hydrogen peroxide is used as a disinfectant/sterilant by being applied directly in the 116 

form of aqueous solution at concentrations ranging from 3 to 9 %(w/w) [27], formulated 117 
with different chemicals in water or gas, aerosolized or in vapour form [28]. The use of 118 

H2O2 as a biocide is found in multiple industries including the food and beverage sectors, 119 
agriculture, hospitals, the pharmaceuticals and cosmetics sector, the water supply indus- 120 

try and the public and commercial disinfection industry [4, 29]. Its use in the food and 121 
beverage sector in liquid form is targeted for disinfection and sterilisation of food contact 122 
surfaces that are used for milk and juice storage and for the preservation of water, milk 123 

and juices [29]. The use of H2O2 in the pharmaceutical and cosmetic industry takes place 124 
in liquid formulations at concentrations ranging from 3 to 9%(v/v) in products including 125 

wound applicants, oral disinfection in dentistry, contact lens disinfection and as a pre- 126 
servative in cosmetics [30-32]. Furthermore, higher concentrations of hydrogen peroxide 127 
solutions are used in the manufacturing of foam rubber, organic compounds, rocket fuel, 128 

and bleach for paper and textiles [32]. Examples of use in commercial sterilisation and in 129 
the water industry include industrial effluent treatment, algae control in water and 130 

wastewater deodorisation. The use of H2O2 in vapour form is found widely in the health 131 
care sector for disinfection and sterilisation [26].  In addition to its use against bacteria, 132 
hydrogen peroxide in vapour form is shown to be effective against a variety of organisms 133 

including certain types of hard-to-kill nematode worms and prions, thus finding use in 134 
animal husbandry [28, 33]. This widespread use of H2O2 in multiple industries is due to it 135 

being considered as an “ideal” biocide depending on how it is used [4]. An “ideal” biocide 136 
as defined by McDonnell [28] must be safe to use, easy to store, easy to apply and have a 137 
long-lasting effect, be environmentally-friendly and be chemically compatible with the 138 

surface it is applied on.  An assessment of hydrogen peroxide vapour (HPV) against the 139 
attributes of an ideal biocide can be outlined as follows:  140 

i) Efficacy: A significant number of in-vitro and in-vivo studies have demon- 141 
strated the efficiency of H2O2 both in liquid and vapour phases against or- 142 
ganisms ranging from highly resistant bacterial endospores to enveloped vi- 143 

ruses [19, 26, 34-37]. According to these studies, antimicrobial activities de- 144 
pend on the concentration of H2O2, exposure time and the method of appli- 145 

cation.  146 
ii) Safety: Hydrogen peroxide is applied to the skin for wound disinfection and 147 

in acne products in liquid form at low concentrations of less than 3% w/w; 148 

this concentration level is considered very safe for use on human skin [31, 149 
38]. However, with increase in concentration a decreased tissue compatibil- 150 

ity has been reported [31, 38]. The safety of H2O2 is entirely dependent on 151 
how it is used. Owing to the absence (or to low toxicity effects), H2O2 is seen 152 
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as an excellent option for replacing more toxic chemicals like formaldehyde 153 
which is known to be carcinogenic and ethylene oxide which has high tox- 154 
icity and carcinogenicity concerns [39-41]. A major advantage of modern hy- 155 

drogen peroxide vapour systems is that they can be easily set up and oper- 156 
ated remotely thus eliminating contact with the operator and thus reducing 157 

risk. The permissible exposure limit time weighted over 8 hours by OSHA 158 
(Occupational Safety and Health Administration) in United States is 1 ppm 159 
whereas the immediate danger to life or health is considered at 75 ppm [42].  160 

iii) Environmental Impact: The environmental impact of hydrogen peroxide is 161 
entirely dependent on how it is used. HPV slowly decomposes into water 162 

and oxygen and because of this, it is considered safe for the environment [43]. 163 
As a result, no harmful residues are left on surfaces. The relatively unstable 164 
peroxide bond leads to its natural decomposition.  165 

iv) Ease of use: Factors which impact the ease of use of H2O2 are its concentra- 166 
tion and method of application. For example, hydrogen peroxide is highly 167 

effective when used in vapour form as it can easily reach crevices and other 168 
hard-to-reach areas. This can also be ideal for large area decontamination as 169 
multiple machines can be used at the same time. Modern, no-touch HPV sys- 170 

tems reduce the number of labour hours when compared with traditional 171 
decontamination methods leading to a reduction in labour costs. 172 

v) Stability: Hydrogen peroxide is stable in water and other formulations de- 173 
pend on the purity and its storage conditions. It is important that hydrogen 174 
peroxide is stored under conditions recommended by the manufacturer. Dis- 175 

sociation of hydrogen peroxide can take place if stored incorrectly. This will 176 
reduce the concentration of hydrogen peroxide in the solution and that will 177 

have an impact on the antimicrobial efficacy.  178 
vi) Compatibility with surface materials: Hydrogen peroxide can be safe to 179 

surfaces depending on how it is used.  Being an oxidising agent, it can oxi- 180 

dise certain metallic and plastic surfaces when in higher concentrations in 181 
liquid form [26]. However, these effects can be prevented when H2O2 is used 182 

in vapour form which is seen to be gentle to surfaces and to electrical equip- 183 
ment that are key parts of hospital environments. Boyce et al. [44] studied 184 
the impact of microcondensation HPV room decontamination on hospital 185 

physiological monitors over an 8-year period and observed that there was no 186 
increase in maintenance service calls; in fact a rather unexplained decrease 187 

in maintenance was apparent. Furthermore, a recent study by Sher and 188 
Mulder [45] on the use of vapour phase and aerosolized hydrogen peroxide 189 
for disinfection of dental surgery areas found no damage to any surface in 190 

the surgery. The effect of HPV on three metallic materials was characterised 191 
by Gale et al. [46] and no systematic effects were seen on the tensile strength 192 

or post HPV treated corrosion resistance of the alloys tested. The microstruc- 193 
tural changes were seen confined to the areas adjacent to exposed surface 194 
and were considered to be relatively small [46].  195 

Commercial disinfection systems commonly generate hydrogen peroxide vapour by 196 
controlled heating of 35% w/w aqueous solution [47]. The solution is continuously refilled 197 

onto the evaporator as the phase change from liquid to vapour takes place [48]. Commer- 198 
cial systems can use a hot plate to flash-evaporate from a 35% (w/w) hydrogen peroxide 199 
solution [49]. The resulting vapour is continuously fed to the room and some suggest that 200 

microcondensation can be formed at ~3μm thickness on the surfaces [47]. The hydrogen 201 
peroxide vapour can then be made to decompose into water vapour and oxygen upon 202 
catalysis by an active aeration system [50, 51]. A number of studies  [52, 53] have shown 203 
that hydrogen peroxide in vapour form even at low concentrations is highly efficient 204 

when compared to liquid hydrogen peroxide. This has been attributed to the higher level 205 
of interaction with macromolecules (molecules considerably larger than an ordinary 206 
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molecule containing larger number of atoms) where greater oxidation has seen observed 207 
when the peroxide is in vapour form [53]. It is important to recognise that there are various 208 
commercially available hydrogen peroxide vapour systems and these can use significantly 209 

different methods [54].  Due to the fundamental differences in the delivery methods used 210 
by these processes, it is well-known that they yield noticeably different disinfection results 211 

[55, 56]. The term vaporised hydrogen peroxide® (VHP®) refers to a process that lowers 212 
the relative humidity (RH) of the room before adding peroxide to avoid reaching the dew 213 
point and condensation, and then regulates to a predetermined concentration by remov- 214 

ing the vapour and adjusting the hydrogen peroxide injection rate to avoid reaching the 215 
dew point. In contrast, HPV is the term used for the process where vapour is purposefully 216 

delivered to reach the dew point and condensation by recirculating the peroxide and add- 217 
ing more vapour [47]. Whilst, VHP and HPV have previously been used indistinguishably 218 
during a study on decontamination of N95 respirators, [56] one must note the difference 219 

between the two. Additionally, the neutral term vapour phase hydrogen peroxide (VPHP) 220 
is employed to refer to both the HPV and VHP procedures as well as other similar pro- 221 

cesses. The ISO term for all these systems is vaporized hydrogen peroxide (VH2O2) [57].  222 

3. Application of Hydrogen Peroxide Vapour against clinically relevant pathogens 223 

The decontamination of health care environments using hydrogen peroxide vapour 224 
has been extensively studied because of its excellent antimicrobial efficacy. HPV systems 225 

have demonstrated antimicrobial efficacy ranging from highly-resistant bacterial endo- 226 
spores to the least resistant enveloped viruses as classified by Spaulding  [58]. A signifi- 227 

cant number of in-vitro studies have demonstrated the microbial efficacy of HPV against 228 
frequently reported clinically relevant pathogens. HPV systems have achieved a greater 229 
than 6 log10 (greater than 99.9999 %) reduction of pathogens as validated by using Geo- 230 

bacillus stearothermophilus ATCC 7953  biological indicator spores [19, 35]. A greater than 231 
6 log10 reduction has also been achieved against clinically relevant pathogens such as C. 232 

difficle spores, methicillin-resistant Staphylococcus aureus (MRSA), Vancomycin-resistant enter- 233 
ococci (VRE), norovirus surrogates and Acinetobacter baumannii (A. baumannii) [55, 59-64]. The 234 
use of hydrogen peroxide vapour has been effective in removing from environmental res- 235 

ervoirs of C. difficle [65], MRSA and methicillin-susceptible Staphylococcus aureus (MSSA) [19, 236 
66], multi-resistant gram-negative bacteria [35, 67] and others [36].  237 

These studies demonstrate both antimicrobial efficacy and repeatability which pro- 238 
vides confidence in the use of HPV for decontamination. Furthermore, commercially 239 
available automated HPV disinfection systems can deliver the concentrations of fumigant 240 

required to achieve the criteria as stated by the EN17272 standard [68]. EN17272 is the 241 
European standard for determining the disinfectant activity of airborne room disinfection 242 

by automated processes and covers vegetative bacteria, mycobacteria, bacterial spores, 243 
yeasts, fungal spores, viruses and bacteriophages [69]. 244 

The use of HPV as a decontaminant has demonstrated significant potential in com- 245 

bating multi-drug resistant organisms (MDROs) in healthcare settings. HPV as a decon- 246 
taminant provides an effective and practical method for reducing the environmental load 247 

of microorganisms resistant to several antibiotics, such as MRSA and VRE. Studies [70, 248 
71] have shown that HPV may significantly decrease the amount of these bacteria on var- 249 
ious hospital surfaces, lowering the risk of healthcare-associated illnesses (HAIs). 250 

Khandelwal et al.[70] conducted a study in a critical care setting and found that hybrid 251 
hydrogen peroxide fogging could lower bacterial counts on crucial surfaces, implying that 252 

this strategy is more effective than regular cleaning practices and ultraviolet light use in 253 
removing MDROs. Furthermore, a comprehensive review and meta-analysis by Marra et 254 
al.[71] confirmed the efficacy of no-touch disinfection technologies like HPV, revealing a 255 

statistically significant reduction in infections caused by particular MDROs such as C. dif- 256 
ficile and VRE. These findings highlight the necessity of implementing modern disinfec- 257 

tion technologies, such as HPV, into infection control regimens to improve patient safety 258 
and combat the spread of resistant pathogens. 259 

https://www.sciencedirect.com/topics/immunology-and-microbiology/geobacillus-stearothermophilus
https://www.sciencedirect.com/topics/immunology-and-microbiology/geobacillus-stearothermophilus
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HPV systems are known to have positive impact on the reduction of infections in 260 
clinical settings as demonstrated by three major studies [34, 72, 73]. A quasi-experimental 261 
study involving a 900-bed community hospital was conducted by Manian et al. [34]. En- 262 

hanced cleaning was performed using bleach followed by HPV disinfection of rooms va- 263 
cated by patients with C. difficile-associated diarrhoea. The rate of C. difficile-associated 264 

diarrhoea infection dropped hospital-wide by 37% with the authors being able to demon- 265 
strate the safe use of HPV in a large hospital. Similar results were observed by  Boyce et 266 
al. [74] who conducted a before-and-after intervention study in a hospital affected by an 267 

epidemic strain of C. difficile. HPV disinfection was reported to be efficacious in removing 268 
C. difficile from contaminated surfaces and the incidence of C. difficile associated infections 269 

post-HPV intervention was reduced to 0.88 cases/1000 patients from 1.89 cases /1000 pa- 270 
tients pre-HPV intervention [74]. Furthermore, Passaretti et al. [73] demonstrated that the 271 
risk of a patient acquiring infection (with multidrug resistant organisms) was 64% less 272 

likely after the room has been sterilised with HPV compared to rooms cleaned using “tra- 273 
ditional” processes. These studies demonstrated a reduction in the incidence of new in- 274 

fections and a lower risk to patients.  275 

4. Effect on Bacteria 276 

Some of the initial attention using HPV as a decontaminant targeted E. coli, a clini- 277 
cally relevant pathogen which is the most frequently reported pathogen and accounts for 278 

17.5% of the total pathogens reported from over 5,626 health care facilities in the United 279 
States for the period 2015-2017 [75]. Back et al. [76] performed a study subjecting three 280 

strains of E. coli inoculated on lettuce to 10% HPV for 10 minutes. The authors [76] re- 281 
ported that the treatment led to reduction levels of 3.15 log10 CFU/g (colony forming unit 282 
per gram) for E. Coli O157:H7. In another study by Benga et al. [77], similar results were 283 

reported after treatment with HPV demonstrating complete disinfection of E. coli and 284 
other bacterial species (inoculated on bedding pieces housed in a mouse facility) in the 285 

presence of water and bovine serum albumin solutions (BSA).  286 
The effectiveness of HPV was further demonstrated by a study by Otter et al. [64] 287 

who investigated the surface survival of commonly found spores and vegetative bacteria 288 

such as Staphylococcus aureus (S. aureus), the second most commonly found nosocomial 289 
pathogen in health care settings [75]. While most vegetative bacteria and spores with in- 290 

ocula of 6 log10 CFU to 7 log10 CFU survived on surfaces for more than 5 weeks in a 100m3 291 
test room, they were inactivated within 90 min of exposure to HPV even in the presence 292 
of 0.3% bovine serum albumin that was used to simulate biological soiling. In another 293 

investigation, Lemmen et al. [78] evaluated the performance of HPV on the disinfection of 294 
organisms such as MRSA, vancomycin resistant Enterococcus (VRE) and Acinetobacter bau- 295 

mannii (A. baumannii) that were located on porous and non-porous surfaces using cotton 296 
and stainless steel as carriers in an operating room. The experiment was repeated three 297 
times and at each instance no pathogens were found on either porous or non-porous car- 298 

riers after being subjected to automated HPV disinfection [78]. Klebsiella pneumoniae (K. 299 
pneumoniae), the third most common nosocomial organism that is also found in health care 300 

settings [75] are known to cause urinary tract infections, pneumonia, septicemias and soft 301 
tissue infections [79] and can survive on inanimate surfaces from 2 hours to 30 months 302 
[10]. The work of Ali et al. [80] compared the efficacy between two different HPV systems 303 

using significantly different hydrogen peroxide concentrations in single isolation rooms 304 
using aerobically inoculated sterile broth of centrifuged K. pneumoniae suspended in 0.03% 305 

BSA (w/v) and 10% BSA (w/v) to simulate low and heavy soil loading. It was shown that 306 
enhanced cleaning with HPV reduced the risk of cross-contamination by killing the left- 307 
over surface contamination that was present after manual terminal cleaning. A study [77] 308 

has also been conducted on Klebsiella oxytoca (K. Oxytoca) which are known to cause HAIs 309 
in adults and have developed resistance to commonly used antibiotics [81]. The applica- 310 

tion of HPV by Benga et al.[77] on bacteria of laboratory animal origin showed that K. 311 
oxytoca and other bacterial species were readily disinfected upon being treated. Similar 312 
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disinfection results was observed when BSA was smeared on smooth surfaces to simulate 313 
soiling [77].  314 

A study conducted by Watson et al. [82] on the effect of HPV on Pseudomonas aeru- 315 

ginosa (P. aeruginosa) used bacterial biofilms generated by a drip flow reactor. These bio- 316 
film samples were subjected to HPV treatment in an enclosure using a commercial vapour 317 

generator. The results after 100 minutes of exposure to HPV resulted in a reduction greater 318 
than 6 log10 in the enclosed room-based scenario. Microscopy results after the HPV treat- 319 
ment revealed a noticeable impact on the disruption of microcolony formation. To further 320 

compare HPV decontamination with conventional terminal cleaning, Otter et al. [83] com- 321 
pared hydrogen peroxide vapour decontamination with conventional terminal cleaning. 322 

Their work involved reservoirs of multidrug-resistant Gram-negative rods (MDR-GNR) 323 
such as Enterobacter cloacae in a 1389 m3 intensive care unit (ICU) room using samples from 324 
different locations and putting 40 Tyvek-pouched 6 log10 Geobacillus stearothermophilus 325 

ATCC 7953 biological indicators along the periphery. The results suggested that HPV de- 326 
contamination was more efficacious than conventional terminal cleaning. The removal of 327 

the environmental reservoirs of MDR-GNR could also have stopped the cycle of transmis- 328 
sion of these organisms.  329 

The results of these studies have demonstrated the effectiveness of HPV as a disin- 330 

fectant and biocide against the most common bacteria. Impressive results were generally 331 
achieved quickly within about 100 minutes (dependent on room size) of exposure to HPV. 332 

This is interesting in that the treatment can potentially be applied in hospitals leading to 333 
a reduction in operational disturbance. An example of studies demonstrating the efficacy 334 
of hydrogen peroxide vapour against the clinically relevant bacteria commonly found in 335 

hospitals can be found in Table 1. 336 

Table 1. Examples of studies demonstrating efficacy of hydrogen peroxide vapour against the clin- 337 
ically relevant bacteria commonly found in hospitals. 338 

Microorganism Associated Diseases/ Symptoms  HPV Studies 

Escherichia coli  

Blood and urinary tract infection 

[84]. 

 

[76, 77, 85] 

Staphylococcus aureus  

Blood, skin and respiratory tract 

infection, septicaemia and death 

[86]. 

 

[50], [21, 78, 87-92] 

Klebsiella pneumoniae 

Urinary tract infections, pneumo-

nia, septicaemia and soft tissue in-

fections [79]. 

 

 [50], [85], [80], [82] 

Klebsiella oxytoca 

Urinary tract infection, Pneumonia 

[81] 

 

[77] 

Pseudomonas aeruginosa 

Lung and urinary tract infection 

[13]. 

 

[77], [82], [93] 

Enterococcus faecalis/faecium 

Blood, skin and respiratory tract 

Infection [13]. 

 

[50], [87], [78], [82], [93], 

[94] 

Enterobacter cloacae 

Urinary tract infections, respiratory 

tract infection [95] 

 

[83] 

 339 

http://www.sciencedirect.com/science/journal/01956701
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5. Effect on Fungi 340 

Candida spp., a well-known fungus that can cause HAIs in the gastrointestinal tract, 341 

in the vagina and oral cavity [96], is known to survive from 1-120 days on dry inanimate 342 
surfaces [10]. Due to its clinical relevance, an in-situ study was carried out on samples 343 

purposefully collected from a Candida auris (C. auris) outbreak at the Royal Brompton Hos- 344 
pital in London with Infection control methods documented [97]. The authors [97] demon- 345 
strated a successful outcome through the use of a new infection control method by apply- 346 

ing a high-strength chlorine-based agent followed by hydrogen peroxide vaporisation. An 347 
example of studies demonstrating the efficacy of hydrogen peroxide vapour against the 348 

clinically relevant fungi commonly found in hospitals can be found in Table 2. 349 

Table 2. Examples of studies demonstrating efficacy of hydrogen peroxide vapour against the clin- 350 
ically relevant fungi commonly found in hospitals. 351 

Microorganism Associated Diseases/ Symptoms  HPV Studies 

Candida spp.  
Infections of the gastrointestinal 

tract, vagina and oral cavity [96]. 
[93], [98], [97]  

 352 

6. Effect on Viruses 353 

Viruses spread via respiratory droplets or by direct contact [99] and aerosolisation 354 
after sweeping and via fomites [10] and account for 90% of all respiratory diseases. Ac- 355 
cording to an annual report published by Public Health England on the surveillance of 356 

influenza and other respiratory viruses in the UK for the winter of 2018-2019, 26408 deaths 357 
were attributed to influenza viruses. 84.2% of those deaths occurred in the age group of 358 

65+ years. The transmission of influenza results in high impact on the health services in 359 
terms of an increase in the number of hospitalisations, ICU admissions and to a signifi- 360 
cantly higher mortality rate [99]. Some of the early attention explored the effect of HPV 361 

on common viruses including the Influenza virus, Avian Influenza virus, Influenza A (H1N1) 362 
and Swine Influenza Virus (H3N2) [37]. Heckert et al. [37] studied the effect of HPV on in- 363 

activation of equipment and inanimate materials potentially contaminated with a variety 364 
of animal and mammalian species viral agents belonging to the Orthomyxoviridae, Reovir- 365 
idae, Flaviviridae, Paramyxoviridae, Herpesviridae, Picornaviridae, Caliciviridae and Rhabdovir- 366 

idae virus families. The authors reported the high efficacy of HPV; for all the viruses tested 367 
under all conditions (except one) the virus titre was reduced to 0 embryo-lethal doses for 368 

all the avian viruses and to less than 10 tissue culture infective doses for the mammalian 369 
viruses [37]. Furthermore, the authors recommended the use of HPV for inactivation of 370 
potentially exotic animal disease virus contaminated objects from biocontainment level III 371 

laboratories. Similar effects were reported by Rudnick et al. [100] in as study where HPV 372 
was applied to influenza viruses which were deposited on stainless steel surface coupons 373 

and exposed to HPV at different concentrations ranging from 10-90 ppm.  It was reported 374 
that 99% inactivation of influenza was achieved after only 2.5 minutes of exposure at the 375 
lowest studied concentration of 10 ppm. Even better results were achieved at higher HPV 376 

concentrations. This outcome was further supported by a different study by Goyal et 377 
al.[101] where SARS-COV-2 surrogates such as feline calicivirus, human adenovirus type 1, 378 

transmissible gastroenteritis coronavirus of pigs and influenza viruses were subjected to HPV 379 
exposure and no viable viruses were observed with the treatment achieving greater than 380 
4 log10 reduction post-treatment. Such results provide confidence in the efficacy of the use 381 

of HPV for surface inactivation of viruses. An example of studies demonstrating the effi- 382 
cacy of hydrogen peroxide vapour against the clinically relevant viruses commonly found 383 

in hospitals can be found in Table 3. 384 
 385 
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Table 3. Examples of studies demonstrating efficacy of hydrogen peroxide vapour against the clin- 386 
ically relevant fungi commonly found in hospitals.  387 

Microorganism Associated Diseases/ Symptoms  HPV Studies 

Influenza virus 

Avian Influenza Virus 

Influenza A (H1N1) 

Swine Influenza Virus 

(H3N2) 

Influenza [96].  [37, 100, 101] 

 388 

7. Mechanism of biocidal action. 389 

Hydrogen peroxide in liquid and gaseous form has been shown to provide excellent 390 
antimicrobial activity against a broad spectrum of organisms. However, there is lack of 391 
knowledge of the mechanism of biocidal action which is still not fully understood; in spite 392 

of its demonstrated effectiveness in destroying infectious micro-organisms, there remains 393 
a need to critically understand the mechanism by performing studies which simultaneous 394 

measure the damage to all bacterial cell components, and a correlation of this damage 395 
with a reduction in viable cell count [53]. The main mechanism leading to decontamina- 396 
tion through the use of hydrogen peroxide has been thought to be the deactivation of mi- 397 

croorganisms by oxidation of macromolecules that form viral and cellular structure/func- 398 
tion such as lipids, carbohydrates, protein and nucleic acids [26, 28]. However, a study by 399 

Linley et al. [102]  on the mechanism of cytotoxicity and genotoxicity of H2O2, it was pro- 400 
posed that the mechanism is due to localised formation of short-lived hydroxyl radicals 401 

by intracellular reaction between Fe2+ ions and H2O2 (known as the Fenton reaction). Evi- 402 
dence for the Fenton reaction leading to the biocidal action of H2O2  on bacterial cells was 403 
sought by Repine et al. [103] who grew S. aureus bacteria in a nutrient broth with increased 404 

concentration of iron. This approach effectively increased the iron content in the S. aureus 405 
cells and this was associated with significant enhancement in the killing of the cells when 406 

they were exposed to H2O2. The death of cell walls in bacteria is dependent on the overall 407 
extent of peroxide-induced damage and on the effect on target cells which have the ability 408 
to repair DNA damage. This implies that bacteria strains that are exposed to H2O2 have 409 

reduced ability to repair DNA damage and are therefore more susceptible to be killed 410 
from exposure to H2O2 [103]. Since viruses have no repair mechanisms and McDonell [26] 411 

has suggested that excessive damage to viral nucleic acids should therefore be considered 412 
important in the overall virucidal effect. However, there is no evidence to support this. 413 
Indirect evidence of DNA damage in E. coli following exposure to H2O2 was provided by 414 

Imlay and Linn [104] who also proposed two kinetically distinguishable modes of killing 415 
of the bacteria. The killing of cells at lower H2O2 concentrations was referred to as mode- 416 

one and was reported to take place by DNA damage. Mode-one killing was observed to 417 
be maximal at concentrations between 1 to 2 mM of H2O2 [104]. Exposure to H2O2 was 418 
observed to lead to damage in a dose-dependent manner; this damage could undergo re- 419 

pair during a growth lag, but while cell growth occurred there was no evidence of septa- 420 
tion. The failure to successfully complete the repair of cells would lead to mode-two kill- 421 

ing which was evident at higher H2O2 concentrations. The authors [104] thought that 422 
mode-one killing was probably internal, while mode-two killing could be external. If that 423 
were indeed the case, mode-one killing would be expected to be diffusion-controlled. 424 

However, an earlier investigation by Schwartz et al. [105] had suggested otherwise. 425 
Brandi et al. [106] noted a similar pattern of bimodal killing in their study on the effect 426 

of HPV on E. coli.  suggesting that cell membrane damage leading to reduction in cell 427 
volume is the major component of mode-two killing, whereas no effect was seen in mode- 428 
one killing. This observation actually strengthens the proposal that the biocidal mecha- 429 

nism upon exposure to H2O2 is due to the Fenton's reaction by mode-two killing and is 430 
dependant on the presence of hydroxyl radicals, unlike mode-one. Furthermore, it is 431 
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important to note that oxidation reduction potential (ORP) of hydrogen peroxide in a so- 432 
lution plays a crucial role in the mechanism of antimicrobial action. The extent and rate of 433 
Fenton’s reaction in a solution will be directly affected by the ORP of the solution. Higher 434 

ORP indicates a more oxidizing environment implying a greater tendency for H2O2 to do- 435 
nate electrons and form hydroxyl radicals hence a more efficient and potent antimicrobial 436 

action could be expected.   437 
According to Finnegan et al. [53] vaporised hydrogen peroxide interacted differently 438 

against amino acids when compared to liquid hydrogen peroxide. These authors [53] ob- 439 

served that liquid hydrogen peroxide at different concentrations was able to oxidise 440 
amino acids like cysteine, methionine, lysine, histidine and glycine whereas vaporised 441 

hydrogen peroxide was unable to oxidise amino acids [53]. However, vapour phase hy- 442 
drogen peroxide was able to degrade aldolase and BSA completely whereas no impact 443 
was observed when hydrogen peroxide was used in the liquid phase. The damage to the 444 

various macromolecular cell targets  upon treatment of E.coli with liquid and vapour 445 
phase hydrogen peroxide studied by Linley [107] has been depicted in Figure 1. Similar 446 

results of vapour-phase hydrogen peroxide being able to degrade protein oxidatively in 447 
comparison to liquid-phase hydrogen peroxide were also reported by McDonnell [108] in 448 
his studies on the neutralisation of bacterial protein toxins. These studies serve to high- 449 

light the difference in efficacy between vapour and liquid phase hydrogen peroxide. The 450 
difficulty with most of these studies on understanding the mechanism of killing of bacte- 451 

ria through the use of hydrogen peroxide vapour is that entire cells are exposed to hydro- 452 
gen peroxide, and this results in a variety of direct and indirect effects as the causes for 453 
cell death.  454 

Figure 1. Depiction of the damage to cell components of E. coli upon treatment with with liquid 455 
phase hydrogen peroxide and vapour phase hydrogen peroxide.  456 

 457 
There is still a need for further work to be carried out to improve the understanding 458 

of the exact killing mechanism of vapour phase hydrogen peroxide. Earlier studies from 459 

1990s such as that of Klapes and Vesley [41] consider the application of vapour-phase 460 
hydrogen peroxide as a sterilant to be “clearly still in its infancy” due to the lack of un- 461 

derstanding of the mechanism of action and the factors influencing it. Almost twenty 462 
years later, Hall et al. [109], in their study on using hydrogen peroxide vapour to deacti- 463 
vate Mycobacterium tuberculosis, stated that “the exact mechanism of action of HPV re- 464 

mains to be fully elucidated”.  465 
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8. Hydrogen peroxide vapour as a biocide for reuse of N95/FFP2 face masks during the 466 

Covid 19 pandemic 467 

The current pandemic caused by the novel coronavirus severe acute respiratory syn- 468 
drome coronavirus 2 (SARS-CoV-2) epi-centred in Hubei province in the  People’s Re- 469 

public of China  has been overwhelming the healthcare systems and negatively impact- 470 
ing world economies [110, 111]. An extreme shortage of critical N95/FFP2 masks used as 471 
Personal Protective Equipment (PPE) in health care settings occurred at the beginning of 472 

the Covid 19 pandemic. N95/FFP3 masks are arguably the most critical part of PPE for 473 
health care workers due to the aerosol transmission of SARS -CoV-2. Even though the 474 

supply of N95/FFP2 masks improved with time, new rapidly spreading variants of severe 475 
SARS -CoV-2 still pose a threat of critical shortage due to increase in the demand and to 476 
the fast depletion of existing supply lines. To address such shortage, decontamination of 477 

face masks for reuse was investigated as a viable option. As HPV is widely used for sur- 478 
face disinfection in hospital environments and is effective against SARS-Coronavirus sur- 479 

rogates on surfaces [101], it was therefore considered as a method of inactivation.  Since 480 
the beginning of Covid 19, numerous in-vitro studies have been published on the use of 481 
HPV for inactivation of N95/FFP2 face masks [112-115]. Wigginton et al. [112] studied the 482 

inactivation of 3M-1860 N95 masks, their filtration efficiency and integrity using a HPV 483 
whole room decontamination system and other methods.  A 1.5 log10 to greater than 4 484 

log10 inactivation of the tested viruses was measured using the HPV system.   The integ- 485 
rity of the face seal and the filtration efficiency was observed not to be affected after 5 486 

cycles. Decontamination with other methods like the use of ethylene oxide raised toxicity 487 
concerns, while the hydrogen peroxide gas plasma decontamination method led to a de- 488 
crease in the filtration efficiency [112]. Further studies by Oral et al. [113] who used a HPV 489 

system found high level inactivation of viruses and biological indicators after one cycle 490 
and found no evidence of detrimental effects on the fit for use and the filtration efficiency. 491 

The authors [112] are conducting further testing to determine the number of times a mask 492 
can be reprocessed. However, the HPV systems by Battelle Memorial Institute with emer- 493 
gency use authorisation from United States Food and Drug Administration [116] for de- 494 

contamination of N95 masks at the onset of the Covid-19 pandemic were approved to be 495 
used for 20 cycles.  Similar results were observed by a study by Kumar et al. [114]  where 496 

four different N95 mask model types were used for decontamination with HPV  and 497 
other methods.  Full inactivation of SARS-CoV-2 or Vesicular stomatitis by VHP was seen 498 
with no loss in the function and structural integrity of the mask up to a minimum of ten 499 

cycles. In another investigation, Kenney et al.  [115] further demonstrated the effective- 500 
ness of HPV whole-room systems for inactivation of N95 masks inoculated with bacteri- 501 

ophages. The authors found high virucidal activity post-HPV treatment on N95 masks 502 
with acceptable limits for filtration efficiency (>99%) up to three cycles. The filtration effi- 503 
ciency was seen to fall below 95% after 5 cycles and hence the authors [115] recommended 504 

that the reuse after inactivation should be limited to three cycles only.   505 
A study by Schwartz et al. [117] described the process used and demonstrated  VHP  506 

as an efficacious method for the decontamination of  N95 /FFP2 face masks in terms of 507 
both its ability to kill pathogens and preserved the structural integrity and  functionality 508 
of the masks. Perkins et al. [118]  highlighted the low toxicity of the HPV processes.  509 

From the results of these investigations, HPV can be concluded to lead to very low con- 510 
cerns about toxicity due to its mechanism of action.  In addition, it must be noted that the 511 

entire processing workflow from collection to post-processing as demonstrated by Gross- 512 
man et al. [119] allowing health care workers to keep their own N95 respirators in a large 513 
academic metropolitan health care system was accomplished in less than 24 hours. Bailey 514 

et al. [68] validated the decontamination of a specialist transport system for patients with 515 
high consequence infectious diseases “EpiShuttle” (a patient transport system designed 516 

to fit into air ambulance) using HPV fumigation. The authors [68], upon decontamination 517 
with HPV, achieved a complete kill for all the commercially available used Bioquell HPV 518 
6 Log10 Geobacillus stearothermophilus ATCC 12980 endospores, alongside organic liquid 519 
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suspensions and dried surface samples of MS2 bacteriophage. However, it was important 520 
to note that HPV fumigation can be less efficient if larger amounts of biological fluids are 521 
present on the surface due to its limited penetration. Hence, the follow up cleaning with 522 

surface disinfectant wiping was recommended in such cases.  The advantages of using 523 
HPV fumigation in comparison with manual disinfection methods include better penetra- 524 

tion into hard-to-reach areas, no risk of cross infection by exposure to operators and re- 525 
duction in deviation from the manufacturer’s instructions [68]. Such accomplishments 526 
suggest that the HPV system would be ideal to investigate for use in medical emergencies 527 

involving new bacteria and viruses. 528 

9. Conclusion  529 

The repeatability in the efficacy of HPV against a broad range of clinically relevant 530 
pathogens, its clinical impact, positive environmental impact and ease of use with no- 531 

touch disinfection methods has been demonstrated by multiple in-situ and in-vitro studies. 532 
The findings of this review highlight HPV to be very close to an ideal high-level disinfect- 533 

ant for use in health care environments due to its reliability against a broad spectrum of 534 
organisms, good material compatibility and no-negative environmental impact. This 535 
makes HPV a biocide of choice in health care environments not only for traditional surface 536 

disinfection of high-touch areas but also for the decontamination of face masks and am- 537 
bulances which are important parts of the health system. The promising results of HPV 538 

being able to decontaminate N95 masks during the ongoing SARS-CoV-2 pandemic with- 539 
out affecting their structural integrity and filtration efficiency demonstrate the potential 540 

for use in emergency situations where supply chains for single use PPE products are se- 541 
verely depleted. The use of HPV for mask decontamination provides a viable alternative 542 
to address the disadvantages of limited penetration due to shadowing effects and direct 543 

exposure which can be difficult to achieve in complex geometries such as that of masks 544 
using Ultraviolet Light (UV) disinfection another highly studies no touch disinfection 545 

method. These benefits demonstrate the potential of HPV for further development as a 546 
biocide. However, the review has also identified that whilst significant efforts have been 547 
devoted to the understanding of the underlying mechanism of action, additional work is 548 

required which will aid in optimising the antimicrobial activity of HPV. The authors rec- 549 
ommend that further research should focus on performing studies on organisms where 550 

simultaneous damage to all bacterial cell components is investigated and correlated.  551 
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