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 Abstract.  – This paper presents an Autonomous Proxemic 
System (APS) for a mobile robot. It detects people in the 
surroundings and manipulates the robot’s motions to approach 
them keeping an acceptable proxemic distance. The APS sensing 
functions include face and upper body detection, leg detection, 
and motion detection using camera, laser, and infra-red sensors 
respectively. The control functions consist of approach a human 
and obstacle avoidance. APS uses the sonar and laser range 
devices to keep an accurate proxemic distance with the human. 
Initial system tests indicate that the APS keeps desired proxemic 
distances to within an acceptable error margin.  

1.  Introduction 

In order for a mobile service or domestic robot to be a socially 
acceptable and effective companion, it must exhibit appropriate 
socially acceptable behaviours. The study of social spaces 
between people is termed Proxemics. Within the wider research 
field of Human-Robot Interaction (HRI), Human-Robot 
Proxemics (HRP) studies how humans and robots use and 
manipulate distances between each other with regard to social 
behaviour and human perceptions. Breazeal  [1] has found that 
humans responded socially to expressive zoomorphic robots in 
some very fundamental non-verbal ways, including respecting 
the robot's interpersonal space. Nomura et al.  [2] found that both 
participants' negative attitudes and anxiety towards a small size 
humanoid robot had statistically significant effects on users’  
preferred (comfortable) robot approach distances. The main aims 
for our HRP research are to empower domestic or service robots 
to be able to: 

• Detect the presence and position of people in its 
surroundings 

• Approach, pass or avoid people as necessary, while 
dynamically controlling for socially acceptable HRP 
distances  

• Take account of both the robot’s and user's physical 
situations, and the robot's task context.  

The particular HRP distance taken will also depend upon other 
factors, including each individual human user’s preferences, the 
physical and social situation, and also task context  [3].  Some of 
these other factors which affect HRP are known, but have only 
been roughly quantified using essentially static measurement 
methods, such as the HRP framework presented by Walters et al. 
 [4]. It is therefore desirable to carry out more comprehensive 
research to see if some of the richness apparent in human 
proxemics interactions can also apply to other HRP interactions.  

Human Proxemics  
In human-human interactions, Hall  [5] observed that human 
social spatial distance varies by the degree of familiarity between 
interacting humans and the number of participants. Later, Hall 
 [6] provided a framework which categorized the main social 
spatial zones by interaction and situation. Hall estimated these 
distances visually but later researchers  [7] have assigned 
numerical values for human-human personal space zones:  

• Intimate zone < 0.45m   
• Personal zone ≥ 0.45m and  < 1.2m   
• Social zone ≥ 1.2m and  < 3.6m    
• Public zone ≥ 3.6m   

In the field of human proxemics research, other factors which 
can also affect proxemic distances between interacting humans 
have also been proposed. For instance, Stratton et al.  [8] 
suggested that uncertainty (or slight perceived threat) can affect 
human proxemic distances, and makes them take up slightly 
greater distances from the source of the perceived potential 
"threat". In a study, for a robot which used different voice styles, 
participants initially encountering the robot took significantly 
different comfortable approach distances  [9] and it was 
suggested that these differences may be caused by participants' 
slight initial uncertainty due to perceived inconsistencies 
between the robot's appearance and voice styles.  

Gillespie and Leffler  [10] concluded that much of the 
observed variation in social distance between communicating 
humans is accounted for by the relative status of the interactants. 
Burgoon and Jones  [11] explained many seemingly 
contradictory aspects of human-human proxemic behaviour by 
suggesting that relatively small (dynamic) manipulations of the 
distance between participants were a social "reward and 
punishment" mechanism. This theory can also explain how high 
status interactors can "reward" lower status interactors by 
moving closer, but lower status interactors can "reward" higher 
status interactors by keeping a greater distance.  

Human-Robot (HR) Proxemics  
Hőttenrauch et al.  [12] concluded that in HRI user trials most 
participants kept inter-personal distances from a PeopleBotTM 
robot corresponding to Hall's Personal spatial zone (0.45m to 
1.2m). Previously in HRI trials run using semi-autonomous 
robot control techniques in HRI trials, we found that children 
tended to approach a similar robot to similar distances  [13] but 
for individual adults approaching the same robot, the approach 
distances were more ambivalent and inconclusive  [14] [15].  



We (Koay et al.  [16]) also found that people generally allow 
robots to approach more closely during physical interactions 
(handing over an object etc.) than for verbal or no interaction 
conditions. Syrdal et al.   [17] found people generally prefer 
more humanoid appearance robots to keep a further distance 
away than mechanoid appearance robots. Walters et al.  [18] 
found that participants' preferences for particular robot attributes 
(both appearance and height) affected participants' comfortable 
approach distances with regard to whichever robot type they 
interacted with. The results from our previous HRP trials  [4] are 
summarized in Table 1, where all distances have been 
compensated to satisfy a standard measurement between the 
human and the robot's closest body trunk parts (i.e. not including 
arms or manipulators). These distance measurements (as best as 
we can tell from the published details) are also roughly 
comparable to those made by Hall for his spatial zone distances 
and also by Stratton et al.  [8]. Takayama and Pantofaru  [19] 
found that other factors including robot head orientation, gender 
of participants, and previous experience interacting with both 
pets and robots also affected peoples comfortable HRP 
distances.   
 

Factor 
Context(s) – 
Approach  

Base Distance = 
57cm 

Estimated 
Adjustment for 
Factor (± 0.5cm) 

Attribute or Factor of Robot 
Mechanoid 
Robot 

All – RH  
All – HR  

-3 
-7 

Humanoid Robot 
All – RH  
All – HR  

+3 
-1   

Verbal 
Communication 

Verbal Interaction – 
RH  

+3 

Giving object 
Physical Interaction – 
RH  

-7 

Taking object 
Physical Interaction – 
RH 

-7  

Passing   No Interaction – RH +4 

Direction from: 
Front – RH 
Right/Left – RH 

+2 
-2 

Attribute or Factor of Human 
Preferred Robot 
Humanoid 

All Private – RH -3 

Preferred Robot 
Mechanoid 

All  – RH +3 

Preferred Height 
Tall  

All – RH -1 

Preferred Height 
Short 

All – RH +2 

Uncertainty or 
perceived 
Inconsistency 

Initial Encounter – HR +13 

Verbal 
Communication 

Verbal Interaction – 
HR 

+3 

Giving object 
Physical Interaction – 
HR 

-7 

Taking object 
Physical Interaction – 
HR 

-7 

Passing 
No Interaction – HR 
 

+4 

Table 1. Factors affecting HR proxemics and corresponding 
adjustments for Base HRP Distance (57cm)  [4] 

In order to confirm and extend these findings, investigate 
whether other factors might apply to HRP interactions, and also 
effectively measure and quantify any effects, it is necessary to 
first develop autonomous robot HRP sensing and control 
capabilities. Haasch et al.  [28] have presented a mobile 
companion robot that employs multi modal person tracking, 
attention mechanism, speech recognition, and dialog manager to 
interact with a human, but not studied HRP in their work. This 
paper therefore presents a state-of-art Autonomous Proxemic 
System (APS) for sensing and control of HRP distance. It 
discriminates humans from objects, automatically measures the 
HRP distance, controls for a given desired HRP distance. The 
robot is also able to follow people around, keeping a desired 
HRP distance (to the best of the robot’s capabilities, as it moves 
rather slowly compared to most people). The rest of paper is 
organized as follows. The next section explains the APS main 
components and its implementation details. Section 3 describes 
the experiment that evaluates the performance of APS in keeping 
the desired HRP distances. Finally, the last section gives a 
conclusion and prospect of future work.  

2. Autonomous Proxemic System  

The APS is designed to detect a human in the mobile robot’s 
surroundings, and enable the robot to approach and keep a 
desired HRP distance in both static and dynamic states. The APS 
employs a range of sensors common to mobile robots consisting 
of a low resolution camera, passive infra-red (IR) sensor, laser, 
and sonar range finders. It uses computer vision techniques to 
detect either a face or upper body of a person within its camera 
range, but also applies a leg detection algorithm to laser range 
finder data. Meanwhile, it uses infra-red (IR) and sonar sensors 
to perceive and track human motions and obstacles, respectively. 
The rest of this section provides more details of how these 
sensors and associated algorithms are implemented in the APS.  

Face Detection 
The APS uses face detection to detect and localize people in the 
focus range of the camera. The main aim of this face detection is 
to determine whether or not there is actually a human face in the 
current captured camera frame, and if so return the location. 
However, face detection is challenging due to variability in 
scale, location, orientation (up-right, rotated), and pose (frontal, 
profile). Facial expression, occlusion, and lighting conditions 
also change the overall appearance of the faces  [20].  

In our application, we take advantage of an object detector 
which uses Haar-Like features of an image  [21]. This is a refined 
version of the widely known algorithm created by Viola & Jones 
 [22]. This algorithm is already implemented and trained for face 
and upper body detection in OpenCV  [23], the open-source 
computer vision library adopted for use in the APS. According 
to a comparative survey in  [20], the chosen solution shows a 
good balance between performance and computational speed. It 
is also proven that this method is colour independent (i.e., adapt 
for different skins) and robust to varying light conditions.  

Briefly, the chosen face detection algorithm deploys Haar-
like features that consist of two or three jointed rectangular 
regions (Figure 1). The value of a Haar-like feature is the 
difference between sums of grey level values of pixels within the 
two rectangular regions.  



 

 
Figure 1. Haar-like features: two or three jointed rectangle 

regions  [22] 

 
Figure 2. Haar-like features are extracted from sub-windows 

for face detection  [22]  

 

 
Figure 3. Cascade of simple classifiers applied to the Haar-like 

features of the sub-windows  [22] 

 

Compared with raw pixel values, Haar-like features can 
reduce in-class, and increase out-class variability, thus making 
more distinguishable data and easier classification. The Haar-
like features are computed from sub-windows of an image 
(Figure 2). Given an image resolution of 320x240, sub-window 
resolution of 24x24, and 15 frames per second, the total number 
of sub-windows with one Haar-Like feature is about 1 million 
per second which has a relatively large computation cost. To 
optimize this computation, a cascade of pre-trained simple 
classifiers (i.e. AdaBoost  [21]) with a threshold structure is 
applied to the features computed from sub-windows. The first 
classifier eliminates a large number of negative sub-windows 
and passes almost all positive sub-windows (high false positive 
rate) with very little processing effort. Subsequent layers 
eliminate additional negative sub-windows (passed by the first 
classifier) but which require more computation. After several 
stages of processing, the number of negative sub-windows has 
been reduced greatly (Figure 3). Finally, the remaining relatively 
few sub-windows may contain a face passed as the output of the 
algorithm.  

Bellotto et al.  [24] presented an adapting regulation for 
parameters of the face detection method to improve the fast 
tracking performance in real-time applications. It starts with an 
image at normal size (320x240) and once it has detected a face 
(or faces), selects the nearest one, and then scans just a sub-
image containing the selected face. Meanwhile, it reduces the 
sub-windows size into 80% of the selected face size. This 
significantly increases the detection speed (~4 times) and keeps 
track of one face as long as it can be detected.  

The proposed algorithm  [23] is capable to be extended to 
distinguish different visual patterns. Then, as mentioned, we 
have extended the visual object detection to detect upper body 
rather than the exclusive face detection. Moreover, we deployed 
the face detection classifier with different profiles. By this 
means, the robot can perceive people even when it is behind or 
to the side of the person. More details about the implementation 
are discussed in the next sub-section. To supplement the face 
detection system, additional sensing tools are required to detect 
humans in the surrounding area. This is because the applied face 
detection is limited in both performance (false positives, 
negatives and lost targets) and the area of scanning coverage.  

Leg Detection 
Leg detection is a pattern recognition terminology that can 
discriminate and localize people legs using laser readings  [29]. 
The leg detection system processes the range data collected by 
laser, extracts the edges produces by the objects, and localizes 
the patterns of edges that match with the human leg patterns’.  
Although, the detected patterns are not guaranteed to belong to 
human legs, they provide potential directions to explore to 
confirm whether people are in the environment. In APS, leg 
detection is employed to provide the turning direction for the 
robot when no one was detected by the visual detection object.  

The laser sensor provides range data from 180° covering the 
front and sides of the robot, at a height of about forty 
centimetres from the floor, and with half degree resolution. The 
scanning area is semicircular with a radius of 8 meters. The laser 
range data, according to the manufacturer’s specifications, are 
very accurate with errors of a few millimetres. Figure 4 depicts a 
snapshot of the range data in the presence of a person in the 
scanning area.  

Belletto et al.  [24]  [25] presented a novel detection algorithm 
to find human legs by using laser scans. It is designed to work 
either in large empty environments or small cluttered rooms, and 
is able to distinguish among different leg postures, thus 
improving the discrimination of false positives. The leg 
detection algorithm extracts the necessary features (edges 
produced by the objects) from a single laser scan, and identifies 
typical patterns (relative to particular leg postures) that, in most 
of the cases, are distinguishable from the other objects in the 
environment. The desired leg patterns, shown schematically in 
Figure 5, correspond to three typical situations: two legs-apart 
(LA), forward straddle (FS), and two legs-together or SL. The 
first pattern is usually very common when a person is standing in 
front of the robot. The second is most likely to happen when the 
person is walking. The last pattern covers most of the remaining 
postures. However, it can also be generated by other objects in 
the environment, giving rise to false positive detections  [25].  



 
 

Figure. 4. Range data collected from the laser sensor with 
marked edges  

 

 
Figure 5. Leg patterns and the Leg Detector’s schematic 

diagram  [25] 

As shown in the schematic presentation of Figure 5, the 
algorithm is divided into three main parts: data pre-processing, 
detection of vertical edges, and finally extraction of leg patterns. 
The laser range data are pre-processed by applying a local 
minimization operator to remove possible spikes due to 
reflections on sloped surfaces, and a local maximization operator 
to discard thin objects such as table legs. Suppose the angular 
step between two consecutive laser scans is constant, and the 
range data after pre-processing is stored in an array S = [r1 . . .  
r i . . . rM] , where r i is the range measured on the direction θi, and 
M is the total number of readings. If we represent S on a 
Cartesian graph, we can identify a sequence of vertical edges 
defined as follows. The doublet {r i, ri+1} can be considered an 
almost vertical edge if the distance |r i+1−r i| is greater than a 
given threshold. Moreover, we can distinguish a left edge, when 
r i>r i+1 from a right edge, when r i<r i+1, and refer to them as Li 
and Ri, respectively.  

The resulting vertical edges are initially queued into a list E = 
{e1 . . . en . . .}, where each element en can be either an L or R 
edge. If they are very close and almost aligned, adjacent edges of 

the same type are connected to form a longer one. After that, 
from the updated list of connected edges, we extract all the 
subsets that might belong to one of the three leg patterns 
described before. The order of patterns that we look for is as 
follows.  

• The LA pattern is a quadruplet {L, R, L, R}. 
• The FS pattern is a triplet {L, L, R} or {L, R, R}. 
• The SL pattern is a doublet {L, R}. 

Every edge is removed from E as soon as it contributes to form 
one of the aforementioned sequences. Therefore, all the LA 
patterns, which are normally the most reliable, are extracted first, 
while the SL patterns, which are the easiest to misinterpret, are 
left at the end. During the search for the patterns we consider 
some constraints and spatial relations between edges, including 
maximum normal distance between legs and limits on their size. 
With reference to Figure 5, some dimensional constraints are 
fixed for the measures a, b, and c, which are, respectively, the 
leg’s width, the maximum step length, and the width of two legs 
together. These are used by the algorithm’s procedures to 
recognize LA, FS, and SL patterns. Finally, the distance and 
direction of the detected legs are calculated from the midpoint of 
each pattern  [25].  

Motion Detection 
Many objects normally emit IR radiation, invisible to human 
eyes that can be detected by electronic devices designed for such 
a purpose. The APS motion detector is designed to perceive a 
human as the robot is moving. It is based on a passive IR sensor, 
which is an electronic device that measures IR light radiating 
from objects in its field of view. It is a passive sensor, which 
means that it does not emit an IR beam but merely passively 
accepts incoming IR radiations. Intensity of the emitted radiation 
is proportional to the objects’ temperature  [26], and apparent 
motion is detected when an IR source with one temperature, 
such as a human, passes in front of an IR source with another 
temperature (e.g. a wall etc.). Furthermore, a motion can also be 
realized when an IR sensor moves relative to an IR source with 
one temperature, such as a human, standing in front of an IR 
source with another temperature. This feature can be adopted to 
detect the positional change between a human and a mobile 
robot carrying the IR sensor.  

In our application, we set up an IR sensor connected to an 
analogue to digital converter (ADC, Phidget Interface Board) on 
top of the mobile robot to perceive the presence of a human in 
its surroundings. The sensor was fixed at a height approximately 
1.2 meters from the floor to read IR radiations emitted from the 
human body (i.e. trunk) and avoid typical non-human IR sources 
(e.g. heating radiators) in a room. The sampling frequency was 
5Hz, and the recorded data was passed through a low-pass filter 
to remove noises produced by the vibration. The gradient of the 
filtered data represents a change in successive IT radiation 
measurements and indicates a motion when it exceeds a certain 
threshold. The threshold was chosen after preliminary tests, and 
adjusted to detect the motions produced by a human within a 
range of 5 metres.  

According to the desired scenarios in our application, we 
deliberately ignored any fast or weak motions from the passive 
IR sensor by adjusting the sampling rate, low-pass filter and 
threshold parameters. After tuning, the robot detected the 



presence of a static human when the robot passes by, or when a 
human moves in front of the robot.  

System Implementation   
The APS is a real-time controller developed for the Pioneer 

PeopleBotTM robot. It has a modular design and employs the 
above-mentioned detectors as modules running in multi-thread 
mode. The APS is implemented in C++ using ARIA and 
OpenCV libraries. It runs on a Dual Core PC (with Windows 
XP) connected directly to the robot via the USB serial port 
adaptor.   

The APS includes both control and sensing functions. The 
controlling commands are made up of ‘Turning Left/Right’ and 
‘Moving Forward/Backward’, both implemented as Actions in 
ARIA. The Turning command has a priority over Moving; this 
means the robot first turns toward the person and then starts 
approaching. The Moving command checks regularly the range 
devices (i.e. Sonar and Laser) to keep the HRP distance and 
avoid obstacles. The cycle time of the robot controller, at which 
the sensors and commands are regularly updated, was set to 
200ms. This is a sensible rate for a companion robot in normal 
daily activities.  

APS sensing functions include face and upper body detection, 
leg detection, and motion detection using the camera, laser, and 
Infra-Red (IR) sensor, respectively. Moreover, the obstacle 
avoidance Action also uses the sonar and laser range data. APS 
gives a higher priority to the camera-based functions over the 
laser  [30]. This means APS manipulates the robot using vision-
based information, as long as it detects a face or an upper body 
in view of the camera. When a face or an upper body is detected, 
APS uses its relative horizontal location in the image to adjust 
the robot’s bearing angle towards the human. In the absence of a 
detected human by the camera system during a limited time, 
APS then uses the information provided by the leg detector to 
manipulate the robot. Motion detection, due to its particular 
characteristics, just stops the robot turning (i.e., interrupt the 
Turning command) when it spots a human in its range.  

To make a sensible integration of the detectors, we require 
considering their features along with the characteristics of the 
controller. The laser-based leg detector is very accurate and in 
most of the cases is much more reliable than face detection  [25]. 
Moreover, the computational time needed by the leg detector is 
much less than that one required by the face detection module. 
Considering the modules running asynchronously in real-time 
operation, the face and leg detection processes take about 500 
and 250msec, respectively. The range covered by the laser 
device is much wider than the camera view. While the laser 
covers a semicircular area with a radius of 8 metres, the camera 
view is limited to approximately 40°. As mentioned, the face 
detection is featured to discriminate faces with different profiles 
as well as the upper body. However, even if the camera is fixed 
at about 1.4m from the floor (which is about a normal person’s 
face height), there are cases when a face or upper body cannot be 
detected because a person is too tall, too short, or very close to 
the robot.  

3. Experiments and Results    

According to Section 1, a domestic robot should be able to 
keep an acceptable HR proxemic distance during interaction 

with a human. The APS is supposed to manipulate the robot in 
such a way that it keeps reliably the desired HRP distances 
corresponding to different settings. We conducted an 
experiment, to evaluate the performance in HR proxemic control 
produced by APS.  

 
Desired distance in APS  

 450 550 650 750 850 950 1050 1150 1250 

Recorded distances for subject 1 
1 385 500 595 725 715 885 1015 1055 1055 
2 395 495 645 730 825 885 1005 1005 1125 
3 395 485 635 735 735 825 960 1065 1115 
4 405 475 620 705 765 845 1015 1015 1135 
5 385 505 595 675 755 865 985 1055 1145 

Recorded distances for subject 2 
1 365 540 560 650 760 820 895 1005 1085 
2 375 450 570 650 760 830 885 1005 1105 
3 355 480 570 660 750 825 915 995 1095 
4 345 480 565 655 755 835 895 985 1105 
5 335 480 575 665 765 825 925 1005 1115 

 

Table 2. Recorded HRP distances corresponding to different 
settings (in millimeters) 
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Figure 6. Error (%) of raw HRP distances  
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Figure 7. Error (%) of HRP distances after applying bias 
values (6cm for Subject 1 and 10cm for Subject 2)   

To have a realistic evaluation, the experiment with two 
participants was conducted in a real living room with usual 
furniture in the University of Hertfordshire ‘Robot House’. The 
'Robot house' is a house near the University, based in a domestic 
area, which appears to be like any typical UK house, but has 
been adapted so that HRI experiments and user trials can be 



performed in an ecologically valid, real home environment, 
rather than a laboratory or simulated home surroundings. In the 
experiment, we measured directly using a tape measure the 
actual distance between static human and robot corresponding to 
different desired HRP values set in APS. The experiment was 
designed to evaluate the reliability and repeatability of the APS 
performance; Hence, we repeated five trials for each setting, and 
also recorded the error. The error refers to the difference 
between desired and actual HRP distances. Some error is 
inevitable, since the APS records the nearest distances read by 
the sonar and laser at a fixed height (i.e. 0.3 and 1.2m for sonar 
and 0.4m for laser) from the floor as HRP, while we measured 
the actual distance at a height that includes the closest point 
between human and robot’s trunks. However, it was expected to 
record errors with constant bias and low variance. The bias 
mainly depends on particular subjects’ body shape.  

The experiment examined HRP settings from 45 to 125 
centimetres, and repeated trials for each setting five times. Table 
2 demonstrates the recorded distances for two participants and 
nine settings. Figures 6 and 7 illustrate the mean and standard 
deviation for error of HRP distances for each subject and setting. 
The former is for the raw data and the later depicts the error rate 
after subtracting the bias value to reduce the constant part of the 
error.  

The bias is a constant value that exists in the differences 
between measured values by the human and robot. It is primarily 
caused by the difference in the height of the point of 
measurement. The bias value therefore depends mostly on 
individual humans’ body shapes and is worked out for each 
subject. Considering the errors with normal distribution, it can 
be calculated using the ‘three-sigma’ rule in Statistics  [27]. The 
bias is worked out by subtracting the one-third of the standard 
deviation (STD) of the recorded errors from the absolute value 
of their mean. It was found to be 60 and 100 millimetres for 
Subject 1 and 2, respectively.  

 

 
Figure 8. Error (%) decreases significantly by applying the bias 

values to raw HRP distances  

Figure 8 shows that applying the individual subjects’ biases 
to the raw HRP distances from the APS, increased significantly 
the accuracy of measurement. The adjusted (biased) mean HRP 
error is about ±1.5% with repeatability of ±1%. This implies an 
approximate error of ±0.75cm in HRP distance measurements 
close to the 57cm base distance  [4] from the Proxemic 
Framework from Table 1. This is acceptable for our future work 

which will focus on HRP interactions within the near Personal 
Zone distances (40 – 100cm). We hope to refine the 
measurement accuracy in the light of more data from a wider 
range and number of participants in future trials. We also intend 
to improve the APS in future work by incorporating a learning 
mechanism that can learn users’ proxemic preferences and 
individual HRP parameters during run-time.  

4. Conclusion    

The social behaviour of a mobile robot can make it socially 
acceptable and effective as a companion. In HRI, the study of 
how human and robot use and manipulate distances between 
each other with regard to social behaviour and perceptions is 
called human-robot proxemics (HRP). An aim of HRP research 
is that a social service robot should be able to detect presence of 
people in its surrounding and approach them to an acceptable 
proxemic distance. The particular HRP distance depends on 
individual humans’ preferences, the robot’s task and services, 
social and physical situation, and possibly other factors. In this 
paper we proposed an autonomous proxemics system for a 
mobile robot. Experimental findings indicate that the proposed 
system works reliably and keeps a desired HRP distance with a 
total error variance about ±1.5%. We intend to improve the APS 
in future work by refining the HR measurements and 
incorporating a learning mechanism that automatically can adapt 
to individual users’ HRP preferences and parameters.  
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