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Abstract 

Change in lifestyle of humans in this present generation with huge dependence on packaging 

materials has encouraged several studies on development of new variety of packaging 

materials. Emphasis on replacement of existing non-biodegradable packaging materials with 

biodegradable materials paved the way for the use of biopolymers. Lack of properties, such as 

thermal stability and mechanical strength in biopolymers led to the development of biopolymer 

nanocomposites by adding metal/metal oxide nanoparticles as fillers into the biopolymers. 

Metal/metal oxide nanoparticles improve mechanical/tensile strength, thermal stability as well 

as antimicrobial properties of the binding and receiving polymer matrix. Biomediated synthesis 

of metal/metal oxide nanoparticles result to development of novel packaging materials at a low 

cost and without releasing hazardous wastes into the environments. Novel packaging materials 

with metal/metal oxide nanoparticles as additives are capable of increasing the shelf life of 

food stuffs, in certain cases they act as indicators of quality food inside the package. 

Summarily, this present chapter focuses on biomediated synthesis of various metal/metal oxide 

nanoparticles and their applications in food packaging.  

Keywords: biosynthesis, filler, additive, packaging material, antimicrobial, metal 

nanoparticles. 



Introduction 

The use of non-biodegradable packaging materials has been restricted in several countries 

to ensure environmental safety. Therefore, there is a need for development of alternative 

packaging materials with enhanced properties. The development of eco-friendly green 

packaging materials has potentials to reduce environmental impacts caused by synthetic 

packaging materials [1]. The biopolymers have been used as new alternative packaging 

materials, they include, but are not limited to, polysaccharides (starch and cellulose derivatives, 

chitosan and alginates), lipids (bees and carnauba wax, and free fatty acids), proteins (casein, 

whey and gluten), poly hydroxyl butyrate (PHB), poly lactic acid (PLA), poly caprolactone 

(PCL), poly vinyl alcohol (PVA), poly butylene succinate and their biopolymer blends [2]. 

Considering environmental safety, the biodegradable natural or biopolymers are preferred. 

However, the inherent properties and mechanical strength of natural polymers limit them from 

being utilized as packaging materials, especially on an industrial scale. It is often essential to 

have their surface modification or physical cross linking or even modified as a composite 

material [3]. 

The nanometals have potential to overcome certain limitations in properties of the 

biodegradable materials. The nanometals have exhibited preferable properties, such as high 

surface area, fine particle size, high reactivity, high strength and ductility, which make them 

suitable to be employed frequently in a diversified range of industrial fields [4]. The available 

vacuum sealed food packaging polymeric materials are permeable to oxygen and moisture, 

which leads to spoiling of foods. To prevent this situation, polymer packaging materials are 

coated with nanometal, which inhibits the penetration of oxygen and moisture, thereby 

preserves the food materials from spoiling [5]. These nanometals also act as antimicrobial 

agents by preventing growth of harmful microbes, thereby prevent food spoilage and extend 

their shelf life [6]. Beyond these, nanometals in food packaging also act as smart indicators of 

change in the chemical composition, pH, gas composition, among others, inside the package 

that contains food stuff. These changes are communicated to the consumers by change in colour 

of the tag attached to them. Therefore, the role of nanometals in the food packaging include 

prevention of shelf life, fighting against the microbial growth and acting as smart indicators for 

the exact condition of the food stuff to the consumers. Metal and metal oxide (silver, gold, zinc 

oxide, silica, titanium dioxide, alumina and iron oxides), carbon based nanometals and nano-

sized polymers are most commonly used as nanofillers in food packaging applications [7]. 



Furthermore, the nanometals improves functionalities, such as durability, flexibility, 

temperature and flame resistance, barrier properties, optical and recycling properties of the 

recipient packaging materials [8]. Nanometals are added to polymeric packaging materials, 

such as polyamides (PA), nylons, polyolefin, ethylene-vinyl acetate copolymer, polystyrene 

(PS), epoxy resins, polyurethane, polyvinyl chloride (PVC) and polyethylene terephthalate 

(PET) [9]. Development of packaging materials using nanoparticles can be broadly classified 

into two categories/types: (I) biocomposite materials with inorganic metal nanoparticles as 

fillers [10, 11], (II) biocomposite materials with plant extracts/agro wastes as fillers [12]. Type 

I materials possess appreciable strength and shelf life and they are best suitable for packaging 

applications, whereas type II lacks shelf life and strength. The responses of the type II materials 

towards the environmental factors, such as humidity, temperature and pressure are higher, 

when compared with type I. The conventional methods of synthesis and distribution of 

nanometals into the matrix of the packaging materials results to generation and deposition of 

hazardous chemicals into the environments. In recent years, studies have been focusing on 

bioreduction process for the synthesis of nanometals. This is very simple, efficient and cost 

effective, but it consumes time [13]. In this method, the choice of bioreductant includes plant 

extracts, which contains flavonoids capable of reducing the metal to its nano state [14]. In this 

chapter, specific discussion on nanometals synthesized via bioreduction process and utilized as 

nanofiller in packaging materials is presented. 

In spite of the advantages of utilization of nanometals in food packaging materials, most of 

studies on these materials are still on the stage of demonstration, and their real time applications 

are yet to receive approval concerning their safety issues, which could be caused by the 

migrations of nanomaterials from packaging to food stuffs [15] . Additionally, the absorption, 

distribution, metabolism, excretion and toxicological assessment of nanoparticles in food in 

humans are to be assessed [16].  Therefore, the use of nanometals in food industry provokes 

various assessment methodologies to ensure usage as well as the real-time analysis of 

nanometals in the environment and their impact on various levels of organisms [16]. This is an 

emerging and evolutionary area involving multidisciplinary studies and provides scope for 

interdisciplinary research. 

 

 

 



Metal nanoparticles as fillers in packaging materials 

The unique behaviors of metal nanoparticles have attracted researchers to employ them in 

many different types of matrices [17]. Though, these nanometal particles are added as nano 

fillers in a minimum quantity, they do not lose their properties, such as antimicrobial nature, 

thermal resistivity and/or tensile strength [18]. They usually enrich the properties the matrices 

to which they are added. The antimicrobial activity of metal nanoparticles varies accordingly 

with their methods of synthesis; either physical, chemical or biological [19]. Interest on 

biosynthesized metal nanoparticles increases incredibly, owing to their reliability and cost 

effectiveness [20]. The most preferred and commonly used metal nanoparticles are zinc, iron, 

copper, gold, aluminium, nickel and silver. In addition, certain metal oxides include titanium, 

zirconium, iron and zinc are also used as nanofillers in packaging applications. Among various 

aforementioned metal nanoparticles (MNPs), silver nanoparticles (AgNPs) is observed to be 

most appropriately employed in packaging materials, biomedical appliances, cosmetics, 

pharmaceuticals and textile sectors [21]. The toxicity of AgNPs is found to be very minimum 

in animal cells. Certain inorganic metal nanoparticles are also recognized as safe materials by 

US Food and Drug Administration (FDA). 

  

Biosynthesized AgNPs 

Biological synthesis of AgNPs using bacterial strains 

Biosynthesis of AgNPs includes bioreduction of  silver salts with various plant extracts and 

biological synthesis of AgNPs with bacteria, fungi and biomolecules [22]. Biological synthesis 

of AgNPs can be via either intracellular or extracellular mechanisms [23]. Comparatively, the 

extracellular mechanism is observed to be simpler and more economical. Though, the 

mechanism is not yet completely understood, it is predicted to take place by the presence of 

nitrate reductase enzymes released by microorganisms, which reduces metallic ions to metallic 

nanoparticles. Among the biological syntheses of AgNPs, the  bacterial synthesis has been 

identified to be most convenient [24], owing to its availability and vulnerability for genetic 

modification. The shape, size and nature of AgNPs determine method of synthesis. Hence, 

many variety of bacterial strains are used for the biological synthesis of AgNPs. These include 

Bacillus spp. [25], Streptomyces spp. [26], Acinetobacter spp. [27],  Pseudomonas spp. [28], 

to mention but a few. Minimum quantity of AgNPs synthesized by biological method using 



bacterial strains shows a good activity towards major strains of microbes from attacking food 

stuffs. Amongst them are S. aureus, P. aeruginosa, B. subtilis and E. coli.  

 

Biological synthesis of AgNPs using fungi species 

The biological synthesis of AgNPs using fungal species is observed to be efficient with 

extracellular mechanism. The fungal species extracted from plants are more efficient than other 

species [29]. The following species of fungi are most prominently tested for the biological 

synthesis of AgNPs, Fusarium oxysporum [30], Guignardia spp.  [31], Penicillium aculeatum 

[32],  Alternaria spp. [33], Phenerochaete chrysosporium [34]. AgNPs synthesized via 

biological method using fungi have antimicrobial activity against a variety of fungal species as 

well as bacterial strains; both Gram-positive and negative. Therefore, the AgNPs synthesis 

using fungal species is an effective process to be employed in packaging material, since it 

effectively attacks microbes attacking the food stuffs. 

 

Bioreduction of AgNPs using plant extracts 

The plant extracts with flavonoid contents are mainly reported bioreductants for the 

synthesis of AgNPs [35]. Almost all the parts of a plant with flavonoids are been used. The 

experimental condition and active flavonoid contents play major roles in geometry and activity 

of the AgNPs.  In most cases, capping agents are not used during bioreduction of AgNPs with 

plant extracts, which results in aggregation of the reduced AgNPs. The agglomeration of 

AgNPs may lead to reduced behavior of AgNPs. In this case, certain researchers generated the 

AgNPs in-situ; inside the polymer films directly, using plant extract as a reducing agent [36-

38]. 

 

Anti-microbial activity of AgNPs 

AgNPs have a wide spectrum of antimicrobial activity, including Gram-positive and 

negative bacteria, fungi and viruses. The mechanism of antibacterial activity of AgNPs have 

been studied based on its ability to release Ag+ ions [39] and their potential to inhibit the growth 

metabolism of bacterial cells [40]. The mechanism of action of AgNPs against bacteria is 

proposed in three ways [41]: (1) penetration of AgNPs in the range of 1 to 10 nm into the cell 

membrane and interfere with its respiration, (2) interaction of AgNPs with the compounds of 



sulphur and phosphorus, such as DNA and (3) release of active silver (Ag+) ions, which reacts 

with negatively charged cell membrane and damages them. 

Moreover, the release of Ag+ ions are influenced by availability of oxygen atmosphere. In 

anaerobic condition, the antibacterial effect is almost nil even with higher concentration [40]. 

The antimicrobial activity of AgNPs is also influenced by the shape and size of the synthesized 

AgNPs, the symmetry of the particles which offers greater contact surface have greater 

antimicrobial activity. 

 

Packaging materials with AgNPs 

The addition of nanoparticles into the already existing packaging materials provides 

improved physical-chemical properties, reduces hydrophilic behavior and induces 

biodegradability and antimicrobial activity. AgNPs are added as fillers in both biodegradable 

and non-biodegradable polymers. Few examples of food packaging material with AgNPs are 

presented in Table 1. 

Table 1: Food packaging materials with AgNPs as additives. 

Packaging 

material 

Type of food material Preferred storage period References 

PVC/AgNPs 
Beef Up to 14 days; 4 ± 2 oC [42] 

Dried fruits and nuts Up to 21 days; 4 ± 2 oC [43] 

LDPE/AgNPs 

Meat, pork and 

chicken 

Up to 21 days; 4 ± 2 oC [44] 

Cheese Up to 28 days; 4 ± 2 oC [45] 

PLA/AgNPs 

Cheese Up to 25 days; 4 ± 2 oC [46] 

Mangoes Up to 15 days; room 

temperature 

[47] 

 

Biosynthesized ZnNPs/ ZnONPs 

Among various inorganic metal oxide nanoparticles available, Zinc oxide nanoparticles 

(ZnONPs) are more preferred, because they are inexpensive and easy to prepare. The US FDA 

has enlisted ZnONPs as part of safe materials [48]. As mentioned in the previous sub-sections, 

similar to AgNPs, the ZnNPs/ZnONPs can also be synthesized via bioreduction process, using 

plant extracts as well as biological synthesis with microorganisms. The following strains of 



bacteria have been effectively utilized for the biological synthesis of Zn/ZnONPs: Aspergillus 

strain,  Aspergillus fumigatus, Aspergillus terreus [49], Candida albicans [50]. In addition, few 

used algal strains include Chlamydomonas reinhardtii [51], Sargassum muticum [52] and S. 

myriocystum. 

Moving forward, biosynthesized Zn/ZnONPs possess appreciable antimicrobial activity 

against broad spectrum of bacteria and fungi. ZnNPs/ZnONPs also possess antitumor activity, 

it is cytotoxic and genotoxic towards certain types of human cells [53].  Further large scale 

production of ZnONPs by bioreduction process is possible [54], by coating the synthesized 

ZnONPs over cotton fabric, which possesses antimicrobial activity and washing durability. The 

biosynthesized ZnNPs/ZnONPs show a better catalytic activity than those ZnNPs/ZnONPs 

obtained from chemical methods. ZnONPs synthesized from the fungal strain, Aspergillus 

fumigatus is stable up to 90 days, while ZnONPs obtained from seaweed, Sargassum 

myriocystum is stable up to 6 months [55]. In case of bioreduction of Zn/ZnONPs using plant 

extracts, the carboxylic and phenolic groups present in the extract act as bioreductants as well 

as capping agents [56].  

 

Packaging materials with ZnNPs/ ZnONPs 

Zn/ZnONPs are well known for their stability under extreme conditions. They are effective 

against a wide spectrum of microbial strains, more specifically the food born microbes at a 

lower concentration [53, 57]. ZnONPs possess a unique property of filtering ultraviolet (UV) 

rays [58]. Addition of  Zn/ZnONPs to both biodegradable or non-biodegradable polymer 

matrices increases the mechanical properties of the polymer, such as tensile strength, Young’s 

modulus and thermal resistance [59]. ZnONPs coated packaging materials are suitable for 

storing fish samples [60]. Zn/ZnONPs coated packaging materials also act as a good scavenger 

of oxygen. All the aforementioned characteristics qualify Zn/ZnONPs to be used as potential 

additives for packaging applications [61]. 

 

 

 

 



Table 2: Food packaging materials with ZnNPs as additives. 

Packaging 

Material 

Type of food material Preferred storage period References 

PVC/ZnNPs 
Cheese 30-40 days [62] 

Sliced apples Decay rate decreased by 60% [63] 

PLA/ZnONPs Sliced apples Decay rate decreased by 65% [64] 

OBG/ZnONPs Spinach Up to 7 days [65] 

PU/ZnONPs Sliced carrot Up to 9 days [66] 

PVA/ZnONPs Aqueous food stuffs pH indicator [67] 

 
 

Biosynthesized CuNPs/ CuONPs 

Copper metal is well known for its antimicrobial activity from the ancient days. This is the 

reason behind the use of copper vessels for storing water. Even now, copper nanoparticles 

(CuNPs) are used for water treatment. CuNPs/CuONPs have commendable antimicrobial 

activity against a variety of bacteria, fungi and viruses [68]. The mechanism of interaction of 

CuNPs/CuONPs with microbes is through their cell membranes, thereby making them inactive. 

The bioreduction of CuNPs is successful with extracts of various plant species, such as, Citrus 

medica Linn. [69], Ziziphus spina-christi [70], Asparagus adscendens Roxb. Used root and leaf 

[71] include Eclipta prostrata leaves [72], Ginkgo biloba Linn. [73], Plantago asiatica leaf 

[74], Thymus vulgaris L. [75], black tea leaves  [76], to mention but a few. Biological synthesis 

of CuNPs can be carried out with the following bacterial strains: Escherichia coli, M. 

psychrotolerans and M. morganii RP42. Biomediated synthesis of CuNPs/CuONPs is an 

economical as well as simple method, which can be executed with minimum infrastructures. 

In certain cases, CuNPs synthesized are observed to be more efficient than those synthesized 

via commercial chemical methods.  

 

Packaging materials with CuNPs/ CuONPs 

CuNPs are effective materials against both Gram-positive and negative organisms [77], 

which make them more suitable for packaging applications. The antimicrobial effect of CuNPs/ 

CuONPs more specifically towards E.coli in food stuffs and ability of CuNPs/CuONPs to be 

blended into polymer suggest them to be good additives in food packaging materials [78]. 

Impregnation of CuNPs/CuONPs into polymer films or biopolymer films [79] enhances their 



tensile strengths, transparency, thermal stability, mechanical strengths [80]. More also, it adds 

to the antimicrobial activity, UV barrier property and prolonged shell life, which make the 

material suitable for food packaging applications [81]. CuNPs coated packaging materials act 

as freshness indicator in case of meat, by turning dark by reacting with the volatile sulfide 

released during the spoilage of meat [82]. Currently, researchers are interested in examining 

the CuNPs/CuONPs impregnated films for electronic as well as catalytic applications. 

Table 3: Food packaging materials with CuNPs/CuONPs as additives. 

Packaging Material Type of food material Preferred storage period References 

 

Cellulose/CuNPs 
Fruit juices Decay rate decreased by 

60% 

[83] 

Hydroxypropyl 

methylcellulose/CuNPs 

Meat Up to 15 days [84] 

Polylactic acid/CuNPs 
All types of food 

stuffs 

Expected to decrease the 

decay rate by 45% 

[85] 

Agar/CuNPs All types of food 

stuffs 

Expected to decrease the 

decay rate by 40% 

[86] 

HDPE/CuNPs All types of food 

stuffs 

Expected to decrease the 

decay rate by 30% 

[87] 

 

Titanium dioxide nanoparticles used as additives in food packaging 

Titanium dioxide nanoparticles (TiO2NPs) are effective additives in food packaging, due to 

their thermal stability, economical, non-toxic and stability properties towards UV light. 

TiO2NPs are extensively employed as promising photo catalysts in various types of reactions 

[88]. They are also used in water treatment and self-cleaning applications. Due to the 

antimicrobial property of TiO2NPs, the interest of several researchers have increased towards 

using them in food packaging. Unlike previously discussed metal nanoparticles, TiO2NPs are 

more prone to agglomeration; therefore, ionic surfactants are used as capping agents to prevent 

agglomeration. TiO2NPs are also synthesized from various plant extracts [89] and microbes 

[90]. TiO2NPs can be fabricated with biodegradable fish skin gelatin [91], potato starch [92], 

pectin [93], super hydrophobic paper [94], poly vinyl chloride [95], polyethylene [96] and PLA 

[97]. Besides, TiO2NPs as additives in packaging materials improve the mechanical strength, 

tensile strength, hydrophobicity, thermal stability, transparency, water vapour permeability, 

UV transmittance and antimicrobial properties. More specifically, application of TiO2NPs has 

been effectively analyzed for foodstuffs, such as bread [98] and strawberry [99] for their 



nutritional values and decay periods. Also, TiO2NPs are used for controlling hematophagous 

fly and sheep-biting louse [100]. Biosynthesized TiO2NPs are employed in solar cells [101]. 

 

Other metal and metal oxide nanoparticles used as additives in packaging 

The magnesium oxide nanoparticles (MgONPs) are recognized as safe materials by the US 

FDA. MgONPs are added as additives to PLA, poly ethylene (PE) and biodegradable polymers. 

MgONPs improve oxygen barrier, tensile strength and antibacterial property of polymer 

packaging materials [102], but they have poor water barrier property. Similarly, iron oxide 

nanoparticles (FeONPs) additives to polypropylene (PP), PVA and biopolymers show good 

gas barrier and improved thermal stability [103]. Also, silicon dioxide nanoparticles (SiO2NPs) 

provide good insulation, low toxicity and stability to polymer, when they are used in packaging 

materials [104].  

 

Conclusions 

The use of biosynthesized metal/metal oxide nanoparticles as additives in packaging 

materials has been elucidated. It is evident that they increase shelf life of foodstuffs by inducing 

water vapour permeability, UV barrier, gas barrier and antimicrobial properties. Metal/metal 

oxide nanoparticles also increase thermal stability and mechanical/tensile strength of the 

receiving polymers used in packaging materials.  

Besides, metal/metal oxide nanoparticles are found to be compatible with both synthetic as 

well as biopolymers. Biomediated synthesis of metal/metal oxide nanoparticles result to 

manufacturing of intelligent packaging materials in an economical and eco-friendly manners. 

Most metal/metal oxide nanoparticles are recognized as safe materials by US FDA. Therefore, 

biomediated synthesis of metal/metal oxide nanoparticles and their application in food 

packaging are important research areas to be explored and promising field to satisfy our day-

to-day needs. 

 

 

 

 



List of abbreviations 

AgNPs Silver nanoparticles 

CuNPs Copper nanoparticles 

CuONPs Copper oxide nanoparticles 

FDA Food and Drug Administration 

FeONPs Iron oxide nanoparticles 

HDPE High density polyethylene 

LDPE Low density polyethylene 

MgONPs Magnesium oxide nanoparticles 

MNPs Metal nanoparticles 

NPs Nanoparticles 

OBG Olive flounder bone gelatine 

PA Poly amides 

PE Poly ethylene 

PET Poly ethylene terephthalate 

PHB Poly hydroxyl butyrate 

PLA Poly lactic acid 

PP Polypropylene 

PS Poly styrene 

PU Polyurethane  

PVA Poly vinyl alcohol 

PVC Poly vinyl chloride 

SiO2NPs Silicon oxide nanoparticles 

TiO2NPs Titanium oxide nanoparticles 

UV Ultraviolet 

ZnNPs Zinc nanoparticles 

ZnONPs Zinc oxide nanoparticles 
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