

Automatic Number Plate Recognition on

FPGA

Xiaojun Zhai

A thesis submitted in partial fulfilment

of the requirements of the University of Hertfordshire

for the degree of Doctor of Philosophy

The programme of research was carried out in the Science and

Technology Research Institute (STRI), University of Hertfordshire,

United Kingdom.

January 2013

Abstract Automatic Number Plate Recognition on FPGA

i

Abstract

Intelligent Transportation Systems (ITSs) play an important role in modern traffic

management, which can be divided into intelligent infrastructure systems and intelligent

vehicle systems. Automatic Number Plate Recognition systems (ANPRs) are one of

infrastructure systems that allow users to track, identify and monitor moving vehicles by

automatically extracting their number plates. ANPR is a well proven technology that is

widely used throughout the world by both public and commercial organisations. There are a

wide variety of commercial uses for the technology that include automatic congestion

charge systems, access control and tracing of stolen cars. The fundamental requirements of

an ANPR system are image capture using an ANPR camera and processing of the captured

image. The image processing part, which is a computationally intensive task, includes three

stages: Number Plate Localisation (NPL), Character Segmentation (CS) and Optical

Character Recognition (OCR). The common hardware choice for its implementation is

often high performance workstations. However, the cost, compactness and power issues

that come with these solutions motivate the search for other platforms. Recent

improvements in low-power high-performance Field Programmable Gate Arrays (FPGAs)

and Digital Signal Processors (DSPs) for image processing have motivated researchers to

consider them as a low cost solution for accelerating such computationally intensive tasks.

Current ANPR systems generally use a separate camera and a stand-alone computer for

processing. By optimising the ANPR algorithms to take specific advantages of technical

features and innovations available within new FPGAs, such as low power consumption,

development time, and vast on-chip resources, it will be possible to replace the high

performance roadside computers with small in-camera dedicated platforms. In spite of this,

costs associated with the computational resources required for complex algorithms together

with limited memory have hindered the development of embedded vision platforms.

The work described in this thesis is concerned with the development of a range of image

Abstract Automatic Number Plate Recognition on FPGA

ii

processing algorithms for NPL, CS and OCR and corresponding FPGA architectures.

MATLAB implementations have been used as a proof of concept for the proposed

algorithms prior to the hardware implementation. The proposed architectures are

speed/area efficient architectures, which have been implemented and verified using the

Mentor Graphics RC240 FPGA development board equipped with a 4M Gates Xilinx

Virtex-4 LX40. The proposed NPL architecture can localise a number plate in 4.7 ms whilst

achieving a 97.8% localisation rate and consuming only 33% of the available area of the

Virtex-4 FPGA. The proposed CS architecture can segment the characters within a NP

image in 0.2-1.4 ms with 97.7% successful segmentation rate and consumes only 11% of

the Virtex-4 FPGA on-chip resources. The proposed OCR architecture can recognise a

character in 0.7 ms with 97.3% successful recognition rate and consumes only 23% of the

Virtex-4 FPGA available area. In addition to the three main stages, two pre-processing

stages which consist of image binarisation, rotation and resizing are also proposed to link

these stages together. These stages consume 9% of the available FPGA on-chip resources.

The overall results achieved show that the entire ANPR system can be implemented on a

single FPGA that can be placed within an ANPR camera housing to create a stand-alone

unit. As the benefits of this are drastically improve energy efficiency and removing the

need for the installation and cabling costs associated with bulky PCs situated in expensive,

cooled, waterproof roadside cabinets.

Certificate of Originality Automatic Number Plate Recognition on FPGA

iii

Certificate of Originality

I hereby certify that the work presented in this report is my original research and has not

been presented for a higher degree at any other university or institute.

 Signed: Dated: 16/06/2013

 (Xiaojun Zhai)

Acknowledgments Automatic Number Plate Recognition on FPGA

iv

Acknowledgments

My first thanks go to my principle supervisor, Dr. Faycal Bensaali for providing his

professionalism, caring and friendly support throughout my research.

I also very appreciate the guidance and help provided by my second supervisor Dr.

Soodamani Ramalingam.

I would like also to thank my family for their financial support during the research, without

them I cannot undertake this research.

I would also like to thank my wife for fully supporting my research, without her support I

cannot reach this achievement.

Special thanks Prof. Yichuang Sun and Dr. Lily Meng for their valuable discussions and

suggestions.

This is also a great opportunity to thank Prof. Reza Sotudeh for his financial support and

allowing me to attend the conference and training.

Many thanks to all academic and technical staff of the School of Engineering and

Technology, especially Dr. George Pissanidis, Mr Johann Siau, Mrs Scarlett Xiao, Mr Tony

Cook, Mr John Wilmot and Mr Colin Manning.

Last but not least, I am also thankful to my colleagues including Dr. Wansu Lim and Mr

Ahmed Amate for establishing a friendly working environment.

Author’s Publication Automatic Number Plate Recognition on FPGA

v

Author’s Publication

Journal Papers

Published

 X. Zhai, F. Bensaali and S. Ramalingam, “Improved Number Plate Localisation

Algorithm and its Efficient FPGA Implementation”, IET Circuits, Devices & Systems,

vol.7, issue 2, pp. 93-103, Jan, 2013.

 X. Zhai, F. Bensaali and R. Sotudeh, “FPGA-based Number Plate Binarisation and

Adjustment for ANPR Systems”, SPIE Journal of Electronic Imaging, vol. 22, issue 1,

pp. 1-11, Jan, 2013.

 X. Zhai, F. Bensaali, “Improved Number Plate Character Segmentation Algorithm and

Its Efficient FPGA Implementation”, Journal of Real-time Image Processing, Springer,

DOI: 10.1007/s11554-012-0258-5, pp. 1-13, June, 2012.

Accepted

 X. Zhai, F. Bensaali and R. Sotudeh, “Real-Time Optical Character Recognition on

FPGA for ANPR”, accepted for publication in IET Circuits, Devices & Systems, May,

2013.

Conference Papers

 X. Zhai, F. Bensaali and R. Sotudeh, “OCR-Based Neural Network for ANPR”, in

Proceedings of IEEE International Conference on Image Systems and Techniques

(IST), pp. 393-397, UK, July, 2012.

 X. Zhai, F. Bensaali and S. Ramalingam, “Real-Time License Plate Localisation on

FPGA”, in the proceedings of IEEE Computer Vision and Pattern Recognition

Workshops, pp. 14-19, USA, June, 2011.

Author’s Publication Automatic Number Plate Recognition on FPGA

vi

 X. Zhai, F. Bensaali and S. Ramalingam, “License Plate Localisation based on

Morphological Operations”, in the proceedings of 11th International Conference on

Control, Automation, Robotics and Vision, pp. 1128-1132, Singapore, December,

2010.

Table of Contents Automatic Number Plate Recognition on FPGA

vii

Table of Contents

Abstract ... i

Certificate of Originality ... iii

Acknowledgments .. iv

Author’s Publication .. v

Journal Papers .. v

Conference Papers .. v

List of Figures ... xiv

List of Tables... xviii

Abbreviations ... xx

Chapter 1: Introduction .. 1

1.1 ANPR systems .. 1

1.2 Hardware Solutions for ANPR Systems ... 3

1.2.1 Digital Signal Processors ... 4

1.2.2 Graphic Processing Unit .. 4

1.2.3 Special Purpose Application Specific Integrated Circuits 5

1.2.4 Field Programmable Gate Arrays .. 6

1.3 Research Motivations and Objectives ... 14

1.4 Organisation of the Thesis... 15

Chapter 2: Related Work ... 16

2.1 Introduction ... 16

2.2 Number Plate Localisation .. 16

2.2.1 Edge Detection based Algorithms.. 16

Table of Contents Automatic Number Plate Recognition on FPGA

viii

2.2.2 Colour Processing based Algorithms ... 18

2.2.3 Texture-based Algorithms .. 20

2.2.4 Discussion .. 21

2.3 Character Segmentation .. 22

2.3.1 Projections and Binary Image Processing Algorithms 23

2.3.2 Contours Tracking Algorithms... 24

2.3.3 Classifiers Based Algorithms ... 26

2.3.4 Discussion .. 27

2.4 Optical Character Recognition .. 28

2.4.1 Statistical Classifiers .. 28

2.4.2 Artificial Neural Networks .. 30

2.4.3 Pattern Matching .. 31

2.4.4 Discussion .. 33

2.5 Hardware based ANPR System ... 34

2.5.1 DSP-based ANPR System ... 34

2.5.2 Hybrid DSP /FPGA-based NPL System .. 36

2.5.3 FPGA-based ANPR System... 36

2.5.4 FPGA-based NPL System.. 38

2.5.5 Discussion .. 41

2.6 Limitation of Existing Work and Research Opportunities 42

2.7 Conclusion .. 43

Chapter 3: Number Plate Localisation Algorithm and its Efficient FPGA

Implementation …………………………………………………………………………..45

3.1 Introduction ... 45

Table of Contents Automatic Number Plate Recognition on FPGA

ix

3.2 Number Plate Localisation Algorithm .. 46

3.2.1 Plate Feature Extraction ... 47

3.2.2 Selection of Candidates Plate Region .. 52

3.3 Proposed Number Plate Localisation Architecture ... 53

3.3.1 Memory Reader and Converter Module .. 54

3.3.2 Morphological Operations Module .. 55

3.3.3 CCA Module .. 56

3.4 MATLAB Implementation and Results .. 57

3.5 FPGA Implementation and Results ... 61

3.5.1 Hardware Usage, Running Frequency and Power Consumption 62

3.5.2 Comparison with Existing Work .. 63

3.6 Conclusion .. 65

Chapter 4: Number Plate Character Segmentation Algorithm and its Efficient FPGA

Implementation .. 66

4.1 Introduction ... 66

4.2 Proposed Character Segmentation Algorithm ... 67

4.2.1 Optimising NP Height .. 68

4.2.2 Vertical and Horizontal Projections ... 70

4.3 Proposed Character Segmentation Architecture.. 74

4.3.1 Vertical Projection Module .. 74

4.3.2 Horizontal Projection Module ... 79

4.4 MATLAB Implementation and Results .. 80

4.5 FPGA Implementation and Results ... 82

4.5.1 Proposed environment for character segmentation on FPGA 83

Table of Contents Automatic Number Plate Recognition on FPGA

x

4.5.2 Hardware Usage, Running Frequency and Power Consumption 84

4.6 Conclusion .. 87

Chapter 5: Number Plate Character Recognition Algorithm and its Efficient FPGA

Implementation .. 88

5.1 Introduction ... 88

5.2 Proposed OCR Algorithm ... 89

5.3 MATLAB Implementation and Result Discussion ... 92

5.4 Proposed OCR Architecture .. 96

5.4.1 Pre-processing Module .. 97

5.4.2 Hidden Layer module .. 97

5.4.3 Output Layer Module... 101

5.4.4 Index Finder Module ... 102

5.5 FPGA Implementation and Results ... 102

5.5.1 Data Representation ... 103

5.5.2 Proposed Environment for FPGA Implementation 104

5.5.3 FPGA Implementation Results .. 104

5.6 Conclusion .. 107

Chapter 6: FPGA-based Number Plate Binarisation and Adjustment for ANPR

Systems…………………………………………………………………………………109

6.1 Introduction ... 109

6.2 NP Pre-processing ... 110

6.2.1 NP binarisation ... 111

6.2.2 NP Adjustment ... 113

6.3 Proposed Pre-Processing Architectures .. 117

Table of Contents Automatic Number Plate Recognition on FPGA

xi

6.3.1 Binarisation Module .. 118

6.3.2 Adjustment Module ... 122

6.4 FPGA Implementation and Results ... 126

6.4.1 Proposed Environment for NP Binarisation and Rotation on FPGA 126

6.4.2 Hardware Usage, Running Frequency and Power Consumption 127

6.4.3 Experimental Results ... 129

6.5 Conclusion .. 130

Chapter 7: Standard Definition ANPR System on FPGA and an Approach to Extend it to

HD………………………………………………………………………………………132

7.1 Introduction ... 132

7.2 Proposed FPGA based ANPR System .. 133

7.2.1 Number Plate Localisation Module ... 133

7.2.2 Character Segmentation Module ... 134

7.2.3 Optical Character Recognition Module ... 135

7.3 FPGA Implementation and Results ... 135

7.3.1 Proposed Environment for ANPR on FPGA ... 136

7.3.2 Hardware Usage, Running Frequency and Power Consumption 137

7.3.3 Comparison with Existing Work .. 138

7.4 A preliminary research for HD NPL ... 139

7.4.1 Proposed Approach: ... 140

7.5 Conclusion .. 144

Chapter 8: Conclusions and Future Work .. 145

8.1 Introduction ... 145

8.2 Evaluation of Results and Contributions... 146

Table of Contents Automatic Number Plate Recognition on FPGA

xii

8.2.1 Measurement of Success .. 146

8.2.2 Results Achieved.. 146

8.2.3 Limitations ... 148

8.3 Future Work ... 149

Reference ... 151

Appendix A: RC240 Prototyping Platform .. 161

A.1 Virtex-4 FPGA .. 162

A.2 Host-FPGA Communication ... 163

A.2.1 Example Functions from RC Host Library... 164

A.2.2 Accessing the External RAMs .. 165

Appendix B: Tools and Software Packages ... 166

B.1 DK Design Suite ... 166

B.1.1 Handel-C ... 167

B.1.2 Platform Abstraction Layer ... 168

B.2 Xilinx ISE .. 171

B.2.1 Xilinx Timing Analyser .. 171

B.2.2 Xilinx XPower Analyser ... 172

Appendix C: Sample Codes and FPGA Chip Layouts for ANPR Implementation 173

C.1 Number Plate Localisation Implementation .. 173

C.1.1 Sample Codes for Number Plate Localisation Implementation 173

C.1.2 FPGA Chip Layout for Number Plate Localisation Implementation 177

C.2 Character Segmentation Implementation .. 178

C.2.1 Sample Codes for Character Segmentation Implementation 178

Table of Contents Automatic Number Plate Recognition on FPGA

xiii

C.2.2 FPGA Chip Layout for Character Segmentation Implementation 184

C.3 Optical Character Recognition Implementation .. 184

C.3.1 Sample Codes for Optical Character Recognition Implementation................ 184

C.3.2 FPGA Chip Layout for Optical Character Recognition Implementation 193

C.4 Pre-processing Implementation ... 193

 C.4.2 FPGA Chip Layout for Pre-processing Implementation 199

C.5 Entire ANPR Implementation ... 199

 C.5.2 FPGA Chip Layout for Entire ANPR Implementation.................................... 202

List of Figures Automatic Number Plate Recognition on FPGA

xiv

List of Figures

Figure 1-1: ANPR applications .. 2

Figure 1-2: A simplified diagram of a generic FPGA architecture 8

Figure 1-3: Arrangement of slices within the CLB for a typical Virtex-4 FPGA 8

Figure 1-4: A simplified diagram of a Xilinx Virtex-4 FPGA slice 9

Figure 1-5: FPGA design cycle .. 11

Figure 2-1: An example of NPL algorithm using edge detection technique …………….17

Figure 2-2: The flow chart of a combination of NPL algorithm based on edge detection and

morphology .. 17

Figure 2-3: An example of CCA algorithm ... 18

Figure 2-4: NP region extraction. .. 19

Figure 2-5: Horizontal and Vertical projection .. 23

Figure 2-6: A failed example of CS when using the CCA algorithm only 24

Figure 2-7: 2×2 mask and the contour line extraction process.. 25

Figure 2-8: The coarse segmentation results ... 26

Figure 2-9: The direction feature of stroke .. 29

Figure 2-10: A multilayer feed-forward NN .. 30

Figure 2-11: The set of ambiguous characters ... 31

Figure 2-12: The overall system flow chart ... 35

Figure 2-13: The overall ANPR system block diagram in ... 37

Figure 2-14: The flow chart for the NPL algorithm in .. 38

Figure 2-15: Division of the image .. 39

Figure 2-16: The overall block diagram of the NPL system.. 40

Figure 3-1: Block diagram of NPL system .. 47

Figure 3-2: An NP example ... 49

Figure 3-3: A ‘rectangle’ shaped SE with size = 3×30 .. 49

List of Figures Automatic Number Plate Recognition on FPGA

xv

Figure 3-4: The process for highlighting the plate region. .. 50

Figure 3-5: The process of image binarisation and enhancement. 51

Figure 3-6: The ‘diamond’ shaped and ‘rectangle’ shaped SEs. .. 51

Figure 3-7: Flowchart of selection process .. 53

Figure 3-8: Selection of Number plate .. 53

Figure 3-9: Morphological operations based system ... 54

Figure 3-10: Block diagram of memory reader ... 54

Figure 3-11: The block diagram of a pipelined dilation filter ... 55

Figure 3-13: The block diagram of CCA ... 57

Figure 4-1: Block diagram of the proposed character segmentation system 67

Figure 4-2: Flowchart of the pre-projection stage ... 68

Figure 4-3: The NP height reduction process .. 69

Figure 4-4: The three cropping categories ... 69

Figure 4-5: The 3×1 and 1×3 SEs. .. 70

Figure 4-6: NP images and their vertical projection histograms. 71

Figure 4-7: Character horizontal projection... 72

Figure 4-8: A fully segmented NP ... 73

Figure 4-9: Vertical and horizontal projection based system ... 74

Figure 4-10: The overall vertical projection block diagram .. 75

Figure 4-11: Cropped NP image with first and last pixels ... 75

Figure 4-12: Block level diagram of the morphological operation process 77

Figure 4-13: Block level diagram of the process of localising the critical points of the

vertical projection .. 78

Figure 4-14: Overall block diagram of the horizontal projection module 79

Figure 4-15: The vertically cropped NP process ... 80

Figure 4-16: Host application for character segmentation ... 83

Figure 5-1: The architecture of two-layer feed-forward network 90

Figure 5-2: The UK NP character set... 91

List of Figures Automatic Number Plate Recognition on FPGA

xvi

Figure 5-3: Sample characters from both training and testing groups 93

Figure 5-4: Examples of training data with random noise... 93

Figure 5-5: Character recognition rate with different numbers of neurons 94

Figure 5-6: The recognition rate of each character .. 94

Figure 5-7: Examples of failed characters ... 95

Figure 5-8: Block diagram of proposed architecture ... 97

Figure 5-9: The block diagram of the accumulator ... 99

Figure 5-10: The graphs of the Tan-sigmoid. .. 100

Figure 5-11: ROM-based Tan-sigmoid .. 100

Figure 5-12: Block diagram of matrix-vector multiplier ... 101

Figure 5-13: Block diagram of index finder .. 102

Figure 5-14: 16-bit fixed-point number representation ... 103

Figure 5-15: The proposed FPGA based OCR system .. 104

Figure 5-16: Comparison of MATLAB and FPGA implementation 105

Figure 6-1: The building blocks of an ANPR system .. 111

Figure 6-2: Results of using global and local binarisation methods with different window

sizes. ... 113

Figure 6-3: Input and output images of the NPL stage. ... 114

Figure 6-4: (a) Localised NP region. (b) Binarised NP image ... 114

Figure 6-5: (a) Binarised NP image. (b) Rotated NP image. ... 116

Figure 6-6: The cropped NP image .. 116

Figure 6-7: (a) NP image before vertical correction. (b) NP image after vertical correction

 ... 117

Figure 6-8: Block diagram of the pre-processing modules.. 118

Figure 6-9: The overall block diagram of the binarisation module 118

Figure 6-10: The window shifter ... 120

Figure 6-11: Architecture of the Average Filter ... 121

Figure 6-12: Architecture of the local threshold filter ... 122

List of Figures Automatic Number Plate Recognition on FPGA

xvii

Figure 6-13: The overall block diagram of the rotation module 122

Figure 6-14: The proposed architecture for horizontal and vertical adjustments 124

Figure 6-15: Architecture of the pixel reader ... 125

Figure 6-16: Host application for NP binarisation and adjustment 127

Figure 7-1: Main building blocks of an ANPR system .. 133

Figure 7-2: Process of the NPL module, binarisation and rotation blocks 134

Figure 7-3: Process of the CS and character resizing modules.. 134

Figure 7-4: Process of the OCR module .. 135

Figure 7-5: The GUI host ... 137

Figure A-1: The RC 240 overview .. 161

Figure A-2: The overview of the Host-FPGA communication system 163

Figure B-1: The DK design synthesis tool ... 166

Figure B-2: DK design flow .. 167

Figure B-3: The seq and par constructs ... 167

Figure B-4: The examples of PAL supported peripherals .. 169

Figure B-5: An example of PALSim .. 169

Figure B-6: An example of PixelStreams GUI .. 170

Figure B-7: the Xilinx ISE 14 project navigator.. 171

Figure B-8: Xilinx XPA user interface ... 172

Figure C-1: FPGA Chip layout for the proposed NPL implementation 177

Figure C-2: FPGA Chip layout for the proposed CS implementation 184

Figure C-3: FPGA Chip layout for the proposed OCR implementation.......................... 193

Figure C-4: FPGA Chip layout for the proposed pre-processing implementation 199

Figure C-5: FPGA Chip layout for the entire ANPR implementation 202

List of Tables Automatic Number Plate Recognition on FPGA

xviii

List of Tables

Table 2-1: Performance of Existing NPL Algorithms .. 22

Table 2-2: The performance of existing CS algorithms ... 27

Table 2-3: The performance of existing OCR algorithms for ANPR systems 34

Table 2-4: FPGA Logic Utilisation .. 38

Table 2-5: FPGA Logic Utilisation .. 40

Table 2-6: Performance comparison of the software and hardware implementation 41

Table 2-7: Existing FPGA and DSP-based ANPR systems ... 42

Table 3-1: The Samples of Used Database .. 59

Table 3-2: Successful NPL Rate by Sample Sets (MATLAB Implementation Results) ... 59

Table 3-3: Failed Images in Both Databases (MATLAB Implementation) 60

Table 3-4: Successful NPL Rate by Sample Sets (FPGA Implementation Results) 61

Table 3-5: Usage of FPGA on-chip Resources .. 62

Table 3-6: Estimation of Power Consumption ... 63

Table 3-7: Performance Comparison ... 64

Table 4-1: Calculation of memory start and end address within each NP height range 76

Table 4-2: Successful character segmentation rates by sample set 81

Table 4-3: Samples of failed images. ... 82

Table 4-4: Successful character segmentation rate by sample set for FPGA implementation

results ... 84

Table 4-5: Usage of FPGA on-chip Resources .. 84

Table 4-6: Estimation of Power Consumption ... 85

Table 4-7: Performance Comparison ... 86

Table 5-1: Comparison of the proposed NN algorithm with other approaches using MNIST

database .. 96

Table 5-2: Usage of on-chip Resources ... 105

Table 5-3: Estimation of Power Consumption ... 106

List of Tables Automatic Number Plate Recognition on FPGA

xix

Table 5-4: Performance Comparison of FPGA based OCR System 107

Table 6-1: Usage of FPGA on-chip Resources .. 127

Table 6-2: Estimation of Power Consumption ... 128

Table 6-3: Similarity result for MATLAB/FPGA .. 129

Table 6-4: MATLAB/FPGA result comparison ... 130

Table 7-1: Usage of FPGA on-chip Resources .. 137

Table 7-2: Estimation of Power Consumption ... 138

Table 7-3: Performance Comparison ... 139

Table A-1: Virtex-4 XC4VLX40 on-chip resources .. 163

Abbreviations Automatic Number Plate Recognition on FPGA

xx

Abbreviations

ANN - Artificial Neural Network

ANPR - Automatic Number Plate Recognition

API - Application Programming Interface

ASIC - Special Purpose Application Specific Integrated Circuit

BP - Back Propagation

CAST - Centre for Applied Science and Technology

CCA - Connected Component Analysis

CLB - Configurable Logic Block

CPU - Central Processing Unit

CS - Character Segmentation

DBM - Deep Boltzmann Machine

DBN - Deep Belief Net

DFF – D Flip Flop

DK - DK Design Suite

DSP - Digital Signal Processor

EDIF - Electronic Data Interchange Format

FPGA - Field Programmable Gate Array

G-DCD - Global Direction Contributivity Density

GPP - General Purpose Processor

GPU - Graphic Processing Unit

Abbreviations Automatic Number Plate Recognition on FPGA

xxi

GUI - Graphical User Interface

HD - High Definition

HDL - Hardware Description Language

HLS - High Level Synthesis

HLS - Hue Saturation Intensity

HMR - Horizontal Memory Reader

IDE - Integrated Development Environment

ITS - Intelligent Transportation System

L-DCD - Local Direction Contributivity Density

LUT - Lookup Table

MAC - Multiply-Accumulate

MPGA - Mask Programmable Gate Arrays

MRF - Markov Random Field

NADC - National ANPR Data Centre

NN - Neural Network

NP - Number Plate

NPL - Number Plate Localisation

OCR - Optical Character Recognition

PAL - Platform Abstraction Layer

PAL - Programmable Arrays Logic

PALSim - PAL Virtual Simulation Platform

Abbreviations Automatic Number Plate Recognition on FPGA

xxii

PAR - Place-and-Route

PNN - Probabilistic Neural Network

RMSE - Root-Mean-Square Error

RSE - Root Square Error

RTL - Register Transfer Level

SCG - Scaled Conjugate Gradient

SD - Standard Definition

SE - Structuring Elements

SOM - Self-Organising Map

SVM - Support Vector Machine

VCP - Vertical Critical Point

VHDL - Very High Speed Integrated Circuit Hardware Description Language

VMR - Vertical Memory Reader

XNF - Xilinx Netlist Format

XPA - XPower Analyser

XST - Xilinx Synthesis Technology

Chapter 1 Introduction

1

Chapter 1: Introduction

This chapter provides an introduction to the rapidly emerging Automatic Number Plate

Recognition (ANPR) technology. It begins with a brief overview of current ANPR systems,

applications and high performance solutions for their implementation in sections 1.1 and

1.2. Following the brief overview, a summary of the motivations and objectives of this

research is given in Section 1.3 and then conclude with the organisation of the thesis in

Section 1.4.

1.1 ANPR systems

Intelligent Transportation Systems (ITSs) have had a wide impact on people’s life as their

scope is to improve transportation safety and mobility using multiple technology-based

systems [1], which includes communication, information and satellite technologies in

traffic congestion, safety enhancement and improving quality of environment [2]. ANPR is

used as an important technology for intelligent infrastructure systems like electronic

payment systems, access control, tracing of stolen cars, or identification of dangerous

drivers [3-5].

ANPR systems have been successfully operated in UK for several decades. First generation

ANPR systems were invented in 1976 at the Home Office Scientific Development Branch

in England (now known as the Home Office Centre for Applied Science and Technology,

CAST) and they have successfully detected simple crimes: Tracking and finding stolen

vehicles and prosecuting uninsured or un-taxed road users [6]. One successful example is

the UK’s “Ring of Steel” around the city of London. The area covered includes London

congestion charge zone, where motorists are required to pay a congestion charge. There are

currently 1,500 ANPR cameras that monitor anywhere in the zone and around 98% of

vehicles moving within the zone are caught on cameras. The video streams are transmitted

to the National ANPR Data Centre (NADC) where ANPR software processes the

Chapter 1 Introduction

2

registration plate of the vehicle [7]. Currently, the vehicle information is gathered from

fixed cameras strategic sites (e.g. main roads, motorways and petrol stations), mobile units

(e.g. police van) and CCTV in towns and cities, there are 35 million number plate reads per

day and this number is increasing every year [8]. Figure 1-1 illustrates the applications of

ANPR.

Figure 1-1: ANPR applications [9]

Typically, an ANPR system consists of three stages: Number Plate Localisation (NPL),

Character Segmentation (CS), and Optical Character Recognition (OCR). The NPL stage is

where the Number Plate (NP) being detected. The CS stage is an important pre-processing

step before applying OCR, where each character from the detected NP is segmented before

recognition. In the last stage, characters are segmented from the NP so that only useful

information are retained for recognition where the image format will be converted into

characters by pre-defined transformation models [5].

Currently, the common hardware implementation choice for ANPR implementation is

often high performance workstations and expensive computers [10]. The reason of that is

Chapter 1 Introduction

3

the nature of image processing applications as it involves performing complex tasks

repeatedly on a large set of image data under real-time requirements. Current ANPR

systems generally use a separate camera and a stand-alone PC for processing. However, the

cost, compactness and power issues that come with these solutions motivate the search for

more cost and size efficient platforms. Hardware accelerators are efficient technics that

provide extensions to the computational capabilities of a specific system to improve the

performance and reduce the power consumption.

1.2 Hardware Solutions for ANPR Systems

As mentioned in section 1.1, most methods in current ANPR systems utilise general

purpose Central Processing Units (CPUs) to perform complex and computationally

intensive image processing algorithms. The CPU must read each instruction from memory,

decode it and then execute it. Additionally, any operation needs to be implemented from

basic arithmetic and logical operations in CPU, which slow down the execution speed for

each individual operation.

Therefore, in order to achieve real-time performance, specialist hardware platforms can be

one of valuable solution for accelerating computationally intensive image processing

algorithms. Currently, the most commonly used hardware for solving such problem are

Digital Signal Processors (DSPs), Graphic Processing Units (GPUs), Special Purpose

Application Specific Integrated Circuits (ASICs) and Field Programmable Gate Arrays

(FPGAs). From these hardware platforms, most of researchers have chosen DSP and/or

FPGA as their platform for implementing ANPR systems [11] [12] [13]. However, most of

the hardware based systems focus only on one or two stages of ANPR system due to limited

hardware resources or complexity of the chosen algorithms. In the following sections, a

general overview of these hardware platforms is given.

Chapter 1 Introduction

4

1.2.1 Digital Signal Processors

DSPs are specialised microprocessors that have optimised architectures suitable for the

implementation of operations used in digital signal processing. DSPs are widely used in

digital processing systems such as wireless communications, audio and video processing

[11]. The DSP features are outlined below [14]:

1) High performance: DSPs are capable of performing one or more

multiply-accumulate (MAC) operations in one instruction cycle, which can be used

in matrix multiplication operation found in many digital filters and other image

processing algorithms (e.g. colour space conversion). DSPs are known for their

irregular instruction sets, which allow several operations to be encoded in a single

instruction. In general, DSP instruction sets allow data moves to be performed in

parallel with an arithmetic operation.

2) Low latency: DSPs often have special memory architectures that allow them to

fetch multiple data and/or instructions in a single instruction cycle. They also have

specialised execution control, which allows tight loops to be repeated without

spending any instruction cycles for updating and testing the loop counter or for

jumping back to the top of the loop.

As a result, DSPs have been widely used in intensive tasks, such as image processing, audio

processing [15, 16] . They provide the computing power necessary to process large

amounts of data in real-time [11, 17]. However, the power consumption and space

constraint issues limited their usage in portable devices [18].

1.2.2 Graphic Processing Unit

GPU is a specialised electronic processor to accelerate 2D or 3D image processing. Over

the past ten years, the performance and capabilities of GPUs have increased considerably;

they are widely used in embedded systems, personal computers, mobile phones and game

Chapter 1 Introduction

5

stations. Currently, GPUs are not only powerful graphics engines but also highly parallel

processors substantially that have advantages over general purpose CPU, which offer a

great deal of promise for future computing systems. Below are some GPU features [19]:

1) GPUs can deliver high computing performance to process billions of pixels per

second, which makes them a suitable hardware platform candidate for complex

real-time applications.

2) GPUs can offer parallelism for many types of embarrassingly parallel task

including ray tracing and weather modelling, where data parallelism is exhibited for

high throughput type computations.

3) GPUs can offer very deep pipelining to increase the throughput rate. The pipeline is

also feed-forward, removing the penalty of control hazards, further allowing

optimal throughput of primitives through the pipeline.

Although GPUs can offer high computational performance for real-time image processing,

they need high memory bandwidth and huge computational graphic hardware resources to

speed up the processing, which can result in very high power consumption. Therefore,

GPUs are unsuitable for embedded vision applications with restricted power constraints

[20].

1.2.3 Special Purpose Application Specific Integrated Circuits

ASICs are designed specifically to efficiently perform a given computation task because

they can be optimised for one or more design metrics, such as power consumption and area.

However, after fabrication the circuit cannot be altered unless the chip is modified, and this

is an expensive process when considering the difficulties in replacing ASICs in a large

deployed system.

The main disadvantages of this hardware approach can be summarised as follows:

1) Development times for ASICs are normally longer than other hardware solutions.

Chapter 1 Introduction

6

2) Costs of ASICs are reduced only when the volume required justify their fabrication

costs.

3) Flexibility for ASIC is worse than other hardware solutions. Once this special

purpose hardware is built, it is not possible to change the hardware to meet other

needs. The only solution is to use a new hardware to replace the existing one to

meet its requirements.

Re-designing and re-fabricating any part of the ASIC increase the cost of the product.

Structured ASIC can cut the expenses by more than 90% and speedup time-to-market for

derivative chips. The reason of that is only a small number of chip layers must be

custom-produced in Structured ASIC (SASIC), which is bridging the gap between FPGA

and Standard-cell ASIC designs. For example, users normally need to design power, clock,

and test structures, the SASIC provides those predefined architectures and therefore can

save time and expense for designer compared to Standard-cell ASIC. SASIC technology is

especially suitable for platform ASIC designs that have integrated most of the IP blocks and

leave some space for custom changes [21] [22].

Alternative hardware approach to avoid many of ASIC’s disadvantages is the use of

reconfigurable hardware in the form of FPGAs, which can increase the flexibility of ANPR

system before fabrication the circuit. This technology is introduced in the next section.

1.2.4 Field Programmable Gate Arrays

FPGA is an integrated circuit that can be configured by a customer after manufacturing.

The first commercially viable FPGA was designed by Xilinx in 1985, which had

programmable gates and programmable interconnects between gates that served as a hybrid

device between Programmable Arrays Logic (PALs) and Mask Programmable Gate Arrays

(MPGAs). Although it only had 64 Configurable Logic Blocks (CLBs) with two 3-input

Lookup Tables (LUTs), this was a beginnings of a new technology and market [23].

However, nowadays with great flexibility, capacity and performance, FPGAs opened up

Chapter 1 Introduction

7

completely new avenues in high-performance computation, forming the basis of

reconfigurable computing [24].

FPGAs can be used to implement any logical function that an ASIC could perform, with the

added advantage of ability to update the functionality after shipping with a minor cost.

FPGAs can also be the final products without fabricating an ASIC, the cost of FPGAs are

lower than the ASIC when the volume of product is not high. During the last decade, as new

material technologies are introduced for fabricating the FPGA chips, more and more

resources can be integrated into a single FPGA chip [25]. For example, a latest Xilinx

Virtex-7 FPGA contains 1,955,000 logic cells, 3,600 DSP slices and many other resources

on the chip [26]. The architectural innovations makes new 28 nm FPGAs are well suited for

high performance and low-power consumption applications [27].

Recently, FPGAs fused features of embedded microcontrollers with FPGA fabric to make

FPGAs easier for embedded designers. This allows developers to apply a combination of

serial and parallel processing to address the challenges in cutting-edge research on topics

ranging from programming technology, cryptography to real-time systems. For example,

Xilinx Zynq-7000 series FPGAs enable extensive system level differentiation, integration,

and flexibility through hardware, software, and I/O programmability [28]. There is no

doubt that the use of FPGAs has increased the performance of a wide range of

computationally intensive applications [29].

Since Virtex-4 FPGA has been used for the hardware implementations of different ANPR

stages, the following sub-sections focus mainly on the architecture of Virtex-4 FPGA.

FPGA Structure

The most common FPGA structure consists of an array of CLBs, switching matrix and

connection matrix. Generally, the CLBs can be interconnected to each other through some

sort of configurable switching and connection matrix. Figure 1-2 provides a simplified

diagram of a generic FPGA architecture [30].

Chapter 1 Introduction

8

Configurable Logic block Configurable switching block Configurable connection block

16-bit SR

flip-flop

clock

mux

y

q
e

a

b

c

d

16x1 RAM

4-input

LUT

clock enable

set/reset

Figure 1-2: A simplified diagram of a generic FPGA architecture

CLBs

The CLBs are the main logic resource for implementing sequential as well as combinatorial

circuits. A typical CLB consists of a few logical cells, called slices. For example, Virtex-4

CLB contains four interconnected slices, each paired slices are organised as a column. Each

pair in a column has an independent carry chain. However, only the slices in left column

have a common shift chain (i.e. SLICE (2) and SLICE (4)) Figure 1-3 shows the

arrangement of slices within the CLB for a typical Virtex-4 FPGA.

Switch

Matrix

SLICE (3)

SLICE (1)

SLICE (2)

SLICE (0)

COUT

CIN

CIN

COUT

CINSHIFTOUT

SHIFTIN

CLB

(Logic or Distributed RAM or Shift Register) (Logic Only)

Interconnect

to Neighbors

Figure 1-3: Arrangement of slices within the CLB for a typical Virtex-4 FPGA [31]

Chapter 1 Introduction

9

A simplified diagram of a Xilinx Virtex-4 FPGA slice is presented in Figure 1-4. It consists

of two logic-function generators (or LUTs), two D-Flip-Flops (DFFs), multiplexers, carry

and arithmetic logic [31]. Both slice pairs provide logic, arithmetic and ROM functions, but

left slice pair supports two additional functions: storing data using 16-bit distributed RAM

and shifting data with 16-bit shift registers. The LUTs allow any generic four-input logic

function to be implemented. The DFF can be used for pipelining, registers, state holding

functions for finite state machines, or any other situation where clocking is required. The

carry logic is used to speed up carry-based computations in the cell, such as addition and

subtraction. The multiplexers are used to combine outputs of the LUTs and so to implement

5-input combinational circuit.

4-input

LUT

4-input

LUT

MUX

Arithmetic

and carry

logic

MUX

DFF

DFF

MUX

MUX

Figure 1-4: A simplified diagram of a Xilinx Virtex-4 FPGA slice [31]

Routing

The routing architecture is designed to handle versatile connection configurations, where

horizontal and vertical routing channels are used to connect the CLBs in rows and columns.

The routing resources available on the architecture are:

Chapter 1 Introduction

10

 Connection Blocks

The connection blocks connect the channel wires with the input and output of the CLBs,

where signals flow from the CLBs into the connection block, and then along longer wires

within the routing channels [32].

 Switch Boxes

The switch boxes allow wires to switch between vertical and horizontal wires to change

their routing direction. When a wire enters a switch box, there are three programmable

switches that allow it to connect to three other wires in adjacent channel segments. In the

routing architecture of an FPGA, the connection blocks and switch boxes surrounding a

single CLB typically have thousands of programming points, which allow to support

fairly arbitrary interconnection patterns [32].

In addition to the basic features, modern FPGAs also provide many advanced features

such as digital signal processing slices (e.g. multipliers and accumulator), dual-port RAM

blocks and embedded processor cores (e.g. PowerPC). More details about the used

features of Virtex-4 FPGA can be found in APPENDIX A.

FPGA Design Flow and Synthesis

A typical design flow for FPGA design consists of a number of tools: Hardware

Description Languages (HDLs), schematic capture tools, simulation tools, netlist

converters and Place-and-Route (PAR) tools. FPGA design cycle is given in Figure 1-5.

Chapter 1 Introduction

11

Design Entry

Hardware Description Languages

(HDLs)

(e.g. VHDL and Verilog)

ENTITY AND_ent IS

PORT(

 A: IN Bit;

 B: IN Bit;

 C: OUT Bit

);

END AND_ent;

architecture AND_arch of AND_ent is

begin

 C <= A and B;

end AND_arch;

Synthesis Tool Wirelister Tool

Netlist (EDIF)

Place-and-Route

(PAR)

FPGA Configuration

(bitstream)

A

B
C

Schematic Capture

 unsigned a;

 unsigned b;

 unsigned c;

 void main(void)

 {

 c = a & b;

 }

Compiler

High Level Programming Languages

(e.g. C/C++ and Handel-C)

Figure 1-5: FPGA design cycle

The FPGA design flow starts with design entry and ends with bitstream generation in a

top-down manner. There are several vendors in the FPGA market, i.e. Xilinx, Altera and

Lattice. Each vendor provides its own front end design tools such as Xilinx ISE from Xilinx

[33] and Quartus II from Altera [34] .

A. Design Entry

FPGA designs can be entered either schematically using a schematic editor or textually

using programming languages:

 Schematic Design Entry: Schematic tools provide a graphic interface for design

entry. Designers can design and connect individual logic components and combine

Chapter 1 Introduction

12

them to create functional blocks. Once a design has been specified using schematic

capture, it can be converted into a netlist by a schematic-to-netlist converter tool.

Because the common logic components are usually defined and stored in a library

that is supplied by the FPGA vendor, schematic designs produced for a specific

FPGA architecture are not easily portable to other FPGA.

 HDLs: There are two most commonly used HDLs in industry, which are Very High

Speed Integrated Circuit Hardware Description Language (VHDL) [35] and Verilog

[36]. These languages are standard and device independent where hardware

architectures described using any of them can be synthesised into a circuit suitable

for any FPGA.

 Handel-C Language In early 90s, Handel-C was introduced and used in the

programming of FPGAs as a high level programming language at Oxford

University Computing Laboratory [25], and then it became a product in Celoxica

from September 2000. However, Handel-C was first acquired by Agility in 2008,

after 2009 it was purchased and maintained by Mentor Graphics [37]. Handel-C is

essentially an extended subset of C, specifically designed for controlling hardware

instantiation with an emphasis on parallelism [38]. Unlike many other design

languages that rely on going via several intermediate stages, Handel-C can be either

directly targeted on hardware or compiled to a number of design languages in a

hardware compilation system known as the Mentor Graphic Development Kit (DK)

[37], and then synthesised to the corresponding hardware using the common

synthesis tools (e.g. Xilinx ISE). The main advantages of Handel-C over the other

programming languages are the rapid prototyping and the software liked simulator.

The works presented in [39] [40] have shown that Handel-C shortens design time

by a factor of 3-4 times with approximately the same operating speed compared to

traditional HDLs. Unlike many traditional HDL simulators that only provide

simulation waveform of the outputs, Handel-C simulator can display contents and

the status of all variables in a program or design for every clock cycle, which make

Chapter 1 Introduction

13

the debugging process much easier compare to traditional HDL simulators. More

details about the used features of Handel-C can be found in APPENDIX B.

Synthesis and Netlist Representation

There are two major synthesis areas used in digital design: Register Transfer Level (RTL)

and High Level Synthesis (HLS). Typically the synthesiser converts HDL (VHDL/Verilog)

code into a RTL, e.g. Xilinx ISE [33] and Altera Quartus II [34]. Recently Xilinx

introduced a new generation of synthesis tools named Vivado HLS, which can

automatically transform high level programming languages (e.g. C/C++) to a RTL

specification and then synthesised into Xilinx FPGA [27]. After running synthesis the

designs are mapped onto a specific structure suitable for the target architecture and become

netlist files that are accepted as input to the next implementation stage. A netlist is a

standard textual representation of a design, which contains a more structured description of

the functionality of the design and specific component information of an FPGA vendor. The

netlist format can be in the standard Electronic Data Interchange Format (EDIF) format [41]

or in another vendor specific format (e.g. Xilinx netlist Format (XNF) from Xilinx).

Place-and-Route Tools

PAR tools can map the design of integrated circuits and routing information onto the FPGA

architecture. The process of PAR consists of two steps, placement and routing. At the

placement step, all the electronic components, circuitry and logic elements are placed in a

generally limited amount of space. After the placement step, the routing step decides the

design of all the wires needed to connect the placed components under the requirements of

the rules and limitations of the manufacturing process. In addition, the PAR can find timing

constraints associated with the design and invoke timing-driven routing automatically.

Once the PAR operation has been successfully performed, a bitstream file can be generated

and download into FPGA for the configuration [33].

Compared to other hardware solutions, FPGA can provide the most flexibility and

competitive performance for a real-time image processing design.

Chapter 1 Introduction

14

1.3 Research Motivations and Objectives

The fundamental requirements of an ANPR system are image capture using an ANPR

camera, and processing of the captured image. The image processing part, which is a

computationally intensive task, includes three image processing stages (i.e. NPL, CS and

OCR). The common hardware choice for its implementation is often high performance and

expensive computers. However, the cost, compactness and power issues that come with

these solutions motivate the search for other low cost platforms.

As mentioned in Section 1.2, DSP, GPU, ASIC and FPGA are commonly used hardware

solutions for accelerating computationally intensive image processing tasks. After

comparing their merits and drawbacks, FPGAs is chosen in this research work as the

hardware platform based on the following advantages: First of all, FPGA allows truly

parallel computations to be placed in a circuit. Although many modern General Purpose

Processors (GPPs), DSPs and GPUs can emulate parallelism by switching tasks very

rapidly or rely on specialised hardware architectures, having operations truly performed in

parallel results in a much faster processing speed even in a relatively lower operating clock

frequency. Secondly, FPGA can create actual hardware to test instead of simply relying on

simulators. The reconfigurable ability of FPGA allows a design to be completely tested and

debugged before an ASIC is created, saving on production costs. However, algorithms to be

implemented on FPGAs need to be carefully chosen or developed to fully exploit the

parallelism and on-chip resources offered by those devices. Therefore, FPGA is an

extremely powerful tool for accelerating image processing algorithms, and also balance the

gap between software and hardware design to allow maximum performance and flexibility

can be delivered during the research development. By optimising the ANPR algorithms to

take specific advantage of technical features and innovations available within new FPGAs,

such as low power consumption, development time, and vast on-chip resources, it will be

possible to replace the 3GHz roadside computers with small in-camera dedicated all-in-one

platforms.

Chapter 1 Introduction

15

As the main aim of this research project is to implement the entire ANPR system on one

single FPGA, the initial sub-objectives then can be summarised as follows:

- To develop improved real-time NPL algorithm that is suitable for FPGA

implementation;

- To develop novel efficient architectures for the proposed NPL algorithms and

implement the architectures on FPGA;

- To investigate and develop improved real-time CS algorithm and its novel

efficient architecture implementation on FPGA;

- To investigate and develop improved real-time OCR algorithm and its novel

efficient architecture implementation on FPGA; and

- To investigate and develop NP binarisation and adjustment algorithms and their

novel efficient architecture implementations on FPGA.

1.4 Organisation of the Thesis

The structure of the remainder of this thesis is as follows. Chapter 2 takes a closer look at

the most recent software and hardware based ANPR systems. Subsequently, the proposed

NPL, CS, OCR and pre-processing algorithms and novel efficient architecture

implementations on FPGA are introduced in Chapter 3, 4, 5 and 6, respectively. Chapter 7

describes the proposed entire ANPR System on FPGA and an approach to extend it to High

Definition (HD). Concluding remarks and opportunities for future work are presented in

Chapter 8.

Chapter 2 Related Work

16

Chapter 2: Related Work

2.1 Introduction

In previous chapter, ANPR systems and their common solutions have been briefly

discussed. An ANPR system normally consists of three main stages: NPL, CS and OCR,

and each stage of the ANPR system is mainly based on different image processing and

pattern recognition algorithms. The common implementations of the ANPR systems can be

software or hardware. Software based solutions currently have been researched intensively

and robust algorithms have already been proposed for each stage of an ANPR system [5,

42-45], however, there are only few state-of-the-art hardware implementations. This

chapter takes a closer look at the most recent software and/or hardware solutions for NPL,

CS and OCR. A synopsis of the shortcomings of existing work and concluding remarks are

also provided.

2.2 Number Plate Localisation

The performance of the NPL stage, in terms of speed and localisation rate, is crucial to the

entire system, because it directly influences the accuracy and efficiency of the subsequent

steps [45]. Generally, NPL algorithms reported in previous research are mainly classified

into three classes: edge detection, colour processing and texture-based algorithms.

2.2.1 Edge Detection based Algorithms

Techniques based on edge detection statistics featured very good results in previous

research works [46-50], the reason is that the algorithms utilise the change of brightness in

the NP region is more remarkable and more frequent than elsewhere. In order to obtain the

change of brightness, one of the algorithms is computing the gradient magnitude and the

local variance of an image. Figure 2-1 shows an example of NPL algorithm using edge

Chapter 2 Related Work

17

detection technique.

Vertical Edge

Detection

Figure 2-1: An example of NPL algorithm using edge detection technique

As shown in Figure 2-1, after a vertical edge detection operator is applied on a greyscale car

image, the most of vertical edge information is appeared in the NP region, which means the

NP can be easily localised using the density of edge information. However, a disadvantage

of this method is that it cannot deal with the complex images, since the edge detector is too

sensitive to unwanted edges, which may also show a high edge magnitude or variance (e.g.

the radiator region in the front view of the vehicle). In spite of this, after combining with

morphological operations that eliminate some unwanted edge information, the NPL rate is

relatively high and fast, compared to other methods [51]. In [47], a combination of edge

detection and morphology based algorithm is proposed for controlling highway charging

system is proposed, the flow chart of the proposed algorithm is shown in Figure 2-2.

Vertical Edge

Detection

Edge

Statistical

Analysis

Hierarchical-

based NPL

Morphology

based NP

Extraction

Figure 2-2: The flow chart of a combination of NPL algorithm based on edge detection and morphology

The results achieved in [47] show that the average accuracy of NPL is 99.6% (9786 from

9825 images). In order to achieve this impressive result, a fixed distance and angle of a

camera is required to boost the NPL rate to a high level of accuracy, which means candidate

regions are expected in a specific position and priority is given to them.

Edge detection is usually followed by Connected Component Analysis (CCA) which is a

well-known algorithm in binary image processing that detects connected regions in binary

Chapter 2 Related Work

18

digital images and label their pixels into components based on pixel connectivity (e.g.

4-connectivity or 8-connectivity) [52]. Once all groups of pixels have been labelled, many

useful geometrical measurements and features in each binary group can be extracted, for

example, area, aspect ratio, width and height. Those measurements and features are

frequently integrated in NPL algorithms for the localisation of NP region [53] and [54].

Figure 2-3 illustrates an example of CCA algorithm.

1 1

1

1

2

2

2

2

2

2

1

1

1

1 1 1

2

2

2

2

2

2

1 1

Figure 2-3: An example of CCA algorithm

In Figure 2-3, there are two characters labelled in two different groups based on the pixel

connectivity, and according to the predefined measurements and features, the characters

can be easily localised and extracted from the original image.

2.2.2 Colour Processing based Algorithms

Many colour processing based algorithms are proposed in the previous NPL works. The

principle of these algorithms is utilising the expected NP appearance in a specific country,

for example, NP background and character colour. The basic idea of the NP region

extraction is based on a unique colour combination of a NP background and foreground

character in the car image. For example, as the Chinese NPs have specific formats, the work

presented in [55], suggested that all pixels in the input image should be classified using the

Hue Saturation Intensity (HSI) colour model into 13 categories based on variance of

illumination in the RGB domain. They are dark blue, blue, light blue, dark yellow, yellow,

light yellow, dark black, black, grey black, grey white, white, light white and others. In

addition to the colour categories, the width to height ratio values are also used for

Chapter 2 Related Work

19

classification of the NP regions. At the end of the process, the NP region is extracted

vertically, and then horizontally from the car image. Figure 2-4 shows the vertical and

horizontal extractions of a NP region.

Threshold

(a)

Threshold

(b)

Figure 2-4: NP region extraction. (a) vertical extraction (b) horizontal extraction [55]

Fuzzy logic has also been introduced in [56-61] to classify the colours in the NPL stage.

The NP is described and given some membership function for the fuzzy sets, for example,

‘bright’, ‘dark’, ‘bright and dark sequence’, ‘texture’, and ‘yellowness’, and then the fuzzy

logic can be used for classification of the proposed fuzzy sets. The following intuitive rules

of an NP region have been defined in [58] based on human perception:

- Bright rectangle area that includes some dark areas;

- The border of the NP is bright;

- Approximately localised in the middle or lower middle part of the image;

- Size of the NP is about 530 120 mm.

A fuzzy set with trapezoidal membership functions on the interval [0, 255], used to present

Chapter 2 Related Work

20

the concept of illumination condition, where ‘0’ and ‘255’ represent black and white

colours respectively. The input image (768 576 pixels) is partitioned into many

sub-images (75 25 pixels) and the fitness to the four rules is calculated for each sub-image.

However, according to the experimental results, this method is computationally intensive

task and the last two rules restrict the algorithm to identify NPs in a specific distance.

In [56], an edge detector is designed to find three kinds of edges from an image, which

include black-white, red-white and green-white. Firstly, an edge image E is initialised with

only white, black, red and green colours, and then the RGB colour model is transformed

into the HSI model. The basic idea is to generate a fuzzy map from H, S and I maps and

edge image E. Finally, those fuzzy maps are combined together into a single map M. This

method showed an NPL rate of 97.9% using a database with 1088 colour images.

2.2.3 Texture-based Algorithms

Texture-based algorithms mainly use image transformation to analyse the texture

information. The most common image transformation techniques include Gabor filters,

Hough transform and wavelet transform. These techniques directly analysing texture

information without limitation of the NP direction and size. In the work presented in [62],

the Gabor filter is used to extract the features of image. The filter responses that result from

the convolution with Gabor filter are directly used as NP detector. There are three different

scales and four directions used in a 12-Gabor filter. High values in the image (,)r x y

indicate probable plate regions. Finally the NP regions are extracted by applying

8-connectivity CCA algorithm. A high NPL successful rate of 98% using 300 images has

been achieved. However, this method is computationally expensive and slow for large

images.

Another texture-based algorithm is proposed in [63], where the edges in the input image are

first detected, and then a contour algorithm is used to detect closed boundaries of objects,

the contour lines are transformed to Hough coordinate to find two interacted parallel lines

Chapter 2 Related Work

21

that are considered as a plate-candidate. Since the numbers of pixels in the contour lines are

much less than the pixels in the original image, the calculation of Hough transform is more

efficient and the speed of the algorithm has improved significantly without accuracy loss.

The NPL rate achieved in [63] is 98.8% when using only close shots of the vehicle.

Improved methods to speed up the transformations are described in [64], [65] and [66].

In [67], a Haar scaling function for wavelet transform is proposed. The grey-level image is

firstly binarised by a predefined threshold to highlight the feature of NP region, and then

applying wavelet transform with different parameters to generate four corresponding

sub-images: low-pass-filtered, characteristics contained in vertical direction,

characteristics contained in horizontal direction, and cater-corner characteristics, namely

LL, LH, HL and HH, respectively. After wavelet transform, five steps to localise the NP

region are proposed:

1. Find the reference line by horizontal variation in LH sub-image;

2. Decide the size of the mask;

3. Find the candidate regions below the reference line;

4. Candidate region verification;

5. Searching the complete NP region.

The average accuracy of detection achieved in this paper was 92.4%, however, the fixed

size of mask and reference line for finding the candidate make the method is unreliable,

because it required the distance between the vehicle and acquisition camera to be in a fixed

range.

2.2.4 Discussion

The NPL algorithms presented in the previous sections normally require pre-defined

working environment to extract the NP from an input image, for example, camera distance,

background environment, vehicle position and lighting condition. In real-world

Chapter 2 Related Work

22

applications, NPL algorithms should be able to cope with variable camera-to-car distances

and environments. On the other hand, according to the reported processing speed of NPL in

the literature, the NPL stage is the most computational intensive stage in the entire ANPR

system. For a real-time ANPR system, efficient and robust NPL algorithms are required to

accelerate the speed of the entire system. Table 2-1 summarises the performance of the

existing NPL algorithms.

Table 2-1: Performance of Existing NPL Algorithms

NPL Algorithm Country Image Type
NPL Successful

Rate (%)
Speed (ms)

Improved Bernsen algorithm and

CCA [45]
Japan Greyscale 97.16 158

Edge detection and morphology [47] China Greyscale 99.6 100

Fuzzy logic [59] Taiwan Colour 97.9 N/A

Fuzzy logic [60] China Colour 95.1 400

Support vector machine [61] Korea Colour 92.7 1280

Wavelet transform [44] Taiwan Greyscale 97.3 180

Sliding concentric windows [68] Greece Greyscale 96.5 N/A

2.3 Character Segmentation

CS is an important stage in ANPR systems as correctly and accurately segmented

characters are more likely to be successfully recognised [5]. In recent years, many CS

techniques have been developed for text in printed documents [69] [70], however, due to

the real-life use of ANPR systems, the obtained NP images are noisy (e.g. uneven

illumination, inclined NP and connected characters) [1]. In order to overcome these issues,

a wide variety of modified or improved character segmentation techniques have been

developed. There are mainly three CS algorithm categories:

Chapter 2 Related Work

23

- Projections and binary algorithms;

- Contours tracking algorithms; and

- Classifiers based algorithms.

The three types of CS algorithms are discussed with more details in the following sections.

2.3.1 Projections and Binary Image Processing Algorithms

The most common used CS algorithm is the one based on vertical and horizontal

projections of the pixels [50, 59, 71-73]. The idea is to sum up pixels that belong to one

column or row of a binary NP image and obtain two row and column vectors (or

projections), then analyse them based on their projection histogram to identify the local

minimum critical points where the characters need to be segmented. The proposed process

is illustrated in Figure 2-5 below.

YT 58 FSZHorizontal

Projection

Vertical

Projection

Figure 2-5: Horizontal and Vertical projection

The main advantage of this method is its low complexity and straightforward

implementation, but it does not perform well when the NP has connected characters due to

noise, and the entire horizontal pixels projection cannot provide exact horizontal position

of a character when NP is inclined or noisy, which will cause difficulty when identifying the

local critical points of each character.

Another used method applied to binary images for CS is CCA which is based on some

geometric conditions where height, width, and area of characters need to be measured

[74-79]. In this method the correct position of each character can be extracted even if the

Chapter 2 Related Work

24

NP is inclined, but it requires each character to be fully connected and neighboured

characters must not be connected. Figure 2-6 illustrates a failure case of CS when only

using the CCA algorithm.

YT 58 FSZ
Connect Point

Figure 2-6: A failed example of CS when using the CCA algorithm only

Therefore, in order to overcome this issue, this method is usually combined with

mathematical morphology. Adaptive approaches for degraded NP images have been

developed in [80] and [81] which include morphological operations. These methods apply

the thickening and pruning algorithm to binary images to remove noise and search critical

segmentation points in the projection histogram. For the aforementioned task, prior

knowledge of the maximum quantity of segments for character or number was employed to

decide whether the merging is necessary. The morphological operators are used for the

merging and separating overlapping or connected characters [80].

2.3.2 Contours Tracking Algorithms

The second type of CS algorithms is contour tracking. The works proposed in [82] and [83]

fall into this category, where the boundary information of characters is used. The algorithm

extracts contour line for each character into eight and four directions by using 3×3 and 2×2

masks respectively, and then divides NP region into higher part and lower part using

density indicating histogram for y-axis direction. Figure 2-7 shows a 2×2 mask and the

required progressing for extracting contour line.

Chapter 2 Related Work

25

a b

xk yk

Progress direction

a b

xk yk

a’

b’

b’ a

a’ xk

b

yk

Progress direction xk+1

yk+1 xk+1

yk+1 Progress direction

(a) (b) (c)

Figure 2-7: 2×2 mask and the contour line extraction process. (a) 2×2 mask. (b) when a and b are boundary

pixels. (c) when a and b are background pixels.

The 2×2 mask algorithm chooses a boundary pixel in the corresponding region as a starting

point, and then determines the next progressing direction of mask by considering two pixels

a and b. The tracking start direction is anticlockwise, if a and b are boundary and

background pixel respectively, the tracking direction remains anticlockwise. If a and b are

either boundary pixels, or background and boundary pixels respectively, the tracking

process starts from the right side neighbouring pixel and continues clockwise as shown in

Figure 2-7 (b). If a and b are both background pixels, then the tracking process starts from

the left side neighbouring pixel and continues in the opposite of the previous direction as

shown in Figure 2-7 (c).

In [84] and [85], a shape-driven active contour model is established, which uses a variation

fast matching algorithm for NP character segmentation, where a coarse extracting of

boundaries and class labels of each character are proposed using a shape driven fast

marching technique with a gradient and curvature dependent speed function:

1

kF
F

G I

 (2.1)

Where kF denotes a curvature related term in order to keep the propagating curve as

smooth as possible [85].

Firstly, the algorithm initialises the front at the borders of the image, and then performs fast

matching interactions with speed function using Equation 2.5. Figure 2-8 shows the coarse

segmentation results:

Chapter 2 Related Work

26

7 6 A U 2 8 2 7 6 A U 2 8 2

7 6 A U 2 8 2 7 6 A U 2 8 2

Figure 2-8: The coarse segmentation results [85]

After locating the coarse character boundary, a fine character boundary process is used to

locate fine character boundaries and classify them with evolving active contours in the fast

marching scheme, which depends on gradient, curvature and shape similarity information.

The method is also capable of segmenting broken characters and using the final merged

segmentation results for recognition.

2.3.3 Classifiers Based Algorithms

The third category for character segmentation is based on classifier networks. The method

proposed in [86] and [87] models the extraction of characters as a Markov Random Field

(MRF), where prior knowledge of NP is used to maximise a posteriori probability.

Subsequently, a genetic algorithm with a local greedy mutation operator is employed to

optimise the objective function and convergence. The method was developed for CS in NP

video sequences.

In [88], a method for segmentation of a line of characters in a noisy low resolution image of

a car NP is introduced, where the hidden Markov chains are used to model a stochastic

relation between a input image and the corresponding CS. A training set of examples with a

ground truth segmentation provided by a user that is used for the learning of the statistical

model, which allows the classifier to mimic the user’s segmentation and exploits the entire

prior knowledge specific for the application at hand. For the prior knowledge, they assume

that the characters can be segmented into sectors with the same but unknown width. The

proposed method is able to segment characters correctly even in images of a very poor

quality. The error rate 3.3% was achieved on the testing set with 1000 examples captured

by a real ANPR system. However, for example, the number and width of characters are

normally unknown such as the number of characters on a UK NP can be in the range 3 to 7,

Chapter 2 Related Work

27

and inclined NPs can affect the width of characters.

2.3.4 Discussion

The low computing complexity of pixel projection makes it the most common used method

for character segmentation. However, this method relies on the shape of characters.

Although CCA has the ability to overcome this problem, but all characters on the NP must

be isolated and each character must be fully connected. Contour tracking and classifier

networks can perform better in more complex environments, but their higher computational

complexity limits the flexibility for its hardware implementation. Table 2-2 summarises the

performance of the existing CS algorithms.

Table 2-2: The performance of existing CS algorithms

CS Algorithm Country
CS Successful Rate

(%)
Speed (ms)

Pixel Projection [45] Japan 98.34 35

Pixel Projection [50] Australia 98.82 200

CCA [56] China 95.6 2000

Bicubic interpolation and fixed position

parameters
Greece 89.1 N/A

CCA [79] Korea 97.2 150

Contours Tracking [82] Korea 97.7% N/A

Hidden Markov Chains [88] Czech Republic 96.7% N/A

CS stage is a very important stage in the entire ANPR system as the OCR stage fully relies

on isolated characters and incorrectly segmented characters are not likely to be successfully

recognized. In fact, accurate segmentation of degraded NP images is still a problem in

ANPR systems, most of the recognition errors in the ANPR systems are due to

segmentation errors.

Chapter 2 Related Work

28

2.4 Optical Character Recognition

OCR has become an important and widely used technology, which translates scanned

images of printed text into machine encoded text. This technology is also used for the

recognition of segmented characters in the last stage of an ANPR system. The OCR system

for ANPR is relatively less complex compare to other common OCR systems (e.g. hand

writing and text scanning) as characters on NP have uniform fonts [89] and [90]. However,

in order to handle the noisy and unknown outdoor environment effects, the ANPR system

needs a stable OCR algorithm. Most used algorithms are based on statistical classifiers,

Artificial Neural Networks (ANN), and common pattern matching techniques [5].

2.4.1 Statistical Classifiers

The statistical classifiers can be divided into two sub-classes: single stage classifier and

multistage classifier. Support Vector Machine (SVM) is one of the widely used classifiers

for both sub-classes. The work done in [91] uses four SVM-based character recognisers

indexed by ucSVM , unSVM , lcSVM and lnSVM , which are used to recognise the

characters. Each SVM recogniser is used to recognise different characters located in

different positions on Korean NPs where the characters are listed in two lines (e.g. upper

characters, upper numerals, lower character and lower numerals). In case of characters,

one-per-class decomposition method is used to classify between multi-classes characters.

In case of numbers, they use 10 SVMs to recognise 0-9 respectively, and the maximum

value of the outputs is selected.

In the work presented in [45], a group of Chinese characters is processed as a character

string, the entire character string was normalised and taken as the object of study to reduce

the difficulty of character segmentation and post-processing. Feature extraction approaches

of Global Direction Contributivity Density (G-DCD) and Local Direction Contributivity

Density (L-DCD) were proposed where the eight stroke directions iL (1,2,...,8;i

Chapter 2 Related Work

29

0 , 45 , 90 , 135 , 180 , 225 , 270 , 315) are used to indicate eight distances between the

pixel on a stroke and eight directional edges of the stroke. Figure 2-9 shows the direction

feature of stroke.

の

Figure 2-9: The direction feature of stroke

 G-DCD: This is a 1-D feature vector that reflects the complexity, direction, and

connected relationship of character strokes. Basically, scanning the image from left

to right in the direction of 0, 1, 2, 3T , denotes a 0 , 90 , 45 , and 135 ,

respectively, all cross points of the scanning line and stroke contour are obtained,

then the direction features of all the cross points are calculated and added.

 L-DCD: This feature reflects the local structure of the character. Instead of

extracting the features from the whole character image, L-DCD is computed from

all sub-images, and then is divided into the original image.

 Contour feature: This feature is represented by the x-axis distance between the

boundary of character image and the first character pixel when horizontally (0)

scanning the character image from left to right. Similarly, contour features also

include other directions, i.e., 45 , 90 and 135 .

In this work, SVM was used as a classifier to recognise characters based on the above

features. This was tested using Japanese NPs that including numbers, Kana (Japanese

script), and the strings of characters that represent the area. The recognition rates for

numbers, Kana and strings of characters are 99.5%, 98.6% and 97.8% respectively.

Chapter 2 Related Work

30

Many researchers have integrated multistage classifiers to improve the recognition rate of

OCR. In [92], a two-stage hybrid OCR system is presented. It firstly uses four statistical

sub-classifiers to independently recognise the input character and then the results are

combined using the Bayes method [93]. Secondly, if the recognised character from the first

stage belong to the set of ambiguous characters (e.g. I/1, B/8 and O/D), a structural stage is

used for a further decision. The coarse-to-fine strategy is used in [94] to efficiently organise

character from a large number of possible candidates, where the characters are sorted by

their shape and ambiguous cases are grouped together, then only specific features are

considered in the similar character group.

2.4.2 Artificial Neural Networks

ANNs are intelligent computing architectures widely used for pattern recognition, and the

most commonly used and simplest Neural Network (NN) architecture is multilayer

feed-forward NN, which can classify inputs into a set of target categories. Typically, the

works done in [95] and [48, 96] use binary pixels values and average intensity value of

character image to feed the inputs of NN, which can achieve good performance even under

complex environments in ANPR systems. A typical multilayer feed-forward NN is shown

below in Figure 2-10.

p1

p2

p3

p4

pR-3

pR-2

pR-1

pR

...

...

...

Input

Hidden Layer

Output Input

Weights

Output

Wights

1

1a

1

2a

1

3a

1

2sa

1

1sa

1

sa

2

1a

2

2a

2

3a

2

2ka

2

1ka

2

ka

Figure 2-10: A multilayer feed-forward NN

Chapter 2 Related Work

31

In [95], a standard Backpropagation network is used which has an architecture with 3 layers

and 129, 20 and 36 neurons on the input, hidden and output layers respectively. In [96], they

proposed a multiplayer feed-forward network that consists of 209 inputs, 104 hidden

neurons and 33 outputs. The designed NN can recognise one character at a time. The

training algorithm is Backpropagation. The achieved character recognition rate was 95%.

In order to further improve the character recognition rate, employing features extraction of

the character images is needed. In [97] and [98], extra procedures during the training stage

or after obtaining the results of the NN to handle difficult characters that belong to the set of

ambiguous characters are used (see Figure 2-11).

Figure 2-11: The set of ambiguous characters

In [98], the ambiguous characters are used more often for the NN training. After the

additional training, the recognition rate was reported to be 98.2%. However, in [56], once

misclassified characters are found, an additional minor comparison between the unknown

character and the classified character is applied, where only distinguishing parts of

ambiguous characters are compared. However, the features extraction normally needs

complex computation or multiple stages to extract features. There are also other types of

NNs used for classification, such as Probabilistic Neural Network (PNN) [68, 99] , Deep

Boltzmann Machines (DBM) [100] and Deep Belief Nets (DBN) [101], which normally

give more accurate result but require more memory space and learning time.

2.4.3 Pattern Matching

Common pattern matching is a technique for finding a target image whether it matches a

template image or not, which can be one solution for recognising single font and fixed size

characters such as NP characters. Normally, the target image is used to compare an image in

the pre-defined template data set one by one, where Root Square Error (RSE) or

Chapter 2 Related Work

32

cross-correlation algorithms are used to determine the best matching result.

In [102], a cross-correlation operator is applied between a sub-area of the normalised

greyscale image and each prototype. Let g , g , f and f be template image, average grey

level of the template image, acquired image and average grey level of the acquired image

respectively. The normalized cross-correlation operator defined in the discrete case as

follows:

2 2

()()

() ()
fg

f f g g
C

f f g g

 (2.2)

The recognition decisions are based on the normalized cross-correlation values fgC . Due to

the difference between the character thicknesses for each province, different template sizes

are designed for recognising those characters. Once the province has been recognised, the

system computed the cross-correlation value for each of the 31 character templates. At each

step, the cross-correlation values between the searched template and the corresponding

acquired image are stored in a matrix with 31 163 elements. Each matrix row contains the

cross-correlation values of each examined template and each matrix column contains the

list of cross-correlation value of all the templates in that position over the image. The

recognised character will be decided using the greatest mean cross-correlation value that is

obtained from each matrix column. The algorithm has been tested with a database that

contains 1823 character images, and the achieved recognition rate was 97.97%. However,

because the positions of the characters within the NP image are unknown, extractions of

each character require a fixed distance and size. In addition, a high computational cost is

also required by the cross-correlation measure.

The work in [103] uses root-mean-square error (RMSE) for calculating similarity of a

prototype and a given binary image. A method is first proposed to estimate the character

size. The estimated character size is resampled to 28 pixels, and then a match competition is

performed to find the best match image in the template. If a candidate can be found, the

height will be used as the height of character, otherwise, the estimated height will be

Chapter 2 Related Work

33

increased by one until a best match is found. To evaluate the new width, a linear

interpolation method is used to resize the character based on the new height. The RMSE

approach is used at the end to measure the similarity of a template and the given image. The

RMSE rmse can be computed using the following equation:

1/2
1 1

2

0 0

1 ˆ[(,) (,)]
M N

rms

x y

e f x y f x y
MN

 (2.3)

where (,)f x y and ˆ(,)f x y represent the binary values of the input and template images

(M N) respectively. Again, in order to reduce the computational cost required by RMSE

measure, the proposed algorithm searches the best match template character by character in

the NP based on the previous estimation of the positions of the characters. Unlike the

cross-correlation value, the minimum value of the RMSE indicates which the best match

template is.

However, these pattern matching methods are not suitable to recognise the slanted and

noisy character, which is the type of characters that need to be processed in ANPR systems

[5].

2.4.4 Discussion

Incorrectly segmented characters from the CS stage, where characters are not in the

expected position or parts of them are missed, may affect the OCR recognition. The NNs

and statistical classifiers, which give better results compare to common pattern matching

techniques, can overcome this problem due to their strong memorability and self-adapting

ability. However, in order to achieve good performance, large amount of samples are

needed to train the NNs. Although the OCR technologies are already mature and

continuously enhanced over time, they still need improvement in set of ambiguous

character (1/I, 0/O, 0/D, 2/Z, 8/B and 5/S). Table 2-3 summarises the performance of the

existing OCR algorithms for ANPR systems.

Chapter 2 Related Work

34

Table 2-3: The performance of existing OCR algorithms for ANPR systems

OCR Algorithm Country Character Recognition Rate (%) Speed (ms)

ANN [43] China 97.1 N/A

SVM [45] Japan 97.03 18

ANN [48] Australia 92.03 N/A

Self-organised Map (SOM) [59] Chinese 95.6 N/A

Probabilistic Neural Network [68] Greece 89.1 128

2.5 Hardware based ANPR System

Recent improvements in the computing power of FPGAs and DSPs have motivated

researchers to consider them as an alternative solution to implement ANPR systems. These

devices can be used as a low-cost System-on-chip solution that allows the FPGA or

DSP-based processing unit to be placed within an ANPR camera housing to create

‘intelligent cameras’– namely cameras that record and process images for sending back to a

server. The main advantage of these solutions is not only the significant improvement in the

processing speed, but also the significant reduction of power consumption and cost of the

processing unit, which outperform all existing software-based solutions. The most recent

DSP and FPGA-based ANPR systems are discussed in this section.

2.5.1 DSP-based ANPR System

As mentioned in Chapter 1, a DSP is a specialised microprocessor that has an optimised

architecture for the operations of digital signal processing purpose. The major advantage of

DSP-based ANPR systems is their real-time capabilities in city scenarios, which allows the

system to catch all the objects that moves through the scene irrespective of the object speed.

In [11], the authors proposed an embedded DSP platform based ANPR system and it can

process a video stream in real-time. The proposed system consists of NPL, CS and OCR

Chapter 2 Related Work

35

modules. Approximate NPs are detected first using Viola Jones detector [104], which is

widely used in face and object detection, within the NPL module, and then a

post-processing is performed followed by a tracker process. The tracker process is

initialised when each new plate region is detected, which can optimise the detection process

and create a relation between subsequent frames. Subsequently, the detected plates are

handed over to the character recognition module. Each character is extracted by the

segmentation process and recognised through classification process. Finally, history

information is acquired by the tracker that will be used to improve the classification result

in the post-processing unit. The flow chart of the overall system is shown below.

Input Sequence

NPL

Viola Jones

Detector

Post-Processing

Tracker
Position Estimates

Detections Detections

OCR

Classification CS

Post-Processing

Single Character

Character

Classification

History

Final Recognised NP

Figure 2-12: The overall system flow chart [11]

A frame resolution of 352×288 was used in the proposed system, the detection and

recognition process operates on each individual frame, and then transmits the results and a

compressed image to a client. The used classifiers for the Viola and Jones detector and the

SVM are trained off-line on a general purposed computer, and then were ported to the DSP

platform. Two sets of test data are used for the proposed system, one set contains 260

Chapter 2 Related Work

36

images of number plates is used for training, another set of test data is the extracted video

frames that is used for testing system performance [11].

A single Texas Instruments
TM

 C64 fixed point DSP with 1MB of cache RAM and 16MB

SDRAM was used for the experimental test. On the average, the SVM takes 7.3 ms for

localisation of a full plate, and the achieved average frame rate is 19 fps (52.11 ms) [11].

2.5.2 Hybrid DSP /FPGA-based NPL System

A hybrid DSP/FPGA-based NPL system was presented in [12], where the FPGA is only

used for buffering video frames/scanlines between the DSP and a video input processor

placed inside the camera while the DSP is used as the main processing unit. The main

features of the embedded platform are:

- One TMS320C6414 DSP with 600 MHz and 1MB cache;

- 128MB SDRAM for video compression, processing and storage of temporary data;

- 4MB Flash Memory for firmware storage;

- One video input processor;

- One FPGA for buffering video frames/scanlines between the video input processor

and the DSP.

The Viola and Jones detector is applied for the NPL algorithm, which needs 140 ms to

process a single 352 288 frame in a 15-minute demonstration video. Overall detection

rate for 100 number plates is 96% [12].

2.5.3 FPGA-based ANPR System

In the work presented in [105], a video processing methodology for a FPGA-based ANPR

system was proposed. During the design, Gabor filter, threshold and CCA algorithms were

used for the NPL, the Self-organising map (SOM) was used to identify the characters. The

Chapter 2 Related Work

37

system had been tested with a large database, and is suitable for applications where cost,

compactness and efficiency are limited. The overall ANPR system block diagram is shown

below in Figure 2-13.

NPL

CS

OCR

Video

Matrix

Output to the PC or

Write to the Memory

Test Video

Signal to the

Output

Localised
NP?

Yes

No

Figure 2-13: The overall ANPR system block diagram in [105]

In the NPL stage, the Gabor filter was first applied to the image to remove the unnecessary

data, and then the image was converted into binary image using an optimum threshold.

Subsequently, a dilation morphological operation was used on the result binary image to

connect the NP region. Finally, a CCA algorithm was applied to extract the binarised NP

within the previous binary image. At the end of the NPL process, if there is no localised NP,

the same process would repeat.

In the CS stage, the characters and digits were segmented within the NP area obtained from

the NPL stage. The pixel projection method was used to locate the character positions on

the NP. At the end of the CS stage, the algorithm includes a checking process to validate the

number of characters and based on the checking results, an adjustment of the critical point

finding threshold was carried out to improve the segmentation result.

In the OCR stage, SOM was proposed to recognise the segmented characters. A SOM

normally has two layers: input and computation layers, the weights of the SOM are

calculated during the learning phase. The hamming distance between each neuron and the

input image is calculated and makes a decision on the output character.

A Xilinx ML40x board equipped with a Virtex-4 FPGA is used and implemented for the

Chapter 2 Related Work

38

experimental test. The system was tested with a database of 1436 car images obtained from

highway and parking lots at various times of the day, it approximately needs 500 ms

complete a single recognition and achieved 73% overall recognition rate [105]. The FPGA

logic utilisation of the system is given in Table 2-4.

Table 2-4: FPGA Logic Utilisation

FPGA Logic Utilisation Used

Flip-Flops used 43551

Number of 4-input LUT’s 50310

In this work, an FPGA based real-time and low-cost ANPR system was successfully

designed.

2.5.4 FPGA-based NPL System

In the work presented in [13], a high speed FPGA off-loading engine for NPL system is

proposed. The main goal of this work is to detect the NP itself and measure the size, which

can then be used to measure distance between the cars. The flow chart of the proposed NPL

algorithm is shown below in Figure 2-14.

Greyscale

Conversion
Classification Labelling

Number

Extraction
Plate Extraction

Figure 2-14: The flow chart for the NPL algorithm in [13]

In the beginning of the process, 24-bit RGB pixels are converted into 8-bit greyscale pixels,

and then a classification is performed to classify each pixel into black, white and the others.

For example, if the greyscale value of a target pixel is greater than its neighbour pixels, the

target pixel will be classified into ‘white’, otherwise, it will be classified into ‘black’. In the

labelling, each labelled region consists of the neighbouring pixels with the same colour.

There are four conditions used to locate NP candidate regions within the resulted image,

Chapter 2 Related Work

39

which are:

- The height is limited in the range from 14 to 160 pixels;

- Height to width ratio is from 1.25 to 20;

- The area of the number occupies 20% to 80% of the rectangle region;

- The noise within the rectangle area is less than 5% noise.

In order to localise the NP region, three extra conditions are used:

- The error rate of the height of numbers are less or equal to 20%;

- All the numbers are in the same line;

- The noise ratio is less than 5%.

The used 256 256 image data is horizontally divided into 16 segments without any

accuracy loss. This process is shown below in Figure 2-15.

split

Input Image

256×256

16 Split Images

16×256

Store data

to BRAM

16 BlockRams

Parallel

Processing

Figure 2-15: Division of the image [13]

The proposed system was implemented on a prototype FPGA development board called

ReCSiP-2 equipped with a Virtex-2 (XC2VP70-5FF1517) FPGA [106]. The overall block

diagram of the NPL system is illustrated in Figure 2-16.

Chapter 2 Related Work

40

ReCSiP-2 PCI board

 FPGA Chip

(Xilinx Virtex-II)

Host Interface
8KB

BRAM

Greyscale

Conversion

GetStandard

Deviation

Classification Unit

Labelling Unit

4KB×16 BRAM0

4KB×16 BRAM1

4KB×16 BRAM2

4KB×16 BRAM3

Transfer

Data

Interface Memory

PCI Bus

Figure 2-16: The overall block diagram of the NPL system [13]

The system was designed using Handel-C, and then translated into Verilog with Mentor

Graphic DK4. The maximum frequency is 72.062 MHz. The required on-chip resources is

summarised in Table 2-5.

Table 2-5: FPGA Logic Utilisation [13]

FPGA Logic Utilisation Amount Ratio (%)

Slices 22206/33088 67

BRAMs 88/328 26

Embedded Multipliers 28/328 8

In order to prove the concept and evaluate the performance of the FPGA based system, the

same system was also implemented in software. The reported detection rate is 87.7% in day

time and 84.1% in night time. A comparison between the software and hardware

implementation is given in Table 2-6.

Chapter 2 Related Work

41

Table 2-6: Performance comparison of the software and hardware implementation [13]

Stage of the NPL System Software (ms) Hardware (ms) Speed up

Greyscale Conversion 8.03 0.76 10.57

Classification 12.92 3.09 4.18

Labelling 17.57 5.40 3.25

Total 38.52 9.25 4.16

The proposed work has provided a high speed parallel solution for localisation of the NP on

FPGA. However, the proposed system is only designed for the first stage of an ANPR

system, and the proposed algorithm extracts the NP only using the illumination information,

which may limit its performance for extracting the NP from images taken in complex

environments with various objects and lighting environment.

2.5.5 Discussion

The high performance and low-cost System-on-chip solutions allow the entire ANPR

system to be implemented on a single chip that can be placed within an ANPR camera

housing to create a stand-alone unit thus drastically improving energy efficiency whilst

removing the need for the installation and cabling costs associated with bulky PCs situated

in expensive, cooled, waterproof roadside cabinets.

Generally, the software-based ANPR systems have a higher detection rate compared to

hardware based systems, however the processing time of the former is higher than the latter.

The design and implementation of hardware-based ANPR systems is limited by the

hardware architecture and the available resources. Efficient methods and techniques to

implement ANPR algorithms should be considered to map them on the chosen hardware.

The performance of existing FPGA and DSP-based ANPR systems in terms of speed and

recognition rate is listed in Table 2-7.

Chapter 2 Related Work

42

Table 2-7: Existing FPGA and DSP-based ANPR systems

2.6 Limitation of Existing Work and Research Opportunities

As it can be seen from the preceding sections, most of existing ANPR systems are based on

software implementation, only few solutions are based on hardware. There still remains

plenty of scope for further research in exploiting reconfigurable computing for ANPR

systems to improve the system performance and efficiency. The major limitations of the

existing work can be summarised as follows:

- The existing ANPR algorithms required high performance platform to achieve the

real-time constraint, the cost of the power consumptions were not discussed;

- A relatively small volume of recent ANPR systems were implemented in hardware;

- The existing ANPR algorithms were not specially designed for FPGA

implementation, where parallelism could be exploited;

- The existing hardware-based ANPR systems were only highlighting the speed,

however, most of them did not achieve a satisfactory recognition rate, which limited

the practical usage of the solutions.

Based on the limitations of existing work, the main contributions of the work presented in

ANPR

System

Character

Set
System Part

Image

Type
Hardware Platform

Successful

Rate (%)

Speed

(ms)

[11] Australia
Whole ANPR

system
Greyscale TI C64 DSP 85 52.11

[12] Australia NPL Colour
TI C6414 DSP and

Altera FPGA
96 140

[105] Turkey
Whole ANPR

system
Greyscale FPGA Virtex-4 73 500

[13] Japan NPL Greyscale FPGA Virtex-2 and PC 87 9.25

[107] US
Whole ANPR

system
Greyscale FPGA Virtex-2 and PC N/A N/A

[28] UK NPL Greyscale C64plus DSP 96.1 4.86

Chapter 2 Related Work

43

this thesis can be summarised as follows:

- A low complexity and robust NPL algorithm suitable for a single FPGA

implementation has been developed in the thesis, where a novel NP feature

extraction and enhancing method based on two morphological open operations and

an image subtraction operation are proposed. In addition, a novel efficient FPGA

architecture and its area/speed efficient implementation have also been proposed in

the thesis;

- A low complexity and robust CS algorithm based on pixel projection and

morphological operations has been presented in the thesis, where an NP height

optimisation step and two optional morphological operations are introduced to

reduce and remove noise impact to achieve a more precise horizontal and vertical

segmentation result. In addition, a novel real-time architecture and its area/speed

efficient implementation have also been proposed in the thesis.

- A low complexity and robust OCR algorithm based on feed-forward neural network

has been presented in the thesis, where the use of noise added training process could

result on the neural network with better performance than the normally trained

neural network. In addition, a novel real-time architecture and its area/speed

efficient implementation have also been proposed in the thesis; and

- A local thresholding NP binarisation and low complexity NP adjustment algorithms

have been introduced to solve the problem of uneven illumination and

automatically adjust NPs respectively in the thesis, which could improve the NPL

result prior to CS stage. In addition, two area/speed efficient architectures based on

the proposed NP binarisation and adjustment algorithms have also been presented

in the thesis.

2.7 Conclusion

This chapter has summarised the state-of-art algorithms, architectures and systems for

Chapter 2 Related Work

44

ANPR application implemented on software and hardware-based platforms using different

design methodologies and implementation approaches. In addition, limitations of existing

work were stated. It is the aim of the research work presented in this thesis to address the

limitations presented in the previous sections with efficient means of providing high

performance ANPR system through the use of FPGA.

Chapter 3 Number Plate Localisation Algorithm and its Efficient FPGA Implementation

45

Chapter 3: Number Plate Localisation Algorithm and its

Efficient FPGA Implementation

3.1 Introduction

As mentioned in the previous chapter, the NPL stage is crucial to the entire system, because

it directly influences the accuracy and efficiency of the subsequent steps (i.e. CS and OCR).

The NPL stage is also the most computational intensive stage in the entire ANPR system.

For a real-time ANPR system, efficient and robust NPL algorithms are required to

accelerate the speed of the entire system.

This Chapter is concerned with the NPL stage, where a speed and area-efficient architecture

based on a low complexity NPL algorithm suitable for FPGA implementation is presented.

The proposed algorithm is mainly based on morphological open and close operations,

which replaces the traditional edge detection operator to reduce the computation

complexity whilst maintaining a satisfactory detection rate. A MATLAB implementation of

the proposed algorithm is used as a proof of concept prior to the hardware implementation,

and the proposed architecture implemented and verified using the Mentor Graphics RC240

FPGA development board equipped with a 4M Gates Xilinx Virtex-4 LX40. For

comparison purposes two different databases, including a public one, were used. The first

one contains1000 images with UK NPs while the second one , taken from an online

database, contains 307 images with Greek NPs with a resolution of 640×480 [108]. For the

UK database, some images were collected by the author with the rest provided by CitySync

Ltd. [109] who are one of the leading UK providers of ANPR solutions. The images were

grouped into six different sets based on different criteria such as distance and illumination

conditions, the proposed algorithm and FPGA implementation have been tested using both

databases, however, due to private data protection is required by CitySync, only authorised

image samples are exhibited in the thesis.

Chapter 3 Number Plate Localisation Algorithm and its Efficient FPGA Implementation

46

The remainder of this Chapter is organised as follows: Section 3.2 describes the

morphological based algorithm. The proposed NPL architecture is then described in

Section 3.3. The MATLAB and analysis of the experimental results are given in Section 3.4.

Section 3.5 is concerned with FPGA implementation and discussion of the experimental

results. Section 3.6 discusses the conclusions of this chapter.

3.2 Number Plate Localisation Algorithm

A NP image is normally recorded as a pattern with high variations of contrast. This feature

is used to locate the plate and has been found to be relatively robust to changes in lighting

conditions and view orientation. Most of the previous works that were based on

morphological operations have used edge detection to extract the edge information around

the NP region followed by morphological operations as a fusion tool to connect the pixels

together in that region [5]. After that a Connected Component Analysis (CCA) labelling

algorithm is used for the NP region selection. However, the edge detectors are based on

matrix multiplication and the entire image needs to be scanned, which increases the

computing cost of the algorithm. Therefore, in this section, a morphological open operation

and image subtraction are used to replace the edge detection operator, which reduces the

computation complexity whilst maintaining a satisfactory detection rate.

The proposed algorithm is mainly based on two open and one close morphological

operations, the first open morphological operation is used to extract the features of the NP,

the second open operation is used to remove noise, and the close operation is then used to

fuse the pixels in the NP region together.

The proposed algorithm consists of two major stages:

1. Morphological operations for extracting plate features;

2. Selection of candidate regions.

Figure 3-1 shows a block diagram of the proposed NPL system.

Chapter 3 Number Plate Localisation Algorithm and its Efficient FPGA Implementation

47

Original RGB

Image
Greyscale Image

Number Plate

Background

Image

+ -

Highlighted

Plate Region
Binary Image Filtered image

Fully Connected

Plate Region

Morphological

 Open

Morphological

 Open

Morphological

 Close

Connected Component Analysis

(CCA) on binary image

Plate Feature Extraction

Selection of Plate Region Condidates

Figure 3-1: Block diagram of NPL system

3.2.1 Plate Feature Extraction

The proposed algorithm mainly utilises three morphological operations to minimise the

pixels of the non-plate region and to enhance those of the plate region. The original RGB

image is first converted into a greyscale image, which will be used as an input to the

following block where the first morphological open operation is used.

The morphological open operation is an erosion followed by a dilation and the opposite

operation (i.e. close operation) is a dilation followed by an erosion. The shape of the

morphological operations is based on a suitable structuring shape employed as a probe

called the Structuring Element (SE) [110]. Open IO and close IC operations can be

performed as shown in Equation 3.1 and 3.2 respectively where I denotes a greyscale input

image, denotes a dilation operation and ! denotes an erosion operation:

 ()oI I SE SE ! (3.1)

 ()cI I SE SE ! (3.2)

When applying the morphological open operation on a greyscale image, pixels are

Chapter 3 Number Plate Localisation Algorithm and its Efficient FPGA Implementation

48

‘averaged’ in the area of SE. When applying it on a binary image, pixels are erased if the SE

area is not fully filled by pixels with value ‘1’.

UK NPs normally consists of black characters on a white background. This feature causes

the pixel values to be highly variant in the NP region. On the contrary, the margin area of

the NP region normally consists of a constant colour, in particular the windscreen glass and

engine hood. Therefore, if applying a morphological open operation with enough large SE

on greyscale car image, characters can then be removed from the NP region while the

remaining features of the rest of image are kept. By performing a subtraction between the

original greyscale image and the resulting image after the open operation image, the output

is a highlighted plate region image. This process can be summarised in the following

pseudocode.

Proposed algorithm: NP feature extraction

1. Input image: colour car image

2. Output image: Highlighted NP region image

3. for all pixels in the input image do

4. grayscale pixels = RGB2Gray(original colour pixels);

5. Shifting the pixels into SE;

6. background pixels = open(SE);

7. highlighted NP pixels = grayscale pixels - background pixels

8. end

Compare to the existing algorithms, the proposed algorithm uses a morphological open

operation and image subtraction to replace the edge detection operator. As morphological

open operation has less computational intensity than the edge detection operator, which

could significantly improve processing speed. In addition to the above, with a specially

designed SE, the proposed algorithm could extract more accurate NP features rather than

only focus on common edge features, which should improve the ability of proposed

algorithm for tolerating the noise.

The size of SE is decided based on the gap between two neighbouring characters on the NP.

Due to the variant distances between the car and the camera, the size range of NPs (H×W)

Chapter 3 Number Plate Localisation Algorithm and its Efficient FPGA Implementation

49

in the used databases is between 18×160 (pixels) and 60×300 (pixels). Let maxhd (pixels)

and minvd (pixels) denote the maximum distance between the two neighbouring characters

on the horizontal and the minimum distance between the character and boundary of the NP

respectively. They both depend on the size of the NP and the shape of neighbouring

characters (See Figure 3-2).

YT 58 FSZ

H
ei

g
h

t
=

 H

Width = W

dhmax
dvmin

Figure 3-2: An NP example

On the other hand, the size of SE (1 2S S) is determined by maxhd and minvd , where

1 min1 ,vS d max 2 max ,h hd S d as a variable that is calculated based on experiment

results.

For the UK database, images were randomly taken from different real-world environments

with variant NP sizes (note that details of this database are given in Section 3.5). Based on

the above description on how the SE size is selected and tests performed using the UK

database and then validated with the on-line public Greek database, the size of the used SE

for the open operation was set to 3×30. Figure 3-3 shows the used ‘rectangle’ shaped SE.

1
1
1

Origin

SE=

Figure 3-3: A ‘rectangle’ shaped SE with size = 3×30

This 3×30 SE has an origin pixel point, which is the centre of the whole SE. The origin

point is mainly used for marking the SE’s location when the morphological operation is

performed.

Chapter 3 Number Plate Localisation Algorithm and its Efficient FPGA Implementation

50

A morphological open operation with this 3×30 SE is performed on an original greyscale

image, which will generate a background image (Non-NP region). The background image

is subtracted from the original greyscale image and the result of this operation is a

highlighted NP region. Figure 3-4 illustrates this process.

+ -

Greyscale Image Background image

Highlighted Plate Region

Opening with a

3×30 rectangular SE

Figure 3-4: The process for highlighting the plate region.

In order to further eliminate Non-NP regions, the highlighted plate region image is

binarised. Let ming and maxg denote the minimum and maximum pixel value of the

highlighted NP region in the database respectively, the best threshold bT should adaptively

change from ming to maxg when different images are applied, however, this process requires

extra memory to store the entire image, before analysing the best bT for each input image.

For FPGA implementation, this slows down the processing speed and increases hardware

usage. Therefore, the proposed algorithm uses a fixed threshold fT to replace bT . If

minfT g , all the highlighted NP regions should be kept after image binarisation. For the

used databases min 60g , therefore the value of the fixed threshold fT is 60. Although the

fixed threshold can benefit hardware implementation, a lower threshold value will increase

the noise level (i.e. area of Non-NP regions). To overcome this problem, an extra

morphological open operation is used to remove the noise. Figure 3-5(b) shows the result

Chapter 3 Number Plate Localisation Algorithm and its Efficient FPGA Implementation

51

after noise removal.

Diamond Shaped

Open Operation

Rectangle Shaped

Close Operation

(a) (b) (c)

Figure 3-5: The process of image binarisation and enhancement. (a) Binarised Image, (b) Image after Open

Operation, (c) Image after Close Operation

For the process shown in Figure 3-5 ‘diamond’ and ‘rectangle’ shaped SEs are used for the

last morphological open and close operations. The two SEs are shown in Figure 3-6.

0 0 1 0 0
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0

R

(a)

Origin

(b)

1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1

SE=

Origin

1 1 1

1 1 1

1 1 1

Origin

Figure 3-6: The ‘diamond’ shaped and ‘rectangle’ shaped SEs. (a) ‘diamond’ shaped SE with R=2 and 3×3

‘rectangle’ shaped SE, (b) A 3×13 ‘rectangle’ shaped SE

Figure 3-6 (a) shows a ‘diamond’ shaped SE, where the matrix has a radius R=2 and all 1’s

are inside the ‘diamond’. When this special structure is used during the open operation on a

binary image only diamond-shaped regions filled by 1s are kept. This operation is very

useful in erasing net-shaped and narrow lines surrounding the plate area. This SE can

efficiently erase most of the unwanted information, as can be seen in Figure 3-5 (b).

However, in order to reduce hardware usage, the ‘diamond’ shaped SE has been replaced by

a 3×3 ‘rectangle’ shaped SE for hardware implementation. As can be seen from Figure 3-6

(a) the difference between the ‘diamond’ shaped SE and the ‘rectangle’ one is that the first

has an extra four corners. Although the open operation can effectively remove noise, some

pixels in the NP region can also be eliminated. Therefore, the system needs an extra

operation to fully fill the plate region to connect the pixels. A morphological close

operation is used for this purpose. Figure 3-6 (b) shows a ‘rectangle’ shaped SE for the

close operation, where the matrix has 3×13 ‘rectangle’ shaped 1s. Any non 1 pixels in this

Chapter 3 Number Plate Localisation Algorithm and its Efficient FPGA Implementation

52

rectangle region are changed to 1, which means all the parts in this region are fused together.

As can be seen from Figure 3-5 (c), the plate region can clearly be identified as it is a group

of connected pixels which can be easily extracted using some known geometrical

conditions (e.g. Width / Height ratio).

3.2.2 Selection of Candidates Plate Region

The output image from the previous stage consists of a set of groups of connected pixels. A

labelling algorithm CCA is used to mark these pixels. In the proposed work, the CCA uses a

‘4-connectivity’ method, and labels them using different numbers. Once all the groups of

pixels have been determined, each pixel is labelled based on the group it belongs to.

Therefore, a set of potential candidates can be selected from the image using the known

geometrical conditions, which mainly consist of the width, height and ratio of the plate

region. Let P denote the extracted plate region with the size H×W, the first criterion is the

ratio R between the height and width of P (i.e. R = W/H). The second criterion is the range

of H and W. The third criterion is the area of P. Ranges for H, W and R were selected to be

relatively large enough to cover most of the possible sizes of the plate region in the

databases. Basically, there are two selection conditions (Condition 1 and Condition 2) used

for this purpose. For both conditions, the width, height, area and ratio of the NP are

considered. Condition 1 is stricter than Condition 2 where some of the candidates may not

meet Condition 1 but can meet Condition 2. The maximum and minimum coordinates of

the rectangular plate regions that pass one of the conditions are returned. Normally, the

strictest condition (i.e. Condition 1) is perfectly suited for selecting candidates from good

condition images (e.g. daytime and clear images); while Condition 2 can be used for

selecting candidates from bad quality images (e.g. far view, blur and complex background

images). Figure 3-7 shows a flow diagram that illustrates the selection process.

Chapter 3 Number Plate Localisation Algorithm and its Efficient FPGA Implementation

53

Labeled

Image

Group of Pixels

with Label i

Geometrical

Condition 1

Met?

No

i++

Geometrical

Condition 2

Met?

Yes

Yes

No

i++

i > imax and “no

successful

candidate” ?

No

Yes

Successful

Condiates

i = 0

Group of Pixels

with Label i

Successful

Condiates

i > imax

Yes
End

i ∈ [0 imax]

Figure 3-7: Flowchart of selection process

The final NP will be extracted from original greyscale image. Figure 3-8 shows the selected

NP.

Selection of

Plate Region

Figure 3-8: Selection of Number plate

3.3 Proposed Number Plate Localisation Architecture

Morphological operations based architecture consists mainly of an image reader, three

morphological operations and CCA. Therefore, this architecture can be designed using the

following modules:

- Memory Reader Module;

- Converter Module;

- Morphological Operations Module; and

- CCA Module.

The structure of the proposed architecture is shown in Figure 3-9.

Chapter 3 Number Plate Localisation Algorithm and its Efficient FPGA Implementation

54

Memory Reader

Module

Converter

Module

Morphological

Operations

Module

CCA Module
Converter

Module

Morphological

Operations

Module

Figure 3-9: Morphological operations based system

The first morphological operations module consist of two open operations, the second

morphological operation module only consist of a close operation. The modules shown in

Figure 3-9 are discussed in the following subsections.

3.3.1 Memory Reader and Converter Module

The first module in the proposed architecture is the memory reader and converter. The

memory reader part of the module is used to read the RGB values for each pixel from the

original RGB image which has a size of 640×480 and to assign a position coordinate.

Figure 3-10 shows a block diagram of the memory reader.

RGB Image on The

External Memory

RGB Pixel

Coordinate

Generator

Pixel StreamMix

Figure 3-10: Block diagram of memory reader

The converter part of the module is used for the standard RGB (24 bits) to greyscale

conversion (8 bits) using Equation 3.3 [111]:

77 155 29

256

R G B
Y

 (3.3)

Chapter 3 Number Plate Localisation Algorithm and its Efficient FPGA Implementation

55

This module is also used for the greyscale to binary conversion using a fixed threshold fT

out of 255 (i.e. fT = 60), which means all values less than fT will be treated as ‘0’ and

values larger or equal to fT will be treated as ‘1’.

3.3.2 Morphological Operations Module

The morphological operations module consists of the morphological open and the

morphological close sub-modules. According to the Equation (3.1) and (3.2), the

morphological open operation and the morphological close operation can be divided into

two sub-filters respectively, i.e. the morphological dilation and the morphological erosion

sub-filters, where the order in each case decides whether the morphological operation is

open or close. The greyscale dilation calculates the maximum pixel value in a specific SE.

On the contrary, the greyscale erosion calculates the minimum value in a specific SE.

The proposed algorithm uses 3×30 rectangle shaped SE, however, for efficient hardware

implementation where pipelining can be exploited, this rectangular shaped SE has been

decomposed into two small rectangle SEs with the sizes 1×30 and 3×1. Figure 3-11 shows

the block diagram of the proposed pipelined dilation filter.

Stage 0 Stage 1 Stage 2 Stage 28 Stage 29
Stream of

Pixels

Line Buffer 0 (8 bits × 640)

Line Buffer 1 (8 bits × 640)

Maximum

(8 bits × 30)

8

8

Maximum

(8 bits × 3)

8

8
8 8

8

8

8

8

8

8
To The Next Filter

8

Figure 3-11: The block diagram of a pipelined dilation filter

Chapter 3 Number Plate Localisation Algorithm and its Efficient FPGA Implementation

56

The process starts when the value of current input pixel is simultaneously passed into the

internal buffers “Stage 0” and “Line Buffer 0” then after every clock cycle it is passed to the

next stage until it reaches “Stage 29” and then the maximum pixel value of the current 30

pixels in the 30 stages is calculated. In the meantime, the values of the pixels from two

consecutive lines of the greyscale image (i.e. 640 pixels per line) are stored in the two line

buffers in order to calculate the maximum value from three consecutive pixels from the

same column. The first origin of SE (1×30) is the fifteenth pixel of the first line, so the first

coordinate of output should be kept consistent with the coordinate of the fifteenth pixel

instead of the coordinate of the current input pixel.

The structure of the erosion filter is similar to the dilate filter. The only difference is that the

minimum value of the pixels is calculated instead of the maximum one.

In the proposed architecture, there are three different SEs used for the three morphological

operations (i.e. ‘rectangle’ shaped SEs: 3×3 , 3×13 , 3×30) which can be easily

implemented using the block diagrams shown in Figure 3-11 and Figure 3-12 by simply

changing the number of stages (i.e. if the size of SE is 3×3, it requires three stages). The

‘diamond’ shaped SE has been replaced by the ‘rectangle’ shaped SE (3×3) in order to use

the same block diagrams shown in Figure 3-11 and 3-12 which reduces the hardware

complexity.

3.3.3 CCA Module

The CCA module is used to mark and select a candidate plate region from the entire binary

image. Generally, the pixels of the input pixel stream are divided into several groups or

blobs by the CCA module. The grouping is based on the pixels’ connectivity. Figure 3-13

demonstrates this procedure.

Chapter 3 Number Plate Localisation Algorithm and its Efficient FPGA Implementation

57

P1.L

P1.A

P1 P2.L

P2.A

P2

P3.A

P3.L P3

Blobs (index of X)

Blobs (index of Y)

PixelStreams In

PixelStreams Out

Figure 3-12: The block diagram of CCA

The grouping is performed as follows. The binary stream is scanned from left to right

starting from the top line. For instance, a comparison between the current pixel “P1” from

Figure 3-13, its upper pixel “P1A” and left pixel “P1L”, which have already been grouped,

is performed. All pixels with value ‘0’ will be assigned to one group with an index ‘0’. If the

value of “P1” is ‘1’ and the indexes of its neighbours are the same and not ‘0’ then “P1” will

be assigned the same index as its neighbours. If the indexes of the two neighbours are

different and not ‘0’, then the indexes of this pixel and its upper neighbour “P1A” will be

the same as its left neighbour (i.e. “P1L”). If the indexes of the two neighbours are different

and one of them is ‘0’, then the index of this pixel will be the non-zero index of its

neighbour. If the pixel value is ‘1’ but the indexes of its neighbours are both ‘0’, the index of

a new group will be assigned to this pixel. Finally, the coordinates of each rectangular

shaped group are recorded for the selection of candidates.

Once the whole image is scanned, the selection of a candidate region is performed using the

selection process shown in Figure 3-7 which is mainly based on the geometrical

relationship of the NP region.

3.4 MATLAB Implementation and Results

The proposed algorithm was first tested in a MATLAB environment using a database of

1000 images containing UK NPs and verified using an on-line public database of 307

images containing Greek NPs. The resolution of all used images is 640×480. The UK

Chapter 3 Number Plate Localisation Algorithm and its Efficient FPGA Implementation

58

number plate database consists of six different sample sets and the on-line Greek database

consists of three different sample sets, which are taken from natural scenes obtained in

various illumination conditions and different distances between the camera and vehicles.

The three sample sets from the Greek database are similar to the first three sample sets from

the UK database. Therefore, for the purpose of performance testing of the proposed

algorithm, all samples sets from both databases were grouped into six sets. The first three

sample sets are:

- Sample Set 1: day time colour: this set contains 631 images from the UK NP database

and 136 from the Greek one. The NP regions in this sample set are clear and normal

size, which were taken from the front view of the cars at day time with various

illumination environments;

- Sample Set 2: day time close view: this set contains 70 images from the UK NP

database and 122 from the Greek one. The size of the NP regions in this sample set is

large and the images contain less complex background environment information,

which were taken from the close view of the cars at day time with various

illumination environments; and

- Sample Set 3: day time with shadows: this set contains 68 images from the UK NP

database and 49 from the Greek one. The NP regions and the backgrounds contain

shadows, which were taken at day time with various illumination environments.

The remaining three sample sets are:

- Sample Set 4: day time moving vehicles: this set only contains 140 moving vehicle

images from the UK NP database, which were taken from the motor way at day time

with various illumination environments;

- Sample Set 5: day time far view: this set contains 75 images from the UK NP

database. The size of the NP regions in this sample set is small and the images contain

more complex background environment information, which were taken at day time

but with longer camera-subject distances;

Chapter 3 Number Plate Localisation Algorithm and its Efficient FPGA Implementation

59

- Sample Set 6: night time infrared: this set contains 17 images from the UK NP

database, which were taken from an infrared camera at night time.

Table 3-1 shows images from each sample set and the size range of the NP, where the

lowest and highest height/width of NP are 18/160 and 60/300 respectively in the databases.

Therefore, the expected H, W and R values should fall in the following regions:

18 30H , 60 300W and 2 9R .

Table 3-1: The Samples of Used Database

Sample set 1

(Day time

colour)

Sample set 2

(Day time

close view)

Sample set 3

(Day time

with

shadows)

Sample set 4

(Day time

moving

vehicles)

Sample set 5

(Day time far

view)

Sample set 6

(Night time

infrared)

NP

sizes

30×160 up to

40×220

42×230 up to

60×300

26×120 up to

42×230

30×160 up to

38×200

18×160 up to

30×160

30×160 up to

38×200

UK

Greek

N/A N/A N/A

Table 3-2 shows the MATLAB implementation results in terms of NPL rate using all

sample sets.

Table 3-2: Successful NPL Rate by Sample Sets (MATLAB Implementation Results)

Database
Sample set

1

Sample set

2

Sample set

3

Sample set

4

Sample set

5

Sample set

6
Overall

UK

database

619/631

(98.1%)

69/70

(98.6%)

66/68

(97.1%)

135/139

(97.1%)

73/75

(97.3%)

17/17

(100%)

979/1000

(97.9%)

Greek

database

133/136

(97.8%)

120/122

(98.3%)

48/49

(97.9%)
N/A N/A N/A

301/307

(98.0%)

The proposed algorithm has an overall 97.9% NPL rate when tested using the UK images

Chapter 3 Number Plate Localisation Algorithm and its Efficient FPGA Implementation

60

and 98.0% when using the Greek images. The NPL rate is high for sample sets 1, 2 and 6

compared to sample sets 3, 4 and 5, which is due to the fact that the scenes in the latter

sample sets contain more complex background environments. Generally, the proposed

algorithm shows a similar NPL result and a relatively stable performance for both

databases.

Although the two geometrical conditions have effectively improved the NPL rate, some

images still cannot be handled successfully. Generally, there are two main failed data image

sets (see Table 3-3): (1) Images with more than one successful candidate including the NP

itself. (2) Images with no successful candidate. The main reasons for the first set are

environment background and NP selection conditions. Since various illumination

conditions and the range of NP size is very large (18×160 to 60×300), two selection

conditions cannot fully cover all NPs. In some cases, the false candidates in some images

are very similar in size to the true candidates in other images in the database which cannot

be excluded. In order to overcome this problem, a validation process should be added

before character segmentation for cases where there is more than one successful candidate.

For the second set, there are no successful candidates due to the length of the distance

between the camera and the car which results in very small NP images and an increase in

the background noises. In this situation the NP feature cannot be extracted properly by the

proposed morphological operations.

Table 3-3: Failed Images in Both Databases (MATLAB Implementation)

 (1) (2)

Original

Image

Image

before

CCA

Detected

NP

No successful

candidate

No successful

candidate

Chapter 3 Number Plate Localisation Algorithm and its Efficient FPGA Implementation

61

3.5 FPGA Implementation and Results

The proposed architecture for NPL has been simulated in PAL Virtual Platform (PALSim)

[112]. After simulation, the architecture has been successfully implemented and verified

using the Mentor Graphics RC240 FPGA development board [113]. Handel-C and

PixelStreams, which is a library that can be used for rapid development of video image

streaming applications, have been used for the hardware description of the proposed

architecture [114]. The details of the experimental tools can be found in APPENDIX B.

The original RGB image is first stored in an external memory on the RC240 board. The

external memory data width is 32 bits, which means every pixel value (24 bits) can be

saved on a single memory location. In Figure 3-10 each RGB pixel is combined with its

corresponding position coordinate and synchronisation information and then sent to the

filter blocks previously outlined in Figure 3-1 running in parallel. Every clock cycle, one

processed data pixel is passed from one block to the next. Example codes of the NPL

implementation can be found in APPENDIX C.

Both UK and Greek databases have been used for testing and validating the FPGA

implementation. The results show a similar performance compared to the software

implementation in terms of NPL rate where the entire overall rate is 97.8%. As

floating-point arithmetic is used in MATLAB implementation, it has slightly better

performance compare to FPGA based fixed-point arithmetic implementation. Table 3-4

shows the FPGA implementation results when using all sample sets.

Table 3-4: Successful NPL Rate by Sample Sets (FPGA Implementation Results)

Database
Sample

set 1

Sample

set 2
Sample set 3 Sample set 4 Sample set 5 Sample set 6 Overall

UK

database

618/631

(97.9%)

69/70

(98.6%)

66/68

(97.1%)

134/139

(96.4%)

73/75

(97.3%)

17/17

(100%)

977/1000

(97.7%)

Greek

database

133/136

(97.8%)

120/122

(98.3%)

48/49

(97.9%)
N/A N/A N/A

301/307

(98.0%)

Chapter 3 Number Plate Localisation Algorithm and its Efficient FPGA Implementation

62

3.5.1 Hardware Usage, Running Frequency and Power Consumption

Due to the low complexity of the proposed algorithm, the proposed architecture requires

only 33% of the on-chip FPGA resources. Table 3-5 summarises the required on-chip

resources.

Table 3-5: Usage of FPGA on-chip Resources

On-chip Resources Used Available Utilisation

Occupied Slices 6,195 18,432 33%

LUTs 8,871 36,864 24%

Flip-Flops 4,088 36,864 11%

BRAMs 18 96 18%

33% of the on-chip FPGA slices are used to implement the proposed NPL architecture. In

these slices, 24% LUTs are used to implement logic operations and RAMs in the design. 11%

flip-flops are mainly used as register to buffer the data for enabling the high throughput

pipeline manner in the design. 18% BRAMs are mainly used to store the image pixels for

the morphological operations. The total 33% on-chip resource usage leaves 67% to be used

for implementing the next stages of an ANPR system (i.e. CS and OCR).

The maximum running frequency is 86 MHz and the number of clock cycles needed for one

image to be processed is 401247. The execution time for processing one frame can be

roughly calculated using the following equation:

c

T
f

 (3.4)

where T is the execution time in ms; c is the number of clock cycles needed for one image;

and f is the maximum running frequency in Hz.

Based on Equation (3-4), the proposed architecture can process one image and produce a

result in 4.7 ms. This means that the proposed architecture satisfies the minimum

Chapter 3 Number Plate Localisation Algorithm and its Efficient FPGA Implementation

63

requirement for real-time processing. The result achieved in terms of maximum running

frequency and area used for implementing this important part of an ANPR system shows

that there is enough room to implement the whole ANPR system on one FPGA.

The power consumption of the designed circuit has also been analysed using Xilinx

XPower Analyser [115], and the results obtained are shown in Table 3-6.

Table 3-6: Estimation of Power Consumption

Resource Type Value of Power (mW)

Clocks 202

Logic 8

Signals 4

BRAMs 10

IOs 163

Clock Managers 157

Leakage 348

Total Power 892

The total power consumption of FPGAs consists of quiescent and dynamic components.

The quiescent power is consumed due to transistor leakage. The dynamic power is

consumed by fluctuating power as the design runs, i.e. clock power, logic power, signal

power, BRAMs power and IOs power, which are directly affected by the chip clock

frequency and the usage of chip area [115]. The total dynamic power consumption of the

proposed architecture is 339 mW out of the total power consumption 892 mW.

3.5.2 Comparison with Existing Work

A comparison of the experimental computational speed and NPL rate with existing PC,

DSP and FPGA based implementations of NPL is shown in Table 3-7.

Chapter 3 Number Plate Localisation Algorithm and its Efficient FPGA Implementation

64

Table 3-7: Performance Comparison

NPL Systems Platform
Processor Clock

Speed (MHz)

Image Resolution

(pixels)

NPL

Time

(ms)

NPL

Rate

(%)

Proposed System

on FPGA
FPGA Virtex-4 86 640×480 4.7 97.8%

Proposed System

on PC
PC 2300 640×480 143 97.9%

[47] PC 1700 768×534 100 99.6%

[12]
DSP C6414 and

FPGA
600 352×288 141.62 96%

[13] FPGA Virtex-2 72.062 256×256 9.25 87%

The proposed system outperforms existing ones as it shows a higher NPL rate and faster

NPL speed with higher resolution compared to the databases used in systems [12] and [13]

on the table. Although the testing databases used for the three methods are different, the

proposed system has been tested and verified using a large local database and an on-line

public database and shows stable results. However, it should also be noted that the

databases used in [12] and [13] are not available as they are not public databases, but the

used databases contain similar cases like the ones presented in those works.

However based on the results published, when compared to system [47], the proposed work

has a faster NPL speed but slightly lower NPL rate. This is due to the fact that fixed

measures of distance and angle, based on prior knowledge, have been used for the

algorithm used in [47], which is based on edge detection and morphological operations.

This prior knowledge boosts the results to a high level of accuracy which is not the case for

the proposed algorithm which uses images taken from different distances and angles more

reflective of real life recordings.

The proposed method in [12] uses a DSP for NPL implementation and a FPGA for

buffering video frames between a video input processor and the DSP. Although the DSP

frequency is 600 MHz, the processing time for one image is higher than the one for the

Chapter 3 Number Plate Localisation Algorithm and its Efficient FPGA Implementation

65

proposed system. This is due to the fact that the proposed architecture is fully parallelised

and requires less clock cycles which significantly increases the NPL speed.

By comparing the results of the PC and FPGA-based implementations of the proposed

algorithm, it can clearly be seen that the latter outperforms the former with a 30-time

speed-up with close accuracy; therefore, the proposed FPGA-based system can be used as a

viable solution to replace software based solutions where cost, size and energy

consumption will be reduced.

3.6 Conclusion

Recently, FPGAs have become a viable solution for performing computationally intensive

tasks. Owing to the importance and the use of ANPR systems in law enforcement, an

efficient NPL algorithm has been proposed in this Chapter for FPGA implementation. The

algorithm is based on morphological operations and is multiplier/divider-free and requires

only 33% of the available on-chip resources of a Virtex-4 FPGA. Parallel building blocks

have been used for the FPGA implementation and the whole system runs with a maximum

frequency of 86 MHz and is capable of processing one 640×480 image in 4.7 ms with a

localisation rate of 97.8%.

Chapter 4 Number Plate Character Segmentation Algorithm and its Efficient FPGA Implementation

66

Chapter 4: Number Plate Character Segmentation

Algorithm and its Efficient FPGA Implementation

4.1 Introduction

In the previous chapter, a morphological operation based NPL algorithm and its efficient

architecture implementation have been introduced. The next main stage of an ANPR

system is CS stage, where the characters within the NP are correctly and accurately

segmented. In order to achieve a good result in the CS stage, the NP normally be properly

rotated and binarised at the end of the NPL stage before it is used for CS. Improved

algorithms and new FPGA architectures for NP binaristion and rotation are presented in

Chapter 6. In this Chapter, localised NPs are considered binarised and adjusted. Traditional

pixel projection based CS algorithms have difficulty handling characters which are not at

the same horizontal level, especially when the NPs are taken from different camera views.

Furthermore, noise also significantly affects the results of CS. This Chapter presents an

improved CS algorithm which uses pixel projection and morphological operations to

improve the processing time and remove noise impact to achieve a more precise horizontal

and vertical segmentation result. A MATLAB implementation of the proposed algorithm is

used as a proof of concept prior to the hardware implementation. An area/speed efficient

architecture based on the proposed algorithm is also presented, where parallelism offered

by FPGAs and pipelining technique has also been exploited to achieve high running

frequency and throughput rate. The use of multipliers has been avoided in some building

blocks from the proposed architecture which significantly reduces on-chip resources usage

and power consumption. The proposed architecture is implemented and verified using the

Mentor Graphics RC240 FPGA development board (see APPENDIX A). A database of

1000 UK binary NP images with varying resolutions is used for testing the performance of

the proposed architecture.

Chapter 4 Number Plate Character Segmentation Algorithm and its Efficient FPGA Implementation

67

The remainder of this Chapter is organised as follows, Section 4.2 describes the proposed

algorithm. The proposed CS architecture is described in Section 4.3. The MATLAB

implementation and analysis of the experimental results are presented in Section 4.4.

Section 4.5 is concerned with FPGA implementation and discussion of the experimental

results. Section 4.6 concludes the Chapter.

4.2 Proposed Character Segmentation Algorithm

The proposed CS algorithm is mainly based on pixel projection and morphological

operations. Compare to existing works based on pixel projection method [50, 59, 71-73],

two optional morphological operations have been introduced in the proposed improved

algorithm to minimise the impact of noise and the entire horizontal pixel projection step has

been replaced by an NP height optimisation step. These modifications improve the

robustness of the vertical projection and also accelerate processing speed.

The proposed method has three stages:

1. Pre-projection stage;

2. Vertical projection;

3. Horizontal projection.

Figure 4-1 shows the block diagram of the proposed CS system.

Binary NP Image
Morphological

Open

Morphological

Dilation

NP Height

Optimisation

Vertical Projection
Morphological

Dilation

Horizontal

Projection

Segmented

Characters

Pre-projection Stage Vertical Projection Stage

Horizontal Projection Stage

Figure 4-1: Block diagram of the proposed character segmentation system

Chapter 4 Number Plate Character Segmentation Algorithm and its Efficient FPGA Implementation

68

The input binary NP images are the outputs of the NPL stage. All images from the NPL

stage are binarised and inclined images must be roughly rotated before they are fed to the

character segmentation stage.

4.2.1 Optimising NP Height

The traditional pixel projection algorithm normally performs an entire horizontal pixel

projection followed by an entire vertical pixel projection where the resulting image from

horizontal projection stage is used. According to the practical experimental results,

although the horizontal pixel projection is a necessary step, the horizontal position of

characters cannot be extracted when the NP is inclined or contains unnecessary information

(e.g. national label and NP margin). For this reason and also to accelerate the processing

speed, the proposed method replaces the entire horizontal pixel projection with the NP

height optimisation step, which:

- Removes unnecessary parts of the NP; and

- Accelerates the processing speed by reducing the size of the image.

Firstly, this step analyses height and width parameters of the NP and decides whether NP

height optimisation is required or not. If an optimisation step is required, two

morphological operations are applied, otherwise only one morphological operation is

applied. Figure 4-2 demonstrates the flow chart of the pre-projection stage.

a>26 and b/a<7
Reduce NP

Height

Yes

No

3×1 open

Operation

3×1 dilation

Operation
Highlighted NP

YT 58 FSZ
Width = b

H
ei

g
h

t
=

 a

Figure 4-2: Flowchart of the pre-projection stage

Chapter 4 Number Plate Character Segmentation Algorithm and its Efficient FPGA Implementation

69

In Figure 4-2, the known height and width of the NP are denoted as a and b respectively and

can be used in branch conditions to determine whether the NP height must be reduced and

the morphological open operation applied before applying the dilation operation. By

analysing the images in the used database, the value of a varies from 18 to 60, the majority

of NP heights are greater than 26 pixels, and normally have sufficient pixels in the character

region. Therefore, the branch conditions are set as “ 26a and / 7b a ”. Further

processing is performed on NPs that meet the set condition where two operations applied

(i.e. NP height reduction and morphological open operation). For the first operation, the

current NP height will be cropped by 0.15 a from the top and bottom of the NP which

leaves a new NP height of 0.7 a . This cropping process result is shown in Figure 4-3.

YT 58 FSZ

H
e
ig

h
t

=
 a

0.15×a

0.15×a

0.7×a

YT 58 FSZ0
.7
×

a

Figure 4-3: The NP height reduction process

The cropping factor 0.15 is the result of analysis of UK NP standard [116] and the NPs in

our database. The cropped NP images can be categorised, as shown in Figure 4-4, as:

- Category 1: cropped NP images with full characters;

- Category 2: cropped NP images with full characters and additional noise; and

- Category 3: cropped NP images with cut characters.

The information lost in the third category does not affect the result of the vertical

projection.

YT 58 FSZ

YT 58 FSZ

YT 58 FSZ

YT 58 FSZ

YT 58 FSZ

YT 58 FSZ
Category 1 Category 2 Category 3

Figure 4-4: The three cropping categories

Chapter 4 Number Plate Character Segmentation Algorithm and its Efficient FPGA Implementation

70

4.2.2 Vertical and Horizontal Projections

Once an NP image has been cropped, the morphological operations are performed. The

shape of the morphological operation is based on a suitable structuring shape SE [110]. A

vertical line-shape SE, shown in Figure 4-5 (a), with a size of 3 1 is used to perform the

open operation in the proposed algorithm.

1

1

1

1 1 1Origin

Origin

(a) (b)

Figure 4-5: The 3×1 and 1×3 SEs. (a) 3×1, (b) 1×3

There are two basic morphological operations: erosion and dilation. An erosion operation

(⊖) calculates the minimum pixel value in the SE, and assigns it to the origin; by contrast,

a dilation operation (⊕) calculates the maximum pixel value in the SE. Let I denotes an

image, morphological erosion and dilation operations transform I to a new image using an

SE T with s elements, which are defined by:

 min s
s T

TI I

! (4.1)

 max s
s T

II T

 (4.2)

The morphological open operation is an erosion followed by a dilation. The open operation

is used to remove unwanted margins and connections between characters before applying

vertical projection. A 3 1 morphological dilation operation using the same SE is then used

to enhance the vertical shape of each character.

If ,x yp denotes a value of pixel at coordinates (x, y) in a NP image (a b), the vertical

projection value at y
th

 column of NP image can be calculated by:

Chapter 4 Number Plate Character Segmentation Algorithm and its Efficient FPGA Implementation

71

1

,

0

a

y x y

x

v p

 (4.3)

where 0,1,2,..., 1x a and 0,1,2,..., 1.y b

Figure 4-6 (a) shows vertical projection histogram before cropping the original NP image.

The minimal value in the histogram is approximately ‘5’, and this value is not consistent for

all NPs in the database, therefore it is not easy to find a constant threshold at which

characters and non-characters can be separated. In Figure 4-6 (b), although the minimal

value of the histogram map is ‘0’, gaps between neighbour characters are not clearly seen.

Figure 4-6 (c) shows the pixel vertical histogram after applying morphological operations.

(a) (b) (c)

Figure 4-6: NP images and their vertical projection histograms. (a) Original NP, (b) After performing

horizontal cropping, (c) After performing morphological operations

In order to find the critical points between two characters, the proposed algorithm uses an

approach that consists of the following two steps:

1) Find a group of points A from vertical projection array 0 1 2 1{ , , ,..., }bV v v v v .

2) Find a group of critical points B from group A.

The points in group A should meet the conditions
 1yv t and

1 2()y yv v t where

thresholds 1t and 2t have been found by experiment.

Let , ,Cd Cv Ca denote the difference between two neighbour points in group A, the vertical

Chapter 4 Number Plate Character Segmentation Algorithm and its Efficient FPGA Implementation

72

pixel projection value at position 2iA and the average vertical pixel projection value

from iA to 1iA respectively, and can be calculated by:

1i i iCd A A (4.4)

2ii ACv v (4.5)

1i

i

A

y

y A

i

i

v

Ca
Cd

 (4.6)

where i is an integer 1b .

Let minw and maxw denote the minimum and maximum expected character widths

respectively. minv

denotes the minimum expected vertical histogram value at position

2iA . minVavg

and maxVavg

denote the minimum and maximum expected average

vertical histogram values for each character respectively. The points in group B should

meet the conditions ,min i maxw Cd w i minCv v and min i maxVavg Ca Vavg .

Once all the critical points of characters have been found, all characters in the original NP

are segmented using these critical points. Figure 4-7 shows an example of vertical cropping

and a character horizontal projection.

Vertically Cropped

Character

After Performing

dilation Operation

Figure 4-7: Character horizontal projection

In Figure 4-7, the character ‘Y’ has been cropped from the original NP image, followed by

a horizontal projection operation. In order to enhance the horizontal projection histogram,

Chapter 4 Number Plate Character Segmentation Algorithm and its Efficient FPGA Implementation

73

the horizontal line-shape SE, shown in Figure 4-5 (b), with a size of 1 3 is used to perform

a dilation operation. The same critical point localisation approach used for vertical

projection is also used for localising horizontal critical points. Once these critical points are

localised, the character ‘Y’ is fully segmented. The rest of characters on the NP are

segmented using same method. Figure 4-8 shows the fully segmented NP.

Figure 4-8: A fully segmented NP

Overall process of the proposed CS algorithm can then be summarised in the following

pseudocode.

Proposed algorithm: CS algorithm

1. Input images: localised NP image (a×b), where a is height of NP, b is width of NP

2. Output images: Segmented character image

3. if (a>26 and b/a<7) then

4. reducing height of NP a to 0.7a

5. morphological open input image using 3×1 SE

6. morphological dilation after the open

7. else

8. morphological dilation for the input image

9. end

10. obtain highlighted NP image

11. for all pixels in the highlighted NP image do

12. generating vertical projection histogram

13. finding the vertical critical points between two characters

14. generating horizontal projection histogram for each vertical cropped character image

15. finding the horizontal critical points for each character

16. end

Compare to the existing algorithms, two optional morphological operations have been

introduced in the proposed CS algorithm to eliminate noise impact and the entire horizontal

pixel projection step has been replaced by an NP height optimisation step. These

modifications improve the robustness of the CS algorithm and also accelerate processing

Chapter 4 Number Plate Character Segmentation Algorithm and its Efficient FPGA Implementation

74

speed.

4.3 Proposed Character Segmentation Architecture

The proposed CS architecture consists of vertical and horizontal projection modules and

each module consists of the three main blocks listed below:

1. Pre-Projection Block: vertical and horizontal pre-projection blocks are used in

vertical and horizontal projection modules respectively.

2. Morphological operator: open and dilation morphological operations are used in

the vertical projection module while only dilation is used in the horizontal

projection module.

3. Critical point localiser: Almost the same block is used for both vertical and

horizontal projection modules. The only difference is the set conditions.

The structure of the proposed system is shown below in Figure 4-9.

Vertical

Pre-projection

Vertical

Projection

Vertical

Critical Point

Localiser

Morphological

Operator

Horizontal

Pre-projection

Horizontal

Projection

Horizontal

Critical Point

Localiser

Morphological

Operator

Segmented

Chracters

Figure 4-9: Vertical and horizontal projection based system

4.3.1 Vertical Projection Module

The first building block in the vertical projection module is the vertical pre-projection

block which consists of the Vertical Memory Reader (VMR) and NP height Optimiser. This

Chapter 4 Number Plate Character Segmentation Algorithm and its Efficient FPGA Implementation

75

operation is followed by a morphological operation and a horizontal critical point

localisation. The overall block diagram of the vertical projection module is shown in Figure

4-10.

Vertical Pre-projection Block

Morphological Operator

Vertical Memory

Reader (VMR)
3×1 Open Operation

 NP Height

Optimiser

Height and

Width

Memory

Address

a>26 and b/a<7

Original Height

and Width

Yes

3×1 Dilation

Operation

No
 Vertical

Critical Point

Localiser

Pixels of

Cropped Image To the Horizontal

Projection Module

Figure 4-10: The overall vertical projection block diagram

Vertical Pre-projection Block

a b pixels of the binary NP image are scanned row by row, from top to bottom and from

left to right and stored in memory. In Figure 4-10, the processing starts with the memory

reader module, where the known NP height a and width b are passed to the NP height

optimiser to calculate the memory start and end addresses where the first and last pixels of

the horizontally cropped image are stored in memory. Figure 4-11 illustrates a horizontally

cropped NP with the start and end pixels.

YT 58 FSZ
Last pixel

H
ei

g
h

t
=

 a

Width = b

Z
Start pixel

Figure 4-11: Cropped NP image with first and last pixels

Although the theoretical fixed horizontal cropping factor 0.15 can be used to successfully

crop the majority of the NPs, some of them cannot be properly cropped. This is due to the

fact that NPs with heights below 40 are more likely to have insufficient pixels on characters’

Chapter 4 Number Plate Character Segmentation Algorithm and its Efficient FPGA Implementation

76

regions than the NPs with greater heights (e.g. where margins of some NPs have already

been cropped during the NPL stage or already have small margins in the NP). Therefore,

NP height can be used to determine which cropping value should be used. In the proposed

algorithm, four range-specific cropping values in four different NP height ranges are used:

26 30a , 30 40a , 40 50a and 50 60a .

As the main aim of this research project is to implement the entire ANPR system on one

single FPGA, this solution avoids the need of multiplications to calculate individual

cropping factors which will significantly reduce the hardware resources usage. Therefore,

integrated on-chip multipliers are saved for other ANPR stages (i.e. NPL [117] and OCR).

Table 4-1 shows the four ranges and corresponding start and end address calculation.

Table 4-1: Calculation of memory start and end address within each NP height range

 26 30a 30 40a 40 50a 50 60a

Start Address 3 b 4 b 6 b 8 b

End Address 2 3a b b 2 4a b b 2 6a b b 2 8a b b

In the next step, the VMR reads the stored pixels from memory starting from the calculated

start address and scanning the stored image column by column, from top to bottom and

from left to right. Before the pixels of the cropped image read by VMR are sent to the

morphological operator, the NP image is tested against the geometrical condition

26 & / 7a b a . If the condition is met, all pixels read by the VMR for that NP will pass

through open and dilation morphological operators in the morphological operator block,

otherwise, they will only pass through the dilation operator.

Morphological Operator

Open and dilation morphological operations are performed within this block. As the input

data are binary, the max and min can be simplified to a logical OR and a logical AND

operation as shown in Equations 4.7 and 4.8 respectively.

s

s T
T II

 ! (4.7)

Chapter 4 Number Plate Character Segmentation Algorithm and its Efficient FPGA Implementation

77

s

s T
T II

 (4.8)

Figure 4-12 shows in block level diagram how the two operations are applied to the pixels

coming from the vertical pre-projection block.

Vertical Pre-Projection

Block

Morphological

Open

Morphological

Dilation

Z0 Z1 Z2

T2

T5

T0 T1

T3 T4

Counter

a>26&b/a<7

Yes

X2 X1 X0

Counter

No

 Memory

Morphological

Dilation AND

OR

OR

OR

Figure 4-12: Block level diagram of the morphological operation process

In Figure 4-12, “ 0 1 2, ,Z Z Z ”, “ 0 1 2, ,X X X ” and “ 0 1 5, ,...,T T T ” are one-bit buffers which are

used for buffering pixels read from memory. Data stored in these buffers are propagated

from one buffer to the next every one clock cycle. If the set condition is met, the value of

the current input pixel is passed into “ 0Z ” then after two clock cycles a logical AND

operation is performed on the data stored in “ 0 1 2, ,Z Z Z ” and the result is stored in buffer

“ 0T ”. The next stage is similar but instead of using a logical AND operation, a logical OR

operation is performed on the data stored in “ 0 1 2, ,T T T ”which ends the open operation. The

result is stored in “ 3T ”. The open operation is then followed by a dilation operation where a

logical OR operation is calculated using the data stored in “ 3 4 5, ,T T T ”. If the final result

Chapter 4 Number Plate Character Segmentation Algorithm and its Efficient FPGA Implementation

78

value is ‘1’, the counter which was initialised to zero will be incremented by one. When one

column of pixels from the NP is processed, the result of the counter will be stored and the

counter re-initialised to zero.

If the set condition is not met, only morphological dilation will be performed, which is

exactly same operation used after the open operation when the condition is met.

Vertical Critical Point Localiser

A Vertical Critical point localiser is used to localise critical points from the vertical

projection data stream generated from the previous block (i.e. morphological operator).

Figure 4-13 shows in block level diagram the process of localising critical points of vertical

projection.

From

Counter

Index of

Subtrahend

S
u

b Condition 2

A

Yes

Ignore

Vertical Critical

Points (VCP)

Array

V0

V1

S
u

b
Condition 1

Yes

Ignore

No

No

0

1

14

15

0

1

+

Accumulator

Sum

Figure 4-13: Block level diagram of the process of localising the critical points of the vertical projection

Data are continuously stored in the buffers 0V and 1V from the morphological operation

module. Once two values are available in those two buffers, the first value is subtracted

from the second one and the absolute value of the result is passed through the condition

‘condition 1’ set to generate group A. Once there is a value in A, an accumulator starts to

accumulate the vertical projection value until the second value of A is found, then the

current result stored in register Sum is used in ‘condition 2’. A new accumulation process

starts when the previous accumulated value is used in ‘condition 2’. The index of the

subtrahend is stored temporarily in an array of two elements. Once two values are available

in the two-element array, the same subtraction operation is applied and the result passes

Chapter 4 Number Plate Character Segmentation Algorithm and its Efficient FPGA Implementation

79

through the condition ‘condition 2’ set to generate group B. The successful are stored in a

vertical critical points array of 16 elements which are used by the horizontal projection

module.

4.3.2 Horizontal Projection Module

The first building block in the horizontal projection module is the horizontal pre-projection

block. Unlike the vertical pre-projection block, the horizontal pre-projection block consists

only of a Horizontal Memory Reader (HMR) which uses the 16-element array output from

the vertical projection module to read characters’ pixels from memory. This operation is

followed by a morphological operation and a horizontal critical point localisation. The

overall block diagram of the horizontal projection module is shown in Figure 4-14.

Horizontal Pre-projection Block

Morphological Operator

Horizontal Memory

Reader (HMR)

From Vertical Critical

Point Localiser

1×3 Dilation

Operation

Horizontal Critical

Point LocaliserPixels of Vertically

Cropped Character

Figure 4-14: Overall block diagram of the horizontal projection module

Horizontal Pre-projection Block

In the horizontal pre-projection block, the HMR uses the column numbers stored in the

Vertical Critical Points (VCP) array to read the characters’ pixels from memory. Two

elements are used for each character and the pixels are scanned row by row, from top to

bottom and from left to right. For example, pixels of the first row in the first character are

stored in memory locations 0VCP to 1VCP which are the first and second elements of the

VCP array. The second row starts from 0VCP b , where b is the width of NP. Figure 4-15

illustrates the process with a vertically cropped NP. The read pixels will be passed through

a dilation morphological operator in the morphological operator block.

Chapter 4 Number Plate Character Segmentation Algorithm and its Efficient FPGA Implementation

80

0 1 12 13 14 15

YT 58 FSZ

…………………………………...

VCP Array

Y

Figure 4-15: The vertically cropped NP process

The vertical critical points array has 16 elements in total, however a UK NP has a maximum

of seven characters, therefore, no more than 14 elements will be used. The two extra

elements may be used in some cases as temporary storage in case an error segmented region

occurs.

Morphological Operator and Horizontal Critical Point Localiser

The morphological Operator block consists only of a 1 3 dilation operator which is

similar to the 3 1 dilation operator used in the vertical projection module (see Figure

4-12). The only difference being the direction in which the data is read (i.e. VMR vs HMR).

The horizontal critical point localiser is also similar to the vertical critical point localiser,

the only difference being the value of threshold set.

Once the all vertical and horizontal critical points have been found, they can be used to

extract all of the pixels associated with a particular character.

4.4 MATLAB Implementation and Results

The proposed CS algorithm was tested in a MATLAB environment using a database of

1000 binary UK NPs with varying resolutions. The MATLAB implementation was used as

a proof of concept prior to the hardware implementation. The database predominantly

consists of three different sample sets: normal, inclined and noisy NPs, which are taken

from our previously implemented NPL system [117].

Chapter 4 Number Plate Character Segmentation Algorithm and its Efficient FPGA Implementation

81

1) Sample set 1: contains normal NPs where characters are clear and obvious.

2) Sample set 2: contains inclined NPs where characters are on different horizontal

levels (the horizontal inclination angles |𝛼|<4°).

3) Sample set 3: contains noisy NPs where noise information or connected characters

are included in NPs (e.g. screws, national labels, and unnecessary boundaries).

During the experimental testing, the successful cases for each sample that was counted

manually in multiple times. Table 4-2 shows a sample image from each sample set and the

successful segmentation rate for each set where all characters in a NP are correctly isolated

from each other.

Table 4-2: Successful character segmentation rates by sample set

 Sample Set 1 Sample Set 2 Sample Set 3 Overall

UK NPs

Successful Character

Segmentation Rate
205/212 (96.7%) 337/351 (96.0%) 420/437 (96.1%)

962/1000

(96.2%)

The proposed algorithm has an overall 96.2% successful character segmentation rate when

tested using UK NP images. Sample set 1 has relatively higher character segmentation rate

than sample sets 2 and 3, which is due to the fact that the scenes in the latter sample sets

contain more complex background environments or inclined NPs. Since morphological

operations are used in the proposed algorithm to remove the noise, the impact of noise has

been significantly reduced. In addition, as the proposed algorithm only analyse the

width/height of the character, the gap between the adjacent characters does not affect the

segmentation rate. Using MATLAB and a Dual Core 2.4GHz, 3G RAM PC, the average

processing time was found to be 22.3 ms per image.

Segmentation failures fell into one of three categories: (1) the number of segmented

Chapter 4 Number Plate Character Segmentation Algorithm and its Efficient FPGA Implementation

82

characters is more than the actual number of characters on NP. This is caused by the

non-character parts on the NP being very similar in shape to a character. (2) One or more

characters are missed. This is caused by inclined characters or a degraded original image. (3)

The character is split into two separated characters. This is due to insufficient pixels in the

character.

As the image size range in the database is relatively large (i.e.18 190 -60 300), the

proposed algorithm uses five different conditions to localise vertical critical points.

Although five conditions are used, there are still a few NPs that were not segmented

properly. Table 4-3 shows some examples. The NP from category 1 contains a

non-character component that was segmented as a character. Character ‘1’ in the NP from

category 2 was missed. Character ‘0’ in the NP from category 3 was also missed because of

the small number of pixels in the characters which was caused by the poor original image

quality.

Table 4-3: Samples of failed images.

Category Original NP Segmented NP

(1)

(2)

(3)

4.5 FPGA Implementation and Results

The proposed architecture for CS has been simulated using the PAL Virtual Platform

(PALSim) [112]. After simulation, the architecture has been successfully implemented and

verified using the Mentor Graphics RC240 FPGA development board. Handel-C has been

used for hardware description of the proposed architecture. For details of the experimental

Chapter 4 Number Plate Character Segmentation Algorithm and its Efficient FPGA Implementation

83

tools can be found in APPENDIX B.

The two main building blocks of the proposed architecture are the vertical and horizontal

projection blocks shown in Figures 4-10 and 4-14 respectively. Pipelining has been used in

their implementation and an NP image can be processed in (x×C1 + C2) clock cycles

where:

- x is the number of characters in the NP

- C1 is the number of clock cycles to complete one vertical projection and depends

on the size of the NP image

- C2 is the number of clock cycles to complete one horizontal projection depends on

the size of the NP image

Sample codes for the CS implementation are discussed in APPENDIX C.

4.5.1 Proposed environment for character segmentation on FPGA

Figure 4-16 shows a general view of the entire CS system. It consists of a host application

(GUI), a UK NP database and the RC240 FPGA development board. The host application

was implemented using Visual Studio 2008 and gives the user the ability to select an NP

image from the database, display it and send it to the FPGA for processing. Once processed,

the output from the FPGA is displayed on the same GUI. More details for implementing

FPGA host application are discussed in APPANDIX A.

RC240 FPGA Board

External

Memory

Xilinx Virtex-

4 LX40

FPGA

UK NP Database

USB

Figure 4-16: Host application for character segmentation

The UK binary NP database used for the MATLAB implementation, has also been used for

testing and validating the FPGA implementation. Table 4-4 shows the FPGA

Chapter 4 Number Plate Character Segmentation Algorithm and its Efficient FPGA Implementation

84

implementation results when using the three sample sets.

Table 4-4: Successful character segmentation rate by sample set for FPGA implementation results

 Sample Set 1 Sample Set 2 Sample Set 3 Overall

Successful CS

Rate
208/212 (98.1%) 343/351 (97.7%) 426/437 (97.5%) 977/1000 (97.7%)

The CS rate is higher than that achieved in the software implementation where the overall

rate is 97.7%. The improvement is due to the use of the four height range-specific cropping

values shown in Table I in place of the single horizontal cropping factor 0.15, to find the

most suitable memory reading address in the VMR block.

4.5.2 Hardware Usage, Running Frequency and Power Consumption

Due to the low complexity of the proposed algorithm, the proposed architecture requires

only 11% of the on-chip FPGA resources. Table 4-5 summarises the required on-chip

resources.

Table 4-5: Usage of FPGA on-chip Resources

On-chip Recourses Used Available Utilisation

Occupied Slices 2,100 18,432 11%

LUTs 2,964 36,864 8%

Flip-Flops 1,449 36,864 3%

BRAMs 2 96 2%

DSP48s 1 64 1%

11% of the on-chip FPGA slices are used to implement the proposed CS architecture. In

these slices, 8% LUTs, 3% flip-flops and 2% BRAMs are used to implement logic

operations, registers and RAMs respectively. A DSP48s slice is used to perform the

arithmetic calculation in the Critical Point Localiser block. According to the previous

Chapter 4 Number Plate Character Segmentation Algorithm and its Efficient FPGA Implementation

85

chapter, NPL implementation requires 33% of the on-chip resources, therefore, the total

hardware usage of NPL and CS is 44%, which leaves 56% of the FPGA area to be used for

the remaining part of an ANPR system (i.e. OCR).

The maximum running frequency is 74.5 MHz and the number of clock cycles needed for

one image to be processed is between 13000-103000 (including the clock cycles for image

reading, vertical projection and horizontal projection), which depends on the resolution of

the input NP and number of characters in it. The execution time for processing one frame

can be calculated using the Equation 3.4.

Based on Equation 3.4, the proposed architecture can process one image (18 99 - 60 300)

and produce a result in 0.2 ~1.4ms . The difference in the execution time is due to the size of

the images which affect the number of clock cycles. The smaller the size of the image, the

lower the number of clock cycles is required. The execution times achieved mean that the

proposed architecture satisfies the requirement for real-time processing.

The power consumption of the designed circuit has also been analysed using Xilinx

XPower Analyser [115], and the results obtained are shown in Table 4-6.

Table 4-6: Estimation of Power Consumption

Resource Type Value of Power (mW)

Clocks 120

Logic 2

Signals 2

BRAMs 2

IOs 40

Clock Managers 211

Leakage 344

Total Power 721

In Table 4-6, the clocks power, logic power, signal power, BRAMs power and IOs power

belong to the dynamic power, they are directly affected by the user design resource usage.

The quiescent power is consumed due to transistor leakage, which is depending on the

Chapter 4 Number Plate Character Segmentation Algorithm and its Efficient FPGA Implementation

86

chosen hardware. The total dynamic power consumption for the proposed CS

implementation is 269 mW out of the total power consumption 721 mW.

The proposed CS algorithm reduces processing time by using an optimising NP height

module to reduce any horizontal noise effect and so avoid the need to use the entire

horizontal projection, and so the vertical projection can then be applied without affecting

the segmentation accuracy. The morphological operations are used to enhance pixel

projections, which can significantly improve the segmentation rate when NPs contain

noise.

Table 4-7 lists the results of character segmentation for recent ANPR systems that use the

pixel projection approach and they are either software or hardware based systems.

Table 4-7: Performance Comparison

CS Technique CS Rate (%) Platform/Processor Speed (Sec)

[59] 95.6% Pentium 1.6 GHz PC 2

[50] 98.8% Pentium 2.8GHz 0.2

[11] N/A Texas Instruments C64 0.0018

[105] 87.16% Virtex-4 FPGA N/A

Proposed system on PC 96.2% Dual Core 2.4GHz 0.023

Proposed system on FPGA 97.7% Virtex-4 FPGA 0.0002~0.0014

Generally, the main advantage of hardware based systems is the fast processing speed,

which is of particular interest in real-time environments. By comparing the results of the

PC and FPGA-based implementations, it can be clearly seen that the latter outperforms the

former by a factor of 8. It also outperforms the existing solutions in terms of speed and/or

accuracy. Although different databases are used in the works [50], [59] and [105], similar

image cases are contained in our database.

Chapter 4 Number Plate Character Segmentation Algorithm and its Efficient FPGA Implementation

87

4.6 Conclusion

In this Chapter, an improved CS algorithm has been proposed for FPGA implementation,

which is based on a combination of histogram projection and morphological operations.

Furthermore, an efficient architecture based on the proposed algorithm has been

successfully implemented and tested using the Mentor Graphics RC240 FPGA

development board. It requires only 11% of the available on-chip resources of a Virtex-4

FPGA, runs with a maximum frequency of 74.5 MHz and is capable of processing one

image in 0.2 ~1.4ms with a successful segmentation rate of 97.7% when using a database

of 1000 NP images.

Chapter 5 Number Plate Character Recognition Algorithm and its Efficient FPGA Implementation

88

Chapter 5: Number Plate Character Recognition

Algorithm and its Efficient FPGA Implementation

5.1 Introduction

In the previous chapter, a low complexity pixel projection and morphological operations

based CS algorithm and its efficient architecture implementation have been discussed. The

next main stage of an ANPR system is OCR stage, where the segmented characters are

recognised and converted into encoded texts. As concluded from the Chapter 2, incorrectly

segmented characters from the CS stage, where characters are not in the expected position

or parts of them are missed, may affect the OCR operation. NNs and statistical classifiers,

which give better results compare to common pattern matching technique, can overcome

this problem due to their strong memorability and self-adapting ability. However, in order

to achieve good performance, large amount of samples are needed to train the NNs. In

addition to the advantages of using NNs mentioned above, the parallelism and modularity

of NN can be perfectly mapped onto FPGA using parallelism and pipeline techniques. The

reconfigurable ability of FPGAs also provides a rapid way to adapt the weights and

topologies of NNs [118].

In this Chapter, a low complexity and robust OCR algorithm based on feed-forward NN is

presented where two non-overlapping real NP character image data sets are used for

training and testing the proposed NN. An area/speed efficient architecture based on the

proposed algorithm is also presented, which has been successfully implemented on a

Virtex-4 FPGA. Because the proposed architecture is an off-line NN, there is no need to

train NN on FPGA. Large amounts of trained weights are stored in external RAMs, which

can be easily updated without changing the FPGA configuration. The proposed architecture

for implementing the two layers feed-forward NN on FPGA for real-time OCR application

is designed to process a large number of neurons in a pipelined manner to achieve high

Chapter 5 Number Plate Character Recognition Algorithm and its Efficient FPGA Implementation

89

running frequency and throughput rate. The use of multipliers has been avoided in the first

layer from the proposed architecture, which significantly reduces on-chip resources usage

and power consumption.

A MATLAB implementation of the proposed algorithm was used as a proof of concept

prior to the hardware implementation. An efficient architecture based on the proposed

algorithm is also presented. It has been implemented and verified using the Mentor

Graphics RC240 FPGA development board. The used UK character images were

segmented from NP images that were collected by author and provided by CitySync Ltd.

[109] who are one of the leading UK providers of ANPR solutions. The images are from

outdoor real-world environments, which cover a wide range of conditions in terms of

various weather, lighting and contrast. The results achieved indicate that the FPGA can

provide 12-time speedup over the MATLAB implementation with the same recognition

rate.

The rest of this Chapter is organised as follows: Section 5.2 describes the proposed OCR

algorithm. The MATLAB implementation and analysis of the experimental results are

presented in Section 5.3. Section 5.4 is concerned with the description of the proposed

OCR architecture. Its FPGA implementation and discussion of the experimental results are

presented in Section 5.5. Section 5.6 concludes the Chapter.

5.2 Proposed OCR Algorithm

The proposed OCR algorithm uses a multi-layer feed-forward NN to translate scanned

character images into machine encoded text. Typically, an N-layer NN consists of a set of

input vectors, N-1 hidden layers, one output layer and a set of output vectors. Each layer

consists of a set of neurons and corresponding transfer function (e.g. sigmoid, linear) [119].

Figure 5-1 shows a two-layer feed-forward network with one hidden layer and one output

layer.

Chapter 5 Number Plate Character Recognition Algorithm and its Efficient FPGA Implementation

90

P1

P2

...
PR

Input

W1

b1

+

Hidden Layer

W2

b2

+

Output Layer

a2,1

a2,2

…

a2t

Output

n1 a1 n2

Figure 5-1: The architecture of two-layer feed-forward network

A hidden layer consists of S neurons and each neuron has R weights, which can be

presented in a S×R matrix called Input Weight matrix I as shown in equation 1. The input

vector p has R elements [p
1
, p

2
,…, p

R
]
T

, which are multiplied by I and the resulting

matrix is summed with a bias vector b1 to form vector n1 as shown in equation 2. The

output of the hidden layer a1 is the result of applying the transfer function on n1 (see

Equation 5.3).

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

 ...

 ...

 ...

R

R

S S S R

w w w

w w w

w w w

I (5.1)

 1 1n I p b (5.2)

 1()1 1a nf (5.3)

The same operations applied in the hidden layer are used in the output layer, which consists

of K neurons, where a1 is used as the input vector (see Equations 5.4, 5.5 and 5.6).

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

...

...

...

L

S

S

K K K S

w w w

w w w

w w w

 (5.4)

 2 1 2n = L a +b (5.5)

 2()2 2a nf (5.6)

Chapter 5 Number Plate Character Recognition Algorithm and its Efficient FPGA Implementation

91

In UK NP system, there are 25 letters and 9 numbers. ‘I’ is a non-used character and ‘O’ and

‘0’ are considered the same. In the new regulations introduced in September 2001, the

format of a UK NP consists of two letters, two numbers, a space and three further letters

[116]. This can be used to identify the letter ‘O’ from the number ‘0’. In an ANPR system,

the segmented characters are presented to the OCR recogniser with different sizes.

Therefore, all the images of the NP characters must be resized to the same size before using

them in NN training or testing. Because the width of character ‘1’ is 1/3 of the size of other

characters, the identification of this character is very easy during the character

segmentation stage prior to sending it to the NN for recognition. Figure 5-2 shows the

character set used in UK NPs:

Figure 5-2: The UK NP character set [116]

The most commonly used images in OCR are binary images. They are also used also in

other stages of ANPR system. Binary images require less computational intensity compare

to other types of images which significantly decreases the computation for real-time

applications such as ANPR. In the proposed work, a 2-D binary image matrix w l is

transformed into 1-D vector p with R elements [p
1
, p

2
,…, p

R
]
T
 to be used to form the

inputs of NN, where pixels of binary image are read row by row to form the p. Due to only

having 33 possible characters, the output of NN has been decided

as a2=[a2,1, a2,2,…,a2,33]
T
. In order to find the most suitable NN architecture for OCR task,

the different number of neurons S and size of input vector p are used to create different

NNs.

Chapter 5 Number Plate Character Recognition Algorithm and its Efficient FPGA Implementation

92

In order to choose the best suitable training algorithm for the proposed neural network,

several training algorithms are used to train the neural network. For example, Scaled

Conjugate Gradient (SCG) algorithm [120], Backpropagation (BP) algorithm and

Levenberg-Marquardt algorithms [121]. Because the training speed of SCG is much faster

than traditional back propagation algorithm (BP), and also it gives better results than with

other training methods, the SCG is chosen as the training method of the NN. Before the

start of training, the NN was initialised using Nguyen-Widrow initialisation algorithm

[122], where the weights and biases in each layer are initialised and distributed

approximately evenly over the input space. In order to use the proposed algorithm with NPs

prior to 2001 or recognise different font characters, an extra character data set needs to be

used to train the NN (e.g. Germany characters from German ANPR system).

5.3 MATLAB Implementation and Result Discussion

MATLAB has been used as a proof of concept of the proposed algorithm and it has also

been used to generate the weights of the neural network. 6436 binary images with varying

resolutions from the previous CS stage were used [123].

First of all, the binary images of the characters are resized to the same size. To select the

right size, several sizes of input images have been used for NN training. The larger the size

of the image the higher is the recognition rate but large sizes significantly increase the

complexity of the structure of the NN as the number of weights will increase. The size

corresponding to the best suitable result is used for the final NN. Based on experimental

results, the size of the input binary image was decided to be 34 22 .

The entire database has been divided into two non-overlapping groups: group 1 and group 2.

The first group has 45% of characters, which is used only for neural network training. The

second group has 55% of characters, which is used only for neural network testing. Figure

5-3 shows some examples from those two groups after resizing.

Chapter 5 Number Plate Character Recognition Algorithm and its Efficient FPGA Implementation

93

Group 1 Group 2

Figure 5-3: Sample characters from both training and testing groups

There are two separate sets of training data that were used to train two different neural

networks respectively. The first set is the original 45% training data and the second one is

the same set but with added random values between 0 and 1 from the standard normal

distribution on the images. The SCG training algorithm is based on supervised learning

algorithm. This means that the weights of neural network are updated based on each

calculation of a pair consisting of an input image and a desired output from training data

set. Therefore, adding noise to the training data set will not affect the training process. In

the SCG training process, the 45% training data are divided into three sub sets, where 80%,

15% and 5% data are used for training, validation and testing respectively, the maximum

iterations, performance goal, minimum performance gradient are set to 1000, 0 and

61 10 respectively and the maximum validation failure and are set to 6,
55 10

and
75 10 respectively. The achieved training, validation and testing successful rates are

99.85%, 99.87% and 99.94%. In order to obtain more accurate performance of the trained

neural network, another non-overlapping testing data set is used for the testing.

Figure 5-4: Examples of training data with random noise

The rest of the 55% of character images are used for testing trained NNs with different sizes

(i.e. 30, 50, 70 and 100 neurons) and training sets (i.e. with and without noise added).

Chapter 5 Number Plate Character Recognition Algorithm and its Efficient FPGA Implementation

94

Figure 5-5 shows the character recognition rates when different training data sets are used.

The NN is trained using the set with noise which will result in a better performance in terms

of character recognition rate. In addition, several NNs with different sizes were trained and

tested independently and the results show that the more neurons there are the better is the

character recognition rate and higher is the number of weights which significantly increases

the scale of the NN architecture and the on-chip resources usage on FPGA. The NN with 50

neurons was used for final NN implementation and it needs 221 iterations for the training.

Figure 5-5: Character recognition rate with different numbers of neurons

Overall character recognition rate of the 55% testing data is around 97.3%, and the 55%

testing data have been divided into different data sets where each set contains images of the

same character in order to analyse the performance of NN on different the characters.

Figure 5-6 shows the recognition rate of each character using the proposed OCR algorithm.

Figure 5-6: The recognition rate of each character

0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975

0.98

30 40 50 70 100

C
h

ra
ct

er
 R

ec
o

g
n

it
io

n
 R

a
te

Number of Neurons

Without Noise

With Noise

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

A B C D E F G H J K L M N P R S T U V W X Y Z 0 2 3 4 5 6 7 8 9

R
ec

o
g

n
it

io
n

 R
a

te

Charaters

Chapter 5 Number Plate Character Recognition Algorithm and its Efficient FPGA Implementation

95

As shown in Figure 5-6, the proposed algorithm handles well simple character, e.g. ‘A’, ‘C’

and ‘6’, however, for the ambiguous characters, e.g. ‘B’, ‘V’ and ‘8’, the proposed OCR

algorithm has lower recognition rate for two main reasons:

- Character’s similarity with other characters (e.g. ‘B’ and ‘8’); and

- Image quality (see Figure 5-7).

In order to recognise these characters, some particular features need to be extracted from

them and not only pixels’ information (e.g. distinguishing parts of ambiguous characters

and contour feature). On the other hand, image quality is also a key factor that affects the

result. The bad quality of images is a result of badly segmented images from the previous

stage (i.e. segmentation stage) or inclined characters. In some situations, screws of the NP,

dust and boundary of NP can all affect the recognition process. Figure 5-7 shows some

misread character images from the used database:

Figure 5-7: Examples of failed characters

Since there is no public UK NP character database, the alternative well known MNIST

handwritten digits database [86] is used to compare the results achieved for the proposed

NN and other approaches. However, the MNIST database only contains handwritten digits

with varying fonts are, which is not the case for the NP character. The comparison results

are shown in Table 5-1.

Chapter 5 Number Plate Character Recognition Algorithm and its Efficient FPGA Implementation

96

Table 5-1: Comparison of the proposed NN algorithm with other approaches using MNIST database

Approach Algorithm Error Rate (%)

The Proposed Approach 2-layer NN with 50 Neurons 5.33

[100] DBM 0.95

[101] DBN 1.17

[124] 2-layer NN with 800 Neurons 1.6

[125] SVM 1.4

As shown in Table 5-1, the proposed NN has a higher error rate when compared to other

approaches. However, it has a significantly lower computational complexity and requires

less number of neurons to perform this complex task compared to other approaches. As the

fonts of UK NP characters are unified, recognising the NP characters is relatively easier

compared to recognising handwritten digits, thus the proposed NN has better result for

recognising NP character than handwritten digits. On the other hand, as the main aim of this

research project is to implement the entire ANPR system on one single FPGA as a low cost

solution and high performance stand-alone unit, the resources are saved for other stages of

ANPR (i.e. NPL and CS).

5.4 Proposed OCR Architecture

The proposed OCR architecture mainly consists of four modules: pre-processing module,

hidden layer module, output layer module and index finder module. Its block diagram is

shown in Figure 5-8.

Chapter 5 Number Plate Character Recognition Algorithm and its Efficient FPGA Implementation

97

Output Layer

Hidden Layer

Pre-processing Accumulator Tan-sigmoid

Matrix-Vector

Multiplier
Tan-sigmoidIndex Finder

Normalised

Data

Binary

Pixels

Output

Vector

Recognised

Character

Figure 5-8: Block diagram of proposed architecture

5.4.1 Pre-processing Module

In this module, the main task is data normalisation. The output from the pre-processing

module is fed to the hidden layer modules which includes a Tan-sigmoid function. Due to

the range of Tan-sigmoid function values which is between [-1, 1], the input data to the

hidden layer need to be normalised by the pre-processing module using Equation 5.7:

max min min

min

max min

y y x x

y y
x x

 (5.7)

where y
max

 and y
min

 are the expected maximum and minimum outputs, which are equal to

‘1’ and ‘-1’, respectively. xmax and xmin are the expected maximum and minimum inputs,

which are ‘2’ and ‘0’, respectively. x and y are the actual input and output of the

pre-processing module. Equation 7 can be simplified to Equation 5.8:

 1y x (5.8)

Due to use of binary images for testing, the value of 𝑥 is either ‘0’ or ‘1’, the possible

resulted values of 𝑦 can be either ‘-1’ or ‘0’.

5.4.2 Hidden Layer module

The hidden layer module consists of two sub-blocks:

Chapter 5 Number Plate Character Recognition Algorithm and its Efficient FPGA Implementation

98

- Accumulator block

- Tan-sigmoid block

Accumulator and Tan-sigmoid blocks are used to perform Equations 5.2 and 5.3

respectively.

The accumulator

The first block in the hidden layer is the accumulator, which is used mainly to perform the

operations in Equation 5.2. Since the input data to this block can be either ‘-1’or ‘0’ (i.e. the

elements of vector p), the matrix vector multiplication I p , where ,s iw and 1,ip are the
thi

weight in connection and value of the input respectively. The
ths element of the vector

n1can be calculated using Equation 5.9:

, 1,

, 1,

1,

 (1)

 0 (0)

s i r

s i i

r

w p
w p

p

 (5.9)

The multiplications in Equation 5.9 can be replaced with a two to one multiplexer and an

accumulator, which will reduce the hardware usage. The weights and biases can be attained

from MATLAB once the NN has been trained. Those weights in hidden layer will be

converted to their opposite numbers and stored into external RAM. In the accumulator, the

weights ,s iw are read from external RAM and accumulated if p
1,r

 is equal to ‘-1’.

Figure 5-9 shows the internal structure of the proposed accumulator where three external

32-bit word access memories are used and each memory location contains two 16-bit

weights. Each clock cycle, six weights are read from the three banks at the same time,

passed through a set of multiplexers, to perform Equation 5.9, and then summed together.

The result will be stored into an array 𝑛1with S elements, which is used as an input to the

next block.

Chapter 5 Number Plate Character Recognition Algorithm and its Efficient FPGA Implementation

99

Bank 0

Bank 1

Bank 2

External RAM

MUX

MUX

-ws,r

-ws,r+1

-ws,r+2

-ws,r+3

-ws,r+4

-ws,r+5

MUX

MUX

MUX

MUX

0

0

0

0

0

0

p1,r p1,r+1 p1,r+2 p1,r+3 p1,r+4 p1,r+5... ...

+

+

+

+

+

Temp

Register
+

n1,1 n1,2 n1,s-1 n1,s...

To Tan-sigmoid

Block

Figure 5-9: The block diagram of the accumulator

Tan-sigmoid block

The Tan-sigmoid block is used to perform the Tan-sigmoid function shown in Equation

5.10 (Figure 5-10 (a) shows its graph). When x < -5 or x > +5, the values of tanh(x) is

closed to -1 and +1 respectively. When -5 ≤ x ≤ +5 , the values of tanh(x) have been

pre-calculated for using samples of x in this range -5,-4.99,...,4.{ 99,5} where a step size

0.01 is used. Therefore, Equation 5.10 has been simplified to Equation 5.11 and the graph

of the simplified Tan-sigmoid is shown in Figure 5-10 (b).

tanh()
x x

x x

e e
x

e e

 (5.10)

 1 (5)

tanh() (5 5, : 0.01)

 1 (5)

x x

x x

x

e e
x x stepsize

e e

x

 (5.11)

Chapter 5 Number Plate Character Recognition Algorithm and its Efficient FPGA Implementation

100

(a) (b)

Figure 5-10: The graphs of the Tan-sigmoid. (a) Original Tan-sigmoid function, (b) Simplified Tan-sigmoid

function

The results from Equation 5.11 are pre-calculated and stored in a ROM. Since the used step

size is 0.01 for the range 5 to 5 , there are 1001 results to be stored in the ROM. In order

to access the correct pre-calculated results from the ROM, the following formula needs to

be used to calculate the address:

address = (x + 5) ×100 (5.12)

The entire ROM-based Tan-sigmoid block is shown in Figure 5-11. 𝑎1 is a register used to

store the current result from Tan-sigmoid block, which represents one element from the

vector 𝑎1 in Equation 5.3.

y0

y1

y2

…...

y1000

ROM

+ ×

5 100

-5≤n1,s≤+5
Yes

n1,sn1,s

a1

No

-1

+1

address

Data of

ROM

From Accumulator

Block

To Output

Layer

Figure 5-11: ROM-based Tan-sigmoid

Chapter 5 Number Plate Character Recognition Algorithm and its Efficient FPGA Implementation

101

5.4.3 Output Layer Module

The output layer module consists of two sub-blocks:

- Matrix-vector Multiplier

- Tan-sigmoid block

Multiplier and accumulator block is used to perform Equation 5.5, and Tan-sigmoid block

is the same block used in the hidden layer.

Matrix-vector Multiplier

The matrix-vector multiplier is the first block in the output layer and its main task is to

perform the matrix-vector multiplication in Equation 5.5. The overall block diagram of the

matrix-vector multiplier is shown in Figure 5-12.

r1

r2

w1,1

w1,2

w1,3

…...

wk,s

RAM

×

×

a1

n2,1

r3

r4

+

+
n2,2

n2,3

...

n2,k

From Tan-sigmoid Block

Matrix-vector Multiplier

Tan-sigmoid

Block

To Index

Finder

Figure 5-12: Block diagram of matrix-vector multiplier

All K S elements of the matrix L are stored in one RAM column by column. Each time

one element from the vector 1a is presented to this block from the Tan-sigmoid function

block, is multiplied with all elements in the corresponding column from the matrix L and

the results are accumulated with the previously calculated partial products. The hidden

layer and the output layer work in parallel and data from the hidden layer are produced with

a slower rate, which keeps the matrix-vector multiplier idle once the multiplication and

accumulation operations are completed for one column until the next element from the

Chapter 5 Number Plate Character Recognition Algorithm and its Efficient FPGA Implementation

102

vector 1a is presented.

In Figure 5-12, 1r and 2r are two registers that are used to store elements of matrix L read

from the RAM. 3r and 4r are two registers used to store results of multiplications.

[n2,1,n2,1,…,n2,k] is an array with k elements, which is used to store the result of

accumulation. Each clock cycle, 2, 2, 3 m mn n r and 2, 1 2, 1 4 m mn n r is performed and then

index m is incremented by two until it meets m k . Once this condition is met, m will be

initialised to 0. These operations are repeated S times until all the weights from matrix L

are read.

5.4.4 Index Finder Module

The index finder module is used to find the index of the maximum element of the output

vector from the output layer and match it with the corresponding character. Figure 5-13

shows the block diagram of the index finder.

a2,1

a2,2

a2,3

...

a2,33

Max

...

A

B

C

…
...

7

8

9

M
u

x

Index of Maximum element

Recognised

Character

From Output

Layer

Figure 5-13: Block diagram of index finder

An array 𝑎2 has 33 elements that come from the output layer of NN, where the index of the

maximum element will be passed to select a corresponding character from a set of

pre-defined character.

5.5 FPGA Implementation and Results

The proposed architecture for OCR has been simulated using the PAL Virtual Platform

(PALSim) in Mentor Graphics DK Design Suite 5.3 [112]. After simulation, the

Chapter 5 Number Plate Character Recognition Algorithm and its Efficient FPGA Implementation

103

architecture has been successfully implemented and verified using the Mentor Graphics

RC240 FPGA development board equipped [113]. Handel-C language has been used for

the hardware description of the proposed architecture [37]. For details of the experimental

tools can be found in APPENDIX B.

The two main building blocks of the proposed architecture are the hidden layer and output

layer shown in Figure 5-8. Pipelining has been used in their implementation and a character

image can be processed in (x × c1 + c2) clock cycles where:

- x is the number of iterations used to execute the operations inside the hidden layer.

This number depends on the number of neurons used which is 50 for the proposed

algorithm.

- c1 is the number of clock cycles to complete one iteration in the hidden layer.

- c2 is the number of clock cycles required to complete one iteration in output layer.

Sample codes for the OCR implementation are discussed in APPENDIX C.

5.5.1 Data Representation

The general idea behind this FPGA based NN implementation is to use the weights of the

NN that have been trained in MATLAB to set up an off-line NN. The weights have been

represented using floating-point arithmetic in MATLAB, which provides large dynamic

range and very high precision. However, floating-point arithmetic is not suitable for

hardware implementation as it requires significant large amounts of on-chip resources and

slows the designs down [126]. Fixed-point arithmetic is an efficient way to provide cheap

fast non-integer support for small range real numbers [127]. Since the weights of the

proposed NN belong to the range [-1, 1], fixed-point arithmetic has been used to represent

them with the format shown in Figure 5-14.

14 bits2 bits

Decimal part Fractional part

Figure 5-14: 16-bit fixed-point number representation

Chapter 5 Number Plate Character Recognition Algorithm and its Efficient FPGA Implementation

104

Since the decimal part of the weights can be ‘-1’, ‘+1’ or ‘0’, two bits can be used to

represent them. The number of bit in the fractional part has been set to 14, which is

sufficient to give a good accuracy for this ANPR application.

5.5.2 Proposed Environment for FPGA Implementation

Figure 5-15 shows a general view of the proposed FPGA based OCR system. It consists of

a Graphical User Interface (GUI), a UK characters database and the RC240 FPGA

development board. The host application was implemented using Visual Studio 2008 and it

gives the user the ability to select and display a character image from the UK characters

database and send it to the FPGA for processing. Once processed, the recognised character

from the FPGA will be displayed on the same GUI. This GUI also displays the numbers of

failed cases for each character.

External

Memory

Xilinx Virtex-4

LX40 FPGA

USB

UK Character

Database
Weights

RC240 FPGA Board

Figure 5-15: The proposed FPGA based OCR system

5.5.3 FPGA Implementation Results

The same UK character database used for MATLAB implementation has been used for

testing and validating the FPGA implementation. Only 95 characters were missed, which is

very close to MATLAB results. Figure 16 shows a comparison between the recognition

rates obtained using MATLAB and FPGA. As can be seen from Figure 16, the only

difference is in only one missed case for character ‘K’.

Chapter 5 Number Plate Character Recognition Algorithm and its Efficient FPGA Implementation

105

Figure 5-16: Comparison of MATLAB and FPGA implementation

The FPGA resources utilisation results of the proposed architecture using fixed-point

number representation for implementing a feed-forward NN are shown in Table 5-2.

Table 5-2: Usage of on-chip Resources

On-chip Resources Used Available Utilisation

Occupied Slices 4,342 18,432 23%

LUTs 7,967 36,864 21%

Flip-Flops 2,711 36,864 7%

BRAMs 5 96 5%

DSP48s 8 64 12%

Due to the fact that most of the weights are stored in the external memory, only few on-chip

resources were used (i.e. block RAMs and distributed RAMs). Overall, 23% of the on-chip

FPGA slices are used to implement the proposed OCR architecture. In these slices, 21%

LUTs are used to implement logic operations and distributed RAMs. 7% flip-flops are

mainly used for buffering the data to enable the high throughput pipeline manner in the

design. 5% BRAMs are mainly used to store the weights in the output layer of the NN and

lookup table of Tan-sigmoid block. The DSP48s slices are mainly used to perform the

arithmetic calculations in the NN output layer. According to the previous chapters, NPL

and CS implementations require 44% of the on-chip resources, therefore, the total hardware

usage for the NPL, CS and OCR is 67%, which leaves 33% of the FPGA resources to be

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

A B C D E F G H J K L M N P R S T U V W X Y Z 0 2 3 4 5 6 7 8 9

C
h

a
r
a

c
te

r
 R

e
c
o

g
n

it
io

n
 R

a
te

Characters MATLAB FPGA

Chapter 5 Number Plate Character Recognition Algorithm and its Efficient FPGA Implementation

106

used for linking the three proposed architectures together (e.g. adapting binarisation and

image resizing).

The maximum running frequency for the proposed architecture is 65.7 MHz and the

number of clock cycles needed for one character image to be processed is 44148. The

FPGA board used is equipped with three off-chip memory banks. All of them were used to

read and process the weights in parallel. The number of clock cycles can be reduced if more

memory banks are used.

The execution time for processing one image can be calculated by Equation 3.4, the

proposed architecture can process one character image (34 22) and produce a result in 0.7

ms. Using MATLAB and Dual Core 2.4GHz, 3G RAM PC, the average processing time is

8.4 ms per image, which is 12 times slower than the FPGA implementation. The 12-time

speed-up is due to the exploitation of the parallelism offered by FPGA when designing the

proposed architecture.

The power consumption of the designed circuit has also been analysed using Xilinx

XPower Analyser [115], and results obtained are shown in Table 5-3.

Table 5-3: Estimation of Power Consumption

Resource Type Value of Power (mW)

Clocks 271

Logic 12

Signals 26

BRAMs 5

IOs 90

Clock Managers 157

Leakage 348

Total Power 909

In Table 5-3, the total dynamic power consumption for the proposed OCR implementation

is 487 mW, which includes clocks power, logic power, signal power, BRAMs power and

IOs power. The rest of 422mW is consumed by transistor leakage, which is depending on

Chapter 5 Number Plate Character Recognition Algorithm and its Efficient FPGA Implementation

107

the chosen hardware. The total power consumption is 909 mW.

A comparison of the results achieved for the proposed FPGA based OCR system and the

other hardware and software based approaches in terms of recognition rate and execution

time is also shown in Table 5-4.

Table 5-4: Performance Comparison of FPGA based OCR System

OCR Technique
Character Recognition

Rate (%)
Platform Speed (ms)

Proposed System on

FPGA
97.3 Vertex-4 FPGA 0.7

Proposed System on PC 97.3 PC 2.4 GHz 8.4

SVM [45] 97.03 PC1.8 GHz 18

SOM [105] 90.93 Vertex-4 FPGA N/A

SVM [11] 94 DSP C6416 2.88

For all existing works presented in Table 5-4, including the proposed one, the character

images are the output images from the CS stage and all of them were taken under different

conditions (e.g. lighting, dirty plates) from real-world environment. The achieved results

show that the proposed work outperforms the existing work in terms of recognition rate and

speed, and also by comparing the results of the proposed PC and FPGA-based

implementations, it can be clearly seen that the latter outperforms the former by a factor of

12, which means it presents an advantage over software-based solutions in terms of cost,

size and energy consumption.

5.6 Conclusion

In this Chapter, a feed-forward ANN based OCR algorithm that meets the requirements of a

real-time ANPR system has been proposed. A parallel and pipelined architecture based on

the proposed algorithm has also been presented and it has been successfully implemented

and tested using the Mentor Graphics RC240 FPGA development board. The proposed

Chapter 5 Number Plate Character Recognition Algorithm and its Efficient FPGA Implementation

108

architecture requires only 23% of the available on-chip resources of a Virtex-4 FPGA, runs

with a maximum frequency of 65.7 MHz and is capable of processing one character image

in 0.7 ms with a successful recognition rate of 97.3% when using a database of 3700

character images.

Chapter 6 FPGA-based Number Plate Binarisation and Adjustment for ANPR Systems

109

Chapter 6: FPGA-based Number Plate Binarisation and

Adjustment for ANPR Systems

6.1 Introduction

The previous chapters are mainly focus on one aspect of ANPR system, such as NPL

[128-130], CS [1, 131] or OCR [132]. However, for a robust ANPR system, an exhaustive

and meticulous discussion of the pre-processing stages is required. Two important

pre-processing stages in ANPR systems are NP binarisation and rotation. NP image

binarisation converts an 8-bit grey level NP image to a black and white image and the

simplest way to perform this is to choose a fixed threshold value and classify all pixels in

the image. However, brightness distribution in a NP image may cause some parts of

character to be missed and noise impact to be increased after performing image binarisation

due to the problem of uneven illumination. In such cases, there are two main approaches to

deal with this problem which are global and local threshold based binary algorithms. One

global threshold binary method is Otsu method [133], where the target and background in a

given image are separated by maximizing the variances of the histogram. However, this

method does not consider the correlation between the pixels in an image such as the one in

NP images [134]. In this type of image, the correlation between pixels becomes more

important than the grayscale values and using the global threshold with this type of images

it is difficult to separate the NP characters from the background. The local binary method is

often used to solve this problem as it considers the correlation between the pixels in a NP

image. Adaptive local binary method is one of the local binary methods. In this method, an

image is first divided into sub-blocks and then each sub-block is processed with a filter[45].

NP adjustment is also a very important pre-processing step in an ANPR system. Slanted

NPs are very likely to cause failure of character segmentation in the CS stage. The main

challenges in this step are how to correctly and efficiently calculate the rotation angles and

Chapter 6 FPGA-based Number Plate Binarisation and Adjustment for ANPR Systems

110

adjust the NP accordingly. The most common used approaches to analyse the shape of the

NP to calculate the rotation angles are pixel projection, Hough transformation or CCA [45]

[71]. The main disadvantage of these methods is their computationally intensive nature to

calculate the rotation angle, which could slow down the entire ANPR system.

This Chapter presents a NP binarisation algorithm which uses local binarisation method to

solve the problem of uneven illumination and low complexity NP adjustment algorithms to

automatically adjust NPs horizontally and vertically, which could improve the NPL result

prior to CS stage. Two area/speed efficient architectures based on the proposed NP

binarisation and adjustment algorithms are also presented and have been implemented and

verified using a Mentor Graphics RC240 FPGA development board.

The remainder of this Chapter is organised as follows, Section 6.2 describes the proposed

NP binarisation and rotation algorithms. The proposed binarisation and rotation

architectures are then described in Section 6.3. Section 6.4 is concerned with FPGA

implementation and discussion of the experimental results. Section 6.5 concludes the

Chapter.

6.2 NP Pre-processing

In ANPR systems there are several pre-processing stages such as NP binarisation, rotation

and character resizing. In this Chapter improved methods that take advantage of the NP

image characteristics are presented for NP binarisation and rotation. Due to the fact of that

NP images are taken from different lighting environments in real-world conditions, fixed or

Global threshold binarisation methods are very likely to fail to separate the characters and

background after NP binarisation. On the other hand, due to the angle of NP orientation, the

NP image may have a slant and distortion which are very likely to cause failure of character

segmentation in the CS stage. These two problems can significantly affect the recognition

rate of the entire ANPR system. There is a need for efficient NP pre-processing algorithms

and architectures to address these problems. Figure 6-1 illustrates the main building blocks

Chapter 6 FPGA-based Number Plate Binarisation and Adjustment for ANPR Systems

111

of an ANPR system.

Number Plate

Localisation (NPL)

NP Binarisation

NP Rotation

Character Segmentation

(CS)

Character Resizing

Optical Character

Recognition (OCR)

ANPR System

Pre-processingPre-processing

Figure 6-1: The building blocks of an ANPR system

The inputs of the first pre-processing stage (i.e. NP binarisation) are the localised grayscale

NP images, where they are binarised and then rotated in the next pre-processing stage (i.e.

NP rotation). The processed images must meet the input requirements of the CS stage

where the characters need to be clearly displayed in NP image and the shape and positions

of the characters need to be adjusted properly.

6.2.1 NP binarisation

In ANPR systems the NP images are taken under different lighting conditions which give

varying brightness distribution. If the well-known global threshold method is applied for

NP image binarisation, the resulting images are not going to meet the input requirements

mentioned above and are likely to fail the segmentation stage. Therefore, a local threshold

method is proposed to solve this problem, which divides the entire NP image into many

m n blocks. Different thresholds are then calculated for each block and thus the entire NP

image is binarised according to local illumination information.

In the proposed NP binarisation algorithm, a square w w window is used to scan NP

images column by column from left to right where each pixel from the NP image is the

centre of the window. A mean filter is used to calculate the mean value for each window,

and the mean value is used to calculate the local threshold.

Suppose that (,)f x y denotes the grey value for pixel (x, y), which is always the centre

Chapter 6 FPGA-based Number Plate Binarisation and Adjustment for ANPR Systems

112

point of a square window B with size w w . The window mean value (,)meanf x y is

computed by Equation 6.1:

(,)

2

(,)

(,)
x y B

mean

f x y

f x y
w

 (6.1)

The local threshold (,)T x y is then obtained by:

 (,) (,)meanT x y f x y t (6.2)

Where t is an threshold offset which is used to adjust the threshold value.

The binary image is obtained by:

0, if (,) (,)

(,)
1, else

f x y T x y
b x y

 (6.3)

In this algorithm, w and t have significant impacts on the processing results, they are

both identified by experimental tests. In the proposed system, these tests have shown that

the constant value ‘6’ for t has given the best binarisation results. w is determined by two

other factors:

1) The size of characters in the NP image, for example, the stroke width of each

character is normally around 8 pixels.

2) As the main aim of this research is to implement the entire ANPR system on one

single FPGA [123] [117] [135], power of two numbers are used for w to avoid the

need of multiplications as they consume a lot of on-chip FPGA resources and

replace them with shifters.

Figure 6-2 shows a comparison between the use of global and local binarisation methods

with different window sizes.

Chapter 6 FPGA-based Number Plate Binarisation and Adjustment for ANPR Systems

113

(a) (b) (c)

(d) (e) (f)

Figure 6-2: Results of using global and local binarisation methods with different window sizes. (a) Greyscale

NP. (b) Global binarisation method. (c) Local binarisation method, 4.w (d) Local binarisation method,

8.w (e) Local binarisation method, 16.w (f) Local binarisation method, 32.w

As it can be seen from Figure 6-2, global binarisation method has failed to separate the NP

image background and characters in the image, however, using local binarisation method

better results can be achieved compared to the global method. The higher the value of w the

better is the binarisation result, but high w value means more computations and hardware

usage. For the proposed system and based on the obtained results from the experimental

tests w has been chosen to be equal to 8.

6.2.2 NP Adjustment

In real-world scenarios, NP images can be slanted and distorted due to many factors such as

the car and ANPR camera positions. Thus, horizontal and vertical adjustments are required

after NP binarisation. In this section an algorithm for calculating the horizontal and vertical

rotation angles is presented. Once the angles are found, a 2-D rotation method can be

applied to adjust the NP image horizontally [136] followed by applying a cropping method

to crop the Non-NP pixels from the rotated NP image. After cropping, the resulted image is

vertically adjusted.

Horizontal Adjustment

The proposed algorithm calculates rotation angle by utilising the output image from the

NPL stage. Existing algorithms to calculate the rotation angles require some characters

analysis to obtain the angles. This affects significantly the computation time which is a very

Chapter 6 FPGA-based Number Plate Binarisation and Adjustment for ANPR Systems

114

important factor in such real-time application. The proposed algorithm uses the output

image from the NPL stage without the need to analyse the characters in the NP region of the

image. Figure 6-3 shows and example of an input image to the NPL stage and the processed

image.

NPL

(a) (b)

Figure 6-3: Input and output images of the NPL stage. (a) Input image. (b) Output image

In Figure 6-3, the original colour image is processed in the NPL stage which produces a

binary output image. Connected Component Analysis (CCA) is used to localise the NP

region in the output image and once the NP is localised, the proposed rotation algorithm

will be used to calculate the rotation angle. An example of a localised NP region that needs

to be binarised and adjusted is shown in Figure 6-4.

a

b
c c

d1

d2∆d θ
θ

(c, 1) (b-c,1)

(a) (b)

Figure 6-4: (a) Localised NP region. (b) Binarised NP image

Let a b be the size of the localised NP region and be the horizontal rotation angle. As

illustrated in Figure 4, can be calculated by the proposed algorithm uses an approach

that consists of the following two steps:

1) Search vertically the first NP pixel with value ‘1’ in the localised NP region from

top to bottom at positions (1,1) and (1,)b c . Then obtain two vertical distance

values d1 and d2. c is an offset constant used to ensure that the first NP pixel is found

Chapter 6 FPGA-based Number Plate Binarisation and Adjustment for ANPR Systems

115

in the correct NP top boundary. According to experimental tests, when c is close to

b/4 the value of is more precise.

2) Calculate the difference 2 1d d d .

According to trigonometric relations, is calculated using the following equation:

1tan

2

d

b c

 (6.4)

After obtaining from the localised NP region, a 2-D rotation method will be applied to

rotate the binarised NP image. In this Chapter, the nearest neighbour interpolation method

has been chosen to perform the horizontal rotation which is based on the following

equations:

 2 1 1cos (/ 2) sin (/ 2) / 2x x b y a b (6.5)

 2 1 1sin (/ 2) cos (/ 2) / 2y x b y a a (6.6)

Where a and b are height and width of the binarised NP image respectively, 1 1(,)x y and

2 2(,)x y are the old and new coordinates of a given pixel on the NP image respectively.

The rotation operation produces output locations 2 2(,)x y which may not be within the

boundaries of the original NP image and they will be ignored. It is worth noting that the size

a b will be kept and as a result some pixels in the boundaries of the NP will be filled with

value ‘0’. Due to the fact of the rotation algorithm may produce coordinates that are not

integers, the proposed method uses the nearest integer coordinate values. The binarised NP

region after the rotation is shown in Figure 6-5.

Chapter 6 FPGA-based Number Plate Binarisation and Adjustment for ANPR Systems

116

b/2

Va θ

(a) (b)

θ
b/2

Va

Figure 6-5: (a) Binarised NP image. (b) Rotated NP image.

As it can be seen from Figure 6-5 (b), there are many non-NP pixels in the boundaries that

are generated after rotation; therefore, a cropping process is needed to reduce the height of

NP image. A simple method has been proposed to perform this operation. In this method,

the rotated NP image will be cropped by aV from the top and bottom of the NP which

leaves a new NP height of 2 aa V . The cropped NP image is shown in Figure 6-6.

b

a-2Va

Figure 6-6: The cropped NP image

From Figure 6-5 (a), the following to trigonometric relation can be obtained:

/ 2

aV
tan

b
 (6.7)

Thus, the cropping parameter aV can be calculated using the following equation:

 / 2aV tan b (6.8)

Vertical Adjustment

After horizontal rotation, NP images may still need vertical rotation to adjust the slant as

shown in Figure 6-7 (a). Since there is a vertical slant, it is difficult to separate the character

with CCA or other projection techniques. For such cases, a vertical adjustment method,

Chapter 6 FPGA-based Number Plate Binarisation and Adjustment for ANPR Systems

117

which based on horizontal shifting of pixels, is proposed and presented in this section to

solve the problem.

θ

(a) (b)

θ

θ

∆S

a-2Va-y

pi, j

Figure 6-7: (a) NP image before vertical correction. (b) NP image after vertical correction

In Figure 6-7 (a), if an NP image was rotated horizontally with an angle the resulted NP

image may have a vertical slant. To adjust this, the NP image must be shifted with a value

s that depends on the horizontal rotation angle and a variable y which is the vertical

coordinate of the pixel to be shifted. From Figure 6-7 (a):

2 a

s
tan

a V y

 (6.9)

For a pixel Pi,j, y is equal j. Thus, the shifting value s for each pixel can be calculated

using the following equation:

 (2) tanas a V j (6.10)

The shifted NP image after vertical adjustment is shown in Figure 6.7 (b).

6.3 Proposed Pre-Processing Architectures

The proposed pre-processing architectures consist of the two main modules listed below:

1) Binarisation: this module is used to convert the NP greyscale image to a binary

image and is based on the local threshold binarisation method presented in Section

6.2.1.

Chapter 6 FPGA-based Number Plate Binarisation and Adjustment for ANPR Systems

118

2) Adjustment: this module is used to calculate the horizontal rotation angle, perform

2-D horizontal image rotation, calculate the vertical shifting value and perform the

vertical shifting operation. The module is based on the methods presented in section

6.2.2.

The block diagram of the proposed pre-processing modules is shown below in Figure 6-8.

Binarisation

Horizontal

Correction

Vertical

Correction

Pre-processing Adjusted Binary NP image

Greyscale Car Image

Figure 6-8: Block diagram of the pre-processing modules

6.3.1 Binarisation Module

The Binarisation Module is the first module in the pre-processing stage which consists in

three blocks which are the memory reader, mean and local threshold filters. The overall

block diagram of the binarisation module is shown in Figure 6-9.

NP Reader

NPL

Mean Filter
To the Vertical

Correction Block

The Coordinates

of NP

Greyscale

Pixel Values
Local Threshold

Filter

NP Binarisation Module

Figure 6-9: The overall block diagram of the binarisation module

Chapter 6 FPGA-based Number Plate Binarisation and Adjustment for ANPR Systems

119

The input images to the NPL stage are 640 480 colour car images from two UK and

Greek databases [135]. During the NPL processing the input colour image is converted to

greyscale and stored in one external memory. The greyscale image is used in further

processing to generate the final outputs which consist of a binary car image and the NP

region coordinates (i.e. top left and bottom right corners). The binary car image is stored in

another external memory to be able to access it in parallel with the greyscale image[135].

In Figure 6-9, the NP reader first obtains the coordinates of NP region from NPL stage, and

then uses them to calculate memory address of NP region. The greyscale pixel values of NP

region are read from the first external memory where the greyscale image is stored and feed

them to the mean filter block.

Let (,)x y denote the coordinates of a pixel in the NP rectangular region, 0 0(,)x y and

1 1(,)x y denote the left top and right bottom corner coordinates of the NP rectangular region

respectively. The memory address of any pixel in the NP rectangular region can be

calculated by:

 (,) 0 1 0 1640 , &x yaddress y x x x x y y y (6.11)

The pixels in the NP region are read column by column from left to right using the

addresses calculated using the Equation 6.11.

Mean Filter

The mean filter is the block that performs the main process of binarisation, which consists

of a window shifter and an averaging filter.

Window Shifter

The window shifter is a 8 8 matrix used to buffer pixels from the NP image. This

window shifter scans the NP image column by column from left to right. Figure 6-10 shows

the architecture of the window shifter.

Chapter 6 FPGA-based Number Plate Binarisation and Adjustment for ANPR Systems

120

0

2

1

a-2

a-1

a-3

From Memory

Reader

Y

...

+

<<8

Yout

8×8 Matrix

Buffer

8 8 64 64 64

8 8

64
LineBuffer

Figure 6-10: The window shifter

In Figure 6-10, ‘Y’ is an 8-bit register used to temporarily store a pixel value from the NP

Reader block. ‘LineBuffer’ is an 64a dual-port RAM, where a is the height of the NP

image, used to store NP pixels from eight columns and each memory location will contain

eight pixels from the same row and to do this an eight-bit shifter and an adder are used.

Thus, the content of each memory location in the ‘LineBuffer’ 'Y is calculated using the

following equation:

 ' 8Y Y Yout (6.12)

Following this process, the first eight pixels from the first row of the NP image will be

stored in the first memory location of ‘LineBuffer’ after 8a clock cycles. After that the

next eight-pixel rows will be stored in the corresponding location every clock cycle. ‘Yout’

is a 64-bit temporary register used to store the content of one location from ‘LineBuffer’

every clock cycle. Once all eight pixels from a row are saved in ‘Yout’ it will be transferred

to the first row of the 8 8 matrix buffer which will be propagated to the next row every

clock cycle. This process is repeated until the 8 8 matrix is full and transferred to the

next module (i.e. averaging filter).

All steps described in this section need to be repeated for all pixels in the NP image.

Chapter 6 FPGA-based Number Plate Binarisation and Adjustment for ANPR Systems

121

Averaging Filter

The averaging filter consists of 21 adders and one 8-bit right shifter and is used to calculate

the mean value of the 8 8 matrix buffer by simply adding all 8-bit values and divide the

result by 64. The division is performed using the 6-bit right shifter. Figure 6-11 shows the

architecture of the averaging filter.

+
+

+
+

+
+

+
+

+ +

…...

+

From the last

four rows

>>6
To Threshold

Filter

Figure 6-11: Architecture of the Average Filter

To avoid long delay paths in the hardware implementation and as it can be seen from Figure

6-11, to obtain the final sum every four elements of are added together. The average value

can then be calculated by right shifting the sum by eight bits.

Local Threshold Filter

The window shifter will be applied to the whole NP greyscale image pixel by pixel and

each greyscale pixel will be the centre of the window. Local threshold filter module

calculates a local threshold to be used to produce the binary value of the corresponding

greyscale value of a pixel to produce a binary NP image. According to Equation 6.2, the

threshold can be calculated by applying the subtraction of average value and a constant t .

This threshold is used as a condition to decide whether the current average value from the

average filter should be set to ‘1’ or ‘0’. The binary pixels will be stored in a 256 1

dual-port RAM, the adjustment module will read the pixels from this RAM simultaneously.

Chapter 6 FPGA-based Number Plate Binarisation and Adjustment for ANPR Systems

122

Figure 6.12 shows the architecture of local threshold filter block.

Greyscale

value

fmean

0

1

M
u
x

From Averaging

Filter

-

6
0 21 254 255253...

To Adjustment

Module

C
o
m

p
ar

at
o
r

Figure 6-12: Architecture of the local threshold filter

In Figure 6-12, the address of the 256 1 dual-port RAM is incremented by one every clock

cycle, when it reaches the last location it will be initialised to ‘0’.

6.3.2 Adjustment Module

The adjustment module consists of three blocks which are rotation angle calculator,

coordinates correction block and pixels reader block. The overall block diagram of the

rotation module is shown in Figure 6-13.

Rotation Angle

Calculator

NPL

Coordinates

Correction
To the Character

Segmentation stage

The Coordinates

of NP

Rotation

Angle
Pixels Reader

Binarisation

Binary

Pixels

Coordinates

Memory

Address

Adjustment Module

Figure 6-13: The overall block diagram of the rotation module

Rotation Angle Calculator

Since the output image from NPL stage stored in the second external memory, the rotation

angle calculator uses the coordinates of NP and calculates the addresses to read the binary

pixels from the memory. According to Figure 6-4 (a), the memory addresses for pixels in

Chapter 6 FPGA-based Number Plate Binarisation and Adjustment for ANPR Systems

123

columns 0x c and 0x b c can be calculated as follows:

 1 1 0 1 0() 640 (1)MA r y r x c (6.13)

 2 2 0 2 0() 640 (1)MA r y r x b c (6.14)

Where x0 and y0 are the coordinates of the pixel in the left corner of NP, r1 and r2 are the NP

row number, c is the offset constant and b is the width of the NP.

According to the proposed algorithm presented in section 6.2.2, the memory addresses 1MA

and 2MA are calculated separately, where r1 and r2 are incremented by one until the first

NP pixel with value ‘1’ is found, then their difference is calculated.

The rotation angle can be calculated using Equations 6.4. In order to reduce the

hardware usage and improve the performance 1/ tan is calculated instead of the

rotation angle as all needed calculations in the coordinates correction block are based on

 .

2b c

d

 (6.15)

Coordinates Correction

The coordinates correction block performs horizontal and vertical adjustments. For

horizontal adjustment, the main task is based on Equations 6.5 and 6.6. However, in order

to avoid the calculation of trigonometric functions and reduce hardware usage, simplified

equations are used in this block.

The slant angles of NP images used from UK and Greek databases are always less than

10 . Therefore, the corresponding trigonometric functions sin and cos can be replaced tan

and value ‘1’ respectively as sin tan andcos 1 when 10 . Thus, Equations 6.5

and 6.6 can be simplified as follows:

Chapter 6 FPGA-based Number Plate Binarisation and Adjustment for ANPR Systems

124

1

2 1

(/ 2)y a
x x

 (6.16)

1

2 1

(/ 2)x b
y y

 (6.17)

For vertical adjustment, the main task is based on Equation 6.10. x2 needs to be shifted

horizontally by s in order to perform the vertical adjustment, thus, Equation 6.16 can be

written as:

1

2 1

(/ 2)y a
x x s

 (6.18)

Figure 6-14 illustrates the architecture of horizontal and vertical adjustments.

Y1

a/2

-

X1

b/2

-

/

α

/

From Rotation

Angle Calculator

X1

Y1

-

+

a

-

/

T1

T2

T3

T4

T7

T6

∆s

T5

-

To Pixel

Reader

X2

Y2

Figure 6-14: The proposed architecture for horizontal and vertical adjustments

In Figure 6-14, ‘ 1 2 7, ,...,T T T ’ are buffers that are used to temporarily store intermediate

results, which can efficiently reduce path delay and improve the throughput rate of the

architecture. ‘ 1 1,X Y ’ and ‘ 2 2,X Y ’ are the registers used to store the original and new

coordinates respectively. Each operation in Equations 6.17 and 6.18 requires one clock

cycle and data stored in the buffers are propagated from one buffer to the next every clock

cycle. The final results are passed to the pixel reader block.

Chapter 6 FPGA-based Number Plate Binarisation and Adjustment for ANPR Systems

125

Pixel Reader

The pixel reader block reads binary pixels from the dual-port RAM in the local threshold

filter block from the binarisation module. In this block two functions are performed:

1) Checking the new coordinates from coordinates correction block. If new

coordinates exceed the boundary of the NP, they will be discarded.

2) Calculating the reading address and read the binary pixels from the dual-port RAM

in the binarisation module, then feed them to two dual-port RAMs with sizes

256 1 and 2048 1 that will be used in CS stage.

The reading address of the dual-port RAM is calculated by:

 2 2() / 256readMA x a y (6.19)

Where 2x and 2y are the new coordinates, a is the height of the NP.

Figure 6-15 shows the proposed architecture of the pixel reader.

X2

Y2

Coordinates

Cheker

×

a

+ >>8 address

0 21 254 255253...

P

0 21 254 255253...

0 21 2046 20472045...

To Vertical Segmentation Block

To Horizontal Segmentation Block

From Binarisation

Module

Figure 6-15: Architecture of the pixel reader

In Figure 6-15, if the new coordinates stored in ‘X2’ and ‘Y2’ are valid coordinates, after

passing the coordinate checker block, the corresponding binary pixel is read from the

dual-port RAM in the binarisation module and stored the in the temporary buffer ‘P’. The

stored value in ‘P’ will be simultaneously saved in the two dual-port RAMs to be used in

the CS stage.

Chapter 6 FPGA-based Number Plate Binarisation and Adjustment for ANPR Systems

126

6.4 FPGA Implementation and Results

The proposed architectures for NP binarisation and adjustment have been simulated using

the PAL Virtual Platform (PALSim) [112]. After simulation, the architectures have been

successfully implemented and verified using the Mentor Graphics RC240 FPGA

development board [113]. Handel-C has been used for hardware description of the

proposed architecture, which is a high-level language that is at the heart of a hardware

compilation system known as the Mentor Graphic DK. Handel-C has additional constructs

to support parallelism and pipelining [37] and [38]. For details of the experimental tools

can be found in APPENDIX B.

The binarisation and adjustment modules run in parallel and pipelining has also been used

in their implementation to achieve high throughput rate and an NP image can be processed

by both modules in (6)b C clock cycles where:

- b is the width of the NP

- 6 is a constant delay that allows enough pixels to be stored in the dual-port RAM

from the binarisation module

- C is the number of clock cycles required to complete binarisation for one column

from the NP image

Sample codes for the binarisation and adjustment implementation are discussed in

APPENDIX C.

6.4.1 Proposed Environment for NP Binarisation and Rotation on FPGA

Figure 6-16 illustrates the proposed environment for NP binarisation and adjustment

implementation. It contains a host application (GUI), NP database and the RC240 FPGA

development board. The host application was developed using Visual Studio 2010 and

gives the user the ability to select a car image from the database, display and send it to the

Chapter 6 FPGA-based Number Plate Binarisation and Adjustment for ANPR Systems

127

FPGA for processing. Once processed, the localised, binarised and adjusted NPs are

processed on the FPGA and send back to the host to be displayed in the same GUI.

RC240 FPGA Board

External

Memory

Xilinx Virtex-4

LX40 FPGA

NP Database

USB

Figure 6-16: Host application for NP binarisation and adjustment

6.4.2 Hardware Usage, Running Frequency and Power Consumption

Due to the low complexity of the proposed algorithms, the binarisation and adjustment

architectures require only 9% of the on-chip FPGA resources. Table 6-1 summarises the

required on-chip resources.

Table 6-1: Usage of FPGA on-chip Resources

On-chip resources Used Available Utilisation

Occupied Slices 1,763 18,432 9%

LUTs 2,649 36,864 7%

Flip-Flops 1,574 36,864 4%

BRAMs 3 96 3%

9% of the on-chip FPGA slices are used to implement the proposed OCR architecture. In

these slices, 8% LUTs, 3% flip-flops and 2% BRAMs are used to implement logic

operations, registers and RAMs respectively. According to the previous chapters, NPL,

CS and OCR implementations require 67% of the on-chip resources, therefore, the total

hardware usage for the NPL, CS, OCR, binarisation and adjustment is 76%, which leaves

24% of the FPGA resources to be used for the remaining part of an ANPR system (i.e.

Chapter 6 FPGA-based Number Plate Binarisation and Adjustment for ANPR Systems

128

character resizing).

The maximum running frequency is 95.8 MHz and the number of clock cycles needed for

one image to be processed is between 6297-16519, which depends on the resolution of the

localised NP. The execution time for processing one frame can be calculated using

Equation 3.4. The proposed architecture can process one image (18 99 - 60 300) and

produce a result in 0.07 0.17 ms . The difference in the execution time is due to the size of

the images which affect the number of clock cycles. The smaller the size of the image, the

lower the number of clock cycles is required. The execution times achieved mean that the

proposed architecture satisfies the minimum requirement for real-time processing. The

results achieved in terms of maximum running frequency and area used for implementing

this part of the ANPR system show that there is enough room to implement the whole

ANPR system on a single FPGA chip.

The power consumption of the designed circuit has also been analysed using Xilinx

XPower Analyser [115], and the results obtained are shown in Table 6-2.

Table 6-2: Estimation of Power Consumption

Resource Type Value of Power (mW)

Clocks 126

Logic 12

Signals 12

BRAMs 4

IOs 33

Clock Managers 211

Leakage 344

Total Power 743

In Table 6-2, the total power consumption is 743 mW. The clocks power, logic power,

signal power, BRAMs power and IOs power are formed as the dynamic power. The total

dynamic and quiescent power consumption for the proposed binarisation and adjustment

implementation is 290 mW and 453 mW respectively.

Chapter 6 FPGA-based Number Plate Binarisation and Adjustment for ANPR Systems

129

6.4.3 Experimental Results

MATLAB implementations of the proposed algorithms were used as a proof of concept

prior to the hardware implementation where floating-point arithmetic and functions from

the image processing toolbox were used. However, the FPGA implementation uses

simplified integer based arithmetic. NP images from the Greek and UK databases have

been used for testing the MATLAB and FPGA implementations.

In order to compare the similarity of output images from MATLAB and FPGA

implementations, the noise on the NP images is first removed using Gaussian filter and then

2-D correlation coefficient of the processed NP images are used to estimate the similarity of

the two results [137]. As it can be seen from Table 6-3 the similarity of MATLAB and

FPGA is around 67.2%.

Table 6-3: Similarity result for MATLAB/FPGA

 MATLAB FPGA Similarity

NP Example 1

72.1%

NP Example 2

63.8%

NP Example 3

64.8%

NP Example 4

68.0%

In order to compare the software and FPGA-based implementations in term of the

computation speed, the proposed algorithm has also been implemented using a PC

equipped with an Intel Core i7 2.8GHz and 8G RAM. Table 6-4 shows the results of the

MATLAB and FPGA implementations in terms of computation time.

Chapter 6 FPGA-based Number Plate Binarisation and Adjustment for ANPR Systems

130

Table 6-4: MATLAB/FPGA result comparison

MATLAB Implementation FPGA

NP Image
Consumption

Time
NP Image

Consumption

Time

NP

Example 1

Original

greyscale

NP

N/A

N/A

Binarised

NP
 32 ms 0.11 ms

Adjusted

NP

NP

Example 2

Original

greyscale

NP

N/A

N/A

Binarised

NP 48 ms

0.12 ms
Adjusted

NP

The images have been successfully binarised and adjusted using the proposed algorithms,

where the characters are clearly isolated from each other and the vertical and horizontal

positions of the NPs are properly adjusted. The FPGA processes a NP image 290 times

faster than MATLAB implementation due to the low complexity of the proposed

algorithms, the arithmetic techniques used, parallelism and pipelining exploited in the

hardware implementation of the proposed architectures.

6.5 Conclusion

In this Chapter, two optimised low complexity NP binarisation and adjustment algorithms

have been proposed to successfully link NPL and CS stages. Efficient area/speed

architectures based on the proposed algorithms have also been presented and successfully

implemented and tested using the Mentor Graphics RC240 FPGA development board,

Chapter 6 FPGA-based Number Plate Binarisation and Adjustment for ANPR Systems

131

which together require only 9% of the available on-chip resources of a Virtex-4 FPGA, run

with a maximum frequency of 95.8 MHz and are capable of processing one image in

0.07 0.17 .ms

Chapter 7 Standard Definition ANPR System on FPGA and an Approach to Extend it to HD

132

Chapter 7: Standard Definition ANPR System on

FPGA and an Approach to Extend it to HD

7.1 Introduction

Each ANPR stage is discussed separately in the previous chapter, as the main aim of this

research project is to implement the entire ANPR system on a single FPGA chip that can

be placed within an ANPR camera housing to create a stand-alone unit that can drastically

improve energy efficiency and remove the installation and cabling costs of bulky PCs

situated in expensive, cooled, waterproof roadside cabinets.

A range of image processing algorithms for each stage of the ANPR system and

corresponding new FPGA architectures have been proposed in [117, 123, 132, 135, 138,

139]. This Chapter describes the linking process of previously designed architectures

from each stage of the ANPR system to be implemented on a single stand-alone

FPGA-based processing unit. By optimising the ANPR algorithms to take specific

advantage of technical features and innovations available within FPGAs, such as

parallelism computing feature, low power consumption, development time, and vast

on-chip resources, it will be possible to replace the powerful roadside computers with

small in-camera dedicated platforms.

In addition to the proposed ANPR system, this Chapter also introduces a preliminary

research for how the proposed Standard Definition (SD) NPL algorithm can be applied to

HD NPL system.

The rest of this Chapter is organized as follows. The description of the FPGA based

ANPR system is given in section 7.2. Section 7.3 is concerned with the implementation of

the FPGA based ANPR system. Section 7.4 introduces a preliminary research for HD

NPL. Finally a conclusion is given in section 7.5.

Chapter 7 Standard Definition ANPR System on FPGA and an Approach to Extend it to HD

133

7.2 Proposed FPGA based ANPR System

A typical ANPR system consists of three main stages: NPL, CS and OCR. In addition to

these main stages, there are few pre-processing stages needed to link the three main stages.

Figure 7-1 demonstrates the main building blocks of an ANPR system.

NPL

Number Plate

Rotation and

Binarasation

CS

Character

Resizing
OCRYT 58 FSZ

Input Image

Recognised NP

Figure 7-1: Main building blocks of an ANPR system

The next sections describe what has been used to link each block to the next one.

7.2.1 Number Plate Localisation Module

The main aim of the NPL module is to correctly localise the NP within the original input car

image, where two sets of coordinates for the NP’s across corners are detected. To link the

NPL module to the CS module there is a need to binaries and adjust the output NP images

from the NPL module. Binarisation and adjustments modules proposed in Chapter 6 are

used to achieve this. Figure 7-2 demonstrates the linking process of the NPL module,

binarisation and rotation blocks.

Chapter 7 Standard Definition ANPR System on FPGA and an Approach to Extend it to HD

134

NPL ModuleRAM0 RAM1

Binarisation

Block

Rotation

BlockNP Region

NP’s

Coordinates

Car image
Processed car

image

Binarised NP

Region

To CS Module

Processed car

image

Figure 7-2: Process of the NPL module, binarisation and rotation blocks

The NPL module reads and processes first the original car image. Once the coordinates of

top left and bottom right corners of the NP are found, the binarisation block starts to read

the NP region from the first RAM (i.e. RAM0). Simultaneously, the rotation block starts to

read the processed car image from the second RAM (i.e. RAM1), and then it will calculate

the rotation angle. Finally, the rotation block will send the pixels of the rotated NP to the CS

module.

7.2.2 Character Segmentation Module

The main aim of the CS module is to correctly segment the characters within the NP region,

where each segmented character is passed to the next module. However, since the OCR

module needs all the segmented characters to have the same size, each segmented character

is resized in the character resizing block before it is passed to the OCR module.

Figure 7-3 shows the linking process of the CS and character resizing modules.

Resizing ModuleCS Module

Horizontal CS

Block

Vertical CS

Block
Dual-port RAM0

Dual-port RAM1

From Rotation

Block

NP Region

NP Region

Character

Vertical Positions

Character Width

Resizing

Character

Height Resizing

Character

Horizontal

Position

Character

Vertical

Positions

To OCR

Module

Horizontally

Resized Character

Figure 7-3: Process of the CS and character resizing modules

Chapter 7 Standard Definition ANPR System on FPGA and an Approach to Extend it to HD

135

The pixels within the adjusted NP region are simultaneously stored in two dual-port RAMs

(i.e. dual-port RAM0 and RAM1). The vertical CS Module reads the NP region from the

first dual-port RAM to calculate the vertical positions of each character. Once the vertical

positions of the character are obtained, they will be passed to the character width resizing

and the horizontal CS blocks which will work in parallel to resize the width of the character

and calculate the horizontal positions of the character respectively. The character height

resizing block will use the horizontal positions of the character, which is the output of the

horizontal CS block, to resize the height of the character. Finally, the fully resized

characters are sent to the OCR module serially.

7.2.3 Optical Character Recognition Module

The main aim of the OCR module is to correctly recognise the segmented characters.

Because the OCR module is slower than the CS and resizing modules, there is a need for a

buffer to be placed between these modules and the OCR module, which can temperately

store the resized characters. Another dual-port RAM is used for this purpose. Figure 7-4

shows the linking process of the OCR module to the previous modules.

OCR ModuleDual-port RAM3

From Character

Resizing Block

Resized

Character
Recognised

Character

Figure 7-4: Process of the OCR module

The OCR module reads the pixels of each resized character from the dual-port RAM3, and

processes the pixels at same time. Each recognised character from a segmented NP is stored

in an array.

7.3 FPGA Implementation and Results

The whole ANPR system has been simulated using the PAL Virtual Platform (PALSim)

[112]. After simulation, the system has been successfully implemented and verified using

Chapter 7 Standard Definition ANPR System on FPGA and an Approach to Extend it to HD

136

the Mentor Graphics RC240 FPGA development board [113]. For details of the

experimental tools can be found in APPENDIX B.

The ANPR modules run in parallel and pipelining has also been used in their

implementation to achieve high throughput rate and a car image can be processed by the

modules in 1 2C C n clock cycles where:

- n is the number of character within a NP image

- C1 is the number of clock cycles required to localise the NP within a car image

- C2 is the number of clock cycles required to recognise each character within a NP

image

Sample codes for the entire ANPR implementation are introduced in APPENDIX C.

Due to the external storage limitation on the RC240 development board, a new image

cannot be loaded to the external RAM while the OCR stage is being processed; therefore,

the proposed ANPR system requires a total of 1 2(())C C n x clock cycles to process x

car images when the car images are continually sent to the system. However, if the FPGA

board is equipped with extra memory banks, the NPL and OCR modules can access the

external RAMs simultaneously, which will significantly reduce the total clock cycles to

1 2()C C n x for processing x car images.

7.3.1 Proposed Environment for ANPR on FPGA

The proposed ANPR system has two main parts: RC240 FPGA development board and a

GUI running in a host application. The RC240 FPGA development board performs the

calculation of the ANPR system, and sends the results to the host. The host sends the

original car images to the FPGA board, and displays the processed images and characters

on the GUI. Once a car image is sent to FPGA board it will be processed by the FPGA,

and then the localised, adjusted, segmented and recognised NPs are sent back to the host

Chapter 7 Standard Definition ANPR System on FPGA and an Approach to Extend it to HD

137

to be displayed in the same GUI. Figure 7-5 shows the GUI host.

RC240 FPGA Board

External

Memory

Xilinx Virtex-4

LX40 FPGA

ANPR Database

USB

Figure 7-5: The GUI host

7.3.2 Hardware Usage, Running Frequency and Power Consumption

The entire ANPR system consists of NPL, CS, OCR and pre-processing modules, those

architectures require 80% of the on-chip resources of the Virtex-4 LX40 FPGA. Table 7-1

summarises the required on-chip resources.

Table 7-1: Usage of FPGA on-chip Resources

On-chip resources Used Available Utilisation

Occupied Slices 14,775 18,432 80%

LUTs 22,556 36,864 61%

Flip-Flops 8,547 36,864 23%

Block Rams 30 96 31%

DSP48s 12 64 18%

As shown in Table 7-1, the total on-chip usage is 80% for the entire ANPR system,

leaving 20% of the FPGA area to be used for other purposes, for example, communication

and display units, which allows the FPGA to act as a stand-alone unit.

The maximum running frequency is 57.6 MHz and the number of clock cycles needed for

one image to be processed is between 506686-683278, which depends on numbers of the

characters within the NP image. The execution time for processing one frame can be

Chapter 7 Standard Definition ANPR System on FPGA and an Approach to Extend it to HD

138

calculated using Equation 3.4, the proposed architecture can process one image and

produce a result in 11 ms. This means that the proposed architecture satisfies the minimum

requirement for real-time processing.

The power consumption of the designed circuit has also been analysed using Xilinx

XPower Analyser [115], and the results obtained are shown in Table 7-2.

Table 7-2: Estimation of Power Consumption

Resource Type Value of Power (mW)

Clocks 282

Logic 13

Signals 13

BRAMs 12

IOs 30

Clock Managers 211

Leakage 348

Total Power 910

Table 7-2 shows that the total power consumption of the proposed architectures is 910 mW,

which is comprised of 459 mW dynamic power and 451 mw quiescent power. The total

power consumption is very low compared to computer based ANPR systems.

As far as the overall performance calculation is concerned, this can be calculated by

 ()%A L S R (7.1)

where A is the overall system accuracy, and L, S, and R are the percentage of successful

NPL, CS and OCR rates, respectively. According to the previous works in Chapter 3-5, the

NPL, CS and OCR rates are 97.8%, 97.7% and 97.3%, respectively. Therefore, the overall

system accuracy is around 93.0%.

7.3.3 Comparison with Existing Work

A comparison of the experimental computational speed and successful rate with existing

PC, DSP and FPGA based implementations of ANPR system is shown in Table 7-3.

Chapter 7 Standard Definition ANPR System on FPGA and an Approach to Extend it to HD

139

Table 7-3: Performance Comparison

As shown in Table 7-3 and by comparing the results of the PC and FPGA-based

implementations, the main advantage of hardware based ANPR systems is the fast

processing speed which is of particular interest in real-time environments. The proposed

FPGA based ANPR system outperforms the fastest software and hardware based ANPR

systems by a factor of 26 and 4.7 respectively, it also outperforms the existing hardware

solutions in terms of accuracy. Although the recognition rate of the proposed system is

close to that of some PC-based systems, it presents an advantage over software-based

solutions in terms of cost, size and energy consumption.

7.4 A preliminary research for HD NPL

Recently, HD cameras become an important trend in ANPR because higher image quality

and resolution can provide better performance for CS and OCR after NPL. However, most

known approaches for SD NPL are not suitable for real-time HD image processing as the

real-time requirement will not be met due to the computationally intensive cost of

localising NP. In this section, an approach is proposed to localise the NP image from a HD

image using the SD NPL algorithm without significantly increasing the computational cost.

ANPR System
Character

Set
Hardware Platform

Successful

Rate (%)
Speed (ms)

[11] Australia TI C64 DSP 85 52.11

[105] Turkey FPGA Virtex-4 73 500

[45] Japan PC Intel Core 1.8 GHz 93.54 284

[43] Chinese PC 3 GHz 93.9 293

Proposed FPGA based ANPR

System
UK FPGA Virtex-4 93.0 11

Chapter 7 Standard Definition ANPR System on FPGA and an Approach to Extend it to HD

140

7.4.1 Proposed Approach:

In general, the NP region in a NP image occupies only a small percentage of the total

image surface and NPL algorithms search all pixels from an input NP image to localise

the NP region. With a HD image, the search time for the NP region can be increased by up

to 9-fold compared to a SD image. The proposed approach significantly enhances the HD

NPL processing speed without losing the quality of the HD NP for the rest of the ANPR

system. As the main area of interest in an input ANPR image is only the NP region, the

proposed approach firstly localise the position of the NP from a SD image resized from

the input HD image, and then calculate the coordinates of NP region in the HD image

using the obtained position coordinates of the NP region in the SD image. The block

diagram of the proposed approach is shown in Figure 8-1.

Image

resizer
HD input image SD NPL

SD to HD coordinates

transformer
HD NP region

SD image

Position of the SD

NP region

Figure 7-6: HD NPL block diagram

As shown in Figure 7-6, a HD input image is first resized to a SD image using a resizing

algorithm. In this Chapter, the nearest neighbour interpolation algorithm has been used.

Let assume that the sizes of the HD input image and the resized HD image are A×B and

a×b respectively, the width ratio w and height ratio h are equal to A/a and B/b

respectively. The pixels within the resized HD image are sampled from the original HD

input image using the following equations:

 () 1r w w wX n n (7.2)

 () 1r h h hY n n (7.3)

Chapter 7 Standard Definition ANPR System on FPGA and an Approach to Extend it to HD

141

where ()r wX n and ()r hY n are resized coordinates at horizontal wn and vertical hn

positions respectively, wn and hn are integers that belong to the ranges {0,1,2,..., 1}b

and {0,1,2,..., 1}a respectively.

The total pixels in the resized HD image are reduced by a factor of w h , and because

of the high quality and resolution of HD images, the NP region in the input HD image is

larger than the NP region in the resized image (i.e. SD image). The resizing process will

only affect the size of the NP region and not its features, which means the proposed SD

NPL algorithm [135] can be used to localise the NP region in the resized HD image.

Figure 7-7 shows an example of the input HD image and the resized one.

(a) (b)

Figure 7-7: An example of the HD and resized HD images. (a) The HD input image (1392×1040). (b) The

resized HD image (640×480)

The used SD NPL algorithm is mainly based on morphological open and close operations

where two morphological open operations are used to enhance the NP features and a

morphological close operation is used to highlight the NP region [135].

Once the SD NP region is localised, a SD to HD coordinates transformer is used to

calculate the coordinates of the HD NP region based on the coordinates of the SD NP

region. Let 0 0(,)x y and 1 1(,)x y are the NP’s left-up and right-down corners within the

SD image respectively, 0 0(,)X Y and 1 1(,)X Y are the expected NP’s left-up and

right-down corners within the HD image respectively. The following equations are used

Chapter 7 Standard Definition ANPR System on FPGA and an Approach to Extend it to HD

142

to calculate the coordinates of the HD NP region:

 0 0 wX x (7.4)

0 0 hY y (7.5)

 1 1 wX x (7.6)

 1 1 hY y (7.7)

The HD NP region is retrieved from the HD input image based on the calculated positions

0 0(,)X Y and 1 1(,)X Y .

Experimental Results and Analysis: In order to verify the proposed approach, the

proposed SD NPL algorithm, applied to resized and original HD images, have been

implemented in MATLAB. HD images with 1392×1040 resolution taken from the

motorway using HD cameras have been used for testing. The PC used to conduct the

experiments is an Intel Core i7 2.8GHz with 8G RAM.

In the proposed implementation, the HD input image is first resized to 640×480 SD image,

and then the proposed SD NPL algorithm is used to localise the NP region. Once the NP

region is detected, equations (7.4-7.7) are used to calculate the corresponding coordinates

for the HD NP region from the original HD image. Table 7-4 shows the comparison in

terms of processing speed when using the proposed approach and the SD NPL approach

[135] with SD images from normal SD cameras and original HD images.

Table 7-4: MATLAB implementation results

Implementation
Input image

(pixels)

Scanned

pixels

Processing speed

(ms)

SD NPL [135] (SD images) 307,200 307,200 143

Proposed approach (HD images) 1,447,680 307,200 168

SD NPL (HD images) 1,447,680 1,447,680 507

Chapter 7 Standard Definition ANPR System on FPGA and an Approach to Extend it to HD

143

According to Table 7-4, using the proposed approach, only 21% of the original HD image

is scanned which significantly increase the processing speed by a factor of 3 compared to

scanning the entire HD input image. Whilst compared to a normal SD NPL

implementation without resizing, the processing speed for the proposed approach is close

to SD NPL processing speed. This means the resizing and SD to HD coordinate

transformations processes increase the processing speed by just a factor of 1.17.

A speed and area-efficient architecture for the image resizer has been implemented using

the Mentor Graphics RC240 FPGA development board. Due to the low complexity of the

resizing algorithm, the proposed architecture requires only 3% of the on-chip FPGA

resources.

Using the proposed approach, the HD NPL which consists of the SD NPL [135], the

image resizer and the HD to SD coordinates transformer, requires 36% of the FPGA

on-chip resources, which leaves 64% to be used for implementing the next stages of an

ANPR system (i.e. CS and OCR). The maximum running frequency for the image

resizing module is 86.9 MHz, and the number of clock cycles needed to resize one image

is 307206, thus the execution time for resizing one image is 3.5 ms. The proposed SD

NPL module process one image in 4.7 ms [1]. As the image resizer and the SD NPL

modules can run in parallel, an HD image can be fully processed in 4.7 ms by the HD

NPL module. This means that the proposed architecture satisfies the minimum

requirement for real-time processing, and it is faster than software based implementation

by a factor of 36.

Existing works have shown that meeting real-time processing constraints using software

based solutions to perform HD NPL in a uniprocessor system is a complex task. In [140],

the maximum achieved number of frames per second (fps) is 15, which is far from

real-time processing requirements (i.e. 25 fps). In [141], an operator context scanning

(OCS) algorithm to accelerate the searching of the NP region within the HD image was

proposed, and results have shown that the system is capable of processing 22 fps. When

Chapter 7 Standard Definition ANPR System on FPGA and an Approach to Extend it to HD

144

compared with the proposed hardware-based NPL implementation, the proposed work

can achieve more than 200 fps, and the proposed FPGA-based system can be used as a

viable solution to replace software-based solutions where cost, size and energy

consumption will be reduced.

7.5 Conclusion

In this Chapter, all three stages of an ANPR system (i.e. NPL, CS and OCR) have been

successfully linked together, implemented and tested using the Mentor Graphics RC240

FPGA development board, which requires only 80% of the available on-chip slices of a

Virtex-4 FPGA, runs with a maximum frequency of 57.6 MHz and is capable of processing

one image in 11 ms with a successful recognition rate of 93%.

The achieved results show that the entire ANPR system can be implemented on a single

FPGA chip, which can be placed within an ANPR camera housing to create a stand-alone

unit which will drastically improve energy efficiency and remove the installation and

cabling costs of bulky PCs situated in expensive, cooled, waterproof roadside cabinets.

In addition to the above, this Chapter also presents a solution that utilises a SD NPL

algorithm to localise a NP from a HD image under real-time constraint, which significantly

increases the processing speed for HD NPL.

Chapter 8 Conclusions and Future Work

145

Chapter 8: Conclusions and Future Work

8.1 Introduction

ANPRs are rapidly becoming used for a vast number of applications to track, identify and

monitor moving vehicles by automatically extracting their NPs. The fundamental

requirements of an ANPR system are image capture using an ANPR camera and

processing of the captured image. The image processing part, which is a computationally

intensive task, includes three stages: NPL, CS, and OCR. The ANPR algorithms should

operate fast enough to fulfil the requirements of real-time operation, which means they

should not miss a single vehicle that moves through the camera [135]. Consequently, the

common hardware choice for ANPR implementation is often high performance

workstations. However, the cost, compactness and power issues that come with these

traditional solutions motivate the search for other platforms. Developments in digital

circuit technology, especially rapid development of FPGAs, offer alternative way to

provide a low cost acceleration for such computationally intensive tasks.

The main goal of the work reported in this thesis is to design and implement efficient and

novel architectures for ANPR system using different design methodologies for

accelerating digital image processing algorithms.

A range of image processing algorithms and architectures for each ANPR stage have been

developed and optimised, which can take specific advantage of technical features and

innovations available within new FPGAs, such as low power consumption, development

time, and vast on-chip resources, it will be possible to replace the powerful roadside

computers with small in-camera dedicated platforms.

The proposed ANPR architectures have been implemented and verified using the Mentor

Graphics RC240 FPGA development board equipped with a 4M Gates Xilinx Virtex-4

LX40.

Chapter 8 Conclusions and Future Work

146

In the rest of this Chapter results obtained throughout this research are summarised and

evaluated. Some possible routes to be investigated for a future extension of this work are

also provided.

8.2 Evaluation of Results and Contributions

The preceding Chapters described different design methodologies used for efficient

design and implementation of image processing algorithms for ANPR System on FPGAs.

This section is concerned with the evaluation of the work presented in these Chapters.

8.2.1 Measurement of Success

In this project the performance measurement and comparison of the proposed algorithms

and architectures were presented.

The comparison was based on the computation time, on-chip area required and system

accuracy. Computation time and on-chip area required that depend on the various design

optimisation strategies and parameters, for example, resolution of input car image and

data format. In the case of the implementation of these architectures, the measurement

was given on the number of slices, LUTs, Flip-flops, BRAMs, DSP48s, clock cycles and

the maximum running frequency of the design. In the case of the system accuracy, A

MATLAB implementation of the proposed algorithms were used as a proof of concept

prior to the hardware implementation, a comparison of the proposed software and

hardware implementations was given for each stage of the proposed system, where

different criteria such as type and colour plates, illumination conditions, various angles of

vision, and indoor or outdoor images were considered in the tested databases.

8.2.2 Results Achieved

A set of goals were specified in Chapter 2, which would determine the success of the

work presented in this thesis. Taking into account the initial objectives, the following

Chapter 8 Conclusions and Future Work

147

points can be made about the achievements of the project:

- A low complexity and stable NPL algorithm suitable for a single FPGA

implementation has been developed, where a novel NP feature extraction and

enhancing method based on two morphological operations and an image

subtraction operation was proposed. Results obtained have shown stable

performances in terms of the successful recognition rate and computation time in

comparison with existing software systems [135] and [138];

- A novel efficient architecture based on the proposed NPL algorithm has been

designed and successfully implemented on a FPGA. The performance in terms of

the area used, the maximum running frequency and successful recognition rate of

the proposed architectures has been assessed and has shown that the proposed

system has a higher frequency and recognition rate, less processing time when

compared with existing hardware based systems [135] and [117];

- An improved low complexity and stable CS algorithm based on pixel projection

and morphological operations has been developed. The improvement in the

proposed CS algorithm has significantly reduced the processing time of

segmentation and obtain more precise horizontal and vertical segmentation result

when compared with existing software systems [123];

- A novel real-time architecture based on the proposed enhanced CS algorithm and

its area/speed efficient implementation have been proposed. Parallelism offered by

FPGAs and pipelining technique have also been exploited to achieve high running

frequency and throughput rate. The use of multipliers has been avoided in some

building blocks from the proposed architecture which significantly reduces

on-chip resources usage. Results obtained show that the proposed system

outperforms existing state-of-the-art hardware based implementations in terms of

segmentation rate and processing speed [123];

- A low complexity and stable OCR algorithm based on feed-forward NN has been

Chapter 8 Conclusions and Future Work

148

developed. An area/speed efficient architecture based on the proposed algorithm

has also been designed and successfully implemented on a FPGA. The proposed

architecture for implementing the two layer feed-forward NN on FPGA can

process a large number of neurons in a pipelined manner to achieve high running

frequency and throughput rate. The use of multipliers has been avoided in the first

layer from the proposed architecture, which significantly reduces on-chip

resources usage. The implementation has achieved higher character recognition

rate and processing speed compared to existing hardware based OCR

implementations for ANPR systems [132];

- A low computational complexity NP binarisation and adjustment methods have

been developed to solve an important practical issue for real-time ANPR system

and the corresponding area/speed efficient architectures based on the proposed

algorithms have been successfully implemented on a FPGA, where a simplified

integer based arithmetic of trigonometric transformation has been used to reduce

hardware usages without accuracy loss; and

- All proposed ANPR stages have been successfully linked together and

implemented on a single FPGA, where parallelism and pipelining technique have

been exploited to achieve high running frequency and throughput rate. The

achieved results have shown that the proposed system has the fastest processing

speed when compared with existing ANPR systems.

8.2.3 Limitations

The objectives stated in Chapter 2 have been met and fully achieved. However, few of

restrictions and limitations have been found during the development of this research

project:

- In the case of the system accuracy, some of the failed cases are caused by

incomplete NP and missed segmented characters, the NPL and CS stages of the

Chapter 8 Conclusions and Future Work

149

ANPR system can be improved further by introducing a NP checking module to

help finding the correct NP or the character positions; and

- The proposed architectures have been implemented on the RC240 development

board equipped with Virtex-4 FPGA. It is worth mentioning that the proposed

designs can also be implemented on the latest FPGA platforms equipped with

Virtex-6 or Virtex-7, which allows developing more advanced features and

functions of ANPR system. For instance, the processing speed can be further

improved using more external memory banks and on-chip resources. As far as the

extra on-board resources are concerned, FPGA board equipped with video

collection and communication units that will allow exploring new functions of

ANPR system.

8.3 Future Work

The work undertaken in this research project has concentrated on development of

novel/improved ANPR algorithms and their efficient architectures for the proposed ANPR

algorithms and their implementations on FPGA. A set of objectives for the future

included:

- Further optimisation of the proposed ANPR algorithms:

There is always scope for more improvement in algorithms. In this case further

improvement and optimisation can be done on each stage of ANPR. For example,

in the NPL stage, the system can detect more than one NP at a time by using extra

processing steps. In the CS stage, a NP checking stage can be developed to obtain

more precise NP position. In OCR stage, different methodologies can be used for

recognition, and see their impacts;

- Further evaluation of the presented FPGA based ANPR system:

The proposed FPGA based ANPR system has been evaluated in each stage of

Chapter 8 Conclusions and Future Work

150

ANPR processing, however, it is necessary to use a large database to evaluate the

entire FPGA based ANPR system, where different categories of the database can

be used to evaluate the system performance under different environments (e.g.

night and day time, distances and angles);

- Developing efficient architectures specifically for the above optimised and HD

ANPR systems:

The main challenge of developing efficient architectures for optimised and high

definition ANPR systems is the hardware utilisation and throughput. For example,

the optimised algorithm may need extra flow control step to find the best

candidate of the detected NPs. In the case of HD ANPR system, because huge

pixel data need to be processed, hardware utilisation and processing time can be

significantly increased;

- Further validation on a custom FPGA platform:

Evaluating the accuracy of the presented ANPR on a custom development board

equipped with the latest FPGA (e.g. Virtex-7) that is also very important. In this

case, the ANPR system can be tested on motorways or car park entrances; and

- Investigating high definition ANPR system:

HD images provide a better image resolution with clear objects in the picture

[140]. Not only a wide area can be covered by a HD camera (e.g. two to four lanes

can be covered by a HD camera), but also an improvement of successful CS and

OCR rates could be achieved in CS and OCR stages when using a HD image.

Therefore, HD images allow achieving higher NP recognition success rate

compared to standard definition images. However, in order to localise the HD NP

image, the whole HD image is needed to be processed, which is computational

intensive task.

Reference

151

Reference

[1] X. Jia, X. Wang, W. Li, and H. Wang, “A Novel Algorithm for Character

Segmentation of Degraded License Plate Based on Prior Knowledge,” in IEEE

International Conference on Automation and Logistics, 2007, pp. 249-253.

[2] A. A. Shah and L. J. Dal, “Intelligent Transportation Systems in Transitional and

Developing Countries,” IEEE Aerospace and Electronic Systems Magazine, vol.

22, pp. 27-33, 2007.

[3] A. O. Yerdut, Y. B. Eldeniz, and H. G. Ilk, “Automatic license plate recognition

based on a projection method,” in IEEE 19th Conference on Signal Processing

and Communications Applications (SIU), 2011, pp. 182-185.

[4] J. Zhang and J. Xu, “Research of overall program on highway toll collection

system,” in International Conference on Information Science and Technology,

2011, pp. 1218-1221.

[5] C. N. E. Anagnostopoulos, I. E. Anagnostopoulos, I. D. Psoroulas, V. Loumos and

E. Kayafas “License plate recognition from still images and video sequences: A

survey," IEEE Transaction Intelligent Transportation System, vol. 9, pp. 377-391,

2008.

[6] Product Brief: Intelligent Policing (IP) ANPR. Available:

http://www.ipl.com/papers/IP%20ANPR%20product%20brief.pdf (Acessed on

Oct, 2012)

[7] R. Gurney, M. Rhead, S. Ramalingam, and N. Cohen, “Working towards an

International ANPR Standard: an initial investigation into the UK Standard,” in

46th IEEE International Carnahan Conference on Security Technology, USA,

2012, pp. 331-337.

[8] S. Connor, Surveillance UK: why this revolution is only the start. Available:

http://www.independent.co.uk/news/science/surveillance-uk-why-this-revolution-i

s-only-the-start-520396.html (Acessed on Oct, 2012)

[9] Networkvideosystems, Arecont ANPR IP cameras. Available:

http://networkvideosystems.co.uk/Arecont-ANPR-ip-cameras (Acessed on Oct,

2012)

[10] D. Shan, M. Ibrahim, M. Shehata, and W. Badawy, “Automatic License Plate

Recognition (ALPR): A State-of-the-Art Review,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 23, pp. 311-325, 2013.

[11] C. Arth, F. Limberger, and H. Bischof, “Real-Time License Plate Recognition on

an Embedded DSP-Platform,” presented at the IEEE Conference on Computer

Vision and Pattern Recognition, 2007.

[12] C. Arth, C. Leistner and H.Bischof, “TRIcam: an embedded platform for remote

traffic surveillance,” in Proceedings of IEEE Computer Vision and Pattern

Recognition Conference, 2006, pp. 125-134.

[13] T. Kanamori, H. Amano, M. Arai, D. Konno, T. Nanba, and Y. Ajioka,

Reference

152

“Implementation and Evaluation of a High Speed License Plate Recognition

System on an FPGA,” in 7th International Conference on Computer and

Information Technology, 2007, pp. 567-572.

[14] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Processor Fundamentals:

Architectures and Features, 1 ed.: IEEE Press Series on Signal Processing, 1997.

[15] J. Batlle, J. Martı, P. Ridao, and J. Amat, “A New FPGA/DSP-Based Parallel

Architecture for Real-Time Image Processing,” Elsevier Real-time Imaging, vol. 8,

pp. 345-356, 2002.

[16] T. B. Welch, C. H. G. Wright, and M. G. Morrow, Real-Time Digital Signal

Processing from MATLAB to C With the TMS320C6x DSPs: Taylor & Francis

Group, LLC, 2011.

[17] F. Bensaali, “Accelerating Matrix Product on Reconfigurable Hardware for Image

Processing Applications,” PhD, School of Computer Science, The Queen's

University of Belfast, 2005.

[18] A. Hayim, M. Knieser, and M. Rizkalla, “DSPs/FPGAs Comparative Study for

Power Consumption, Noise Cancellation, and Real Time High Speed

Applications,” Journal of Software Engineering and Applications, vol. 3, pp.

391-403, 2010.

[19] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips,

“GPU Computing,” Proceedings of the IEEE, vol. 96, pp. 879-899, 2008.

[20] S. Ehsan, A. F. Clark, and K. D. McDonald-Maier, “Hardware based Scale- and

Rotation-Invariant Feature Extraction: Aretrospective Analysis and Future

Directions,” in Second International Conference on Computer and Electrical

Engineering, 2009, pp. 620-624.

[21] K.-C. Wu and Y.-W. Tsai, “Structured ASIC, evolution or revolution?,” in

international symposium on Physical design, 2004, pp. 103-106

[22] I. Kuon, R. Tessier, and J. Rose, “FPGA Architecture: Survey and Challenges,”

Foundations and Trends® in Electronic Design Automation, vol. 2, pp. 135-253,

2008.

[23] A. Ret, “Xilinx,” Fortune, 1990, pp.81

[24] B. Zahiri, "Structured ASICs: Opportunities and Challenges,” in International

Conference on Computer Design, 2003, pp. 404-409.

[25] P. H. W. Leong, “Recent Trends in FPGA Architectures and Applications,”

presented at the 4th IEEE International Symposium on Electronic Design, Test &

Applications, 2008.

[26] Xilinx, Inc., 7 Series FPGAs Overview. Available:

http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overvi

ew.pdf (Acessed on May, 2013)

[27] Xilinx, Inc. Xilinx Next Generation 28 nm FPGA Technology Overview. Available:

http://www.xilinx.com/support/documentation/white_papers/wp312_Next_Gen_2

8_nm_Overview.pdf (Acessed on May, 2013)

[28] Xilinx, Inc., Zynq-7000 All Programmable SoC. Available:

http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/index.htm

Reference

153

(Acessed on May, 2013)

[29] J. imenez, I. Urriza, L. A. Barragan, D. Navarro, J. I. Artigas, and O. Lucia,

“Hardware-in-the-loop simulation of FPGA embedded processor based controls

for power electronics,” 2011.

[30] I. Kuon, R. Tessier, and J. Rose, “FPGA Architecture: Survey and Challenges,”

Electronic Design Automation, vol. 2, pp. 135-253, 2007.

[31] Xilinx, Inc. Virtex-4 User Guide. Available: www.xilinx.com (Acessed on Jan,

2012)

[32] K. Comption and S. Hauck, “Reconfigurable Computing: A Survey of Systems

and Software,” ACM Computing Surveys, vol. 34, pp. 171-210, 2002.

[33] Xilinx, Inc. Xilinx ISE. Available: www.xilinx.com (Acessed on Jan, 2012)

[34] Altera Corporation. Quartus II. Available: www.altera.com (Acessed on Jan,

2012)

[35] IEEE, “IEEE Standard VHDL Language Reference Manual,” ed: The Institute of

Electrical and Electronics Engineers, Inc, 2008.

[36] IEEE, “IEEE Standard Verilog Hardware Description Language,” ed: The Institute

of Electrical and Electronics Engineers, Inc., 2001.

[37] Mentor Graphics Corporation. Handel-C User Manual. Available:

http://www.mentor.com/ (Acessed on Jan, 2012)

[38] F. Bensaali, A. Amira, and A. Bouridane, “Accelerating matrix product on

reconfigurable hardware for image processing applications,” IET Circuits, Devices

& Systems, vol. 152, pp. 236-246, 2005.

[39] S. M. Loo, B. E. Wells, N. Freije, and J. Kulick, “Handel-C for Rapid Prototyping

of VLSI Coprocessors for Real Time Systems,” in 34th Shoutheastern Symposium

on System Theory, 2002, pp. 6-10.

[40] P. Voles, L. Holasek, and M. Vasilko, “ANSI C and Handel-C Based Rapid

Prototyping Framework for Real-Time Image Processing Algorithms,” in

International Conferene on Engineering of Reconfigurable Systems and

Algorithms, 2002.

[41] J. D. Crawford, “EDIF: A Mechanism for the Exchange of Design Information,”

IEEE Design & Test of Computers, vol. 2, pp. 63-69, 1985.

[42] J.-M. Guo and Y.-F. Liu, “License Plate Localization and Character Segmentation

With Feedback Self-Learning and Hybrid Binarization Techniques,” IEEE

Transactions on Vehicular Technology, vol. 57, pp. 1417-1424, 2008.

[43] Y.-P. Huang, C.-H. Chen, Y.-T. Chang, and F. E. Sandnes, “An intelligent strategy

for checking the annual inspection status of motorcycles based on license plate

recognition,” Expert Systems with Applications, vol. 36, pp. 9260-9267, 2009.

[44] Y.-R. Wang, W.-H. Lin, and S.-J. Horng, “A sliding window technique for efficient

license plate localization based on discrete wavelet transform,” Expert Systems

with Applications, vol. 38, pp. 3142-3146, 2011.

[45] Y. Wen, Y. Lu, J. Yan, Z. Zhou, von Deneen K.M. and P. Shi, “An Algorithm for

License Plate Recognition Applied to Intelligent Transportation System,” IEEE

Transactions on Intelligent Transportation Systems, vol. 12, pp. 830-845, 2011.

Reference

154

[46] M. Vargas, S. L.Toral, F. Barrero, and F. Cortés, “A License Plate Extraction

Algorithm Based on Edge Statistics and Region Growing,” Lecture Notes in

Computer Science, Springer, vol. 5716, pp. 317-326, 2009.

[47] H. Bai and C. Liu, “A hybrid license plate extraction method based on edge

statistics and morphology,” in 17th International Conference on Pattern

Recognition, 2004, pp. 831-834.

[48] J. Jiao, Q. Ye, and Q. Huang, “A configurablemethod formulti-style license plate

recognition,” Pattern Recognition Letters, vol. 42, pp. 358-369, 2009.

[49] N. Thome, A. Vacavant, L. Robinault, and S. Miguet, “A cognitive and

video-based approach for multinational License Plate Recognition,” Machine

Vision and Applications, vol. 22, pp. 389-407, 2011.

[50] H. Xiangjian, Z. Lihong, W. Qiang, J. Wenjing, B. Samali, and M. Palaniswami,

“Segmentation of characters on car license plates,” in IEEE 10th Workshop on

Multimedia Signal Processing, 2008, pp. 399-402.

[51] C. Anagnostopoulos, T. Alexandropoulos, V. Loumos, and E. Kayafas, “Intelligent

traffic management through MPEG-7 vehicle flow surveillance,” in IEEE

International Symposium on Modern Computing, 2006, pp. 202-207.

[52] H. Samet and M. Tamminen, “Efficient Component Labeling of Images of

Arbitrary Dimension Represented by Linear Bintrees,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 10, pp. 579-586, 1988.

[53] P. Wu, H.-H. Chen, R.-J. Wu, and D.-F. Shen, “License plate extraction in low

resolution video,” in 18th International Conference on Pattern Recognition, 2006,

pp. 824-827.

[54] P. Tarabek, “Fast license plate detection based on edge density and integral edge

image,” in IEEE 10th International Symposium on Applied Machine Intelligence

and Informatics (SAMI), 2012, pp. 37-40.

[55] X. Shi, W. Zhao, and Y. Shen, “Automatic License Plate Recognition System

Based on Color Image Processing,” in Computational Science and Its Applications.

vol. 3483, O. Gervasi, M. Gavrilova, V. Kumar, A. Laganá, H. Lee, Y. Mun, et al.,

Eds., ed: Springer Berlin / Heidelberg, 2005, pp. 307-314.

[56] S.L. Chang, L.S. Chen, Y.C. Chung and S.W. Chen, “Automatic license plate

recognition,” IEEE Transactions on Intelligent Transportation Systems, vol. 5, pp.

42-53, 2004.

[57] J. A. G. Nijhuis, M. H. Ter Brugge, K. A. Helmholt, J. P. W. Pluim, L.

Spaanenburg, R. S. Venema, et al., “Car license plate recognition with neural

networks and fuzzy logic,” in IEEE International Conference on Neural Networks,

1995, pp. 2232-2236.

[58] N. Zimic, J. Ficzko, M. Mraz, and J. Virant, “The fuzzy logic approach to the car

number plate locating problem,” in Intelligent Information Systems, 1997, pp.

227-230.

[59] S. Chang, Chen, L., Chung, Y. and Chen, S., “Automatic license plate recognition,”

IEEE Transaction on Intelligent Transpotation Systerms, vol. 5, pp. 42-53, 2004.

[60] F. Wang, L. Man, B. Wang, Y. Xiao, W. Pan, and X. Lu, “Fuzzy-based algorithm

Reference

155

for color recognition of license plates,” Journal of Pattern Recognition Letters,

vol. 29, pp. 1007-1020, 2008.

[61] K. Kim, K. Jung, and J. Kim, “Color Texture-Based Object Detection: An

Application to License Plate Localization,” in Pattern Recognition with Support

Vector Machines. vol. 2388, S.-W. Lee and A. Verri, Eds., ed: Springer Berlin /

Heidelberg, 2002, pp. 321-335.

[62] F. Kahraman, B. Kurt, and M. Gökmen, “License Plate Character Segmentation

Based on the Gabor Transform and Vector Quantization,” in Computer and

Information Sciences vol. 2869, A. Yazici and C. Sener, Eds., ed: Springer Berlin /

Heidelberg, 2003, pp. 381-388.

[63] T. D. Duan, T. L. H. Du, T. V. Phuoc, and N. V. Hoang, “Building an Automatic

Vehicle License-Plate Recognition System,” in International Conference in

Computer Science, 2005, pp. 59-63.

[64] C. R. Jung and R. Schramm, “Rectangle detection based on a windowed Hough

transform,” in Computer Graphics and Image Processing, 2004. Proceedings.

17th Brazilian Symposium on, 2004, pp. 113-120.

[65] Y. Cheng, J. Lu, and T. Yahagi, “Car license plate recognition based on the

combination of principal components analysis and radial basis function networks,”

in Signal Processing, 2004. Proceedings. ICSP '04. 2004 7th International

Conference on, 2004, pp. 1455-1458 vol.2.

[66] M. Rouhani, “A Fuzzy Feature Extractor Neural Network and its Application in

License Plate Recognition,” in Computational Intelligence, Theory and

Applications, B. Reusch, Ed., ed: Springer Berlin Heidelberg, 2006, pp. 223-228.

[67] H. Ching-Tang, J. Yu-Shan, and H. Kuo-Ming, “Multiple license plate detection

for complex background,” in Advanced Information Networking and Applications,

2005. AINA 2005. 19th International Conference on, 2005, pp. 389-392 vol.2.

[68] C. N. E. Anagnostopoulos, I. E. Anagnostopoulos, V. Loumos, and E. Kayafas, “A

License Plate-Recognition Algorithm for Intelligent Transportation System

Applications,” IEEE Transactions on Intelligent Transportation Systems, , vol. 7,

pp. 377-392, 2006.

[69] T. Chew Lim, H. Weihua, Y. Zhaohui, and X. Yi, “Imaged document text retrieval

without OCR,” IEEE Transactions on Pattern Analysis and Machine Intelligence

vol. 24, pp. 838-844, 2002.

[70] J. Min-Chul, S. Yong-Chul, and S. N. Srihari, “Machine printed character

segmentation method using side profiles,” in IEEE International Conference on

Systems, Man, and Cybernetics 1999, pp. 863-867.

[71] Y. Zhang and C. Zhang, “A new algorithm for character segmentation of license

plate,” in IEEE Intelligent Vehicles Symposium, 2003, pp. 106 - 109.

[72] W. Tsang-Hong, N. Feng-Chou, L. Keh-Tsong, and C. Yon-Ping, “Robust license

plate recognition based on dynamic projection warping,” in IEEE International

Conference on Networking, Sensing and Control, 2004, pp. 784-788.

[73] H. Al-Yousefi and S. S. Udpa, “Recognition of Arabic characters,” Pattern

Analysis and Machine Intelligence, IEEE Transactions on, vol. 14, pp. 853-857,

Reference

156

1992.

[74] M. F., G. M., and A. J., “New methods for automatic reading of VLP's (Vehicle

License Plates),” in International conference on signal processing, pattern

recognition and applications, 2002.

[75] L. Gang, Z. Ruili, and L. Ling, “Research on Vehicle License Plate Location

Based on Neural Networks,” in First International Conference on Innovative

Computing, Information and Control, 2006, pp. 174-177.

[76] S. Zhang, M. Zhang, and X. Ye, “Car plate character extraction under complicated

environment,” in IEEE International Conference on Systems, Man and

Cybernetics, 2004, pp. 4722-4726.

[77] H. Mahini, S. Kasaei, and F. Dorri, “An Efficient Features - Based License Plate

Localization Method,” in 18th International Conference on Pattern Recognition,

2006, pp. 841-844.

[78] V. Shapiro and G. Gluhchev, “Multinational license plate recognition system:

segmentation and classification,” in 17th International Conference on Pattern

Recognition, 2004, pp. 352-355.

[79] Y. Youngwoo, B. Kyu-Dae, Y. Hosub, and K. Jaehong, “Blob extraction based

character segmentation method for automatic license plate recognition system,” in

IEEE International Conference on Systems, Man, and Cybernetics, 2011, pp.

2192-2196.

[80] S. Nomura, K. Yamanaka, O. Katai, H. Kawakami, and T. Shiose, “A novel

adaptive morphological approach for degraded character image segmentation,”

Pattern Recognition, vol. 38, pp. 1961-1975, 11// 2005.

[81] N. S., Y. K., and K. O., “A new method for degraded color image binarization

based on adaptive lightning on grayscale versions,” IEICE Transaction

Information System, vol. E87-D, pp. 1012–1020 2004.

[82] K.-B. Kim, S.-W. Jang, and C.-K. Kim, “Recognition of Car License Plate by

Using Dynamical Thresholding Method and Enhanced Neural Networks,” in

Computer Analysis of Images and Patterns. vol. 2756, N. Petkov and M.

Westenberg, Eds., ed: Springer Berlin / Heidelberg, 2003, pp. 309-319.

[83] W. K. PRATT, Digital Image Processing: PIKS Inside, Third ed.: John Wiley and

Sons, Inc., New York, 2001.

[84] A. Capar and M. Gokmen, “Concurrent Segmentation and Recognition with

Shape-Driven Fast Marching Methods,” in 18th International Conference on

Pattern Recognition, 2006, pp. 155-158.

[85] P. Stec and M. Domanski, “Efficient unassisted video segmentation using

enhanced fast marching,” in International Conference on Image Processing, 2003,

pp. 427-430.

[86] Y. Cui and Q. Huang, “Extracting characters of license plates from video

sequences,” Machine Vision and Applications, vol. 10, pp. 308-320, 1998.

[87] M. I. Schlesinger and V. Hlavác, Ten Lectures on Statistical and Structural Pattern

Recognition vol. 24: Springer, 2002.

[88] V. Franc and V. Hlaváč, “License Plate Character Segmentation Using Hidden

Reference

157

Markov Chains “ in Pattern Recognition. vol. 3663, W. Kropatsch, R. Sablatnig,

and A. Hanbury, Eds., ed: Springer Berlin / Heidelberg, 2005, pp. 385-392.

[89] S. Mori, H. Nishida and Yamada H., Optical Character Recognition: John Wiley

& Sons, Inc. NY, USA, 1999.

[90] N. Mani, and B. Srinivasan, “Application of articial neural network model for

optical character recognition,” presented at the IEEE International Conference on

Systems, Man, and Cybernetics, 1997.

[91] K. K. Kim, K. I. Kim, J. B. Kim, and H. J. Kim, “Learning-based approach for

license plate recognition,” in IEEE Signal Processing Society Workshop, Neural

networks for Signal Processing, 2000, pp. 614-623.

[92] X. Pan, X. Ye and S. Zhang “A hybrid method for robust car plate character

recognition “ presented at the IEEE International Conference on Systems, Man

and Cybernetics, 2004.

[93] L. Xu, A. Krzyzak, and C. Y. Suen, “Methods of combining multiple classifiers

and their application to handwriting recognition,” IEEE Transaction on Systerm,

Man, Cybernetics, vol. 22, pp. 418-435, 1992.

[94] Y. Amit, D. Geman, and X. Fan, “A coarse-to-fine strategy for multiclass shape

detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

26, pp. 1606-1621, 2004.

[95] S. Draghici, “A Neural Network Based Artificial Vision System for Licence Plate

Recognition,” International Journal of Neural Systems, vol. 08, pp. 113-126,

1997.

[96] C. Oz, and F. Ercal, “A Practical License Plate Recognition System for Real-Time

Environments,” Computational Intelligence and Bioinspired Systems, vol.

3512/2005, pp. 497-538, 2005.

[97] M. Rasooli, S. Ghofrani and E. Fatemizadeh, “Farsi License Plate Detection based

on Element Analysis and Characters Recognition,” International Journal of Signal

Processing, Image Processing and Pattern Recognition, vol. 4, pp. 65-80, 2011.

[98] M. Raus, and L. Kreft, “Reading car license plates by the use of artificial neural

networks,” in the 38th Midwest Symposium on Circuits and Systems, 1995, pp.

538-541.

[99] Y. Hu, F. Zhu, and X. Zhang, “A Novel Approach for License Plate Recognition

Using Subspace Projection and Probabilistic Neural Network,” Lecture Notes in

Computer Science, vol. 3497, pp. 821-827, 2005.

[100] R. Salakhutdinov and H. Larochelle, “Efficient Learning of Deep Boltzmann

Machines,” in the 13th International Conference on Artificial Intelligence and

Statistics (AISTATS) 2010.

[101] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A Fast Learning Algorithm for Deep

Belief Nets,” Neural Computation, vol. 18, pp. 1527-1554, 2006.

[102] P. Comelli, P. Ferragina,M. N. Granieri, and F. Stabile, “Optical recognition of

motor vehicle license plates,” IEEE Transaction on Vehicular Technology vol. 44,

pp. 790-799, 1995.

[103] Y. Huang, S. Lai, and W. Chuang, “A Template-Based Model for License Plate

Reference

158

Recognition,” in IEEE International Conference on Networking, Sensing &

Control, Taipei, 2004, pp. 737-742.

[104] P. Viola and M. Jones, “Robust Real-Time Face Detection,” International Journal

of Computer Vision, vol. 57, pp. 137-154, 2004/05/01 2004.

[105] H. Caner, H. S. Gecim, and A. Z. Alkar, “Efficient Embedded

Neural-Network-Based License Plate Recognition System,” IEEE Transactions on

Vehicular Technology, vol. 57, pp. 2675-2683, 2008.

[106] Y. Osana, T. Fukushima, and H. Amano, “Implementation of ReCSiP: A

ReConfigurable Cell Simulation Platform,” in Field Programmable Logic and

Application. vol. 2778, P. Y. K. Cheung and G. Constantinides, Eds., ed: Springer

Berlin / Heidelberg, 2003, pp. 766-775.

[107] N. Bellas, S. M. Chai, M. Dwyer, and D. Linzmeier, “FPGA implementation of a

license plate recognition SoC using automatically generated streaming

accelerators,” in 20th International Parallel and Distributed Processing

Symposium, 2006, pp. 8-16.

[108] MediaLab-NTUA. MediaLab LPR Database. Available:

http://www.medialab.ntua.gr/research/LPRdatabase.html (Acessed on Sep. 2011)

[109] CitySync Limited. Available: http://www.citysync.co.uk (Acessed on Sep. 2011)

[110] F. Y. Shih and Y.-T. Wu, “Decomposition of arbitrary gray-scale morphological

structuring elements,” Pattern Recognition, vol. 38, pp. 2323-2332, 12// 2005.

[111] M. Grundland and N. A. Dodgson, “Decolorize: Fast, contrast enhancing, color to

grayscale conversion,” Pattern Recognition, vol. 40, pp. 2891-2896, 11// 2007.

[112] Mentor Graphics Corporation. PAL User Manual. Available:

http://www.mentor.com/ (Acessed on Jun, 2011)

[113] Mentor Graphics Corporation. RC240 Datasheet. Available:

http://www.mentor.com/ (Acessed on Jun, 2011)

[114] Mentor Graphics Corporation. PixelStreams User Manual. Available:

http://www.mentor.com/ (Acessed on Jun, 2011)

[115] Xilinx, Inc., Xpower Tutorial: FPGA Design. Available: http://www.xilinx.com/

(Acessed on Jun, 2011)

[116] Driver, and Vehicle Licensing Agency. Display of Registration Marks for Motor

Vehicles. Available: www.direct.gov.uk/motoring (Acessed on Jun, 2011)

[117] X. Zhai, F. Bensaali, and S. Ramalingam, “Real-Time License Plate Localisation

on FPGA,” in 17th IEEE Workshop on Embedded Computer Vision and Pattern

Recognition, 2011, pp. 14-19.

[118] A. R. Omondi and J. C. Rajapakse, FPGA Implementations of Neural Networks

vol. XII, 2006.

[119] H. Demuth, M. Beale and M. Hagan, Neural Network Toolbox 6 User's Guide:

The MathWorks, Inc. , 2008.

[120] M. F. Møller, “A scaled conjugate gradient algorithm for fast supervised learning,”

Neural Networks, vol. 6, pp. 525-533, 1993.

[121] E. Alpaydın, Introduction to Machine Learning, Second ed.: Massachusetts

Institute of Technology, 2010.

Reference

159

[122] D. Nguyen and B. Widrow, “Improving the learning speed of 2-layer neural

networks by choosing initial values of the adaptive weights,” in International

Joint Conference on Neural Networks, 1990, pp. 21-26.

[123] X. Zhai and F. Bensaali, “Improved Number Plate Character Segmentation

Algorithm and its Efficient FPGA Implementation,” Journal of Real-Time Image

Processing, 2012.

[124] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best Practices for Convolutional

Neural Networks Applied to Visual Document Analysis,” in the Seventh

International Conference on Document Analysis and Recognition (ICDAR 2003),

2003, pp. 958-962.

[125] D. Decoste and B. chölkopf, “Training Invariant Support Vector Machines,”

Machine Learning, vol. 46, pp. 161-190, 2002.

[126] F. Bensaali, A. Amira, and R. Sotudeh, “Floating-Point Matrix Product on FPGA,”

in IEEE/ACS International Conference on Computer Systems and Applications,

2007, pp. 466-473.

[127] F. Bensaali and A. Amira, “An FPGA Based Parallel Matrix Multiplier for 3D

Affine Transformations,” IET Vision, Image and Signal Processing Special Issue

on Rapid Prototyping of Signal Processing Algorithms, vol. 153, pp. 739-746,

2006.

[128] D. Zheng, Y. Zhao, and J. Wang, “An efficient method of license plate location,”

Pattern Recognition Letters, vol. 26, pp. 2431-2438, 2005.

[129] B. R. Lee, K. Park, H. Kang, H. Kim, and C. Kim, “Adaptive Local Binarization

Method for Recognition of Vehicle License Plates,” in Combinatorial Image

Analysis. vol. 3322, J. Žunic, Ed., ed: Springer Berlin / Heidelberg, 2004, pp.

646-655.

[130] W. Jia, H. Zhang, and X. He, “Region-based license plate detection,” Journal of

Network and Computer Applications, vol. 30, pp. 1324-1333, 2006.

[131] M.-S. Pan, J.-B. Yan, and Z.-H. Xiao, “Vehicle License Plate Character

Segmentation,” International Journal of Automation and Computing, vol. 05, pp.

425-432, 2008.

[132] X. Zhai, F. Bensaali, and R. Sotudeh, “OCR-Based Neural Network for ANPR,” in

IEEE International Conference on Imaging Systems and Techniques, Manchester,

UK, 2012, pp. 393-397.

[133] N. Otsu, “A Tlreshold Selection Method from Gray-Level Histograms,” IEEE

Transactions on Systems, Man and Cybernetics, vol. 9, pp. 62-66, 1979.

[134] F. Yang, Z. Ma, and M. Xie, “A Novel Binarization Approach for License Plate,”

in 2006 1ST IEEE Industrial Electronics and Applications, 2006, pp. 1-4.

[135] X. Zhai, F. Bensaali, and S. Ramalingam, “Improved Number Plate Localisation

Algorithm and its Efficient FPGA Implementation,” IET Circuits, Devices &

Systems, vol. 7, issue 2, 2013.

[136] H. Goldstein, Classical Mechanics, 2nd ed.: Addison-Wesley, 1980.

[137] J. Cohen, P. Cohen, S. G. West, and L. S. Aiken, Applied Multiple

Regression/Correlation Analysis for the Behavioral Sciences: Psychology Press,

Reference

160

2002.

[138] X. Zhai, F. Bensaali and S. Ramalingam, “License plate localisation based on

morphological operations,” in 11th Int. Conf. Control Automation Robotics &

Vision, 2010, pp. 1128-1132.

[139] X. Zhai, F. Bensaali, and R. Sotudeh, “FPGA-based Number Plate Binarisation

and Adjustment for ANPR Systems,” Journal of Electronic Imaging, pp. 1-11,

2013.

[140] S. Hao, L. Chao, W. Qi, and X. Zhang, “Real-Time Anti-Interference Location of

Vehicle License Plates Using High-Definition Video,” IEEE Intelligent

Transportation Systems Magazine, vol. 1, pp. 17-23, 2009.

[141] I. Giannoukos, C.-N. Anagnostopoulos, V. Loumos, and E. Kayafas, “Operator

context scanning to support high segmentation rates for real time license plate

recognition,” Pattern Recognition, vol. 43, pp. 3866-3878, 2010.

[142] Xilinx, inc., Virtex-4 Family Overview. Available: www.xilinx.com (Acessed on

Jun, 2011)

[143] Mentor Graphics Corporation. RC Host Library and FTU3 User Manual.

Available: www.mentor.com (Acessed on Jun, 2011)

[144] Mentor Graphics Corporation. DK User Manual. Available: www.mentor.com

(Acessed on Jun, 2011)

[145] Mentor Graphics Corporation. Fixed-point Library. Available: www.mentor.com

(Acessed on Jun, 2011)

[146] Mentor Graphics Corporation. Pipelined Floating-point Library. Available:

www.mentor.com (Acessed on Jun, 2011)

[147] Xilinx, Inc., Xilinx Timing Analyser User's Guide. Available: www.xilinx.com

(Acessed on Jun, 2011)

Appendix A RC240 Prototyping Platform

161

Appendix A: RC240 Prototyping Platform

In this research project, the RC240 hardware platform was used to prototype the proposed

designs. The RC240 board is equipped with Xilinx Virtex-4 LX40 FF1148-10 FPGA and is

packaged with a set of support libraries including the Platform Abstraction Layer (PAL)

and PixelStreams image and video processing library [113]. It mainly has three banks of

1MB×36-bit pipelined SRAM directly connected to the FPGA for data processing

operations, a USB device ports for data communication with host PC, and two user

programmable clocks. All three memory banks are accessible by the FPGA and host PC.

The high-speed USB 2.0 interface allows high data rate communication between host PC

and FPGA applications on the board. Two programmable clocks are programmed by the

host PC, and have frequency range of 2 MHz to 300 MHz. Figure A-1 shows the RC240

overview.

Xilinx Virtex 4

LX 40 FF1128

3 Banks×1MB×36bit

SRAM

1 Bank×1MB×36bit

DDR SDRAM

TFT/Touchscreen

4 Seven Segments

8 LEDs

2 Push Buttons

5 Way Joystick

2 Programmable Clocks

ARM

Sharp LH7A404

128MB SDRAM

2 USB Host Ports

USB Device Port

8 LEDs JTAG RS232 IDE/34 Pin Expansion

CAN Bus

4 Servo

ADC

3 Axis Accelerometer

DAC

PS/2 Mouse

PS/2 Keyboard

RS232

Video Out

SDIO Card

Socket

CMOS Camera Port

AC97

Compatible

Audio

2 Speakers

Line/Headphone Out

Line & Microphone In

AC97

Compatible

Audio

USB

Controller

USB Device

Port

SD Card

Socket

JTAG

Figure A-1: The RC 240 overview [103]

Appendix A RC240 Prototyping Platform

162

A.1 Virtex-4 FPGA

The Xilinx Virtex-4 family greatly enhances programmable logic design capabilities, and

make it a powerful alternative to ASIC technology [142]. Virtex-4 FPGA family consists of

three platform sets LX, FX, and SX, which offering multiple feature choices and

combinations to address all complex applications. In the FPGA, there are dedicated DSP

slices, high-speed clock management circuitry, and source-synchronous interface blocks.

Virtex-4 devices are produced on a 90 nm copper process using 300 mm wafer technology.

A summary of the Virtex-4 family main features are listed as follows:

- XtremeDSP Slice:

 18×18, two’s complement, signed Multiplier;

 Optional pipeline stages; and

 Built-in accumulator (48-bit) and Adder/Subtractor.

- Smart RAM Memory Hierarchy

 Distributed RAM;

 Dual-port 18-Kbit RAM blocks; and

 High-speed memory interface supports DDR and DDR2 SDRAM, QDR-II, and

RLDRAM-II.

- Flexible Logic Resource:

- Secure Chip AES Bitstream Encryption

- 90 nm Copper CMOS Process

- 1.2V core Voltage

- Flip-Chip Packaging including Pb-Free Package Choices

The main available resources of the used Virtex-4 FPGA in this research project are listed

in Table A-1.

Appendix A RC240 Prototyping Platform

163

Table A-1: Virtex-4 XC4VLX40 on-chip resources

Device

Configurable Logic Blocks (CLBs)

XtremeDSP

Slices

Block RAM

Array

Size

Logic

Cells
Slices

Max Distributed

RAM (Kb)

18Kb

Blocks

Max Block

RAM (Kb)

XC4VLX40 128×36 41,472 18,432 288 64 96 1,728

A.2 Host-FPGA Communication

The RC240 board is supported with a macro library (the RC host library) that simplifies the

process of initialising and communicating to the hardware [143]. The library provides the

following functionalities:

- Initialisation and configuration a board;

- USB data transfer between PC and the RC240 board;

- Set on board clock rate;

- Access the external memory on the RC240 board; and

- Error checking and debugging are included in a C or C++ program that runs on the

host PC and performs data transfer.

In this research project, the USB data transfer function is used to communicate between the

Host and RC240 board. It allows transfer one byte data a time between the host and FPGA.

A USB data control module in the FPGA is used to control the data flow, and access the

external memory. The overview of the Host-FPGA communication system is shown in

Figure A-2.

Host
FPGA Viertex-4

(XC4VLX40)

SDRAM

Bank0

SDRAM

Bank1

SDRAM

Bank2

USBUSB

Controller

Figure A-2: The overview of the Host-FPGA communication system

Appendix A RC240 Prototyping Platform

164

A.2.1 Example Functions from RC Host Library

The RC Host Library allows you to communicate with a Mentor Graphic RC board from

a host computer via the USB interface [143]. In this section, some of important functions

from the RC Host Library are introduced.

Opening and Closing Boards [143]

typedef RCBoard;

RCStatus RCBoardOpen (int BoardNum, RCBoard *BoardPtr);

RCStatus RCBoardClose (RCBoard Board);

Description:

The functions RCBoardOpen() and RCBoardClose() are used to open and close the used

RCBoard respectively, where BoardNum and BoardPtr indicate which board is attached

and its pointer to variable of type RCBoard respectively.

Communicating over USB [143]

RCStatus RCUSBWrite (RCBoard Board, int Bytes, const char *Buffer, int

*BytesWritten);

RCStatus RCUSBRead (RCBoard Board, int Bytes, char *Buffer, int *BytesRead);

Description:

The functions RCUSBWrite() and RCUSBRead() are used to write a byte of data to an

application running in the RCBoard and read a byte of data from the RCBoard to the host

PC respectively, where *BytesWritten and *BytesRead indicate the number of bytes are

needed for the writing and reading respectively. In order to use the two functions, the

following two functions also need to be used in the application running in the FPGA:

macro proc PalDataPortRun (HandleCT, ClockRate);

macro proc PalDataPortRead (Handle, DataPtr);

macro proc PalDataPortWrite (Handle, Data);

PalDataPortRun() is used to initialise the USB port, PalDataPortRead() is used to read a

byte of data from the USB port to the FPGA, and store it in the register DataPtr,

Appendix A RC240 Prototyping Platform

165

PalDataPortWrite() is used to write a byte of data from the FPGA to the USB port.

A.2.2 Accessing the External RAMs

In this research work, many parts of algorithms need to access the external RAMs, for

example, car images and weights of NN are stored in the external RAMs. The RC240 board

supports PL2 RAMs which can be read from or written to in exactly one clock cycle, but

the address supplied two clock cycles earlier. The following API functions are used to

access the RAMs.

macro proc PalPL2Run (HandleCT, ClockRate);

macro proc PalPL2RAMSetReadAddress (Handle, Address);

macro proc PalPL2RAMSetWriteAddress (Handle, Address);

macro proc PalPL1RAMRead (Handle, DataPtr);

macro proc PalPL1RAMWrite (Handle, Data);

Description:

PalPL2Run() must be used in parallel with the rest of functions in the program, which

indicates which memory bank and clock frequency will be used.

PalPL2RAMSetReadAddress() and PalPL2RAMSetWriteAddress() are used to set the

reading and writing addresses respectively, the set addresses for reading and writing that

will occur two clock cycles later after use the functions. PalPL2RAMRead() and

PalPL2RAMWrite() read or write a single item of data from or to the address in the RAM

set two clock cycles earlier respectively.

Appendix B Tools and Software Packages

166

Appendix B: Tools and Software Packages

In this research project, DK design suite [144] and Xilinx ISE [33] were used to program

and evaluate the proposed designs on FPGAs. Details about these two tools are given in

the following sections.

B.1 DK Design Suite

DK design suite provides a development environment to design and compile hardware

circuits using Handel-C. The environment includes an Integrated Development

Environment (IDE) along with code and macro libraries. Circuit development takes place

within the IDE, and you can configure builds for debug, simulation or hardware. Figure

B-1 shows the design environment of DK.

Figure B-1: The DK design synthesis tool

DK produces a Netlist file, which is used during the Place and route stage (PAR) to generate

the bitstream file. This process is shown in Figure B-2.

Appendix B Tools and Software Packages

167

Handel-C Code DK IDE

FPGA Bitstream

Xilinx Layout Tools

File Transfer Utility

(FTU)
FPGA Board

EDIF

FPGA

Configuration

Figure B-2: DK design flow

B.1.1 Handel-C

Handel-C is a high level programming language which targets low-level hardware, most

commonly used in the programming of FPGAs. It is a rich subset of C, with non-standard

extensions to control hardware configuration with an emphasis on parallelism. Unlike other

C to hardware tools which rely on going via several intermediate stages, Handel-C allows

hardware to be directly targeted from software.

Parallel Hardware Generation

Handel-C has additional constructs to support the parallelisation of code using the par

statement, which means any instructions inside the par statement that will be execute in

parallel at exactly the same instant in time by two separated pieces of hardware. In addition

to this feature, Handel-C also provides construction to support the sequential coding using

seq, which means any instructions inside the seq statement that will be executed

sequentially. In Figure B-3 shows two examples when using par and seq respectively [134].

Sequential Block

seq

{

 a=1;

 b=2;

 c=a+b;

}

// c=3 and 3 Clock Cycles

Parallel Block

par

{

 a=1;

 b=2;

 c=a+b;

}

// c=0 and 1 Clock Cycles

Figure B-3: The seq and par constructs

Appendix B Tools and Software Packages

168

Variables

One basic variable type is integer in Handel-C, which can be signed or unsigned with any

width and mapped to hardware registers [37].

DK also provides two platform-independent libraries for other types manipulation:

Fixed-point and pipelined floating-point [145] [146]. The fixed-point library allows

defining different widths of the fractional and integer parts of the number and provides

macros to perform arithmetic operations. The pipelined floating-point library allows the

floating-point operations to be performed in a pipelined manner on floating-point numbers.

In this research project, the fixed-point library was used for all fixed-point arithmetic

operations.

Memory

Handel-C provides two keywords ram and rom to implement RAMs and ROMS

respectively. There are mainly two different types of RAM used in this research project:

- Distributed RAM: it is implemented in look-up tables in the logic blocks of the

FPGA.

- Block RAM: it is available on certain chips and has high-capacity but limited

numbers can be used.

Additionally, both types of RAM can be defined as multiple-ported RAMs (MPRAMs)

using the mpram keyword.

B.1.2 Platform Abstraction Layer

The Platform Abstraction Layer (PAL) is a component of the DK design suite, which is an

Application Programming Interface (API) for peripherals. The API offers a standard

interface to hardware, enabling portable Handel-C applications that can run on different

FPGA/PLD RC boards without modification [112]. Figure A-4 shows the examples of

PAL supported peripherals.

Appendix B Tools and Software Packages

169

PAL

LEDs

Switches and

Buttons

Seven Segment

Displays

Data Ports Parallel Ports
RS-232 Serial

Ports
PS2 Ports

Fast RAMs

Pipelined

RAMs RAMs

Slow

RAMs
SDRAMsFlash Memory

Figure B-4: The examples of PAL supported peripherals

PAL Virtual Platform

PAL Virtual Platform (PALSim) allows simulating PAL designs, where a visual

representation of the behaviour of devices is provided for simulation. For example, VGA

screen, RAM and LEDs can be observed from the PALSim GUI. Figure B-5 shows a

PALSim example.

Figure B-5: An example of PALSim

Appendix B Tools and Software Packages

170

PixelStreams

PixelStreams is a library of parameterisable IP for creating video processing systems,

where each IP block is assembled into filter networks, connected by streams [114]. In DK

design suite, filter networks can be assembled programmatically in Handel-C or

graphically using the PixelStreams GUI. The PixelStreams architecture effectively

eliminates these issues by providing reusable flow control components to create pipelined

hardware.

PixelStreams is designed primarily for dealing with high-speed video/still image input

processing and analysis, which has the high data rate and highly parallel nature of the

generated hardware. Figure B-6 shows an example using PixelStreams GUI.

Figure B-6: An example of PixelStreams GUI

Appendix B Tools and Software Packages

171

B.2 Xilinx ISE

Xilinx ISE is a tool that can synthesise and analyse HDL designs. It allows the developer

to:

- synthesise the designs;

- perform timing analysis;

- simulate a design;

- power consumption analysis; and

- configure the target device [33].

Figure B-7 shows the Xilinx ISE 14 project navigator.

Figure B-7: the Xilinx ISE 14 project navigator

B.2.1 Xilinx Timing Analyser

Xilinx Timing Analyser is used to perform static timing analysis of an FPGA, where a

report about the delay along a given path or paths and the slack based upon the specified

timing requirements are generated [147]. One of a timing analysis report is called timing

summary that providing constraint coverage statistics. In the research project, the minimum

Appendix B Tools and Software Packages

172

period and maximum running frequency of the design are the main focus.

B.2.2 Xilinx XPower Analyser

XPower Analyser (XPA) can perform an analysis on real design data after design

implementation is finished. XPA calculates power based on quiescent and dynamic power

consumption in CMOS circuits:

- Quiescent power: it results primarily from transistor leakage current in the device.

Leakage current is either from source-to-drain or through the gate oxide, and exists

even when the transistor is logically “OFF”.

- Dynamic power: it is associated with design activity and switching events in the

core or I/O of the device and it is determined by nod capacitance, supply voltage,

and switching frequency.

The interface of Xilinx XPA is shown in Figure B-8.

Figure B-8: Xilinx XPA user interface

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

173

Appendix C: Sample Codes and FPGA Chip Layouts

for ANPR Implementation

In this research work, all the FPGA implementations are written in Handel-C, and every

main stages or modules are presented as independent functions, which can be reused or

called by the main program. In this appendix, sample codes and FPGA chip layouts for

the proposed NPL, CS, OCR and pre-processing implementations are introduced in the

following each section respectively.

C.1 Number Plate Localisation Implementation

C.1.1 Sample Codes for Number Plate Localisation Implementation

The NPL implementation is mainly based on the PixelStreams filters and a NP selection

module, where parallel hardware implementations are generated. By using streams and

pipelining the throughput remains real-time image processing performance. The main

code script of the NPL implementation is exhibited below.

/*

 * This code is part of UH PhD research work

 * Number plate localisation

 * Copyright (c) X.Zhai 5.2010

 */

#define PAL_TARGET_CLOCK_RATE PAL_PREFERRED_VIDEO_CLOCK_RATE

#include "pal_master.hch"

#include "pxs.hch"

#include "bolbs.hch"// User libs

void main (void)

{

 /*

 * Variable

 */

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

174

 macro expr ClockRate = PAL_ACTUAL_CLOCK_RATE;

 macro expr Mode = SyncGen2GetOptimalModeCT (ClockRate);

 macro expr Width = 640;

 macro expr Height = 480;

 macro expr PL2RAM = PalPL2RAMCT (0);

 static unsigned 1 t = 0;

 static signed 16 X0, Y0, X1, Y1;

 static unsigned Address ;

 unsigned 8 rate;

 static signed 16 wid,len;

 static signed 16 X0_, Y0_, X1_, Y1_;

 static unsigned 32 area;

 /*

 * Streams

 */

 PXS_PV_S (Stream0, PXS_EMPTY);

 PXS_PV_S (Stream1, PXS_EMPTY);

 PXS_PV_S (Stream2, PXS_RGB_U8);

 PXS_PV_S (Stream10, PXS_MONO_U8);

 PXS_PV_S (Stream15, PXS_MONO_U8);

 PXS_PV_S (Stream16, PXS_MONO_U8);

 PXS_PV_S (Stream17, PXS_MONO_U8);

 PXS_PV_S (Stream18, PXS_MONO_U8);

 PXS_PV_S (Stream19, PXS_MONO_U8);

 PXS_PV_S (Stream22, PXS_MONO_U8);

 PXS_PV_S (Stream23, PXS_MONO_U8);

 PXS_PV_S (Stream29, PXS_MONO_U1);

 PXS_PV_S (Stream30, PXS_MONO_U1);

 PXS_PV_S (Stream31, PXS_MONO_U1);

 PXS_PV_S (Label, PXS_MONO_S16);

 PXS_PV_S (Stream48, PXS_MONO_U8);

 PXS_PV_S (Stream49, PXS_MONO_U8);

 PxsBlobList Blobs;

 /*

 * Filters

 */

 par

 {

 PxsVGASyncGen (&Stream0, Mode); //VGA Sync

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

175

 PxsValve (&Stream0, &Stream1, 1); //Stream switching

 PxsPalPL2RAMReader (&Stream1, &Stream2, 640, PalPL2RAMCT(0), ClockRate); //

Mems reader

 PxsConvert (&Stream2, &Stream10); // RGB to Grayscale

 PxsSplit2 (&Stream10, &Stream15, &Stream16); //Stream Spliter

 PxsDualLineBuffer(&Stream15,&Stream48,&Stream49,Width); // DualLine Buffer

 PxsOpen3_30 (&Stream16, &Stream17,Width);//Morphological open 3*30

 PxsSynchronise (&Stream49, &Stream17, &Stream22, &Stream23, 60);//Pixel sync

 PxsSubSat (&Stream22, &Stream23, &Stream18);//Image substraction

 PxsClipRectangle (&Stream18, &Stream19, 0, 0, 639, 479);//Image Clip

 PxsThreshold (&Stream19, &Stream29, 60, 255);//Binarisation

 PxsOpen3_3 (&Stream29, &Stream30,Width);//Morphological open 3*3

 PxsClose3_13 (&Stream30, &Stream31, Width);//Morphological close 3*13

 PxsLabelBlobs1(&Stream31, &Label, Width, &Blobs, ClockRate);//CCA

 /*

 * NP Selection

 */

 while(1)

 {

 unsigned i;

 PxsAwaitVSync (&Stream31);

 do

 {

 delay;

 }while(PxsBlobListNumBlobs (&Blobs)==0);

 PxsBlobListLock (&Blobs);

 for(i=1;i<=PxsBlobListNumBlobs (&Blobs);i++)

 {

 PxsBlobListGetBoundingBox (&Blobs, i, &X0, &Y0, &X1, &Y1);

 par

 {

 wid = Y1-Y0;

 len = X1-X0;

 }

 Divide(len, wid, &rate);

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

176

 if(rate>=3 & rate <=6 & len >=60 & wid >=20 & len <=240& wid <=50)

//rate>4 && rate<6

 {

 PalSevenSegWriteDigit (PalSevenSegCT (0), rate[3:0], 0);

 PxsBlobListGetArea(&Blobs, i, &area);

 if(area>1500 & area<15000 &Y0>30&Y0<450&Y1>50&Y1<460)

 {

 par

 {

 X0_ = X0 ;

 Y0_ = Y0 ;

 X1_ = X1 +3;

 Y1_ = Y1 ;

 }

 t = 1;

 }

 else

 {

 delay;

 }

 }

 else

 {

 delay;

 }

 }

 if (t==0)

 {

 for(i=1;i<=PxsBlobListNumBlobs (&Blobs);i++)

 {

 PxsBlobListGetBoundingBox (&Blobs, i, &X0, &Y0, &X1, &Y1);

 par

 {

 wid = Y1-Y0;

 len = X1-X0;

 }

 Divide(len, wid, &rate);

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

177

if((rate>=2 && rate <=4 && len >=90 && wid >=28 && len <=

200 && wid <=55)

 |(rate<=9&rate>=6&len>=150&wid<=30&wid>=12&len<=300)

 |(rate>=3&rate<=6&len>=70&wid<=30&wid>=15&len<=200))

 {

 PxsBlobListGetArea(&Blobs, i, &area);

 if(area>900 & area<15000)

 {

 par

 {

 X0_ = X0 ;

 Y0_ = Y0 ;

 X1_ = X1+3 ;

 Y1_ = Y1 ;

 }

 t=1;

 }

 }

 }

 }

 PxsBlobListUnlock (&Blobs);

 }

 }

}

C.1.2 FPGA Chip Layout for Number Plate Localisation Implementation

Figure C-1: FPGA Chip layout for the proposed NPL implementation

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

178

C.2 Character Segmentation Implementation

C.2.1 Sample Codes for Character Segmentation Implementation

The CS implementation mainly consists of two modules: vertical and horizontal

projection modules. The two modules are implemented in pipeline manner, the horizontal

projection module starts to work when the first vertical position set are localised from the

vertical projection module. The partial code script for CS implementation is shown below.

/*

 * Vertically Reading memory and performing morphological operations

 */

 par{

 do

 {

 par

 {

 seq{

 par{

 do

 {

 if(readable)

 {

 delay;

 }

 PalPL2RAMSetReadAddress (PL2RAM, Address);

 delay;

 par

 {

 PalPL2RAMRead (PL2RAM, &ReadData);

 Address = Address + N;

 }

 D1++;

 if(ReadData[0])

 {

 z[0]=1;

 if(D1==1||D1==M1)

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

179

 {

 u++;

 }

 }

 else

 {

 z[0]=0;

 }

 Temp1=1;

 } while (D1!=M1);

 do{

 if(Temp1||D1==M1){

 if(mark==0)

 {

 par{

 if (D2>=2&&D2<=0@(M1))

 {

 Erode (z[0], z[1], z[2], z[3]);

 }

 else

 {

 delay;

 }

 if (D2>=4&&D2<=0@(M1+2))

 {

 Dilate(z[3], z[4], z[5], z[6]);

 }

 else

 {

 delay;

 }

 if (D2>=6&&D2<=0@(M1+4))

 {

 Dilate(z[6], z[7], z[8], z[9]);

 }

 else

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

180

 {

 delay;

 }

 z[8]=z[7];

 z[7]=z[6];

 z[5]=z[4];

 z[4]=z[3];

 z[2]=z[1];

 z[1]=z[0];

 if(z[9])

 {

 u++;

 }

 else

 {

 delay;

 }

 D2++;

 Temp1=0;

 }

 }

 else

 {

 if(D2<=0@(M1)){

 par

 {

 if (D2>=2&&D2<=0@(M1))

 {

 Dilate(z[0], z[1], z[2], Temp2);

 }

 else

 {

 delay;

 }

 if (Temp2)

 {

 u++;

 }

 else

 {

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

181

 delay;

 }

 D2++;

 z[2]=z[1];

 z[1]=z[0];

 Temp1=0;

 }

 }

 else

 {

 D2++;

 }

 }

 }

 else

 {

 delay;

 }

 }while(D2!=M1+4);

 }

 par

 {

 tt1=1;

 u_temp=u;

 u=0;

 z[0]=0;

 z[1]=0;

 z[2]=0;

 z[4]=0;

 z[5]=0;

 z[6]=0;

 z[7]=0;

 z[8]=0;

 z[9]=0;

 D2=0;

 D1=0;

 Temp2=0;

 Address = Address - A1 + 1;

 }

 }

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

182

/*

 * Horizontally Reading memory and performing morphological close operation

 */

par{

 seq{

 par{

 do

 {

 readable=1;

 PalPL2RAMSetReadAddress (PL2RAM, Address1);

 readable=0;

 par

 {

 PalPL2RAMRead (PL2RAM, &ReadData1);

 Address1++;

 }

 D3++;

 if(ReadData1[0])

 {

 z_[0]=1;

 if(D3==1||D3==w1)

 {

 v++;

 }

 }

 else

 {

 z_[0]=0;

 }

 Temp5=1;

 }while(D3!=w1);

 do

 {

 if(Temp5){

 par

 {

 if (D4>=2)

 {

 Dilate (z_[0], z_[1], z_[2], Temp4);

 }

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

183

 else

 {

 delay;

 }

 if(Temp4)

 {

 v++;

 }

 else

 {

 delay;

 }

 Temp5=0;

 D4++;

 z_[2]=z_[1];

 z_[1]=z_[0];

 }

 }

 else

 {

 delay;

 }

 } while (D4 !=w1);

 }

 par

 {

 v_temp=v;

 z_[0]=0;

 z_[1]=0;

 z_[2]=0;

 z_[3]=0;

 D3=0;

 D4=0;

 Address1 = Address1 + N-w2;

 v=0;

 tt4=1;

 }

 }

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

184

C.2.2 FPGA Chip Layout for Character Segmentation Implementation

Figure C-2: FPGA Chip layout for the proposed CS implementation

C.3 Optical Character Recognition Implementation

C.3.1 Sample Codes for Optical Character Recognition Implementation

The OCR implementation consists of two NN layers: hidden and output layers. Pipelining

is used in their implementations to achieve high throughput. Fixed-point arithmetic is used

to represent the proposed NN weights and perform their calculations. The partial code

scripts are shown below.

/*

 * Fix-point declaration

 */

typedef FIXED_SIGNED(10, 14) MyFixed;

typedef FIXED_UNSIGNED(11, 14) MyFixed2;

/*

 * Hidden layer

 */

 par

 {

 PalPL2RAMSetReadAddress (PL2RAM0, Address);

 PalPL2RAMSetReadAddress (PL2RAM1, Address);

 PalPL2RAMSetReadAddress (PL2RAM2, Address);

 }

 delay;

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

185

 par

 {

 PalPL2RAMRead (PL2RAM0, &T1);

 PalPL2RAMRead (PL2RAM1, &T2);

 PalPL2RAMRead (PL2RAM2, &T3);

 Address++;

 }

 img=img1[i];

 par

 {

 if(img[1]==0)

 {

 if(T1[15]==1)

 {

 fix2.FixedIntBits=(-1@(signed)(T1[15:14]));

 }

 else

 {

 fix2.FixedIntBits=(signed)(0@T1[15:14]);

 }

 if(T1[13]==1)

 {

 fix2.FixedFracBits=(-1@(signed)T1[12:0]);

 }

 else

 {

 fix2.FixedFracBits=(signed)(T1[13:0]);

 }

 }

 else

 {

 par

 {

 fix2.FixedIntBits=0;

 fix2.FixedFracBits=0;

 }

 }

 if(img[0]==0)

 {

 if(T1[31]==1)

 {

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

186

 fix1.FixedIntBits=(-1@(signed)(T1[31:30]));

 }

 else

 {

 fix1.FixedIntBits=(signed)(0@T1[31:30]);

 }

 if(T1[29]==1)

 {

 fix1.FixedFracBits=(-1@(signed)(T1[28:16]));

 }

 else

 {

 fix1.FixedFracBits=(signed)(T1[29:16]);

 }

 }

 else

 {

 par

 {

 fix1.FixedIntBits=0;

 fix1.FixedFracBits=0;

 }

 }

 if(img[3]==0)

 {

 if(T2[15]==1)

 {

 fix4.FixedIntBits=(-1@(signed)(T2[15:14]));

 }

 else

 {

 fix4.FixedIntBits=(signed)(0@T2[15:14]);

 }

 if(T2[13]==1)

 {

 fix4.FixedFracBits=(-1@(signed)T2[12:0]);

 }

 else

 {

 fix4.FixedFracBits=(signed)(T2[13:0]);

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

187

 }

 }

 else

 {

 par

 {

 fix4.FixedIntBits=0;

 fix4.FixedFracBits=0;

 }

 }

 if(img[2]==0)

 {

 if(T2[31]==1)

 {

 fix3.FixedIntBits=(-1@(signed)(T2[31:30]));

 }

 else

 {

 fix3.FixedIntBits=(signed)(0@T2[31:30]);

 }

 if(T2[29]==1)

 {

 fix3.FixedFracBits=(-1@(signed)(T2[28:16]));

 }

 else

 {

 fix3.FixedFracBits=(signed)(T2[29:16]);

 }

 }

 else

 {

 par

 {

 fix3.FixedIntBits=0;

 fix3.FixedFracBits=0;

 }

 }

 if(img[5]==0)

 {

 if(T3[15]==1)

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

188

 {

 fix6.FixedIntBits=(-1@(signed)(T3[15:14]));

 }

 else

 {

 fix6.FixedIntBits=(signed)(0@T3[15:14]);

 }

 if(T3[13]==1)

 {

 fix6.FixedFracBits=(-1@(signed)(T3[12:0]));

 }

 else

 {

 fix6.FixedFracBits=(signed)(T3[13:0]);

 }

 }

 else

 {

 par

 {

 fix6.FixedIntBits=0;

 fix6.FixedFracBits=0;

 }

 }

 if(img[4]==0)

 {

 if(T3[31]==1)

 {

 fix5.FixedIntBits=(-1@(signed)(T3[31:30]));

 }

 else

 {

 fix5.FixedIntBits=(signed)(0@T3[31:30]);

 }

 if(T3[29]==1)

 {

 fix5.FixedFracBits=(-1@(signed)T3[28:16]);

 }

 else

 {

 fix5.FixedFracBits=(signed)(T3[29:16]);

 }

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

189

 }

 else

 {

 par

 {

 fix5.FixedIntBits=0;

 fix5.FixedFracBits=0;

 }

 }

 }

 par

 {

 fix_t1=FixedAdd(fix1, fix2);

 fix_t2=FixedAdd(fix3, fix4);

 fix_t3=FixedAdd(fix5, fix6);

 }

 fix_f1.FixedIntBits=fix_N[m].FixedIntBits;

 fix_f1.FixedFracBits=fix_N[m].FixedFracBits;

 par

 {

 fix_t4=FixedAdd(fix_t1, fix_t2);

 fix_t5=FixedAdd(fix_t3, fix_f1);

 }

 fix_f1=FixedAdd(fix_t4, fix_t5);

 fix_N[m].FixedIntBits=fix_f1.FixedIntBits;

 fix_N[m].FixedFracBits=fix_f1.FixedFracBits;

 if(Address%125==0)

 {

 m++;

 fix_N[m].FixedIntBits=0;

 fix_N[m].FixedFracBits=0;

 i=0;

 m_temp=1;

 }

 else

 {

 i++;

 }

/*

 * Output layer

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

190

 */

 par

 {

 seq

 {

 do{

 do

 {

 if(lw[lwi][15]==1)

 {

 lw_t[lw_ti].FixedIntBits=-1@(signed)(lw[lwi][15:14]);

 }

 else

 {

 lw_t[lw_ti].FixedIntBits=(signed)(0@lw[lwi][15:14]);

 }

 if(lw[lwi][13]==1)

 {

 lw_t[lw_ti].FixedFracBits=-1@(signed)(lw[lwi][12:0]);

 }

 else

 {

 lw_t[lw_ti].FixedFracBits=(signed)(lw[lwi][13:0]);

 }

 lw_ti++;

 lwi++;

 }while(lw_ti!=0);

 par

 {

 fix_lw_mu1 = FixedMultSigned(lw_t[0],fix_f);

 fix_lw_mu2 = FixedMultSigned(lw_t[1],fix_f);

 }

 fix_N2[N2i]=FixedAdd(fix_N2[N2i],fix_lw_mu1);

 N2i++;

 fix_N2[N2i]=FixedAdd(fix_N2[N2i],fix_lw_mu2);

 N2i++;

 }while(N2i!=0);

 if(lwi==1600)

 {

 do{

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

191

 do{

 if(lb[ibi][15]==1)

 {

 lw_t[lw_ti].FixedIntBits=-1@(signed)(lb[ibi][15:14]);

 }

 else

 {

 lw_t[lw_ti].FixedIntBits=(signed)(0@lb[ibi][15:14]);

 }

 if(lb[ibi][13]==1)

 {

 lw_t[lw_ti].FixedFracBits=-1@(signed)(lb[ibi][12:0]);

 }

 else

 {

 lw_t[lw_ti].FixedFracBits=(signed)(lb[ibi][13:0]);

 }

 lw_ti++;

 ibi++;

 }while(lw_ti!=0);

 par{

 fix_N2[N2i]=FixedAdd(fix_N2[N2i],lw_t[0]);

 fix_N2[N2i+1]=FixedAdd(fix_N2[N2i+1],lw_t[1]);

 }

 N2i=N2i+2;

 m_temp2=1;

 }while(N2i!=0);

 }

 else

 {

 delay;

 }

 }

 seq

 {

 fix_tt1=fix_N[m_1];

 if(FixedGT(fix_tt1,fix_5)||FixedLT(fix_tt1,fix__5))

 {

 if(FixedLT(fix_tt1,fix__5))

 {

 par

 {

 fix_f.FixedIntBits=-1;

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

192

 fix_f.FixedFracBits=0;

 }

 }

 else

 {

 par

 {

 fix_f.FixedIntBits=1;

 fix_f.FixedFracBits=0;

 }

 }

 }

 else

 {

 fix7=FixedAdd(fix_N[m_1], fix_5);

 sig_temp=FixedCastSigned(FIXED_ISUNSIGNED, 11, 14, fix7);

 fix8=FixedMultUnsigned(sig_temp, fix_100);

 i1=(unsigned)FixedToInt(fix8);

 a=Tan_sig[i1];

 par

 {

 if(a[15]==1)

 {

 fix_f.FixedIntBits=-1@(signed)(a[15:14]);

 }

 else

 {

 fix_f.FixedIntBits=(signed)(0@a[15:14]);

 }

 if(a[13]==1)

 {

 fix_f.FixedFracBits=-1@(signed)(a[12:0]);

 }

 else

 {

 fix_f.FixedFracBits=(signed)(a[13:0]);

 }

 }

 }

 }

 }

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

193

C.3.2 FPGA Chip Layout for Optical Character Recognition Implementation

Figure C-3: FPGA Chip layout for the proposed OCR implementation

C.4 Pre-processing Implementation

C.4.1 Sample Codes for Pre-processing Implementation

The pre-processing implementation consists of binarisation and adjustment modules, they

are running in pipeline manner to achieve high throughput. The adjustment module starts to

work after the first processed pixel is generated from the binarisation module. The partial

code scripts of pre-processing implementation are shown below.

/*

 * Binarisation

 */

par

{

 LineBuffer.W[HY[5:0]-3] = ((WX!=0)?(Yout<<8)+adju(Y,56):(Y@Y@Y@Y@Y@Y@Y));

 if(WX>=3)

 {

 if(HY!=3)

 {

 par

 {

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

194

 par (j = 0; j < 7; j++)

 {

 par (i = 0; i < 8; i++)

 {

 Matrix_8x8[j][i] = Matrix_8x8[j + 1][i];

 }

 }

 Matrix_8x8[7][0] = Yout[55:48];

 Matrix_8x8[7][1] = Yout[47:40];

 Matrix_8x8[7][2] = Yout[39:32];

 Matrix_8x8[7][3] = Yout[31:24];

 Matrix_8x8[7][4] = Yout[23:16];

 Matrix_8x8[7][5] = Yout[15:8];

 Matrix_8x8[7][6] = Yout[7:0];

 Matrix_8x8[7][7] = Y;

 if(HY>=7)

 {

 par

 {

 par

 {

 S[0] = adju(Matrix_8x8[0][0], 16) + adju(Matrix_8x8[0][1], 16)

 + adju(Matrix_8x8[0][2], 16) + adju(Matrix_8x8[0][3], 16);

 S[1] = adju(Matrix_8x8[0][4], 16) + adju(Matrix_8x8[0][5], 16)

 + adju(Matrix_8x8[0][6], 16) + adju(Matrix_8x8[0][7], 16);

 S[2] = adju(Matrix_8x8[1][0], 16) + adju(Matrix_8x8[1][1], 16)

 + adju(Matrix_8x8[1][2], 16) + adju(Matrix_8x8[1][3], 16);

 S[3] = adju(Matrix_8x8[1][4], 16) + adju(Matrix_8x8[1][5], 16)

 + adju(Matrix_8x8[1][6], 16) + adju(Matrix_8x8[1][7], 16);

 S[4] = adju(Matrix_8x8[2][0], 16) + adju(Matrix_8x8[2][1], 16)

 + adju(Matrix_8x8[2][2], 16) + adju(Matrix_8x8[2][3], 16);

 S[5] = adju(Matrix_8x8[2][4], 16) + adju(Matrix_8x8[2][5], 16)

 + adju(Matrix_8x8[2][6], 16) + adju(Matrix_8x8[2][7], 16);

 S[6] = adju(Matrix_8x8[3][0], 16) + adju(Matrix_8x8[3][1], 16)

 + adju(Matrix_8x8[3][2], 16) + adju(Matrix_8x8[3][3], 16);

 S[7] = adju(Matrix_8x8[3][4], 16) + adju(Matrix_8x8[3][5], 16)

 + adju(Matrix_8x8[3][6], 16) + adju(Matrix_8x8[3][7], 16);

 S[8] = adju(Matrix_8x8[4][0], 16) + adju(Matrix_8x8[4][1], 16)

 + adju(Matrix_8x8[4][2], 16) + adju(Matrix_8x8[4][3], 16);

 S[9] = adju(Matrix_8x8[4][4], 16) + adju(Matrix_8x8[4][5], 16)

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

195

 + adju(Matrix_8x8[4][6], 16) + adju(Matrix_8x8[4][7], 16);

 S[10] = adju(Matrix_8x8[5][0], 16) + adju(Matrix_8x8[5][1], 16)

 + adju(Matrix_8x8[5][2], 16) + adju(Matrix_8x8[5][3], 16);

 S[11] = adju(Matrix_8x8[5][4], 16) + adju(Matrix_8x8[5][5], 16)

 + adju(Matrix_8x8[5][6], 16)+ adju(Matrix_8x8[5][7], 16);

 S[12] = adju(Matrix_8x8[6][0], 16) + adju(Matrix_8x8[6][1], 16)

 + adju(Matrix_8x8[6][2], 16) + adju(Matrix_8x8[6][3], 16);

 S[13] = adju(Matrix_8x8[6][4], 16) + adju(Matrix_8x8[6][5], 16)

 + adju(Matrix_8x8[6][6], 16) + adju(Matrix_8x8[6][7], 16);

 S[14] = adju(Matrix_8x8[7][0], 16) + adju(Matrix_8x8[7][1], 16)

 + adju(Matrix_8x8[7][2], 16) + adju(Matrix_8x8[7][3], 16);

 S[15] = adju(Matrix_8x8[7][4], 16) + adju(Matrix_8x8[7][5], 16)

 + adju(Matrix_8x8[7][6], 16) + adju(Matrix_8x8[7][7], 16);

 if(HY>=8)

 {

 par

 {

 Q[0] = S[0] + S[1] + S[2] + S[3];

 Q[1] = S[4] + S[5] + S[6] + S[7];

 Q[2] = S[8] + S[9] + S[10] + S[11];

 Q[3] = S[12] + S[13] + S[14] + S[15];

 if(HY>=9)

 {

 par

 {

 Y_average = (signed)adju((Q[0] + Q[1] + Q[2] + Q[3])>>6, 9) ;

 Y_filted = Y_average -(signed)adju(Matrix_8x8[2][4],9) - 12;//

 if(Y_filted>=-5)

 {

 par

 {

 PixelsBuffer.W[PixelsBuffer_index_W] = 1;

 PixelsBuffer_index_W++;

 }

 }

 else

 {

 par

 {

 PixelsBuffer.W[PixelsBuffer_index_W] = 0;

 PixelsBuffer_index_W++;

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

196

 }

 }

 }

 }

 else

 {

 delay;

 }

 }

 }

 else

 {

 delay;

 }

 }

 }

 }

 else

 {

 delay;

 }

}

/*

 * Adjustment

 */

par

{

temp1 = adjs(adju(HY1,10), 11);

temp2 = Hei_half - (adjs(adju(HY1,10),11));

temp5 = adjs(adju(Hei,8),11) - adjs(adju(HY1,10), 11);

HY1++;

if(HY1!=0)

{

 par

 {

 temp6 = temp5/adjs(Tan_a_trible,11);

 HYnew = adjs(((temp1) + (adjs(WX1,11) - Len_half)/adjs(Tan_a,11)),7);

 WXnew = adjs(adjs(adju(WX1,10), 11) + temp2/adjs(Tan_a,11),10);

 HYnew_= HYnew;

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

197

 WXnew_align = WXnew - adjs(temp6,10);

 // stage 1

 HYnew_1= HYnew_;

 WXnew_= WXnew_align;

 // stage 2

 HYnew_2 = HYnew_1;

 WXnew_1 = WXnew_;

 // stage 3

 HYnew_3 = HYnew_2;

 WXnew_2 = WXnew_1;

 // stage 4

 HYnew_4 = HYnew_3;

 WXnew_3 = WXnew_2;

 temp3 = adju(HYnew_1,18) + temp4;

 temp4 = adju(WXnew_align,18) * adju(Hei,18);

 // PixelsBuffer_index_R = ((temp3)%256)[7:0];

 PixelsBuffer_index_R = ((temp3))[15:0];

 if(HYnew_4>=0 && WXnew_3>=0 && HY1>=(6+H_dif[6:0]))

 {

 par

 {

 if(adju(HYnew_4,7)<=Hei && adju(WXnew_3,9)<=Len)

 {

 par

 {

 Outputpixel = PixelsBuffer.R[PixelsBuffer_index_R];

 sign2 = 1;

 if(sign2)

 {

 par

 {

 ImageBuffer_V.W[index1] = Outputpixel;

 ImageBuffer_H.W[index2] = Outputpixel;

 index1++;

 index2++;

 }

 }

 else

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

198

 {

 delay;

 }

 }

 }

 else

 {

 par

 {

 ImageBuffer_V.W[index1] = 0;

 ImageBuffer_H.W[index2] = 0;

 index1++;

 index2++;

 }

 }

 }

 }

 else

 {

 if(HY1>=(6+H_dif[6:0]))

 {

 par

 {

 ImageBuffer_V.W[index1] = 0;

 ImageBuffer_H.W[index2] = 0;

 index1++;

 index2++;

 }

 }

 else

 {

 delay;

 }

 }

 }

}

else

{

 delay;

}

}

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

199

C.4.2 FPGA Chip Layout for Pre-processing Implementation

Figure C-4: FPGA Chip layout for the proposed pre-processing implementation

C.5 Entire ANPR Implementation

C.5.1 Sample Codes for Entire ANPR Implementation

The previous NPL, CS, OCR and pre-processing module are linked together to form the

entire ANPR FPGA implementation, where the modules are running in parallel and

pipelining manner. The entire ANPR system consists of two parts, RC240 FPGA

development board and a GUI running in a host application. The pseudocode scripts are

shown below.

/*

 * Host application pseudocode

 */

do

{

 load car image(n) from hardisk;

 for (i=1;i<=image_size;i++)

 {

 usb_write(pixel.R(i));

 usb_write(pixel.G(i));

 usb_write(pixel.B(i));

 }

 usb_read(NP.X0, NP.Y0, NP.X1, NP.Y1);

 plot_rectangluar(NP.X0, NP.Y0, NP.X1, NP.Y1);

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

200

 usb_read(adjusted_NP_width);

 usb_read(adjusted_NP_height);

 for (t=1; t<=adjusted_NP_width*adjusted_NP_hight;t++)

 {

 usb_read(adjusted_NP_pixel(t));

 }

 plot(adjusted_NP);

 usb_read(number_characted_segmented);

 for (t=1; t<=number_characted_segmented;t++)

 {

 usb_read(segmented_characte_.X0);

 usb_read(segmented_characte_.Y0);

 usb_read(segmented_characte_.X1);

 usb_read(segmented_characte_.Y1);

 plot_rectangluar(segmented_characte_.X0,

 segmented_characte_.Y0, segmented_characte_.X1,

 segmented_characte_.Y1);

 }

 for (t=1; t<=number_characted_segmented;t++)

 {

 usb_read(recognised_character);

 display(recognised_character);

 }

 n++;

}while(1);

/*

 * FPGA Implementation pseudocode

 */

void main()

{

 par

 {

 do

 {

 par

 {

 set_memory_address (PL2RAM0, Address);

 seq

 {

 usb_Read (USBMicro, &(R));

 PalDataPortRead (USBMicro, &(G));

 PalDataPortRead (USBMicro, &(B));

 }

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

201

 }

 par

 {

 memory_write (PL2RAM0, 0 @ R @ G @ B);

 Address++;

 }

 } while (Address != image_size);

 NPL_module();

 while(1)

 {

 if (NP_candidate == 1)

 {

 NP = NP_selection();

 if(NP == 1)

 {

 usb_write(NP_coordinates);

 }

 }

 }

 while(1)

 {

 if (NP == 1)

 {

 binarised_NP = NP_binarisation();

 }

 }

 while(1)

 {

 if (binarised_NP == 1)

 {

 adjusted_NP = NP_adjustment();

 usb_write(adjusted_NP_size);

 usb_write(adjusted_NP);

 }

 }

 while(1)

 {

 if (adjusted_NP == 1)

 {

 segmented_character = CS_module();

 usb_write(number_segemented_character);

 usb_write(segmented_character);

 }

Appendix C Sample Codes and FPGA Chip Layouts for ANPR Implementation

202

 }

 while(1)

 {

 if (segmented_character == 1)

 {

 recognised_character = OCR_module();

 usb_write(recognised_character);

 }

 }

 }

}

C.5.2 FPGA Chip Layout for Entire ANPR Implementation

Figure C-5: FPGA Chip layout for the entire ANPR implementation

