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Abstract 

Intelligent Transportation Systems (ITSs) play an important role in modern traffic 

management, which can be divided into intelligent infrastructure systems and intelligent 

vehicle systems. Automatic Number Plate Recognition systems (ANPRs) are one of 

infrastructure systems that allow users to track, identify and monitor moving vehicles by 

automatically extracting their number plates. ANPR is a well proven technology that is 

widely used throughout the world by both public and commercial organisations. There are a 

wide variety of commercial uses for the technology that include automatic congestion 

charge systems, access control and tracing of stolen cars. The fundamental requirements of 

an ANPR system are image capture using an ANPR camera and processing of the captured 

image. The image processing part, which is a computationally intensive task, includes three 

stages: Number Plate Localisation (NPL), Character Segmentation (CS) and Optical 

Character Recognition (OCR). The common hardware choice for its implementation is 

often high performance workstations. However, the cost, compactness and power issues 

that come with these solutions motivate the search for other platforms. Recent 

improvements in low-power high-performance Field Programmable Gate Arrays (FPGAs) 

and Digital Signal Processors (DSPs) for image processing have motivated researchers to 

consider them as a low cost solution for accelerating such computationally intensive tasks. 

Current ANPR systems generally use a separate camera and a stand-alone computer for 

processing. By optimising the ANPR algorithms to take specific advantages of technical 

features and innovations available within new FPGAs, such as low power consumption, 

development time, and vast on-chip resources, it will be possible to replace the high 

performance roadside computers with small in-camera dedicated platforms. In spite of this, 

costs associated with the computational resources required for complex algorithms together 

with limited memory have hindered the development of embedded vision platforms. 

The work described in this thesis is concerned with the development of a range of image 
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processing algorithms for NPL, CS and OCR and corresponding FPGA architectures. 

MATLAB implementations have been used as a proof of concept for the proposed 

algorithms prior to the hardware implementation. The proposed architectures are 

speed/area efficient architectures, which have been implemented and verified using the 

Mentor Graphics RC240 FPGA development board equipped with a 4M Gates Xilinx 

Virtex-4 LX40. The proposed NPL architecture can localise a number plate in 4.7 ms whilst 

achieving a 97.8% localisation rate and consuming only 33% of the available area of the 

Virtex-4 FPGA. The proposed CS architecture can segment the characters within a NP 

image in 0.2-1.4 ms with 97.7% successful segmentation rate and consumes only 11% of 

the Virtex-4 FPGA on-chip resources. The proposed OCR architecture can recognise a 

character in 0.7 ms with 97.3% successful recognition rate and consumes only 23% of the 

Virtex-4 FPGA available area. In addition to the three main stages, two pre-processing 

stages which consist of image binarisation, rotation and resizing are also proposed to link 

these stages together. These stages consume 9% of the available FPGA on-chip resources. 

The overall results achieved show that the entire ANPR system can be implemented on a 

single FPGA that can be placed within an ANPR camera housing to create a stand-alone 

unit. As the benefits of this are drastically improve energy efficiency and removing the 

need for the installation and cabling costs associated with bulky PCs situated in expensive, 

cooled, waterproof roadside cabinets. 
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Chapter 1: Introduction 

This chapter provides an introduction to the rapidly emerging Automatic Number Plate 

Recognition (ANPR) technology. It begins with a brief overview of current ANPR systems, 

applications and high performance solutions for their implementation in sections 1.1 and 

1.2. Following the brief overview, a summary of the motivations and objectives of this 

research is given in Section 1.3 and then conclude with the organisation of the thesis in 

Section 1.4. 

1.1 ANPR systems  

Intelligent Transportation Systems (ITSs) have had a wide impact on people’s life as their 

scope is to improve transportation safety and mobility using multiple technology-based 

systems [1], which includes communication, information and satellite technologies in 

traffic congestion, safety enhancement and improving quality of environment [2]. ANPR is 

used as an important technology for intelligent infrastructure systems like electronic 

payment systems, access control, tracing of stolen cars, or identification of dangerous 

drivers [3-5].  

ANPR systems have been successfully operated in UK for several decades. First generation 

ANPR systems were invented in 1976 at the Home Office Scientific Development Branch 

in England (now known as the Home Office Centre for Applied Science and Technology, 

CAST) and they have successfully detected simple crimes: Tracking and finding stolen 

vehicles and prosecuting uninsured or un-taxed road users [6]. One successful example is 

the UK’s “Ring of Steel” around the city of London. The area covered includes London 

congestion charge zone, where motorists are required to pay a congestion charge. There are 

currently 1,500 ANPR cameras that monitor anywhere in the zone and around 98% of 

vehicles moving within the zone are caught on cameras. The video streams are transmitted 

to the National ANPR Data Centre (NADC) where ANPR software processes the 
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registration plate of the vehicle [7]. Currently, the vehicle information is gathered from 

fixed cameras strategic sites (e.g. main roads, motorways and petrol stations), mobile units 

(e.g. police van) and CCTV in towns and cities, there are 35 million number plate reads per 

day and this number is increasing every year [8]. Figure 1-1 illustrates the applications of 

ANPR.  

 

Figure 1-1: ANPR applications [9] 

Typically, an ANPR system consists of three stages: Number Plate Localisation (NPL), 

Character Segmentation (CS), and Optical Character Recognition (OCR). The NPL stage is 

where the Number Plate (NP) being detected. The CS stage is an important pre-processing 

step before applying OCR, where each character from the detected NP is segmented before 

recognition. In the last stage, characters are segmented from the NP so that only useful 

information are retained for recognition where the image format will be converted into 

characters by pre-defined transformation models [5]. 

Currently, the common hardware implementation choice for ANPR implementation is 

often high performance workstations and expensive computers [10]. The reason of that is 
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the nature of image processing applications as it involves performing complex tasks 

repeatedly on a large set of image data under real-time requirements. Current ANPR 

systems generally use a separate camera and a stand-alone PC for processing. However, the 

cost, compactness and power issues that come with these solutions motivate the search for 

more cost and size efficient platforms. Hardware accelerators are efficient technics that 

provide extensions to the computational capabilities of a specific system to improve the 

performance and reduce the power consumption. 

1.2 Hardware Solutions for ANPR Systems 

As mentioned in section 1.1, most methods in current ANPR systems utilise general 

purpose Central Processing Units (CPUs) to perform complex and computationally 

intensive image processing algorithms. The CPU must read each instruction from memory, 

decode it and then execute it. Additionally, any operation needs to be implemented from 

basic arithmetic and logical operations in CPU, which slow down the execution speed for 

each individual operation. 

Therefore, in order to achieve real-time performance, specialist hardware platforms can be 

one of valuable solution for accelerating computationally intensive image processing 

algorithms. Currently, the most commonly used hardware for solving such problem are 

Digital Signal Processors (DSPs), Graphic Processing Units (GPUs), Special Purpose 

Application Specific Integrated Circuits (ASICs) and Field Programmable Gate Arrays 

(FPGAs). From these hardware platforms, most of researchers have chosen DSP and/or 

FPGA as their platform for implementing ANPR systems [11] [12] [13]. However, most of 

the hardware based systems focus only on one or two stages of ANPR system due to limited 

hardware resources or complexity of the chosen algorithms. In the following sections, a 

general overview of these hardware platforms is given. 



Chapter 1  Introduction 

4 

 

1.2.1 Digital Signal Processors 

DSPs are specialised microprocessors that have optimised architectures suitable for the 

implementation of operations used in digital signal processing. DSPs are widely used in 

digital processing systems such as wireless communications, audio and video processing 

[11]. The DSP features are outlined below [14]: 

1) High performance: DSPs are capable of performing one or more 

multiply-accumulate (MAC) operations in one instruction cycle, which can be used 

in matrix multiplication operation found in many digital filters and other image 

processing algorithms (e.g. colour space conversion). DSPs are known for their 

irregular instruction sets, which allow several operations to be encoded in a single 

instruction. In general, DSP instruction sets allow data moves to be performed in 

parallel with an arithmetic operation.  

2) Low latency: DSPs often have special memory architectures that allow them to 

fetch multiple data and/or instructions in a single instruction cycle. They also have 

specialised execution control, which allows tight loops to be repeated without 

spending any instruction cycles for updating and testing the loop counter or for 

jumping back to the top of the loop. 

As a result, DSPs have been widely used in intensive tasks, such as image processing, audio 

processing [15, 16] . They provide the computing power necessary to process large 

amounts of data in real-time [11, 17]. However, the power consumption and space 

constraint issues limited their usage in portable devices [18]. 

1.2.2 Graphic Processing Unit 

GPU is a specialised electronic processor to accelerate 2D or 3D image processing. Over 

the past ten years, the performance and capabilities of GPUs have increased considerably; 

they are widely used in embedded systems, personal computers, mobile phones and game 
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stations. Currently, GPUs are not only powerful graphics engines but also highly parallel 

processors substantially that have advantages over general purpose CPU, which offer a 

great deal of promise for future computing systems. Below are some GPU features [19]: 

1) GPUs can deliver high computing performance to process billions of pixels per 

second, which makes them a suitable hardware platform candidate for complex 

real-time applications. 

2) GPUs can offer parallelism for many types of embarrassingly parallel task 

including ray tracing and weather modelling, where data parallelism is exhibited for 

high throughput type computations. 

3) GPUs can offer very deep pipelining to increase the throughput rate. The pipeline is 

also feed-forward, removing the penalty of control hazards, further allowing 

optimal throughput of primitives through the pipeline. 

Although GPUs can offer high computational performance for real-time image processing, 

they need high memory bandwidth and huge computational graphic hardware resources to 

speed up the processing, which can result in very high power consumption. Therefore, 

GPUs are unsuitable for embedded vision applications with restricted power constraints 

[20].  

1.2.3 Special Purpose Application Specific Integrated Circuits  

ASICs are designed specifically to efficiently perform a given computation task because 

they can be optimised for one or more design metrics, such as power consumption and area. 

However, after fabrication the circuit cannot be altered unless the chip is modified, and this 

is an expensive process when considering the difficulties in replacing ASICs in a large 

deployed system.  

The main disadvantages of this hardware approach can be summarised as follows: 

1) Development times for ASICs are normally longer than other hardware solutions. 
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2) Costs of ASICs are reduced only when the volume required justify their fabrication 

costs. 

3) Flexibility for ASIC is worse than other hardware solutions. Once this special 

purpose hardware is built, it is not possible to change the hardware to meet other 

needs. The only solution is to use a new hardware to replace the existing one to 

meet its requirements. 

Re-designing and re-fabricating any part of the ASIC increase the cost of the product. 

Structured ASIC can cut the expenses by more than 90% and speedup time-to-market for 

derivative chips. The reason of that is only a small number of chip layers must be 

custom-produced in Structured ASIC (SASIC), which is bridging the gap between FPGA 

and Standard-cell ASIC designs. For example, users normally need to design power, clock, 

and test structures, the SASIC provides those predefined architectures and therefore can 

save time and expense for designer compared to Standard-cell ASIC. SASIC technology is 

especially suitable for platform ASIC designs that have integrated most of the IP blocks and 

leave some space for custom changes [21] [22]. 

Alternative hardware approach to avoid many of ASIC’s disadvantages is the use of 

reconfigurable hardware in the form of FPGAs, which can increase the flexibility of ANPR 

system before fabrication the circuit. This technology is introduced in the next section. 

1.2.4 Field Programmable Gate Arrays 

FPGA is an integrated circuit that can be configured by a customer after manufacturing. 

The first commercially viable FPGA was designed by Xilinx in 1985, which had 

programmable gates and programmable interconnects between gates that served as a hybrid 

device between Programmable Arrays Logic (PALs) and Mask Programmable Gate Arrays 

(MPGAs). Although it only had 64 Configurable Logic Blocks (CLBs) with two 3-input 

Lookup Tables (LUTs), this was a beginnings of a new technology and market [23]. 

However, nowadays with great flexibility, capacity and performance, FPGAs opened up 
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completely new avenues in high-performance computation, forming the basis of 

reconfigurable computing [24]. 

FPGAs can be used to implement any logical function that an ASIC could perform, with the 

added advantage of ability to update the functionality after shipping with a minor cost. 

FPGAs can also be the final products without fabricating an ASIC, the cost of FPGAs are 

lower than the ASIC when the volume of product is not high. During the last decade, as new 

material technologies are introduced for fabricating the FPGA chips, more and more 

resources can be integrated into a single FPGA chip [25]. For example, a latest Xilinx 

Virtex-7 FPGA contains 1,955,000 logic cells, 3,600 DSP slices and many other resources 

on the chip [26]. The architectural innovations makes new 28 nm FPGAs are well suited for 

high performance and low-power consumption applications [27].   

Recently, FPGAs fused features of embedded microcontrollers with FPGA fabric to make 

FPGAs easier for embedded designers. This allows developers to apply a combination of 

serial and parallel processing to address the challenges in cutting-edge research on topics 

ranging from programming technology, cryptography to real-time systems. For example, 

Xilinx Zynq-7000 series FPGAs enable extensive system level differentiation, integration, 

and flexibility through hardware, software, and I/O programmability [28]. There is no 

doubt that the use of FPGAs has increased the performance of a wide range of 

computationally intensive applications [29]. 

Since Virtex-4 FPGA has been used for the hardware implementations of different ANPR 

stages, the following sub-sections focus mainly on the architecture of Virtex-4 FPGA. 

FPGA Structure 

The most common FPGA structure consists of an array of CLBs, switching matrix and 

connection matrix. Generally, the CLBs can be interconnected to each other through some 

sort of configurable switching and connection matrix. Figure 1-2 provides a simplified 

diagram of a generic FPGA architecture [30]. 
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Figure 1-2: A simplified diagram of a generic FPGA architecture 

CLBs 

The CLBs are the main logic resource for implementing sequential as well as combinatorial 

circuits. A typical CLB consists of a few logical cells, called slices. For example, Virtex-4 

CLB contains four interconnected slices, each paired slices are organised as a column. Each 

pair in a column has an independent carry chain. However, only the slices in left column 

have a common shift chain (i.e. SLICE (2) and SLICE (4)) Figure 1-3 shows the 

arrangement of slices within the CLB for a typical Virtex-4 FPGA.  
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COUT

CIN
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COUT

CINSHIFTOUT

SHIFTIN

CLB

(Logic or Distributed RAM or Shift Register) (Logic Only)

Interconnect 
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Figure 1-3: Arrangement of slices within the CLB for a typical Virtex-4 FPGA [31] 
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A simplified diagram of a Xilinx Virtex-4 FPGA slice is presented in Figure 1-4. It consists 

of two logic-function generators (or LUTs), two D-Flip-Flops (DFFs), multiplexers, carry 

and arithmetic logic [31]. Both slice pairs provide logic, arithmetic and ROM functions, but 

left slice pair supports two additional functions: storing data using 16-bit distributed RAM 

and shifting data with 16-bit shift registers. The LUTs allow any generic four-input logic 

function to be implemented. The DFF can be used for pipelining, registers, state holding 

functions for finite state machines, or any other situation where clocking is required. The 

carry logic is used to speed up carry-based computations in the cell, such as addition and 

subtraction. The multiplexers are used to combine outputs of the LUTs and so to implement 

5-input combinational circuit.  

4-input 

LUT

4-input 

LUT

MUX

Arithmetic 

and carry 

logic

MUX

DFF

DFF

MUX

MUX

 

Figure 1-4: A simplified diagram of a Xilinx Virtex-4 FPGA slice [31] 

Routing 

The routing architecture is designed to handle versatile connection configurations, where 

horizontal and vertical routing channels are used to connect the CLBs in rows and columns. 

The routing resources available on the architecture are: 



Chapter 1  Introduction 

10 

 

 Connection Blocks 

The connection blocks connect the channel wires with the input and output of the CLBs, 

where signals flow from the CLBs into the connection block, and then along longer wires 

within the routing channels [32]. 

 Switch Boxes 

The switch boxes allow wires to switch between vertical and horizontal wires to change 

their routing direction. When a wire enters a switch box, there are three programmable 

switches that allow it to connect to three other wires in adjacent channel segments. In the 

routing architecture of an FPGA, the connection blocks and switch boxes surrounding a 

single CLB typically have thousands of programming points, which allow to support 

fairly arbitrary interconnection patterns [32]. 

In addition to the basic features, modern FPGAs also provide many advanced features 

such as digital signal processing slices (e.g. multipliers and accumulator), dual-port RAM 

blocks and embedded processor cores (e.g. PowerPC). More details about the used 

features of Virtex-4 FPGA can be found in APPENDIX A.  

FPGA Design Flow and Synthesis  

A typical design flow for FPGA design consists of a number of tools: Hardware 

Description Languages (HDLs), schematic capture tools, simulation tools, netlist 

converters and Place-and-Route (PAR) tools. FPGA design cycle is given in Figure 1-5. 
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ENTITY AND_ent IS

PORT(

                     A: IN Bit;

                     B: IN Bit;

                     C: OUT Bit

            );

END AND_ent;

architecture AND_arch of AND_ent is

begin

            C <= A and B;

end AND_arch;

Synthesis Tool Wirelister Tool

Netlist (EDIF)

Place-and-Route 

(PAR)

FPGA Configuration

(bitstream)

A

B
C

Schematic Capture

   unsigned a;

   unsigned b; 

   unsigned c;

 

   void main(void)

   {

        c = a & b;

   }

Compiler

High Level Programming Languages 

(e.g. C/C++ and Handel-C)

 

Figure 1-5: FPGA design cycle 

The FPGA design flow starts with design entry and ends with bitstream generation in a 

top-down manner. There are several vendors in the FPGA market, i.e. Xilinx, Altera and 

Lattice. Each vendor provides its own front end design tools such as Xilinx ISE from Xilinx 

[33] and Quartus II from Altera [34] . 

A. Design Entry 

FPGA designs can be entered either schematically using a schematic editor or textually 

using programming languages: 

 Schematic Design Entry: Schematic tools provide a graphic interface for design 

entry. Designers can design and connect individual logic components and combine 
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them to create functional blocks. Once a design has been specified using schematic 

capture, it can be converted into a netlist by a schematic-to-netlist converter tool. 

Because the common logic components are usually defined and stored in a library 

that is supplied by the FPGA vendor, schematic designs produced for a specific 

FPGA architecture are not easily portable to other FPGA. 

 HDLs: There are two most commonly used HDLs in industry, which are Very High 

Speed Integrated Circuit Hardware Description Language (VHDL) [35] and Verilog 

[36]. These languages are standard and device independent where hardware 

architectures described using any of them can be synthesised into a circuit suitable 

for any FPGA.  

 Handel-C Language In early 90s, Handel-C was introduced and used in the 

programming of FPGAs as a high level programming language at Oxford 

University Computing Laboratory [25], and then it became a product in Celoxica 

from September 2000. However, Handel-C was first acquired by Agility in 2008, 

after 2009 it was purchased and maintained by Mentor Graphics [37]. Handel-C is 

essentially an extended subset of C, specifically designed for controlling hardware 

instantiation with an emphasis on parallelism [38]. Unlike many other design 

languages that rely on going via several intermediate stages, Handel-C can be either 

directly targeted on hardware or compiled to a number of design languages in a 

hardware compilation system known as the Mentor Graphic Development Kit (DK) 

[37], and then synthesised to the corresponding hardware using the common 

synthesis tools (e.g. Xilinx ISE). The main advantages of Handel-C over the other 

programming languages are the rapid prototyping and the software liked simulator. 

The works presented in [39] [40] have shown that Handel-C shortens design time 

by a factor of 3-4 times with approximately the same operating speed compared to 

traditional HDLs. Unlike many traditional HDL simulators that only provide 

simulation waveform of the outputs, Handel-C simulator can display contents and 

the status of all variables in a program or design for every clock cycle, which make 
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the debugging process much easier compare to traditional HDL simulators. More 

details about the used features of Handel-C can be found in APPENDIX B. 

Synthesis and Netlist Representation 

There are two major synthesis areas used in digital design: Register Transfer Level (RTL) 

and High Level Synthesis (HLS). Typically the synthesiser converts HDL (VHDL/Verilog) 

code into a RTL, e.g. Xilinx ISE [33] and Altera Quartus II [34]. Recently Xilinx 

introduced a new generation of synthesis tools named Vivado HLS, which can 

automatically transform high level programming languages (e.g. C/C++) to a RTL 

specification and then synthesised into Xilinx FPGA [27]. After running synthesis the 

designs are mapped onto a specific structure suitable for the target architecture and become 

netlist files that are accepted as input to the next implementation stage. A netlist is a 

standard textual representation of a design, which contains a more structured description of 

the functionality of the design and specific component information of an FPGA vendor. The 

netlist format can be in the standard Electronic Data Interchange Format (EDIF) format [41] 

or in another vendor specific format (e.g. Xilinx netlist Format (XNF) from Xilinx).  

Place-and-Route Tools 

PAR tools can map the design of integrated circuits and routing information onto the FPGA 

architecture. The process of PAR consists of two steps, placement and routing. At the 

placement step, all the electronic components, circuitry and logic elements are placed in a 

generally limited amount of space. After the placement step, the routing step decides the 

design of all the wires needed to connect the placed components under the requirements of 

the rules and limitations of the manufacturing process. In addition, the PAR can find timing 

constraints associated with the design and invoke timing-driven routing automatically. 

Once the PAR operation has been successfully performed, a bitstream file can be generated 

and download into FPGA for the configuration [33]. 

Compared to other hardware solutions, FPGA can provide the most flexibility and 

competitive performance for a real-time image processing design.  
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1.3 Research Motivations and Objectives  

The fundamental requirements of an ANPR system are image capture using an ANPR 

camera, and processing of the captured image. The image processing part, which is a 

computationally intensive task, includes three image processing stages (i.e. NPL, CS and 

OCR). The common hardware choice for its implementation is often high performance and 

expensive computers. However, the cost, compactness and power issues that come with 

these solutions motivate the search for other low cost platforms.  

As mentioned in Section 1.2, DSP, GPU, ASIC and FPGA are commonly used hardware 

solutions for accelerating computationally intensive image processing tasks. After 

comparing their merits and drawbacks, FPGAs is chosen in this research work as the 

hardware platform based on the following advantages: First of all, FPGA allows truly 

parallel computations to be placed in a circuit. Although many modern General Purpose 

Processors (GPPs), DSPs and GPUs can emulate parallelism by switching tasks very 

rapidly or rely on specialised hardware architectures, having operations truly performed in 

parallel results in a much faster processing speed even in a relatively lower operating clock 

frequency. Secondly, FPGA can create actual hardware to test instead of simply relying on 

simulators. The reconfigurable ability of FPGA allows a design to be completely tested and 

debugged before an ASIC is created, saving on production costs. However, algorithms to be 

implemented on FPGAs need to be carefully chosen or developed to fully exploit the 

parallelism and on-chip resources offered by those devices. Therefore, FPGA is an 

extremely powerful tool for accelerating image processing algorithms, and also balance the 

gap between software and hardware design to allow maximum performance and flexibility 

can be delivered during the research development. By optimising the ANPR algorithms to 

take specific advantage of technical features and innovations available within new FPGAs, 

such as low power consumption, development time, and vast on-chip resources, it will be 

possible to replace the 3GHz roadside computers with small in-camera dedicated all-in-one 

platforms. 
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As the main aim of this research project is to implement the entire ANPR system on one 

single FPGA, the initial sub-objectives then can be summarised as follows: 

- To develop improved real-time NPL algorithm that is suitable for FPGA 

implementation; 

- To develop novel efficient architectures for the proposed NPL algorithms and 

implement the architectures on FPGA; 

- To investigate and develop improved real-time CS algorithm and its novel 

efficient architecture implementation on FPGA; 

- To investigate and develop improved real-time OCR algorithm and its novel 

efficient architecture implementation on FPGA; and 

- To investigate and develop NP binarisation and adjustment algorithms and their 

novel efficient architecture implementations on FPGA. 

1.4 Organisation of the Thesis 

The structure of the remainder of this thesis is as follows. Chapter 2 takes a closer look at 

the most recent software and hardware based ANPR systems. Subsequently, the proposed 

NPL, CS, OCR and pre-processing algorithms and novel efficient architecture 

implementations on FPGA are introduced in Chapter 3, 4, 5 and 6, respectively. Chapter 7 

describes the proposed entire ANPR System on FPGA and an approach to extend it to High 

Definition (HD). Concluding remarks and opportunities for future work are presented in 

Chapter 8. 
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Chapter 2: Related Work 

2.1 Introduction 

In previous chapter, ANPR systems and their common solutions have been briefly 

discussed. An ANPR system normally consists of three main stages: NPL, CS and OCR, 

and each stage of the ANPR system is mainly based on different image processing and 

pattern recognition algorithms. The common implementations of the ANPR systems can be 

software or hardware. Software based solutions currently have been researched intensively 

and robust algorithms have already been proposed for each stage of an ANPR system [5, 

42-45], however, there are only few state-of-the-art hardware implementations. This 

chapter takes a closer look at the most recent software and/or hardware solutions for NPL, 

CS and OCR. A synopsis of the shortcomings of existing work and concluding remarks are 

also provided.  

2.2 Number Plate Localisation 

The performance of the NPL stage, in terms of speed and localisation rate, is crucial to the 

entire system, because it directly influences the accuracy and efficiency of the subsequent 

steps [45]. Generally, NPL algorithms reported in previous research are mainly classified 

into three classes: edge detection, colour processing and texture-based algorithms. 

2.2.1 Edge Detection based Algorithms 

Techniques based on edge detection statistics featured very good results in previous 

research works [46-50], the reason is that the algorithms utilise the change of brightness in 

the NP region is more remarkable and more frequent than elsewhere. In order to obtain the 

change of brightness, one of the algorithms is computing the gradient magnitude and the 

local variance of an image. Figure 2-1 shows an example of NPL algorithm using edge 
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detection technique. 

Vertical Edge 

Detection

 

Figure 2-1: An example of NPL algorithm using edge detection technique 

As shown in Figure 2-1, after a vertical edge detection operator is applied on a greyscale car 

image, the most of vertical edge information is appeared in the NP region, which means the 

NP can be easily localised using the density of edge information. However, a disadvantage 

of this method is that it cannot deal with the complex images, since the edge detector is too 

sensitive to unwanted edges, which may also show a high edge magnitude or variance (e.g. 

the radiator region in the front view of the vehicle). In spite of this, after combining with 

morphological operations that eliminate some unwanted edge information, the NPL rate is 

relatively high and fast, compared to other methods [51]. In [47], a combination of edge 

detection and morphology based algorithm is proposed for controlling highway charging 

system is proposed, the flow chart of the proposed algorithm is shown in Figure 2-2. 
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Figure 2-2: The flow chart of a combination of NPL algorithm based on edge detection and morphology 

The results achieved in [47] show that the average accuracy of NPL is 99.6% (9786 from 

9825 images). In order to achieve this impressive result, a fixed distance and angle of a 

camera is required to boost the NPL rate to a high level of accuracy, which means candidate 

regions are expected in a specific position and priority is given to them.  

Edge detection is usually followed by Connected Component Analysis (CCA) which is a 

well-known algorithm in binary image processing that detects connected regions in binary 
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digital images and label their pixels into components based on pixel connectivity (e.g. 

4-connectivity or 8-connectivity) [52]. Once all groups of pixels have been labelled, many 

useful geometrical measurements and features in each binary group can be extracted, for 

example, area, aspect ratio, width and height. Those measurements and features are 

frequently integrated in NPL algorithms for the localisation of NP region [53] and [54]. 

Figure 2-3 illustrates an example of CCA algorithm. 
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Figure 2-3: An example of CCA algorithm 

In Figure 2-3, there are two characters labelled in two different groups based on the pixel 

connectivity, and according to the predefined measurements and features, the characters 

can be easily localised and extracted from the original image.  

2.2.2 Colour Processing based Algorithms 

Many colour processing based algorithms are proposed in the previous NPL works. The 

principle of these algorithms is utilising the expected NP appearance in a specific country, 

for example, NP background and character colour. The basic idea of the NP region 

extraction is based on a unique colour combination of a NP background and foreground 

character in the car image. For example, as the Chinese NPs have specific formats, the work 

presented in [55], suggested that all pixels in the input image should be classified using the 

Hue Saturation Intensity (HSI) colour model into 13 categories based on variance of 

illumination in the RGB domain. They are dark blue, blue, light blue, dark yellow, yellow, 

light yellow, dark black, black, grey black, grey white, white, light white and others. In 

addition to the colour categories, the width to height ratio values are also used for 
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classification of the NP regions. At the end of the process, the NP region is extracted 

vertically, and then horizontally from the car image. Figure 2-4 shows the vertical and 

horizontal extractions of a NP region. 

Threshold

(a)

Threshold

(b)  

Figure 2-4: NP region extraction. (a) vertical extraction (b) horizontal extraction [55] 

Fuzzy logic has also been introduced in [56-61] to classify the colours in the NPL stage. 

The NP is described and given some membership function for the fuzzy sets, for example, 

‘bright’, ‘dark’, ‘bright and dark sequence’, ‘texture’, and ‘yellowness’, and then the fuzzy 

logic can be used for classification of the proposed fuzzy sets. The following intuitive rules 

of an NP region have been defined in [58] based on human perception:  

- Bright rectangle area that includes some dark areas; 

- The border of the NP is bright; 

- Approximately localised in the middle or lower middle part of the image; 

- Size of the NP is about 530 120 mm. 

A fuzzy set with trapezoidal membership functions on the interval [0, 255], used to present 
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the concept of illumination condition, where ‘0’ and ‘255’ represent black and white 

colours respectively. The input image ( 768 576 pixels) is partitioned into many 

sub-images ( 75 25 pixels) and the fitness to the four rules is calculated for each sub-image. 

However, according to the experimental results, this method is computationally intensive 

task and the last two rules restrict the algorithm to identify NPs in a specific distance. 

In [56], an edge detector is designed to find three kinds of edges from an image, which 

include black-white, red-white and green-white. Firstly, an edge image E is initialised with 

only white, black, red and green colours, and then the RGB colour model is transformed 

into the HSI model. The basic idea is to generate a fuzzy map from H, S and I maps and 

edge image E. Finally, those fuzzy maps are combined together into a single map M. This 

method showed an NPL rate of 97.9% using a database with 1088 colour images.  

2.2.3 Texture-based Algorithms 

Texture-based algorithms mainly use image transformation to analyse the texture 

information. The most common image transformation techniques include Gabor filters, 

Hough transform and wavelet transform. These techniques directly analysing texture 

information without limitation of the NP direction and size. In the work presented in [62], 

the Gabor filter is used to extract the features of image. The filter responses that result from 

the convolution with Gabor filter are directly used as NP detector. There are three different 

scales and four directions used in a 12-Gabor filter. High values in the image ( , )r x y

indicate probable plate regions. Finally the NP regions are extracted by applying 

8-connectivity CCA algorithm. A high NPL successful rate of 98% using 300 images has 

been achieved. However, this method is computationally expensive and slow for large 

images. 

Another texture-based algorithm is proposed in [63], where the edges in the input image are 

first detected, and then a contour algorithm is used to detect closed boundaries of objects, 

the contour lines are transformed to Hough coordinate to find two interacted parallel lines 



Chapter 2  Related Work 

21 

 

that are considered as a plate-candidate. Since the numbers of pixels in the contour lines are 

much less than the pixels in the original image, the calculation of Hough transform is more 

efficient and the speed of the algorithm has improved significantly without accuracy loss. 

The NPL rate achieved in [63] is 98.8% when using only close shots of the vehicle. 

Improved methods to speed up the transformations are described in [64], [65] and [66].  

In [67], a Haar scaling function for wavelet transform is proposed. The grey-level image is 

firstly binarised by a predefined threshold to highlight the feature of NP region, and then 

applying wavelet transform with different parameters to generate four corresponding 

sub-images: low-pass-filtered, characteristics contained in vertical direction, 

characteristics contained in horizontal direction, and cater-corner characteristics, namely 

LL, LH, HL and HH, respectively. After wavelet transform, five steps to localise the NP 

region are proposed: 

1. Find the reference line by horizontal variation in LH sub-image; 

2. Decide the size of the mask; 

3. Find the candidate regions below the reference line; 

4. Candidate region verification; 

5. Searching the complete NP region. 

The average accuracy of detection achieved in this paper was 92.4%, however, the fixed 

size of mask and reference line for finding the candidate make the method is unreliable, 

because it required the distance between the vehicle and acquisition camera to be in a fixed 

range. 

2.2.4 Discussion 

The NPL algorithms presented in the previous sections normally require pre-defined 

working environment to extract the NP from an input image, for example, camera distance, 

background environment, vehicle position and lighting condition. In real-world 
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applications, NPL algorithms should be able to cope with variable camera-to-car distances 

and environments. On the other hand, according to the reported processing speed of NPL in 

the literature, the NPL stage is the most computational intensive stage in the entire ANPR 

system. For a real-time ANPR system, efficient and robust NPL algorithms are required to 

accelerate the speed of the entire system. Table 2-1 summarises the performance of the 

existing NPL algorithms. 

Table 2-1: Performance of Existing NPL Algorithms 

NPL Algorithm Country Image Type 
NPL Successful 

Rate (%) 
Speed (ms) 

Improved Bernsen algorithm and 

CCA [45] 
Japan Greyscale 97.16 158 

Edge detection and morphology [47] China Greyscale 99.6 100 

Fuzzy logic [59] Taiwan Colour 97.9 N/A 

Fuzzy logic [60] China Colour 95.1 400 

Support vector machine [61] Korea Colour 92.7 1280 

Wavelet transform [44] Taiwan Greyscale 97.3 180 

Sliding concentric windows [68] Greece Greyscale 96.5 N/A 

 

2.3 Character Segmentation 

CS is an important stage in ANPR systems as correctly and accurately segmented 

characters are more likely to be successfully recognised [5]. In recent years, many CS 

techniques have been developed for text in printed documents [69] [70], however, due to 

the real-life use of ANPR systems, the obtained NP images are noisy (e.g. uneven 

illumination, inclined NP and connected characters) [1]. In order to overcome these issues, 

a wide variety of modified or improved character segmentation techniques have been 

developed. There are mainly three CS algorithm categories: 
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- Projections and binary algorithms;  

- Contours tracking algorithms; and  

- Classifiers based algorithms. 

The three types of CS algorithms are discussed with more details in the following sections.  

2.3.1 Projections and Binary Image Processing Algorithms 

The most common used CS algorithm is the one based on vertical and horizontal 

projections of the pixels [50, 59, 71-73]. The idea is to sum up pixels that belong to one 

column or row of a binary NP image and obtain two row and column vectors (or 

projections), then analyse them based on their projection histogram to identify the local 

minimum critical points where the characters need to be segmented. The proposed process 

is illustrated in Figure 2-5 below.  

YT 58 FSZHorizontal 

Projection

Vertical 

Projection

 

Figure 2-5: Horizontal and Vertical projection 

The main advantage of this method is its low complexity and straightforward 

implementation, but it does not perform well when the NP has connected characters due to 

noise, and the entire horizontal pixels projection cannot provide exact horizontal position 

of a character when NP is inclined or noisy, which will cause difficulty when identifying the 

local critical points of each character. 

Another used method applied to binary images for CS is CCA which is based on some 

geometric conditions where height, width, and area of characters need to be measured 

[74-79]. In this method the correct position of each character can be extracted even if the 
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NP is inclined, but it requires each character to be fully connected and neighboured 

characters must not be connected. Figure 2-6 illustrates a failure case of CS when only 

using the CCA algorithm. 

YT 58 FSZ
Connect Point

 

Figure 2-6: A failed example of CS when using the CCA algorithm only 

Therefore, in order to overcome this issue, this method is usually combined with 

mathematical morphology. Adaptive approaches for degraded NP images have been 

developed in [80] and [81] which include morphological operations. These methods apply 

the thickening and pruning algorithm to binary images to remove noise and search critical 

segmentation points in the projection histogram. For the aforementioned task, prior 

knowledge of the maximum quantity of segments for character or number was employed to 

decide whether the merging is necessary. The morphological operators are used for the 

merging and separating overlapping or connected characters [80]. 

2.3.2 Contours Tracking Algorithms 

The second type of CS algorithms is contour tracking. The works proposed in [82] and [83] 

fall into this category, where the boundary information of characters is used. The algorithm 

extracts contour line for each character into eight and four directions by using 3×3 and 2×2 

masks respectively, and then divides NP region into higher part and lower part using 

density indicating histogram for y-axis direction. Figure 2-7 shows a 2×2 mask and the 

required progressing for extracting contour line. 
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Figure 2-7: 2×2 mask and the contour line extraction process. (a) 2×2 mask. (b) when a and b are boundary 

pixels. (c) when a and b are background pixels. 

The 2×2 mask algorithm chooses a boundary pixel in the corresponding region as a starting 

point, and then determines the next progressing direction of mask by considering two pixels 

a and b. The tracking start direction is anticlockwise, if a and b are boundary and 

background pixel respectively, the tracking direction remains anticlockwise. If a and b are 

either boundary pixels, or background and boundary pixels respectively, the tracking 

process starts from the right side neighbouring pixel and continues clockwise as shown in 

Figure 2-7 (b). If a and b are both background pixels, then the tracking process starts from 

the left side neighbouring pixel and continues in the opposite of the previous direction as 

shown in Figure 2-7 (c).  

In [84] and [85], a shape-driven active contour model is established, which uses a variation 

fast matching algorithm for NP character segmentation, where a coarse extracting of 

boundaries and class labels of each character are proposed using a shape driven fast 

marching technique with a gradient and curvature dependent speed function: 

 
1

kF
F

G I


  
 (2.1) 

Where kF denotes a curvature related term in order to keep the propagating curve as 

smooth as possible [85].  

Firstly, the algorithm initialises the front at the borders of the image, and then performs fast 

matching interactions with speed function using Equation 2.5. Figure 2-8 shows the coarse 

segmentation results: 
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Figure 2-8: The coarse segmentation results [85] 

After locating the coarse character boundary, a fine character boundary process is used to 

locate fine character boundaries and classify them with evolving active contours in the fast 

marching scheme, which depends on gradient, curvature and shape similarity information. 

The method is also capable of segmenting broken characters and using the final merged 

segmentation results for recognition. 

2.3.3 Classifiers Based Algorithms 

The third category for character segmentation is based on classifier networks. The method 

proposed in [86] and [87] models the extraction of characters as a Markov Random Field 

(MRF), where prior knowledge of NP is used to maximise a posteriori probability. 

Subsequently, a genetic algorithm with a local greedy mutation operator is employed to 

optimise the objective function and convergence. The method was developed for CS in NP 

video sequences. 

In [88], a method for segmentation of a line of characters in a noisy low resolution image of 

a car NP is introduced, where the hidden Markov chains are used to model a stochastic 

relation between a input image and the corresponding CS. A training set of examples with a 

ground truth segmentation provided by a user that is used for the learning of the statistical 

model, which allows the classifier to mimic the user’s segmentation and exploits the entire 

prior knowledge specific for the application at hand. For the prior knowledge, they assume 

that the characters can be segmented into sectors with the same but unknown width. The 

proposed method is able to segment characters correctly even in images of a very poor 

quality. The error rate 3.3% was achieved on the testing set with 1000 examples captured 

by a real ANPR system. However, for example, the number and width of characters are 

normally unknown such as the number of characters on a UK NP can be in the range 3 to 7, 
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and inclined NPs can affect the width of characters. 

2.3.4 Discussion 

The low computing complexity of pixel projection makes it the most common used method 

for character segmentation. However, this method relies on the shape of characters. 

Although CCA has the ability to overcome this problem, but all characters on the NP must 

be isolated and each character must be fully connected. Contour tracking and classifier 

networks can perform better in more complex environments, but their higher computational 

complexity limits the flexibility for its hardware implementation. Table 2-2 summarises the 

performance of the existing CS algorithms. 

Table 2-2: The performance of existing CS algorithms 

CS Algorithm Country 
CS Successful Rate 

(%) 
Speed (ms) 

Pixel Projection [45] Japan 98.34 35 

Pixel Projection [50] Australia 98.82 200 

CCA [56] China 95.6 2000 

Bicubic interpolation and fixed position 

parameters 
Greece 89.1 N/A 

CCA [79] Korea 97.2 150 

Contours Tracking [82] Korea 97.7% N/A 

Hidden Markov Chains [88] Czech Republic 96.7% N/A 

 

CS stage is a very important stage in the entire ANPR system as the OCR stage fully relies 

on isolated characters and incorrectly segmented characters are not likely to be successfully 

recognized. In fact, accurate segmentation of degraded NP images is still a problem in 

ANPR systems, most of the recognition errors in the ANPR systems are due to 

segmentation errors. 
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2.4 Optical Character Recognition 

OCR has become an important and widely used technology, which translates scanned 

images of printed text into machine encoded text. This technology is also used for the 

recognition of segmented characters in the last stage of an ANPR system. The OCR system 

for ANPR is relatively less complex compare to other common OCR systems (e.g. hand 

writing and text scanning) as characters on NP have uniform fonts [89] and [90]. However, 

in order to handle the noisy and unknown outdoor environment effects, the ANPR system 

needs a stable OCR algorithm. Most used algorithms are based on statistical classifiers, 

Artificial Neural Networks (ANN), and common pattern matching techniques [5]. 

2.4.1 Statistical Classifiers 

The statistical classifiers can be divided into two sub-classes: single stage classifier and 

multistage classifier. Support Vector Machine (SVM) is one of the widely used classifiers 

for both sub-classes. The work done in [91] uses four SVM-based character recognisers 

indexed by ucSVM , unSVM , lcSVM and lnSVM , which are used to recognise the 

characters. Each SVM recogniser is used to recognise different characters located in 

different positions on Korean NPs where the characters are listed in two lines (e.g. upper 

characters, upper numerals, lower character and lower numerals). In case of characters, 

one-per-class decomposition method is used to classify between multi-classes characters. 

In case of numbers, they use 10 SVMs to recognise 0-9 respectively, and the maximum 

value of the outputs is selected.  

In the work presented in [45], a group of Chinese characters is processed as a character 

string, the entire character string was normalised and taken as the object of study to reduce 

the difficulty of character segmentation and post-processing. Feature extraction approaches 

of Global Direction Contributivity Density (G-DCD) and Local Direction Contributivity 

Density (L-DCD) were proposed where the eight stroke directions iL  ( 1,2,...,8;i 
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0 , 45 , 90 , 135 , 180 , 225 , 270 , 315       ) are used to indicate eight distances between the 

pixel on a stroke and eight directional edges of the stroke. Figure 2-9 shows the direction 

feature of stroke. 

の
 

Figure 2-9: The direction feature of stroke 

 G-DCD: This is a 1-D feature vector that reflects the complexity, direction, and 

connected relationship of character strokes. Basically, scanning the image from left 

to right in the direction of 0, 1, 2, 3T     , denotes a 0 , 90 , 45 , and 135 , 

respectively, all cross points of the scanning line and stroke contour are obtained, 

then the direction features of all the cross points are calculated and added. 

 L-DCD: This feature reflects the local structure of the character. Instead of 

extracting the features from the whole character image, L-DCD is computed from 

all sub-images, and then is divided into the original image. 

 Contour feature: This feature is represented by the x-axis distance between the 

boundary of character image and the first character pixel when horizontally ( 0 ) 

scanning the character image from left to right. Similarly, contour features also 

include other directions, i.e., 45 , 90 and 135 .  

In this work, SVM was used as a classifier to recognise characters based on the above 

features. This was tested using Japanese NPs that including numbers, Kana (Japanese 

script), and the strings of characters that represent the area. The recognition rates for 

numbers, Kana and strings of characters are 99.5%, 98.6% and 97.8% respectively.  
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Many researchers have integrated multistage classifiers to improve the recognition rate of 

OCR. In [92], a two-stage hybrid OCR system is presented. It firstly uses four statistical 

sub-classifiers to independently recognise the input character and then the results are 

combined using the Bayes method [93]. Secondly, if the recognised character from the first 

stage belong to the set of ambiguous characters (e.g. I/1, B/8 and O/D), a structural stage is 

used for a further decision. The coarse-to-fine strategy is used in [94] to efficiently organise 

character from a large number of possible candidates, where the characters are sorted by 

their shape and ambiguous cases are grouped together, then only specific features are 

considered in the similar character group. 

2.4.2 Artificial Neural Networks 

ANNs are intelligent computing architectures widely used for pattern recognition, and the 

most commonly used and simplest Neural Network (NN) architecture is multilayer 

feed-forward NN, which can classify inputs into a set of target categories. Typically, the 

works done in [95] and [48, 96] use binary pixels values and average intensity value of 

character image to feed the inputs of NN, which can achieve good performance even under 

complex environments in ANPR systems. A typical multilayer feed-forward NN is shown 

below in Figure 2-10. 
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Figure 2-10: A multilayer feed-forward NN 
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In [95], a standard Backpropagation network is used which has an architecture with 3 layers 

and 129, 20 and 36 neurons on the input, hidden and output layers respectively. In [96], they 

proposed a multiplayer feed-forward network that consists of 209 inputs, 104 hidden 

neurons and 33 outputs. The designed NN can recognise one character at a time. The 

training algorithm is Backpropagation. The achieved character recognition rate was 95%. 

In order to further improve the character recognition rate, employing features extraction of 

the character images is needed. In [97] and [98], extra procedures during the training stage 

or after obtaining the results of the NN to handle difficult characters that belong to the set of 

ambiguous characters are used (see Figure 2-11).  

 

Figure 2-11: The set of ambiguous characters 

In [98], the ambiguous characters are used more often for the NN training. After the 

additional training, the recognition rate was reported to be 98.2%. However, in [56], once 

misclassified characters are found, an additional minor comparison between the unknown 

character and the classified character is applied, where only distinguishing parts of 

ambiguous characters are compared. However, the features extraction normally needs 

complex computation or multiple stages to extract features. There are also other types of 

NNs used for classification, such as Probabilistic Neural Network (PNN) [68, 99] , Deep 

Boltzmann Machines (DBM) [100] and Deep Belief Nets (DBN) [101], which normally 

give more accurate result but require more memory space and learning time. 

2.4.3 Pattern Matching 

Common pattern matching is a technique for finding a target image whether it matches a 

template image or not, which can be one solution for recognising single font and fixed size 

characters such as NP characters. Normally, the target image is used to compare an image in 

the pre-defined template data set one by one, where Root Square Error (RSE) or 
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cross-correlation algorithms are used to determine the best matching result.  

In [102], a cross-correlation operator is applied between a sub-area of the normalised 

greyscale image and each prototype. Let g , g , f and f  be template image, average grey 

level of the template image, acquired image and average grey level of the acquired image 

respectively. The normalized cross-correlation operator defined in the discrete case as 

follows: 
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  (2.2) 

The recognition decisions are based on the normalized cross-correlation values fgC . Due to 

the difference between the character thicknesses for each province, different template sizes 

are designed for recognising those characters. Once the province has been recognised, the 

system computed the cross-correlation value for each of the 31 character templates. At each 

step, the cross-correlation values between the searched template and the corresponding 

acquired image are stored in a matrix with 31 163 elements. Each matrix row contains the 

cross-correlation values of each examined template and each matrix column contains the 

list of cross-correlation value of all the templates in that position over the image. The 

recognised character will be decided using the greatest mean cross-correlation value that is 

obtained from each matrix column. The algorithm has been tested with a database that 

contains 1823 character images, and the achieved recognition rate was 97.97%. However, 

because the positions of the characters within the NP image are unknown, extractions of 

each character require a fixed distance and size. In addition, a high computational cost is 

also required by the cross-correlation measure.  

The work in [103] uses root-mean-square error (RMSE) for calculating similarity of a 

prototype and a given binary image. A method is first proposed to estimate the character 

size. The estimated character size is resampled to 28 pixels, and then a match competition is 

performed to find the best match image in the template. If a candidate can be found, the 

height will be used as the height of character, otherwise, the estimated height will be 
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increased by one until a best match is found. To evaluate the new width, a linear 

interpolation method is used to resize the character based on the new height. The RMSE 

approach is used at the end to measure the similarity of a template and the given image. The 

RMSE rmse  can be computed using the following equation: 
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   (2.3) 

where ( , )f x y and ˆ( , )f x y  represent the binary values of the input and template images 

( M N ) respectively. Again, in order to reduce the computational cost required by RMSE 

measure, the proposed algorithm searches the best match template character by character in 

the NP based on the previous estimation of the positions of the characters. Unlike the 

cross-correlation value, the minimum value of the RMSE indicates which the best match 

template is.   

However, these pattern matching methods are not suitable to recognise the slanted and 

noisy character, which is the type of characters that need to be processed in ANPR systems 

[5]. 

2.4.4 Discussion 

Incorrectly segmented characters from the CS stage, where characters are not in the 

expected position or parts of them are missed, may affect the OCR recognition. The NNs 

and statistical classifiers, which give better results compare to common pattern matching 

techniques, can overcome this problem due to their strong memorability and self-adapting 

ability. However, in order to achieve good performance, large amount of samples are 

needed to train the NNs. Although the OCR technologies are already mature and 

continuously enhanced over time, they still need improvement in set of ambiguous 

character (1/I, 0/O, 0/D, 2/Z, 8/B and 5/S). Table 2-3 summarises the performance of the 

existing OCR algorithms for ANPR systems. 
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Table 2-3: The performance of existing OCR algorithms for ANPR systems 

OCR Algorithm Country Character Recognition Rate (%) Speed (ms) 

ANN [43] China 97.1 N/A 

SVM [45] Japan 97.03 18 

ANN [48] Australia 92.03 N/A 

Self-organised Map (SOM) [59] Chinese 95.6 N/A 

Probabilistic Neural Network [68] Greece 89.1 128 

2.5 Hardware based ANPR System 

Recent improvements in the computing power of FPGAs and DSPs have motivated 

researchers to consider them as an alternative solution to implement ANPR systems. These 

devices can be used as a low-cost System-on-chip solution that allows the FPGA or 

DSP-based processing unit to be placed within an ANPR camera housing to create 

‘intelligent cameras’– namely cameras that record and process images for sending back to a 

server. The main advantage of these solutions is not only the significant improvement in the 

processing speed, but also the significant reduction of power consumption and cost of the 

processing unit, which outperform all existing software-based solutions. The most recent 

DSP and FPGA-based ANPR systems are discussed in this section. 

2.5.1 DSP-based ANPR System 

As mentioned in Chapter 1, a DSP is a specialised microprocessor that has an optimised 

architecture for the operations of digital signal processing purpose. The major advantage of 

DSP-based ANPR systems is their real-time capabilities in city scenarios, which allows the 

system to catch all the objects that moves through the scene irrespective of the object speed. 

In [11], the authors proposed an embedded DSP platform based ANPR system and it can 

process a video stream in real-time. The proposed system consists of NPL, CS and OCR 



Chapter 2  Related Work 

35 

 

modules. Approximate NPs are detected first using Viola Jones detector [104], which is 

widely used in face and object detection, within the NPL module, and then a 

post-processing is performed followed by a tracker process. The tracker process is 

initialised when each new plate region is detected, which can optimise the detection process 

and create a relation between subsequent frames. Subsequently, the detected plates are 

handed over to the character recognition module. Each character is extracted by the 

segmentation process and recognised through classification process. Finally, history 

information is acquired by the tracker that will be used to improve the classification result 

in the post-processing unit. The flow chart of the overall system is shown below. 
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Figure 2-12: The overall system flow chart [11] 

A frame resolution of 352×288 was used in the proposed system, the detection and 

recognition process operates on each individual frame, and then transmits the results and a 

compressed image to a client. The used classifiers for the Viola and Jones detector and the 

SVM are trained off-line on a general purposed computer, and then were ported to the DSP 

platform. Two sets of test data are used for the proposed system, one set contains 260 
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images of number plates is used for training, another set of test data is the extracted video 

frames that is used for testing system performance [11]. 

A single Texas Instruments
TM

 C64 fixed point DSP with 1MB of cache RAM and 16MB 

SDRAM was used for the experimental test. On the average, the SVM takes 7.3 ms for 

localisation of a full plate, and the achieved average frame rate is 19 fps (52.11 ms) [11]. 

2.5.2 Hybrid DSP /FPGA-based NPL System 

A hybrid DSP/FPGA-based NPL system was presented in [12], where the FPGA is only 

used for buffering video frames/scanlines between the DSP and a video input processor 

placed inside the camera while the DSP is used as the main processing unit. The main 

features of the embedded platform are: 

- One TMS320C6414 DSP with 600 MHz and 1MB cache; 

- 128MB SDRAM for video compression, processing and storage of temporary data; 

- 4MB Flash Memory for firmware storage; 

- One video input processor; 

- One FPGA for buffering video frames/scanlines between the video input processor 

and the DSP. 

The Viola and Jones detector is applied for the NPL algorithm, which needs 140 ms to 

process a single 352 288 frame in a 15-minute demonstration video. Overall detection 

rate for 100 number plates is 96% [12]. 

2.5.3 FPGA-based ANPR System 

In the work presented in [105], a video processing methodology for a FPGA-based ANPR 

system was proposed. During the design, Gabor filter, threshold and CCA algorithms were 

used for the NPL, the Self-organising map (SOM) was used to identify the characters. The 
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system had been tested with a large database, and is suitable for applications where cost, 

compactness and efficiency are limited. The overall ANPR system block diagram is shown 

below in Figure 2-13. 
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Figure 2-13: The overall ANPR system block diagram in [105] 

In the NPL stage, the Gabor filter was first applied to the image to remove the unnecessary 

data, and then the image was converted into binary image using an optimum threshold. 

Subsequently, a dilation morphological operation was used on the result binary image to 

connect the NP region. Finally, a CCA algorithm was applied to extract the binarised NP 

within the previous binary image. At the end of the NPL process, if there is no localised NP, 

the same process would repeat.    

In the CS stage, the characters and digits were segmented within the NP area obtained from 

the NPL stage. The pixel projection method was used to locate the character positions on 

the NP. At the end of the CS stage, the algorithm includes a checking process to validate the 

number of characters and based on the checking results, an adjustment of the critical point 

finding threshold was carried out to improve the segmentation result. 

In the OCR stage, SOM was proposed to recognise the segmented characters. A SOM 

normally has two layers: input and computation layers, the weights of the SOM are 

calculated during the learning phase. The hamming distance between each neuron and the 

input image is calculated and makes a decision on the output character. 

A Xilinx ML40x board equipped with a Virtex-4 FPGA is used and implemented for the 
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experimental test. The system was tested with a database of 1436 car images obtained from 

highway and parking lots at various times of the day, it approximately needs 500 ms 

complete a single recognition and achieved 73% overall recognition rate [105]. The FPGA 

logic utilisation of the system is given in Table 2-4. 

Table 2-4: FPGA Logic Utilisation 

FPGA Logic Utilisation Used 

Flip-Flops used 43551 

Number of 4-input LUT’s 50310 

 

In this work, an FPGA based real-time and low-cost ANPR system was successfully 

designed.  

2.5.4 FPGA-based NPL System 

In the work presented in [13], a high speed FPGA off-loading engine for NPL system is 

proposed. The main goal of this work is to detect the NP itself and measure the size, which 

can then be used to measure distance between the cars. The flow chart of the proposed NPL 

algorithm is shown below in Figure 2-14. 
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Figure 2-14: The flow chart for the NPL algorithm in [13] 

In the beginning of the process, 24-bit RGB pixels are converted into 8-bit greyscale pixels, 

and then a classification is performed to classify each pixel into black, white and the others. 

For example, if the greyscale value of a target pixel is greater than its neighbour pixels, the 

target pixel will be classified into ‘white’, otherwise, it will be classified into ‘black’. In the 

labelling, each labelled region consists of the neighbouring pixels with the same colour. 

There are four conditions used to locate NP candidate regions within the resulted image, 
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which are: 

- The height is limited in the range from 14 to 160 pixels; 

- Height to width ratio is from 1.25 to 20; 

- The area of the number occupies 20% to 80% of the rectangle region; 

- The noise within the rectangle area is less than 5% noise. 

In order to localise the NP region, three extra conditions are used: 

- The error rate of the height of numbers are less or equal to 20%; 

- All the numbers are in the same line; 

- The noise ratio is less than 5%. 

The used 256 256  image data is horizontally divided into 16 segments without any 

accuracy loss. This process is shown below in Figure 2-15. 
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Parallel 

Processing

 

Figure 2-15: Division of the image [13] 

The proposed system was implemented on a prototype FPGA development board called 

ReCSiP-2 equipped with a Virtex-2 (XC2VP70-5FF1517) FPGA [106]. The overall block 

diagram of the NPL system is illustrated in Figure 2-16. 
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Figure 2-16: The overall block diagram of the NPL system [13] 

The system was designed using Handel-C, and then translated into Verilog with Mentor 

Graphic DK4. The maximum frequency is 72.062 MHz. The required on-chip resources is 

summarised in Table 2-5. 

Table 2-5: FPGA Logic Utilisation [13] 

FPGA Logic Utilisation Amount Ratio (%) 

Slices  22206/33088 67 

BRAMs 88/328 26 

Embedded Multipliers 28/328 8 

 

In order to prove the concept and evaluate the performance of the FPGA based system, the 

same system was also implemented in software. The reported detection rate is 87.7% in day 

time and 84.1% in night time. A comparison between the software and hardware 

implementation is given in Table 2-6. 
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Table 2-6: Performance comparison of the software and hardware implementation [13] 

Stage of the NPL System Software (ms) Hardware (ms) Speed up 

Greyscale Conversion  8.03 0.76 10.57 

Classification 12.92 3.09 4.18 

Labelling 17.57 5.40 3.25 

Total 38.52 9.25 4.16 

 

The proposed work has provided a high speed parallel solution for localisation of the NP on 

FPGA. However, the proposed system is only designed for the first stage of an ANPR 

system, and the proposed algorithm extracts the NP only using the illumination information, 

which may limit its performance for extracting the NP from images taken in complex 

environments with various objects and lighting environment. 

2.5.5 Discussion 

The high performance and low-cost System-on-chip solutions allow the entire ANPR 

system to be implemented on a single chip that can be placed within an ANPR camera 

housing to create a stand-alone unit thus drastically improving energy efficiency whilst 

removing the need for the installation and cabling costs associated with bulky PCs situated 

in expensive, cooled, waterproof roadside cabinets. 

Generally, the software-based ANPR systems have a higher detection rate compared to 

hardware based systems, however the processing time of the former is higher than the latter. 

The design and implementation of hardware-based ANPR systems is limited by the 

hardware architecture and the available resources. Efficient methods and techniques to 

implement ANPR algorithms should be considered to map them on the chosen hardware. 

The performance of existing FPGA and DSP-based ANPR systems in terms of speed and 

recognition rate is listed in Table 2-7. 
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Table 2-7: Existing FPGA and DSP-based ANPR systems 

2.6 Limitation of Existing Work and Research Opportunities 

As it can be seen from the preceding sections, most of existing ANPR systems are based on 

software implementation, only few solutions are based on hardware. There still remains 

plenty of scope for further research in exploiting reconfigurable computing for ANPR 

systems to improve the system performance and efficiency. The major limitations of the 

existing work can be summarised as follows: 

- The existing ANPR algorithms required high performance platform to achieve the 

real-time constraint, the cost of the power consumptions were not discussed; 

- A relatively small volume of recent ANPR systems were implemented in hardware; 

- The existing ANPR algorithms were not specially designed for FPGA 

implementation, where parallelism could be exploited; 

- The existing hardware-based ANPR systems were only highlighting the speed, 

however, most of them did not achieve a satisfactory recognition rate, which limited 

the practical usage of the solutions. 

Based on the limitations of existing work, the main contributions of the work presented in 

ANPR 

System 

Character 

Set 
System Part 

Image 

Type 
Hardware Platform 

Successful 

Rate (%) 

Speed 

(ms) 

[11] Australia 
Whole ANPR 

system 
Greyscale TI C64 DSP 85 52.11 

[12] Australia NPL Colour 
TI C6414 DSP and  

Altera FPGA 
96 140 

[105] Turkey 
Whole ANPR 

system 
Greyscale FPGA Virtex-4  73 500 

[13] Japan NPL Greyscale FPGA Virtex-2 and PC 87 9.25 

[107] US 
Whole ANPR 

system 
Greyscale FPGA Virtex-2 and PC N/A N/A 

[28] UK NPL Greyscale C64plus DSP 96.1 4.86 
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this thesis can be summarised as follows: 

- A low complexity and robust NPL algorithm suitable for a single FPGA 

implementation has been developed in the thesis, where a novel NP feature 

extraction and enhancing method based on two morphological open operations and 

an image subtraction operation are proposed. In addition, a novel efficient FPGA 

architecture and its area/speed efficient implementation have also been proposed in 

the thesis; 

- A low complexity and robust CS algorithm based on pixel projection and 

morphological operations has been presented in the thesis, where an NP height 

optimisation step and two optional morphological operations are introduced to 

reduce and remove noise impact to achieve a more precise horizontal and vertical 

segmentation result. In addition, a novel real-time architecture and its area/speed 

efficient implementation have also been proposed in the thesis. 

- A low complexity and robust OCR algorithm based on feed-forward neural network 

has been presented in the thesis, where the use of noise added training process could 

result on the neural network with better performance than the normally trained 

neural network. In addition, a novel real-time architecture and its area/speed 

efficient implementation have also been proposed in the thesis; and 

- A local thresholding NP binarisation and low complexity NP adjustment algorithms 

have been introduced to solve the problem of uneven illumination and 

automatically adjust NPs respectively in the thesis, which could improve the NPL 

result prior to CS stage. In addition, two area/speed efficient architectures based on 

the proposed NP binarisation and adjustment algorithms have also been presented 

in the thesis. 

2.7 Conclusion 

This chapter has summarised the state-of-art algorithms, architectures and systems for 
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ANPR application implemented on software and hardware-based platforms using different 

design methodologies and implementation approaches. In addition, limitations of existing 

work were stated. It is the aim of the research work presented in this thesis to address the 

limitations presented in the previous sections with efficient means of providing high 

performance ANPR system through the use of FPGA. 
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Chapter 3: Number Plate Localisation Algorithm and its 

Efficient FPGA Implementation 

3.1 Introduction 

As mentioned in the previous chapter, the NPL stage is crucial to the entire system, because 

it directly influences the accuracy and efficiency of the subsequent steps (i.e. CS and OCR). 

The NPL stage is also the most computational intensive stage in the entire ANPR system. 

For a real-time ANPR system, efficient and robust NPL algorithms are required to 

accelerate the speed of the entire system. 

This Chapter is concerned with the NPL stage, where a speed and area-efficient architecture 

based on a low complexity NPL algorithm suitable for FPGA implementation is presented. 

The proposed algorithm is mainly based on morphological open and close operations, 

which replaces the traditional edge detection operator to reduce the computation 

complexity whilst maintaining a satisfactory detection rate. A MATLAB implementation of 

the proposed algorithm is used as a proof of concept prior to the hardware implementation, 

and the proposed architecture implemented and verified using the Mentor Graphics RC240 

FPGA development board equipped with a 4M Gates Xilinx Virtex-4 LX40. For 

comparison purposes two different databases, including a public one, were used. The first 

one contains1000 images with UK NPs while the second one , taken from an online 

database, contains 307 images with Greek NPs with a resolution of 640×480 [108]. For the 

UK database, some images were collected by the author with the rest provided by CitySync 

Ltd. [109] who are one of the leading UK providers of ANPR solutions. The images were 

grouped into six different sets based on different criteria such as distance and illumination 

conditions, the proposed algorithm and FPGA implementation have been tested using both 

databases, however, due to private data protection is required by CitySync, only authorised 

image samples are exhibited in the thesis.   
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The remainder of this Chapter is organised as follows: Section 3.2 describes the 

morphological based algorithm. The proposed NPL architecture is then described in 

Section 3.3. The MATLAB and analysis of the experimental results are given in Section 3.4. 

Section 3.5 is concerned with FPGA implementation and discussion of the experimental 

results. Section 3.6 discusses the conclusions of this chapter. 

3.2 Number Plate Localisation Algorithm 

A NP image is normally recorded as a pattern with high variations of contrast. This feature 

is used to locate the plate and has been found to be relatively robust to changes in lighting 

conditions and view orientation. Most of the previous works that were based on 

morphological operations have used edge detection to extract the edge information around 

the NP region followed by morphological operations as a fusion tool to connect the pixels 

together in that region [5]. After that a Connected Component Analysis (CCA) labelling 

algorithm is used for the NP region selection. However, the edge detectors are based on 

matrix multiplication and the entire image needs to be scanned, which increases the 

computing cost of the algorithm. Therefore, in this section, a morphological open operation 

and image subtraction are used to replace the edge detection operator, which reduces the 

computation complexity whilst maintaining a satisfactory detection rate.   

The proposed algorithm is mainly based on two open and one close morphological 

operations, the first open morphological operation is used to extract the features of the NP, 

the second open operation is used to remove noise, and the close operation is then used to 

fuse the pixels in the NP region together. 

The proposed algorithm consists of two major stages: 

1. Morphological operations for extracting plate features;  

2. Selection of candidate regions. 

Figure 3-1 shows a block diagram of the proposed NPL system. 
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Figure 3-1: Block diagram of NPL system 

3.2.1 Plate Feature Extraction 

The proposed algorithm mainly utilises three morphological operations to minimise the 

pixels of the non-plate region and to enhance those of the plate region. The original RGB 

image is first converted into a greyscale image, which will be used as an input to the 

following block where the first morphological open operation is used. 

The morphological open operation is an erosion followed by a dilation and the opposite 

operation (i.e. close operation) is a dilation followed by an erosion. The shape of the 

morphological operations is based on a suitable structuring shape employed as a probe 

called the Structuring Element (SE) [110]. Open IO  and close IC  operations can be 

performed as shown in Equation 3.1 and 3.2 respectively where I denotes a greyscale input 

image,  denotes a dilation operation and !  denotes an erosion operation: 

 ( )oI I SE SE !  (3.1) 

 ( )cI I SE SE  !   (3.2) 

When applying the morphological open operation on a greyscale image, pixels are 
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‘averaged’ in the area of SE. When applying it on a binary image, pixels are erased if the SE 

area is not fully filled by pixels with value ‘1’.  

UK NPs normally consists of black characters on a white background. This feature causes 

the pixel values to be highly variant in the NP region. On the contrary, the margin area of 

the NP region normally consists of a constant colour, in particular the windscreen glass and 

engine hood. Therefore, if applying a morphological open operation with enough large SE 

on greyscale car image, characters can then be removed from the NP region while the 

remaining features of the rest of image are kept. By performing a subtraction between the 

original greyscale image and the resulting image after the open operation image, the output 

is a highlighted plate region image. This process can be summarised in the following 

pseudocode. 

Proposed algorithm: NP feature extraction 

1. Input image: colour car image 

2. Output image: Highlighted NP region image 

3. for all pixels in the input image do 

4. grayscale pixels = RGB2Gray(original colour pixels); 

5. Shifting the pixels into SE; 

6. background pixels = open(SE); 

7. highlighted NP pixels =  grayscale pixels - background pixels 

8. end 

 

Compare to the existing algorithms, the proposed algorithm uses a morphological open 

operation and image subtraction to replace the edge detection operator. As morphological 

open operation has less computational intensity than the edge detection operator, which 

could significantly improve processing speed. In addition to the above, with a specially 

designed SE, the proposed algorithm could extract more accurate NP features rather than 

only focus on common edge features, which should improve the ability of proposed 

algorithm for tolerating the noise. 

The size of SE is decided based on the gap between two neighbouring characters on the NP. 

Due to the variant distances between the car and the camera, the size range of NPs (H×W) 
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in the used databases is between 18×160 (pixels) and 60×300 (pixels). Let maxhd (pixels) 

and minvd (pixels) denote the maximum distance between the two neighbouring characters 

on the horizontal and the minimum distance between the character and boundary of the NP 

respectively. They both depend on the size of the NP and the shape of neighbouring 

characters (See Figure 3-2). 
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Figure 3-2: An NP example 

On the other hand, the size of SE ( 1 2S S ) is determined by maxhd and minvd , where

1 min1 ,vS d  max 2 max ,h hd S d    as a variable that is calculated based on experiment 

results.  

For the UK database, images were randomly taken from different real-world environments 

with variant NP sizes (note that details of this database are given in Section 3.5). Based on 

the above description on how the SE size is selected and tests performed using the UK 

database and then validated with the on-line public Greek database, the size of the used SE 

for the open operation was set to 3×30. Figure 3-3 shows the used ‘rectangle’ shaped SE. 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

Origin

SE=

  

Figure 3-3: A ‘rectangle’ shaped SE with size = 3×30 

This 3×30 SE has an origin pixel point, which is the centre of the whole SE. The origin 

point is mainly used for marking the SE’s location when the morphological operation is 

performed. 
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A morphological open operation with this 3×30 SE is performed on an original greyscale 

image, which will generate a background image (Non-NP region). The background image 

is subtracted from the original greyscale image and the result of this operation is a 

highlighted NP region. Figure 3-4 illustrates this process. 

+ -

Greyscale Image Background image

Highlighted Plate Region

Opening with a 

3×30 rectangular SE

 

Figure 3-4: The process for highlighting the plate region. 

In order to further eliminate Non-NP regions, the highlighted plate region image is 

binarised. Let ming and maxg denote the minimum and maximum pixel value of the 

highlighted NP region in the database respectively, the best threshold bT should adaptively 

change from ming to maxg when different images are applied, however, this process requires 

extra memory to store the entire image, before analysing the best bT for each input image. 

For FPGA implementation, this slows down the processing speed and increases hardware 

usage. Therefore, the proposed algorithm uses a fixed threshold fT  to replace bT . If

minfT g , all the highlighted NP regions should be kept after image binarisation. For the 

used databases min 60g  , therefore the value of the fixed threshold fT is 60. Although the 

fixed threshold can benefit hardware implementation, a lower threshold value will increase 

the noise level (i.e. area of Non-NP regions). To overcome this problem, an extra 

morphological open operation is used to remove the noise. Figure 3-5(b) shows the result 
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after noise removal. 
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Figure 3-5: The process of image binarisation and enhancement. (a) Binarised Image, (b) Image after Open 

Operation, (c) Image after Close Operation 

For the process shown in Figure 3-5 ‘diamond’ and ‘rectangle’ shaped SEs are used for the 

last morphological open and close operations. The two SEs are shown in Figure 3-6.  
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Figure 3-6: The ‘diamond’ shaped and ‘rectangle’ shaped SEs. (a) ‘diamond’ shaped SE with R=2 and 3×3 

‘rectangle’ shaped SE, (b) A 3×13 ‘rectangle’ shaped SE 

Figure 3-6 (a) shows a ‘diamond’ shaped SE, where the matrix has a radius R=2 and all 1’s 

are inside the ‘diamond’. When this special structure is used during the open operation on a 

binary image only diamond-shaped regions filled by 1s are kept. This operation is very 

useful in erasing net-shaped and narrow lines surrounding the plate area. This SE can 

efficiently erase most of the unwanted information, as can be seen in Figure 3-5 (b). 

However, in order to reduce hardware usage, the ‘diamond’ shaped SE has been replaced by 

a 3×3 ‘rectangle’ shaped SE for hardware implementation. As can be seen from Figure 3-6 

(a) the difference between the ‘diamond’ shaped SE and the ‘rectangle’ one is that the first 

has an extra four corners. Although the open operation can effectively remove noise, some 

pixels in the NP region can also be eliminated. Therefore, the system needs an extra 

operation to fully fill the plate region to connect the pixels. A morphological close 

operation is used for this purpose. Figure 3-6 (b) shows a ‘rectangle’ shaped SE for the 

close operation, where the matrix has 3×13 ‘rectangle’ shaped 1s. Any non 1 pixels in this 
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rectangle region are changed to 1, which means all the parts in this region are fused together. 

As can be seen from Figure 3-5 (c), the plate region can clearly be identified as it is a group 

of connected pixels which can be easily extracted using some known geometrical 

conditions (e.g. Width / Height ratio). 

3.2.2 Selection of Candidates Plate Region  

The output image from the previous stage consists of a set of groups of connected pixels. A 

labelling algorithm CCA is used to mark these pixels. In the proposed work, the CCA uses a 

‘4-connectivity’ method, and labels them using different numbers. Once all the groups of 

pixels have been determined, each pixel is labelled based on the group it belongs to. 

Therefore, a set of potential candidates can be selected from the image using the known 

geometrical conditions, which mainly consist of the width, height and ratio of the plate 

region. Let P denote the extracted plate region with the size H×W, the first criterion is the 

ratio R between the height and width of P (i.e. R = W/H). The second criterion is the range 

of H and W. The third criterion is the area of P. Ranges for H, W and R were selected to be 

relatively large enough to cover most of the possible sizes of the plate region in the 

databases. Basically, there are two selection conditions (Condition 1 and Condition 2) used 

for this purpose. For both conditions, the width, height, area and ratio of the NP are 

considered. Condition 1 is stricter than Condition 2 where some of the candidates may not 

meet Condition 1 but can meet Condition 2. The maximum and minimum coordinates of 

the rectangular plate regions that pass one of the conditions are returned. Normally, the 

strictest condition (i.e. Condition 1) is perfectly suited for selecting candidates from good 

condition images (e.g. daytime and clear images); while Condition 2 can be used for 

selecting candidates from bad quality images (e.g. far view, blur and complex background 

images). Figure 3-7 shows a flow diagram that illustrates the selection process. 
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Figure 3-7: Flowchart of selection process 

The final NP will be extracted from original greyscale image. Figure 3-8 shows the selected 

NP. 

Selection of 

Plate Region

 

Figure 3-8: Selection of Number plate 

3.3 Proposed Number Plate Localisation Architecture 

Morphological operations based architecture consists mainly of an image reader, three 

morphological operations and CCA. Therefore, this architecture can be designed using the 

following modules: 

- Memory Reader Module; 

- Converter Module; 

- Morphological Operations Module; and  

- CCA Module. 

The structure of the proposed architecture is shown in Figure 3-9. 
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Figure 3-9: Morphological operations based system 

The first morphological operations module consist of two open operations, the second 

morphological operation module only consist of a close operation. The modules shown in 

Figure 3-9 are discussed in the following subsections. 

3.3.1 Memory Reader and Converter Module 

The first module in the proposed architecture is the memory reader and converter. The 

memory reader part of the module is used to read the RGB values for each pixel from the 

original RGB image which has a size of 640×480 and to assign a position coordinate. 

Figure 3-10 shows a block diagram of the memory reader. 
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Figure 3-10: Block diagram of memory reader 

The converter part of the module is used for the standard RGB (24 bits) to greyscale 

conversion (8 bits) using Equation 3.3 [111]: 

 
77 155 29
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R G B
Y

    
  (3.3) 
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This module is also used for the greyscale to binary conversion using a fixed threshold fT

out of 255 (i.e. fT = 60), which means all values less than fT  will be treated as ‘0’ and 

values larger or equal to fT  will be treated as ‘1’. 

3.3.2 Morphological Operations Module 

The morphological operations module consists of the morphological open and the 

morphological close sub-modules. According to the Equation (3.1) and (3.2), the 

morphological open operation and the morphological close operation can be divided into 

two sub-filters respectively, i.e. the morphological dilation and the morphological erosion 

sub-filters, where the order in each case decides whether the morphological operation is 

open or close. The greyscale dilation calculates the maximum pixel value in a specific SE. 

On the contrary, the greyscale erosion calculates the minimum value in a specific SE. 

The proposed algorithm uses 3×30 rectangle shaped SE, however, for efficient hardware 

implementation where pipelining can be exploited, this rectangular shaped SE has been 

decomposed into two small rectangle SEs with the sizes 1×30 and 3×1. Figure 3-11 shows 

the block diagram of the proposed pipelined dilation filter. 
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Figure 3-11: The block diagram of a pipelined dilation filter 
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The process starts when the value of current input pixel is simultaneously passed into the 

internal buffers “Stage 0” and “Line Buffer 0” then after every clock cycle it is passed to the 

next stage until it reaches “Stage 29” and then the maximum pixel value of the current 30 

pixels in the 30 stages is calculated. In the meantime, the values of the pixels from two 

consecutive lines of the greyscale image (i.e. 640 pixels per line) are stored in the two line 

buffers in order to calculate the maximum value from three consecutive pixels from the 

same column. The first origin of SE (1×30) is the fifteenth pixel of the first line, so the first 

coordinate of output should be kept consistent with the coordinate of the fifteenth pixel 

instead of the coordinate of the current input pixel. 

The structure of the erosion filter is similar to the dilate filter. The only difference is that the 

minimum value of the pixels is calculated instead of the maximum one.  

In the proposed architecture, there are three different SEs used for the three morphological 

operations (i.e. ‘rectangle’ shaped SEs: 3×3 , 3×13 , 3×30 ) which can be easily 

implemented using the block diagrams shown in Figure 3-11 and Figure 3-12 by simply 

changing the number of stages (i.e. if the size of SE is 3×3, it requires three stages). The 

‘diamond’ shaped SE has been replaced by the ‘rectangle’ shaped SE (3×3) in order to use 

the same block diagrams shown in Figure 3-11 and 3-12 which reduces the hardware 

complexity. 

3.3.3 CCA Module 

The CCA module is used to mark and select a candidate plate region from the entire binary 

image. Generally, the pixels of the input pixel stream are divided into several groups or 

blobs by the CCA module. The grouping is based on the pixels’ connectivity. Figure 3-13 

demonstrates this procedure. 
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Figure 3-12: The block diagram of CCA 

The grouping is performed as follows. The binary stream is scanned from left to right 

starting from the top line. For instance, a comparison between the current pixel “P1” from 

Figure 3-13, its upper pixel “P1A” and left pixel “P1L”, which have already been grouped, 

is performed. All pixels with value ‘0’ will be assigned to one group with an index ‘0’. If the 

value of “P1” is ‘1’ and the indexes of its neighbours are the same and not ‘0’ then “P1” will 

be assigned the same index as its neighbours. If the indexes of the two neighbours are 

different and not ‘0’, then the indexes of this pixel and its upper neighbour “P1A” will be 

the same as its left neighbour (i.e. “P1L”). If the indexes of the two neighbours are different 

and one of them is ‘0’, then the index of this pixel will be the non-zero index of its 

neighbour. If the pixel value is ‘1’ but the indexes of its neighbours are both ‘0’, the index of 

a new group will be assigned to this pixel. Finally, the coordinates of each rectangular 

shaped group are recorded for the selection of candidates. 

Once the whole image is scanned, the selection of a candidate region is performed using the 

selection process shown in Figure 3-7 which is mainly based on the geometrical 

relationship of the NP region. 

3.4 MATLAB Implementation and Results 

The proposed algorithm was first tested in a MATLAB environment using a database of 

1000 images containing UK NPs and verified using an on-line public database of 307 

images containing Greek NPs. The resolution of all used images is 640×480. The UK 
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number plate database consists of six different sample sets and the on-line Greek database 

consists of three different sample sets, which are taken from natural scenes obtained in 

various illumination conditions and different distances between the camera and vehicles. 

The three sample sets from the Greek database are similar to the first three sample sets from 

the UK database. Therefore, for the purpose of performance testing of the proposed 

algorithm, all samples sets from both databases were grouped into six sets. The first three 

sample sets are: 

- Sample Set 1: day time colour: this set contains 631 images from the UK NP database 

and 136 from the Greek one. The NP regions in this sample set are clear and normal 

size, which were taken from the front view of the cars at day time with various 

illumination environments; 

- Sample Set 2: day time close view:  this set contains 70 images from the UK NP 

database and 122 from the Greek one. The size of the NP regions in this sample set is 

large and the images contain less complex background environment information, 

which were taken from the close view of the cars at day time with various 

illumination environments; and 

- Sample Set 3: day time with shadows: this set contains 68 images from the UK NP 

database and 49 from the Greek one. The NP regions and the backgrounds contain 

shadows, which were taken at day time with various illumination environments. 

The remaining three sample sets are:  

- Sample Set 4: day time moving vehicles: this set only contains 140 moving vehicle 

images from the UK NP database, which were taken from the motor way at day time 

with various illumination environments; 

- Sample Set 5: day time far view: this set contains 75 images from the UK NP 

database. The size of the NP regions in this sample set is small and the images contain 

more complex background environment information, which were taken at day time 

but with longer camera-subject distances; 
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- Sample Set 6: night time infrared:  this set contains 17 images from the UK NP 

database, which were taken from an infrared camera at night time. 

Table 3-1 shows images from each sample set and the size range of the NP, where the 

lowest and highest height/width of NP are 18/160 and 60/300 respectively in the databases. 

Therefore, the expected H, W and R values should fall in the following regions:

18 30H  , 60 300W  and 2 9R  . 

Table 3-1: The Samples of Used Database 

 

Sample set 1 

(Day time 

colour) 

Sample set 2 

(Day time 

close view) 

Sample set 3 

(Day time 

with 

shadows) 

Sample set 4 

(Day time 

moving 

vehicles) 

Sample set 5 

(Day time far 

view) 

Sample set 6 

(Night time 

infrared) 

NP 

sizes 

30×160 up to 

40×220 

42×230 up to 

60×300 

26×120 up to 

42×230 

30×160 up to 

38×200 

18×160 up to 

30×160 

30×160 up to 

38×200 

UK 

      

Greek 

   

N/A N/A N/A 

Table 3-2 shows the MATLAB implementation results in terms of NPL rate using all 

sample sets. 

Table 3-2: Successful NPL Rate by Sample Sets (MATLAB Implementation Results) 

Database 
Sample set 

1 

Sample set 

2 

Sample set 

3 

Sample set 

4 

Sample set 

5 

Sample set 

6 
Overall 

UK 

database 

619/631 

(98.1%) 

69/70 

(98.6%) 

66/68 

(97.1%) 

135/139 

(97.1%) 

73/75 

(97.3%) 

17/17 

(100%) 

979/1000 

(97.9%) 

Greek 

database 

133/136 

(97.8%) 

120/122 

(98.3%) 

48/49 

(97.9%) 
N/A N/A N/A 

301/307 

(98.0%) 

 

The proposed algorithm has an overall 97.9% NPL rate when tested using the UK images 
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and 98.0% when using the Greek images. The NPL rate is high for sample sets 1, 2 and 6 

compared to sample sets 3, 4 and 5, which is due to the fact that the scenes in the latter 

sample sets contain more complex background environments. Generally, the proposed 

algorithm shows a similar NPL result and a relatively stable performance for both 

databases.  

Although the two geometrical conditions have effectively improved the NPL rate, some 

images still cannot be handled successfully. Generally, there are two main failed data image 

sets (see Table 3-3): (1) Images with more than one successful candidate including the NP 

itself. (2) Images with no successful candidate. The main reasons for the first set are 

environment background and NP selection conditions. Since various illumination 

conditions and the range of NP size is very large (18×160 to 60×300), two selection 

conditions cannot fully cover all NPs. In some cases, the false candidates in some images 

are very similar in size to the true candidates in other images in the database which cannot 

be excluded. In order to overcome this problem, a validation process should be added 

before character segmentation for cases where there is more than one successful candidate. 

For the second set, there are no successful candidates due to the length of the distance 

between the camera and the car which results in very small NP images and an increase in 

the background noises. In this situation the NP feature cannot be extracted properly by the 

proposed morphological operations.  

Table 3-3: Failed Images in Both Databases (MATLAB Implementation) 

 (1) (2) 

Original 

Image 
      

Image 

before 

CCA       

Detected 

NP 

 

   

No successful 

candidate 

No successful 

candidate   
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3.5 FPGA Implementation and Results 

The proposed architecture for NPL has been simulated in PAL Virtual Platform (PALSim) 

[112]. After simulation, the architecture has been successfully implemented and verified 

using the Mentor Graphics RC240 FPGA development board [113]. Handel-C and 

PixelStreams, which is a library that can be used for rapid development of video image 

streaming applications, have been used for the hardware description of the proposed 

architecture [114]. The details of the experimental tools can be found in APPENDIX B. 

The original RGB image is first stored in an external memory on the RC240 board. The 

external memory data width is 32 bits, which means every pixel value (24 bits) can be 

saved on a single memory location. In Figure 3-10 each RGB pixel is combined with its 

corresponding position coordinate and synchronisation information and then sent to the 

filter blocks previously outlined in Figure 3-1 running in parallel. Every clock cycle, one 

processed data pixel is passed from one block to the next. Example codes of the NPL 

implementation can be found in APPENDIX C. 

Both UK and Greek databases have been used for testing and validating the FPGA 

implementation. The results show a similar performance compared to the software 

implementation in terms of NPL rate where the entire overall rate is 97.8%. As 

floating-point arithmetic is used in MATLAB implementation, it has slightly better 

performance compare to FPGA based fixed-point arithmetic implementation. Table 3-4 

shows the FPGA implementation results when using all sample sets. 

Table 3-4: Successful NPL Rate by Sample Sets (FPGA Implementation Results) 

Database 
Sample 

set 1 

Sample 

set 2 
Sample set 3 Sample set 4 Sample set 5 Sample set 6 Overall 

UK 

database 

618/631 

(97.9%) 

69/70 

(98.6%) 

66/68 

(97.1%) 

134/139 

(96.4%) 

73/75 

(97.3%) 

17/17 

(100%) 

977/1000 

(97.7%) 

Greek 

database 

133/136 

(97.8%) 

120/122 

(98.3%) 

48/49 

(97.9%) 
N/A N/A N/A 

301/307 

(98.0%) 



Chapter 3              Number Plate Localisation Algorithm and its Efficient FPGA Implementation 

62 

 

3.5.1 Hardware Usage, Running Frequency and Power Consumption 

Due to the low complexity of the proposed algorithm, the proposed architecture requires 

only 33% of the on-chip FPGA resources. Table 3-5 summarises the required on-chip 

resources. 

Table 3-5: Usage of FPGA on-chip Resources 

On-chip Resources Used Available Utilisation 

Occupied Slices 6,195 18,432 33% 

LUTs 8,871 36,864 24% 

Flip-Flops 4,088 36,864 11% 

BRAMs 18 96 18% 

 

33% of the on-chip FPGA slices are used to implement the proposed NPL architecture. In 

these slices, 24% LUTs are used to implement logic operations and RAMs in the design. 11% 

flip-flops are mainly used as register to buffer the data for enabling the high throughput 

pipeline manner in the design. 18% BRAMs are mainly used to store the image pixels for 

the morphological operations. The total 33% on-chip resource usage leaves 67% to be used 

for implementing the next stages of an ANPR system (i.e. CS and OCR).  

The maximum running frequency is 86 MHz and the number of clock cycles needed for one 

image to be processed is 401247. The execution time for processing one frame can be 

roughly calculated using the following equation: 

 
c

T
f

  (3.4) 

where T is the execution time in ms; c is the number of clock cycles needed for one image; 

and f is the maximum running frequency in Hz. 

Based on Equation (3-4), the proposed architecture can process one image and produce a 

result in 4.7 ms. This means that the proposed architecture satisfies the minimum 
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requirement for real-time processing. The result achieved in terms of maximum running 

frequency and area used for implementing this important part of an ANPR system shows 

that there is enough room to implement the whole ANPR system on one FPGA. 

The power consumption of the designed circuit has also been analysed using Xilinx 

XPower Analyser [115], and the results obtained are shown in Table 3-6. 

Table 3-6: Estimation of Power Consumption 

Resource Type Value of Power (mW) 

Clocks 202 

Logic 8 

Signals 4 

BRAMs 10 

IOs 163 

Clock Managers 157 

Leakage 348 

Total Power 892 

 

The total power consumption of FPGAs consists of quiescent and dynamic components. 

The quiescent power is consumed due to transistor leakage. The dynamic power is 

consumed by fluctuating power as the design runs, i.e. clock power, logic power, signal 

power, BRAMs power and IOs power, which are directly affected by the chip clock 

frequency and the usage of chip area [115]. The total dynamic power consumption of the 

proposed architecture is 339 mW out of the total power consumption 892 mW. 

3.5.2 Comparison with Existing Work 

A comparison of the experimental computational speed and NPL rate with existing PC, 

DSP and FPGA based implementations of NPL is shown in Table 3-7. 
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Table 3-7: Performance Comparison 

NPL Systems Platform 
Processor Clock 

Speed (MHz) 

Image Resolution 

(pixels) 

NPL 

Time 

(ms) 

NPL 

Rate 

(%) 

Proposed System 

on FPGA 
FPGA Virtex-4 86 640×480 4.7 97.8% 

Proposed System 

on PC 
PC 2300 640×480 143 97.9% 

[47] PC 1700 768×534 100 99.6% 

[12] 
DSP C6414 and     

FPGA 
600 352×288 141.62 96% 

[13] FPGA Virtex-2 72.062 256×256 9.25 87% 

 

The proposed system outperforms existing ones as it shows a higher NPL rate and faster 

NPL speed with higher resolution compared to the databases used in systems [12] and [13] 

on the table. Although the testing databases used for the three methods are different, the 

proposed system has been tested and verified using a large local database and an on-line 

public database and shows stable results. However, it should also be noted that the 

databases used in [12] and [13] are not available as they are not public databases, but the 

used databases contain similar cases like the ones presented in those works. 

However based on the results published, when compared to system [47], the proposed work 

has a faster NPL speed but slightly lower NPL rate. This is due to the fact that fixed 

measures of distance and angle, based on prior knowledge, have been used for the 

algorithm used in [47], which is based on edge detection and morphological operations. 

This prior knowledge boosts the results to a high level of accuracy which is not the case for 

the proposed algorithm which uses images taken from different distances and angles more 

reflective of real life recordings. 

The proposed method in [12] uses a DSP for NPL implementation and a FPGA for 

buffering video frames between a video input processor and the DSP. Although the DSP 

frequency is 600 MHz, the processing time for one image is higher than the one for the 
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proposed system. This is due to the fact that the proposed architecture is fully parallelised 

and requires less clock cycles which significantly increases the NPL speed. 

By comparing the results of the PC and FPGA-based implementations of the proposed 

algorithm, it can clearly be seen that the latter outperforms the former with a 30-time 

speed-up with close accuracy; therefore, the proposed FPGA-based system can be used as a 

viable solution to replace software based solutions where cost, size and energy 

consumption will be reduced. 

3.6 Conclusion 

Recently, FPGAs have become a viable solution for performing computationally intensive 

tasks. Owing to the importance and the use of ANPR systems in law enforcement, an 

efficient NPL algorithm has been proposed in this Chapter for FPGA implementation. The 

algorithm is based on morphological operations and is multiplier/divider-free and requires 

only 33% of the available on-chip resources of a Virtex-4 FPGA. Parallel building blocks 

have been used for the FPGA implementation and the whole system runs with a maximum 

frequency of 86 MHz and is capable of processing one 640×480 image in 4.7 ms with a 

localisation rate of 97.8%. 
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Chapter 4: Number Plate Character Segmentation 

Algorithm and its Efficient FPGA Implementation 

4.1 Introduction 

In the previous chapter, a morphological operation based NPL algorithm and its efficient 

architecture implementation have been introduced. The next main stage of an ANPR 

system is CS stage, where the characters within the NP are correctly and accurately 

segmented. In order to achieve a good result in the CS stage, the NP normally be properly 

rotated and binarised at the end of the NPL stage before it is used for CS. Improved 

algorithms and new FPGA architectures for NP binaristion and rotation are presented in 

Chapter 6. In this Chapter, localised NPs are considered binarised and adjusted. Traditional 

pixel projection based CS algorithms have difficulty handling characters which are not at 

the same horizontal level, especially when the NPs are taken from different camera views. 

Furthermore, noise also significantly affects the results of CS. This Chapter presents an 

improved CS algorithm which uses pixel projection and morphological operations to 

improve the processing time and remove noise impact to achieve a more precise horizontal 

and vertical segmentation result. A MATLAB implementation of the proposed algorithm is 

used as a proof of concept prior to the hardware implementation. An area/speed efficient 

architecture based on the proposed algorithm is also presented, where parallelism offered 

by FPGAs and pipelining technique has also been exploited to achieve high running 

frequency and throughput rate. The use of multipliers has been avoided in some building 

blocks from the proposed architecture which significantly reduces on-chip resources usage 

and power consumption. The proposed architecture is implemented and verified using the 

Mentor Graphics RC240 FPGA development board (see APPENDIX A). A database of 

1000 UK binary NP images with varying resolutions is used for testing the performance of 

the proposed architecture. 
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The remainder of this Chapter is organised as follows, Section 4.2 describes the proposed 

algorithm. The proposed CS architecture is described in Section 4.3. The MATLAB 

implementation and analysis of the experimental results are presented in Section 4.4. 

Section 4.5 is concerned with FPGA implementation and discussion of the experimental 

results. Section 4.6 concludes the Chapter. 

4.2 Proposed Character Segmentation Algorithm 

The proposed CS algorithm is mainly based on pixel projection and morphological 

operations. Compare to existing works based on pixel projection method [50, 59, 71-73], 

two optional morphological operations have been introduced in the proposed improved 

algorithm to minimise the impact of noise and the entire horizontal pixel projection step has 

been replaced by an NP height optimisation step. These modifications improve the 

robustness of the vertical projection and also accelerate processing speed.  

The proposed method has three stages: 

1. Pre-projection stage; 

2. Vertical projection;  

3. Horizontal projection. 

Figure 4-1 shows the block diagram of the proposed CS system. 

Binary NP Image
Morphological 

Open

Morphological 

Dilation

NP Height 

Optimisation

Vertical Projection
Morphological 

Dilation

Horizontal 

Projection

Segmented 

Characters

Pre-projection Stage Vertical Projection Stage

Horizontal Projection Stage
 

Figure 4-1: Block diagram of the proposed character segmentation system 
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The input binary NP images are the outputs of the NPL stage. All images from the NPL 

stage are binarised and inclined images must be roughly rotated before they are fed to the 

character segmentation stage. 

4.2.1 Optimising NP Height 

The traditional pixel projection algorithm normally performs an entire horizontal pixel 

projection followed by an entire vertical pixel projection where the resulting image from 

horizontal projection stage is used. According to the practical experimental results, 

although the horizontal pixel projection is a necessary step, the horizontal position of 

characters cannot be extracted when the NP is inclined or contains unnecessary information 

(e.g. national label and NP margin). For this reason and also to accelerate the processing 

speed, the proposed method replaces the entire horizontal pixel projection with the NP 

height optimisation step, which:  

- Removes unnecessary parts of the NP; and 

- Accelerates the processing speed by reducing the size of the image. 

Firstly, this step analyses height and width parameters of the NP and decides whether NP 

height optimisation is required or not. If an optimisation step is required, two 

morphological operations are applied, otherwise only one morphological operation is 

applied. Figure 4-2 demonstrates the flow chart of the pre-projection stage. 

a>26 and b/a<7
Reduce NP 

Height

Yes

No

3×1 open 

Operation

3×1 dilation 

Operation
Highlighted NP

YT 58 FSZ
Width = b

H
ei

g
h

t 
=

 a

 

Figure 4-2: Flowchart of the pre-projection stage 
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In Figure 4-2, the known height and width of the NP are denoted as a and b respectively and 

can be used in branch conditions to determine whether the NP height must be reduced and 

the morphological open operation applied before applying the dilation operation. By 

analysing the images in the used database, the value of a varies from 18 to 60, the majority 

of NP heights are greater than 26 pixels, and normally have sufficient pixels in the character 

region. Therefore, the branch conditions are set as “ 26a  and / 7b a  ”. Further 

processing is performed on NPs that meet the set condition where two operations applied 

(i.e. NP height reduction and morphological open operation). For the first operation, the 

current NP height will be cropped by 0.15 a  from the top and bottom of the NP which 

leaves a new NP height of 0.7 a . This cropping process result is shown in Figure 4-3. 

YT 58 FSZ

H
e
ig

h
t 

=
 a

0.15×a

0.15×a

0.7×a

YT 58 FSZ0
.7
×

a

 

Figure 4-3: The NP height reduction process 

The cropping factor 0.15 is the result of analysis of UK NP standard [116] and the NPs in 

our database. The cropped NP images can be categorised, as shown in Figure 4-4, as:  

- Category 1: cropped NP images with full characters; 

- Category 2: cropped NP images with full characters and additional noise; and 

- Category 3: cropped NP images with cut characters.  

The information lost in the third category does not affect the result of the vertical 

projection. 

YT 58 FSZ

YT 58 FSZ

YT 58 FSZ

YT 58 FSZ

YT 58 FSZ

YT 58 FSZ
Category 1 Category 2 Category 3

 

Figure 4-4: The three cropping categories 
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4.2.2 Vertical and Horizontal Projections 

Once an NP image has been cropped, the morphological operations are performed. The 

shape of the morphological operation is based on a suitable structuring shape SE [110]. A 

vertical line-shape SE, shown in Figure 4-5 (a), with a size of 3 1  is used to perform the 

open operation in the proposed algorithm.  

1

1

1

1 1 1Origin

Origin

(a) (b) 
 

Figure 4-5: The 3×1 and 1×3 SEs. (a) 3×1, (b) 1×3 

There are two basic morphological operations: erosion and dilation. An erosion operation 

(⊖) calculates the minimum pixel value in the SE, and assigns it to the origin; by contrast, 

a dilation operation (⊕) calculates the maximum pixel value in the SE. Let I denotes an 

image, morphological erosion and dilation operations transform I to a new image using an 

SE T with s elements, which are defined by: 

 min s
s T

TI I


!  (4.1) 

 max s
s T

II T


   (4.2) 

The morphological open operation is an erosion followed by a dilation. The open operation 

is used to remove unwanted margins and connections between characters before applying 

vertical projection. A 3 1 morphological dilation operation using the same SE is then used 

to enhance the vertical shape of each character.  

If ,x yp denotes a value of pixel at coordinates (x, y) in a NP image ( a b ), the vertical 

projection value at y
th

 column of NP image can be calculated by: 
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1

,

0

a

y x y

x

v p




          (4.3)  

where 0,1,2,..., 1x a  and 0,1,2,..., 1.y b   

Figure 4-6 (a) shows vertical projection histogram before cropping the original NP image. 

The minimal value in the histogram is approximately ‘5’, and this value is not consistent for 

all NPs in the database, therefore it is not easy to find a constant threshold at which 

characters and non-characters can be separated. In Figure 4-6 (b), although the minimal 

value of the histogram map is ‘0’, gaps between neighbour characters are not clearly seen. 

Figure 4-6 (c) shows the pixel vertical histogram after applying morphological operations.   

(a) (b) (c) 
 

Figure 4-6: NP images and their vertical projection histograms. (a) Original NP, (b) After performing 

horizontal cropping, (c) After performing morphological operations 

In order to find the critical points between two characters, the proposed algorithm uses an 

approach that consists of the following two steps:  

1) Find a group of points A from vertical projection array 0 1 2 1{ , , ,..., }bV v v v v  . 

2) Find a group of critical points B from group A. 

The points in group A should meet the conditions
 1yv t and 

1 2( )y yv v t   where 

thresholds 1t  and 2t  have been found by experiment. 

Let , ,Cd Cv Ca denote the difference between two neighbour points in group A, the vertical 
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pixel projection value at position 2iA   and the average vertical pixel projection value 

from iA  to 1iA  respectively, and can be calculated by: 

1i i iCd A A          (4.4) 

2ii ACv v           (4.5) 

1i

i

A

y

y A

i

i

v

Ca
Cd







        (4.6) 

where i is an integer 1b  . 

Let minw and maxw  denote the minimum and maximum expected character widths 

respectively. minv
 
denotes the minimum expected vertical histogram value at position

2iA  . minVavg
 
and maxVavg

 
denote the minimum and maximum expected average 

vertical histogram values for each character respectively. The points in group B should 

meet the conditions ,min i maxw Cd w  i minCv v  and min i maxVavg Ca Vavg  .  

Once all the critical points of characters have been found, all characters in the original NP 

are segmented using these critical points. Figure 4-7 shows an example of vertical cropping 

and a character horizontal projection. 

Vertically Cropped 

Character

After Performing 

dilation Operation  

Figure 4-7: Character horizontal projection 

In Figure 4-7, the character ‘Y’ has been cropped from the original NP image, followed by 

a horizontal projection operation. In order to enhance the horizontal projection histogram, 
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the horizontal line-shape SE, shown in Figure 4-5 (b), with a size of 1 3 is used to perform 

a dilation operation. The same critical point localisation approach used for vertical 

projection is also used for localising horizontal critical points. Once these critical points are 

localised, the character ‘Y’ is fully segmented. The rest of characters on the NP are 

segmented using same method. Figure 4-8 shows the fully segmented NP. 

 

Figure 4-8: A fully segmented NP 

Overall process of the proposed CS algorithm can then be summarised in the following 

pseudocode. 

Proposed algorithm: CS algorithm 

1. Input images: localised NP image (a×b), where a is height of NP, b is width of NP 

2. Output images: Segmented character image 

3. if (a>26 and b/a<7) then 

4.      reducing height of NP a to 0.7a 

5.      morphological open input image using 3×1 SE 

6.      morphological dilation after the open 

7. else 

8.       morphological dilation for the input image 

9. end 

10.      obtain highlighted NP image 

11. for all pixels in the highlighted NP image do 

12.      generating vertical projection histogram 

13.      finding the vertical critical points between two characters 

14.      generating horizontal projection histogram for each vertical cropped character image 

15.      finding the horizontal critical points for each character 

16. end 

 

Compare to the existing algorithms, two optional morphological operations have been 

introduced in the proposed CS algorithm to eliminate noise impact and the entire horizontal 

pixel projection step has been replaced by an NP height optimisation step. These 

modifications improve the robustness of the CS algorithm and also accelerate processing 
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speed. 

4.3 Proposed Character Segmentation Architecture 

The proposed CS architecture consists of vertical and horizontal projection modules and 

each module consists of the three main blocks listed below: 

1. Pre-Projection Block: vertical and horizontal pre-projection blocks are used in 

vertical and horizontal projection modules respectively. 

2. Morphological operator: open and dilation morphological operations are used in 

the vertical projection module while only dilation is used in the horizontal 

projection module. 

3. Critical point localiser: Almost the same block is used for both vertical and 

horizontal projection modules. The only difference is the set conditions.   

The structure of the proposed system is shown below in Figure 4-9. 

Vertical    

Pre-projection

Vertical 

Projection 

Vertical 

Critical Point 

Localiser

Morphological 

Operator

Horizontal 
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Horizontal 

Projection 
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Operator

Segmented 

Chracters

 

Figure 4-9: Vertical and horizontal projection based system 

4.3.1 Vertical Projection Module 

The first building block in the vertical projection module is the vertical pre-projection 

block which consists of the Vertical Memory Reader (VMR) and NP height Optimiser. This 
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operation is followed by a morphological operation and a horizontal critical point 

localisation. The overall block diagram of the vertical projection module is shown in Figure 

4-10. 

Vertical Pre-projection Block

Morphological Operator

Vertical Memory 

Reader (VMR)
3×1 Open Operation

 NP Height 

Optimiser

Height and 

Width

Memory 

Address

a>26 and b/a<7

Original Height 

and Width 

Yes

3×1 Dilation 

Operation

No
 Vertical 

Critical Point 

Localiser

Pixels of 

Cropped Image To the Horizontal 

Projection Module

  

Figure 4-10: The overall vertical projection block diagram 

Vertical Pre-projection Block 

a b pixels of the binary NP image are scanned row by row, from top to bottom and from 

left to right and stored in memory. In Figure 4-10, the processing starts with the memory 

reader module, where the known NP height a  and width b are passed to the NP height 

optimiser to calculate the memory start and end addresses where the first and last pixels of 

the horizontally cropped image are stored in memory. Figure 4-11 illustrates a horizontally 

cropped NP with the start and end pixels. 
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Figure 4-11: Cropped NP image with first and last pixels 

Although the theoretical fixed horizontal cropping factor 0.15 can be used to successfully 

crop the majority of the NPs, some of them cannot be properly cropped. This is due to the 

fact that NPs with heights below 40 are more likely to have insufficient pixels on characters’ 
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regions than the NPs with greater heights (e.g. where margins of some NPs have already 

been cropped during the NPL stage or already have small margins in the NP). Therefore, 

NP height can be used to determine which cropping value should be used. In the proposed 

algorithm, four range-specific cropping values in four different NP height ranges are used:

26 30a  , 30 40a  , 40 50a   and 50 60a  . 

As the main aim of this research project is to implement the entire ANPR system on one 

single FPGA, this solution avoids the need of multiplications to calculate individual 

cropping factors which will significantly reduce the hardware resources usage. Therefore, 

integrated on-chip multipliers are saved for other ANPR stages (i.e. NPL [117] and OCR). 

Table 4-1 shows the four ranges and corresponding start and end address calculation. 

Table 4-1: Calculation of memory start and end address within each NP height range 

 26 30a   30 40a   40 50a   50 60a   

Start Address 3 b  4 b  6 b  8 b  

End Address 2 3a b b     2 4a b b     2 6a b b     2 8a b b     

 

In the next step, the VMR reads the stored pixels from memory starting from the calculated 

start address and scanning the stored image column by column, from top to bottom and 

from left to right. Before the pixels of the cropped image read by VMR are sent to the 

morphological operator, the NP image is tested against the geometrical condition

26 & / 7a b a  . If the condition is met, all pixels read by the VMR for that NP will pass 

through open and dilation morphological operators in the morphological operator block, 

otherwise, they will only pass through the dilation operator. 

Morphological Operator 

Open and dilation morphological operations are performed within this block. As the input 

data are binary, the max and min can be simplified to a logical OR and a logical AND 

operation as shown in Equations 4.7 and 4.8 respectively. 

 
s

s T
T II


 !  (4.7) 
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Figure 4-12 shows in block level diagram how the two operations are applied to the pixels 

coming from the vertical pre-projection block. 
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Figure 4-12: Block level diagram of the morphological operation process 

In Figure 4-12, “ 0 1 2, ,Z Z Z ”, “ 0 1 2, ,X X X ” and “ 0 1 5, ,...,T T T ” are one-bit buffers which are 

used for buffering pixels read from memory. Data stored in these buffers are propagated 

from one buffer to the next every one clock cycle. If the set condition is met, the value of 

the current input pixel is passed into “ 0Z ” then after two clock cycles a logical AND 

operation is performed on the data stored in “ 0 1 2, ,Z Z Z ” and the result is stored in buffer 

“ 0T ”. The next stage is similar but instead of using a logical AND operation, a logical OR 

operation is performed on the data stored in “ 0 1 2, ,T T T ”which ends the open operation. The 

result is stored in “ 3T ”. The open operation is then followed by a dilation operation where a 

logical OR operation is calculated using the data stored in “ 3 4 5, ,T T T ”. If the final result 
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value is ‘1’, the counter which was initialised to zero will be incremented by one. When one 

column of pixels from the NP is processed, the result of the counter will be stored and the 

counter re-initialised to zero.  

If the set condition is not met, only morphological dilation will be performed, which is 

exactly same operation used after the open operation when the condition is met. 

Vertical Critical Point Localiser 

A Vertical Critical point localiser is used to localise critical points from the vertical 

projection data stream generated from the previous block (i.e. morphological operator). 

Figure 4-13 shows in block level diagram the process of localising critical points of vertical 

projection.  
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Figure 4-13: Block level diagram of the process of localising the critical points of the vertical projection 

Data are continuously stored in the buffers 0V and 1V from the morphological operation 

module. Once two values are available in those two buffers, the first value is subtracted 

from the second one and the absolute value of the result is passed through the condition 

‘condition 1’ set to generate group A. Once there is a value in A, an accumulator starts to 

accumulate the vertical projection value until the second value of A is found, then the 

current result stored in register Sum is used in ‘condition 2’. A new accumulation process 

starts when the previous accumulated value is used in ‘condition 2’. The index of the 

subtrahend is stored temporarily in an array of two elements. Once two values are available 

in the two-element array, the same subtraction operation is applied and the result passes 
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through the condition ‘condition 2’ set to generate group B. The successful are stored in a 

vertical critical points array of 16 elements which are used by the horizontal projection 

module. 

4.3.2 Horizontal Projection Module 

The first building block in the horizontal projection module is the horizontal pre-projection 

block. Unlike the vertical pre-projection block, the horizontal pre-projection block consists 

only of a Horizontal Memory Reader (HMR) which uses the 16-element array output from 

the vertical projection module to read characters’ pixels from memory. This operation is 

followed by a morphological operation and a horizontal critical point localisation. The 

overall block diagram of the horizontal projection module is shown in Figure 4-14. 
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From Vertical Critical 
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1×3 Dilation 
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Horizontal Critical 
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Figure 4-14: Overall block diagram of the horizontal projection module 

Horizontal Pre-projection Block 

In the horizontal pre-projection block, the HMR uses the column numbers stored in the 

Vertical Critical Points (VCP) array to read the characters’ pixels from memory. Two 

elements are used for each character and the pixels are scanned row by row, from top to 

bottom and from left to right. For example, pixels of the first row in the first character are 

stored in memory locations 0VCP  to 1VCP  which are the first and second elements of the 

VCP array. The second row starts from 0VCP b , where b is the width of NP. Figure 4-15 

illustrates the process with a vertically cropped NP. The read pixels will be passed through 

a dilation morphological operator in the morphological operator block.  
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Figure 4-15: The vertically cropped NP process 

The vertical critical points array has 16 elements in total, however a UK NP has a maximum 

of seven characters, therefore, no more than 14 elements will be used. The two extra 

elements may be used in some cases as temporary storage in case an error segmented region 

occurs.  

Morphological Operator and Horizontal Critical Point Localiser 

The morphological Operator block consists only of a 1 3  dilation operator which is 

similar to the 3 1  dilation operator used in the vertical projection module (see Figure 

4-12). The only difference being the direction in which the data is read (i.e. VMR vs HMR). 

The horizontal critical point localiser is also similar to the vertical critical point localiser, 

the only difference being the value of threshold set. 

Once the all vertical and horizontal critical points have been found, they can be used to 

extract all of the pixels associated with a particular character.  

4.4 MATLAB Implementation and Results 

The proposed CS algorithm was tested in a MATLAB environment using a database of 

1000 binary UK NPs with varying resolutions. The MATLAB implementation was used as 

a proof of concept prior to the hardware implementation. The database predominantly 

consists of three different sample sets: normal, inclined and noisy NPs, which are taken 

from our previously implemented NPL system [117]. 
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1) Sample set 1: contains normal NPs where characters are clear and obvious. 

2) Sample set 2: contains inclined NPs where characters are on different horizontal 

levels (the horizontal inclination angles |𝛼|<4°). 

3) Sample set 3: contains noisy NPs where noise information or connected characters 

are included in NPs (e.g. screws, national labels, and unnecessary boundaries). 

During the experimental testing, the successful cases for each sample that was counted 

manually in multiple times. Table 4-2 shows a sample image from each sample set and the 

successful segmentation rate for each set where all characters in a NP are correctly isolated 

from each other. 

Table 4-2: Successful character segmentation rates by sample set 

 Sample Set 1 Sample Set 2 Sample Set 3 Overall 

UK NPs 
   

 

Successful Character 

Segmentation Rate 
205/212 (96.7%) 337/351 (96.0%) 420/437 (96.1%) 

962/1000 

(96.2%) 

 

The proposed algorithm has an overall 96.2% successful character segmentation rate when 

tested using UK NP images. Sample set 1 has relatively higher character segmentation rate 

than sample sets 2 and 3, which is due to the fact that the scenes in the latter sample sets 

contain more complex background environments or inclined NPs. Since morphological 

operations are used in the proposed algorithm to remove the noise, the impact of noise has 

been significantly reduced. In addition, as the proposed algorithm only analyse the 

width/height of the character, the gap between the adjacent characters does not affect the 

segmentation rate. Using MATLAB and a Dual Core 2.4GHz, 3G RAM PC, the average 

processing time was found to be 22.3 ms per image. 

Segmentation failures fell into one of three categories: (1) the number of segmented 
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characters is more than the actual number of characters on NP. This is caused by the 

non-character parts on the NP being very similar in shape to a character. (2) One or more 

characters are missed. This is caused by inclined characters or a degraded original image. (3) 

The character is split into two separated characters. This is due to insufficient pixels in the 

character.  

As the image size range in the database is relatively large (i.e.18 190 -60 300 ), the 

proposed algorithm uses five different conditions to localise vertical critical points. 

Although five conditions are used, there are still a few NPs that were not segmented 

properly. Table 4-3 shows some examples. The NP from category 1 contains a 

non-character component that was segmented as a character. Character ‘1’ in the NP from 

category 2 was missed. Character ‘0’ in the NP from category 3 was also missed because of 

the small number of pixels in the characters which was caused by the poor original image 

quality.  

Table 4-3: Samples of failed images. 

Category Original NP Segmented NP 

(1) 
  

(2) 

  

(3) 
  

4.5 FPGA Implementation and Results 

The proposed architecture for CS has been simulated using the PAL Virtual Platform 

(PALSim) [112]. After simulation, the architecture has been successfully implemented and 

verified using the Mentor Graphics RC240 FPGA development board. Handel-C has been 

used for hardware description of the proposed architecture. For details of the experimental 
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tools can be found in APPENDIX B.  

The two main building blocks of the proposed architecture are the vertical and horizontal 

projection blocks shown in Figures 4-10 and 4-14 respectively. Pipelining has been used in 

their implementation and an NP image can be processed in (x×C1 + C2) clock cycles 

where:   

- x is the number of characters in the NP 

- C1 is the number of clock cycles to complete one vertical projection and depends 

on the size of the NP image 

- C2 is the number of clock cycles to complete one horizontal projection depends on 

the size of the NP image 

Sample codes for the CS implementation are discussed in APPENDIX C. 

4.5.1 Proposed environment for character segmentation on FPGA 

Figure 4-16 shows a general view of the entire CS system. It consists of a host application 

(GUI), a UK NP database and the RC240 FPGA development board. The host application 

was implemented using Visual Studio 2008 and gives the user the ability to select an NP 

image from the database, display it and send it to the FPGA for processing. Once processed, 

the output from the FPGA is displayed on the same GUI. More details for implementing 

FPGA host application are discussed in APPANDIX A. 

RC240 FPGA Board

External 

Memory

Xilinx Virtex-

4 LX40 

FPGA

UK NP Database

USB

 

Figure 4-16: Host application for character segmentation 

The UK binary NP database used for the MATLAB implementation, has also been used for 

testing and validating the FPGA implementation. Table 4-4 shows the FPGA 
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implementation results when using the three sample sets.  

Table 4-4: Successful character segmentation rate by sample set for FPGA implementation results 

 Sample Set 1 Sample Set 2 Sample Set 3 Overall 

Successful CS 

Rate 
208/212 (98.1%) 343/351 (97.7%) 426/437 (97.5%) 977/1000 (97.7%) 

 

The CS rate is higher than that achieved in the software implementation where the overall 

rate is 97.7%. The improvement is due to the use of the four height range-specific cropping 

values shown in Table I in place of the single horizontal cropping factor 0.15, to find the 

most suitable memory reading address in the VMR block. 

4.5.2 Hardware Usage, Running Frequency and Power Consumption 

Due to the low complexity of the proposed algorithm, the proposed architecture requires 

only 11% of the on-chip FPGA resources. Table 4-5 summarises the required on-chip 

resources.  

Table 4-5: Usage of FPGA on-chip Resources 

On-chip Recourses Used Available Utilisation 

Occupied Slices 2,100 18,432 11% 

LUTs 2,964 36,864 8% 

Flip-Flops 1,449 36,864 3% 

BRAMs 2 96 2% 

DSP48s 1 64 1% 

 

11% of the on-chip FPGA slices are used to implement the proposed CS architecture. In 

these slices, 8% LUTs, 3% flip-flops and 2% BRAMs are used to implement logic 

operations, registers and RAMs respectively. A DSP48s slice is used to perform the 

arithmetic calculation in the Critical Point Localiser block. According to the previous 
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chapter, NPL implementation requires 33% of the on-chip resources, therefore, the total 

hardware usage of NPL and CS is 44%, which leaves 56% of the FPGA area to be used for 

the remaining part of an ANPR system (i.e. OCR). 

The maximum running frequency is 74.5 MHz and the number of clock cycles needed for 

one image to be processed is between 13000-103000 (including the clock cycles for image 

reading, vertical projection and horizontal projection), which depends on the resolution of 

the input NP and number of characters in it. The execution time for processing one frame 

can be calculated using the Equation 3.4. 

Based on Equation 3.4, the proposed architecture can process one image (18 99 - 60 300 ) 

and produce a result in 0.2 ~1.4ms . The difference in the execution time is due to the size of 

the images which affect the number of clock cycles. The smaller the size of the image, the 

lower the number of clock cycles is required. The execution times achieved mean that the 

proposed architecture satisfies the requirement for real-time processing. 

The power consumption of the designed circuit has also been analysed using Xilinx 

XPower Analyser [115], and the results obtained are shown in Table 4-6. 

Table 4-6: Estimation of Power Consumption 

Resource Type Value of Power (mW) 

Clocks 120 

Logic 2 

Signals 2 

BRAMs 2 

IOs 40 

Clock Managers 211 

Leakage 344 

Total Power 721 

 

In Table 4-6, the clocks power, logic power, signal power, BRAMs power and IOs power 

belong to the dynamic power, they are directly affected by the user design resource usage. 

The quiescent power is consumed due to transistor leakage, which is depending on the 
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chosen hardware. The total dynamic power consumption for the proposed CS 

implementation is 269 mW out of the total power consumption 721 mW.  

The proposed CS algorithm reduces processing time by using an optimising NP height 

module to reduce any horizontal noise effect and so avoid the need to use the entire 

horizontal projection, and so the vertical projection can then be applied without affecting 

the segmentation accuracy. The morphological operations are used to enhance pixel 

projections, which can significantly improve the segmentation rate when NPs contain 

noise.  

Table 4-7 lists the results of character segmentation for recent ANPR systems that use the 

pixel projection approach and they are either software or hardware based systems. 

Table 4-7: Performance Comparison 

CS Technique CS Rate (%) Platform/Processor Speed (Sec) 

[59] 95.6% Pentium 1.6 GHz PC 2 

[50] 98.8% Pentium 2.8GHz 0.2 

[11] N/A Texas Instruments C64 0.0018 

[105] 87.16% Virtex-4 FPGA N/A 

Proposed system on PC 96.2% Dual Core 2.4GHz 0.023 

Proposed system on FPGA 97.7% Virtex-4 FPGA 0.0002~0.0014 

 

Generally, the main advantage of hardware based systems is the fast processing speed, 

which is of particular interest in real-time environments. By comparing the results of the 

PC and FPGA-based implementations, it can be clearly seen that the latter outperforms the 

former by a factor of 8. It also outperforms the existing solutions in terms of speed and/or 

accuracy. Although different databases are used in the works [50], [59] and [105], similar 

image cases are contained in our database.  
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4.6 Conclusion 

In this Chapter, an improved CS algorithm has been proposed for FPGA implementation, 

which is based on a combination of histogram projection and morphological operations. 

Furthermore, an efficient architecture based on the proposed algorithm has been 

successfully implemented and tested using the Mentor Graphics RC240 FPGA 

development board. It requires only 11% of the available on-chip resources of a Virtex-4 

FPGA, runs with a maximum frequency of 74.5 MHz and is capable of processing one 

image in 0.2 ~1.4ms  with a successful segmentation rate of 97.7% when using a database 

of 1000 NP images. 
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Chapter 5: Number Plate Character Recognition 

Algorithm and its Efficient FPGA Implementation 

5.1 Introduction 

In the previous chapter, a low complexity pixel projection and morphological operations 

based CS algorithm and its efficient architecture implementation have been discussed. The 

next main stage of an ANPR system is OCR stage, where the segmented characters are 

recognised and converted into encoded texts. As concluded from the Chapter 2, incorrectly 

segmented characters from the CS stage, where characters are not in the expected position 

or parts of them are missed, may affect the OCR operation. NNs and statistical classifiers, 

which give better results compare to common pattern matching technique, can overcome 

this problem due to their strong memorability and self-adapting ability. However, in order 

to achieve good performance, large amount of samples are needed to train the NNs. In 

addition to the advantages of using NNs mentioned above, the parallelism and modularity 

of NN can be perfectly mapped onto FPGA using parallelism and pipeline techniques. The 

reconfigurable ability of FPGAs also provides a rapid way to adapt the weights and 

topologies of NNs [118]. 

In this Chapter, a low complexity and robust OCR algorithm based on feed-forward NN is 

presented where two non-overlapping real NP character image data sets are used for 

training and testing the proposed NN. An area/speed efficient architecture based on the 

proposed algorithm is also presented, which has been successfully implemented on a 

Virtex-4 FPGA. Because the proposed architecture is an off-line NN, there is no need to 

train NN on FPGA. Large amounts of trained weights are stored in external RAMs, which 

can be easily updated without changing the FPGA configuration. The proposed architecture 

for implementing the two layers feed-forward NN on FPGA for real-time OCR application 

is designed to process a large number of neurons in a pipelined manner to achieve high 
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running frequency and throughput rate. The use of multipliers has been avoided in the first 

layer from the proposed architecture, which significantly reduces on-chip resources usage 

and power consumption. 

A MATLAB implementation of the proposed algorithm was used as a proof of concept 

prior to the hardware implementation. An efficient architecture based on the proposed 

algorithm is also presented. It has been implemented and verified using the Mentor 

Graphics RC240 FPGA development board. The used UK character images were 

segmented from NP images that were collected by author and provided by CitySync Ltd. 

[109] who are one of the leading UK providers of ANPR solutions. The images are from 

outdoor real-world environments, which cover a wide range of conditions in terms of 

various weather, lighting and contrast. The results achieved indicate that the FPGA can 

provide 12-time speedup over the MATLAB implementation with the same recognition 

rate. 

The rest of this Chapter is organised as follows: Section 5.2 describes the proposed OCR 

algorithm. The MATLAB implementation and analysis of the experimental results are 

presented in Section 5.3. Section 5.4 is concerned with the description of the proposed 

OCR architecture. Its FPGA implementation and discussion of the experimental results are 

presented in Section 5.5. Section 5.6 concludes the Chapter. 

5.2 Proposed OCR Algorithm 

The proposed OCR algorithm uses a multi-layer feed-forward NN to translate scanned 

character images into machine encoded text. Typically, an N-layer NN consists of a set of 

input vectors, N-1 hidden layers, one output layer and a set of output vectors. Each layer 

consists of a set of neurons and corresponding transfer function (e.g. sigmoid, linear) [119]. 

Figure 5-1 shows a two-layer feed-forward network with one hidden layer and one output 

layer.   
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Figure 5-1: The architecture of two-layer feed-forward network 

A hidden layer consists of S neurons and each neuron has R weights, which can be 

presented in a S×R matrix called Input Weight matrix I as shown in equation 1. The input 

vector p has R elements [p
1
, p

2
,…, p

R
]
T

, which are multiplied by I and the resulting 

matrix is summed with a bias vector b1 to form vector n1 as shown in equation 2. The 

output of the hidden layer a1 is the result of applying the transfer function on n1 (see 

Equation 5.3). 
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The same operations applied in the hidden layer are used in the output layer, which consists 

of K neurons, where a1 is used as the input vector (see Equations 5.4, 5.5 and 5.6). 
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In UK NP system, there are 25 letters and 9 numbers. ‘I’ is a non-used character and ‘O’ and 

‘0’ are considered the same. In the new regulations introduced in September 2001, the 

format of a UK NP consists of two letters, two numbers, a space and three further letters 

[116]. This can be used to identify the letter ‘O’ from the number ‘0’. In an ANPR system, 

the segmented characters are presented to the OCR recogniser with different sizes. 

Therefore, all the images of the NP characters must be resized to the same size before using 

them in NN training or testing. Because the width of character ‘1’ is 1/3 of the size of other 

characters, the identification of this character is very easy during the character 

segmentation stage prior to sending it to the NN for recognition. Figure 5-2 shows the 

character set used in UK NPs:  

 

Figure 5-2: The UK NP character set [116] 

The most commonly used images in OCR are binary images. They are also used also in 

other stages of ANPR system. Binary images require less computational intensity compare 

to other types of images which significantly decreases the computation for real-time 

applications such as ANPR. In the proposed work, a 2-D binary image matrix w l is 

transformed into 1-D vector p with R elements [p
1
, p

2
,…, p

R
]
T
 to be used to form the 

inputs of NN, where pixels of binary image are read row by row to form the p. Due to only 

having 33 possible characters, the output of NN has been decided 

as a2=[a2,1, a2,2,…,a2,33 ]
T
. In order to find the most suitable NN architecture for OCR task, 

the different number of neurons S and size of input vector p are used to create different 

NNs.  
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In order to choose the best suitable training algorithm for the proposed neural network, 

several training algorithms are used to train the neural network. For example, Scaled 

Conjugate Gradient (SCG) algorithm [120], Backpropagation (BP) algorithm and 

Levenberg-Marquardt algorithms [121]. Because the training speed of SCG is much faster 

than traditional back propagation algorithm (BP), and also it gives better results than with 

other training methods, the SCG is chosen as the training method of the NN.  Before the 

start of training, the NN was initialised using Nguyen-Widrow initialisation algorithm 

[122], where the weights and biases in each layer are initialised and distributed 

approximately evenly over the input space. In order to use the proposed algorithm with NPs 

prior to 2001 or recognise different font characters, an extra character data set needs to be 

used to train the NN (e.g. Germany characters from German ANPR system). 

5.3 MATLAB Implementation and Result Discussion 

MATLAB has been used as a proof of concept of the proposed algorithm and it has also 

been used to generate the weights of the neural network. 6436 binary images with varying 

resolutions from the previous CS stage were used [123]. 

First of all, the binary images of the characters are resized to the same size. To select the 

right size, several sizes of input images have been used for NN training. The larger the size 

of the image the higher is the recognition rate but large sizes significantly increase the 

complexity of the structure of the NN as the number of weights will increase. The size 

corresponding to the best suitable result is used for the final NN. Based on experimental 

results, the size of the input binary image was decided to be 34 22 . 

The entire database has been divided into two non-overlapping groups: group 1 and group 2. 

The first group has 45% of characters, which is used only for neural network training. The 

second group has 55% of characters, which is used only for neural network testing. Figure 

5-3 shows some examples from those two groups after resizing. 
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Group 1 Group 2  

Figure 5-3: Sample characters from both training and testing groups 

There are two separate sets of training data that were used to train two different neural 

networks respectively. The first set is the original 45% training data and the second one is 

the same set but with added random values between 0 and 1 from the standard normal 

distribution on the images. The SCG training algorithm is based on supervised learning 

algorithm. This means that the weights of neural network are updated based on each 

calculation of a pair consisting of an input image and a desired output from training data 

set. Therefore, adding noise to the training data set will not affect the training process. In 

the SCG training process, the 45% training data are divided into three sub sets, where 80%, 

15% and 5% data are used for training, validation and testing respectively, the maximum 

iterations, performance goal, minimum performance gradient are set to  1000, 0 and 

61 10  respectively and the maximum validation failure   and   are set to 6, 
55 10

and 
75 10 respectively. The achieved training, validation and testing successful rates are 

99.85%, 99.87% and 99.94%. In order to obtain more accurate performance of the trained 

neural network, another non-overlapping testing data set is used for the testing.  

 

Figure 5-4: Examples of training data with random noise 

The rest of the 55% of character images are used for testing trained NNs with different sizes 

(i.e. 30, 50, 70 and 100 neurons) and training sets (i.e. with and without noise added). 
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Figure 5-5 shows the character recognition rates when different training data sets are used. 

The NN is trained using the set with noise which will result in a better performance in terms 

of character recognition rate. In addition, several NNs with different sizes were trained and 

tested independently and the results show that the more neurons there are the better is the 

character recognition rate and higher is the number of weights which significantly increases 

the scale of the NN architecture and the on-chip resources usage on FPGA. The NN with 50 

neurons was used for final NN implementation and it needs 221 iterations for the training.  

 

Figure 5-5: Character recognition rate with different numbers of neurons 

Overall character recognition rate of the 55% testing data is around 97.3%, and the 55% 

testing data have been divided into different data sets where each set contains images of the 

same character in order to analyse the performance of NN on different the characters. 

Figure 5-6 shows the recognition rate of each character using the proposed OCR algorithm. 

 

Figure 5-6: The recognition rate of each character 
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As shown in Figure 5-6, the proposed algorithm handles well simple character, e.g. ‘A’, ‘C’ 

and ‘6’, however, for the ambiguous characters, e.g. ‘B’, ‘V’ and ‘8’, the proposed OCR 

algorithm has lower recognition rate for two main reasons:  

- Character’s similarity with other characters (e.g. ‘B’ and ‘8’); and  

- Image quality (see Figure 5-7).  

In order to recognise these characters, some particular features need to be extracted from 

them and not only pixels’ information (e.g. distinguishing parts of ambiguous characters 

and contour feature). On the other hand, image quality is also a key factor that affects the 

result. The bad quality of images is a result of badly segmented images from the previous 

stage (i.e. segmentation stage) or inclined characters. In some situations, screws of the NP, 

dust and boundary of NP can all affect the recognition process. Figure 5-7 shows some 

misread character images from the used database: 

 

Figure 5-7: Examples of failed characters 

Since there is no public UK NP character database, the alternative well known MNIST 

handwritten digits database [86] is used to compare the results achieved for the proposed 

NN and other approaches. However, the MNIST database only contains handwritten digits 

with varying fonts are, which is not the case for the NP character. The comparison results 

are shown in Table 5-1. 
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Table 5-1: Comparison of the proposed NN algorithm with other approaches using MNIST database 

Approach Algorithm Error Rate (%) 

The Proposed Approach 2-layer NN with 50 Neurons 5.33 

[100] DBM 0.95 

[101] DBN 1.17 

[124] 2-layer NN with 800 Neurons 1.6 

[125] SVM 1.4 

 

As shown in Table 5-1, the proposed NN has a higher error rate when compared to other 

approaches. However, it has a significantly lower computational complexity and requires 

less number of neurons to perform this complex task compared to other approaches. As the 

fonts of UK NP characters are unified, recognising the NP characters is relatively easier 

compared to recognising handwritten digits, thus the proposed NN has better result for 

recognising NP character than handwritten digits. On the other hand, as the main aim of this 

research project is to implement the entire ANPR system on one single FPGA as a low cost 

solution and high performance stand-alone unit, the resources are saved for other stages of 

ANPR (i.e. NPL and CS). 

5.4 Proposed OCR Architecture 

The proposed OCR architecture mainly consists of four modules: pre-processing module, 

hidden layer module, output layer module and index finder module. Its block diagram is 

shown in Figure 5-8. 
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Figure 5-8: Block diagram of proposed architecture 

5.4.1 Pre-processing Module 

In this module, the main task is data normalisation. The output from the pre-processing 

module is fed to the hidden layer modules which includes a Tan-sigmoid function. Due to 

the range of Tan-sigmoid function values which is between [-1, 1], the input data to the 

hidden layer need to be normalised by the pre-processing module using Equation 5.7: 

   

 
max min min

min

max min

 
y y x x

y y
x x

  
 


    

 (5.7) 

where y
max

 and y
min

 are the expected maximum and minimum outputs, which are equal to 

‘1’ and ‘-1’, respectively. xmax and xmin are the expected maximum and minimum inputs, 

which are ‘2’ and ‘0’, respectively. x  and y  are the actual input and output of the 

pre-processing module. Equation 7 can be simplified to Equation 5.8: 

    1y x          (5.8)  

Due to use of binary images for testing, the value of 𝑥 is either ‘0’ or ‘1’, the possible 

resulted values of 𝑦 can be either ‘-1’ or ‘0’. 

5.4.2 Hidden Layer module 

The hidden layer module consists of two sub-blocks: 
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- Accumulator block 

- Tan-sigmoid block 

Accumulator and Tan-sigmoid blocks are used to perform Equations 5.2 and 5.3 

respectively. 

The accumulator 

The first block in the hidden layer is the accumulator, which is used mainly to perform the 

operations in Equation 5.2. Since the input data to this block can be either ‘-1’or ‘0’ (i.e. the 

elements of vector p), the matrix vector multiplication I p , where ,s iw  and 1,ip are the 
thi

weight in connection and value of the input respectively. The 
ths element of the vector 

n1can be calculated using Equation 5.9:  

 
, 1,

, 1,

1,

     ( 1)

  0         ( 0)

s i r

s i i

r

w p
w p

p

  
 



      (5.9) 

The multiplications in Equation 5.9 can be replaced with a two to one multiplexer and an 

accumulator, which will reduce the hardware usage. The weights and biases can be attained 

from MATLAB once the NN has been trained. Those weights in hidden layer will be 

converted to their opposite numbers and stored into external RAM. In the accumulator, the 

weights ,s iw are read from external RAM and accumulated if p
1,r

 is equal to ‘-1’.  

Figure 5-9 shows the internal structure of the proposed accumulator where three external 

32-bit word access memories are used and each memory location contains two 16-bit 

weights. Each clock cycle, six weights are read from the three banks at the same time, 

passed through a set of multiplexers, to perform Equation 5.9, and then summed together. 

The result will be stored into an array 𝑛1with S elements, which is used as an input to the 

next block. 
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Figure 5-9: The block diagram of the accumulator 

Tan-sigmoid block 

The Tan-sigmoid block is used to perform the Tan-sigmoid function shown in Equation 

5.10 (Figure 5-10 (a) shows its graph). When  x < -5 or x > +5, the values of tanh(x) is 

closed to -1 and +1 respectively. When  -5 ≤ x ≤ +5 , the values of tanh(x)  have been 

pre-calculated for using samples of x in this range -5,-4.99,...,4.{ 99,5} where a step size 

0.01 is used. Therefore, Equation 5.10 has been simplified to Equation 5.11 and the graph 

of the simplified Tan-sigmoid is shown in Figure 5-10 (b).  

tanh( )
x x

x x

e e
x

e e









         (5.10) 
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(a) (b)
 

Figure 5-10: The graphs of the Tan-sigmoid. (a) Original Tan-sigmoid function, (b) Simplified Tan-sigmoid 

function 

The results from Equation 5.11 are pre-calculated and stored in a ROM. Since the used step 

size is 0.01 for the range 5 to 5 , there are 1001 results to be stored in the ROM. In order 

to access the correct pre-calculated results from the ROM, the following formula needs to 

be used to calculate the address: 

address = (x + 5) ×100                     (5.12) 

The entire ROM-based Tan-sigmoid block is shown in Figure 5-11. 𝑎1 is a register used to 

store the current result from Tan-sigmoid block, which represents one element from the 

vector 𝑎1 in Equation 5.3. 
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Figure 5-11: ROM-based Tan-sigmoid 
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5.4.3 Output Layer Module 

The output layer module consists of two sub-blocks: 

- Matrix-vector Multiplier 

- Tan-sigmoid block 

Multiplier and accumulator block is used to perform Equation 5.5, and Tan-sigmoid block 

is the same block used in the hidden layer. 

Matrix-vector Multiplier 

The matrix-vector multiplier is the first block in the output layer and its main task is to 

perform the matrix-vector multiplication in Equation 5.5. The overall block diagram of the 

matrix-vector multiplier is shown in Figure 5-12.  

r1

r2

w1,1

w1,2

w1,3

…...
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a1
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+

+
n2,2

n2,3

...

n2,k

From Tan-sigmoid Block

Matrix-vector Multiplier

Tan-sigmoid 

Block

To Index 

Finder

 

Figure 5-12: Block diagram of matrix-vector multiplier 

All K S elements of the matrix L  are stored in one RAM column by column. Each time 

one element from the vector 1a is presented to this block from the Tan-sigmoid function 

block, is multiplied with all elements in the corresponding column from the matrix L and 

the results are accumulated with the previously calculated partial products. The hidden 

layer and the output layer work in parallel and data from the hidden layer are produced with 

a slower rate, which keeps the matrix-vector multiplier idle once the multiplication and 

accumulation operations are completed for one column until the next element from the 
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vector 1a is presented.   

In Figure 5-12, 1r and 2r are two registers that are used to store elements of matrix L  read 

from the RAM. 3r and 4r are two registers used to store results of multiplications. 

[n2,1,n2,1,…,n2,k]  is an array with k elements, which is used to store the result of 

accumulation. Each clock cycle, 2, 2, 3       m mn n r  and 2, 1 2, 1 4       m mn n r   is performed and then 

index m is incremented by two until it meets m k . Once this condition is met, m will be 

initialised to 0. These operations are repeated S times until all the weights from matrix L  

are read. 

5.4.4 Index Finder Module 

The index finder module is used to find the index of the maximum element of the output 

vector from the output layer and match it with the corresponding character. Figure 5-13 

shows the block diagram of the index finder.  
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Figure 5-13: Block diagram of index finder 

An array 𝑎2 has 33 elements that come from the output layer of NN, where the index of the 

maximum element will be passed to select a corresponding character from a set of 

pre-defined character. 

5.5 FPGA Implementation and Results 

The proposed architecture for OCR has been simulated using the PAL Virtual Platform 

(PALSim) in Mentor Graphics DK Design Suite 5.3 [112]. After simulation, the 
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architecture has been successfully implemented and verified using the Mentor Graphics 

RC240 FPGA development board equipped [113]. Handel-C language has been used for 

the hardware description of the proposed architecture [37]. For details of the experimental 

tools can be found in APPENDIX B.  

The two main building blocks of the proposed architecture are the hidden layer and output 

layer shown in Figure 5-8. Pipelining has been used in their implementation and a character 

image can be processed in (x × c1 + c2) clock cycles where:   

- x is the number of iterations used to execute the operations inside the hidden layer. 

This number depends on the number of neurons used which is 50 for the proposed 

algorithm. 

- c1 is the number of clock cycles to complete one iteration in the hidden layer. 

- c2 is the number of clock cycles required to complete one iteration in output layer. 

Sample codes for the OCR implementation are discussed in APPENDIX C. 

5.5.1 Data Representation 

The general idea behind this FPGA based NN implementation is to use the weights of the 

NN that have been trained in MATLAB to set up an off-line NN. The weights have been 

represented using floating-point arithmetic in MATLAB, which provides large dynamic 

range and very high precision. However, floating-point arithmetic is not suitable for 

hardware implementation as it requires significant large amounts of on-chip resources and 

slows the designs down [126]. Fixed-point arithmetic is an efficient way to provide cheap 

fast non-integer support for small range real numbers [127]. Since the weights of the 

proposed NN belong to the range [-1, 1], fixed-point arithmetic has been used to represent 

them with the format shown in Figure 5-14.  

14 bits2 bits

Decimal part Fractional part

 

 

 

Figure 5-14: 16-bit fixed-point number representation 
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Since the decimal part of the weights can be ‘-1’, ‘+1’ or ‘0’, two bits can be used to 

represent them. The number of bit in the fractional part has been set to 14, which is 

sufficient to give a good accuracy for this ANPR application.  

5.5.2 Proposed Environment for FPGA Implementation 

Figure 5-15 shows a general view of the proposed FPGA based OCR system. It consists of 

a Graphical User Interface (GUI), a UK characters database and the RC240 FPGA 

development board. The host application was implemented using Visual Studio 2008 and it 

gives the user the ability to select and display a character image from the UK characters 

database and send it to the FPGA for processing. Once processed, the recognised character 

from the FPGA will be displayed on the same GUI. This GUI also displays the numbers of 

failed cases for each character. 

External 

Memory

Xilinx Virtex-4 

LX40 FPGA

USB

UK Character 

Database
Weights

RC240 FPGA Board

 

Figure 5-15: The proposed FPGA based OCR system 

5.5.3 FPGA Implementation Results 

The same UK character database used for MATLAB implementation has been used for 

testing and validating the FPGA implementation. Only 95 characters were missed, which is 

very close to MATLAB results. Figure 16 shows a comparison between the recognition 

rates obtained using MATLAB and FPGA. As can be seen from Figure 16, the only 

difference is in only one missed case for character ‘K’.  



Chapter 5    Number Plate Character Recognition Algorithm and its Efficient FPGA Implementation 

105 

 

 

Figure 5-16: Comparison of MATLAB and FPGA implementation 

The FPGA resources utilisation results of the proposed architecture using fixed-point 

number representation for implementing a feed-forward NN are shown in Table 5-2. 

Table 5-2: Usage of on-chip Resources 

On-chip Resources Used Available Utilisation 

Occupied Slices 4,342 18,432 23% 

LUTs 7,967 36,864 21% 

Flip-Flops 2,711 36,864 7% 

BRAMs 5 96 5% 

DSP48s 8 64 12% 

 

Due to the fact that most of the weights are stored in the external memory, only few on-chip 

resources were used (i.e. block RAMs and distributed RAMs). Overall, 23% of the on-chip 

FPGA slices are used to implement the proposed OCR architecture. In these slices, 21% 

LUTs are used to implement logic operations and distributed RAMs. 7% flip-flops are 

mainly used for buffering the data to enable the high throughput pipeline manner in the 

design. 5% BRAMs are mainly used to store the weights in the output layer of the NN and 

lookup table of Tan-sigmoid block. The DSP48s slices are mainly used to perform the 

arithmetic calculations in the NN output layer. According to the previous chapters, NPL 

and CS implementations require 44% of the on-chip resources, therefore, the total hardware 

usage for the NPL, CS and OCR is 67%, which leaves 33% of the FPGA resources to be 
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used for linking the three proposed architectures together (e.g. adapting binarisation and 

image resizing).  

The maximum running frequency for the proposed architecture is 65.7 MHz and the 

number of clock cycles needed for one character image to be processed is 44148. The 

FPGA board used is equipped with three off-chip memory banks. All of them were used to 

read and process the weights in parallel. The number of clock cycles can be reduced if more 

memory banks are used.  

The execution time for processing one image can be calculated by Equation 3.4, the 

proposed architecture can process one character image ( 34 22 ) and produce a result in 0.7 

ms. Using MATLAB and Dual Core 2.4GHz, 3G RAM PC, the average processing time is 

8.4 ms per image, which is 12 times slower than the FPGA implementation. The 12-time 

speed-up is due to the exploitation of the parallelism offered by FPGA when designing the 

proposed architecture. 

The power consumption of the designed circuit has also been analysed using Xilinx 

XPower Analyser [115], and results obtained are shown in Table 5-3. 

Table 5-3: Estimation of Power Consumption 

Resource Type Value of Power (mW) 

Clocks 271 

Logic 12 

Signals 26 

BRAMs 5 

IOs 90 

Clock Managers 157 

Leakage 348 

Total Power 909 

 

In Table 5-3, the total dynamic power consumption for the proposed OCR implementation 

is 487 mW, which includes clocks power, logic power, signal power, BRAMs power and 

IOs power. The rest of 422mW is consumed by transistor leakage, which is depending on 
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the chosen hardware. The total power consumption is 909 mW. 

A comparison of the results achieved for the proposed FPGA based OCR system and the 

other hardware and software based approaches in terms of recognition rate and execution 

time is also shown in Table 5-4. 

Table 5-4: Performance Comparison of FPGA based OCR System 

OCR Technique 
Character Recognition 

Rate (%) 
Platform Speed (ms) 

Proposed System on 

FPGA 
97.3 Vertex-4 FPGA 0.7 

Proposed System on PC 97.3 PC 2.4 GHz 8.4 

SVM [45] 97.03 PC1.8 GHz 18 

SOM [105] 90.93 Vertex-4 FPGA N/A 

SVM [11] 94 DSP C6416 2.88 

 

For all existing works presented in Table 5-4, including the proposed one, the character 

images are the output images from the CS stage and all of them were taken under different 

conditions (e.g. lighting, dirty plates) from real-world environment. The achieved results 

show that the proposed work outperforms the existing work in terms of recognition rate and 

speed, and also by comparing the results of the proposed PC and FPGA-based 

implementations, it can be clearly seen that the latter outperforms the former by a factor of 

12, which means it presents an advantage over software-based solutions in terms of cost, 

size and energy consumption. 

5.6 Conclusion 

In this Chapter, a feed-forward ANN based OCR algorithm that meets the requirements of a 

real-time ANPR system has been proposed. A parallel and pipelined architecture based on 

the proposed algorithm has also been presented and it has been successfully implemented 

and tested using the Mentor Graphics RC240 FPGA development board. The proposed 
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architecture requires only 23% of the available on-chip resources of a Virtex-4 FPGA, runs 

with a maximum frequency of 65.7 MHz and is capable of processing one character image 

in 0.7 ms with a successful recognition rate of 97.3% when using a database of 3700 

character images. 
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Chapter 6: FPGA-based Number Plate Binarisation and 

Adjustment for ANPR Systems 

6.1 Introduction 

The previous chapters are mainly focus on one aspect of ANPR system, such as NPL 

[128-130], CS [1, 131]  or OCR [132]. However, for a robust ANPR system, an exhaustive 

and meticulous discussion of the pre-processing stages is required. Two important 

pre-processing stages in ANPR systems are NP binarisation and rotation. NP image 

binarisation converts an 8-bit grey level NP image to a black and white image and the 

simplest way to perform this is to choose a fixed threshold value and classify all pixels in 

the image. However, brightness distribution in a NP image may cause some parts of 

character to be missed and noise impact to be increased after performing image binarisation 

due to the problem of uneven illumination. In such cases, there are two main approaches to 

deal with this problem which are global and local threshold based binary algorithms. One 

global threshold binary method is Otsu method [133], where the target and background in a 

given image are separated by maximizing the variances of the histogram. However, this 

method does not consider the correlation between the pixels in an image such as the one in 

NP images [134]. In this type of image, the correlation between pixels becomes more 

important than the grayscale values and using the global threshold with this type of images 

it is difficult to separate the NP characters from the background. The local binary method is 

often used to solve this problem as it considers the correlation between the pixels in a NP 

image. Adaptive local binary method is one of the local binary methods. In this method, an 

image is first divided into sub-blocks and then each sub-block is processed with a filter[45]. 

NP adjustment is also a very important pre-processing step in an ANPR system. Slanted 

NPs are very likely to cause failure of character segmentation in the CS stage. The main 

challenges in this step are how to correctly and efficiently calculate the rotation angles and 
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adjust the NP accordingly. The most common used approaches to analyse the shape of the 

NP to calculate the rotation angles are pixel projection, Hough transformation or CCA [45] 

[71]. The main disadvantage of these methods is their computationally intensive nature to 

calculate the rotation angle, which could slow down the entire ANPR system.  

This Chapter presents a NP binarisation algorithm which uses local binarisation method to 

solve the problem of uneven illumination and low complexity NP adjustment algorithms to 

automatically adjust NPs horizontally and vertically, which could improve the NPL result 

prior to CS stage. Two area/speed efficient architectures based on the proposed NP 

binarisation and adjustment algorithms are also presented and have been implemented and 

verified using a Mentor Graphics RC240 FPGA development board. 

The remainder of this Chapter is organised as follows, Section 6.2 describes the proposed 

NP binarisation and rotation algorithms. The proposed binarisation and rotation 

architectures are then described in Section 6.3. Section 6.4 is concerned with FPGA 

implementation and discussion of the experimental results. Section 6.5 concludes the 

Chapter. 

6.2 NP Pre-processing 

In ANPR systems there are several pre-processing stages such as NP binarisation, rotation 

and character resizing. In this Chapter improved methods that take advantage of the NP 

image characteristics are presented for NP binarisation and rotation. Due to the fact of that 

NP images are taken from different lighting environments in real-world conditions, fixed or 

Global threshold binarisation methods are very likely to fail to separate the characters and 

background after NP binarisation. On the other hand, due to the angle of NP orientation, the 

NP image may have a slant and distortion which are very likely to cause failure of character 

segmentation in the CS stage. These two problems can significantly affect the recognition 

rate of the entire ANPR system. There is a need for efficient NP pre-processing algorithms 

and architectures to address these problems. Figure 6-1 illustrates the main building blocks 
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of an ANPR system. 
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Figure 6-1: The building blocks of an ANPR system 

The inputs of the first pre-processing stage (i.e. NP binarisation) are the localised grayscale 

NP images, where they are binarised and then rotated in the next pre-processing stage (i.e. 

NP rotation). The processed images must meet the input requirements of the CS stage 

where the characters need to be clearly displayed in NP image and the shape and positions 

of the characters need to be adjusted properly.  

6.2.1 NP binarisation 

In ANPR systems the NP images are taken under different lighting conditions which give 

varying brightness distribution. If the well-known global threshold method is applied for 

NP image binarisation, the resulting images are not going to meet the input requirements 

mentioned above and are likely to fail the segmentation stage. Therefore, a local threshold 

method is proposed to solve this problem, which divides the entire NP image into many 

m n blocks. Different thresholds are then calculated for each block and thus the entire NP 

image is binarised according to local illumination information. 

In the proposed NP binarisation algorithm, a square w w window is used to scan NP 

images column by column from left to right where each pixel from the NP image is the 

centre of the window. A mean filter is used to calculate the mean value for each window, 

and the mean value is used to calculate the local threshold.  

Suppose that ( , )f x y denotes the grey value for pixel (x, y), which is always the centre 
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point of a square window B with size w w . The window mean value ( , )meanf x y  is 

computed by Equation 6.1: 

 
( , )

2

( , )

( , )
x y B

mean

f x y

f x y
w





 (6.1) 

The local threshold ( , )T x y  is then obtained by: 

 ( , ) ( , )meanT x y f x y t   (6.2) 

Where t is an threshold offset which is used to adjust the threshold value. 

The binary image is obtained by:  

 
0,     if ( , ) ( , )

( , )
1,     else

f x y T x y
b x y


 


 (6.3) 

In this algorithm, w and t  have significant impacts on the processing results, they are 

both identified by experimental tests. In the proposed system, these tests have shown that 

the constant value ‘6’ for t  has given the best binarisation results. w is determined by two 

other factors:  

1) The size of characters in the NP image, for example, the stroke width of each 

character is normally around 8 pixels.  

2) As the main aim of this research is to implement the entire ANPR system on one 

single FPGA [123] [117] [135], power of two numbers are used for w to avoid the 

need of multiplications as they consume a lot of on-chip FPGA resources and 

replace them with shifters.  

Figure 6-2 shows a comparison between the use of global and local binarisation methods 

with different window sizes.  
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(a) (b) (c)

(d) (e) (f)  

Figure 6-2: Results of using global and local binarisation methods with different window sizes. (a) Greyscale 

NP. (b) Global binarisation method. (c) Local binarisation method, 4.w   (d) Local binarisation method, 

8.w  (e) Local binarisation method, 16.w   (f) Local binarisation method, 32.w   

As it can be seen from Figure 6-2, global binarisation method has failed to separate the NP 

image background and characters in the image, however, using local binarisation method 

better results can be achieved compared to the global method. The higher the value of w the 

better is the binarisation result, but high w value means more computations and hardware 

usage. For the proposed system and based on the obtained results from the experimental 

tests w has been chosen to be equal to 8. 

6.2.2 NP Adjustment 

In real-world scenarios, NP images can be slanted and distorted due to many factors such as 

the car and ANPR camera positions. Thus, horizontal and vertical adjustments are required 

after NP binarisation. In this section an algorithm for calculating the horizontal and vertical 

rotation angles is presented. Once the angles are found, a 2-D rotation method can be 

applied to adjust the NP image horizontally [136] followed by applying a cropping method 

to crop the Non-NP pixels from the rotated NP image. After cropping, the resulted image is 

vertically adjusted. 

Horizontal Adjustment 

The proposed algorithm calculates rotation angle by utilising the output image from the 

NPL stage. Existing algorithms to calculate the rotation angles require some characters 

analysis to obtain the angles. This affects significantly the computation time which is a very 
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important factor in such real-time application. The proposed algorithm uses the output 

image from the NPL stage without the need to analyse the characters in the NP region of the 

image. Figure 6-3 shows and example of an input image to the NPL stage and the processed 

image.  

NPL

(a) (b)  

Figure 6-3: Input and output images of the NPL stage. (a) Input image. (b) Output image 

In Figure 6-3, the original colour image is processed in the NPL stage which produces a 

binary output image. Connected Component Analysis (CCA) is used to localise the NP 

region in the output image and once the NP is localised, the proposed rotation algorithm 

will be used to calculate the rotation angle. An example of a localised NP region that needs 

to be binarised and adjusted is shown in Figure 6-4. 

a

b
c c

d1

d2∆d θ
θ 

(c, 1) (b-c,1 )

(a) (b)
 

Figure 6-4: (a) Localised NP region. (b) Binarised NP image 

Let a b  be the size of the localised NP region and  be the horizontal rotation angle. As 

illustrated in Figure 4,   can be calculated by the proposed algorithm uses an approach 

that consists of the following two steps: 

1) Search vertically the first NP pixel with value ‘1’ in the localised NP region from 

top to bottom at positions (1,1)  and (1, )b c . Then obtain two vertical distance 

values d1 and d2. c is an offset constant used to ensure that the first NP pixel is found 
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in the correct NP top boundary. According to experimental tests, when c is close to 

b/4 the value of  is more precise.  

2) Calculate the difference 2 1d d d   . 

According to trigonometric relations,  is calculated using the following equation: 

 
1tan

2

d

b c
  


 
 (6.4) 

After obtaining   from the localised NP region, a 2-D rotation method will be applied to 

rotate the binarised NP image. In this Chapter, the nearest neighbour interpolation method 

has been chosen to perform the horizontal rotation which is based on the following 

equations: 

 2 1 1cos ( / 2) sin ( / 2) / 2x x b y a b         (6.5) 

 2 1 1sin ( / 2) cos ( / 2) / 2y x b y a a         (6.6) 

Where a and b are height and width of the binarised NP image respectively, 1 1( , )x y and

2 2( , )x y  are the old and new coordinates of a given pixel on the NP image respectively. 

The rotation operation produces output locations 2 2( , )x y which may not be within the 

boundaries of the original NP image and they will be ignored. It is worth noting that the size 

a b  will be kept and as a result some pixels in the boundaries of the NP will be filled with 

value ‘0’. Due to the fact of the rotation algorithm may produce coordinates that are not 

integers, the proposed method uses the nearest integer coordinate values. The binarised NP 

region after the rotation is shown in Figure 6-5. 
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Figure 6-5: (a) Binarised NP image. (b) Rotated NP image. 

As it can be seen from Figure 6-5 (b), there are many non-NP pixels in the boundaries that 

are generated after rotation; therefore, a cropping process is needed to reduce the height of 

NP image. A simple method has been proposed to perform this operation. In this method, 

the rotated NP image will be cropped by aV  from the top and bottom of the NP which 

leaves a new NP height of 2 aa V . The cropped NP image is shown in Figure 6-6. 

b

a-2Va

 

Figure 6-6: The cropped NP image 

From Figure 6-5 (a), the following to trigonometric relation can be obtained: 

 
/ 2

aV
tan

b
   (6.7) 

Thus, the cropping parameter aV can be calculated using the following equation: 

 / 2aV tan b   (6.8) 

Vertical Adjustment 

After horizontal rotation, NP images may still need vertical rotation to adjust the slant as 

shown in Figure 6-7 (a). Since there is a vertical slant, it is difficult to separate the character 

with CCA or other projection techniques. For such cases, a vertical adjustment method, 
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which based on horizontal shifting of pixels, is proposed and presented in this section to 

solve the problem. 

θ

(a) (b)

θ 

θ 

∆S

a-2Va-y

pi, j

 

Figure 6-7: (a) NP image before vertical correction. (b) NP image after vertical correction 

In Figure 6-7 (a), if an NP image was rotated horizontally with an angle   the resulted NP 

image may have a vertical slant. To adjust this, the NP image must be shifted with a value 

s that depends on the horizontal rotation angle and a variable y which is the vertical 

coordinate of the pixel to be shifted. From Figure 6-7 (a): 

 
2 a

s
tan

a V y





 
 (6.9) 

For a pixel Pi,j, y is equal j. Thus, the shifting value s for each pixel can be calculated 

using the following equation: 

 ( 2 ) tanas a V j       (6.10) 

The shifted NP image after vertical adjustment is shown in Figure 6.7 (b). 

6.3 Proposed Pre-Processing Architectures 

The proposed pre-processing architectures consist of the two main modules listed below: 

1) Binarisation: this module is used to convert the NP greyscale image to a binary 

image and is based on the local threshold binarisation method presented in Section 

6.2.1. 
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2) Adjustment: this module is used to calculate the horizontal rotation angle, perform 

2-D horizontal image rotation, calculate the vertical shifting value and perform the 

vertical shifting operation. The module is based on the methods presented in section 

6.2.2.  

The block diagram of the proposed pre-processing modules is shown below in Figure 6-8. 

Binarisation

Horizontal 

Correction

Vertical 

Correction

Pre-processing Adjusted Binary NP image

Greyscale Car Image

 

Figure 6-8: Block diagram of the pre-processing modules 

6.3.1 Binarisation Module 

The Binarisation Module is the first module in the pre-processing stage which consists in 

three blocks which are the memory reader, mean and local threshold filters. The overall 

block diagram of the binarisation module is shown in Figure 6-9. 

NP Reader

NPL

Mean Filter
To the Vertical 

Correction Block

The Coordinates 

of NP

Greyscale 

Pixel Values
Local Threshold 

Filter

NP Binarisation Module
 

Figure 6-9: The overall block diagram of the binarisation module 
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The input images to the NPL stage are 640 480 colour car images from two UK and 

Greek databases [135]. During the NPL processing the input colour image is converted to 

greyscale and stored in one external memory. The greyscale image is used in further 

processing to generate the final outputs which consist of a binary car image and the NP 

region coordinates (i.e. top left and bottom right corners). The binary car image is stored in 

another external memory to be able to access it in parallel with the greyscale image[135]. 

In Figure 6-9, the NP reader first obtains the coordinates of NP region from NPL stage, and 

then uses them to calculate memory address of NP region. The greyscale pixel values of NP 

region are read from the first external memory where the greyscale image is stored and feed 

them to the mean filter block. 

Let ( , )x y denote the coordinates of a pixel in the NP rectangular region, 0 0( , )x y and 

1 1( , )x y denote the left top and right bottom corner coordinates of the NP rectangular region 

respectively. The memory address of any pixel in the NP rectangular region can be 

calculated by: 

 ( , ) 0 1 0 1640 ,   &x yaddress y x x x x y y y           (6.11) 

The pixels in the NP region are read column by column from left to right using the 

addresses calculated using the Equation 6.11. 

Mean Filter 

The mean filter is the block that performs the main process of binarisation, which consists 

of a window shifter and an averaging filter.  

Window Shifter 

The window shifter is a 8 8  matrix used to buffer pixels from the NP image. This 

window shifter scans the NP image column by column from left to right. Figure 6-10 shows 

the architecture of the window shifter. 
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Figure 6-10: The window shifter 

In Figure 6-10, ‘Y’ is an 8-bit register used to temporarily store a pixel value from the NP 

Reader block. ‘LineBuffer’ is an 64a dual-port RAM, where a is the height of the NP 

image, used to store NP pixels from eight columns and each memory location will contain 

eight pixels from the same row and to do this an eight-bit shifter and an adder are used. 

Thus, the content of each memory location in the ‘LineBuffer’ 'Y is calculated using the 

following equation: 

 ' 8Y Y Yout    (6.12) 

Following this process, the first eight pixels from the first row of the NP image will be 

stored in the first memory location of ‘LineBuffer’ after 8a clock cycles. After that the 

next eight-pixel rows will be stored in the corresponding location every clock cycle. ‘Yout’ 

is a 64-bit temporary register used to store the content of one location from ‘LineBuffer’ 

every clock cycle. Once all eight pixels from a row are saved in ‘Yout’ it will be transferred 

to the first row of the 8 8  matrix buffer which will be propagated to the next row every 

clock cycle. This process is repeated until the 8 8  matrix is full and transferred to the 

next module (i.e. averaging filter).   

All steps described in this section need to be repeated for all pixels in the NP image.  
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Averaging Filter 

The averaging filter consists of 21 adders and one 8-bit right shifter and is used to calculate 

the mean value of the 8 8 matrix buffer by simply adding all 8-bit values and divide the 

result by 64. The division is performed using the 6-bit right shifter. Figure 6-11 shows the 

architecture of the averaging filter. 
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Figure 6-11: Architecture of the Average Filter 

To avoid long delay paths in the hardware implementation and as it can be seen from Figure 

6-11, to obtain the final sum every four elements of are added together. The average value 

can then be calculated by right shifting the sum by eight bits.   

Local Threshold Filter 

The window shifter will be applied to the whole NP greyscale image pixel by pixel and 

each greyscale pixel will be the centre of the window. Local threshold filter module 

calculates a local threshold to be used to produce the binary value of the corresponding 

greyscale value of a pixel to produce a binary NP image. According to Equation 6.2, the 

threshold can be calculated by applying the subtraction of average value and a constant t . 

This threshold is used as a condition to decide whether the current average value from the 

average filter should be set to ‘1’ or ‘0’. The binary pixels will be stored in a 256 1

dual-port RAM, the adjustment module will read the pixels from this RAM simultaneously. 
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Figure 6.12 shows the architecture of local threshold filter block. 
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Figure 6-12: Architecture of the local threshold filter 

In Figure 6-12, the address of the 256 1 dual-port RAM is incremented by one every clock 

cycle, when it reaches the last location it will be initialised to ‘0’. 

6.3.2 Adjustment Module 

The adjustment module consists of three blocks which are rotation angle calculator, 

coordinates correction block and pixels reader block. The overall block diagram of the 

rotation module is shown in Figure 6-13. 
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Figure 6-13: The overall block diagram of the rotation module 

Rotation Angle Calculator 

Since the output image from NPL stage stored in the second external memory, the rotation 

angle calculator uses the coordinates of NP and calculates the addresses to read the binary 

pixels from the memory. According to Figure 6-4 (a), the memory addresses for pixels in 
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columns 0x c and 0x b c   can be calculated as follows: 

 1 1 0 1 0( ) 640 ( 1)MA r y r x c       (6.13) 

 2 2 0 2 0( ) 640 ( 1)MA r y r x b c        (6.14) 

Where x0 and y0 are the coordinates of the pixel in the left corner of NP, r1 and r2 are the NP 

row number, c is the offset constant and b is the width of the NP. 

According to the proposed algorithm presented in section 6.2.2, the memory addresses 1MA  

and 2MA are calculated separately, where r1 and r2 are incremented by one until the first 

NP pixel with value ‘1’ is found, then their difference is calculated.  

The rotation angle  can be calculated using Equations 6.4. In order to reduce the 

hardware usage and improve the performance 1/ tan   is calculated instead of the 

rotation angle as all needed calculations in the coordinates correction block are based on

 . 

 
2b c

d


 



 (6.15) 

Coordinates Correction 

The coordinates correction block performs horizontal and vertical adjustments. For 

horizontal adjustment, the main task is based on Equations 6.5 and 6.6. However, in order 

to avoid the calculation of trigonometric functions and reduce hardware usage, simplified 

equations are used in this block.  

The slant angles of NP images used from UK and Greek databases are always less than 

10 . Therefore, the corresponding trigonometric functions sin and cos can be replaced tan 

and value ‘1’ respectively as sin tan  andcos 1  when 10  . Thus, Equations 6.5 

and 6.6 can be simplified as follows: 
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   (6.17) 

For vertical adjustment, the main task is based on Equation 6.10. x2 needs to be shifted 

horizontally by s in order to perform the vertical adjustment, thus, Equation 6.16 can be 

written as: 

 
1

2 1

( / 2)y a
x x s




    (6.18) 

Figure 6-14 illustrates the architecture of horizontal and vertical adjustments. 
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Figure 6-14: The proposed architecture for horizontal and vertical adjustments 

In Figure 6-14, ‘ 1 2 7, ,...,T T T ’ are buffers that are used to temporarily store intermediate 

results, which can efficiently reduce path delay and improve the throughput rate of the 

architecture. ‘ 1 1,X Y ’ and ‘ 2 2,X Y ’ are the registers used to store the original and new 

coordinates respectively. Each operation in Equations 6.17 and 6.18 requires one clock 

cycle and data stored in the buffers are propagated from one buffer to the next every clock 

cycle. The final results are passed to the pixel reader block. 
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Pixel Reader 

The pixel reader block reads binary pixels from the dual-port RAM in the local threshold 

filter block from the binarisation module. In this block two functions are performed:  

1) Checking the new coordinates from coordinates correction block. If new 

coordinates exceed the boundary of the NP, they will be discarded. 

2) Calculating the reading address and read the binary pixels from the dual-port RAM 

in the binarisation module, then feed them to two dual-port RAMs with sizes 

256 1  and 2048 1 that will be used in CS stage.  

The reading address of the dual-port RAM is calculated by: 

 2 2( ) / 256readMA x a y    (6.19) 

Where 2x and 2y are the new coordinates, a is the height of the NP. 

Figure 6-15 shows the proposed architecture of the pixel reader. 
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Figure 6-15: Architecture of the pixel reader 

In Figure 6-15, if the new coordinates stored in ‘X2’ and ‘Y2’ are valid coordinates, after 

passing the coordinate checker block, the corresponding binary pixel is read from the 

dual-port RAM in the binarisation module and stored the in the temporary buffer ‘P’. The 

stored value in ‘P’ will be simultaneously saved in the two dual-port RAMs to be used in 

the CS stage. 
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6.4 FPGA Implementation and Results 

The proposed architectures for NP binarisation and adjustment have been simulated using 

the PAL Virtual Platform (PALSim) [112]. After simulation, the architectures have been 

successfully implemented and verified using the Mentor Graphics RC240 FPGA 

development board [113]. Handel-C has been used for hardware description of the 

proposed architecture, which is a high-level language that is at the heart of a hardware 

compilation system known as the Mentor Graphic DK. Handel-C has additional constructs 

to support parallelism and pipelining [37] and [38]. For details of the experimental tools 

can be found in APPENDIX B. 

The binarisation and adjustment modules run in parallel and pipelining has also been used 

in their implementation to achieve high throughput rate and an NP image can be processed 

by both modules in ( 6)b C   clock cycles where: 

- b is the width of the NP 

- 6 is a constant delay that allows enough pixels to be stored in the dual-port RAM 

from the binarisation module 

- C is the number of clock cycles required to complete binarisation for one column 

from the NP image 

Sample codes for the binarisation and adjustment implementation are discussed in 

APPENDIX C. 

6.4.1 Proposed Environment for NP Binarisation and Rotation on FPGA 

Figure 6-16 illustrates the proposed environment for NP binarisation and adjustment 

implementation. It contains a host application (GUI), NP database and the RC240 FPGA 

development board. The host application was developed using Visual Studio 2010 and 

gives the user the ability to select a car image from the database, display and send it to the 
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FPGA for processing. Once processed, the localised, binarised and adjusted NPs are 

processed on the FPGA and send back to the host to be displayed in the same GUI.  

RC240 FPGA Board

External 

Memory

Xilinx Virtex-4 

LX40 FPGA

NP Database

USB

 

Figure 6-16: Host application for NP binarisation and adjustment 

6.4.2 Hardware Usage, Running Frequency and Power Consumption 

Due to the low complexity of the proposed algorithms, the binarisation and adjustment 

architectures require only 9% of the on-chip FPGA resources. Table 6-1 summarises the 

required on-chip resources.  

Table 6-1: Usage of FPGA on-chip Resources 

On-chip resources Used Available Utilisation 

Occupied Slices 1,763 18,432 9% 

LUTs 2,649 36,864 7% 

Flip-Flops 1,574 36,864 4% 

BRAMs 3 96 3% 

 

9% of the on-chip FPGA slices are used to implement the proposed OCR architecture. In 

these slices, 8% LUTs, 3% flip-flops and 2% BRAMs are used to implement logic 

operations, registers and RAMs respectively.  According to the previous chapters, NPL, 

CS and OCR implementations require 67% of the on-chip resources, therefore, the total 

hardware usage for the NPL, CS, OCR, binarisation and adjustment is 76%, which leaves 

24% of the FPGA resources to be used for the remaining part of an ANPR system (i.e. 
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character resizing).  

The maximum running frequency is 95.8 MHz and the number of clock cycles needed for 

one image to be processed is between 6297-16519, which depends on the resolution of the 

localised NP. The execution time for processing one frame can be calculated using 

Equation 3.4. The proposed architecture can process one image (18 99 - 60 300 ) and 

produce a result in 0.07 0.17 ms . The difference in the execution time is due to the size of 

the images which affect the number of clock cycles. The smaller the size of the image, the 

lower the number of clock cycles is required. The execution times achieved mean that the 

proposed architecture satisfies the minimum requirement for real-time processing. The 

results achieved in terms of maximum running frequency and area used for implementing 

this part of the ANPR system show that there is enough room to implement the whole 

ANPR system on a single FPGA chip. 

The power consumption of the designed circuit has also been analysed using Xilinx 

XPower Analyser [115], and the results obtained are shown in Table 6-2. 

Table 6-2: Estimation of Power Consumption 

Resource Type Value of Power (mW) 

Clocks 126 

Logic 12 

Signals 12 

BRAMs 4 

IOs 33 

Clock Managers 211 

Leakage 344 

Total Power 743 

 

In Table 6-2, the total power consumption is 743 mW. The clocks power, logic power, 

signal power, BRAMs power and IOs power are formed as the dynamic power. The total 

dynamic and quiescent power consumption for the proposed binarisation and adjustment 

implementation is 290 mW and 453 mW respectively. 
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6.4.3 Experimental Results 

MATLAB implementations of the proposed algorithms were used as a proof of concept 

prior to the hardware implementation where floating-point arithmetic and functions from 

the image processing toolbox were used. However, the FPGA implementation uses 

simplified integer based arithmetic. NP images from the Greek and UK databases have 

been used for testing the MATLAB and FPGA implementations.  

In order to compare the similarity of output images from MATLAB and FPGA 

implementations, the noise on the NP images is first removed using Gaussian filter and then 

2-D correlation coefficient of the processed NP images are used to estimate the similarity of 

the two results [137]. As it can be seen from Table 6-3 the similarity of MATLAB and 

FPGA is around 67.2%. 

Table 6-3: Similarity result for MATLAB/FPGA 

 MATLAB FPGA Similarity 

NP Example 1 
  

72.1% 

NP Example 2 
  

63.8% 

NP Example 3 
  

64.8% 

NP Example 4 
  

68.0% 

 

In order to compare the software and FPGA-based implementations in term of the 

computation speed, the proposed algorithm has also been implemented using a PC 

equipped with an Intel Core i7 2.8GHz and 8G RAM. Table 6-4 shows the results of the 

MATLAB and FPGA implementations in terms of computation time. 
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Table 6-4: MATLAB/FPGA result comparison 

 

MATLAB Implementation FPGA 

NP Image 
Consumption 

Time 
NP Image 

Consumption 

Time  

NP 

Example 1 

Original 

greyscale 

NP  

N/A 

 

N/A 

Binarised 

NP 
 32 ms  0.11 ms 

Adjusted 

NP   

NP 

Example 2 

Original 

greyscale 

NP  

N/A 
 

N/A 

Binarised 

NP  48 ms 
 

0.12 ms 
Adjusted 

NP   

 

The images have been successfully binarised and adjusted using the proposed algorithms, 

where the characters are clearly isolated from each other and the vertical and horizontal 

positions of the NPs are properly adjusted. The FPGA processes a NP image 290 times 

faster than MATLAB implementation due to the low complexity of the proposed 

algorithms, the arithmetic techniques used, parallelism and pipelining exploited in the 

hardware implementation of the proposed architectures. 

6.5 Conclusion 

In this Chapter, two optimised low complexity NP binarisation and adjustment algorithms 

have been proposed to successfully link NPL and CS stages. Efficient area/speed 

architectures based on the proposed algorithms have also been presented and successfully 

implemented and tested using the Mentor Graphics RC240 FPGA development board, 
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which together require only 9% of the available on-chip resources of a Virtex-4 FPGA, run 

with a maximum frequency of 95.8 MHz and are capable of processing one image in 

0.07 0.17 .ms  
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Chapter 7:  Standard Definition ANPR System on 

FPGA and an Approach to Extend it to HD 

7.1 Introduction 

Each ANPR stage is discussed separately in the previous chapter, as the main aim of this 

research project is to implement the entire ANPR system on a single FPGA chip that can 

be placed within an ANPR camera housing to create a stand-alone unit that can drastically 

improve energy efficiency and remove the installation and cabling costs of bulky PCs 

situated in expensive, cooled, waterproof roadside cabinets. 

A range of image processing algorithms for each stage of the ANPR system and 

corresponding new FPGA architectures have been proposed in [117, 123, 132, 135, 138, 

139]. This Chapter describes the linking process of previously designed architectures 

from each stage of the ANPR system to be implemented on a single stand-alone 

FPGA-based processing unit. By optimising the ANPR algorithms to take specific 

advantage of technical features and innovations available within FPGAs, such as 

parallelism computing feature, low power consumption, development time, and vast 

on-chip resources, it will be possible to replace the powerful roadside computers with 

small in-camera dedicated platforms. 

In addition to the proposed ANPR system, this Chapter also introduces a preliminary 

research for how the proposed Standard Definition (SD) NPL algorithm can be applied to 

HD NPL system.  

The rest of this Chapter is organized as follows. The description of the FPGA based 

ANPR system is given in section 7.2. Section 7.3 is concerned with the implementation of 

the FPGA based ANPR system. Section 7.4 introduces a preliminary research for HD 

NPL. Finally a conclusion is given in section 7.5. 
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7.2 Proposed FPGA based ANPR System 

A typical ANPR system consists of three main stages: NPL, CS and OCR. In addition to 

these main stages, there are few pre-processing stages needed to link the three main stages. 

Figure 7-1 demonstrates the main building blocks of an ANPR system. 

NPL

Number Plate 

Rotation and 

Binarasation

CS

Character 

Resizing
OCRYT 58 FSZ

Input Image

Recognised NP
 

Figure 7-1: Main building blocks of an ANPR system 

The next sections describe what has been used to link each block to the next one.  

7.2.1 Number Plate Localisation Module 

The main aim of the NPL module is to correctly localise the NP within the original input car 

image, where two sets of coordinates for the NP’s across corners are detected. To link the 

NPL module to the CS module there is a need to binaries and adjust the output NP images 

from the NPL module. Binarisation and adjustments modules proposed in Chapter 6 are 

used to achieve this. Figure 7-2 demonstrates the linking process of the NPL module, 

binarisation and rotation blocks.  
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Figure 7-2: Process of the NPL module, binarisation and rotation blocks 

The NPL module reads and processes first the original car image. Once the coordinates of 

top left and bottom right corners of the NP are found, the binarisation block starts to read 

the NP region from the first RAM (i.e. RAM0). Simultaneously, the rotation block starts to 

read the processed car image from the second RAM (i.e. RAM1), and then it will calculate 

the rotation angle. Finally, the rotation block will send the pixels of the rotated NP to the CS 

module. 

7.2.2 Character Segmentation Module 

The main aim of the CS module is to correctly segment the characters within the NP region, 

where each segmented character is passed to the next module. However, since the OCR 

module needs all the segmented characters to have the same size, each segmented character 

is resized in the character resizing block before it is passed to the OCR module. 

Figure 7-3 shows the linking process of the CS and character resizing modules. 

Resizing ModuleCS Module

Horizontal CS 

Block

Vertical CS 

Block
Dual-port RAM0

Dual-port RAM1

From Rotation 

Block

NP Region

NP Region

Character 

Vertical Positions

Character Width 

Resizing

Character 

Height Resizing

Character 

Horizontal 

Position

Character 

Vertical 

Positions

To OCR 

Module

Horizontally 

Resized Character

 

Figure 7-3: Process of the CS and character resizing modules 
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The pixels within the adjusted NP region are simultaneously stored in two dual-port RAMs 

(i.e. dual-port RAM0 and RAM1). The vertical CS Module reads the NP region from the 

first dual-port RAM to calculate the vertical positions of each character. Once the vertical 

positions of the character are obtained, they will be passed to the character width resizing 

and the horizontal CS blocks which will work in parallel to resize the width of the character 

and calculate the horizontal positions of the character respectively. The character height 

resizing block will use the horizontal positions of the character, which is the output of the 

horizontal CS block, to resize the height of the character. Finally, the fully resized 

characters are sent to the OCR module serially.  

7.2.3 Optical Character Recognition Module 

The main aim of the OCR module is to correctly recognise the segmented characters. 

Because the OCR module is slower than the CS and resizing modules, there is a need for a 

buffer to be placed between these modules and the OCR module, which can temperately 

store the resized characters. Another dual-port RAM is used for this purpose. Figure 7-4 

shows the linking process of the OCR module to the previous modules. 

OCR ModuleDual-port RAM3

From Character 

Resizing Block 

Resized 

Character
Recognised 

Character 

 

Figure 7-4: Process of the OCR module 

The OCR module reads the pixels of each resized character from the dual-port RAM3, and 

processes the pixels at same time. Each recognised character from a segmented NP is stored 

in an array.  

7.3 FPGA Implementation and Results 

The whole ANPR system has been simulated using the PAL Virtual Platform (PALSim) 

[112]. After simulation, the system has been successfully implemented and verified using 
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the Mentor Graphics RC240 FPGA development board [113]. For details of the 

experimental tools can be found in APPENDIX B. 

The ANPR modules run in parallel and pipelining has also been used in their 

implementation to achieve high throughput rate and a car image can be processed by the 

modules in 1 2C C n   clock cycles where: 

- n is the number of character within a NP image 

- C1 is the number of clock cycles required to localise the NP within a car image 

- C2 is the number of clock cycles required to recognise each character within a NP 

image 

Sample codes for the entire ANPR implementation are introduced in APPENDIX C. 

Due to the external storage limitation on the RC240 development board, a new image 

cannot be loaded to the external RAM while the OCR stage is being processed; therefore, 

the proposed ANPR system requires a total of 1 2( ( ))C C n x   clock cycles to process x 

car images when the car images are continually sent to the system. However, if the FPGA 

board is equipped with extra memory banks, the NPL and OCR modules can access the 

external RAMs simultaneously, which will significantly reduce the total clock cycles to 

1 2( )C C n x   for processing x car images. 

7.3.1 Proposed Environment for ANPR on FPGA 

The proposed ANPR system has two main parts: RC240 FPGA development board and a 

GUI running in a host application. The RC240 FPGA development board performs the 

calculation of the ANPR system, and sends the results to the host. The host sends the 

original car images to the FPGA board, and displays the processed images and characters 

on the GUI. Once a car image is sent to FPGA board it will be processed by the FPGA, 

and then the localised, adjusted, segmented and recognised NPs are sent back to the host 
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to be displayed in the same GUI. Figure 7-5 shows the GUI host. 

RC240 FPGA Board

External 

Memory

Xilinx Virtex-4 

LX40 FPGA

ANPR Database

USB

 

Figure 7-5: The GUI host 

7.3.2 Hardware Usage, Running Frequency and Power Consumption 

The entire ANPR system consists of NPL, CS, OCR and pre-processing modules, those 

architectures require 80% of the on-chip resources of the Virtex-4 LX40 FPGA. Table 7-1 

summarises the required on-chip resources. 

Table 7-1: Usage of FPGA on-chip Resources 

On-chip resources Used Available Utilisation 

Occupied Slices 14,775 18,432 80% 

LUTs 22,556 36,864 61% 

Flip-Flops 8,547 36,864 23% 

Block Rams 30 96 31% 

DSP48s 12 64 18% 

 

As shown in Table 7-1, the total on-chip usage is 80% for the entire ANPR system, 

leaving 20% of the FPGA area to be used for other purposes, for example, communication 

and display units, which allows the FPGA to act as a stand-alone unit. 

The maximum running frequency is 57.6 MHz and the number of clock cycles needed for 

one image to be processed is between 506686-683278, which depends on numbers of the 

characters within the NP image. The execution time for processing one frame can be 
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calculated using Equation 3.4, the proposed architecture can process one image and 

produce a result in 11 ms. This means that the proposed architecture satisfies the minimum 

requirement for real-time processing.  

The power consumption of the designed circuit has also been analysed using Xilinx 

XPower Analyser [115], and the results obtained are shown in Table 7-2. 

Table 7-2: Estimation of Power Consumption 

Resource Type Value of Power (mW) 

Clocks 282 

Logic 13 

Signals 13 

BRAMs 12 

IOs 30 

Clock Managers 211 

Leakage 348 

Total Power 910 

 

Table 7-2 shows that the total power consumption of the proposed architectures is 910 mW, 

which is comprised of 459 mW dynamic power and 451 mw quiescent power. The total 

power consumption is very low compared to computer based ANPR systems. 

As far as the overall performance calculation is concerned, this can be calculated by 

 ( )%A L S R    (7.1) 

where A is the overall system accuracy, and L, S, and R are the percentage of successful 

NPL, CS and OCR rates, respectively. According to the previous works in Chapter 3-5, the 

NPL, CS and OCR rates are 97.8%, 97.7% and 97.3%, respectively. Therefore, the overall 

system accuracy is around 93.0%. 

7.3.3 Comparison with Existing Work 

A comparison of the experimental computational speed and successful rate with existing 

PC, DSP and FPGA based implementations of ANPR system is shown in Table 7-3. 
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Table 7-3: Performance Comparison 

 

As shown in Table 7-3 and by comparing the results of the PC and FPGA-based 

implementations, the main advantage of hardware based ANPR systems is the fast 

processing speed which is of particular interest in real-time environments. The proposed 

FPGA based ANPR system outperforms the fastest software and hardware based ANPR 

systems by a factor of 26 and 4.7 respectively, it also outperforms the existing hardware 

solutions in terms of accuracy. Although the recognition rate of the proposed system is 

close to that of some PC-based systems, it presents an advantage over software-based 

solutions in terms of cost, size and energy consumption. 

7.4 A preliminary research for HD NPL 

Recently, HD cameras become an important trend in ANPR because higher image quality 

and resolution can provide better performance for CS and OCR after NPL. However, most 

known approaches for SD NPL are not suitable for real-time HD image processing as the 

real-time requirement will not be met due to the computationally intensive cost of 

localising NP. In this section, an approach is proposed to localise the NP image from a HD 

image using the SD NPL algorithm without significantly increasing the computational cost. 

ANPR System 
Character 

Set 
Hardware Platform 

Successful 

Rate (%) 
Speed (ms) 

[11] Australia TI C64 DSP 85 52.11 

[105] Turkey FPGA Virtex-4  73 500 

[45] Japan PC Intel Core 1.8 GHz 93.54 284 

[43] Chinese PC 3 GHz 93.9 293 

Proposed FPGA based ANPR 

System 
UK FPGA Virtex-4 93.0 11 
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7.4.1 Proposed Approach: 

In general, the NP region in a NP image occupies only a small percentage of the total 

image surface and NPL algorithms search all pixels from an input NP image to localise 

the NP region. With a HD image, the search time for the NP region can be increased by up 

to 9-fold compared to a SD image. The proposed approach significantly enhances the HD 

NPL processing speed without losing the quality of the HD NP for the rest of the ANPR 

system. As the main area of interest in an input ANPR image is only the NP region, the 

proposed approach firstly localise the position of the NP from a SD image resized from 

the input HD image, and then calculate the coordinates of NP region in the HD image 

using the obtained position coordinates of the NP region in the SD image. The block 

diagram of the proposed approach is shown in Figure 8-1. 

Image 

resizer
HD input image SD NPL

SD to HD coordinates 

transformer
HD NP region

SD image

Position of the SD 

NP region

 

Figure 7-6: HD NPL block diagram 

As shown in Figure 7-6, a HD input image is first resized to a SD image using a resizing 

algorithm. In this Chapter, the nearest neighbour interpolation algorithm has been used. 

Let assume that the sizes of the HD input image and the resized HD image are A×B and 

a×b respectively, the width ratio w  and height ratio h  are equal to A/a and B/b 

respectively. The pixels within the resized HD image are sampled from the original HD 

input image using the following equations: 

 ( ) 1r w w wX n n          (7.2) 

 ( ) 1r h h hY n n           (7.3) 
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where ( )r wX n  and ( )r hY n  are resized coordinates at horizontal wn and vertical hn

positions respectively, wn  and hn  are integers that belong to the ranges {0,1,2,..., 1}b  

and {0,1,2,..., 1}a respectively. 

The total pixels in the resized HD image are reduced by a factor of w h  , and because 

of the high quality and resolution of HD images, the NP region in the input HD image is 

larger than the NP region in the resized image (i.e. SD image). The resizing process will 

only affect the size of the NP region and not its features, which means the proposed SD 

NPL algorithm [135] can be used to localise the NP region in the resized HD image. 

Figure 7-7 shows an example of the input HD image and the resized one.  

(a) (b)  

Figure 7-7: An example of the HD and resized HD images. (a) The HD input image (1392×1040). (b) The 

resized HD image (640×480) 

The used SD NPL algorithm is mainly based on morphological open and close operations 

where two morphological open operations are used to enhance the NP features and a 

morphological close operation is used to highlight the NP region [135]. 

Once the SD NP region is localised, a SD to HD coordinates transformer is used to 

calculate the coordinates of the HD NP region based on the coordinates of the SD NP 

region. Let 0 0( , )x y  and 1 1( , )x y are the NP’s left-up and right-down corners within the 

SD image respectively, 0 0( , )X Y  and 1 1( , )X Y  are the expected NP’s left-up and 

right-down corners within the HD image respectively. The following equations are used 
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to calculate the coordinates of the HD NP region: 

 0 0 wX x             (7.4) 

0 0 hY y           (7.5) 

 1 1 wX x           (7.6) 

 1 1 hY y            (7.7) 

The HD NP region is retrieved from the HD input image based on the calculated positions 

0 0( , )X Y  and 1 1( , )X Y . 

Experimental Results and Analysis: In order to verify the proposed approach, the 

proposed SD NPL algorithm, applied to resized and original HD images, have been 

implemented in MATLAB. HD images with 1392×1040 resolution taken from the 

motorway using HD cameras have been used for testing. The PC used to conduct the 

experiments is an Intel Core i7 2.8GHz with 8G RAM. 

In the proposed implementation, the HD input image is first resized to 640×480 SD image, 

and then the proposed SD NPL algorithm is used to localise the NP region. Once the NP 

region is detected, equations (7.4-7.7) are used to calculate the corresponding coordinates 

for the HD NP region from the original HD image. Table 7-4 shows the comparison in 

terms of processing speed when using the proposed approach and the SD NPL approach 

[135] with SD images from normal SD cameras and original HD images. 

Table 7-4: MATLAB implementation results 

Implementation 
Input image 

(pixels) 

Scanned 

pixels 

Processing speed 

(ms) 

SD NPL [135] (SD images) 307,200 307,200 143 

Proposed approach (HD images) 1,447,680 307,200 168 

SD NPL (HD images) 1,447,680 1,447,680 507 
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According to Table 7-4, using the proposed approach, only 21% of the original HD image 

is scanned which significantly increase the processing speed by a factor of 3 compared to 

scanning the entire HD input image. Whilst compared to a normal SD NPL 

implementation without resizing, the processing speed for the proposed approach is close 

to SD NPL processing speed. This means the resizing and SD to HD coordinate 

transformations processes increase the processing speed by just a factor of 1.17.   

A speed and area-efficient architecture for the image resizer has been implemented using 

the Mentor Graphics RC240 FPGA development board. Due to the low complexity of the 

resizing algorithm, the proposed architecture requires only 3% of the on-chip FPGA 

resources.  

Using the proposed approach, the HD NPL which consists of the SD NPL [135], the 

image resizer and  the HD to SD coordinates transformer, requires 36% of the FPGA 

on-chip resources, which leaves 64% to be used for implementing the next stages of an 

ANPR system (i.e. CS and OCR). The maximum running frequency for the image 

resizing module is 86.9 MHz, and the number of clock cycles needed to resize one image 

is 307206, thus the execution time for resizing one image is 3.5 ms. The proposed SD 

NPL module process one image in 4.7 ms [1]. As the image resizer and the SD NPL 

modules can run in parallel, an HD image can be fully processed in 4.7 ms by the HD 

NPL module. This means that the proposed architecture satisfies the minimum 

requirement for real-time processing, and it is faster than software based implementation 

by a factor of 36.  

Existing works have shown that meeting real-time processing constraints using software 

based solutions to perform HD NPL in a uniprocessor system is a complex task. In [140], 

the maximum achieved number of frames per second (fps) is 15, which is far from 

real-time processing requirements (i.e. 25 fps). In [141], an operator context scanning 

(OCS) algorithm to accelerate the searching of the NP region within the HD image was 

proposed, and results have shown that the system is capable of processing 22 fps. When 
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compared with the proposed hardware-based NPL implementation, the proposed work 

can achieve more than 200 fps, and the proposed FPGA-based system can be used as a 

viable solution to replace software-based solutions where cost, size and energy 

consumption will be reduced. 

7.5 Conclusion 

In this Chapter, all three stages of an ANPR system (i.e. NPL, CS and OCR) have been 

successfully linked together, implemented and tested using the Mentor Graphics RC240 

FPGA development board, which requires only 80% of the available on-chip slices of a 

Virtex-4 FPGA, runs with a maximum frequency of 57.6 MHz and is capable of processing 

one image in 11 ms with a successful recognition rate of 93%.  

The achieved results show that the entire ANPR system can be implemented on a single 

FPGA chip, which can be placed within an ANPR camera housing to create a stand-alone 

unit which will drastically improve energy efficiency and remove the installation and 

cabling costs of bulky PCs situated in expensive, cooled, waterproof roadside cabinets. 

In addition to the above, this Chapter also presents a solution that utilises a SD NPL 

algorithm to localise a NP from a HD image under real-time constraint, which significantly 

increases the processing speed for HD NPL. 
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Chapter 8:  Conclusions and Future Work 

8.1 Introduction 

ANPRs are rapidly becoming used for a vast number of applications to track, identify and 

monitor moving vehicles by automatically extracting their NPs. The fundamental 

requirements of an ANPR system are image capture using an ANPR camera and 

processing of the captured image. The image processing part, which is a computationally 

intensive task, includes three stages: NPL, CS, and OCR. The ANPR algorithms should 

operate fast enough to fulfil the requirements of real-time operation, which means they 

should not miss a single vehicle that moves through the camera [135]. Consequently, the 

common hardware choice for ANPR implementation is often high performance 

workstations. However, the cost, compactness and power issues that come with these 

traditional solutions motivate the search for other platforms. Developments in digital 

circuit technology, especially rapid development of FPGAs, offer alternative way to 

provide a low cost acceleration for such computationally intensive tasks. 

The main goal of the work reported in this thesis is to design and implement efficient and 

novel architectures for ANPR system using different design methodologies for 

accelerating digital image processing algorithms. 

A range of image processing algorithms and architectures for each ANPR stage have been 

developed and optimised, which can take specific advantage of technical features and 

innovations available within new FPGAs, such as low power consumption, development 

time, and vast on-chip resources, it will be possible to replace the powerful roadside 

computers with small in-camera dedicated platforms. 

The proposed ANPR architectures have been implemented and verified using the Mentor 

Graphics RC240 FPGA development board equipped with a 4M Gates Xilinx Virtex-4 

LX40.  
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In the rest of this Chapter results obtained throughout this research are summarised and 

evaluated. Some possible routes to be investigated for a future extension of this work are 

also provided. 

8.2 Evaluation of Results and Contributions 

The preceding Chapters described different design methodologies used for efficient 

design and implementation of image processing algorithms for ANPR System on FPGAs. 

This section is concerned with the evaluation of the work presented in these Chapters. 

8.2.1 Measurement of Success 

In this project the performance measurement and comparison of the proposed algorithms 

and architectures were presented.  

The comparison was based on the computation time, on-chip area required and system 

accuracy. Computation time and on-chip area required that depend on the various design 

optimisation strategies and parameters, for example, resolution of input car image and 

data format. In the case of the implementation of these architectures, the measurement 

was given on the number of slices, LUTs, Flip-flops, BRAMs, DSP48s, clock cycles and 

the maximum running frequency of the design. In the case of the system accuracy, A 

MATLAB implementation of the proposed algorithms were used as a proof of concept 

prior to the hardware implementation, a comparison of the proposed software and 

hardware implementations was given for each stage of the proposed system, where 

different criteria such as type and colour plates, illumination conditions, various angles of 

vision, and indoor or outdoor images were considered in the tested databases.  

8.2.2 Results Achieved 

A set of goals were specified in Chapter 2, which would determine the success of the 

work presented in this thesis. Taking into account the initial objectives, the following 
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points can be made about the achievements of the project: 

- A low complexity and stable NPL algorithm suitable for a single FPGA 

implementation has been developed, where a novel NP feature extraction and 

enhancing method based on two morphological operations and an image 

subtraction operation was proposed. Results obtained have shown stable 

performances in terms of the successful recognition rate and computation time in 

comparison with existing software systems [135] and [138]; 

- A novel efficient architecture based on the proposed NPL algorithm has been 

designed and successfully implemented on a FPGA. The performance in terms of 

the area used, the maximum running frequency and successful recognition rate of 

the proposed architectures has been assessed and has shown that the proposed 

system has a higher frequency and recognition rate, less processing time when 

compared with existing hardware based systems [135] and [117];  

- An improved low complexity and stable CS algorithm based on pixel projection 

and morphological operations has been developed. The improvement in the 

proposed CS algorithm has significantly reduced the processing time of 

segmentation and obtain more precise horizontal and vertical segmentation result 

when compared with existing software systems [123]; 

- A novel real-time architecture based on the proposed enhanced CS algorithm and 

its area/speed efficient implementation have been proposed. Parallelism offered by 

FPGAs and pipelining technique have also been exploited to achieve high running 

frequency and throughput rate. The use of multipliers has been avoided in some 

building blocks from the proposed architecture which significantly reduces 

on-chip resources usage. Results obtained show that the proposed system 

outperforms existing state-of-the-art hardware based implementations in terms of 

segmentation rate and processing speed [123]; 

- A low complexity and stable OCR algorithm based on feed-forward NN has been 
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developed. An area/speed efficient architecture based on the proposed algorithm 

has also been designed and successfully implemented on a FPGA. The proposed 

architecture for implementing the two layer feed-forward NN on FPGA can 

process a large number of neurons in a pipelined manner to achieve high running 

frequency and throughput rate. The use of multipliers has been avoided in the first 

layer from the proposed architecture, which significantly reduces on-chip 

resources usage. The implementation has achieved higher character recognition 

rate and processing speed compared to existing hardware based OCR 

implementations for ANPR systems [132];  

- A low computational complexity NP binarisation and adjustment methods have 

been developed to solve an important practical issue for real-time ANPR system 

and the corresponding area/speed efficient architectures based on the proposed 

algorithms have been successfully implemented on a FPGA, where a simplified 

integer based arithmetic of trigonometric transformation has been used to reduce 

hardware usages without accuracy loss; and 

- All proposed ANPR stages have been successfully linked together and 

implemented on a single FPGA, where parallelism and pipelining technique have 

been exploited to achieve high running frequency and throughput rate. The 

achieved results have shown that the proposed system has the fastest processing 

speed when compared with existing ANPR systems. 

8.2.3 Limitations 

The objectives stated in Chapter 2 have been met and fully achieved. However, few of 

restrictions and limitations have been found during the development of this research 

project: 

- In the case of the system accuracy, some of the failed cases are caused by 

incomplete NP and missed segmented characters, the NPL and CS stages of the 
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ANPR system can be improved further by introducing a NP checking module to 

help finding the correct NP or the character positions; and  

- The proposed architectures have been implemented on the RC240 development 

board equipped with Virtex-4 FPGA. It is worth mentioning that the proposed 

designs can also be implemented on the latest FPGA platforms equipped with 

Virtex-6 or Virtex-7, which allows developing more advanced features and 

functions of ANPR system. For instance, the processing speed can be further 

improved using more external memory banks and on-chip resources. As far as the 

extra on-board resources are concerned, FPGA board equipped with video 

collection and communication units that will allow exploring new functions of 

ANPR system. 

8.3 Future Work 

The work undertaken in this research project has concentrated on development of 

novel/improved ANPR algorithms and their efficient architectures for the proposed ANPR 

algorithms and their implementations on FPGA. A set of objectives for the future 

included: 

- Further optimisation of the proposed ANPR algorithms: 

There is always scope for more improvement in algorithms. In this case further 

improvement and optimisation can be done on each stage of ANPR. For example, 

in the NPL stage, the system can detect more than one NP at a time by using extra 

processing steps. In the CS stage, a NP checking stage can be developed to obtain 

more precise NP position. In OCR stage, different methodologies can be used for 

recognition, and see their impacts; 

- Further evaluation of the presented FPGA based ANPR system: 

The proposed FPGA based ANPR system has been evaluated in each stage of 
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ANPR processing, however, it is necessary to use a large database to evaluate the 

entire FPGA based ANPR system, where different categories of the database can 

be used to evaluate the system performance under different environments (e.g. 

night and day time, distances and angles); 

- Developing efficient architectures specifically for the above optimised and HD 

ANPR systems: 

The main challenge of developing efficient architectures for optimised and high 

definition ANPR systems is the hardware utilisation and throughput. For example, 

the optimised algorithm may need extra flow control step to find the best 

candidate of the detected NPs. In the case of HD ANPR system, because huge 

pixel data need to be processed, hardware utilisation and processing time can be 

significantly increased; 

- Further validation on a custom FPGA platform: 

Evaluating the accuracy of the presented ANPR on a custom development board 

equipped with the latest FPGA (e.g. Virtex-7) that is also very important. In this 

case, the ANPR system can be tested on motorways or car park entrances; and 

- Investigating high definition ANPR system: 

HD images provide a better image resolution with clear objects in the picture 

[140]. Not only a wide area can be covered by a HD camera (e.g. two to four lanes 

can be covered by a HD camera), but also an improvement of successful CS and 

OCR rates could be achieved in CS and OCR stages when using a HD image. 

Therefore, HD images allow achieving higher NP recognition success rate 

compared to standard definition images. However, in order to localise the HD NP 

image, the whole HD image is needed to be processed, which is computational 

intensive task.  

 



Reference 

151 

 

Reference 

[1] X. Jia, X. Wang, W. Li, and H. Wang, “A Novel Algorithm for Character 

Segmentation of Degraded License Plate Based on Prior Knowledge,” in IEEE 

International Conference on Automation and Logistics, 2007, pp. 249-253. 

[2] A. A. Shah and L. J. Dal, “Intelligent Transportation Systems in Transitional and 

Developing Countries,” IEEE Aerospace and Electronic Systems Magazine, vol. 

22, pp. 27-33, 2007. 

[3] A. O. Yerdut, Y. B. Eldeniz, and H. G. Ilk, “Automatic license plate recognition 

based on a projection method,” in IEEE 19th Conference on Signal Processing 

and Communications Applications (SIU), 2011, pp. 182-185. 

[4] J. Zhang and J. Xu, “Research of overall program on highway toll collection 

system,” in International Conference on Information Science and Technology, 

2011, pp. 1218-1221. 

[5] C. N. E. Anagnostopoulos, I. E. Anagnostopoulos, I. D. Psoroulas, V. Loumos and 

E. Kayafas “License plate recognition from still images and video sequences: A 

survey," IEEE Transaction Intelligent Transportation System, vol. 9, pp. 377-391, 

2008. 

[6] Product Brief: Intelligent Policing (IP) ANPR. Available: 

http://www.ipl.com/papers/IP%20ANPR%20product%20brief.pdf (Acessed on 

Oct, 2012) 

[7] R. Gurney, M. Rhead, S. Ramalingam, and N. Cohen, “Working towards an 

International ANPR Standard: an initial investigation into the UK Standard,” in 

46th IEEE International Carnahan Conference on Security Technology, USA, 

2012, pp. 331-337. 

[8] S. Connor, Surveillance UK: why this revolution is only the start. Available: 

http://www.independent.co.uk/news/science/surveillance-uk-why-this-revolution-i

s-only-the-start-520396.html (Acessed on Oct, 2012) 

[9] Networkvideosystems, Arecont ANPR IP cameras. Available: 

http://networkvideosystems.co.uk/Arecont-ANPR-ip-cameras (Acessed on Oct, 

2012) 

[10] D. Shan, M. Ibrahim, M. Shehata, and W. Badawy, “Automatic License Plate 

Recognition (ALPR): A State-of-the-Art Review,” IEEE Transactions on Circuits 

and Systems for Video Technology, vol. 23, pp. 311-325, 2013. 

[11] C. Arth, F. Limberger, and H. Bischof, “Real-Time License Plate Recognition on 

an Embedded DSP-Platform,” presented at the IEEE Conference on Computer 

Vision and Pattern Recognition, 2007. 

[12] C. Arth, C. Leistner and H.Bischof, “TRIcam: an embedded platform for remote 

traffic surveillance,” in Proceedings of IEEE Computer Vision and Pattern 

Recognition Conference, 2006, pp. 125-134. 

[13] T. Kanamori, H. Amano, M. Arai, D. Konno, T. Nanba, and Y. Ajioka, 



Reference 

152 

 

“Implementation and Evaluation of a High Speed License Plate Recognition 

System on an FPGA,” in 7th International Conference on Computer and 

Information Technology, 2007, pp. 567-572. 

[14] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Processor Fundamentals: 

Architectures and Features, 1 ed.: IEEE Press Series on Signal Processing, 1997. 

[15] J. Batlle, J. Martı, P. Ridao, and J. Amat, “A New FPGA/DSP-Based Parallel 

Architecture for Real-Time Image Processing,” Elsevier Real-time Imaging, vol. 8, 

pp. 345-356, 2002. 

[16] T. B. Welch, C. H. G. Wright, and M. G. Morrow, Real-Time Digital Signal 

Processing from MATLAB to C With the TMS320C6x DSPs: Taylor & Francis 

Group, LLC, 2011. 

[17] F. Bensaali, “Accelerating Matrix Product on Reconfigurable Hardware for Image 

Processing Applications,” PhD, School of Computer Science, The Queen's 

University of Belfast, 2005. 

[18] A. Hayim, M. Knieser, and M. Rizkalla, “DSPs/FPGAs Comparative Study for 

Power Consumption, Noise Cancellation, and Real Time High Speed 

Applications,” Journal of Software Engineering and Applications, vol. 3, pp. 

391-403, 2010. 

[19] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips, 

“GPU Computing,” Proceedings of the IEEE, vol. 96, pp. 879-899, 2008. 

[20] S. Ehsan, A. F. Clark, and K. D. McDonald-Maier, “Hardware based Scale- and 

Rotation-Invariant Feature Extraction: Aretrospective Analysis and Future 

Directions,” in Second International Conference on Computer and Electrical 

Engineering, 2009, pp. 620-624. 

[21] K.-C. Wu and Y.-W. Tsai, “Structured ASIC, evolution or revolution?,” in 

international symposium on Physical design, 2004, pp. 103-106  

[22] I. Kuon, R. Tessier, and J. Rose, “FPGA Architecture: Survey and Challenges,” 

Foundations and Trends® in Electronic Design Automation, vol. 2, pp. 135-253, 

2008. 

[23] A. Ret, “Xilinx,” Fortune, 1990, pp.81 

[24] B. Zahiri, "Structured ASICs: Opportunities and Challenges,” in International 

Conference on Computer Design, 2003, pp. 404-409. 

[25] P. H. W. Leong, “Recent Trends in FPGA Architectures and Applications,” 

presented at the 4th IEEE International Symposium on Electronic Design, Test & 

Applications, 2008. 

[26] Xilinx, Inc., 7 Series FPGAs Overview. Available: 

http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overvi

ew.pdf (Acessed on May, 2013) 

[27] Xilinx, Inc. Xilinx Next Generation 28 nm FPGA Technology Overview. Available: 

http://www.xilinx.com/support/documentation/white_papers/wp312_Next_Gen_2

8_nm_Overview.pdf (Acessed on May, 2013) 

[28] Xilinx, Inc., Zynq-7000 All Programmable SoC. Available: 

http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/index.htm 



Reference 

153 

 

(Acessed on May, 2013) 

[29] J. imenez, I. Urriza, L. A. Barragan, D. Navarro, J. I. Artigas, and O. Lucia, 

“Hardware-in-the-loop simulation of FPGA embedded processor based controls 

for power electronics,” 2011. 

[30] I. Kuon, R. Tessier, and J. Rose, “FPGA Architecture: Survey and Challenges,” 

Electronic Design Automation, vol. 2, pp. 135-253, 2007. 

[31] Xilinx, Inc. Virtex-4 User Guide. Available: www.xilinx.com (Acessed on Jan, 

2012) 

[32] K. Comption and S. Hauck, “Reconfigurable Computing: A Survey of Systems 

and Software,” ACM Computing Surveys, vol. 34, pp. 171-210, 2002. 

[33] Xilinx, Inc. Xilinx ISE. Available: www.xilinx.com (Acessed on Jan, 2012) 

[34] Altera Corporation. Quartus II. Available: www.altera.com (Acessed on Jan, 

2012) 

[35] IEEE, “IEEE Standard VHDL Language Reference Manual,” ed: The Institute of 

Electrical and Electronics Engineers, Inc, 2008. 

[36] IEEE, “IEEE Standard Verilog Hardware Description Language,” ed: The Institute 

of Electrical and Electronics Engineers, Inc., 2001. 

[37] Mentor Graphics Corporation. Handel-C User Manual. Available: 

http://www.mentor.com/ (Acessed on Jan, 2012) 

[38] F. Bensaali, A. Amira, and A. Bouridane, “Accelerating matrix product on 

reconfigurable hardware for image processing applications,” IET Circuits, Devices 

& Systems, vol. 152, pp. 236-246, 2005. 

[39] S. M. Loo, B. E. Wells, N. Freije, and J. Kulick, “Handel-C for Rapid Prototyping 

of VLSI Coprocessors for Real Time Systems,” in 34th Shoutheastern Symposium 

on System Theory, 2002, pp. 6-10. 

[40] P. Voles, L. Holasek, and M. Vasilko, “ANSI C and Handel-C Based Rapid 

Prototyping Framework for Real-Time Image Processing Algorithms,” in 

International Conferene on Engineering of Reconfigurable Systems and 

Algorithms, 2002. 

[41] J. D. Crawford, “EDIF: A Mechanism for the Exchange of Design Information,” 

IEEE Design & Test of Computers, vol. 2, pp. 63-69, 1985. 

[42] J.-M. Guo and Y.-F. Liu, “License Plate Localization and Character Segmentation 

With Feedback Self-Learning and Hybrid Binarization Techniques,” IEEE 

Transactions on Vehicular Technology, vol. 57, pp. 1417-1424, 2008. 

[43] Y.-P. Huang, C.-H. Chen, Y.-T. Chang, and F. E. Sandnes, “An intelligent strategy 

for checking the annual inspection status of motorcycles based on license plate 

recognition,” Expert Systems with Applications, vol. 36, pp. 9260-9267, 2009. 

[44] Y.-R. Wang, W.-H. Lin, and S.-J. Horng, “A sliding window technique for efficient 

license plate localization based on discrete wavelet transform,” Expert Systems 

with Applications, vol. 38, pp. 3142-3146, 2011. 

[45] Y. Wen, Y. Lu, J. Yan, Z. Zhou, von Deneen K.M. and P. Shi, “An Algorithm for 

License Plate Recognition Applied to Intelligent Transportation System,” IEEE 

Transactions on Intelligent Transportation Systems, vol. 12, pp. 830-845, 2011. 



Reference 

154 

 

[46] M. Vargas, S. L.Toral, F. Barrero, and F. Cortés, “A License Plate Extraction 

Algorithm Based on Edge Statistics and Region Growing,” Lecture Notes in 

Computer Science, Springer, vol. 5716, pp. 317-326, 2009. 

[47] H. Bai and C. Liu, “A hybrid license plate extraction method based on edge 

statistics and morphology,” in 17th International Conference on Pattern 

Recognition, 2004, pp. 831-834. 

[48] J. Jiao, Q. Ye, and Q. Huang, “A configurablemethod formulti-style license plate 

recognition,” Pattern Recognition Letters, vol. 42, pp. 358-369, 2009. 

[49] N. Thome, A. Vacavant, L. Robinault, and S. Miguet, “A cognitive and 

video-based approach for multinational License Plate Recognition,” Machine 

Vision and Applications, vol. 22, pp. 389-407, 2011. 

[50] H. Xiangjian, Z. Lihong, W. Qiang, J. Wenjing, B. Samali, and M. Palaniswami, 

“Segmentation of characters on car license plates,” in IEEE 10th Workshop on 

Multimedia Signal Processing, 2008, pp. 399-402. 

[51] C. Anagnostopoulos, T. Alexandropoulos, V. Loumos, and E. Kayafas, “Intelligent 

traffic management through MPEG-7 vehicle flow surveillance,” in IEEE 

International Symposium on Modern Computing, 2006, pp. 202-207. 

[52] H. Samet and M. Tamminen, “Efficient Component Labeling of Images of 

Arbitrary Dimension Represented by Linear Bintrees,” IEEE Transactions on 

Pattern Analysis and Machine Intelligence, vol. 10, pp. 579-586, 1988. 

[53] P. Wu, H.-H. Chen, R.-J. Wu, and D.-F. Shen, “License plate extraction in low 

resolution video,” in 18th International Conference on Pattern Recognition, 2006, 

pp. 824-827. 

[54] P. Tarabek, “Fast license plate detection based on edge density and integral edge 

image,” in IEEE 10th International Symposium on Applied Machine Intelligence 

and Informatics (SAMI), 2012, pp. 37-40. 

[55] X. Shi, W. Zhao, and Y. Shen, “Automatic License Plate Recognition System 

Based on Color Image Processing,” in Computational Science and Its Applications. 

vol. 3483, O. Gervasi, M. Gavrilova, V. Kumar, A. Laganá, H. Lee, Y. Mun, et al., 

Eds., ed: Springer Berlin / Heidelberg, 2005, pp. 307-314. 

[56] S.L. Chang, L.S. Chen, Y.C. Chung and S.W. Chen, “Automatic license plate 

recognition,” IEEE Transactions on Intelligent Transportation Systems, vol. 5, pp. 

42-53, 2004. 

[57] J. A. G. Nijhuis, M. H. Ter Brugge, K. A. Helmholt, J. P. W. Pluim, L. 

Spaanenburg, R. S. Venema, et al., “Car license plate recognition with neural 

networks and fuzzy logic,” in IEEE International Conference on Neural Networks, 

1995, pp. 2232-2236. 

[58] N. Zimic, J. Ficzko, M. Mraz, and J. Virant, “The fuzzy logic approach to the car 

number plate locating problem,” in Intelligent Information Systems, 1997, pp. 

227-230. 

[59] S. Chang, Chen, L., Chung, Y. and Chen, S., “Automatic license plate recognition,” 

IEEE Transaction on Intelligent Transpotation Systerms, vol. 5, pp. 42-53, 2004. 

[60] F. Wang, L. Man, B. Wang, Y. Xiao, W. Pan, and X. Lu, “Fuzzy-based algorithm 



Reference 

155 

 

for color recognition of license plates,” Journal of Pattern Recognition Letters, 

vol. 29, pp. 1007-1020, 2008. 

[61] K. Kim, K. Jung, and J. Kim, “Color Texture-Based Object Detection: An 

Application to License Plate Localization,” in Pattern Recognition with Support 

Vector Machines. vol. 2388, S.-W. Lee and A. Verri, Eds., ed: Springer Berlin / 

Heidelberg, 2002, pp. 321-335. 

[62] F. Kahraman, B. Kurt, and M. Gökmen, “License Plate Character Segmentation 

Based on the Gabor Transform and Vector Quantization,” in Computer and 

Information Sciences vol. 2869, A. Yazici and C. Sener, Eds., ed: Springer Berlin / 

Heidelberg, 2003, pp. 381-388. 

[63] T. D. Duan, T. L. H. Du, T. V. Phuoc, and N. V. Hoang, “Building an Automatic 

Vehicle License-Plate Recognition System,” in International Conference in 

Computer Science, 2005, pp. 59-63. 

[64] C. R. Jung and R. Schramm, “Rectangle detection based on a windowed Hough 

transform,” in Computer Graphics and Image Processing, 2004. Proceedings. 

17th Brazilian Symposium on, 2004, pp. 113-120. 

[65] Y. Cheng, J. Lu, and T. Yahagi, “Car license plate recognition based on the 

combination of principal components analysis and radial basis function networks,” 

in Signal Processing, 2004. Proceedings. ICSP '04. 2004 7th International 

Conference on, 2004, pp. 1455-1458 vol.2. 

[66] M. Rouhani, “A Fuzzy Feature Extractor Neural Network and its Application in 

License Plate Recognition,” in Computational Intelligence, Theory and 

Applications, B. Reusch, Ed., ed: Springer Berlin Heidelberg, 2006, pp. 223-228. 

[67] H. Ching-Tang, J. Yu-Shan, and H. Kuo-Ming, “Multiple license plate detection 

for complex background,” in Advanced Information Networking and Applications, 

2005. AINA 2005. 19th International Conference on, 2005, pp. 389-392 vol.2. 

[68] C. N. E. Anagnostopoulos, I. E. Anagnostopoulos, V. Loumos, and E. Kayafas, “A 

License Plate-Recognition Algorithm for Intelligent Transportation System 

Applications,” IEEE Transactions on Intelligent Transportation Systems, , vol. 7, 

pp. 377-392, 2006. 

[69] T. Chew Lim, H. Weihua, Y. Zhaohui, and X. Yi, “Imaged document text retrieval 

without OCR,” IEEE Transactions on Pattern Analysis and Machine Intelligence 

vol. 24, pp. 838-844, 2002. 

[70] J. Min-Chul, S. Yong-Chul, and S. N. Srihari, “Machine printed character 

segmentation method using side profiles,” in IEEE International Conference on 

Systems, Man, and Cybernetics 1999, pp. 863-867. 

[71] Y. Zhang and C. Zhang, “A new algorithm for character segmentation of license 

plate,” in IEEE Intelligent Vehicles Symposium, 2003, pp. 106 - 109. 

[72] W. Tsang-Hong, N. Feng-Chou, L. Keh-Tsong, and C. Yon-Ping, “Robust license 

plate recognition based on dynamic projection warping,” in IEEE International 

Conference on Networking, Sensing and Control, 2004, pp. 784-788. 

[73] H. Al-Yousefi and S. S. Udpa, “Recognition of Arabic characters,” Pattern 

Analysis and Machine Intelligence, IEEE Transactions on, vol. 14, pp. 853-857, 



Reference 

156 

 

1992. 

[74] M. F., G. M., and A. J., “New methods for automatic reading of VLP's (Vehicle 

License Plates),” in International conference on signal processing, pattern 

recognition and applications, 2002. 

[75] L. Gang, Z. Ruili, and L. Ling, “Research on Vehicle License Plate Location 

Based on Neural Networks,” in First International Conference on Innovative 

Computing, Information and Control, 2006, pp. 174-177. 

[76] S. Zhang, M. Zhang, and X. Ye, “Car plate character extraction under complicated 

environment,” in IEEE International Conference on Systems, Man and 

Cybernetics, 2004, pp. 4722-4726. 

[77] H. Mahini, S. Kasaei, and F. Dorri, “An Efficient Features - Based License Plate 

Localization Method,” in 18th International Conference on Pattern Recognition, 

2006, pp. 841-844. 

[78] V. Shapiro and G. Gluhchev, “Multinational license plate recognition system: 

segmentation and classification,” in 17th International Conference on Pattern 

Recognition, 2004, pp. 352-355. 

[79] Y. Youngwoo, B. Kyu-Dae, Y. Hosub, and K. Jaehong, “Blob extraction based 

character segmentation method for automatic license plate recognition system,” in 

IEEE International Conference on Systems, Man, and Cybernetics, 2011, pp. 

2192-2196. 

[80] S. Nomura, K. Yamanaka, O. Katai, H. Kawakami, and T. Shiose, “A novel 

adaptive morphological approach for degraded character image segmentation,” 

Pattern Recognition, vol. 38, pp. 1961-1975, 11// 2005. 

[81] N. S., Y. K., and K. O., “A new method for degraded color image binarization 

based on adaptive lightning on grayscale versions,” IEICE Transaction 

Information System, vol. E87-D, pp. 1012–1020 2004. 

[82] K.-B. Kim, S.-W. Jang, and C.-K. Kim, “Recognition of Car License Plate by 

Using Dynamical Thresholding Method and Enhanced Neural Networks,” in 

Computer Analysis of Images and Patterns. vol. 2756, N. Petkov and M. 

Westenberg, Eds., ed: Springer Berlin / Heidelberg, 2003, pp. 309-319. 

[83] W. K. PRATT, Digital Image Processing: PIKS Inside, Third ed.: John Wiley and 

Sons, Inc., New York, 2001. 

[84] A. Capar and M. Gokmen, “Concurrent Segmentation and Recognition with 

Shape-Driven Fast Marching Methods,” in 18th International Conference on 

Pattern Recognition, 2006, pp. 155-158. 

[85] P. Stec and M. Domanski, “Efficient unassisted video segmentation using 

enhanced fast marching,” in International Conference on Image Processing, 2003, 

pp. 427-430. 

[86] Y. Cui and Q. Huang, “Extracting characters of license plates from video 

sequences,” Machine Vision and Applications, vol. 10, pp. 308-320, 1998. 

[87] M. I. Schlesinger and V. Hlavác, Ten Lectures on Statistical and Structural Pattern 

Recognition vol. 24: Springer, 2002. 

[88] V. Franc and V. Hlaváč, “License Plate Character Segmentation Using Hidden 



Reference 

157 

 

Markov Chains “ in Pattern Recognition. vol. 3663, W. Kropatsch, R. Sablatnig, 

and A. Hanbury, Eds., ed: Springer Berlin / Heidelberg, 2005, pp. 385-392. 

[89] S. Mori, H. Nishida  and Yamada H., Optical Character Recognition: John Wiley 

& Sons, Inc. NY, USA, 1999. 

[90] N. Mani, and B. Srinivasan, “Application of articial neural network model for 

optical character recognition,” presented at the IEEE International Conference on 

Systems, Man, and Cybernetics, 1997. 

[91] K. K. Kim, K. I. Kim, J. B. Kim, and H. J. Kim, “Learning-based approach for 

license plate recognition,” in IEEE Signal Processing Society Workshop, Neural 

networks for Signal Processing, 2000, pp. 614-623. 

[92] X. Pan, X. Ye  and S. Zhang “A hybrid method for robust car plate character 

recognition “ presented at the IEEE International Conference on Systems, Man 

and Cybernetics, 2004. 

[93] L. Xu, A. Krzyzak, and C. Y. Suen, “Methods of combining multiple classifiers 

and their application to handwriting recognition,” IEEE Transaction on Systerm, 

Man, Cybernetics, vol. 22, pp. 418-435, 1992. 

[94] Y. Amit, D. Geman, and X. Fan, “A coarse-to-fine strategy for multiclass shape 

detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 

26, pp. 1606-1621, 2004. 

[95] S. Draghici, “A Neural Network Based Artificial Vision System for Licence Plate 

Recognition,” International Journal of Neural Systems, vol. 08, pp. 113-126, 

1997. 

[96] C. Oz, and F. Ercal, “A Practical License Plate Recognition System for Real-Time 

Environments,” Computational Intelligence and Bioinspired Systems, vol. 

3512/2005, pp. 497-538, 2005. 

[97] M. Rasooli, S. Ghofrani and E. Fatemizadeh, “Farsi License Plate Detection based 

on Element Analysis and Characters Recognition,” International Journal of Signal 

Processing, Image Processing and Pattern Recognition, vol. 4, pp. 65-80, 2011. 

[98] M. Raus, and L. Kreft, “Reading car license plates by the use of artificial neural 

networks,” in the 38th Midwest Symposium on Circuits and Systems, 1995, pp. 

538-541. 

[99] Y. Hu, F. Zhu, and X. Zhang, “A Novel Approach for License Plate Recognition 

Using Subspace Projection and Probabilistic Neural Network,” Lecture Notes in 

Computer Science, vol. 3497, pp. 821-827, 2005. 

[100] R. Salakhutdinov and H. Larochelle, “Efficient Learning of Deep Boltzmann 

Machines,” in the 13th International Conference on Artificial Intelligence and 

Statistics (AISTATS) 2010. 

[101] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A Fast Learning Algorithm for Deep 

Belief Nets,” Neural Computation, vol. 18, pp. 1527-1554, 2006. 

[102] P. Comelli, P. Ferragina,M. N. Granieri, and F. Stabile, “Optical recognition of 

motor vehicle license plates,” IEEE Transaction on Vehicular Technology vol. 44, 

pp. 790-799, 1995. 

[103] Y. Huang, S. Lai, and W. Chuang, “A Template-Based Model for License Plate 



Reference 

158 

 

Recognition,” in IEEE International Conference on  Networking, Sensing & 

Control, Taipei, 2004, pp. 737-742. 

[104] P. Viola and M. Jones, “Robust Real-Time Face Detection,” International Journal 

of Computer Vision, vol. 57, pp. 137-154, 2004/05/01 2004. 

[105] H. Caner, H. S. Gecim, and A. Z. Alkar, “Efficient Embedded 

Neural-Network-Based License Plate Recognition System,” IEEE Transactions on 

Vehicular Technology, vol. 57, pp. 2675-2683, 2008. 

[106] Y. Osana, T. Fukushima, and H. Amano, “Implementation of ReCSiP: A 

ReConfigurable Cell Simulation Platform,” in Field Programmable Logic and 

Application. vol. 2778, P. Y. K. Cheung and G. Constantinides, Eds., ed: Springer 

Berlin / Heidelberg, 2003, pp. 766-775. 

[107] N. Bellas, S. M. Chai, M. Dwyer, and D. Linzmeier, “FPGA implementation of a 

license plate recognition SoC using automatically generated streaming 

accelerators,” in 20th International Parallel and Distributed Processing 

Symposium, 2006, pp. 8-16. 

[108] MediaLab-NTUA. MediaLab LPR Database. Available: 

http://www.medialab.ntua.gr/research/LPRdatabase.html (Acessed on Sep. 2011) 

[109] CitySync Limited. Available: http://www.citysync.co.uk (Acessed on Sep. 2011) 

[110] F. Y. Shih and Y.-T. Wu, “Decomposition of arbitrary gray-scale morphological 

structuring elements,” Pattern Recognition, vol. 38, pp. 2323-2332, 12// 2005. 

[111] M. Grundland and N. A. Dodgson, “Decolorize: Fast, contrast enhancing, color to 

grayscale conversion,” Pattern Recognition, vol. 40, pp. 2891-2896, 11// 2007. 

[112] Mentor Graphics Corporation. PAL User Manual. Available: 

http://www.mentor.com/ (Acessed on Jun, 2011) 

[113] Mentor Graphics Corporation. RC240 Datasheet. Available: 

http://www.mentor.com/ (Acessed on Jun, 2011) 

[114] Mentor Graphics Corporation. PixelStreams User Manual. Available: 

http://www.mentor.com/ (Acessed on Jun, 2011)  

[115] Xilinx, Inc., Xpower Tutorial: FPGA Design. Available: http://www.xilinx.com/ 

(Acessed on Jun, 2011) 

[116] Driver, and Vehicle Licensing Agency. Display of Registration Marks for Motor 

Vehicles. Available: www.direct.gov.uk/motoring (Acessed on Jun, 2011) 

[117] X. Zhai, F. Bensaali, and S. Ramalingam, “Real-Time License Plate Localisation 

on FPGA,” in 17th IEEE Workshop on Embedded Computer Vision and Pattern 

Recognition, 2011, pp. 14-19. 

[118] A. R. Omondi and J. C. Rajapakse, FPGA Implementations of Neural Networks 

vol. XII, 2006. 

[119] H. Demuth, M. Beale and M. Hagan, Neural Network Toolbox 6 User's Guide: 

The MathWorks, Inc. , 2008. 

[120] M. F. Møller, “A scaled conjugate gradient algorithm for fast supervised learning,” 

Neural Networks, vol. 6, pp. 525-533, 1993. 

[121] E. Alpaydın, Introduction to Machine Learning, Second ed.: Massachusetts 

Institute of Technology, 2010. 



Reference 

159 

 

[122] D. Nguyen and B. Widrow, “Improving the learning speed of 2-layer neural 

networks by choosing initial values of the adaptive weights,” in International 

Joint Conference on Neural Networks, 1990, pp. 21-26. 

[123] X. Zhai and F. Bensaali, “Improved Number Plate Character Segmentation 

Algorithm and its Efficient FPGA Implementation,” Journal of Real-Time Image 

Processing, 2012. 

[124] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best Practices for Convolutional 

Neural Networks Applied to Visual Document Analysis,” in the Seventh 

International Conference on Document Analysis and Recognition (ICDAR 2003), 

2003, pp. 958-962. 

[125] D. Decoste and B. chölkopf, “Training Invariant Support Vector Machines,” 

Machine Learning, vol. 46, pp. 161-190, 2002. 

[126] F. Bensaali, A. Amira, and R. Sotudeh, “Floating-Point Matrix Product on FPGA,” 

in IEEE/ACS International Conference on Computer Systems and Applications, 

2007, pp. 466-473. 

[127] F. Bensaali and A. Amira, “An FPGA Based Parallel Matrix Multiplier for 3D 

Affine Transformations,” IET Vision, Image and Signal Processing  Special Issue 

on Rapid Prototyping of Signal Processing Algorithms, vol. 153, pp. 739-746, 

2006. 

[128] D. Zheng, Y. Zhao, and J. Wang, “An efficient method of license plate location,” 

Pattern Recognition Letters, vol. 26, pp. 2431-2438, 2005. 

[129] B. R. Lee, K. Park, H. Kang, H. Kim, and C. Kim, “Adaptive Local Binarization 

Method for Recognition of Vehicle License Plates,” in Combinatorial Image 

Analysis. vol. 3322, J. Žunic, Ed., ed: Springer Berlin / Heidelberg, 2004, pp. 

646-655. 

[130] W. Jia, H. Zhang, and X. He, “Region-based license plate detection,” Journal of 

Network and Computer Applications, vol. 30, pp. 1324-1333, 2006. 

[131] M.-S. Pan, J.-B. Yan, and Z.-H. Xiao, “Vehicle License Plate Character 

Segmentation,” International Journal of Automation and Computing, vol. 05, pp. 

425-432, 2008. 

[132] X. Zhai, F. Bensaali, and R. Sotudeh, “OCR-Based Neural Network for ANPR,” in 

IEEE International Conference on Imaging Systems and Techniques, Manchester, 

UK, 2012, pp. 393-397. 

[133] N. Otsu, “A Tlreshold Selection Method from Gray-Level Histograms,” IEEE 

Transactions on Systems, Man and Cybernetics, vol. 9, pp. 62-66, 1979. 

[134] F. Yang, Z. Ma, and M. Xie, “A Novel Binarization Approach for License Plate,” 

in 2006 1ST IEEE Industrial Electronics and Applications, 2006, pp. 1-4. 

[135] X. Zhai, F. Bensaali, and S. Ramalingam, “Improved Number Plate Localisation 

Algorithm and its Efficient FPGA Implementation,” IET Circuits, Devices & 

Systems, vol. 7, issue 2, 2013. 

[136] H. Goldstein, Classical Mechanics, 2nd ed.: Addison-Wesley, 1980. 

[137] J. Cohen, P. Cohen, S. G. West, and L. S. Aiken, Applied Multiple 

Regression/Correlation Analysis for the Behavioral Sciences: Psychology Press, 



Reference 

160 

 

2002. 

[138] X. Zhai, F. Bensaali and S. Ramalingam, “License plate localisation based on 

morphological operations,” in 11th Int. Conf. Control Automation Robotics & 

Vision, 2010, pp. 1128-1132. 

[139] X. Zhai, F. Bensaali, and R. Sotudeh, “FPGA-based Number Plate Binarisation 

and Adjustment for ANPR Systems,” Journal of Electronic Imaging, pp. 1-11, 

2013. 

[140] S. Hao, L. Chao, W. Qi, and X. Zhang, “Real-Time Anti-Interference Location of 

Vehicle License Plates Using High-Definition Video,” IEEE Intelligent 

Transportation Systems Magazine, vol. 1, pp. 17-23, 2009. 

[141] I. Giannoukos, C.-N. Anagnostopoulos, V. Loumos, and E. Kayafas, “Operator 

context scanning to support high segmentation rates for real time license plate 

recognition,” Pattern Recognition, vol. 43, pp. 3866-3878, 2010. 

[142] Xilinx, inc., Virtex-4 Family Overview. Available: www.xilinx.com (Acessed on 

Jun, 2011) 

[143] Mentor Graphics Corporation. RC Host Library and FTU3 User Manual. 

Available: www.mentor.com (Acessed on Jun, 2011) 

[144] Mentor Graphics Corporation. DK User Manual. Available: www.mentor.com 

(Acessed on Jun, 2011) 

[145] Mentor Graphics Corporation. Fixed-point Library. Available: www.mentor.com 

(Acessed on Jun, 2011) 

[146] Mentor Graphics Corporation. Pipelined Floating-point Library. Available: 

www.mentor.com (Acessed on Jun, 2011) 

[147] Xilinx, Inc., Xilinx Timing Analyser User's Guide. Available: www.xilinx.com 

(Acessed on Jun, 2011) 

 

 



Appendix A  RC240 Prototyping Platform 

161 

 

Appendix A: RC240 Prototyping Platform 

In this research project, the RC240 hardware platform was used to prototype the proposed 

designs. The RC240 board is equipped with Xilinx Virtex-4 LX40 FF1148-10 FPGA and is 

packaged with a set of support libraries including the Platform Abstraction Layer (PAL) 

and PixelStreams image and video processing library [113]. It mainly has three banks of 

1MB×36-bit pipelined SRAM directly connected to the FPGA for data processing 

operations, a USB device ports for data communication with host PC, and two user 

programmable clocks. All three memory banks are accessible by the FPGA and host PC. 

The high-speed USB 2.0 interface allows high data rate communication between host PC 

and FPGA applications on the board. Two programmable clocks are programmed by the 

host PC, and have frequency range of 2 MHz to 300 MHz. Figure A-1 shows the RC240 

overview. 
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Figure A-1: The RC 240 overview [103] 
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A.1 Virtex-4 FPGA 

The Xilinx Virtex-4 family greatly enhances programmable logic design capabilities, and 

make it a powerful alternative to ASIC technology [142]. Virtex-4 FPGA family consists of 

three platform sets LX, FX, and SX, which offering multiple feature choices and 

combinations to address all complex applications. In the FPGA, there are dedicated DSP 

slices, high-speed clock management circuitry, and source-synchronous interface blocks. 

Virtex-4 devices are produced on a 90 nm copper process using 300 mm wafer technology. 

A summary of the Virtex-4 family main features are listed as follows: 

- XtremeDSP Slice: 

 18×18, two’s complement, signed Multiplier; 

 Optional pipeline stages; and 

 Built-in accumulator (48-bit) and Adder/Subtractor. 

- Smart RAM Memory Hierarchy 

 Distributed RAM; 

 Dual-port 18-Kbit RAM blocks; and 

 High-speed memory interface supports DDR and DDR2 SDRAM, QDR-II, and 

RLDRAM-II. 

- Flexible Logic Resource: 

- Secure Chip AES Bitstream Encryption 

- 90 nm Copper CMOS Process 

- 1.2V core Voltage 

- Flip-Chip Packaging including Pb-Free Package Choices 

The main available resources of the used Virtex-4 FPGA in this research project are listed 

in Table A-1. 
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Table A-1: Virtex-4 XC4VLX40 on-chip resources 

Device 

Configurable Logic Blocks (CLBs) 

XtremeDSP 

Slices 

Block RAM 

Array 

Size 

Logic 

Cells 
Slices 

Max Distributed 

RAM (Kb) 

18Kb 

Blocks 

Max Block 

RAM (Kb) 

XC4VLX40 128×36 41,472 18,432 288 64 96 1,728 

A.2 Host-FPGA Communication 

The RC240 board is supported with a macro library (the RC host library) that simplifies the 

process of initialising and communicating to the hardware [143]. The library provides the 

following functionalities: 

- Initialisation and configuration a board; 

- USB data transfer between PC and the RC240 board; 

- Set on board clock rate; 

- Access the external memory on the RC240 board; and 

- Error checking and debugging are included in a C or C++ program that runs on the 

host PC and performs data transfer. 

In this research project, the USB data transfer function is used to communicate between the 

Host and RC240 board. It allows transfer one byte data a time between the host and FPGA. 

A USB data control module in the FPGA is used to control the data flow, and access the 

external memory. The overview of the Host-FPGA communication system is shown in 

Figure A-2. 
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Figure A-2: The overview of the Host-FPGA communication system 
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A.2.1 Example Functions from RC Host Library 

The RC Host Library allows you to communicate with a Mentor Graphic RC board from 

a host computer via the USB interface [143]. In this section, some of important functions 

from the RC Host Library are introduced. 

Opening and Closing Boards [143] 

typedef RCBoard;  

RCStatus RCBoardOpen (int BoardNum, RCBoard *BoardPtr);  

RCStatus RCBoardClose (RCBoard Board); 

 

Description: 

The functions RCBoardOpen() and RCBoardClose() are used to open and close the used 

RCBoard respectively, where BoardNum and BoardPtr indicate which board is attached 

and its pointer to variable of type RCBoard respectively. 

Communicating over USB [143] 

RCStatus RCUSBWrite (RCBoard Board, int Bytes, const char *Buffer, int 

*BytesWritten);  

RCStatus RCUSBRead (RCBoard Board, int Bytes, char *Buffer, int *BytesRead);  

  

Description: 

The functions RCUSBWrite() and RCUSBRead() are used to write a byte of data to an 

application running in the RCBoard and read a byte of data from the RCBoard to the host 

PC respectively, where *BytesWritten and *BytesRead indicate the number of bytes are 

needed for the writing and reading respectively. In order to use the two functions, the 

following two functions also need to be used in the application running in the FPGA: 

macro proc PalDataPortRun (HandleCT, ClockRate); 

macro proc PalDataPortRead (Handle, DataPtr); 

macro proc PalDataPortWrite (Handle, Data); 

 

PalDataPortRun() is used to initialise the USB port, PalDataPortRead() is used to read a 

byte of data from the USB port to the FPGA, and store it in the register DataPtr, 
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PalDataPortWrite() is used to write a byte of data from the FPGA to the USB port. 

A.2.2 Accessing the External RAMs 

In this research work, many parts of algorithms need to access the external RAMs, for 

example, car images and weights of NN are stored in the external RAMs. The RC240 board 

supports PL2 RAMs which can be read from or written to in exactly one clock cycle, but 

the address supplied two clock cycles earlier. The following API functions are used to 

access the RAMs.  

macro proc PalPL2Run (HandleCT, ClockRate); 

macro proc PalPL2RAMSetReadAddress (Handle, Address); 

macro proc PalPL2RAMSetWriteAddress (Handle, Address); 

macro proc PalPL1RAMRead (Handle, DataPtr); 

macro proc PalPL1RAMWrite (Handle, Data); 

 

Description: 

PalPL2Run() must be used in parallel with the rest of functions in the program, which 

indicates which memory bank and clock frequency will be used. 

PalPL2RAMSetReadAddress() and PalPL2RAMSetWriteAddress() are used to set the 

reading and writing addresses respectively, the set addresses for reading and writing that 

will occur two clock cycles later after use the functions. PalPL2RAMRead() and 

PalPL2RAMWrite() read or write a single item of data from or to the address in the RAM 

set two clock cycles earlier respectively. 
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Appendix B: Tools and Software Packages 

In this research project, DK design suite [144] and Xilinx ISE [33] were used to program 

and evaluate the proposed designs on FPGAs. Details about these two tools are given in 

the following sections. 

B.1 DK Design Suite 

DK design suite provides a development environment to design and compile hardware 

circuits using Handel-C. The environment includes an Integrated Development 

Environment (IDE) along with code and macro libraries. Circuit development takes place 

within the IDE, and you can configure builds for debug, simulation or hardware. Figure 

B-1 shows the design environment of DK. 

 

Figure B-1: The DK design synthesis tool 

DK produces a Netlist file, which is used during the Place and route stage (PAR) to generate 

the bitstream file. This process is shown in Figure B-2. 
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Figure B-2: DK design flow 

B.1.1 Handel-C 

Handel-C is a high level programming language which targets low-level hardware, most 

commonly used in the programming of FPGAs. It is a rich subset of C, with non-standard 

extensions to control hardware configuration with an emphasis on parallelism. Unlike other 

C to hardware tools which rely on going via several intermediate stages, Handel-C allows 

hardware to be directly targeted from software. 

Parallel Hardware Generation 

Handel-C has additional constructs to support the parallelisation of code using the par 

statement, which means any instructions inside the par statement that will be execute in 

parallel at exactly the same instant in time by two separated pieces of hardware. In addition 

to this feature, Handel-C also provides construction to support the sequential coding using 

seq, which means any instructions inside the seq statement that will be executed 

sequentially. In Figure B-3 shows two examples when using par and seq respectively [134]. 

Sequential Block

seq

{

           a=1;

           b=2;

           c=a+b;

}

// c=3 and 3 Clock Cycles

Parallel Block

par

{

           a=1;

           b=2;

           c=a+b;

}

// c=0 and 1 Clock Cycles

 

Figure B-3: The seq and par constructs 
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Variables 

One basic variable type is integer in Handel-C, which can be signed or unsigned with any 

width and mapped to hardware registers [37]. 

DK also provides two platform-independent libraries for other types manipulation: 

Fixed-point and pipelined floating-point [145] [146]. The fixed-point library allows 

defining different widths of the fractional and integer parts of the number and provides 

macros to perform arithmetic operations. The pipelined floating-point library allows the 

floating-point operations to be performed in a pipelined manner on floating-point numbers. 

In this research project, the fixed-point library was used for all fixed-point arithmetic 

operations. 

Memory 

Handel-C provides two keywords ram and rom to implement RAMs and ROMS 

respectively. There are mainly two different types of RAM used in this research project: 

- Distributed RAM: it is implemented in look-up tables in the logic blocks of the 

FPGA. 

- Block RAM: it is available on certain chips and has high-capacity but limited 

numbers can be used. 

Additionally, both types of RAM can be defined as multiple-ported RAMs (MPRAMs) 

using the mpram keyword. 

B.1.2 Platform Abstraction Layer 

The Platform Abstraction Layer (PAL) is a component of the DK design suite, which is an 

Application Programming Interface (API) for peripherals. The API offers a standard 

interface to hardware, enabling portable Handel-C applications that can run on different 

FPGA/PLD RC boards without modification [112]. Figure A-4 shows the examples of 

PAL supported peripherals. 
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Figure B-4: The examples of PAL supported peripherals 

PAL Virtual Platform 

PAL Virtual Platform (PALSim) allows simulating PAL designs, where a visual 

representation of the behaviour of devices is provided for simulation. For example, VGA 

screen, RAM and LEDs can be observed from the PALSim GUI. Figure B-5 shows a 

PALSim example. 

 

Figure B-5: An example of PALSim 
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PixelStreams 

PixelStreams is a library of parameterisable IP for creating video processing systems, 

where each IP block is assembled into filter networks, connected by streams [114]. In DK 

design suite, filter networks can be assembled programmatically in Handel-C or 

graphically using the PixelStreams GUI. The PixelStreams architecture effectively 

eliminates these issues by providing reusable flow control components to create pipelined 

hardware. 

PixelStreams is designed primarily for dealing with high-speed video/still image input 

processing and analysis, which has the high data rate and highly parallel nature of the 

generated hardware. Figure B-6 shows an example using PixelStreams GUI. 

 

Figure B-6: An example of PixelStreams GUI 
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B.2 Xilinx ISE 

Xilinx ISE is a tool that can synthesise and analyse HDL designs. It allows the developer 

to:  

- synthesise the designs; 

- perform timing analysis; 

- simulate a design; 

- power consumption analysis; and  

- configure the target device [33].  

Figure B-7 shows the Xilinx ISE 14 project navigator. 

 

Figure B-7: the Xilinx ISE 14 project navigator 

B.2.1 Xilinx Timing Analyser 

Xilinx Timing Analyser is used to perform static timing analysis of an FPGA, where a 

report about the delay along a given path or paths and the slack based upon the specified 

timing requirements are generated [147]. One of a timing analysis report is called timing 

summary that providing constraint coverage statistics. In the research project, the minimum 
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period and maximum running frequency of the design are the main focus. 

B.2.2 Xilinx XPower Analyser 

XPower Analyser (XPA) can perform an analysis on real design data after design 

implementation is finished. XPA calculates power based on quiescent and dynamic power 

consumption in CMOS circuits: 

- Quiescent power: it results primarily from transistor leakage current in the device. 

Leakage current is either from source-to-drain or through the gate oxide, and exists 

even when the transistor is logically “OFF”. 

- Dynamic power: it is associated with design activity and switching events in the 

core or I/O of the device and it is determined by nod capacitance, supply voltage, 

and switching frequency. 

The interface of Xilinx XPA is shown in Figure B-8. 

 

Figure B-8: Xilinx XPA user interface 
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Appendix C: Sample Codes and FPGA Chip Layouts 

for ANPR Implementation 

In this research work, all the FPGA implementations are written in Handel-C, and every 

main stages or modules are presented as independent functions, which can be reused or 

called by the main program. In this appendix, sample codes and FPGA chip layouts for 

the proposed NPL, CS, OCR and pre-processing implementations are introduced in the 

following each section respectively. 

C.1 Number Plate Localisation Implementation 

C.1.1 Sample Codes for Number Plate Localisation Implementation 

The NPL implementation is mainly based on the PixelStreams filters and a NP selection 

module, where parallel hardware implementations are generated. By using streams and 

pipelining the throughput remains real-time image processing performance. The main 

code script of the NPL implementation is exhibited below.  

/* 

 * This code is part of UH PhD research work  

 * Number plate localisation 

 * Copyright (c) X.Zhai 5.2010 

 */ 

 

#define PAL_TARGET_CLOCK_RATE PAL_PREFERRED_VIDEO_CLOCK_RATE 

#include "pal_master.hch" 

#include "pxs.hch" 

#include "bolbs.hch"// User libs 

 

void main (void) 

{ 

 /* 

     * Variable 

     */ 
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    macro expr ClockRate = PAL_ACTUAL_CLOCK_RATE; 

    macro expr Mode      = SyncGen2GetOptimalModeCT   (ClockRate); 

    macro expr Width     = 640; 

    macro expr Height    = 480; 

    macro expr PL2RAM    = PalPL2RAMCT (0); 

     

    static unsigned 1 t = 0; 

    static  signed 16 X0, Y0, X1, Y1;  

    static unsigned Address ; 

    unsigned  8 rate; 

    static  signed 16 wid,len; 

    static signed 16 X0_, Y0_, X1_, Y1_; 

    static unsigned 32 area; 

 

    /* 

     * Streams 

     */ 

    PXS_PV_S (Stream0, PXS_EMPTY); 

    PXS_PV_S (Stream1, PXS_EMPTY); 

    PXS_PV_S (Stream2, PXS_RGB_U8); 

    PXS_PV_S (Stream10, PXS_MONO_U8); 

    PXS_PV_S (Stream15, PXS_MONO_U8); 

    PXS_PV_S (Stream16, PXS_MONO_U8); 

    PXS_PV_S (Stream17, PXS_MONO_U8); 

    PXS_PV_S (Stream18, PXS_MONO_U8); 

    PXS_PV_S (Stream19, PXS_MONO_U8); 

    PXS_PV_S (Stream22, PXS_MONO_U8); 

    PXS_PV_S (Stream23, PXS_MONO_U8); 

    PXS_PV_S (Stream29, PXS_MONO_U1); 

    PXS_PV_S (Stream30, PXS_MONO_U1); 

    PXS_PV_S (Stream31, PXS_MONO_U1); 

    PXS_PV_S (Label,    PXS_MONO_S16); 

    PXS_PV_S (Stream48, PXS_MONO_U8); 

    PXS_PV_S (Stream49, PXS_MONO_U8); 

    PxsBlobList Blobs; 

   

    /* 

     * Filters 

     */ 

    par 

    { 

 

 PxsVGASyncGen (&Stream0, Mode); //VGA Sync 
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 PxsValve (&Stream0, &Stream1, 1);  //Stream switching    

 PxsPalPL2RAMReader (&Stream1, &Stream2, 640, PalPL2RAMCT(0), ClockRate);  //       

Mems reader                                                   

 PxsConvert (&Stream2, &Stream10);  // RGB to Grayscale                                     

 PxsSplit2 (&Stream10, &Stream15, &Stream16); //Stream Spliter                          

 PxsDualLineBuffer(&Stream15,&Stream48,&Stream49,Width); // DualLine Buffer 

 PxsOpen3_30 ( &Stream16, &Stream17,Width);//Morphological open 3*30 

 PxsSynchronise (&Stream49, &Stream17, &Stream22, &Stream23, 60);//Pixel sync 

 PxsSubSat (&Stream22, &Stream23, &Stream18);//Image substraction 

 PxsClipRectangle (&Stream18, &Stream19, 0, 0, 639, 479);//Image Clip 

 PxsThreshold (&Stream19, &Stream29, 60, 255);//Binarisation 

 PxsOpen3_3 ( &Stream29, &Stream30,Width);//Morphological open 3*3 

 PxsClose3_13 (&Stream30, &Stream31, Width);//Morphological close 3*13 

 PxsLabelBlobs1(&Stream31, &Label, Width, &Blobs, ClockRate);//CCA 

       

   /* 

    * NP Selection 

    */ 

   while(1) 

     {   

      

    unsigned  i; 

      

     PxsAwaitVSync (&Stream31); 

     

     do 

      { 

      delay; 

      }while(PxsBlobListNumBlobs (&Blobs)==0);   

      PxsBlobListLock (&Blobs); 

 

      for(i=1;i<=PxsBlobListNumBlobs (&Blobs);i++) 

     { 

      

     PxsBlobListGetBoundingBox (&Blobs, i,  &X0, &Y0, &X1, &Y1); 

     par 

     {    

     wid = Y1-Y0; 

     len = X1-X0; 

     } 

     Divide(len, wid, &rate);                 
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      if(rate>=3 & rate <=6 & len >=60 & wid >=20 & len <=240& wid <=50) 

//rate>4 && rate<6 

      { 

        

      PalSevenSegWriteDigit (PalSevenSegCT (0), rate[3:0], 0); 

      PxsBlobListGetArea(&Blobs, i, &area); 

      

      if(area>1500 & area<15000 &Y0>30&Y0<450&Y1>50&Y1<460 ) 

      { 

      par 

      { 

       X0_ = X0 ; 

       Y0_ = Y0 ; 

       X1_ = X1 +3; 

       Y1_ = Y1 ; 

         

      }   

      t = 1; 

      } 

     else 

     { 

      delay; 

     } 

      } 

         

      

     else 

     { 

       delay; 

     }  

     } 

      if (t==0) 

     { 

       for(i=1;i<=PxsBlobListNumBlobs (&Blobs);i++) 

      { 

        

       PxsBlobListGetBoundingBox (&Blobs, i,  &X0, &Y0, &X1, &Y1); 

       par 

       {    

       wid = Y1-Y0; 

       len = X1-X0; 

       } 

       Divide(len, wid, &rate);                 
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if((rate>=2 && rate <=4 && len >=90 && wid >=28 && len  <=      

200 && wid <=55)  

       |(rate<=9&rate>=6&len>=150&wid<=30&wid>=12&len<=300) 

       |(rate>=3&rate<=6&len>=70&wid<=30&wid>=15&len<=200)  ) 

        { 

         

        PxsBlobListGetArea(&Blobs, i, &area); 

        if(area>900 & area<15000 ) 

         { 

        par 

         { 

          X0_ = X0 ; 

          Y0_ = Y0 ; 

          X1_ = X1+3 ; 

          Y1_ = Y1 ; 

         } 

         t=1; 

         } 

          

        } 

       }    

      

      }        

  PxsBlobListUnlock (&Blobs);      

   } 

   } 

} 

C.1.2 FPGA Chip Layout for Number Plate Localisation Implementation 

 

Figure C-1: FPGA Chip layout for the proposed NPL implementation 
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C.2 Character Segmentation Implementation 

C.2.1 Sample Codes for Character Segmentation Implementation 

The CS implementation mainly consists of two modules: vertical and horizontal 

projection modules. The two modules are implemented in pipeline manner, the horizontal 

projection module starts to work when the first vertical position set are localised from the 

vertical projection module. The partial code script for CS implementation is shown below. 

/* 

 * Vertically Reading memory and performing morphological operations 

 */         

         par{ 

                do 

                { 

                    par 

                    { 

                    seq{ 

                    par{  

                      do 

                      { 

                           if(readable) 

                            {   

                                delay;   

                            } 

                             

                            PalPL2RAMSetReadAddress (PL2RAM, Address); 

                  

                        delay; 

                        par 

                            { 

                                PalPL2RAMRead (PL2RAM, &ReadData); 

                                Address = Address + N; 

                            } 

                          D1++;   

                        if(ReadData[0]) 

                            { 

                                

                               z[0]=1; 

                                if(D1==1||D1==M1) 
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                               { 

                                   u++; 

                               } 

 

                            } 

                        else 

                            { 

                                z[0]=0; 

                            } 

                             

                            Temp1=1; 

                                

                         

                        }  while (D1!=M1); 

                             

                     do{  

                       if(Temp1||D1==M1){   

                       if(mark==0)   

                       {  

                           par{ 

                                    if (D2>=2&&D2<=0@(M1)) 

                                    

                                    { 

                                        Erode (z[0], z[1], z[2], z[3]); 

                                    } 

                                    else 

                                    { 

                                        delay; 

                                    } 

                                    if (D2>=4&&D2<=0@(M1+2)) 

                                    { 

                                        Dilate(z[3], z[4], z[5], z[6]); 

                                        

                                    } 

                                    else 

                                    { 

                                        delay; 

                                    } 

                                    if (D2>=6&&D2<=0@(M1+4)) 

                                    { 

                                        Dilate(z[6], z[7], z[8], z[9]); 

                                    } 

                                    else 
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                                    { 

                                        delay; 

                                    } 

                                 z[8]=z[7]; 

                                 z[7]=z[6]; 

                                 z[5]=z[4]; 

                                 z[4]=z[3]; 

                                 z[2]=z[1]; 

                                 z[1]=z[0]; 

                                 if(z[9]) 

                                    { 

                                        u++; 

                                    } 

                                    else 

                                    { 

                                        delay; 

                                    } 

                                        D2++; 

                                        

                                        Temp1=0; 

                            } 

                        } 

                        else 

                        { 

                            if(D2<=0@(M1)){ 

                            par 

                                { 

                            if (D2>=2&&D2<=0@(M1)) 

                                { 

                                    Dilate(z[0], z[1], z[2], Temp2); 

  

                                }  

                                else 

                                { 

                                    delay; 

                                } 

                                 

                                    if (Temp2) 

                                        { 

                                            u++; 

                                        } 

                                    else 

                                    { 
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                                        delay; 

                                    } 

                                    D2++;    

                                    z[2]=z[1]; 

                                    z[1]=z[0]; 

                                    Temp1=0; 

                                } 

                            } 

                            else 

                            { 

                                D2++; 

                            } 

                        } 

                    } 

                    else 

                    { 

                        delay; 

                    } 

                    }while(D2!=M1+4); 

                } 

                     

                       par  

                    { 

                        tt1=1; 

                        u_temp=u; 

                        u=0; 

                        z[0]=0; 

                        z[1]=0; 

                        z[2]=0; 

                        z[4]=0; 

                        z[5]=0; 

                        z[6]=0; 

                        z[7]=0; 

                        z[8]=0; 

                        z[9]=0; 

                        D2=0; 

                        D1=0; 

                        Temp2=0; 

                        Address = Address - A1 + 1; 

                    } 

                     

                }                     
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/* 

 * Horizontally Reading memory and performing morphological close operation 

 */         

par{ 

                 

         seq{    

                  par{   

                    do 

                    { 

                         

                        

                       readable=1;      

                       PalPL2RAMSetReadAddress (PL2RAM, Address1); 

                       readable=0;  

                        par 

                            { 

                                PalPL2RAMRead (PL2RAM, &ReadData1); 

                                Address1++; 

                            } 

                            D3++; 

                        if(ReadData1[0]) 

                            { 

                                z_[0]=1; 

                                if(D3==1||D3==w1) 

                               { 

                                   v++; 

                               } 

                            } 

                        else 

                            { 

                                z_[0]=0; 

                            } 

                            Temp5=1; 

                       }while(D3!=w1); 

                    do 

                     { 

                         if(Temp5){ 

                        par 

                            { 

                             if (D4>=2) 

                            { 

                                Dilate (z_[0], z_[1], z_[2], Temp4); 

                            } 
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                            else 

                            { 

                                delay; 

                            } 

                             

                                if(Temp4) 

                                { 

                                    v++; 

                                } 

                                else 

                                { 

                                  delay; 

                                } 

                                Temp5=0; 

                                D4++;    

                                z_[2]=z_[1]; 

                                z_[1]=z_[0];  

                            } 

                        } 

                        else 

                        { 

                            delay; 

                        } 

                    }  while (D4 !=w1); 

                } 

                par 

                    { 

                        v_temp=v; 

                        z_[0]=0; 

                        z_[1]=0; 

                        z_[2]=0; 

                        z_[3]=0; 

                        D3=0; 

                        D4=0; 

                        Address1 = Address1 + N-w2; 

                        v=0; 

                        tt4=1; 

                    }      

              } 
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C.2.2 FPGA Chip Layout for Character Segmentation Implementation 

 

Figure C-2: FPGA Chip layout for the proposed CS implementation 

C.3 Optical Character Recognition Implementation 

C.3.1 Sample Codes for Optical Character Recognition Implementation 

The OCR implementation consists of two NN layers: hidden and output layers. Pipelining 

is used in their implementations to achieve high throughput. Fixed-point arithmetic is used 

to represent the proposed NN weights and perform their calculations. The partial code 

scripts are shown below. 

/* 

 * Fix-point declaration 

 */ 

typedef FIXED_SIGNED(10, 14) MyFixed; 

typedef FIXED_UNSIGNED(11, 14) MyFixed2; 

/* 

 * Hidden layer 

 */   

          par 

   { 

    PalPL2RAMSetReadAddress (PL2RAM0, Address); 

    PalPL2RAMSetReadAddress (PL2RAM1, Address); 

    PalPL2RAMSetReadAddress (PL2RAM2, Address); 

   } 

  delay;     
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  par 

   { 

    PalPL2RAMRead (PL2RAM0, &T1); 

    PalPL2RAMRead (PL2RAM1, &T2); 

    PalPL2RAMRead (PL2RAM2, &T3); 

    Address++; 

   } 

   img=img1[i]; 

  par 

   { 

     if(img[1]==0) 

     { 

       

    if(T1[15]==1) 

      { 

     fix2.FixedIntBits=(-1@(signed)(T1[15:14])); 

      } 

      else 

      { 

     fix2.FixedIntBits=(signed)(0@T1[15:14]); 

      } 

    if(T1[13]==1) 

    { 

     fix2.FixedFracBits=(-1@(signed)T1[12:0]); 

    } 

       

    else 

      { 

     fix2.FixedFracBits=(signed)(T1[13:0]);   

      } 

     } 

     else 

     { 

      par 

      { 

     fix2.FixedIntBits=0; 

     fix2.FixedFracBits=0; 

      } 

     } 

     if(img[0]==0) 

     { 

    if(T1[31]==1) 

      {  
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     fix1.FixedIntBits=(-1@(signed)(T1[31:30])); 

      } 

      else 

      { 

       fix1.FixedIntBits=(signed)(0@T1[31:30]); 

      } 

    if(T1[29]==1) 

    { 

     fix1.FixedFracBits=(-1@(signed)(T1[28:16])); 

    } 

      else 

      { 

      

     fix1.FixedFracBits=(signed)(T1[29:16]); 

      } 

     } 

     else 

     { 

      par 

      { 

     fix1.FixedIntBits=0; 

     fix1.FixedFracBits=0; 

      } 

     } 

     if(img[3]==0) 

     { 

    if(T2[15]==1) 

      { 

     fix4.FixedIntBits=(-1@(signed)(T2[15:14])); 

      

      } 

      else 

      { 

       fix4.FixedIntBits=(signed)(0@T2[15:14]); 

      } 

      if(T2[13]==1) 

      { 

      fix4.FixedFracBits=(-1@(signed)T2[12:0]);  

      } 

    else 

      { 

      

     fix4.FixedFracBits=(signed)(T2[13:0]);   
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      } 

     

     } 

     else 

     { 

      par 

      { 

     fix4.FixedIntBits=0; 

     fix4.FixedFracBits=0; 

      } 

     } 

     if(img[2]==0) 

     { 

      if(T2[31]==1) 

      {  

     fix3.FixedIntBits=(-1@(signed)(T2[31:30])); 

       

      } 

      else 

      { 

       fix3.FixedIntBits=(signed)(0@T2[31:30]); 

      } 

      if(T2[29]==1) 

      { 

       fix3.FixedFracBits=(-1@(signed)(T2[28:16]));  

      } 

      else 

      { 

      

       fix3.FixedFracBits=(signed)(T2[29:16]); 

      } 

     } 

     else 

     { 

      par 

      { 

     fix3.FixedIntBits=0; 

     fix3.FixedFracBits=0; 

      } 

     } 

     if(img[5]==0) 

     { 

     if(T3[15]==1) 
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      { 

     fix6.FixedIntBits=(-1@(signed)(T3[15:14])); 

      } 

      else 

      { 

       fix6.FixedIntBits=(signed)(0@T3[15:14]); 

      } 

      if(T3[13]==1) 

      { 

       fix6.FixedFracBits=(-1@(signed)(T3[12:0])); 

      } 

    else 

      { 

      

       fix6.FixedFracBits=(signed)(T3[13:0]); 

      } 

     } 

     else 

     { 

      par 

      { 

     fix6.FixedIntBits=0; 

     fix6.FixedFracBits=0; 

      } 

     } 

     if(img[4]==0) 

     { 

    if(T3[31]==1) 

      {  

     fix5.FixedIntBits=(-1@(signed)(T3[31:30])); 

      } 

      else 

      { 

       fix5.FixedIntBits=(signed)(0@T3[31:30]); 

      } 

      if(T3[29]==1) 

      { 

       fix5.FixedFracBits=(-1@(signed)T3[28:16]); 

      } 

      else 

      { 

       fix5.FixedFracBits=(signed)(T3[29:16]); 

      } 
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     } 

     else 

     { 

      par 

      { 

     fix5.FixedIntBits=0; 

     fix5.FixedFracBits=0; 

      } 

     } 

   } 

   par 

   { 

    fix_t1=FixedAdd(fix1, fix2); 

    fix_t2=FixedAdd(fix3, fix4); 

    fix_t3=FixedAdd(fix5, fix6); 

   } 

   fix_f1.FixedIntBits=fix_N[m].FixedIntBits; 

   fix_f1.FixedFracBits=fix_N[m].FixedFracBits; 

   par 

   { 

    fix_t4=FixedAdd(fix_t1, fix_t2); 

    fix_t5=FixedAdd(fix_t3, fix_f1); 

   } 

   fix_f1=FixedAdd(fix_t4, fix_t5); 

   fix_N[m].FixedIntBits=fix_f1.FixedIntBits; 

   fix_N[m].FixedFracBits=fix_f1.FixedFracBits; 

   if(Address%125==0) 

   { 

      

    m++; 

    fix_N[m].FixedIntBits=0; 

    fix_N[m].FixedFracBits=0; 

    i=0; 

    m_temp=1; 

   } 

   else 

   { 

   i++; 

   } 

/* 

 * Output layer 
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 */  

   par 

  {   

    seq 

   { 

    do{ 

    do 

    { 

    if(lw[lwi][15]==1) 

     {  

     lw_t[lw_ti].FixedIntBits=-1@(signed)(lw[lwi][15:14]); 

     } 

    else 

     { 

     lw_t[lw_ti].FixedIntBits=(signed)(0@lw[lwi][15:14]); 

     } 

    if(lw[lwi][13]==1) 

     { 

     lw_t[lw_ti].FixedFracBits=-1@(signed)(lw[lwi][12:0]); 

     } 

    else 

     { 

     lw_t[lw_ti].FixedFracBits=(signed)(lw[lwi][13:0]); 

     } 

     lw_ti++; 

     lwi++; 

    }while(lw_ti!=0); 

      

    par 

    { 

     fix_lw_mu1 = FixedMultSigned(lw_t[0],fix_f); 

     fix_lw_mu2 = FixedMultSigned(lw_t[1],fix_f); 

    } 

    fix_N2[N2i]=FixedAdd(fix_N2[N2i],fix_lw_mu1); 

    N2i++; 

    fix_N2[N2i]=FixedAdd(fix_N2[N2i],fix_lw_mu2); 

    N2i++;   

     }while(N2i!=0); 

       

     if(lwi==1600) 

      { 

      do{ 
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     do{   

     if(lb[ibi][15]==1) 

     {  

     lw_t[lw_ti].FixedIntBits=-1@(signed)(lb[ibi][15:14]); 

     } 

       else 

     { 

     lw_t[lw_ti].FixedIntBits=(signed)(0@lb[ibi][15:14]); 

     } 

       if(lb[ibi][13]==1) 

     { 

     lw_t[lw_ti].FixedFracBits=-1@(signed)(lb[ibi][12:0]); 

     } 

       else 

     { 

     lw_t[lw_ti].FixedFracBits=(signed)(lb[ibi][13:0]); 

     } 

     lw_ti++; 

     ibi++; 

      }while(lw_ti!=0); 

      par{ 

      fix_N2[N2i]=FixedAdd(fix_N2[N2i],lw_t[0]); 

      fix_N2[N2i+1]=FixedAdd(fix_N2[N2i+1],lw_t[1]); 

      } 

      N2i=N2i+2;  

      m_temp2=1; 

     }while(N2i!=0); 

     } 

     else 

     { 

      delay; 

     } 

   } 

    seq 

   { 

    fix_tt1=fix_N[m_1]; 

     if(FixedGT(fix_tt1,fix_5)||FixedLT(fix_tt1,fix__5)) 

    { 

     if(FixedLT(fix_tt1,fix__5)) 

     { 

      par 

      { 

       fix_f.FixedIntBits=-1; 
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       fix_f.FixedFracBits=0; 

      } 

     } 

     else 

     { 

      par 

      { 

       fix_f.FixedIntBits=1; 

       fix_f.FixedFracBits=0; 

      } 

     }   

    } 

     else 

    { 

     fix7=FixedAdd(fix_N[m_1], fix_5); 

     sig_temp=FixedCastSigned(FIXED_ISUNSIGNED, 11, 14, fix7); 

     fix8=FixedMultUnsigned(sig_temp, fix_100); 

     i1=(unsigned)FixedToInt(fix8); 

     a=Tan_sig[i1]; 

     par 

     {  

      if(a[15]==1) 

      {  

      fix_f.FixedIntBits=-1@(signed)(a[15:14]); 

      } 

      else 

      { 

      fix_f.FixedIntBits=(signed)(0@a[15:14]); 

      } 

      if(a[13]==1) 

      { 

      fix_f.FixedFracBits=-1@(signed)(a[12:0]); 

      } 

      else 

      { 

      fix_f.FixedFracBits=(signed)(a[13:0]); 

      } 

     } 

    } 

   } 

  } 
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C.3.2 FPGA Chip Layout for Optical Character Recognition Implementation 

 

Figure C-3: FPGA Chip layout for the proposed OCR implementation 

C.4 Pre-processing Implementation 

C.4.1 Sample Codes for Pre-processing Implementation 

The pre-processing implementation consists of binarisation and adjustment modules, they 

are running in pipeline manner to achieve high throughput. The adjustment module starts to 

work after the first processed pixel is generated from the binarisation module. The partial 

code scripts of pre-processing implementation are shown below. 

/* 

 * Binarisation 

 */ 

par 

{ 

 LineBuffer.W[HY[5:0]-3] = ((WX!=0)?(Yout<<8)+adju(Y,56):(Y@Y@Y@Y@Y@Y@Y)); 

  

 if(WX>=3) 

 { 

  if(HY!=3) 

  { 

 par 

 { 
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  par (j = 0; j < 7; j++) 

  { 

   par (i = 0; i < 8; i++) 

   { 

    Matrix_8x8[j][i] = Matrix_8x8[j + 1][i]; 

   } 

  } 

   

  Matrix_8x8[7][0] = Yout[55:48]; 

  Matrix_8x8[7][1] = Yout[47:40]; 

  Matrix_8x8[7][2] = Yout[39:32]; 

  Matrix_8x8[7][3] = Yout[31:24]; 

  Matrix_8x8[7][4] = Yout[23:16]; 

  Matrix_8x8[7][5] = Yout[15:8]; 

  Matrix_8x8[7][6] = Yout[7:0]; 

  Matrix_8x8[7][7] = Y; 

   

  if(HY>=7) 

  { 

   par 

   { 

     

   par 

   { 

    S[0] = adju(Matrix_8x8[0][0], 16) + adju(Matrix_8x8[0][1], 16) 

    + adju(Matrix_8x8[0][2], 16) + adju(Matrix_8x8[0][3], 16); 

    S[1] = adju(Matrix_8x8[0][4], 16) + adju(Matrix_8x8[0][5], 16) 

    + adju(Matrix_8x8[0][6], 16) + adju(Matrix_8x8[0][7], 16); 

    S[2] = adju(Matrix_8x8[1][0], 16) + adju(Matrix_8x8[1][1], 16) 

    + adju(Matrix_8x8[1][2], 16) + adju(Matrix_8x8[1][3], 16); 

    S[3] = adju(Matrix_8x8[1][4], 16) + adju(Matrix_8x8[1][5], 16) 

    + adju(Matrix_8x8[1][6], 16) + adju(Matrix_8x8[1][7], 16); 

    S[4] = adju(Matrix_8x8[2][0], 16) + adju(Matrix_8x8[2][1], 16) 

    + adju(Matrix_8x8[2][2], 16) + adju(Matrix_8x8[2][3], 16); 

    S[5] = adju(Matrix_8x8[2][4], 16) + adju(Matrix_8x8[2][5], 16) 

    + adju(Matrix_8x8[2][6], 16) + adju(Matrix_8x8[2][7], 16); 

    S[6] = adju(Matrix_8x8[3][0], 16) + adju(Matrix_8x8[3][1], 16) 

    + adju(Matrix_8x8[3][2], 16) + adju(Matrix_8x8[3][3], 16); 

    S[7] = adju(Matrix_8x8[3][4], 16) + adju(Matrix_8x8[3][5], 16) 

    + adju(Matrix_8x8[3][6], 16) + adju(Matrix_8x8[3][7], 16); 

    S[8] = adju(Matrix_8x8[4][0], 16) + adju(Matrix_8x8[4][1], 16) 

    + adju(Matrix_8x8[4][2], 16) + adju(Matrix_8x8[4][3], 16); 

    S[9] = adju(Matrix_8x8[4][4], 16) + adju(Matrix_8x8[4][5], 16) 
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    + adju(Matrix_8x8[4][6], 16) + adju(Matrix_8x8[4][7], 16); 

    S[10] = adju(Matrix_8x8[5][0], 16) + adju(Matrix_8x8[5][1], 16) 

    + adju(Matrix_8x8[5][2], 16) + adju(Matrix_8x8[5][3], 16); 

    S[11] = adju(Matrix_8x8[5][4], 16) + adju(Matrix_8x8[5][5], 16) 

    + adju(Matrix_8x8[5][6], 16)+ adju(Matrix_8x8[5][7], 16); 

    S[12] = adju(Matrix_8x8[6][0], 16) + adju(Matrix_8x8[6][1], 16) 

    + adju(Matrix_8x8[6][2], 16) + adju(Matrix_8x8[6][3], 16); 

    S[13] = adju(Matrix_8x8[6][4], 16) + adju(Matrix_8x8[6][5], 16) 

    + adju(Matrix_8x8[6][6], 16) + adju(Matrix_8x8[6][7], 16); 

    S[14] = adju(Matrix_8x8[7][0], 16) + adju(Matrix_8x8[7][1], 16) 

    + adju(Matrix_8x8[7][2], 16) + adju(Matrix_8x8[7][3], 16); 

    S[15] = adju(Matrix_8x8[7][4], 16) + adju(Matrix_8x8[7][5], 16) 

    + adju(Matrix_8x8[7][6], 16) + adju(Matrix_8x8[7][7], 16); 

    if(HY>=8) 

    { 

     par 

     { 

      Q[0] = S[0] + S[1] + S[2] + S[3]; 

      Q[1] = S[4] + S[5] + S[6] + S[7]; 

      Q[2] = S[8] + S[9] + S[10] + S[11]; 

      Q[3] = S[12] + S[13] + S[14] + S[15]; 

      if(HY>=9) 

      { 

       par 

       { 

      Y_average = (signed)adju((Q[0] + Q[1] + Q[2] + Q[3])>>6, 9) ; 

     Y_filted = Y_average -(signed)adju(Matrix_8x8[2][4],9) - 12;// 

         

        if(Y_filted>=-5) 

        { 

         par 

         { 

               PixelsBuffer.W[PixelsBuffer_index_W] = 1; 

         PixelsBuffer_index_W++; 

         } 

        } 

        else 

        { 

         par 

         { 

             

          PixelsBuffer.W[PixelsBuffer_index_W] = 0; 

          PixelsBuffer_index_W++; 
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         } 

        } 

       } 

      } 

      else 

      { 

       delay; 

      } 

     } 

    } 

    else 

    { 

     delay; 

    } 

   } 

  } 

  } 

  else 

  { 

   delay; 

  } 

} 

 

/* 

 * Adjustment 

 */ 

par 

{ 

 

temp1 = adjs(adju(HY1,10), 11); 

temp2 = Hei_half - (adjs(adju(HY1,10),11)); 

temp5 = adjs(adju(Hei,8),11) - adjs(adju(HY1,10), 11); 

HY1++; 

if(HY1!=0) 

{ 

 par 

 { 

  temp6 = temp5/adjs(Tan_a_trible,11); 

  HYnew = adjs(((temp1) + (adjs(WX1,11) - Len_half)/adjs(Tan_a,11)),7); 

  WXnew = adjs(adjs(adju(WX1,10), 11) + temp2/adjs(Tan_a,11),10); 

   

  HYnew_= HYnew; 
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  WXnew_align = WXnew - adjs(temp6,10); 

   

    // stage 1 

  HYnew_1= HYnew_; 

  WXnew_= WXnew_align; 

    // stage 2  

  HYnew_2 = HYnew_1; 

  WXnew_1 = WXnew_; 

    // stage 3 

  HYnew_3 = HYnew_2; 

  WXnew_2 = WXnew_1; 

    // stage 4 

  HYnew_4 = HYnew_3; 

  WXnew_3 = WXnew_2; 

   

  temp3 = adju(HYnew_1,18) + temp4; 

  temp4 = adju(WXnew_align,18) * adju(Hei,18); 

    

    // PixelsBuffer_index_R = ((temp3)%256)[7:0]; 

    PixelsBuffer_index_R = ((temp3))[15:0]; 

  if(HYnew_4>=0 && WXnew_3>=0 && HY1>=(6+H_dif[6:0])) 

  { 

   par 

   { 

     

    if(adju(HYnew_4,7)<=Hei && adju(WXnew_3,9)<=Len ) 

    { 

     par 

     { 

      Outputpixel = PixelsBuffer.R[PixelsBuffer_index_R]; 

      sign2 = 1; 

      if(sign2) 

      { 

        

         par 

       { 

        ImageBuffer_V.W[index1] = Outputpixel; 

        ImageBuffer_H.W[index2] = Outputpixel; 

        index1++; 

        index2++; 

       } 

      } 

      else 
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      { 

       delay; 

      } 

     } 

    } 

    else 

    { 

     par 

     { 

      ImageBuffer_V.W[index1] = 0; 

      ImageBuffer_H.W[index2] = 0; 

      index1++; 

      index2++; 

     } 

    } 

   } 

  } 

  else 

  { 

   if(HY1>=(6+H_dif[6:0])) 

   { 

    par 

    { 

     ImageBuffer_V.W[index1] = 0; 

     ImageBuffer_H.W[index2] = 0; 

     index1++; 

     index2++; 

    } 

   } 

   else 

   { 

    delay; 

   } 

  } 

 

 } 

} 

else 

{ 

 delay; 

} 

} 
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C.4.2 FPGA Chip Layout for Pre-processing Implementation 

 

Figure C-4: FPGA Chip layout for the proposed pre-processing implementation 

C.5 Entire ANPR Implementation 

C.5.1 Sample Codes for Entire ANPR Implementation 

The previous NPL, CS, OCR and pre-processing module are linked together to form the 

entire ANPR FPGA implementation, where the modules are running in parallel and 

pipelining manner. The entire ANPR system consists of two parts, RC240 FPGA 

development board and a GUI running in a host application. The pseudocode scripts are 

shown below. 

/* 

 * Host application pseudocode 

 */ 

do 

{ 

    load car image(n) from hardisk; 

    for (i=1;i<=image_size;i++) 

    { 

        usb_write(pixel.R(i)); 

        usb_write(pixel.G(i)); 

        usb_write(pixel.B(i)); 

    } 

    usb_read(NP.X0, NP.Y0, NP.X1, NP.Y1); 

    plot_rectangluar(NP.X0, NP.Y0, NP.X1, NP.Y1); 



Appendix C                       Sample Codes and FPGA Chip Layouts for ANPR Implementation 

200 

 

    usb_read(adjusted_NP_width); 

    usb_read(adjusted_NP_height); 

    for (t=1; t<=adjusted_NP_width*adjusted_NP_hight;t++) 

    { 

      usb_read(adjusted_NP_pixel(t)); 

    } 

    plot(adjusted_NP); 

    usb_read(number_characted_segmented); 

    for (t=1; t<=number_characted_segmented;t++) 

    { 

      usb_read(segmented_characte_.X0); 

      usb_read(segmented_characte_.Y0); 

      usb_read(segmented_characte_.X1); 

      usb_read(segmented_characte_.Y1); 

      plot_rectangluar(segmented_characte_.X0,  

      segmented_characte_.Y0, segmented_characte_.X1,  

      segmented_characte_.Y1); 

    } 

    for (t=1; t<=number_characted_segmented;t++) 

    { 

      usb_read(recognised_character); 

      display(recognised_character); 

    } 

    n++; 

}while(1); 

/* 

 * FPGA Implementation pseudocode 

 */ 

void main() 

{ 

    par 

    { 

        do 

        { 

            par 

            { 

                set_memory_address (PL2RAM0, Address); 

                seq 

                    { 

                        usb_Read (USBMicro, &(R)); 

                        PalDataPortRead (USBMicro, &(G)); 

                        PalDataPortRead (USBMicro, &(B)); 

                    } 



Appendix C                       Sample Codes and FPGA Chip Layouts for ANPR Implementation 

201 

 

            } 

            par 

            { 

                memory_write (PL2RAM0, 0 @ R @ G @ B); 

                Address++; 

            } 

        } while (Address != image_size); 

        NPL_module(); 

        while(1) 

        {   

            if (NP_candidate == 1) 

            { 

                NP = NP_selection(); 

                if(NP == 1) 

                { 

                    usb_write(NP_coordinates); 

                } 

            } 

        } 

        while(1) 

        {   

            if (NP == 1) 

            { 

                binarised_NP = NP_binarisation(); 

            } 

        } 

        while(1) 

        {   

            if (binarised_NP == 1) 

            { 

                adjusted_NP = NP_adjustment(); 

                usb_write(adjusted_NP_size); 

                usb_write(adjusted_NP); 

            } 

        } 

        while(1) 

        {   

            if (adjusted_NP == 1) 

            { 

                segmented_character = CS_module(); 

                usb_write(number_segemented_character); 

                usb_write(segmented_character); 

            } 
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        } 

        while(1) 

        {   

            if (segmented_character == 1) 

            { 

                recognised_character = OCR_module(); 

                usb_write(recognised_character); 

            } 

        } 

         

    } 

} 

C.5.2 FPGA Chip Layout for Entire ANPR Implementation 

 

Figure C-5: FPGA Chip layout for the entire ANPR implementation 

 


