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Abstract  
The environmental fate of polycyclic aromatic hydrocarbons (PAH) is a significant 
issue, raising interest in bioremediation. However, the physio-chemical characteristics 
of PAHs and the physical, chemical, and biological properties of soils can drastically 
influence in the degradation. Moreover, PAHs are toxic and carcinogenic for humans 
and their rapid degradation is of great importance. The process of degradation of 
pollutants can be enhanced by manipulating abiotic factors. 
The effect of soil pH on degradation of PAHs with a view to manipulating soil pH to 
enhance the bioremediation of PAH’s was studied. The degradation rate of key model 
PAHs (Phenanthrene, Anthracene, Fluoranthene, and Pyrene) was monitored in J 
Arthur Brower’s topsoil modified to a range of pH between pH 4.0 and pH 9.0 at half 
pH intervals. Photo-catalytic oxidation of PAHs in the presence of a catalyst (TiO2) 
under UV light at two different wavelengths was studied. The degradation of PAHs 
during photo-catalytic oxidation was carried out at varying soil pH, whilst the 
degradation rate of each individual PAH was monitored using HPLC. It was observed 
that pH 6.5 was most suitable for the photo-degradation of all the PAHs, whilst in 
general acidic soil had greater photo-degradation rates than alkaline soil pH. Photo-
degradation of PAHs at 375 nm exhibited greater degradation rates compared to 254 
nm. Phenanthrene at both the wavelengths had greater degradation rate and pyrene has 
lower degradation rate of the four PAHs.  
Pure microbial cultures were isolated from road-side soil by shaken enrichment culture 
and characterized for their ability to grow on PAHs. Bacterial PAH degraders, isolated 
via enrichment were identified biochemically and by molecular techniques using PCR 
amplification and sequencing of 16S rDNA. Sequences were analyzed using BLAST 
(NCBI) and their percentage identity to known bacterial rDNA sequences in the 
GeneBank database (NCBI) was compared. The 6 bacterial strains were identified as 
Pseudomonas putida, Achromobacter xylosoxidans, Microbacterium sp., Alpha 
proteobacterium, Brevundimonas sp., Bradyrhizobium sp. Similarly, fungal PAH 
degraders were identified microscopically and with molecular techniques using PCR 
amplification and sequencing of 18S rDNA and identified as Aspergillus niger and 
Penicillium freii.  
Biodegradation of four PAHs with two and four aromatic rings were studied in soil 
with inoculation of the six identified bacteria and two identified fungi over a range of 
pH. It was observed that pH 7.5 was most suitable for the degradation of all the PAHs 
maintained in the dark. A degradation of 50% was observed in soil pH 7.5 within first 
three days which was a seventh of the time taken at pH 5.0 and pH 6.5 (21 days). 
Greater fungal populations were found at acidic soil pH and alkaline soil pH, in 
comparison with neutral pH 7.0. Pencillium sp. was found to be more prevalent at 
acidic pH whilst Aspergillus sp. was found to be more prevalent at pH 7.5-8.0. 
Bacterial populations were greater at pH 7.5 which was highly correlated with soil 
ATP levels. It was therefore evident that the greatest rates of degradation were 
associated with the greatest bacterial population. Soil enzyme activities in general were 
also greatest at pH 7.5. 
The converse effect of pH was found with fastest rate of photo-catalytic degradation at 
the optimal conditions were observed at acidic condition in soil pH 6.5 whilst, the 
results obtained during biodegradation at the optimal conditions exhibits fastest rate of 
degradation at alkaline conditions particularly at pH 7.5. Thus, manipulation of soil pH 
to 7.5 has significant potential to dramatically increase the degradation rate of PAHs. 
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1.0 Introduction 

1.1 General Introduction 

Polycyclic aromatic hydrocarbons (PAHs) represent a large and diverse group of 

organic compounds. They are stable aromatic hydrocarbon molecules with two or more 

fused benzene and/or pentacyclic rings in linear, angular or cluster formation (Muckian 

et al., 2007). PAHs are formed due to anthropogenic pyrolytic processes and also due 

to natural events such as volcanic eruptions and bush fires. Moreover, they are major 

constituents of crude oil thus, PAHs are distributed ubiquitously in the environment 

(LaFlamme & Hites, 1978). PAHs produced in the environment are transported over 

long distances in air before they settle in the atmosphere, on soil surfaces, vegetation, 

sea and inland waters (Van Jaarsveld et al., 1997).  

In recent years, various industrial and/or agricultural processes have been releasing 

pollutant compounds into the environment (Gianfreda et al., 2004). These pollutants 

have negative effects on environmental quality and human health. However, their 

carving on environment is due to the rapid industrial enterprise of agribusiness, 

expanded chemical industry and the need to generate cheap forms of energy (Borazjani 

et al., 1997, Borazjani et al., 2000 & Vidali, 2001). The removal of polycyclic 

aromatic hydrocarbons (PAHs) from the environment has attracted considerable 

attention owing to their widespread environmental distribution, toxicity, and 

carcinogenicity (Kou et al., 2009). Microbial degradation is used as a primary method 

for the elimination of PAHs from the environment. Although many microorganisms 

are able to utilize these organic compounds as a substrate and energy source for their 

growth, these compounds, especially high molecular weight PAHs, are considered as 



3 

 

 recalcitrant molecules due to their low solubility in water. Moreover, they are 

suspected to be carcinogenic and therefore their rapid remediation is required (Urgun-

Demirtas et al., 2006).  

 In recent years, photo-catalysis is one of the most attractive methods for PAHs 

degradation with respect to solar energy utilization (Kou et al., 2009). Due to the 

utilization of clean solar energy and no use of any additional chemicals, heterogeneous 

photo-catalytic processes have gained much interest. To date, most of the studies are 

dominated by Titanium oxide (TiO2) as a catalyst because of its stability and relatively 

high activity.  

Most of the evident environmental factors, which vary from site to site (such as 

bioavailability of the contaminants, soil pH and nutrient availability), can influence the 

process of bioremediation by inhibiting growth and activity of the pollutant-degrading 

microorganisms (Bamforth & Singleton, 2005a). Multidisciplinary use of soil, water 

and sediments leads towards cost effective and efficient remediation techniques. 

Bioremediation is considered to be one of the important tools for the treatment of 

contaminants from the environment (Kuiper et al., 2004). Furthermore, degradation of 

PAHs in contaminated soils are highly influenced by various environmental factors 

such as pH, water availability, oxygen level, salinity, temperature, PAH bioavailability, 

nutrient requirements of microbes and adaptation of the microorganism’s population 

(Balba et al., 1991). 

Among all the environmental abiotic factors, studies have rarely focused on soil pH 

and degradation. Soil pH, an abiotic factor, plays an important role in degradation of 

PAHs.  Most PAH-contaminated sites are not at the optimal pH for bioremediation. As 

pollutants are directly linked to the pH of contaminated sites, the transformation of 

PAHs under acidic or basic conditions cannot be carried out by indigenous 
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microorganisms. The in-situ microorganisms at a contaminated site may be not only 

tolerant of the site conditions, but may also have the potential to metabolise PAHs in  

sub-optimal conditions. These facts constitute the necessity for studying the soil pH as 

important factor (Leahy & Colwell, 1990). The efficiency of bioremediation process 

depends on the environmental conditions and is generally low (Yan et al., 1998). 

Considering these conditions in this study, effect of soil pH as an abiotic factor was 

investigated to monitor the environmental conditions suitable for the promotion of 

bioremediation. Also, compared to other methods of degradation, soil pH adjustment is 

an easy process by liming and is a cost effective approach. 
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Aims and objectives 

Aim: The effect of soil pH on degradation of polycyclic aromatic hydrocarbons 

(PAHs) 

 

Photo-catalytic oxidation 

Aim: To study the effect of soil pH on photo-catalytic degradation of polycyclic 

aromatic   hydrocarbons (PAHs). 

Objectives: 

• To monitor PAH photo-cataytic degradation rate in experimental soil at varying pH. 

• To determine usefulness of heterogeneous photo-catalytic process at two 

wavelengths using TiO2 for the degradation of PAHs present in soil. 

  

Enrichment isolation and characterization 

Aim: Isolation, characterization of PAH degrading bacteria and fungi- and 

identification by PCR amplification by 16S rDNA for bacteria and 18S rDNA 

for fungi 

Objectives:  

• Isolation of PAH degrading organisms via shaken enrichment culture 

• Identification of isolated bacterial strains degrading PAHs – using PCR 

amplification and sequencing of 16S rDNA 

• Identification of isolated fungal strains degrading PAHs – using PCR amplification 

and sequencing of 18S rDNA 
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• Biodegradation 

Aim: To study the effect of soil pH on biodegradation of polycyclic aromatic   

hydrocarbons (PAHs). 

Objectives: 

• To monitor PAH biodegradation rate using HPLC analysis in experimental soil at 

varying pH.  

• Quantify the bacterial and fungal populations and identification of predominant 

isolates from varying soil pH. 

• To study microbial activity by soil ATP measurement at different pHs in the 

presence of PAHs.    

• To determine soil enzyme activity using buffer pH (5.5, 7 and 8.5) for β-

glucosidase, L-arginine ammonification, acid/alkaline phosphatase (C: N: P) 

source, manganese dependent  peroxidase (MnP), lignin peroxidase (LiP), laccase 

activity at varying soil pH  

 

Intra/extra cellular enzyme studies 

Aim: To study the ligninolytic enzymes from fungi and dioxygenase enzyme from 

bacteria involved in PAH degradation and their kinetics studies 

Objectives: 

• Purification and characterisation of ligninolytic and dioxygenase intra/extra cellular 

enzymes involved in PAH degradation 

• Optimization of cultural conditions with respect to pH and temperature for 

ligninolytic and dioxygenase enzyme production involved in PAH degradation 

• Biochemical characterization of ligninolytic and dioxygenase enzyme 
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• To investigate relative activity of the enzymes at varying pH and temperature 

• To study enzyme kinetics using Michaelis–Menten kinetics equation and calculate 

Vmax and Km by adding a reciprocal Lineweaver-Burk plot.   
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2.0 Literature review 

Removal of pollutants from the environment can be carried out through remediation 

processes using one or more of the following: microbial degradation, photo catalytic 

oxidation, chemical oxidation, volatilization and sedimentation (Gao et al., 1998). It 

has been observed that industrial and agricultural processes release various polluting 

compounds in the environment (Gainfreda et al., 2005). These polluting compounds 

are responsible for negative effects on environmental quality and human health. It is 

therefore important to control the release of pollutants and understand their fate and 

effects once they enter the soil. Biodegradation is an inexpensive and an effective 

approach to degrade and remove pollutants from contaminated soils. In biodegradation, 

organisms are used to break down and thereby detoxify dangerous chemicals in the 

environment. As the microbial community structure has been suggested to be 

important in the decomposition of pollutants (Beulke et al., 2005), there are different 

methodologies to degrade these pollutants from the environment. 

The chemical pollutants can be classified into inorganic and organic pollutants as 

described below: 

 

2.1 Inorganic pollutants 

Inorganic chemical pollutants in the environment are found naturally. However, due 

to human activities they may be more concentrated and released into environment. The 

inorganic pollutants of primary concern are heavy metals such as cadmium, copper, 

mercury, lead, zinc etc and nutrient pollutants such as nitrogen, phosphates, sulphates 

(Sandrin & Maier, 2003). 
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2.2 Organic pollutants 

In recent years, many organic compounds are used in day to day life. These organic 

compounds are produced for different uses such as pesticides, plasticizers, lubricants, 

refrigerant, fuels, solvents and preservatives (Liu, 2010). Some of these organic 

compounds are biologically harmful even in very small concentrations but some are 

relatively inert and harmless. Some of these pollutants that enter into soil may inhibit 

or kill soil organisms, thereby perturbating the balance of the soil community. 

However, some may also be transported from the soil to air, water or vegetation where 

they may come into physical contact, could be inhaled or ingested by number of 

organisms (Beulke et al., 2005).  

The key types of organic pollutants are:   

Aliphatic hydrocarbons 

Alicyclic hydrocarbons 

Aromatic hydrocarbons 

 

2.2.1 Aliphatic hydrocarbons 

The Aliphatic hydrocarbon group consists of alkanes, alkenes, and alkynes. The 

alkanes saturated hydrocarbons (i.e., methane) are fairly inert and generally inactive in 

atmospheric photochemical reactions (Leahy & Colwell, 1990).  

2.2.1a Saturated hydrocarbons: If all the hydrogen atoms attached to carbon 

bonds are together in a chain, molecule is said to be saturated. For example: H3C-CH3 

(ethane) (Krafft & Crooks, 1988). 

2.2.1b Unsaturated hydrocarbons: If two adjacent carbon atoms each lose a 

hydrogen atom, a double bond forms between them. Such a molecule is said to 

be unsaturated (Krafft & Crooks, 1988). For example: H2C=CH2 (ethylene, ethene). 
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Aliphatic and aromatic hydrocarbons are differentiated as they provide a useful method 

for categorizing these compounds. For example, although anaerobic biodegradation of 

aromatic hydrocarbons has been reported, it is uncommon and relatively slow 

compared to aerobic biodegradation (Leahy & Colwell, 1990). Andrews & Novak 

(2001) studied the pH effect and the ferrous ion effect on carbon tetrachloride 

degradation by Methanosarcina thermophila. Carbon tetrachloride is considered to be 

simple unsaturated aliphatic hydrocarbon. Their studies suggest that unsaturated 

aliphatic hydrocarbons are degraded easier and faster as the pH increases. However, 

saturated aliphatic hydrocarbons degrade slowly with increase in pH (Weathers et al., 

1997).  

 

2.2.2 Alicyclic hydrocarbons 

Alicyclic hydrocarbons are made up as cyclic saturated carbon chains. Most 

common alicyclic hydrocarbons occur naturally. For example, alicyclic hydrocarbons 

are a major component of crude oil, comprising 20 to 67% by volume. Examples of 

complex, naturally occurring alicyclic hydrocarbons include camphor, which is plant 

oil; cyclohexyl fatty acids, which are components of microbial lipids. Rios-Hernandez 

et al., (2003) studied “Biodegradation of an alicyclic hydrocarbon by a sulfate-

reducing enrichment from a gas condensate-contaminated aquifer.” Ethylcyclopentane 

(ECP) which is an alicyclic hydrocarbon was used in the research conducted to study 

its metabolism by sulfate-reducing bacterial enrichment. Moreover, the research 

suggests that (ECP)-alicyclic hydrocarbons are anaerobically activated by addition of 

fumarate. Alkylsuccinate derivatives are obtained as by-products under sulfate- 

reducing conditions. 
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2.2.3 Aromatic hydrocarbons  

Aromatic hydrocarbons are found in petroleum components and its refined 

products. Naturally occurring aromatic hydrocarbons consists of benzene and 

substituted derivatives of benzene. Benzene is an aromatic compound exhibiting 

similar chemical behaviour and is one of the simplest forms of petrochemicals (Krafft 

& Crooks, 1988). Naphthalene is considered as one of the simplest representative of 

polycyclic aromatic hydrocarbons and benzene, toluene and ethyl benzene are among 

the other important aromatic petroleum hydrocarbons (Wrenn et al., 1998).  

Benzene exhibits important properties and is a naturally occuring of aromatic 

hydrocarbons. The elemental composition of benzene is organic compound with 

molecular composition of C6H6 with six-member ring and with three carbon-carbon 

double bonds. Also, due to delocalised nature of bonding, benzene is represented with 

ring inside hexagonal arrangements of carbon atoms (Wilson & Jones, 1993). It is 

structurally similar to cyclic alkenes and is cyclic in nature. It is colourless and highly 

flammable. Benzene is considered as an aromatic hydrocarbon and is naturally 

occurring constituent of crude oil. It is, however, unusually stable and does not readily 

participate in reactions that are characteristic of alkenes (Wrenn et al., 1998). Many 

chemical compounds are originated from benzene by substituting one or more of its 

hydrogen atoms with some other functional group. The resulting effect on the 

reactivity of these molecules that distinguishes aromatic hydrocarbons from 

unsaturated aliphatic hydrocarbons depends on the relative stability of benzene and its 

derivatives (Rios-Hernandez et al., 2003).  
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2.3 PAHs 

Polycyclic aromatic hydrocarbons (PAHs) are a class of stable organic molecules 

which consist of hydrogen and carbon molecules. As PAHs are commonly found 

widespread contaminants, these are of environmental concern (Uyttebroek et al., 

2007). The structure of PAHs compounds appears flat and consists of carbon and 

hydrogen atoms (Cutright, 2006). However, other atoms like sulphur, nitrogen and 

oxygen get readily substituted in the benzene ring and get converted to heterocyclic 

aromatic compounds. These heterocyclic aromatic compounds are commonly grouped 

together with PAHs (Wilson & Jones, 1993). Also, unsubstituted PAHs are non-polar, 

neutral and hydrophobic compounds that are randomly scattered during energy 

conversion and industries dealing with petroleum (Juhasz et al., 2000). 

PAHs possess different chemical and physical properties due to their chemical 

structure. The examples of PAHs structures are shown in figure 1 (Johnsen et al., 

2005).                                                                                                                                                                                                        

                                                 

                    Phenanthrene                                                Anthracene    

                                       

                  Fluoranthene                                                      Pyrene 

                       Fig. 1: Structure of representative PAHs  
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 The PAH molecules exhibits biochemical persistence due to the dense cloud of π 

electrons on both sides of ring structures. Hence, PAHs compounds are more resistant to 

nucleophilic attack (Haritash & Kaushik, 2009). 

PAHs compounds exhibit various noxious and hazardous properties. Thus, PAH 

compounds are toxic, potential mutagens and carcinogens that results in the fate of 

PAHs in the environment contributing towards environmental concerns (Martens, 

1995). 

PAHs in the environment are found commonly through two sources.  

Natural sources  

Artificial (anthropogenic) sources  

Natural sources include forest and rangeland fires, oil seeps, and volcanic eruptions. 

Anthropogenic sources include exudates from coal tar, wood, garbage, refuse, and used 

lubricating oil and oil filters discharge. Soil, air and water act as the ultimate 

depository of PAHs. PAHs are found to be major pollutants of air and soil (Haritash & 

Kaushik, 2009). 

PAHs are formed due to thermal decomposition of various organic molecules in the 

environment. PAHs are produced as a result of incomplete combustion at high 

temperature (500-8000C) or when subjected to low temperature (1000C- 3000C) for 

long durations. PAHs appear to be colourless in nature with white/pale yellow solids. 

They have low solubility in water with low vapour pressure and with high melting and 

boiling points (Johnsen et al., 2005).             

 

2.4 Formation of PAHs 

PAHs are formed due to incomplete combustion of organic compounds (Keith & 

Telliard, 1979). Different types of combustion, such as domestic, industrial and  
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agricultural, contribute to their emissions. Waste combustion is (due to the 

heterogeneous mix) a potential source for different types of PAHs. The chemical and 

physical formation of PAHs is very complex and many decades of scientific study have 

been dedicated to this. The different compounds involved during formation of PAHs 

include: 

• Unburned fuel and lubricating oil 

• Fuel that has undergone pyrolysis but has not passed through a flame zone 

• PAHs produced by combustion in flame (Longwell, 2007). 

Hydrophobicity and stability of PAHs results in recalcitrance of high molecular 

weight (HMW) PAHs in the environment (Kanaly & Harayama, 2000). Thus, presence 

of dense clouds of π electrons on each side of aromatic rings restricts the PAHs to 

limited nucleophilic attack leading to biochemical stability (Johnsen et al., 2005). 

Solubility in water or polar solvents is prevented by the hydrophobic nature of PAHs 

and results in less bioavailability (Boocham et al., 2000). However, to enhance the 

biodegradation process it is necessary to increase the bioavailability of PAHs and 

therefore, solubility in water and polar solvents have to be increased (Field et al., 

1995). 

 

2.5 Sources of PAHs    

Industrial and daily human activities such as coal processing, wood, crude oil and 

natural gas combustion for heating, vehicles, cooking and smoking, or even natural 

processes such as carbonization are responsible for the incomplete combustion of 

organic materials. This incomplete combustion of organic material further augments or 

produces PAHs through pyrolytic processes (Hati et al., 2009). Among the several 

PAHs; benzoic[a]pyrene (Bap), anthracene, fluoranthene, phenanthrene and  
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naphthalene are the main PAHs that are produced in the environment. Apart from 

these, some other PAHs such as heterocyclic aromatic compounds (e.g. carbazole and 

acridine), and nitro-PAHs (for example: pyrene) are also generated through incomplete 

combustion (Neff, 1985). 

 

2.6 Toxicity of PAHs 

PAHs exert deleterious effects on human health. According to US Environmental 

Protection Agency among all known PAHs Benzo[a]pyrene is recognised as the most 

dangerous pollutant due to its extreme carcinogenic potential. It is also a major 

component of smoke released from the cigarettes. 

PAHs have very high lipid solubility and hence are quickly absorbed into the 

gastrointestinal tract of humans (Gibson & Subramanian, 1984). Moreover, PAHs have 

been investigated to be carcinogenic, mutagenic and teratogenic along with potential 

endocrine- disrupting properties. The mutagenic effects of PAHs are responsible for 

tumour initiation (Lee & Hosomi, 2001). Foods may contain PAHs in varying 

quantities especially when some food is exposed to high temperatures. Studies have 

suggested that PAHs are found in oil, fats and cereals. Furthermore, they are also 

obtained from cooked meat and vegetables (Eriksson et al., 2003). PAHs distributed in 

soil harm human health as they may pass into the food chain, therefore, PAHs 

contaminated soil are important source and of great concern with respect to human 

health (Tao et al., 2006).   

Skin is another major route of absorption of PAHs which accounts for 75% of the 

total PAHs (specifically pyrene) absorbed. Absorption rates of PAHs are fast due to 

high potential for biomagnifications in the food chain.  In general, Cerniglia, (1992) 

states, “the greater the number of benzene rings, the greater the toxicity of the PAH.” 
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The relative acute toxicity of PAHs can be measured using LD50 values (the lethal dose 

in 50% of the population tested). PAHs are also suspected carcinogens however, they 

are not considered to be genotoxic until mammalian enzymes are ‘activated’ from 

reactive epoxide and quinones. The Cytochrome P450 monoxygenase enzyme 

responsible for degradation is mostly found in fungi which oxidises the aromatic ring 

to form epoxide and diol-epoxide reactive intermediates. Due to the oxidation by 

cytochrome P450 enzymes the genotoxic effect comes into consideration and the 

aromatic ring forms epoxide and diol–epoxide reactive intermediates (Harvey, 1996). 

During oxidation processes these intermediates combine with DNA, or attack DNA 

and undergo oxidation or hydrolysis. Further intermediates combine and attack DNA 

and form covalent adducts with DNA causing mutation which may lead to tumour 

formation (Bamforth & Singleton, 2005b). 

 

2.7 Chemical and physical properties of PAHs 

PAHs are a group of compounds containing carbon and hydrogen. Most PAHs 

consist of a “bay-region”, a “K-region” and an “L-region” (figure 2).  

 

             Fig. 2: Different region of biological activity in PAHs 
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The bay- region is an internal open inner corner for an example, open inner corner 

of phenanthrene structure. The K-region is an external closed corner and L-region 

represents the pair of opposed anthracenic point atoms (Aramandla et al., 2004). These 

bay- and K-region epoxides are chemically reactive. Thus, they are developed 

metabolically and biologically. Phenanthrene is the simplest aromatic hydrocarbon 

composed of these regions. The bay-region of phenanthrene is a sterically hindered 

area between carbon atoms 4 and 5 and the K-region is the 9, 10 double bond, which is 

the most oleinic aromatic double bond with high electron density (figure 2) (Sikkema 

et al., 1995).  

Low-molecular weight (LMW) PAHs is relatively volatile, soluble and degrades 

more quickly. Whereas, high molecular weight (HMW) PAHs are more resistant to 

microbial degradation due to their strong anchoring to soils. Due to the solid state of 

PAHs compounds, high molecular weight PAHs compounds are hydrophobic and these 

PAHs are very toxic to whole cells (Cerniglia, 1992). The chemical properties, of a 

PAH molecule depends on the molecular size including the number of aromatic rings, 

and molecule topology or the pattern of ring linkage. Ring linkage patterns in PAHs 

may occur in a way such that the tertiary carbon atoms are centers of two or three 

interlinked rings for example the case of linear kata-annelated PAH anthracene or the 

peri-condensed PAH pyrene (Kanaly & Harayama, 2000). Some properties of selected 

PAHs are presented in Table 1. 
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        Table 1:   Chemical and physical properties of selected PAHs 

Compound C atoms MW MP*  

(oC) 

BP* 

(oC) 

SW* 

(mg/l) 

CAS 

 

AS* 

(mg/l) 

Naphthalene 

 

10 128 80.2 218 30 91-20-

3 

30 

Phenanthrene 14 178 100 339 1.2 85-01-

8 

1-2 

Anthracene 14 178 217 340 0.7 120-

12-7 

0.015 

Pyrene 

 

16 202 150 393 0.1 129-0-

0 

0.12-

0.18 

Fluoranthene 

 

16 202 108 383 0.2 206-

44-0 

0.25 

   MW*-Molecular weight              SW*-Sloubility in water      (Haritash & Kaushik, 2009).                         
   MP*-Melting point                     BP*-Bioling point 
   AS*-Aqueous solubility in water  
 

2.8 Persistence of PAHs in the environment 

The persistence of PAHs in the environment is determined by various factors. These 

factors include chemical structure, the concentration, and dispersion of PAH, as well as 

the bioavailability of the co-existing contaminants. Apart from these factors 

environmental factors such as soil type and texture, pH and temperature are other 

important factors that control the persistence of PAHs in the environment (Boyle et al., 

1998). Thus, the long environmental persistence of higher molecular weight PAH  
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molecules are due to higher hydrophobicity and toxicity. The persistence of PAHs is 

also influenced with the ‘age’ of the co-existing contaminants in the soil matrix. If the 

age of coexisting contaminants is higher the persistence of PAHs is longer. However, 

PAHs in the environment can be removed through a natural techniques using microbial 

degradation or using physical or chemical processes as shown in figure 3 (Hatzinger et 

al., 1995). 

Phenanthrene has shown reduced biodegradability due to depletion of oxygen and 

increase of anaerobicity in the environment. However, work has shown that 

biodegradation of PAHs can occur even in anaerobic conditions in the absence of 

molecular oxygen (Rockne & Strand, 1998) but the PAH degradation under anaerobic 

conditions has limited efficiency (Bamforth & Singleton, 2005a). 

 

 Fig. 3: Schematic representation of the environmental fate of polycyclic aromatic       
hydrocarbons. 
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In the environment the fate of PAHs is dependent upon the extent of loss of 

contaminants due to mechanisms of biodegradation (Rockne et al., 2000). PAH 

biodegradation processes can be considered as a removal of anthropogenic pollutants 

as well as a normal process of carbon cycles from the environment. The fate of 

organic contaminants in the environment is associated with both abiotic and biotic 

factors including chemical oxidation, volatilization, and photo-oxidation (Pathak et 

al., 2009). 

 

2.8.1 Chemical oxidation  

Chemical oxidation is an evolving technology that involves the introduction of 

chemical oxidants into subsurface soil and groundwater to destroy organic 

contaminants (ESTCP, 1999). It is always difficult to remediate organic compounds 

such as solvents and polycyclic aromatic hydrocarbons present in contaminated soils 

and groundwater. Chemical oxidation can be carried out with different oxidants such as 

gaseous ozone, Fenton’s reagent, potassium permanganate (KMnO4) and persulfate. 

Gaseous ozone process is an effective agent and it is used for the treatment of soils and 

sediments contaminated by PAHs (Haapea & Tuhkanen, 2006; Masten & Davies, 

1997; Rivas, 2006 & U.S. EPA, 1998). Fenton’s reagent and potassium permanganate 

are liquid oxidants, used for degradation of PAHs and other pollutants from the 

environment (Rivas, 2006; Watts et al., 2002). 

Fenton’s reaction is carried out in presence of hydrogen peroxide so as to enhance 

radical formation. Hydrogen peroxide acts as a catalyst sequentially increasing the 

peroxide oxidative strength (Rivas, 2006). Fenton’s reaction includes hydrogen 
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peroxide’s decomposition into hydroxyl radicals along with ferrous iron enhancing 

reaction. 

H2O2 + Fe2+                         .OH + OH- ……………………………. (1) 

 The catalytic reaction is in presence of Fe (III) reduction, which leads to Fe (II) 

regeneration: 

Fe3+     +    H2O2                                    Fe2+    + Fe-OOH………….. (2) 

Fe2+   _   Fe-OOH                                  Fe2+   + H2O     …………… (3) 

 

Iron is found as Fe (III) in different environmental conditions, therefore, acidic pH 

or different chelating agents (such as citric acid, ethylene diamine, tetra-acetic acid 

(EDTA), and catechol) are used to increase the availability of Fe (II). The increase in 

availability of iron enhances Fenton’s reactions (Sun & Yan, 2007). 

Hydroxyl radicals play important role in degradation which can be due to its ability to 

either abstract hydrogen (reaction 4) or to add hydroxyl groups (reaction 5). 

ROH    +   .OH                            .R    + H2O …………………………….. (4) 

R         +    .OH                           .ROH …………………………………..  (5) 

(Ferrarese et al., 2007) 

 

Potassium permanganate (KMnO4) is one of the strongest oxidizing agents having 

an oxidation potential of 1.7eV (Ferrares et al., 2008). It has been investigated, that 

most of the petroleum hydrocarbons remediation is effective with help of (KMnO4) 

and widely applied for in situ and ex situ remediation (Sun & Yan, 2007).  

  Simonnot et al, (2000) studied oxidation processes with Fenton’s reagent vs. 

potassium permanganate (KMnO4). The research suggested that Fenton’s reagent in a 

chemical degradation is one of the upgraded oxidation processes and KMnO4 is one of 
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the strong oxidizing agents. The experimental conditions, proved to be efficient in 

remediation of phenanthrene and pyrene in PAHs contaminated soils. 

 

2.8.2 Volatilization 

The process of conversion of a chemical substance from a liquid or solid state to a 

gaseous or vapour state by the application of heat, by reducing pressure, or by a 

combination of both is called volatilization. However most of the compounds are 

degraded slowly and thus tend to accumulate in the environment (Urgun-Demirtas et 

al., 2006).  

Organic contaminants are present in soil and their transportation to air is one of the 

important processes in volatilization. Therefore, it affects and controls the transport 

and fate of organic pollutants present in soil (Liu et al., 2010). Liu et al., (2011) 

investigated that volatilization of PAHs can be inhibited with respect to solubilisation 

of PAHs by micelles. However, sorbed surfactant formation drastically inhibited solid-

vapour volatilization of PAHs. 

 

2.8.3 Photo-oxidation  

Photo-oxidation is potentially one of the important and prevalent ways for PAH 

modification along with bioremediation in the environment. Photo-catalysis is a 

process that uses a catalyst, for example titanium oxide (TiO2) which facilitates a 

photoreaction to degrade the toxic compounds. TiO2 induced-photo catalyzed 

degradation of a variety of all organic substrates is gaining attention due to its potential 

to degrade PAHs from the environment (Wen et al., 2002). Apart from microbial 

degradation of PAHs, photo-catalysis is another efficient process, and can be used for 

the elimination of PAHs. Upon absorbing sunlight, a PAH can be rapidly transformed 
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to a variety of compounds, most of which are oxidation products (Mallakin et al., 

2000). The principle of photo-catalytic oxidation is shown in figure 4. 

 

              Fig. 4: Principle of photo-catalytic oxidation (www.peakpureair.com) 

It has been found that when aromatic compounds are exposed to UV light, partially 

oxidised intermediates of aromatic compounds are produced which more susceptibile 

to degradation than their parent ones. Because of this property of aromatic compounds, 

photo-degradation has been recommended as an early stage strategy for biodegradation 

(Mueller et al., 1997). Photo-degradation of PAHs in the presence of catalytic solution 

is considered as an oxidative process which is further augmented in the presence of 

photo-inducers. The polarity of the solvent is directly proportional to the rate of the 

degradation process. Thus, higher the polarity of the solvent faster is the degradation 

process. It has been suggested that reactive oxygen species and hydroxyl radicals do 

not play an important role in PAH photolysis. PAHs photo-decomposition initiated by 

photo-ionization results in the production of PAH radical cations and hydrated electron 

which further destroys PAH in the presence of water (Zeep & Schlotzhauer, 1979; 

Zepp, 1982). 
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However, photo-catalytic oxidation, volatilization and chemical oxidation are 

primary degradation processes which can be applied in the degradation of PAHs of in 

situ contaminated soil (Zepp, 1982). 

 

2.9 Bioremediation 

The main purpose of bioremediation is to de-toxify the toxic compounds by 

microbial degradation in the environment. The degradation particularly includes 

organic and can be defined as the use of microorganisms to remove environmental 

pollutants of soils, waters, and sediments (Gogoi et al., 2003). The bioremediation 

processes may be enhanced/facilitated by various applications to remove pollutants, to 

treat polluted environments is one of the most efficient practices toward a healthier 

environment (Gogoi et al., 2003; VanGestel et al., 2003). In the bioremediation 

process, microorganisms are used to degrade the toxic compounds. However, 

biodegradation rates of hydrocarbons in soil can be defined by many factors, for 

example: microorganism type, nutrients, pH, temperature, moisture, oxygen, soil 

properties, and contaminant concentration (Semple et al., 2001; Ghazali et al., 2004). 

 

2.10 Types of bioremediation  

2.10.1 In-situ bioremediation 

In-situ bioremediation technologies are used to enhance the mechanisms that 

degrade PAH as well as various eminent polluting compounds in contaminated soil and 

groundwater. Generally, in-situ bioremediation technologies employ engineered 

systems to enhance the effects of naturally occurring degradation mechanisms (Fiedler, 

2000). In- situ bioremediation includes: 
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2.10.1a Biostimulation provides nutrients and suitable physiological conditions for the 

growth of the indigenous microbial populations. Thus, during the degradation of 

contaminants metabolic activities are increased.   

2.10.1b Bioaugmentation means introduction of specific blends of laboratory-

cultivated microorganisms into a contaminated environment or into a bioreactor to  

initiate the bioremediation process (Fahnestock et al., 1998). Degradation carried out 

by microbial populations use carbon, nitrogen and phosphorous as sole source of 

nutrient. However, phosphate and nitrogen are two of the nutrients in the soil with 

limiting concentration (USEPA, 1994).  

 

2.10.2 Types of In-situ Bioremediation 

2.10.3 Intrinsic Bioremediation 

In order to degrade contaminants from the environment, the bioremediation process 

depends on different intrinsic factors. Intrinsic bioremediation is defined as the 

degradation of contaminants without alteration or amendment, to achieve in-situ 

bioremediation. In monitored natural attenuation (MNA) sites, intrinsic bioremediation 

may play a role that helps broaden the term defined by the US National research 

Council (NRC) and EPA as “biodegradation, dispersion, chemical or biological 

stabiliztion, transformation or destruction of contaminant” (Sturman et al., 1995). 

 

2.10.4 Engineered in-situ Bioremediation 

In-situ bioremediation techniques include many selection procedures at contaminated 

sites. During remediation of a contaminated site the identification of degradation 

mechanisms provides enhancement of technologies that are more beneficial for use at 

the site. The steps in selection and implementation of in-situ bioremediation are: 
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• Evaluation of site characteristics 

• Identification of site conditions and engineering solutions 

• Identification of primary reactants  

• Perform test based on treatability (bench-scale) 

• Perform design system, field test, and implementation (Fiedler, 2000). 

 

2.11 Ex-situ Bioremediation 

The main metabolic activities and genetic features of microbial degradation need to be 

evaluated for a successful bioremediation approach. The microbial degradation at 

contaminated site can be evaluated considering the design and implementation suitable 

for microbial detoxifying strategies. It thus helps in monitoring the effectiveness of the 

bioremediation and understanding the metabolic and genetic features (Andreoni & 

Gianfreda, 2007). There are some aspects that help for easier ex-situ bioremediation 

and the most concerning aspects are: 

(a) Pollution of the environment by two classes of aromatic pollutants namely,   

polycyclic aromatic hydrocarbons (PAHs) and volatile aromatics are collectively 

indicated as BTEX (benzene, toluene, ethylbenzene, and xylene) 

 (b) The main metabolic pathways and the genetic basis of their microbial degradation 

 (c) The biological strategies to reduce or to eliminate their contamination, and  

 (d) More advanced monitoring techniques to evaluate the effectiveness of a 

bioremediation process (Andreoni & Gianfreda, 2007). 

 

2.12  The contaminated soil matrix 

Air, water and soil are major natural resources. Soil is a complex mixture of air 

(25%), water (25%), minerals that come from rocks below or nearby surfaces (45%), 
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and organic matter (5%) (figure 5). The organic matter present in soil is due to remains 

of plants and animals that use the soil and living organism that reside in soil (Bollag & 

Liu, 1990). The type of soil depends on the clay, sand and silt present in it. However, 

other factors like climate, vegetation, time, the surrounding terrain, and even human 

activities (e.g. farming, grazing, gardening, etc.), are also important in influencing the  

soil that is formed and the types of soil that occur in a particular landscape (Pritchard 

& Bourquin, 1985). 

 

Fig. 5: Soil contains four basic components: mineral particles, water, air, and 
organic matter. Organic matter can be further sub-divided into humus, 
roots and living organisms (http://www.physicalgeography.net). 

Thus, soil quality depends in part on its natural composition, and also on the changes 

caused by human use and management (Larson & Pierce, 1991).  

 

2.13 Fate of organic contaminants in the soil environment 

An organic contaminant (OC) in the soil environment may be lost by both 

biological and physical-chemical pathways in soil. Living organisms carry out 

biological degradation. The abiotic processes include leaching or volatilization, 
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accumulation within the soil biota or sequestration within the soil mineral and organic 

matter fractions as shown in figure 6 (Lifongo & Nfon, 2009; Bollag & Liu, 1990).  

 

Fig. 6: Assumed fate of behaviour of a model organic contaminant (phenanthrene) 

in soil (Semple et al., 2003). 

 

2.14 Remediation of PAHs in soil systems 

Biodegradation is one of the most common mechanisms harnessed in order to treat 

organic contaminants. Soil bioremediation is dependent upon desorption from the solid 

to the liquid phase of contaminant. Limited oxygen or nutrients, lack of bioavailability 

however, limit the bioremediation process. Under denitrifying conditions, anaerobic 

degradation of some PAHs occurs in the presence of excess nitrate (Mihelcic & Luthy, 

1988). The hydrophobicity of these compounds constitutes the main factor that 

determines their persistence in the environment; in particular they tend to be strongly 

absorbed by soil particles with low bioavailability and possibly accumulate in the food 

chain as well (Mollea et al., 2005).   

   In the soil matrix, as the contaminants are released, they bind to the surface and 

become sequestrated into the soil matrix. Due to sequestrating of contaminants, 



31 

 

sorption strength increases over time. Further, sorption strength reduces the 

susceptibility of the contaminants to remediation. Soil organic matter (SOM) is not 

 homogenous; it consists of varying proportions of combustable residues, non-aqueous 

phase liquids, and natural organic matter (NOM), all of which vary in their affinity for 

contaminants (Jonsson et al., 2007). Mass transfer rates of the PAH molecule is an 

independent factor. Degradation rates often depend on the mass transfer rates of the 

PAH from the solid phase to the water phase. Enhanced mass transfer can be achieved 

by the consumption of minor substrate molecules, thereby altering the surface area and 

resulting in a higher dissolution rate (Tiehm, 1994). 

  

2.15 Microbial metabolism of PAHs  

Prokaryotes are considered as major decomposers of organic compounds in an 

ecosystem (Campbell & Reece, 2005). Enzymes present in bacteria, digest these 

organic compounds and make them available for absorption. Higher molecular weight 

PAHs are often oxidized in variety of organic compounds by white rot fungi providing 

more advantages compared to bacteria (Pointing, 2001).  

PAH degradation is carried out by white rot fungi under aerobic conditions, 

however, in bacteria it occurs under aerobic and anaerobic conditions. Bacteria and 

white rot fungi have different biochemistry for the catabolism of organo-pollutants 

(Pointing, 2001). Organo-pollutants are degraded by bacteria as their cells use a source 

of carbon and nitrogen as nutritional benefits, while PAHs and toxic pollutants are co-

metabolically oxidised/ transformed with no energy supply to their cells. As a result 

white rot fungi require additional nutrients to manage their cellular activities (Pointing, 

2001; Boochan et al., 2000). 
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Microorganisms that degrade PAHs are universally distributed in the natural 

environment, such as in soils (bacteria and non-ligninolytic fungi) and woody materials  

(ligninolytic fungi). A comprehensive listing of microorganism genera capable of PAH 

degradation is tabulated in table 2. 

Table 2: Bacterial and fungal genera that contain PAHs- degrading species 

 

(Al-Turki, 2009). 

The large molecular weight (LMW) PAHs in contaminated soil can be effectively 

treated by bioremediation. In the bioremediation processes, the native microbes are of 

a great interest as these organisms may be expected to be adapted to the soil 

environment. These microorganisms when used in particular soil environments and 

with optimized abiotic conditions are more likely to out-compete the introduced 

microorganisms (Silva et al., 2009). Microbial degradation of PAH by aerobic 

mechanisms is expressed by three fundamental mechanisms. The specific details of  
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degradation metabolism by bacterial and fungal are shown in figure 7. 

Several environmental factors influence the rate of PAH degradation. Low oxygen 

concentrations limit PAH degradation that requires oxygenase activity. Generally, 

PAH degradation is limited by low water solubility, bioavailability and soil pH. Some 

PAH metabolites, particularly epoxide, dihydrodiols and quinones, affect the survival 

and viability of microorganisms, since they are cytotoxic and genotoxic. It has been 

found that the pH of culture media affects the levels of the two constitutive PAH o-

quinone reductases particularly a pyrene-degrading enzymes (Kim et al., 2005). 

 

Fig. 7: Three main pathways for polycyclic aromatic hydrocarbon degradation by 

fungi and bacteria (Bamforth and Singleton, 2005b). 

2.16 Bacterial metabolism of PAHs 
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Active degradation of organic pollutants from the contaminated site in the 

environment is performed by bacteria. Natural processes of degradation via bacteria 

can however be carried out more rapidly by altering abiotic factors at these 

contaminated site (Haritash & Kaushik, 2009). 

The principal mechanism for the aerobic bacterial metabolism of PAHs is illustrated 

in figure 7. The initial step involves oxidation of the benzene ring by the action of 

dioxygenase enzymes to form cis-dihydrodiols (Parales et al., 1998; Kanaly & 

Harayama, 2000). Further, re-aromatization occurs and these cis-dihydrodiols are 

dehydrogenated to form dihydroxylated intermediates. These dihydroxylated 

intermediates are exposed to cleavage by dioxygenase via ortho or meta cleavage 

resulting in production of carboxylic acid cycle (Parales et al., 1998) which can then be 

further metabolised via catechols to carbon dioxide and water (figure 7). There is a 

large diversity of bacteria that are able to oxidise PAH using dioxygenase enzymes, 

including organisms from the genera Pseudomonas and Rhodococcus. A few bacteria 

such as Mycobacterium species are also capable of oxidising PAHs by the action of the 

cytochrome P450 monoxygenase enzyme to form trans-dihydrodiols (Kelley et al., 

1990). Napthalene, the simplest form of PAHs is the model PAH studied mostly 

(Parales et al., 1998). It is the most soluble PAH (Annweiler et al., 2000). Davies & 

Evans (1964) were first to report the biochemical sequence and enzyme kinetics 

responsible for naphthalene degradation. The common naphthalene degradation 

pathway is shown in figure 8. Naphthalene is converted as a metabolite to cis-1, 2-

diydroxy-1, 2-dihyro-naphthalene. Further, oxidation of naphthalene helps in 

conversion of cis-1, 2-dihydroxy-1, 2-dihydro-naphtahlene to 1, 2- dihydroxy-

naphtahlene (Cerniglia, 1984; Mrozik et al., 2003). Napthalene-cis-dihydrodiol  
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dehydrogenase is catalyzed and requires NAD+ as an electron acceptor. The next step 

leads to conversion of naphthalene-cis-dihydrodiol dehydro-genase to cis-2-

hydroxybenzalpyruvate. Further, a series of dioxygenases convert cis-2-

hydroxybenzalpyruvate to salicylate and pyruvate. Oxidation of salicylate is carried out 

by salicylate hydroxylase to catechol leading to ortho or meta fission. This ortho or 

meta fission depends on bacterial metabolism (Dagley & Gibson., 1965). The 

naphthalene degradation pathway is commonly found in prokaryotic cells and was 

described first in bacteria (Mrozik et al., 2003). 

 

 Fig. 8: Naphthalene degradation pathway (Bamforth and Singleton, 2005b). 
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2.17 Degradation of phenanthrene 

Phenanthrene is one of the chemicals grouped as aromatic hydrocarbons. It occurs 

as a colourless, solid crystal and is used to make drugs, dyes, explosives and plastics 

(Faust & Rosmarie, 1993). Phenanthrene is oxidized in positions 1, 2 and 3, 4 to form 

cis-1, 2-dihydrox-1, 2-dihdrophenanthrene which produce enzymatic detail to 

phenanthrene-cis-3, 4-dihydrodiol. The dominative isomer Phenanthrene-cis-3, 4-

dihydrodiol is further converted to 3, 4-dihydroxyphenanthrene. The next step involves 

the ring cleavage leading to metabolization of hydroxy-2-naphthoic acid (figure 9). 

The hydroxy-2-naphthoic acid is decarboxylated oxidatively to 1, 2-

dihydroxynaphthalene to 1, 2-dihydroxynaphthalene which is further exposed to meta-

cleavage resulting into salicylic acid (Gibson & Subramanian, 1984; Evans et al., 

1965; Mrozik et al., 2003).  

 

 

 

 

 

 

 

 

     Fig. 9: Phenanthrene degradation pathway (Bamforth and Singleton, 2005b). 
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2.18 Degradation of anthracene 

Anthracene is a tricyclic aromatic hydrocarbon, found widely in the environment. It 

has been a model substrate for various studies on degradation of PAHs (Moody et al., 

2001).  

 Anthracene is oxidised in the positions 1, 2 and gets converted to cis-1, 2-

dihydroxy-1, 2-dihydroanthracene. It is further converted to 1, 2-dihydroxyanthracene 

which uses NAD+ dependent dihydrodiol dehydrogenase. Moreover, oxidation of 1, 2-

dihydroxyanthracene undergoes ring fission to form a cis-4-(2-dihydroxynaphth-3-yl)-

2-oxobut-enoic acid as a product. This product gets converted to 2-hydroxynaphthoic 

acid. Further, the fission helps the metabolic product to form salicylate and catechol 

through 2, 3-dihdroxynapthalene (Cerniglia, 1984; Evans et al., 1965). The schematic 

proposed pathway for anthracene degradation is exhibited in figure 10. 

 

Fig. 10: Anthracene degradation pathway (Bamforth and Singleton, 2005b). 
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2.19 Degradation of fluoranthene 

 

 

 Fig. 11: Flouranthene degradation pathway (Seo et al., 2009). 
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2.20 Degradation of pyrene 

Pyrene- four ring structures are a pericondensed PAH. Pyrene degradation and 

pathways for degradation along with their metabolites has been reported by many 

investigations.  

 

Fig. 12: Pyrene degradation pathway (Bamforth and Singleton, 2005b). 

 

2.21 Mycoremediation 

Mycoremediation involves fungi that degrade toxic compounds from the 

environment. Most mycoremediation studies have been carried out and investigated on 

artificially contaminated soils spiked with organic pollutants. Due to this, it is very 

important to research the use of fungal remediation under non-sterile and sterile 
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conditions and with soils samples from contaminated sites (D'Annibale et al., 2006). 

Bio augmentation is the process in which the indigenous bacteria and fungi as well as 

alternative bio stimulation can favour contaminant degradation. It deals with specified 

historically and/or heavily contaminated sites (Bastiaens et al., 2000).  

 

2.22 Fungal metabolism of PAHs and fungal enzymes involved in PAH 

degradation 

Filamentous fungi play an important role in degradation and detoxification of 

polycyclic hydrocarbons, including condensed aromatic ring systems as well as other 

xenobiotic compounds, present in polluted environments. Some of these compounds 

are very harmful and carcinogenic.  

 

2.23 Lignin degradation (Dissimilation of aromatic polymers) 

 Lignin is a branched polymer with a complex three-dimension structure formed by 

the oxidative polymerization of substituted p-hydroxycinnamyl alcohols which form 

the basic phenyl-propane units. Lignin which is one of the important components that 

provides mechanical support to plants (Crawford & Crawford, 1976). Combination of 

p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol together contribute to lignin 

formation. It is an organic polymer due to cellulose in woody plants that accounts 

nearly about 50% of the carbon content of plants (Dix & Webster, 1995).  

 

2.24 White rot fungi 

 White rot fungi are found mainly on the wood of living trees, decaying wood and 

causing damage to unprotected wood in buildings (Dix & Webster, 1995). Lignin 

oxidation in white rot fungi causes the wood to take on the diagnostic white or 
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bleached appearance.  Furthermore, lignin and carbohydrates in wood are metabolized 

by white rot fungi (Kirk & Farrell, 1987). White rot fungi belong to basidiomycota that 

use wood as a nutrient source and degrade lignin component of wood with the help of 

ligninolytic enzymes. It is not a primary metabolism, as oxidation of lignin yields no 

energy supply to their cells (Pointing, 2001). White rot fungi degrade some 

anthropogenic recalcitrant organic pollutants. They are capable of degrading various 

pollutants like synthetic dyes, synthetic polymers, pesticides, chlorophenols, 

polychlorinated biphenyls, and wood preservatives due to the non specificity of their 

ligninolytic enzymes (Urairuj et al., 2003; Pointing, 2001; Novotny et al., 2004).  

The fungal ligninolytic system consists of three major enzymes: lignin peroxidase 

LiP (EC 1.11.1.14), manganese peroxidase MnP (EC 1.11.1.13) and laccase activity 

LAC (EC 1.10.3.2) (Cajthaml et al., 2008).  

Fungi can metabolise PAH compounds using Cytochrome P450 monoxygenase 

enzyme. Cytochrome P450 monoxygenase enzyme-mediated reaction oxidises the 

aromatic ring to form epoxide and diol–epoxide reactive intermediates. Thus, fission 

occurs in diol- epoxide releasing further CO2 in the environment (Bamforth & 

Singleton, 2005b).  
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Fig. 13: Pathways for the fungal metabolism of polycyclic aromatic hydrocarbons 
(Cerniglia, 1992). 

 

2.25 Microbial biomass and activity 

Microbial metabolic activity in soil can be evaluated using CO2 evolution as an 

indicator of microbial respiration. Moreover, the relation between respiration and 

biomass (qCO2) is a parameter considered to be a good indicator of the amount of 

pollution and the efficiency of bioremediation in contaminated soils (Silva et al., 

2009), further leading to lower biomass yield found in most of contaminated soils 

(Sirguey et al, 2008). Arginine ammonification is one of the methods to measure the 

microbial activity which serves as a convenient test for microbial activity in soil 

samples. Although a wide range of methods are available to determine the microbial 

activity, soil ATP measurements, arginine ammonification may be used as a 

convenient, inexpensive and relatively fast method for routine estimation of microbial 

activity potentials (Alef & Kleiner, 1987). 
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2.26  Factors affecting the bioremediation of PAHs 

Stacking and composting of soil from contaminated site is one of the classic 

examples for successful remmediation. The efficiency of bioremediation on a bench 

scale and under ideal laboratory conditions have been investigated in many studies, 

often at specified neutral pH and mesophilic temperatures. However, the 

environmental factors vary from site to site (such as bioavailability of contaminant, 

nutrient availability, temperature and soil pH) and regulate the process of 

bioremediations (Bamforth & Singleton, 2005b). 

 

2.26.1  Temperature 

The effect of temperature is considered as one of the factors influences during 

degradation of PAHs. As temperature increases, the solubility of PAH molecule 

increases. During different seasons of the year, temperature at most contaminated sites 

is not helpful for bioremediation (Margesin & Schinner, 2001). However, Erickson et 

al., (2003) suggests that oxygen solubility decreases with increase in temperature. This 

results in decreased metabolic activity of aerobic microorganisms. Different 

populations of hydrocarbon-utilizing microorganisms which are adapted to ambient 

temperatures are selected and expected in different climates and seasons. In some 

Arctic and temperate regions, soil temperature is below 100C all year-round, and 

availability of oxygen in wet conditions is limited. The, cost of increasing the 

temperature may be prohibitive, so low temperatures need to be optimized (Eriksson et 

al., 2003). 
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2.26.2 Oxygen 

Organic contaminants can be metabolized to achieve remediation both under 

aerobic and anaerobic conditions. Most work has concentrated upon the dynamics of 

aerobic metabolism of PAHs (Gibson et al., 1968). Oxygen is necessary for the action 

of microbial mono- and dioxygenase enzymes in the initial process as carried out 

during aerobic PAH metabolism.  

There is still a debate and issues have been raised as to whether the benefits of 

anaerobic bioremediation are outweighed by the negatives. This has been carried out 

using hydrogen peroxide, sodium nitrate and perchlorate (Coates et al., 1999). 

However, it has also been reported that rates of anaerobic PAH degradation under 

denitrifying conditions were comparable to those under aerobic conditions (Mcnally et 

al., 1998). This suggests that the dominant in situ microbial community consist of 

PAH-degrading microorganisms and that bioremediation was not limited by low 

numbers of PAH-degrading microorganisms rather than adverse environmental 

conditions. Oxidation of the substrate by oxygenase is involved due to catabolism of 

alicyclic and aromatic hydrocarbons by bacteria and fungi. Therefore, the route of 

microbial oxidation of hydrocarbons in the environment makes it necessary for aerobic 

conditions. The rates of microbial oxygen consumption and, type of soil, are fairly 

dependent on the availability of oxygen.  The oxygen availability when soil is 

waterlogged is low and the high availability of utilizable substrates can also lead to 

oxygen depletion (Genthner et al., 19997). 

 

2.26.3  Nutrient availability 

For cellular metabolism during degradation of PAHs microorganisms require 

mineral nutrients for successful growth. Different mineral nutrients such as nitrogen, 
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phosphate and potassium (N, P and K) are required for growth and so help to readily 

degrade carbon source. Therefore, contaminated land may need to be supplemented 

with various nutrients, generally nitrogen and phosphates to stimulate in situ microbial 

activity and further enhance bioremediation strategies (Brandli et al., 2008).  

The ratio of C: N: P in microbial biomass has been estimated for optimal growth 

and hence for the bioremediation process (Bamforth & Singleton, 2005a). However, a 

recent study due to nature of the pollutants in contaminated sites, where organic carbon 

levels are often high, available nutrients can rapidly deplete during microbial 

metabolism. The failure in the bioremediation of high molecular weight PAHs has 

been reported by Bamforth & Singleton, (2005a) due to the temporary increased long 

duration inhibition of functionally important organisms (Bamforth & Singleton, 

2005a).  

 

2.26.4  Bioavailability 

PAH compounds have low bioavailability because they are hydrophobic (Genthner 

et al., 1997). Bioavailability depends on the rate and extent of biodegradation and is 

the most important factor in bioremediation (Muller et al., 1997). In addition, in the 

presence of different soil matrices rapid sorption to mineral surfaces such as clays and 

organic matter such as humic and fulvic acids are carried out by PAHs.  As long as 

PAH compounds are in direct contact with soil, sorption becomes stronger and 

chemical and biological extractability of contaminants is lowered. This phenomenon is 

called ‘ageing’ of the contaminant. Therefore the bioavailability of a pollutant is linked 

to its persistence in an environment (Vandyke et al., 1991). 

PAHs are chemicals with low water solubility that are resistant to biological, 

chemical and photolytic breakdown. The higher the molecular weight of the PAH, the  
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lower its solubility, and due to lower solubility, the accessibility of PAHs compounds 

during the metabolism by the microbial biota is lower (Fewson, 1988). Various 

surface-active agents for example, surfactants or detergents, help in release of PAHs 

from the surface of minerals and organic matter. These can be monitored as microbial 

respiration rates (mineralisation) of 14C-labelled contaminants, the bioluminescence of 

microorganisms such as lux microorganisms and/or lux-tagged pollutants. The surface 

active compounds contain both a hydrophobic and hydrophilic moiety. A ‘bridge’ 

between the hydrophobic PAH molecule and the hydrophilic microbial cell is formed 

due to these hydrophobic and hydrophilic moieties and this maintains the 

bioavailability (Bamforth & Singleton, 2005a).  

 

2.26.5   Salinity 

The mineralization of phenanthrene and naphthalene in fine soil sediments is 

positively correlated with salinity and the rate of mineralization. It has been reported in 

general that correlation decreases with the increase in salinity. In a study of soil 

containing salt in high quantities, it has been shown that rates of hydrocarbon 

metabolism decreased with increase in salinity in the range of 3.3 to 28.4% and the 

results are attributed to a general reduction in microbial metabolic rates (Leahy & 

Colwell, 1990). Thus, there are few published studies which deal with effects of 

salinity on the microbial degradation of hydrocarbons. 

 

2.26.6   Water activity 

The water activity or water potential of soils can range from 30% to 45% water 

saturation.The hydrocarbon biodegradation in an acidic soil may therefore be limited 

by the available water for microbial growth and metabolism. 
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2.26.7 pH 

For bioremediation, most of PAHs contaminated sites are not at the optimal pH. For 

example, treated workplaces sites frequently hold substantial amount of destruction 

waste such as concrete and brick. Leaching processes will however, increase the pH of 

the soil and result in limited favourable conditions for microbial metabolism. On the 

other hand the oxidation and leaching of coal will create an acidic environment by the 

release and oxidation of sulphides (Kastner et al., 1998). As the pollutants are 

frequently linked with the pH of contaminated sites, the indigenous microorganisms 

may not be able to transform PAHs under the prevalent acidic or alkaline conditions. 

Therefore, it is common practice to adjust the pH at these sites, for example by the 

addition of lime (Alexander, 1995). Many pollutants determine the fate of soil pH, 

However soil acidity is also affected by microbial activity, where fungi are found to be 

more active in acidic pH while bacteria tend to be active in neutral/alkaline pH (Brady 

& Weil, 2002). Few investigations show phenanthrene degradation, although bacterial 

and fungal growth is significant, since phenanthrene removal was only 40% at pH 5.5 

after 16 days, whereas at neutral pH values, phenanthrene removal was 80%. If an acid 

pH is considered as an important abiotic factor that requires lime, suggests that 

consortium of both fungi and bacteria are necessary to accomplish removal (Kastner et 

al., 1998). These findigns show that future research would benefit from the isolation 

and characterisation of PAH degrading microorganisms from both acidic and alkaline 

environments. 

The degradation of PAHs can be enhanced and carried out faster by optimising the 

pH conditions. The various findings related to pH of soil at various contaminated sites 

indicate that in situ microorganisms are tolerant of the site conditions. These may also 

have the potential to metabolise PAHs in sub-optimal conditions (Bamforth &  
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Singleton, 2005a). Most heterotrophic bacteria and fungi favour a pH near neutrality, 

with fungi being more tolerant of acidic conditions. Extremes in pH, as can be 

observed in some soils, would therefore be expected to have a negative influence on 

the ability of microbial populations to degrade hydrocarbons (Leahy & Colwell, 1990). 

Low water solubility and dissolution rates of hydrophobic substrates are always 

limiting factors during the process of biodegradation. The rate of mass transfer can be 

enhanced in order to increase the degradation rate.  However, the mass transfer can be 

achieved by the use of small substrate particles, thereby increasing the surface area and 

resulting in a higher dissolution rates (Tiehm, 1994). 

 

2.26.8  Soil pH determination 

Soil pH is determined by electrometric and colorimetric methods. These methods 

are found to be rapid and accurate. 

 

 

 Fig. 14: Soil and other materials approximate pH ranges (Chesworth, 2008). 
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Table 3: Interpretation of field pH 

Field pH rating Soil pH Field interpretation 

Extremely acid 4.0 Free acid present, oxidation of iron sulphides 

(FeS2) to sulphuric acid (H2SO4). 

Strongly acid 5.0 

5.5 

Soluble aluminium (Al3+) present 

Moderately acid 6.0 Common range of soil pH for crop production 

on non-calcareous soils. 

Slightly acid 6.5 Exchangeable cations dominated by Ca2+, 

Mg2+ and K+ 

Neutral soil pH 7.0  

Slightly alkaline 7.5  

Moderately 

alkaline 

8.0 Free CaCO3 can be present 

Strongly alkaline 8.5 Sodic soils with potential for excessive Na+ 

(Chesworth, 2008). 

 

2.27  Liming process in soil 

 The liming process is the use of calcium and magnesium to enrich soil by the 

addition of different substances such as limestone, hydrated lime, and chalk. These 

substances help neutralise the soil acidity and increase the soil activity suitable for 

microorganisms (Chesworth, 2008). 

 Soil pH is affected by several factors such as decomposition of organic matter, 

precipitation, native vegetation, nitrogen fertilization and flooding. Lime reduces soil 

acidity with respect to Ca+ ion and lime replaces two H+ ions on the cations exchange  
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complex. The H+ ions combine with OH- (hydroxyl) ions to form water. The pH 

increases because the acidity source (H+) has been reduced; 

 

                   H+                                                                                       Ca ++ 

                              + CaCO3                                                              +    H2O    +   CO2 

  

                           H+                       (lime)                                     (water)               

 

The more mixing of lime to the soil, the more efficient is the neutralization of soil 

acidity (Chesworth, 2008). Various sites are contaminated by different pollutants like 

pentachlorophenol, diesel oil, herbicides, poly aromatic hydrocarbons (Kastner et al., 

1998) petroleum products (Balba et al., 1991) and munitions compounds (Funk et al., 

1997). These contaminated sites are mainly cleaned by endemic or added microbial 

cells by degradation of these dangerous chemicals. Further techniques like photo-

catalytic oxidation are carried out to enhance the degradation process or as an initial 

step towards degradation. Besides, the addition of microorganisms in soil might exhibit 

low degradative activity due to high concentrations of polluting chemicals (Awasthi et 

al., 2000).  

Soil Soil 
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3.0 Generic materials and methods 

3.1 Experimental soil 

  Commercially available J. Arthur Bower’s topsoil (J. Arthur Bower’s Ltd.) was 

used throughout the experiments. The reason for using J. Arthur Bower’s topsoil was 

to provide a constant soil of neutral pH for all experimental studies. 

  Table 3.1: Characteristic of experimental soil 

Characters Content 

Soil Name    J. Arthur Bower’s topsoil    

pH         7 

Water holding capacity  (WHC)        41% 

Sand content        10% 

Silt content        75% 

Clay content        15% 

 

3.2 pH adjustment of soil 

The pH of J. Arthur Bowers topsoil is 7.0. This study required soil pH of 4.0, 4.5, 

5.0, 5.5, 6.0, 6.5, 7.5, 8.0 & 8.5 respectively. For pH adjustment 1 M HCl (Sigma) and 

Na2CO3 (0.01 M) (sigma) were prepared, mixed with 10 ml of distilled water and 5 g 

of soil in centrifuge tube, was vortexed for 2 min, left at room temperature for 30 min 

and added to the soil to make J. Arthur Bower’s topsoil more acidic and basic (Kastner 

et al. 1998).  

Similarly, the pH adjustment was confirmed with 1000 g of soil and the amount of 1 

M HCl (Sigma) and 0.01 M Na2CO3 (Sigma) required to adjust the pH was monitored. 

 

3.3 PAHs standard solution preparation 

In this study phenanthrene, anthracene, fluoranthene and pyrene purchased from  
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Sigma-Aldrich Germany, were used throughout experimental work as model PAHs. A 

standard curve was plotted using the following concentrations 50, 40, 30, 20, 10 ppm 

and 1ppm respectively. Each of these individual PAHs 100 mg was dissolved in 

1000ml of acetonitrile to make 100 ppm of standard stock solution which was further 

diluted to 50, 40, 30, 20, 10 ppm and 1 ppm concentrations to produce a standard curve 

for HPLC analysis. Carbazole (Sigma) was used as an internal standard.  

 

3.4 Preparation of PAHs solution 

The PAH compounds used in the experiments exist as crystalline solids at room 

temperature. 100 mg of each PAH was added to 1000 ml of n-hexane and used to 

contaminate J. Arthur Bowers topsoil giving a final concentration of 100 ppm.  

 

3.5 Contamination of soil with PAHs solution 

The weight of the pots containing J. Arthur Bower’s topsoil before adding the n-

hexane along with PAHs was measured. J. Arthur Bower’s topsoil containers 

contaminated with these four PAHs were kept overnight in a fumehood in order to 

evaporate the n-hexane. The weight of the soil was measured that until dry to ensure n-

hexane was completely evaporated. 

 

3.6 HPLC analysis 

 An HPLC pump Dionex P680 (Dionex) was connected with UV detector (UVD 

170 U) (Dionex) set at 252 nm, also the pump and detector was connected to a 

computer equipped with Chromeleon chromatography management software version 

6.6. The Chromeleon chromatography software was used for quantification of PAHs 

throughout the experiment. A 4 µm particle size silicon column (C16 and C18) of  
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35cm length was used with a mobile phase of 90% acetonitrile and 10% of HPLC 

grade water (de-ionized water) with the flow rate set isocratically at 0.8 ml/min. PAH 

concentrations in samples were calculated against standard curves and the percentage 

of PAH remaining in the soil samples were calculated using the internal standard as a 

correction factor. The mean values were calculated for replicates and standard 

deviations were quantified. Remaining PAH percentages were calculated by dividing 

the PAH residue concentration by the PAH original concentration. 

 

3.6.1 Mobile phase preparation for HPLC 

Acetonitrile: de-ionised water (milli-Q water) was used in a ratio of 90:10 and 

degassed under vacuum. Fresh mobile phase was prepared daily to run the HPLC 

samples. 

 

3.6.2 Preparation of extraction solvent 

 Extraction solvent was prepared using Carbazole (200 mg) dissolved in 1 litre of 

acetonitrile. 1.5 ml of extraction solvent was added to 0.5 g of soil sample prior to 

extraction. 

 

3.6.3 Extraction method 

 Extraction was carried out using bench top rotor (Sigma Aldrich) for 15 mins. The 

samples were centrifuged for universal rpm and supernatant was transferred to fresh 2 

ml Eppendrof tube for HPLC analysis. 

 

3.7 Statistical analysis 

 The data obtained from experiments were used for statistical analysis. The final  
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graphed values are represented as mean (Standard deviation) SD. Statistical analysis 

was carried out performing calculations, analyzing and visualizing data in SPSS 

Statistic version 16.0. And all the graphs were plotted in Microsoft office Excel 2007 

and graph pad prism.  

Data analyses were carried out using SPSS Statistic version 16.0. Least significant 

difference (LSD) and Tukey’s HSD between two different wavelengths was calculated 

using variance post hoc test in SPSS analysis. Post hoc test including LSD (least 

Significant difference) and Tukey’s HSD at the different time points and each 

individual pH was performed using SPSS Statistics version 16.0. 
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Chapter: 4.0  

Photo-catalytic oxidation of PAHS 
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Aim: To study the effect of soil pH on photo-catalytic degradation of polycyclic 

aromatic   hydrocarbons (PAHs). 

4.1 Introduction  

In the natural environment, PAHs undergo an important reaction called photolysis 

(Sigman & Zingg, 1994; Sigman et al., 1998). Photocatalysis (also called photolysis) is 

a process which uses catalysts such as Titanium dioxide (TiO2) which facilitates 

photoreaction in order to degrade the toxic compound. TiO2 a photo-catalyst is a 

chemical compound that, in presence of various wavelengths of UV light becomes 

highly reactive. TiO2 induced photo-catalytic degradation of a variety of organic 

substrates is gaining attention due to its potential to degrade PAHs, specifically the 

PAHs in the environment (Wen et al., 2002).  

  Photo-catalytic oxidation (PCO) of PAHs occurs either in solution or in solid phase 

and also when catalyst is adsorbed onto solid substances. However, recently it has been 

investigated that photo-catalytic degradation of PAHs may occur in aqueous TiO2 

suspensions (Wen et al., 2002). It has been found that when aromatic compounds are 

exposed to UV light, partially oxidised intermediates of the aromatic compounds are 

produced which are more susceptible to degradation than their parent compounds. 

Because of this property of aromatic compounds, photo-degradation has been 

recommended as an early stage strategy for biodegradation (Mueller et al., 1997). 

Photo-degradation of PAHs in the presence of a catalytic solution is considered as an 

oxidative process which has been further augmented in the presence of photo-inducers. 

The polarity of the solvent is directly proportional to the rate of the degradation 

process hence, the higher the polarity of the solvent, the faster the degradation process.  

Thus, PAH photo-decomposition initiated by photo-ionization results in the production 

of PAH radical cations and hydrated electrons which further destroy PAH in the 
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presence of water (Zeep & Schlotzhauer, 1979; Zepp, 1982). PCO, one of the many 

advanced oxidation processes, relies on the generation of •OH by photo-catalysts (e.g. 

titanium dioxide semiconductor, TiO2) to trigger oxidative degradation (Zhang et al., 

2008). TiO2, a semiconductor can be used in photo-catalysis  when exposed to 

ultraviolet (UV) light irradiation, due to its ability to transfer electrons  and  promote 

oxidation or reduction which plays a vital role in photo-catalysis (Zhang et al., 2008). 

  A number of studies on the adsorption of PAHs on silica, alumina and other 

surfaces have been reported. However, the present work focuses on the possible 

advantages of various photo-catalytic processes using TiO2 for the degradation of 

PAHs present in soil. 

 

Fig. 4.1: Photo-catalysis in presence of catalyst:  
The energy from light/UV light in presence of catalyst gets charged and de-toxicify 
with oxidation reactants: hydroxyl radicals and superoxide anions. This reactance 
decomposes toxic organic substances through oxidation (eco-cleanse.net). 
 
  Under UV irradiation (figure 4.1), TiO2 particles absorb UV light whose energy is 

equal or greater than 3.2 eV of the band gap energy and generate electron/hole pairs 

(Eq. (1). Holes (h+) in the valence band are subsequently trapped by OH- ions or H2O 

to yield OH- radicals (Eq. (2), while the electrons (e) in the conduction band are 
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trapped by pre-adsorbed O2 molecules to yield superoxide radicals (O2 species) which 

can interact with protons to generate OOH radicals (Eqs. (3) (Zhang, 2006). 

Equations: 

1) TiO2 + h√                        TiO2 (e-
cb  + h+

vb) 

2) h+ + H2O (or OH- surf.)                √OH + H+ 

3) e-
cb + O2                   O2

√− 

4) O2
√− + H+                  √OOH  

Strong oxidation activity is represented by the electron-hole, OH-, and OOH-. 

Almost all of the organic compounds can be completely mineralized due to such a 

strong oxidation activity. One of the most preferred or important research process, 

photo-catalytic oxidation, depends on generation of OH- by a photo catalyst in the 

presence of catalyst (e.g. titanium dioxide, TiO2) in order to perform oxidative 

degradation under UV irradiation. Thus, in a photo-catalytic process, OH- and/or OOH- 

radicals play a vital role and thereby reaction occurs directly between the electron/hole 

pair and organic substrate on the surface (Woo et al., 2009). 

However, very few studies have investigated the photo-catalytic degradation of 

PAHs on soil surfaces using TiO2 as the catalyst under UV irradiation. Investigating 

photo-catalytic degradation using a catalyst under varying abiotic conditions 

particularly soil pH, to enhance the degradation process is one of the objectives of this 

particular study. 
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4.2 Materials and methods  

4.2.1 Chemicals 

The test PAHs, namely phenanthrene (PHE), anthracene (ANT), fluoranthene 

(FLU) (Sigma) and pyrene (PYR) (Fluka) were used throughout the experiment. 

Acetonitrile (HPLC grade), n-hexane was the solvent used (Fisher Scientific, UK). 

Particles of TiO2 were purchased from Sigma Aldrich, UK. 

Table 4.1: pH adjustment of Arthur Bower’s topsoil 

Soil 
pH 

Acidic pH  
Amount of 1M HCL 

Basic pH  
Amount of 0.1M Na2CO3 

pH 5 260 µl + 10ml de-ionized water + 
5 g of soil 

- 

pH 
5.5 

190 µl + 10ml de-ionized water + 
5 g of soil 

- 

pH 6 132 µl + 10 ml de-ionized water + 
5 g of soil 

- 

pH 
6.5 

90 µl + 10 ml de-ionized water + 5 
g of soil 

- 

pH 7 
 

-original pH -original pH 

pH 
7.5 

- 40 µl + 10 ml de-ionized water + 5 
g of soil 

pH 8 - 54 µl + 10 ml de-ionized water + 5 
g of soil 

pH 
8.5 

- 80 µl + 10 ml de-ionized water + 5 
g of soil 

pH 9 - 98 µl + 10 ml de-ionized water  + 5 
g of soil 

Based on table 4.1, calculations were performed for larger volume (120 g) of 

experimental soil samples. 
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4.2.2 Standard curve for photo-catalytic oxidation 

a) PAHs standard solution:  

In this experiment phenanthrene (Sigma Aldrich), anthracene (Sigma Aldrich), 

fluoranthene (Sigma Aldrich), pyrene (Fluka) were used as model PAHs. A standard 

curve was made using the following concentrations 50, 40, 30, 20, 10 ppm and 1 ppm 

of each PAH. 100 mg of each of these individual PAHs were dissolved in 1000 ml of 

acetonitrile to make 100 ppm of standard stock solutions which were further diluted to 

produce a standard curve for HPLC analysis. Carbazole (Sigma Aldrich) was used as 

the internal standard. 
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Fig. 4.2 Schematic representation of experimental design 

 

 

 

 

 

 

 

 

 

 

 

 

 

10g of experimental soil was transferred in each petri-dish in 5 replicates                                                                       

                                                                         

                                     Photo degradation chamber 

 0.5g of soil samples for HPLC analysis were removed 

To determine microbial growth in soil samples 

Control soil in petri-dish 
covered with aluminium foil 

 

Experimental soil in petri-dish 
exposed to UV light 

20 g of soil 
+ 20 ml n-
hexane + 
400 ppm 
PAHs 
 

20 g of soil 
+ 20 ml n-
hexane + 
400 ppm 
PAHs 
 

Kept in fume-hood in order to evaporate n-hexane   +   Addition of TiO2     +  pH adjustment of soil samples 

20 g of soil 
+ 20 ml n-
hexane + 
400 ppm 
PAHs 
 

20 g of soil 
+ 20 ml n-
hexane + 
400 ppm 
PAHs 
 

20 g of soil 
+ 20 ml n-
hexane + 
400 ppm 
PAHs 
 

20 g of soil 
+ 20 ml n-
hexane + 
400 ppm 
PAHs 
 
 

20 g of soil 
+ 20 ml n-
hexane + 
400 pm 
PAHs 
 
 

20 g of soil 
+ 20 ml n-
hexane + 
400 pm 
PAHs 
 
 

20 g of soil 
+ 20 ml n-
hexane + 
400 pm 
PAHs 
 
 

pH 5 
20 g of 
soil+ PAHs 
 

pH 5 5 
20 g of 
soil+ PAHs 
 

pH 6 
20 g of 
soil+ PAHs 
 

pH 6 5 
20 g of 
soil+ PAHs 
 

pH 7 
20 g of 
soil+ PAHs 
 

pH 7 5 
20 g of 
soil+ PAHs 
 

pH 8 
20 g of 
soil+ PAHs 
 

20 g of soil 
+ 20 ml n-
hexane + 
400 ppm 
PAHs 
 

20 g of soil 
+ 20 ml n-
hexane + 
400 ppm 
PAHs 
 

pH4 5 
20 g of 
soil+ 
PAHs 
 

pH 8 5 
20 g of 
soil+ PAHs 
 

pH 9 
20 g of 
soil+ PAHs 
 

pH 4 
20 g of 
soil+ PAHs 
 

                 220 g of J. Arthur Bower’s topsoil 

           Heated at 900C for 2 days 

                       Sterilised soil by autoclaving for 15 mins 
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4.2.3  Photo-catalytic degradation of PAHs 

   See figure 4.2 for a schematic representation of the experimental design. 

      

4.2.4  Photo degradation chamber 

Photo degradation studies were performed in a chamber as shown in figure 4.2. The 

UV irradiation intensity was 1041_Wcm−2. The UV lamps (Phillips ATLD 20W, 

Model UVA, UVB and UVC) were set at wavelengths of 254, and 375 nm. 90 mm 

plastic petri dishes containing the experimental soil samples were placed under the UV 

light for photo irradiation. The distance between the lamps and soil samples was 120 

mm. Temperature within the chamber was maintained at 200C throughout all the 

experiments. 

 

4.2.5  Dissolution of PAH compounds and TiO2 as catalyst in J. Arthur 

Bower’s topsoil 

The PAH compounds used in these experiments exist as crystalline solids in a glass 

bottle at room temperature. 20 mg of each PAH was added to 20 ml of n-hexane in 500 

ml a sterile conical flask and used to contaminate 20 g of J. Arthur Bower’s topsoil 

giving a final concentration of 100 ppm.  

To study the influence of soil pH, the pH of PAH contaminated soil sample was 

adjusted to range from pH 4.0 to pH 9.0 at half pH intervals (as described in section 

4.2.1) and 2% aqueous TiO2 (Sigma Aldrich) was added. The weight of the pots 

containing J. Arthur Bower’s topsoil before adding the n-hexane along with PAHs was 

measured. J. Arthur Bower’s topsoil contaminated with PAHs were kept overnight in 

fumehood to evaporate the n-hexane. The weight of the soil was measured again to 

make sure n-hexane had completely evaporated until the contaminated soil was dried. 

All the processes were performed in a fumehood which was switched on.  
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4.2.6 Monitoring pH and moisture content of the experimental soil 

140 g of soil was transferred to seven different pots in order to monitor the pH of 

the soil along with PAH. Furthermore, deionised water was added to maintain a 30% 

moisture content of the soil and the pH was adjusted as described in section 4.2.1.  

 

4.2.7  Sampling analysis and sampling point 

From the eleven different pots containing soil of each pH treatment, 20 g of soil was 

transferred into five petri-dishes resulting in 5 replicates. All replicates were 

maintained at 200C in UV light chamber throughout the experiment. Treated samples 

from the Petri-dish were removed at 0, 24, 48, 72, 96, 120 hours respectively. 

 

4.2.8 Samples for HPLC analysis and PAH extraction 

 0.5 g of treated sample, from the 5 replicates of petri-dishes was transferred into 

1.5 ml Eppendorf tubes. PAHs were extracted from the soil by adding 1.5 ml of 

acetonitrile to the eppendorf containing 200 ppm carbazole as an internal standard to 

0.5 g of soil before analysis by HPLC. Samples were mixed well using round vortex 

mixer fitted with multi sample holder which holds a total of 12 samples (Sigma 

Aldrich) for 5 minutes prior to HPLC analysis. 

 

4.2.9 HPLC analysis 

 As described in section 3.6 (General materials n methods). 

 

4.2.10 Mobile phase preparation for HPLC 

 As described in section 3.6.1 (General materials n methods). 
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4.3  Results 

Photo-catalytic degradation of PAHs 

Objective: To monitor PAH photo-catalytic degradation rate in experimental soil 

at varying pH. 

 

4.3.1 HPLC analysis of PAH  

To study the effect of abiotic factors particularly soil pH on the rate of photo-

degradation, HPLC analysis was employed.  

 

Fig. 4.3: Standard Chromatogram for HPLC analysis of four PAHs (concentration 1 
ppm) and carbazole (20 ppm) with peak height against time. 
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Fig. 4.4: Standard chromatogram for HPLC analysis of four PAHs (concentration 
50 ppm) and carbazole (20 ppm) with peak height against time. 

 

Figures 4.3 and 4.4 show HPLC standards for 1 ppm and 50 ppm concentration of 

the four different PAHs dissolved in acetonitrile. The four PAHs present in the 

contaminated soil were also extracted using acetonitrile. Carbazole was the internal 

standard representing the first peak in both chromatograms at 20 ppm with a retention 

time of 8min. In figure 4.3 carbazole peak area was 300 mAU/min, similarly the peak 

area in figure 4.4 was 300 mAU/min with no difference in retention time. Therefore, 

constant results were found for carbazole. Phenanthrene follows carbazole with a 

retention time of 11 min and peak area of 30 mAU/min for 1 ppm and 700 mAU/min 

for 50 ppm. Anthracene is the third peak and second PAH to elute with a retention time 

of 12.5 mins. Anthracene, and phenanthrene peaks merge in both chromatograms 

before reaching the x axis. The split peak facility of the chromeleon software was 

implemented to statistically attribute peak area to these two PAHs. Anthracene at 1  
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ppm resulted in a peak area of 50 mAU/min and 1500 mAU/min for 50 ppm. The 

fourth peak and third PAH to elute was fluoranthene at 13 mins with a peak area of 

20mAU/min for 1ppm and peak area of 300 mAU/min for 50ppm with no differences 

seen in retention time. The final PAH to elute was pyrene with a peak area of 10 

mAU/min for the 1ppm concentration whereas the peak area for pyrene in 50 ppm 

concentration was 200 mAU/min.  

 

4.3.2 Standard graph for polycyclic aromatic hydrocarbons 

 
 
Fig. 4.5.  HPLC standard curve of  four PAH showing peak area against 
concentration. PAH used and their symbol abbreviations are (PHE) Phenanthrene; 
(AN) Anthracene; (FLU) Fluoranthene; (PYR) Pyrene 
 

The peak areas obtained from running standards of the four PAHs at 1 ppm, 10 

ppm, 20 ppm, 30 ppm, 40 ppm, 50 ppm were used to plot standard curves of peak area 

against the PAH concentration (figure 4.5). The chromeleon software was used to 

calculate a linear regression for each PAH (figure 4.5). All PAH have r2 (regression 

coefficient) values above 0.97 whilst the slope was estimated and displayed as Y 

values. The r2value was 0.987 for phenanthrene, 0.978 for fluoranthene, 0.979 for  



68 

 

pyrene and r2 values for anthracene was 0.983 respectively. The Y value was around 

35x for anthracene, 14x for phenanthrene, whilst fluoranthene and pyrene were much 

lower at 6.42x and 4.08x respectively. 

In order to have a full evaluation of the extraction efficiency of the four PAHs, 100 

ppm of each individual PAH was added to J. Arthur Bower’s topsoil and extracted with 

acetonitrile. The re-extraction efficiency of the four PAHs obtained from these samples 

ranged from 52.81 to 74.69 % (table 4.2).  

    

 Table 4.2: Extraction efficiency of four PAHs from J. Arthur Bowers topsoil 

 

 

 

 

 

 

 

 

 

 

 

 

 

PAH used Amount of PAH added 
(ppm) 

% efficiency for 
experimental values. 

Phenanthrene 100 74.69 

Anthracene 100 68.42 

Fluoranthene 100 64.98 

Pyrene 100 52.81 
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4.3.3 Degradation of polycyclic aromatic hydrocarbons over time 

Figures 4.6 to 4.13 exhibit the degradation curves obtained for the four different 

PAH in treated soil samples at varying pH under UV irradiation at 254 nm and 375 nm. 

PAH remaining is displayed as a percentage of the HPLC quantification results 

obtained after re-extraction at time 0. The control at both wavelengths exhibited little 

degradation figure (4.6 to 4.13 A) in contrast to the samples exposed to UV light figure 

(4.6 to 4.13 B). Greater degradation was more evident at 375 nm (figure 4.6 to 4.9) 

than 254 nm (figure 4.10 to 4.13) for all PAHs with a significance value of P<0.05 

obtained (Post hoctest including LSD and Tukey’s test). Phenanthrene showed the 

highest degradation followed by anthracene, pyrene and fluoranthene. At 375 nm 

phenanthrene was 80-85% degraded and around 60- 65% degraded at 254 nm. The 

photo-catalytic degradation rate of anthracene was slower than phenanthrene whilst its 

degradation rate generally increased at acidic pH with most rapid rate evident at pH 

6.5. At 375 nm anthracene was 75-80% degraded and at wavelength 254 nm 

degradation was 65-70%. Fluoranthene followed after anthracene was 70% degraded at 

375 nm and 65% at 254 nm. Around 65% degradation was observed for pyrene at 375 

nm and 60% degradation observed at 254 nm. 
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A)                                                        B)  

             
Fig. 4.6: Percentage phenanthrene remaining in J. Arthur Bower’s topsoil at 

different pH over time during exposure to UV light at 375 nm in the presence of 

TiO2. 

A): Percentage phenanthrene remaining in control samples not exposed to UV light. 
B): Percentage phenanthrene remaining in experimental sample exposed to UV light at 
375 nm. *P<0.05 indicates significant difference between control and experimental 
sample. 
 
A)                                                            B)       

                            
Fig. 4.7: Percentage anthracene remaining in J. Arthur Bower’s topsoil at different 

pH over time during exposure to UV light at 375 nm in the presence of TiO2.  

A): Percentage anthracene remaining in control samples not exposed to UV light. B): 
Percentage anthracene remaining in experimental sample exposed to UV light at 375 
nm. *P<0.05 indicates significant difference between control and experimental sample. 
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A)                                                         B) 

                            
Fig. 4.8: Percentage fluoranthene remaining in J. Arthur Bower’s topsoil at 

different pH over time exposure to UV light at 375 nm in the presence of TiO2. 

A): Percentage fluoranthene remaining in control samples not exposed to UV light. B): 
Percentage fluroanthene remaining in experimental sample exposed to UV light at 375 
nm. *P<0.05 indicates significant difference between control and experimental sample.  
 

       A)                                                         B) 

            
Fig. 4.9: Percentage pyrene remaining in J. Arthur Bower’s topsoil at different pH 

over time during exposure to UV light at 375 nm in the presence of TiO2. 

A): Percentage pyrene remaining in control samples not exposed to UV light. B): 
Percentage pyrene remaining in experimental sample exposed to UV light at 375 nm. 
*P<0.05 indicates significant difference between control and experimental sample. 
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A)                                                           B) 

       
Fig. 4.10: Percentage phenanthrene remaining in J. Arthur Bower’s topsoil at 

different pH over time during exposure to UV ligh at 254 nm in the presence of TiO2. 

A): Percentage phenantherene remaining in control samples not exposed to UV light. 
B): Percentage phenanthereneremaining in experimental sample exposed to UV light at 
254 nm. *P<0.05 indicates significant difference between control and experimental 
sample.  
 
A)                                                     B) 

           
 Fig. 4.11: Percentage anthracene remaining in J. Arthur Bower’s topsoil at 

different pH over time during exposure to UV light 254 nm in the presence of TiO2. 

A): Percentage anthracene remaining in 254nm control samples not exposed to UV 
light. B): Percentage anthracene remaining in experimental sample exposed to UV 
light at 254 nm. *P<0.05 indicates significant difference between control and 
experimental sample. 
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 A)                                                      B) 

          
 Fig. 4.12: Percentage fluoranthene remaining in J. Arthur Bower’s topsoil at 

different pH over time during exposure to UV light 254 nm in the presence of TiO2. 

A): Percentage fluoranthene remaining in control samples not exposed to UV light. B): 
Percentage fluoranthene remaining in experimental sample exposed to UV light at 254 
nm. *P<0.05 indicates significant difference between control and experimental sample. 
  
A)                                                        B) 

    
Fig. 4.13: Percentage pyrene remaining in J. Arthur Bower’s topsoil at different pH 

over time during exposure to UV light at 254 nm in the presence of TiO2. 

A): Percentage  pyrene remaining in control samples not exposed to UV light. B): 
Percentage pyrene remaining in experimental sample exposed to UV light at 254 nm. 
*P<0.05 indicates significant difference between control and experimental sample. 
 

Degradation rate was studied using HPLC for each PAH by calculating the 

remaining percentage of individual PAH. Phenanthrene, anthracene, fluoranthene and 
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pyrene percentage were constant in all controls with very low degradation rates 

observed not exposed to UV irradiation. Greater degradation was observed at 375 nm 

compared to 254 nm with significance P<0.05.  Time 0, was plotted at 100% in order 

to show the remaining percentage of individual PAHs in soil pH.   

Table 4.3: Degradation of polycyclic aromatic hydrocarbons effect of soil pH over 

time. 

 Highest degradation 

rate 

Lowest degradation 

rate 

Wavelength 375 nm 254 nm 375 nm 254 nm 

Phenanthrene pH 6.5 pH 6.5 pH 8 pH 8.5 

Anthracene pH 6.5 pH 6.5 pH 9 pH 8 

Fluoranthene pH 6.5 pH 6.5 pH8 pH 9 

Pyrene pH 6.5 pH 6.5 pH 9 pH 9 

It was demonstrated in this study that photo catalytic degradation rates were greater 

in acidic soil pH (pH 5.0, 5.5, 6.0, 6.5) when compared to alkaline soil pH (7.5, 8.0, 

8.5, and 9.0) and neutral soil pH (7.0) for each of individual phenanthrene, anthracene, 

flouranthene and pyrene. In figure 4.6-4.13, pH 6.5 exhibits greater degradation rate 

followed by pH 5.5, pH 6.0, pH 5.0, pH 4.5 and pH 4. However, at alkaline soil pH 

lower degradation rates were evident. Among alkaline soil pH greater degradation was 

measured in pH 7.5 followed by pH 8.5, pH 8.0 and pH 9.0.  

Thus, UV irradiation by two different wavelengths in experimental soil in the 

presence of TiO2 resulted in greater degradation at soil pH<6.5, whereas lower 

degradation resulted under alkaline conditions pH>6.5. 

In general, results obtained during photo-catalytic degradation exhibited high 

influence on soil pH with highest rate of degradation obtained for low-molecular 

weight (LMW) PAH (phenanthrene and anthracene) when compared to high molecular 

weight PAH (fluoranthene and pyrene). 
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4.4 Discussion 

Objective: To monitor PAH photo-cataytic degradation rate in experimental soil 

at varying pH. 

Soil pH is one of the most important factors that influences the degradation 

processes in soils (Ferrarese et al., 2008).  

 

4.4.1 Standard chromatograms for HPLC 

Standard curves were prepared using the HPLC analysis. Carbazole was used at the 

same concentration (20 ppm) in all experiments as an internal standard to monitor 

reproducibility of results. Concentrations of PAHs used for standard curves were 

1ppm, 10 ppm, 20 ppm, 30 ppm, 40 ppm, 50 ppm respectively; as the concentration in 

experimental samples would not reach levels above 50 ppm and the lower limit of 

detection is in the region of 1 ppm. 

The peaks appearing on the chromatogram were observed based on the number of 

rings and molecular weights of the PAHs. The order of peaks was phenanthrene 

followed by anthracene, fluoranthene and at last pyrene. The peak of phenanthrene and 

anthracene appear to be merged in the chromatogram (section 4.3.1 in figure 4.3 & 

4.4). The split peak facility of the chromeleon software was implemented to separate 

the peaks of the two PAHs (phenanthrene and anthracene) and was reproducible with 

standard PAH solutions. Anthracene resulted strong signals and appeared with larger 

peaks due to the linearity of the molecule as UV detection is greater for linear 

molecules (Irwin et al., 1997).  

Phenanthrene and anthracene are three ring compounds with molecular weight of 

178.23 and appear before fluoranthene and pyrene (molecular weight 202.26) (Haritash 

& Kaushik, 2009). Although, anthracene and phenanthrene are stereoisomers, 
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anthracene is a linear molecule while phenanthrene is non-linear, resulting in an 

anthracene being more hydrophobic and thus eluting from the column a little slower in 

the 90:10 acetonitrile: deionised water mobile phase. Peak area of anthracene at a 

particular retention time gives better symmetry to the molecule which consequently 

leads to less solubility in extraction solution. Therefore, in general anthracene is 

expected to degrade slower than phenanthrene followed by fluoranthene and then by 

pyrene based on their solubility/ hydrophobicity and molecule size (Song et al., 2002). 

In addition to this, phenanthrene has low molecular weight and is a three ring 

compound with high solvent solubility (Irwin et al., 1997). Whereas, fluoranthene and 

pyrene have lower solvent solubility (Haritash & Kaushik, 2009). Pyrene is a fused 

four ring compound with very low extractability. The low solvent extractability of 

pyrene might be due to its high hydrophobicity (sorption partition coefficient log Koc: 

4.88; water solubility= 0.13 mg l-1) (Irwin et al., 1997). 

 

4.4.2  Standard curve 

With respect to chromatogram obtained in the results displayed in figure 19, a 

standard curve was constructed to study the PAHs peak area in the standard solution 

based on their retention time. A linear standard curve (figure 4.5) was produced for 

each PAH with the regression coefficient of 0.97 for phenanthrene, 0.97 for 

fluoranthene, 0.97 for pyrene and 0.98 for anthracene. The value of the regression 

coefficient obtained for each calibration curve shows that the correlation between 

relative peak area and concentration was linear and reproducible within selected 

concentration range. The Y value representing linear regression equation for 

phenanthrene was 14.32x and for anthracene was 35.12x, whilst for fluoranthene and  
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pyrene the values were much lower at  6.42x and 4.08x respectively. Thus, the data 

obtained from standard chromatogram were reliable and accurate (figure 4.5).  

 

4.4.3 Extraction efficiency 

Contaminated J. Arthur Bower topsoil was used to examine the extraction 

efficiency (table 4.2) of the PAHs using HPLC analysis. All four PAHs were extracted 

with the greatest extraction rate found for phenanthrene (table 4.2). The total PAH 

recovered was phenanthrene 74.69%, anthracene 68.42%, fluoranthene 64.98%, and 

pyrene 52.81%. The extraction efficiency of phenanthrene was highest and of pyrene 

was the lowest. Alef & Kleiner, (1987) has suggested different extraction efficiency 

might be due to the poor contact of solvent and soil. PAHs with high-molecular weight 

may have stronger adsorption and formation of non-extractable residues especially 

within a complex substrate such as soil (Song et al., 2002). Recovery obtained for 

phenanthrene and pyrene was consequentially different. In general, relative recovery 

rates obtained for each PAH were as expected as the molecular weights of 

phenanthrene and anthracene are the same and for fluoranthene and pyrene are the 

same. However water solubility and molecular structures are different with greater 

linearity for anthracene and pyrene resulting in reduced solubility compared to 

phenanthrene and fluoranthene respectively (Song et al., 2002). Phenanthrene and 

anthracene are three ring compounds with molecular weight of 178.23 and 

fluoranthene and pyrene are four ring structures (molecular weight 202.26) (Haritash & 

Kaushik, 2009). Recovery rates obtained for each individual PAH correlates with the 

number of aromatic rings and molecular weight of the PAHs. 
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4.4.4 Photo-catalytic degradation 

Soil pH is considered as an important parameter due to amphoteric nature of most 

semiconductor oxides. The surface-charged particles present in the soil in presence of 

catalyst are influenced by the photo-semiconductor particles (Kot-Wasik et al., 2004). 

Therefore, the effect of pH on rate of photo catalytic degradation needs to be 

considered.  

UV irradiation accelerated the photo degradation of phenanthrene, anthracene, 

fluoranthene and pyrene in this study. Some studies suggest that naphthalene, 

acenaphthene, anthracene, fluoranthene all undergo efficient photo-catalytic 

degradation by TiO2 (Das et al., 1994, Wen et al., 2005). Studies reported by Hoffman 

et al., (1995) indicated that when TiO2 is irradiated with light energy greater than its 

band gap energy (3.2eV), induction (b) and electron (e-) and valence band holes (h+) 

are generated. Thus, organic compounds reduces or react with electron acceptors such 

as O2, reducing it to superoxide radical anion O2
•- with the help of the photo-generated 

electrons. The H2O molecules which are photo-generated holes are adsorbed to OH- 

radicals at the surface of TiO2 (Hoffman et al., 1995). On the basis of adsorption of 

H2O molecules photo-catalytic processes using TiO2 could be an effective photo 

catalytic detoxification method for PAH contaminated soil. 

This study demonstrated that photo-catalytic degradation rates were higher in acidic 

soil and lower in alkaline soil than in neutral soil for phenanthrene, anthracene, 

fluoranthene and pyrene. This is supported by the work of Zhang et al., (2008) who 

suggested that H+ was favourable for high molecular weight PAH degradation using 

TiO2 under UV light, however the same study also suggested that OH- made low 

molecular weight PAHs (example: phenanthrene) become more degradable. Similar 

results for PAH photo-catalytic degradation was found by Funk et al., (1997). 
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 Moreover, the lack of degradation at high pH is supported by the work of Zhang et al., 

(2008) who reported that in pesticide contaminated soil, “raising soil pH by adding 

Ca(OH)2 did not significantly alter the photo-catalytic degradation of Diuron when 

compared to the soil that received no lime.” 

In this study, higher degradation rates were obtained of phenanthrene and lower 

degradation rates of pyrene. Similar results were indicated exhibiting high molar 

absorptivity and disappearance quantum yield for phenanthrene and pyrene as 

suggested by Hoffman et al., (1995). The most efficient degradation of PAHs in 

various contaminated sites is recorded with UV irradiation in presence of the catalyst, 

TiO2 (Wilson & Jones, 1993). In these studies, photo-catalytic oxidation degradation 

was carried out at varying soil pH at 375 nm and 254 nm respectively. The control (soil 

samples with TiO2 not exposed to UV light) at both wavelengths exhibited little 

degradation (figure 4.6 A to 4.13 A) in comparison to the samples exposed to UV light 

(figure 4.6 B to 4.13 B). During photo-catalytic degradation, 375 nm resulted in greater 

degradation of each individual PAH compared to 254 nm. Phenanthrene had the 

highest degradation followed by anthracene, pyrene and last fluoranthene at 375 nm. 

Phenanthrene exhibited 65% of degradation after five days and 60- 65% was degraded 

at 254 nm.  

The photo catalytic degradation rate of anthracene was slower than phenanthrene 

whilst its degradation rate generally increased with acidic pH with most rapid rate 

evident at pH 6.5. At 375 nm anthracene exhibited 55-60% degradation and at 254 nm 

degradation was 55-60%. Degradation of fluoranthene followed after anthracene 

exhibiting 60% degradation at 375 nm and 45% at 254 nm. Around 45-50% 

degradation rate was observed for pyrene at 375 nm and 45% degradation observed at 

254 nm. 
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In all figures (section 4.3.4) for photo-catalytic oxidation, it was observed that soil 

pH 6.5 gave the fastest rate of photo catalytic degradation in comparison to all other 

pH.  The second greatest rate of degradation was found at pH 6.0. Acid pH resulted in 

higher degradation rates compared to alkaline pH of soil. Comparatively acidic pH 

from 4 to pH 6.5 exhibited greater degradation as OH- and OOH- radicals which plays 

important role are highly generated, whilst little degradation was evident at neutral and 

alkaline pH 7.0 to pH 9.0 where, OH- and OOH- radicals might be less. Similarly, Han 

et al., (2005) reported consistently greater degradation of phenol in acidic soil pH 

during investigating photo-catalytic oxidation. However, the current investigation 

suggests soil pH is an important parameter that needs to be monitored in order to 

control the degradation as high pH led to low photo-catalytic degradation rates.  
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Aim: To study the effect of soil pH on biodegradation of polycyclic aromatic   

hydrocarbons (PAHs). 

5.1 Introduction  

Biodegradation is the chemical dissolving of organic and non-organic pollutants by 

use of micro-organisms or other biological agents (Das et al., 1994). In recent years, 

biodegradation of pollutants by microbes has received significant interest as mankind 

attempts to reduce contamination and construct a pollution free environment. Various 

pollutants are transformed by microbial populations through enzymatic or metabolic 

processes during biodegradation (Leahy & Colwell, 1990). In a biodegradation process 

the final end product obtained is either carbon dioxide or methane. In the environment, 

natural populations of bacteria and fungi carry out biodegradation of hydrocarbons to 

produce these end products. It is one of the primary mechanisms which lead to the 

elimination of hydrocarbon pollutants. However, different environmental parameters 

restrict the degradation process (Leahy & Colwell, 1990).  

Biodegradation leading to bioremediation and biotransformation techniques have 

been shown to transform a large range of compounds including hydrocarbons, 

pharmaceuticals substances, polychlorinated biphenyls (PCBs), poly-aromatic 

hydrocarbons (PAHs) (Das et al., 1994). Degradation of hydrocarbons may be carried 

out aerobically and anaerobically (AL-Turki, 2007). Anaerobic degradation of 

hydrocarbons are reported to be scarce compared to aerobic degradation and most of 

the reports focus on small aromatic molecules (for example, benzene, toluene and 

xylene) (Smith, 1990). PAHs are important pollutants in the environment, (for 

example: phenanthrene is considered as human skin photo-sensitizer and mild allergen) 

and require rapid remediation.  The interest in understanding PAHs toxicity is due to 

the microbial population degradation reactions, physiochemical processes and fate of 
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these compounds in groundwater and soil sediments systems (Mrozik et al., 2003). 

Various micro-organisms carry out biodegradation of PAHs. To date 60 genera of  

bacteria and 80 genera of fungi have been shown to carry out degradation of 

hydrocarbons. Some of these species degrade aliphatic hydrocarbons, others degrade 

aromatic hydrocarbons and some are capable of degrading both aliphatic and aromatic 

hydrocarbon molecules (Whyte et al., 1997; AL- Turki, 2007). However, Boonchan et 

al., (2000) indicate various bacteria and fungi do not use PAHs as energy and carbon 

sources but co-metabolically transform these compounds to detoxified metabolites.  In 

their studies it was suggested that fungi detoxify PAHs polluted soils and sediments 

due to extracellular lignin-degrading enzyme production and thus, are capable of 

degrading some five-benzene-ring PAHs (Boonchan et al., 2000).  The first milestone 

in the biodegradation of high molecular weight (HMW) PAHs was reached in late 

1980s. Heitkamp & Cerniglia, (1988) were first to publish work on extensive 

degradation of PAHs with four aromatic rings from their studies on isolation of 

bacteria from the environment. In their studies, isolation of gram positive rod shaped 

bacteria from sediments collected from oil fields degraded HMW PAHs co-

metabolically. The PAHs included were fluoranthene, pyrene, 3-methylcholanthrene, 

6-nitrochrysense, and Benzo(a)Pyrene. Therefore, bioremediation may be a relatively 

easy and cost effective method to decontaminate polluted sites. Degradation carried out 

using microbial populations enhance biodegradation rate considerably (Eriksson et al., 

2003; Lal & Khanna, 1996). It has been suggested that optimal soil conditions and 

their maintenance regulates the survival of micro-organisms providing higher 

degradation rates (Hadibarata & Tachibana, 2009). The types of organisms involved in 

degradation demonstrate enormous adaptability and diversity by using different 

organic molecules as a sole carbon source and however, they have different abilities 
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depending on biomass and source of energy in order to carry out the degradation of 

specific hydrocarbons (Davies & Weestlake, 1979). 

 

5.1.1 Microbial biomass and soil ATP determination 

In order to investigate the effect of various environmental soil microbiological and 

biochemical processes, many researchers have used soil ATP (adenosine 5’-

triphosphate) and ATP related estimates (Naseby & Lynch, 1997; Wen et al., 2005). 

ATP content not only helps in measuring the biomass, but also can be used as an index 

of microbial activity in soil (Wen et al., 2005). 

Adenosine 5’triphosphate is the most labile constituent of cells that consists of a 6-

aminopurine base attached to β-D-ribofuranose due to a glycosidic linkage. Three 

phosphate groups are esterized by higher anhydride bonds to 5’-carbon of the ribose 

sugar. Also, due to the O-P-O-P-O-P backbone of triphosphate, it is positively charged 

and becomes unstable and a negative oxygen cloud around it repels itself. In general, 

the pyrophosphate bond carries the energy (Wen et al., 2005). Similarly, chemical 

reaction of extracellular ATP in soil is upgraded by organic complexes, inorganic 

compounds and enzymes. Thus, release from dead cells results in rapid hydrolysis of 

ATP (Webster et al., 1985).  

The amount of ATP is found to be different in all the research reported, which may 

be due to the different soil types used by different authors. Jenkinson & Oades (1979) 

reported values from 0.64 to 7.00 µg ATP g-1 soil, Nielsen & Eiland, (1980) 0.08-0.40 

µg ATP g-1 soil, 0.002-0.028 µg ATP g-1 soil and 0.11 µg ATP g-1 wet soil 

respectively. An easy, fast and reproducible technique without using any toxic reagents 

was suggested by Eiland, (1983) to determine the total amount of ATP in soil. 
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Various factors such as compound properties, soil characteristics and environmental 

factors and abiotic factors are highly responsible (Jones et al., 1989). Toxic pollutants 

(PAHs) are often localised in soil, however toxic pollutants released in to the 

atmosphere may become attached to molecules in air and settle in soil. Bioavailability  

of pollutants results in eco-toxicity and the degradation of hydrophobic organic 

pollutants is a major issue in soil (Hatzinger et al., 1995). Bio-degradation processes 

can be enhanced by considering the enzymes present in soil and their active role a 

varying pH values. Understanding of a range of enzyme activities in the ecosystem 

under different soil management practices may lead to an enhanced degradation 

process (Dick, 1994; Dick, 1992). Several soil metabolic processes have been 

determined with respect to enzymes present in soil.  Varying enzyme levels have been 

found due to soil type with different organic contents, composition, organisms present 

and intensity of the biological activities (Makoi & Ndakidemi, 2008).  

 

5.1.2 Enzymes produced by soil microorganisms 

Soil enzymes are proteins which catalyze different chemical reactions by increasing 

the rate of reaction. In a soil enzyme reaction, molecules at an initial level considered 

as substrates, are converted molecules are termed as products as shown in figure 5.1. 

Different types of chemical reactions in the biological systems of cell require enzymes 

to gain considerable rate.  

 

Figure 5.1: Enzymatic reaction process (Ruggaber & Talley, 2006) 



86 

 

  Various soil enzymes originate from different plants and organisms that grow in soil 

and a major origin of soil enzymes is generally from microbial populations present in 

soil (Baldrian et al., 2000). Enzymes in soil show variation or alteration due to various 

biotic and abiotic factors in environment. These factors include microbial 

communities, temperature, pH, nutrient availability and chemicals already present in 

soil (Chun, 20011; Kourtev et al., 2002). Enzymes at different range of temperatures 

may not respond with required high efficiency. 

White rot fungi secrete different types of enzymes. Secretions from white rot fungi 

maycontain lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase 

respectively. Each of these enzyme classes show different oxidative activities and are 

implicated as pollutant degraders (Bogan & Lamar, 1996; Baldrain et al., 2000). LiP 

enzymes are seen to be less effective during PAHs degradation, as in the absence of 

LiP different genera of white rot fungi, other than Phanerochaete have found to 

produce MnP and laccase activity. Similarly Ceriporiopsis subvermispora, Phlebia 

brevispora, Stereum hirsutum, Panus tigrinus, Rigidoporus lignosus and Ganoderma 

valesiacum are reported to follow the same pattern (Bogan & Lamar, 1996). Trametes 

versicolor producing laccase enzyme has been reported in effective degradation of 

anthracene and Benzo[α]pyrene (Collins et al., 1996).  

Soil pH is important for enzyme activity. Bonomo et al., (2001) reported enzyme 

activities that are effected due to soil pH. The electrostatic properties for enzyme 

surface reaction regardless of binding and catalysis, changes due to sensitivity of 

amino acid functional groups (Bonomo et al., 2001). For example crude laccase from 

Bacillus subtilis in dye decolourisation has optimum pH of 6.8 and temperature of 

600C. In contrast to laccase activity in fungi, activity of Bacillus subtilis WD23 also has 

high activity at alkaline pH 9.0 (Chun et al., 2011). This suggests that soil pH and 
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temperature are of importance in degradation. Most research carried out on fungal 

laccase activity indicated that optimal soil pH varies from 3 to 7 which depend on 

different fungal species (Sulistyaningdyah et al., 2004). The effect of soil pH on 

degradation of PAHs has been poorly documented and none of these studies have  

focused on the effect of soil pH on biodegradation of PAHs along with the enzyme 

activities and microbial biomass measurements by soil ATP content. A number of 

studies have been focused on degradation of PAHs with little work on limited soil pHs 

and no one covering a wide range of soil pH. Therefore, considering all the factor 

studies was conducted on soil pH effect. 
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5.2 Materials and methods  

5.2.1 Soil 

Commercially available J. Arthur Bower’s topsoil was used throughout the 

experiment. The reason for using J. Arthur bowers topsoil was to provide a constant 

soil of neutral pH for all experimental studies. 

  Table 5.1: Soil texture 

Soil Name pH Water holding capacity  (WHC) 

J. Arthur Bower’s topsoil 7 41% 

 

5.2.2 Moisture content of the soil 

Water-holding capacity is dependent on the organic matter in the soil and soil 

particle size. Normal field soil water-holding capacity is 60-80% of its total capacity; 

that is, 60-80% of the water filled pore spaces are filled. This corresponds to the 

optimal biological activity for water-holding capacity. When the water-holding 

capacity falls below 24-18%, organisms could suffer from dryness; and when the 

capacity is over 80%, they begin to suffer from a depletion of soil oxygen (Zhang et 

al., 2006). With respect to studies carried out, the J. Arthur Bowers topsoil was dried in 

an oven maintained at 900C for two days filled in two steel trays covered with 

aluminium foil. The moisture holding capacity of the J. Arthur Bowers topsoil was 

determined using the calculation described in appendix III section III.1. 

 

5.2.3  pH adjustment of soil 

The natural pH of J. Arthur Bowers topsoil is 7.0. This study required soil pH of 

5.0, 5.5, 6.0, 6.5, 7.5 & 8 respectively. For pH adjustment 1 M HCl and Na2CO3 (0.01 

M) (table 5.2) were added in 5 g of topsoil along with de-ionized water used to 
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maintain 30% of moisture content of the soil as mentioned in section 5.2.2 (Kastner, 

1998). Based on table 5.2, calculations were performed for larger volumes of 

experimental soil samples. 

Table 5.2: pH adjustment of J. Arthur Bower’s topsoil 

Soil pH Acidic pH  
Amount of 1M HCL 

Basic pH  
Amount of 0.1M Na2CO3 

pH 5 260 µl + 10 ml de-ionized 
water + 5 g of soil 

- 

pH 5.5 190 µl + 10 ml de-ionized 
water + 5 g of soil 

- 

pH 6 132 µl + 10 ml de-ionized 
water + 5 g of soil 

- 

pH 6.5 90 µl + 10 ml de-ionized 
water + 5 g of soil 

- 

pH 7 
 

-original pH -original pH 

pH 7.5 - 40 µl + 10 ml de-ionized 
water + 5 g of soil 

pH 8 - 54 µl + 10 ml de-ionized 
water + 5 g of soil 

pH 8.5 - 80 µl + 10 ml de-ionized 
water + 5 g of soil 
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5.2.4  PAH degradation experiment 

Fig. 5.2 Schematic representation of Experimental Design 

 

 

 

 

 

 

 

 

 
 
 
 
 Five replicates of conical flask containing 200 g of treatment soil for each individual pot of     pH 

From each flask 0.5 g of soil for HPLC analysis 

 1 g of soil to determine microbial cfu count 
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hexane + 100 
PAHs 
 
 

1000 g of soil + 
1000 ml n-
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soil + PAH 
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pH 5.5 1000 g of 
soil + PAH 
+microbes 

pH 6  1000 g of 
soil +PAH + 
microbes 

pH 6.5  1000 g of 
soil + PAH+ 
microbes 
 

pH 7 1000 g of 
soil + PAH + 
microbes 
 

pH 7.5  1000 g of 
soil + PAH + 
microbes 
 

pH 8  1000 g of 
soil + PAH + 
microbes 
 

pH 8.5  1000 g 
of soil + PAH + 
microbes 
 

To measure the soil enzyme assay 
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5.2.5 Biodegradation monitoring HPLC  

  Figure 5.2 is a schematic representation experimental design for the test samples 

(with microbial inocula). Similar, experimental design was performed for control 

samples (without microbial inocula). 

 

5.2.6 Dissolution of PAH compounds in J Arthur Bower’s topsoil  

As described in chapter 3, section 3.5 .  

 

5.2.7 Monitoring pH and moisture content of the experimental soil and 

addition of bacterial and fungal inocula 

1.6 kg of soil each was transferred in two different sterile trays and from each tray 

containing 1.6 kg of soil was further separated into 0.2 kg and transferred to seven 

different pots (as a control-without microbial inocula) and similarly 0.2 kg of sterile 

soil was transferred into seven different pots (as a test samples- with microbial inocula) 

to monitor the pH of the soil along with bacterial and fungal inocula. Deionised water 

was added to maintain 30% moisture content of the soil, pH adjusted as described in 

section 5.2.3.  

 

5.2.8 Inoculation of microbial inocula into experimental samples 

  The initial population of known count of bacteria and spores for fungi (obtained 

from isolates described in appendix I: sections I.3.6) was determined by spread plate 

technique to prepare inoculum. 1.1 kg of the contaminated soil was adjusted to pH 5, 

5.5, 6, 6.5, 7, 7.5, 8 and 8.5 each and adjusted to 30% water holding capacity (WHC) 

using sterile distilled water.  
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5.2.9 Sample analysis and sampling point 

From the seven different pots containing soil of each pH treatment, 200 g of soil 

were further transferred into 500 ml conical flasks covered with sponge bungs and 

replicated 5 times. All replicates were maintained at 200C in a dark incubator 

throughout the experiment. Samples from the conical flask were removed after 0, 1, 2, 

3, 4, 5, 6, 7 and 8 weeks. 

 

5.2.10 Samples for HPLC analysis 

  0.5 g of treated sample, from each of the 5 replicates were placed into 1.5 ml 

Eppendorf tubes. PAHs were extracted from soil by adding 1.5 ml of acetonitrile 

containing 20 ppm carbazole as an internal standard. Samples were mixed vigorously 

using a round vortex mixer fitted with multi sample holder which holds a total of 12 

samples (Sigma Aldrich) for 5 minutes prior to HPLC analysis. 

 

5.2.11 Samples for bacterial and fungal cfu count 

1 g of treated soil from each of the 5 replicates in conical flasks was added to the 

universal bottles containing 9 ml of ringer’s solution to perform serial dilution to 

quantify bacterial and fungal cfu per gram of soil. 

 

5.2.12 Samples for microbial activity 

2 g of treated soil from the 5 replicates of conical flasks were transferred in pairs 

(one marked as control) to 15 ml centrifuge tubes for each individual replicate (figure 

5.2). Moisture content was monitored every three days and water loss was 

compensated for by the addition of de-ionized water throughout the experiment 

(Kastner et al., 1998).  
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5.2.13 Samples for soil enzyme activity assay 

Soil samples from each replicate of each treatment were added to 15 ml centrifuge 

tubes in pairs (one marked as control- without microbial inocula and one as test 

samples- with microbial inocula) for various assays as described. 1 g of soil samples 

were measured for phosphatase extraction, 3 g of soil samples were measured for 

laccase extraction, 3 g of soil samples were measured each in centrifuge tubes for 

manganese peroxidase and lignin peroxidase enzyme extraction. 2 g of soil samples for 

L-argnine ammonification enzymatic extraction. Each of these samples was measured 

on a weekly basis starting from week 0 to the termination of the experiment. 

 

5.2.14 HPLC analysis 

As described in chapter 3, section 3.6. 

 

5.2.15 Preparation of standard samples for HPLC analysis 

As described in chapter 3, section 3.3. 
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5.2.16  Isolation of bacterial and fungal populations from experimental soil 

Objective: Quantify the bacterial and fungal c.f.u and identification of 

predominant isolates from varying soil pH. 

 

5.2.16a Bacterial strains and treatment: 

The bacterial strains used were isolated from PAH contaminated soils as mentioned 

in (appendix I: sections I.3.6). The six identified bacterial strains used as inocula were 

Pseudomonas putida strain, Achromobacter xylosoxidans, Microbacterium sp., Alpha 

proteobacterium, Brevundimonas sp., Bradyrhizobium sp.. The bacteria were 

introduced to a final concentration of 2 Χ 106 cells/g of soil. Constant numbers of 

bacteria populations were evaluated at 106 dilutions. These bacterial isolates were 

grown in nutrient broth in conical flask for 48 hours on a shaker (120 rpm).  The 

bacterial cells were collected by centrifugation (5000 rpm for 10 mins). Bacterial cells 

were washed twice with sterile water to remove excess nutrients and further used as 

inocula into the sterile soils for experimental samples. 

The bacteria were grown on nutrient agar (Sigma Aldrich) for 2 days at 280C and each 

plate subsequently was harvested in 10 ml of sterile distilled water using sterile glass 

spreader.  

 

5.2.16b Fungal culture inoculations into soil samples 

Two fungal identified strains Aspergillus niger and Penicillium freii were used as 

fungal inocula (appendix I: sections I.3.6). Fungal inocula were prepared by making 

suspension of spores from the old culture (grown on MEA in petridishes [2 Χ 104]) by 

washing it into 4 ml of sterile distilled water (SDW). The fungal mycelia were 
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removed by filtration from the spore suspension using sterile glass wool. Also, the 

concentration of the spores per volume of the suspension was estimated using 

haemocytometer (Fisher Scientific).  

 

5.2.17 Media and culture conditions 

Media and culture conditions used are described in appendix II section II.1 

 

5.2.18 Isolation method  

1 g of soil from the treated samples were taken with a spatula and added to 9 ml of 

sterile ringer’s solution. Dilution series of 10-1,10-2, 10-3, 10-4, 10-5 and 10-6 were made 

up by adding 1 ml of 10-n dilution and add to 9 ml  of autoclaved ringers solution to 

make up 10-(n+1) dilution. Each dilution (100 µl) was spread on bacterial and fungal 

plates in five replicates for each dilution series and incubated at desired temperatures. 

Bacterial plates were incubated at 280C for 48 hrs and fungal plates at 22 0C for 4 days 

(Loeffler, 2000). The known numbers of colonies obtained for a particular dilution 

were counted and the population per gram of soil was calculated.  
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5.2.19 Determination of Microbial Activity: (ATP concentration 

measurements) 

Objective: To study microbial activity in experimental soil over 70 day’s duration 

in the presence of PAHs. 

 

5.2.20 Soil ATP extraction 

7 ml of extraction buffer per gram of soil was transfered in a polyethylene 

centrifuge tube and was mixed well. All the samples were sonicated for 2×30 sec on a 

sonicator (Heat systems, Ultrasonic processor, Model, XL2015) set at level 5. The 

samples were on ice during and after the sonication procedure. After the sonication 

step all the samples were kept on rotator shaker (15000 rpm) (Sigma) for 30 min at 40C 

following by centrifugation was carried out for 20 mins at 15000 rpm at 40C. 

Table 5.3: Extraction buffer:  

Reagents Constituents per ml 

Phosphoric acid 0.066 ml 

Urea 120 mg 

DMSO 0.2 ml 

Adenosine 1.8 mg 

EDTA 7.84 mg 

Polyethylene  10 Lauryl ether 7.5 µl 

Antifoam 0.0075 ml 

                (Webster et al., 1985) 
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5.2.21  Sample treatment and measurement 

0.2 ml of sample supernatant was added to the centrifuge tube along with 1.8 ml of 

tricine buffer (pH 10). Titration to pH 7.6 to pH 7.8 with 5 M ethanol amine, using 

phenol red as an indicator was carried out. The amount of ethanolamine required was 

recorded and titration for fresh samples without addition of phenol red was performed.  
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5.2.22  Soil enzyme assay 

5.2.23  Manganese peroxidase enzyme extraction at three pH 

3 g samples were taken from each flask and added to 15 ml centrifuge tubes. 8ml of 

50 mM phosphate buffer adjusted  to pH 5.5, 7 or 8.5 was added to the soil samples 

labeled with pH 5.5, pH 7 and pH 8.5 and placed on a rotary shaker (100 rpm 

maintained 250C for an hour). A centrifugation step was performed at 6000 g for 15 

min and supernatant was collected in fresh centrifuge tubes. A similar process was 

followed for all the control samples in 5 replicates without microbial inocula in 

experimental soil samples.  

 

5.2.24  LiP enzyme extraction at three pH 

8ml of 50 mM sodium acetate buffer  (along with 1% polyvinylpolpyrrolidone) with 

different volumes of 1 M NaOH for the alkaline pH and 0.5 M, 1 M HCl for the acidic 

pH) was added to each experimental soil sample and kept on a rotary shaker (100 rpm 

maintained 250C for an hour). Further, centrifugation was performed at 6000 g for 15 

min and the supernatant was collected in fresh tubes. 

 

5.2.25  Laccase enzyme extraction 

Buffer A containing (0.1 M sodium acetate, 0.005 M CaCl2, 0.05% tween 80 and 

1% polyvinylpolpyrolidone with different volume of 1 M NaOH for the alkaline pH 

and 0.5 M, 1 M HCl for the acidic pH) was added to each sample and kept on a rotary 

shaker (100 rpm maintained 250C for an hour). Further, centrifugation step was 

performed at 6000 g for 15 min and supernatant was collected in fresh tubes. 
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5.2.26  Alkaline phosphatase enzyme extraction 

The method for alkaline phosphatase enzyme extraction was followed by 

modification of enzyme assay at three pH in the method of Naseby & Lynch, (1997). 

25 mM p- nitrophenyl phosphate oxidation was used as a substrate for acid/alkaline 

phosphatase enzyme assay. 1 g of experimental soil samples and controls were treated 

similarly with sodium orthophosphate buffer containing NaN3 (sodium azide) at 

different pH (5.5, 7 and 8.5) of buffer. All the samples were centrifuged (6000 rpm for 

15 minute). 

 

5.2.27 L-arginine ammonification extraction at three pH 

2 g samples of treated soil from each of the 5 replicates of individual conical flask 

containing contaminated soil of pH 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5 were transferred to 15ml 

sterile centrifuge tubes. 0.5 ml of an arginine solution (0.2%) was added drop wise. 

The soil samples were further extracted using three buffers adjusted to pH 5.5, 7 and 

8.5 respectively. Two sets of samples were taken; one set was incubated at 40C and 

second was incubated at 300C for two hours. 

 

5.2.28 Manganese Peroxidase (MnP) enzymes assay 

 MnP activity was measured in PAHs contaminated soil with few modifications in 

the procedure by Vyas et al., (1994). 3 g of experimental soil was collected in 

centrifuge tubes from each flask in 5 replicate and enzyme extraction was performed at 

three pH’s as described in section 5.2.23. 

Reaction mixture in a final volume of 2ml which contained supernatant along with 

100 µMol succinate lactate buffer (adjusted at pH 5.5, 7 and 8.5) containing 0.1 µM of 

3-methyl-2-benzthaiazolinone hydrazone hydrochloride (MBTH), 5 µl of 3-
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dimethylaminobenzoic acid (DMAB), 0.2 µM of MnSO4  and 0.1 µM H2O2 were used. 

The enzyme activity was terminated during the assay by using cold 0.4 M NaHCO3. 

Similar procedures were followed for all the replicates and all the samples for buffer 

pH 7 and 8.5 respectively. All the assayed samples were loaded onto 96 well plates 

(Fisher Scientific) and also absorbance at 590 nm was monitored with the UV 

spectrophotometer.  

MnP activity was measured as amount of enzyme capable of oxidizing one µmol of 

ABTS min-1.One unit of enzyme activity is defined as the activity that produces 1 µM 

of the product per min under assay conditions. 

 

5.2.29 Lignin peroxidase (LiP) enzyme assay 

LiP activity was measured in PAHs contaminated soil followed by extraction 

process and activity procedure followed by few modifications by D’ Annibale et al., 

(2006). The extraction process was carried out as described in section 5.2.24. 

Reaction mixture in a final volume of 2 ml for LiP enzyme assay was followed similar 

to MnP activity mentioned D’ Annibale et al., (2006). LiP assay was performed with 

similar procedure for MnP assay except that H2O2 was omitted. LiP activity was 

terminated during the assay by using cold 0.4 M NaHCO3. All the assayed samples 

were loaded onto 96 well plates (Fisher Scientific) and absorbance at 401 nm was 

monitored with the UV spectrophotometer. 

LiP activity was measured as amount of enzyme capable of oxidizing one µmol of 

ABTS min-1. One unit of enzyme activity is defined as the activity that produces 

1µmol of the product per min under assay conditions. 
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5.2.30 Laccase enzyme assay 

Laccase activity was measured in PAHs contaminated soil followed by extraction 

with a modification of the method of D’ Annibale et al., (2006).  Enzyme extraction 

process was performed as described in section 5.2.25 

1 mM of ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) oxidation was 

monitored as a substrate to measure laccase activity at 250C. 50 µl of ABTS substrate 

was added to each of the 5 replicates of individual soil pH sample extract and were 

assayed with respective Britton- Robinson buffer (0.1 M boric acid, 0.1 M phosphoric 

acid, 0.1 M acetic acid and pH adjusted to 5.5, 7 and 8.5 with HCl and NaOH) buffer  

adjusted at pH 5.5, 7 and 8.5 respectively. Laccase activity was terminated during the 

assay by using cold 0.4 M NaHCO3. All the assayed samples were loaded onto 96 well 

plates (Fisher Scientific) and absorbance at 401 nm was monitored with the UV 

spectrophotometer  

Laccase activity was measured as the amount of enzyme capable of oxidizing one 

µmol of ABTS min-1. One unit of enzyme activity is defined as the activity that 

produces 1 µmol of the product per min under assay conditions. 

 

5.2.31 Acid and alkaline phosphatase assay 

Phosphatase activity was measured for Acid and Alkaline phosphatase. Enzyme 

extraction was carried out as described in section 5.2.26 

The supernatant was collected in fresh 15 ml centrifuge tube with addition of substrate 

(25 mM p-nitrophenyl phosphate). During reaction the samples were kept in shaking 

water bath, set at 200 strokes/min for 1 hour maintained at 370C. Termination of 

enzyme activity was carried out by addition of 1 ml of cold 0.4 M NaHCO3 followed 

by centrifugation (4000 rpm for 15 min). Each sample (100µl) was loaded onto 96 well  
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plate and colour change and also, absorbance at was measured using UV 

spectrophotometer. 

The enzyme activity is expressed as the amount of enzyme capable of oxidizing 1µmol 

p- nitrophenyl phosphate.  

 

5.2.32 β – Glucosidase enzyme assay 

β – Glucosidase activity was measured in PAHs contaminated soil followed by 

improved extraction process and activity procedure followed from D’ Annibale et al., 

(2006). Enzyme extraction process was performed as described in section 5.2.26.  

1 mM of o-nitrophenyl-β-D-glucopiranoside (ONPG) oxidation was monitored as a 

substrate to measure β–Glucosidase activity at 250C. 50 µl of p-nitrophenyl-β-D-

glucopiranoside substrate was added to each 5 replicate of individual soil pH sample 

extract and were assayed with respective 50 mM phosphate buffer. β – Glucosidase 

was terminated during the assay by using cold 0.4 M NaHCO3. All the assayed 

samples were loaded onto 96 well plates (Fisher Scientific) and also absorbance at 401 

nm was monitored with the UV spectrophotometer.  
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5.2.33 L-arginine ammonification  

Fig. 5.3 Schematic representation of L-arginine ammonification 

                       

                     40C                          Kept for 2 hours 

 

 

 

 

 

 

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 100µl of sample from supernatant was transferred to 96 well plates and reading was 
observed at 630 nm using plate counter. 

Centrifugation   for 10 mins 

1 ml of 2% sodium hypochlorite was added to each 
of supernatant collected after centrifugation. 

2 g of treated soil 
sample taken from 
each of 35 conical 
flasks placed in 
centrifuge tube. 

0.2% of 0.5 ml L-arginine 
solution dissolved in water 

 Centrifuge tube for each 
individual replicates     
(Control) 

Centrifuge tube for 
each individual 
replicates (test sample) 
 

            8 ml of 2 M KCL at 40C to each of 
 

2 g of treated soil 
sample taken from 
each of 35 conical 
flasks placed in 
centrifuge tube. 
 

0.5 ml of 0.005 M sodium nitroprusside + phenol to each of sample 

0.2% of 0.5 ml L-arginine 
solution dissolved in water 

     Centrifuge for 15 min 13000 rpm 

30 min Incubation at 240C 
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5.2.34 Methodology for microbial activity in presence of PAHs in soil at 

different pH 

Microbial activity using L-arginine ammonification is a simple, fast and in 

expensive technique to determine the microbial activities of the microbial population in 

soil, based on ammonia liberation by addition of arginine was carried out (Alef, 1987). 

As represented in figure 48 five replicates after extraction process were incubated and 

immediately mixed with 8ml of 2 M KCl at 40C and centrifuged for 15 min at 13000 

rpm. This treatment efficiently removed most of the ammonia adsorbed to soil 

particles. After centrifugation the 5 ml supernatant was mixed with 0.5 ml of 0.005% 

phenol nitroprusside and 0.5 ml sodium hypochlorite. After incubation of samples at 

room temperature for 30 min, the extinction coefficient was measured at 630 nm. The 

arginine ammonification rate was measured in micrograms of NH4
+ liberated per gram 

soil per hour (Alef & Kleiner, 1987). The arginine ammonification rate was calculated 

as described in appendix III section III.3 and it is expressed as µgNH3/g soil d.w/h. 
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5.3 Results 

Objective: To monitor PAH biodegradation in experimental soil at varying pH. 

5.3.1 HPLC analysis of PAH  

To study the effect of abiotic factors particularly soil pH on the rate of biodegradation, 

HPLC analysis was employed.  

 

5.3.2  Standard graph for polycyclic aromatic hydrocarbons 

 

Fig. 5.4: HPLC standard curve of  four PAH showing peak area against 
concentration. PAH used and their symbol abbreviations are (PHE) Pheanthrene; 
(AN) Anthracene; (FLU) Flouranthene; (PYR) Pyrene 
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Table 5.4: Extraction efficiency of four PAHs from J. Arthur Bowers topsoil 

PAH used Amount of PAH added (ppm) % efficiency 

Phenanthrene 100 62.08 

 
Anthracene 100 53.63 

 

 

Fluoranthene 100 51.19 

 

 

Pyrene 100 50.68 

 

 

 

In order to have a full evaluation of the extraction efficiency of the four different 

PAH, 90 ppm of each individual PAH was added to J. Arthur Bowers topsoil and 

extracted with acetonitrile. The re-extraction efficiency of the four PAHs obtained 

from these samples ranged from 50.68 to 62.08%. The highest value was obtained for 

phenanthrene (62.08), and lowest percentage obtained was (50.68) for pyrene (table 

5.4). 
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5.3.3 Degradation of polycyclic aromatic hydrocarbons 

A)                                                                     B) 

  
Fig. 5.5: Percentage phenanthrene remaining in J. Arthur Bower’s topsoil at 

varying pH over time.  

 A): without microbial inocula   B): with microbial inocula. *P<0.05 indicates 

significant difference between control and experimental sample. 

 

A)                                                         B) 

  

Fig. 5.6: Percentage anthracene remaining in J. Arthur Bower’s topsoil at varying 

              pH over time. 

A): without microbial inocula   B): with microbial inocula. *P<0.05 indicates 

significant difference between control and experimental sample. 



108 

 

A)                                                            B) 

  
Fig. 5.7: Percentage fluoranthene remaining in J. Arthur Bower’s topsoil at varying    

pH over time.  

 A): without microbial inocula   B): with microbial inocula. *P<0.05 indicates 

significant difference between control and experimental sample. 

 

A)                                                       B) 

  

 Fig. 5.8: Percentage pyrene remaining in J. Arthur Bower’s topsoil at varying  

              pH over time. 

A): without microbial inocula   B): with microbial inocula. *P<0.05 indicates 

significant difference between control and experimental sample. 
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Figure 5.5, 5.6, 5.7 and 5.8 exhibits degradation of phenanthrene, anthracene, 

fluoranthene and pyrene used as model PAHs in the soil with and without microbial 

inocula. All the control soil samples were without microbial inocula; whilst 

experimental samples were inoculated with a consortium of microbes (six bacterial 

strains used as inocula were Pseudomonas putida, Achromobacter xylosoxidans, 

Microbacterium sp., Alpha proteobacterium, Brevundimonas sp., Bradyrhizobium sp. 

and 2 fungal strains Aspergillus sp. and Penicillium sp.). PAH remaining is displayed 

as a percentage of the HPLC quantification results obtained after re-extraction on day 

0. Degradation of each PAH was observed for 45 days, alkaline soil pH resulted in 

higher degradation rates compared to acidic soil pH, as soil pH increases, and rate of 

biodegradation also increases. Interestingly, soil pH 7.5 exhibited the highest 

degradation rate for all four PAHs and soil pH 5 exhibited lowest rate of degradation 

for all four PAHs. 

 

 

 

 

 

 

 

 

 

 

 

 



110 

 

Table 5.5: Degradation rates of four PAHs (values expressed in percentage) 

   
   

   
   

   
   

 P
he

na
nt

hr
en

e 
  

Time 
point 

pH5 pH5.5 pH6 pH6.5 pH7 pH7.5 pH8 pH8.5 

0 100 100 100 100 100 100 100 100 
5 96.1 90.0 89.5 87.4 79.9 67.2 83.0 80.6 
10 90.5 84.9 76.5 79.7 62.6 43.7 69.3 70.4 
15 85.7 84.2 69.7 77.8 56.1 39.5 58.6 68.7 
20 77.3 73.0 66.4 69.3 53.7 35.1 63.0 60.4 
25 60.7 68.8 62.1 66.3 51.3 37.4 60.6 54.0 
30 57.2 55.4 53.3 50.5 39.3 30.5 43.8 53.8 
35 48.1 45.1 41.2 38.8 35.2 25.8 41.4 44.3 
40 29.1 25.34 24.5 21.8 21.1 16.9 22.4 24.7 
45 23.1 20.6 18.0 12.1 9.7 7.2 13.6 15.9 
50 4.11 3.7 3.1 2.2 2.5 1.0 2.6 3.9 

   
   

   
   

   
   

 A
nt

hr
ac

en
e 

 

0 100 
 

100 100 100 100 100 100 100 
5 92.5 

 
91.5 84.7 86.0 77.7 68.5 75.3 84.1 

10 91.5 
 

84.8 83.2 78.37 63.4 44.8 69.5 70.0 
15 80.7 79.1 

 
77.5 69.0 55.8 38.1 67.1 64.6 

20 78.4 
 

74.7 64.5 65.5 55.1 33.1 60.1 64.3 
25 73.1 

 
71.5 61.9 58.5 51.6 27.5 54.7 59.0 

30 62.3 63.1 58.5 55.3 49.8 24.0 53.3 54.9 
35 58.2 60.2 53.4 51.1 36.8 26.9 50.7 53.1 
40 60.7 53.4 48.2 46.2 32.4 23.4 40.8 44.8 
45 52.8 49.5 47.4 43.0 29.2 20.4 32.6 32.2 
50 31.5 29.9 25.1 24.5 23.3 17.9 26.6 28.8 

Fl
uo

ra
nt

he
ne

 

0 100 100 100 100 100 100 100 100 
5 93.3 88.1 83.6 85.7 75.0 70.0 83.0 75.5 
10 79.9 82.0 73.8 77.5 68.1 54.7 63.3 68.5 
15 74.4 70.4 72.0 72.0 67.3 60.7 45.0 63.4 
20 72.1 71.0 64.0 66.2 56.7 44.2 59.7 65.0 
25 66.4 67.2 60.2 60.8 54.5 37.0 59.7 59.2 
30 60.5 56.8 53.8 53.6 41.1 32.6 49.8 53.3 
35 53.2 51.0 48.2 49.9 40.4 23.2 47.6 49.9 
40 47.9 44.0 44.4 43.0 33.6 19.9 38.1 35.8 
45 44.5 35.4 34.9 39.0 24.5 19.5 26.7 35.0 
50 26.8 27.8 23.7 17.8 20.9 10.9 18.9 20.8 

   
   

   
   

   
   

Py
re

ne
 

0 100 100 100 100 100 100 100 100 
5 86.4 82.8 75.3 72.9 74.6 49.1 59.2 62.5 
10 79.6 76.4 63.5 66.7 73.7 41.7 55.7 47.7 
15 69.7 63.0 59.2 59.8 65.5 37.3 47.1 49.6 
20 64.8 56.5 53.9 52.8 57.6 30.8 39.2 44.9 
25 58.0 55.3 49.8 47.2 51.7 27.0 35.9 40.4 
30 55.8 50.0 45.6 46.1 44.3 29.4 37.7 38.3 
35 50.8 48.1 40.8 41.5 40.0 21.8 35.6 40.0 
40 43.5 41.7 36.5 35.4 36.6 26.7 39.4 39.0 
45 36.8 34.2 31.7 29.9 31.0 23.9 27.2 36.3 
50 35.8 32.1 27.6 26.3 28.1 16.0 17.7 28.8 
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 The greatest rate of biodegradation was observed for phenanthrene and lowest 

biodegradation rate for pyrene (table 5.5). Phenanthrene degradation rate was followed 

by anthracene, fluoranthene and pyrene respectively in line with the molecular weight 

and number of rings in the structure. Little phenanthrene degradation was evident in 

soil samples without microbial inocula (figure 5.5), whilst 100% degradation of 

phenanthrene was evident over 40 days with the microbial inocula. Degradation was 

most rapid at pH 7.5 followed by pH 7, pH 8, pH 6.5, pH 8, pH 6, pH 8.5, pH 5.5 and 

pH 5 respectively.  

Anthracene degradation was observed over 45 days, exhibiting lowest degradation 

evident in soil samples without microbial inocula when compared to soil samples with 

microbial consortia. Higher biodegradation rate for anthracene was observed in soil pH 

7.5 followed by soil pH 7, 8, 8.5, 6, 6.5, 5.5, 5. Anthracene was degraded earlier than 

fluoranthene and pyrene with 95% biodegradation.  

Approximately 90% of fluoranthene was degraded by the soil with microbial 

inocula over 45 days with highest degradation rate at soil pH 7.5 and lower degradation 

for soil pH 5. Similarly 80% pyrene biodegradation was observed over 45 days with 

faster degradation at soil pH 7.5 and slower degradation observed at soil pH 5. DT50 

(half life) the point of 50% degradation was tabulated for each individual PAH (table 

5.6). 
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   Table 5.6: DT50 of PAH remaining at different soil pH (days) 

Soil pH Phenanthrene 
(days) 

Anthracene 
(days) 

Fluoranthene 
(days) 

Pyrene 
(days) 

5 28 35 39 37 

5.5 28 32 34 33 
6 26 30 34 32 
6.5 24 26 29 28 
7 10 10 18 21 
7.5 5 5 5 5 
8 15 25 28 27 
8.5 25 31 36 34 

  *DT50 – Time taken for 50% of the PAH to be degraded (Half life) 

Table 5.6 exhibit soil pH 7.5 resulted in 50% of biodegradation for each PAH in the 

first 5 days. Soil pH 7 resulted in 50% of phenanthrene and anthracene biodegradation 

in 10 days and 18 and 21 days for fluoranthene and pyrene respectively. A 50% of 

biodegradation at soil pH 6.5 was observed over 24 days for phenanthrene, 26 days for 

anthracene, and 29 days for fluoranthene and 28 days for pyrene respectively. Soil pH 

6 resulted in 50% of phenanthrene biodegradation in 26 days followed by anthracene, 

fluoranthene and pyrene degradation in 30, 32 and 34 days respectively. Soil pH 6 and 

soil pH 5.5, resulted in 50% of biodegradation for phenanthrene in 28 days, anthracene 

after 32 days, and pyrene in 33 days and last fluoranthene in 34 days. Soil pH 5 

resulted in 50% of biodegradation over 28 days for phenanthrene and 35, 39 and 37 

days for anthracene, fluoranthene and pyrene respectively. At soil pH 8, 50% 

biodegradation occurred in 15 days for phenanthrene, 25 days for anthracene, and 28 

days for fluoranthene and 27 days for pyrene. Soil pH 8.5 resulted in 50% of 

phenanthrene biodegraded over 25 days, anthracene over 31 days, and fluoranthene 

over 36 days and pyrene over 34 days respectively. However pyrene was observed to 
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degrade faster than fluoranthene whilst its degradation rate generally increased with 

increasing pH with the most rapid rate evident at pH 7.5. 

In general, soil pH 7.5 exhibited greatest and fastest rates of biodegradation for all the 

four PAH’s over 45 days. Phenanthrene was degraded fastest followed by anthracene, 

fluoranthene and pyrene respectively. 
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Objective: Quantify the bacterial and fungal populations and identification of 

predominant isolates from varying soil pH. 

 
5.3.4 Total bacterial and fungal populations over 70 days in PAH 

contaminated soil at varying pH. 

 

5.3.4a  Bacterial populations 

 The six identified bacterial strains (Pseudomonas putida, Achromobacter 

xylosoxidans, Microbacterium sp., Alpha proteobacterium, Brevundimonas sp., 

Bradyrhizobium sp.) and 2 fungal strains (Aspergillus niger and Penicillium freii) 

isolated by enrichment culture (appendix I: sections I.3.6) were used as a inoculums for 

the biodegradation experiment. The studies reported by Lal & Khanna (1996); Bharathi 

& Vasudevan (2001); and Rahman et al., (2002) have identified most of the genera as 

hydrocarbon-degrading micro-organisms.  

The total bacterial and fungal populations were evaluated during the degradation 

experiment. Figure 5.9 exhibits the bacterial populations over 70 days incubation time 

at varying soil pH. 
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Fig. 5.9: Bacterial populations in J. Arthur Bower’s topsoil inoculated with a     

              microbial consortium at varying pH over time.               

A)  Soil inoculated without microbial consortium B) Soil with microbial consortium. 

In figure 5.9 B), the lowest bacterial populations were obtained at the start of 

experiment. Bacterial populations at day 7, 14, 21, increased whilst the highest 

population was evident at day 35. All the time points (from 0 to 70 days) had the 

greatest bacterial population exhibited at soil pH 7.5 (figure 5.9 B). The bacterial 



116 

 

population dropped from its peak at day 35, dropping each week until the end of the 

experiment at day 70. The bacterial populations measured in soil samples without 

microbial inocula were (log 2 Χ 103) below the detection limits at day 0 and after 7 

days (figure 5.9A). Bacteria were evident in soil without microbial inocula figure 54 

(A), indicating recolonisation of the soil from 14 to 70 day of incubation. 

Bacterial culture before adding as inocula were grown in nutrient broth (pH 7.2) 

suggests that they were more favourable to grow at soil pH 7.5 and bacterial population 

had a pH stress across all other pH range except for soil pH 7.5 when added as inocula. 

In general, bacterial population in soil samples with microbial inocula increased by at 

least 2 log units (from 104 to 106 cells per gram of soil). 

 

5.3.4b      Fungal populations  

 During biodegradation of PAH at varying soil pH, the total fungal population was 

evaluated. The fungal c.f.u counts per gram of soil exhibited higher difference in soil 

samples with and without microbial inocula. Aspergillus and Penicillium strains 

exhibited increased population count by at-least one log (from 104 to 105 cells per ml) 

in soil sample with microbial inocula. A total number of fungal c.f.u count measured 

per gram of experimental J. Arthur Bower’s topsoil have mentioned in figure 5.10. 
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Fig. 5.10: Fungal population (CFU/g of soil) in PAH contaminated soil at varying  

               soil pH.     

A) Experimental soil inoculated without microbial consortium  B) Control soil samples 

with microbial consortium 

Figure 5.10(A) and 5.10 (B) exhibit fungal populations in each individual week and
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for each soil pH respectively. The greatest fungal populations were found in day 29 

followed by time point of days 21, 14 and 42. The highest population was found in soil 

pH 5 after 21 and at 29 day of incubation.  

In figure 5.10 (B) the greater fungal populations were found at low soil pH acidic 

conditions. However, alkaline soil pH 8 and 8.5 had higher populations compared to 

neutral soil pH. Soil pH 7.0 and 7.5 had the lowest fungal populations. Table 5.6 

exhibits the Penicillium and Aspergillus populations studied during biodegradation at 

14 days. 

Interestingly, Penicillium species predominated at acidic soil pH and with lower 

Aspergillus populations whereas at alkaline conditions of (pH 8 and 8.5) Aspergillus 

were predominant and Penicillium was not detected (table 5.7). 

Table 5.7: Penicillium and Aspergillus populations after 14 days 
 

pH of 
soil 

Penicillium 
colonies* 

Aspergillus 
colonies* 

5 
 

3.27 2.85 

5.5 
 

4.38 3.2 

6 
 

4.05 3.65 

6.5 
 

3.76 2.47 

7 
 

2.08 Not detected 

7.5 
 

Not detected 3.81 

8 
 

Not detected 3.96 

                  * Values expressed as log c.f.u/g soil. 
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Objective: To study microbial biomass by soil ATP measurement at different pHs 

in the presence of PAHs.    

5.3.5  ATP soil concentrations over 70 days in PAH contaminated soil at 

varying pH 

ATP measurement was performed to investigate the microbial activity during 

biodegradation over the 70 days incubation time.  The measurement of soil ATP was 

conducted using the methods of Naseby et al., (1997).  
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Fig. 5.11: Total microbial ATP measurements in J. Arthur Bower’s topsoil at      

                varying soil pH over time. 

Figure 5.11 represents the soil ATP content during the degradation of polycyclic 

aromatic hydrocarbons from day 0. Over day 0, 7 and 14 a small increase in ATP from 

0.7 µg/g/soil to 39 µg/g/soil was observed followed by a dramatic increase to around  

80 µg/g/soil. Across all the time points the highest ATP concentrations were observed 

at soil pH 7.5 which peaked 180 µg/g/soil at day 29 and 176 µg/g/soil at day 35 

whereas, the lowest microbial activity was observed at soil pH 5 (0.12 µg/g/soil) at the 
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start. The ATP concentration conversion to biomass was followed according to Naseby 

& Lynch, (1997) and calculations for ATP activity are shown in appendix III section 

III.6. 

Soil concentrations in (figure 5.11) were highly correlated (correlation coefficient 0.9) 

to bacterial populations (figure 5.9 B) over 70 days of incubation period. ATP content 

continued to increase to a peak of around 150 µg/g/soil at day 35; it then decreased 

gradually from day 42 till day 70 where the ATP concentration was around 50 

µg/g/soil. 
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5.3.6 Soil enzyme activity 

Objective: To determine soil enzyme activity using buffer pH (5.5, 7 and 8.5) for 

β-glucosidase, L-arginine ammonification, acid/alkaline phosphatase 

(C: N: P) cycles, manganese peroxidase (MnP), Lignin peroxidase 

(LiP), Laccase activity at varying soil pH. 

 

5.3.6a  Phosphatase soil activity 

Soil enzymes are originated mainly through micro-biota present in the soil. In this 

experiment soil enzyme activities were studied at varying soil pH as enzymes mostly 

vary with environmental factors and co-existing chemicals. Studying the enzymes at 

varying soil pH and assay pH will aid understanding of the effect of soil pH on enzyme 

activities and the production of enzymes with different pH optima. 
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A) 

 

B)           

 

Fig. 5.12: Phosphatase activity of J. Arthur Bower’s topsoil at varying soil pH over 

time measured at buffer pH 5.5.  

 A): Phosphatase activity in control samples without microbial inocula.  
 B): Phosphatase activity in experimental sample inoculated with microbial strains.   
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A) 

 

B) 

 

Fig. 5.13: Phosphatase activity of J. Arthur Bower’s topsoil at varying soil pH over 

time measured at buffer pH 7  

A): Phosphatase activity in control samples without microbial inocula.  
B): Phosphatase activity in experimental sample inoculated with microbial strains.  
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A) 

 
 
B) 

 
 
Fig. 5.14: Phosphatase activity of J. Arthur Bower’s topsoil at varying soil pH over 

time measured at buffer pH adjusted to 8.5.  

A): Phosphatase activity in control samples without microbial inocula.  
B): Phosphatase activity in experimental sample inoculated with microbial strains.  
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Phosphatase activities were determined with buffer pH 5.5, 7 and 8.5 respectively. 

Activities were measured at varying soil pH over the 70 days incubation. Soil samples 

without microbial inoculation resulted in similar low phosphatase activities (0.2 mg 

pNP g-1 soil d.w h-1) across the three buffer pH varying buffer pH 5, 7 and 8.5 resulted 

in same activity levels (figure 5.12 A, 5.13 A, 5.14 A). The phosphatase activities in 

soil samples with microbial inocula resulted in higher levels of activities over varying 

soil pH. 

Soil inoculated with microorganisms resulted in differences in phosphatase 

activities over time and pH at acidic soil pH when compared to neutral and alkaline 

soil pH. Furthermore at acidic pH 5.5 activities increased over the time from day 0 a 

peak of 0.8 mg pNP g-1 soil d.w h-1 at day 42 respectively. However, soil pH 8.5 and 8 

exhibited low acid phosphatase activity of around 0.2-0.4 mg pNP g-1 soil d.w h-1 from 

day 0 – day 42 and fell to 0.2 mg pNP g-1 soil d.w h-1 by day 70. In general, as the soil 

pH increased the acid phosphatase activity decreased (figure 5.12 B).  

Phosphatase activity measured at buffer pH 7 exhibited low levels of activity 

(approximately 0.2 mg pNP g-1 soil d.w h-1 in all the soil pH from 0 to 14 days across 

all soil pH (figure 37 B). However, higher levels of activity (approximately 0.4-0.6 mg 

pNP g-1 soil d.w h-1) were observed from day 21 at neutral and alkaline soil pH and 

from day 28 for pH 7, 6.5, 6, 5.5 and pH 5 which reached 0.2- 0.4 mg pNP g-1 soil d.w 

h-1 by day 56 (figure 5.13 B). 

Phosphatase activity measured at buffer pH 8.5 (figure 5.14 B) exhibited initially 

low activity levels (around 0.2 mg pNP g-1 soil d.w h-1) for all soil pH. However, 

activity levels gradually increased to around 0.4-0.6 mg pNP g-1 soil d.w h-1 at day 28 

with slight lower activity obtained in acidic soil pH 5, 5.5 and 6 (figure 5.14 B). Higher  
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activity was observed in alkaline soil pH 6.5, 7, 7.5, 8 and 8.5. Phosphatase activity 

measured at pH 8.5 continued to increase over time especially at alkaline and neutral 

pH reaching a peak of 1-1.2 mg pNP g-1 soil d.w. h-1 at pH 8.5 at 70 days whilst at the 

same time point at soil pH of 5.5 the activity was between 0.6-0.8 mg pNP g-1 soil d.w 

h-1 (figure 5.14 B). 

 

5.3.6b  β-glucosidase soil activity 

 β-glucosidase activity was performed using  three buffer at varying pH 5.5, 7 and 

8.5 respectively. All the soil samples contaminated with PAH for biodegradation by 

mixed microbial cultures exhibited β-glucosidase activity in soil. The highest activities 

were measured around 0.04-0.06 mg pNP g-1 soil d.w h-1 at varying soil pH over the 70 

days incubation. 

A difference in β-glucosidase was obtained in soil samples without microbial inocula 

and samples with microbial inocula. Soil samples without microbial inocula had lower 

β-glucosidase activity of 0.02 mg pNP g-1 soil d.w h-1. Soil inoculated with 

microorganisms resulted in slight differences in β-glucosidase activities over time at 

acidic soil pH when compared to neutral and alkaline soil pH. Furthermore at acidic 

pH 5.5 activities increased over the time from day 0 to a peak of 0.04 mg pNP g-1 soil 

d.w h-1 at day 7 (figure 5.15 B). Whilst, all soil pH is resulted in constant activities of 

around 0.04-0.06 mg pNP g-1 soil d.w h-1 from day 7 to a day 70.  

β-glucosidase activity measured at buffer pH 7 exhibited similar levels of activity 

(approximately 0.04 mg pNPg-1 soil d.w h-1) at soil pH 6, 6.5, 7and 7.5 from 0 to 70 

days. However, soil pH 5 and 5.5 exhibited lower activity levels around 0.02-0.04 mg 

pNP g-1 soil d.w h-1 from 0 to 35 days which increased over the time from day 35 to a 
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peak of 0.04- 0.06 mg pNP g-1 soil d.w h-1 (figure 5.16 B). Soil pH 8 and 8.5 exhibited 

β-glucosidase activity with a peak around 0.004- 0.006  mg pNP g-1 soil d.w h-1 over 

time 0 to 14 days however, activity low levels around 0.002-0.006 mg pNP g-1 soil d.w 

h-1 were obtained from 14 to 28 days. 

β-glucosidase activity measured at buffer pH 8.5 (figure 5.17 B) exhibited 

(approximately 0.004-0.005 mg pNP g-1 soil d.w h-1 in soil samples with microbial 

inocula across all the soil pH over time 0 to 56 days. The activity levels decreased 

across all the soil pH around 0.04 – 0.02 mg pNP g-1 soil d.w h-1 from 56 to 70 days. 
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A) 

     

  B) 

     
 
   Fig. 5.15: β-glucosidase activity of J. Arthur Bower’s topsoil at varying soil pH 

over time measured at buffer pH 5.5.  

A): β-glucosidase activity in control samples without microbial inocula.  
B): β-glucosidase activity in experimental sample inoculated with microbial strains. 
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A) 

          
 
B) 
         

 
Fig. 5.16: β-glucosidase activity of J. Arthur Bower’s topsoil at varying soil pH over 

time measured at buffer pH 7.  

A): β-glucosidase activity in control samples without microbial inocula.  
B): β-glucosidase activity in experimental sample inoculated with microbial strains.  
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A)      

 

 
B) 
       

 
 

Fig. 5.17: β-glucosidase activity of J. Arthur Bower’s topsoil at varying soil pH over 

time measured at buffer pH 8.5.  

A): β-glucosidase activity in control samples without microbial inocula.  
B): β-glucosidase activity in experimental sample inoculated with microbial strains. 
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5.3.6c  L-arginine ammonification soil activity 
  

L-arginine ammonification activity was measured in PAH contaminated J. Arthur 

bower’s topsoil at varying soil pH. 

 L-arginine ammonification activities exhibited higher activities (approximately 

0.18-0.2 mg NH3 g-1 soil d.w h-1) in samples with microbial inocula over 70 days of 

incubation (figure 63B). Soil samples with microbial inocula were evident with least 

lower activities of around 0.12- 0.14 mg NH3 g-1 soil d.w h-1 across acidic soil pH 

whereas high activities were exhibited by alkaline soil pH (around from 0.14- 0.16 mg 

NH3 g-1 soil d.w h-1  from 0 to 21 days.   Soil pH 5, 5.5, 6, and 6.5 activities increased 

to 0.14- 0.16 mg NH3 g-1 soil d.w h-1 from 35 to 56 days with further increase of 0.18-

0.2 mg NH3 g-1 soil d.w h-1 from 56 to 70 days respectively.  

 L-arginine ammonfication activity measured at buffer pH 7 exhibited high 

activities in soil samples with microbial inocula compared to samples without 

microbial inocula. Initially activity levels were increased from day 7, 14 and 21 

exhibiting 0.12-0.14 mg NH3 g-1 soil d.w h-1 at soil pH 5, 5.5 and 6 whereas, activities 

at alkaline pH exhibited 0.14-0.16 mg NH3 g-1 soil d.w h-1 from 0 to 28 days (figure 

5.19 B). Soil pH 5, 5.5, 6 and 6.5 exhibited 0.16 mg NH3 g-1 soil d.w h-1 between 28 to 

56 days whereas, activity levels at soil pH 7, 7.5, 8 and 8.5 were 0.18 mg NH3 g-1 soil 

d.w h-1 from 28 to 56 days. A decrease in activity to 0.14 mg NH3 g-1 soil d.w h-1 

resulted across all the soil pH after 63 day. 

 L-arginine activity measured at buffer pH 8.5 exhibited low levels of activities 

(approximately 0.16 mg NH3 g-1 soil d.w h-1) across all the soil pH except for pH 8.5 

which exhibited slightly different activity of 0.18 mg NH3 g-1 soil d.w h-1 respectively 

over the incubation of 0 to 28 days (figure 5.20 B). Soil pH 5 and 5.5 exhibited similar 
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activity measurements up to 49 days, whereas activities across all the soil pH increased 

to 0.18 mg NH3 g-1 soil d.w h-1. Activities measured across soil pH 5, 5.5, 6 and 6.5 

increased to 0.18 mg NH3 g-1 soil d.w h-1 from day 49 to day 70 however for soil pH 7, 

7.5, 8 and 8.5 activity levels increased to 0.2 mg NH3 g-1 soil d.w h-1 from 49 to 70 

days of incubation. 
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A)        

           

B)       

   
 

Fig. 5.18: L-arginine ammonification activity of J. Arthur Bower’s topsoil at varying 

soil pH over time measured at buffer pH 5.5.  

A): L-arginine ammonification activity in control samples without microbial inocula.  
B): L-arginine ammonification  activity in experimental sample inoculated with 
microbial strains. 
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A)    

 

B)      

 

Fig. 5.19: L-arginine ammonification activity of J. Arthur Bower’s topsoil at varying 

soil pH over time measured at buffer pH 7.  

 A): L-arginine ammonification activity in control samples without microbial inocula.  
 B): L-arginine ammonification  activity in experimental sample inoculated with  
       microbial strains. 
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A) 

   
 
B) 

         
 

Fig. 5.20: L-arginine ammonification activity of J. Arthur Bower’s topsoil at varying 

soil pH over time measured at buffer pH 8.5.  

A): L-arginine ammonification activity in control samples without microbial inocula.  
B): L-arginine ammonification  activity in experimental sample inoculated with  
      microbial strains. 
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5.3.6d  Laccase soil activity 
 

Laccase activity was measured in PAH contaminated J. Arthur Bower’s topsoil at 

varying soil pH. Activity was measured at three buffer pH 5.5, 7 and 8.5 respectively. 

Laccase activities measured in soil samples without microbial inocula exhibited lower 

levels of activity compared to soil with microbial inocula. Activities measured at three 

buffer pH in soil without microbial inocula exhibited between 0.02-0.04 µmol g-1 soil 

d.w h-1 over 70 days of incubation (figure 5.21 A). 

Laccase activities measured in soil samples with microbial inocula had 0.08 µmol g-

1 soil d.w h-1 from 0 to 49 days at acidic soil pH whereas, 0.08 µmol g-1h-1 activity was 

measured in alkaline soil pH from 0 to 28 days of incubation. Acidic soil pH exhibited 

0.06 µmol g-1h-1 of activity from 49 to day 70 whereas; in alkaline condition activity 

was 0.04 µmol g-1 soil d.w h-1 from 35 to 70 day (figure 5.21 B). 

Laccase activity measured at buffer pH 7 was 0.02 to 0.04 µmol g-1 d.w h-1 across 

all the soil pH in soil samples without microbial inocula. The activity levels in soil 

with microbial consortia were low in acidic and alkaline (approximately 0.1 to 0.12 

µmol g-1 soil d.w h-1) whereas neutral soil pH exhibited 0.14 µmol g-1 soil d.w h-1 from 

0 to 49 days (figure 5.22 B). From 49 to 70 days of incubation laccase activities 

increased across all the soil pH to 0.14 µmol g-1 soil d.w h-1. The activity at neutral soil 

pH was increased to 0.2 µmol g-1 soil d.w h-1 from 49 to 70 day respectively.  

Laccase activities measured at buffer pH 8.5 were low compared to activities measured 

at other two buffer pH. The highest activity in soil inoculated with microbial 

consortium was 0.1µmol g-1 soil d.w h-1 activities at neutral soil pH from day 49 to 70.  

Soil pH 5, 5.5, 6 and 6.5 exhibited 0.04-0.06 µmol g-1 soil d.w h-1 from days 7 to 70 

days, whereas alkaline soil pH 8 and 8.5 exhibited 0.06 µmol g-1 soil d.w h-1 from day  
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0 to 14 which were further increase to 0.08 µmol g-1 soil d.w h-1 from 14 to day 70 

respectively. Activity in soil pH 7 and 7.5 was 0.08 µmol g-1 soil d.w h-1 from day 0 to 49 

with a slight increase to 0.1 µmol g-1 soil d.w h-1 from day 49 to 70 (figure 5.23 B). 

A)

 

B) 
 

 
 
Fig. 5.21: Laccase activity of J. Arthur Bower’s topsoil at varying soil pH over time 

measured at buffer pH 5.5.  

 A): Laccase activity in control samples without microbial inocula.  
 B): Laccase activity in experimental sample inoculated with microbial strains.    
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A) 
       

 
 
B) 
 
        

 
 

Fig. 5.22: Laccase activity of J. Arthur Bower’s topsoil at varying soil pH over time 

measured at buffer pH 7.  

A): Laccase activity in control samples without microbial inocula.  
B): Laccase activity in experimental sample inoculated with microbial strains. 
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A)         

 
B) 
        

 
 

Fig. 5.23: Laccase activity of J. Arthur Bower’s topsoil at varying soil pH over time 

measured at buffer pH 8.5.  

A): Laccase activity in control samples without microbial inocula.  
B): Laccase activity in experimental sample inoculated with microbial strains.  
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5.3.6e  Lignin peroxidase soil activity 
 

Lignin peroxidase activities were measured in PAH contaminated soil samples at 

buffer pH 5.5, 7 and 8.5 respectively. Activities measured using buffer pH 5.5 in soil 

without microbial inocula was 0.4 µmol g-1 soil d.w h-1 from 0 to 35 day which further 

increased to 0.6 µmol g-1 soil d.w h-1 from 35 to 70 day (figure 5.24 A). Activities 

measured using buffer pH 7 (figure 5.25 A) and 8.5 (figure 5.26 A) without microbial 

inocula were 0.4 µmol g-1 soil d.w h-1 across all soil pH’s. 

LiP activity measured at buffer pH 5.5, (figure 5.24 B) exhibited greater activity 

levels of 1.8 µmol g-1h-1 at acidic soil pH of 5, 5.5, 6 and 6.5 from 0 day to 70 days of 

incubation in soil with microbial inocula. The activity measured across neutral soil pH 

7 and 7.5 was between 1.2- 1.4 µmol g-1 soil d.w h-1 with a slight decrease in activity 

levels from day 0 to 49 day. Soil pH 8 and 8.5 exhibited lower activity levels of 

between 0.6 and 1.0 µmol g-1 soil d.w h-1.  

LiP activity measured using buffer pH 7 exhibited activities of between 0.8-1.0 

µmol g-1 soil d.w h-1 across all the soil pH from day 0 to 21 days. However, the activity 

level increased from day 21 to 70 days further to at least 1.2 µmol g-1 soil d.w h-1 across 

all the soil pH (figure 5.25 B). After day 63 a slight increase in activity was observed 

in acidic soil pH 5 and 5.5 to 1.4 µmol g-1 soil h-1 of LiP release. 

LiP activity measured using buffer pH 8.5 exhibited low levels of LiP peroxidase 

released in soil samples without microbial inocula (approximately 0.4 µmol g-1 soil d.w 

h-1) compared to soil samples with microbial inocula with highest peak of activity 

(approximately 1.0 µmol g-1h-1) (figure 5.26 B). LiP activity was similar in acidic and 

alkaline conditions (approximately 0.8 µmol g-1 soil d.w h-1) and comparably lowers 
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than at neutral soil pH (approximately 1.0 µmol g-1 soil d.w h-1) from day 0 to 63 day. 

Lower activities were evident from day 63 to 70 day across all the soil pH of 0.6 µmol  

g-1 soil d.w h-1 at acidic soil pH 5, 5.5 and 6 whereas the activity measured at neutral  

and acidic soil pH was 0.8 µmol g-1 soil d.w h-1. 

A) 

     
 
B) 
               
 

     
Fig. 5.24: Lignin peroxidase activity of J. Arthur Bower’s topsoil at varying soil pH 

over time measured at buffer pH 5.5.  

 A): Lignin peroxidase activity in control samples without microbial inocula.  
 B): Lignin peroxidase activity in experimental sample inoculated with microbial   
      strains.  
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A) 

 
               
B) 
 

 
             
Fig. 5.25: Lignin peroxidase activity of J. Arthur Bower’s topsoil at varying soil pH 

over time measured at buffer pH 7.  

 A): Lignin peroxidase activity in control samples without microbial inocula.  
 B): Lignin peroxidase activity in experimental sample inoculated with microbial 
strains. 
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A)                           

 B) 
 

 
 
Fig. 5.26: Lignin peroxidase activity of J. Arthur Bower’s topsoil at varying soil pH 
over time measured at buffer pH 8.5.  
A): Lignin peroxidase activity in control samples without microbial inocula.  
B): Lignin peroxidase activity in experimental sample inoculated with microbial 
strains. 
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5.3.6f  Manganese peroxidase soil activity 

Manganese peroxidase activity was measured in PAH contaminated J. Arthur 

Bower’s topsoil with and without microbial inocula. Manganese peroxidase activity in 

soil with inoculated microbial consortium measured using buffer pH 5.5 initially 

exhibited 1.5 µmol g-1 soil d.w h-1 across all the soil pH from day 0 to 7. Soil pH 5, 5.5, 

6 and 6.5 exhibited 2.0 µmol g-1 soil d.w h-1whereas similar activity levels were 

measured at alkaline soil pH of 8 and 8.5 from day 7 to 49 respectively. The activity 

levels were high at soil pH 7 and 7.5 (2.5 µmol g-1 soil d.w h-1) from 7 to 49 days of 

incubation. Initial manganese peroxidase activity was higher in week 0 followed by 

day 7. From day 49 to 63 day of incubation a decrease was observed across all the soil 

pH to 2.0 µmol g-1 soil d.w h-1. Subsequently activity at neutral soil pH (7 and 7.5) was 

similar to previous days of incubation (approximately 2.0 µmol g-1 soil d.w h-1) 

whereas the decrease in activity levels were observed at acidic and alkaline soil pH 

exhibiting 1.5 µmol g-1 soil d.w h-1 from  63 to 70 days (figure 5.27 B).  

Manganese peroxidase activities measured using buffer pH 7 exhibited a high peak 

of 3 µmol g-1 soil d.w h-1 across all the soil pH from day 0 to 14 days. A decrease 

across acidic and alkaline soil pH was observed to 2 µmol g-1 soil d.w h-1 from 14 to 49 

days whereas at neutral soil pH (7 and 7.5) activity was 2.5 µmol g-1 soil d.w h-1 from 

14 to 49 days. Activity of 2 µmol g-1 soil d.w h-1 was found across all the soil pH form 

49 to 63 days. Manganese peroxidase activity decreased at acidic soil pH 1.5µmol g-1 

soil d.w h-1 from days 63 to 70 (figure 5.28 B). 

 MnP activity measured at buffer pH 8.5 was of 2.5 µmol g-1 soil d.w h-1 across all 

the soil pH except for alkaline soil pH 8 and 8.5 were 1.5 µmol g-1 soil d.w h-1 from day 

0 to 63 days. Activity from day 63 to 70 slightly increased in acidic (pH 5, .5.5, 6 and 
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6.5) as well as neutral (pH 7 and 7.5) exhibiting 3.0 µmol g-1 soil d.w h-1 (figure 5.29 

B). 

A) 

    
 
B)  
 

  
 

Fig. 5.27: Manganese peroxidase activity of J. Arthur Bower’s topsoil at varying soil 

pH over time measured at buffer pH 5.5.  

A): Manganese peroxidase activity in control samples without microbial inocula.  
B): Manganese peroxidase activity in experimental sample inoculated with microbial 
     strains. 
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 A) 

          
           
    B) 
 
 

     
 

Fig. 5.28: Manganese peroxidase activity in J. Arthur Bower’s topsoil at varying soil 

pH over time measured at buffer pH7.  

A): Manganese peroxidase activity in control samples without microbial inocula.  
 B): Manganese peroxidase activity in experimental sample inoculated with microbial  
       strains. 
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A)     

 

B)        

 

Fig. 5.29: Manganese peroxidase activity in J. Arthur Bower’s topsoil at varying soil 

pH over time measured at buffer pH 8.5.  

A): Manganese peroxidase activity in control samples without microbial inocula.  
B): Manganese peroxidase activity in experimental sample inoculated with microbial  
      strains. 
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5.4 Discussion 
 

Soil pH has been suggested to be one of the most important factors that influences 

degradation processes in soils (Margesin & Schinner, 2001; Funk et al., 1997). The 

measurement of the effect of soil pH on biodegradation of PAH was achieved using 

Dionex HPLC fitted with UV detector (UVD 170 U) set at 252 nm, connected to a PC 

equipped with Chromeleon chromatography  software version 6.6. Studies were carried 

out using four PAHs. 

 

5.4.1 PAH analysis 

A standard curve of peak area against PAH concentrations was constructed. A linear 

standard curve (figure 5.4) was produced for each PAH with an r value (regression 

coefficient) for phenanthrene of 0.97, fluoranthene 0.97, pyrene 0.97 and for 

anthracene 0.98. The r values obtained for each calibration curve exhibits that the 

correlation between relative peak area and concentration was linear and reproducible 

within the concentration range selected. The Y value representing linear regression 

equation for phenanthrene was 14.32x and for anthracene was 35.12x, whilst for 

fluoranthene and pyrene values were much lower at  6.42x and 4.08x respectively. 

Similar results were found repeatedly for all the PAH standards. Thus, the data 

obtained from standard chromatogram were reliable, accurate and reproducible (figure 

5.4). 
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5.4.2 PAH degradation and microbial populations over 70 days in PAH 

contaminated soil 

This study concentrated on monitoring the effect of soil pH on the efficacy of 

biodegradation of hydrocarbons. The reason for using J. Arthur Bowers topsoil was to 

provide a constant soil for all experimental studies. 

Figure 5.5  exhibits the degradation rate of phenanthrene at varying soil pHs. The 

greatest rate of PAH’s degradation was at pH 7.5, whilst the slowest was at pH 5, 5.5 

and pH 8.5. The greatest rate of PAH degradation were obtained for phenanthrene, 

whilst slowest were obtained for pyrene. Similarly, anthracene, fluoranthene and 

pyrene exhibited greatest rate of PAH’s degradation at soil pH 7.5 (figure 5.6 B, 5.7 B 

and 5.8 B). 

Degradation of PAHs in situ is often slow, and research over the last two decades 

has demonstrated that these compounds very often are persistent (Eriksson et al., 

2003). The persistence may be due to several factors such as nutrients, bioavailability 

of PAHs (sorption to particles), temperature, oxygen, pH and presence of PAH- 

degrading micro-organisms. The greater degradation rates at soil pH of 7.5 represents 

the optimal pH for degradation for all the four PAHs studied.  

Table 5.5 exhibited the degradation time for 50% of each PAH (DT50) which gives an 

overview of the conditions most conducive to degrade and the relative recalcitrance of 

each PAH. It was observed that pH 7.5 was most suitable for the degradation of all 

PAHs as 50% degradation was observed for all in soil pH 7.5 within the first seven 

days which is at least a seventh of the time taken at pH5, pH 5.5 and 8.5 (36 days). 

Furthermore, soil pH 8, exhibited 50% degradation within 15 days for phenanthrene, 

25 days for anthracene, and 28 days for fluoranthene and 27 days for pyrene. Soil pH  
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5.5 exhibited rate of phenanthrene degradation within 28 days, 32, 34 and 33 days for 

anthracene, fluoranthene and pyrene respectively. Whilst this study indicates that 

another key factor is adjustment of pH to optima for higher stimulation of four PAH as 

a carbon source used as growth factor by microbes. A simple explanation is that at 

neutral condition nutrients with H+ and OH – ions are equal whereas, nutrients with 

cationic and anionic charges at acidic and alkaline conditions are not equal. Nutrient 

availability at soil pH 7.5 is greater since cations and anions are balanced in soil, 

whereas nutrient availibility at acidic soil pH is less due to greater number of anions 

(negative charge) that have ionic interaction with H+ ions. However, under alkaline 

conditions more of ionic interactions with OH- are present in soil, which makes 

alkaline conditions unstable (Chesworth, 2008). Thus, lower degradation rates were 

observed at acidic and alkaline conditions compared to neutral soil pH. As literature 

suggests greater population size or biomass arising can be attributed to the additional 

carbon source present in that particular pH (Kastner, 1998). Also, microbial 

degradation of PAHs and other hydrophobic substrates is believed to be limited by the 

amounts available in the aqueous phase (Ogram et al., 1985; Bosma et al., 1997). 

Therefore, the most soluble PAH should be degraded quicker than others as exhibited 

by phenanthrene in this study obvserved at all pH’s other than the most rapid at pH 7.5. 

The effect of pH has been rarely studied for most organic pollutants of soil. However, 

Chang et al., (2002) confirmed degradation of PAHs with optimal incubation 

conditions maintained at alkaline soil pH, i.e. pH 8 and at 300C along with addition of 

acetate, lactate, or pyruvate under anaerobic conditions. Kastner et al., (1998) 

suggested a shift in pH from 5.2 to 7.0 increased anthracene and pyrene degradation by 

Sphingomonas paucimobilis BA 2 strain. Thus in this study, microbes isolated at three 

adjusted pH exhibited metabolism necessary for higher degradation rates at soil pH 
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7.5. However, a pH of 5 did not lead to total inhibition of activity whilst a shift from 

soil pH 7 to pH 7.5 resulted in increased pyrene and anthracene degradation. Alva & 

Peyton, (2003) also indicated that biodegradation of catechol is greater in alkaline soil 

pH than in acidic pH. This is particularly important as catechol is a diol, which is 

obtained as the product of the first step of PAH degradation by mono or dioxygenase 

enzymes present in fungi and bacteria. Yuan et al., (2001) also suggested 

biodegradation of phenanthrene is greater under aerobic conditions that occur with 

greater degradation efficiency for biodegradation maintained at 300C. 

In general in this study soil pH 7.5 exhibited greater degradation over 70 days with 

a lower half life (50% of PAH degradation tabulated in table 5.5) degradation.  

Biodegradation is an inexpensive and easy process to detoxify toxic contaminants from 

the environment (Hadibarata & Tachibana, 2009). It has been observed that various 

algae, fungi, cyanobacteria and heterotrophic bacteria, play an important role in PAH 

degradation (Kim et al., 2005). Soil conditions influence the survival of microbes and 

their active participation in degradation process (Hadibarata & Tachibana, 2009).  

In this study, bacterial populations at varying pH over a 70 days period during the 

degradation of soil PAHs were studied (figure 5.9 B). Initially the bacterial population 

on 0 day was low, with slight increase in bacterial populations at 7 and 14 days. 

However, the number of bacteria on day 21, 28 and 35 exhibited increased followed by 

a decrease on 42, 49, 56, 63 and 70 respectively. The highest bacterial count was 

obtained on day 35 and lowest bacterial count on 0 day and 70 day. Soil pH 7.5 

exhibited high bacterial populations followed by soil pH 7.0 and soil pH 6.5 (figure 5.9 

B). Lower bacterial populations were obtained in soil pH 5, 5.5 and soil pH 8.5 

respectively. At soil pH 7.5 the nutrient availability is greater, due to equal number of 

H+ and OH- ions whilst, the anionic due to OH- is in greater number and H+ ions are in 
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greater number. However, more of ionic interaction with OH- present at alkaline soil 

pH make alkaline conditions unstable (Chesworth, 2008). Thus, greater population size 

or biomass arising is because of the additional carbon source present in that particular 

pH (pH 7.5) (Kastner, 1998), if the resulting organisms can act readily on both 

substrates using the suitable monitored abiotic condition. Bacterial populations were 

evident in soil without microbial inocula figure 5.9 (A) however lower than inoculated 

soil, indicating recolonisation of the soil from 14 day to 70 day of incubation from low 

levels of surviving bacteria or due to the non-sterile conditions or apparatus used 

during sampling points or addition of sterile water. The bacterial populations in 

microbial inoculated soil were greatest at soil pH 7.5 which also resulted in the greatest 

degradation rates suggesting that bacteria were involved in the biodegradation of 

polycyclic aromatic hydrocarbons. Therefore, it may be that microbial community 

particularly bacteria was more prevalent and active in degradation at pH 7.5. 

Conversly, fungal populations were greatest at acidic soil pH and with some evident at 

alkaline soil suggests degradation at lower pH might be initaited by fungal populations. 

Figure 5.10 (A) and (B), represents the fungal populations over 70 days are greatest 

at acidic soil pH and with some evident at alkaline soil pH but were not deteched at 

neutral soil pH. Fungi in general grow actively at acidic pH 5 and 5.5 (Cajthaml, 

2008). However, the degradation was fastest at pH 7.5 – (figure 5.10) bacterial 

populations were greatest at pH 7.5 (appendix III section 5.5 for the table of bacterial 

c.f.u from soil with microbial inocula). Thus, the research carried out indicates that 

fungi are more tolerant to acidic soil pH and bacteria being more tolerant to neutral soil 

pH. However this study also found an increase in the fungal population at basic pH in 

comparison with neutral pH with different predomant fungi found in comparison to 

acidic pH. Penicillium species predominated at acidic soil pH and with lower 
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Aspergillus populations whereas at alkaline conditions of (pH 8.0 and 8.5) Aspergillus 

were predominant and Penicillium was not detected (table 5.6). It is in very rare 

conditions that fungal growth is measured at alkaline conditions. Also, Novotny et al., 

(1999) have reported growth of Pleurotus ostreatus in alkaline conditions, suggesting 

oxidative enzyme production and PAH removal in soil by mycelium of white rots 

fungi. 

Moreover, tremendous diversity in fungal population has been studied by 

Hadibarata & Tachibana, (2009) exhibiting its adaptability for using different carbon 

sources; but fungal ability to degrade PAHs as carbon source may be different. Similar 

fungal species were used in work reported by Orth, (1991) who screened and identified 

Aspergillus niger and Aspergillus versicolor that performed rapid onset and highest 

extent (98%) of PAH biodegradation. 

Research in the biodegradation mechanisms and environmental fate of polycyclic 

aromatic hydrocarbons (PAHs) has been prompted by the ubiquitous distribution of the 

organisms and their potentially deleterious effects on human health (Silva et al., 2009). 

Since the 1970s, research on the biological degradation of PAHs demonstrated that 

bacteria, fungi and algae possess catabolic abilities that are being utilised for the 

remediation of PAH-contaminated soil and water (Juhasz & Naidu, 2000). 

Hydrocarbon degradation by microbial communities depends on the composition of the 

community and its adaptive response to the presence of hydrocarbons. Bacteria and 

fungi are the key agents of degradation, with bacteria assuming the dominant role in 

marine ecosystems and fungi becoming more important in freshwater and terrestrial 

environments (Leahy & Colwell, 1990). The extent to which bacteria, yeasts, and fungi 

participate in the biodegradation of hydrocarbons has been the subject of only limited 

study, but appears to be a function of the ecosystem and local environmental 
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conditions. The bio-degradation of polycyclic aromatic hydrocarbons in the 

environment is a complex process, which engages quantitative and qualitative aspects 

depending on the nature and amount of the hydrocarbons present, the ambient and 

seasonal environmental conditions, and the composition of the autochthonous 

microbial community (Leahy & Colwell, 1990). 

In general, according to the review of literature with respect to other studies 

indicated fungi plays active role in the degradation at acidic pH however, bacteria play 

role in degradation at neutral soil pH (Kastner et al., 1998). This study indicates that 

soil pH 7.5 is favourable for mixed bacterial populations which resulted in greater 

biodegradation whilst also soil pH 5.0, 5.5 and pH 8.5 are less favourable with lower 

c.f.u counts and lower biodegradation rates. 
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5.4.3 Microbial activity (ATP concentrations) 

Objectives: To study microbial activity by soil ATP measurement at different pHs 

in the presence of PAHs.    

 The liberation of adenosine diphosphate (ADP) and phosphate ion due to 

decomposition of adenosine triphosphate (ATP) is due to the activity of microbial 

cells, catalyzed by ATPases enzymes (Weibull et al., 1962). ATPase enzymes are 

microbial integral proteins that correlate well with the widely used measurement of 

water content present in the soil showing its potential as indicator for microbial activity 

(McDonnell & Russell, 1999). ATP allows an autonomous measurement of 

quantity/amount of microbial biomass in soil regardless of biomass activity. However, 

early time point soil sample incubation results in ATP-to-biomass C ratios (Denome et 

al., 1993). Likewise, ATP measurement by improved procedures Naseby et al., (1997) 

& Webster et al., (1984) proved to be a simple, easy and reproducible method without 

use of non-toxic reagents thus, resulted in measuring total amount of ATP (figure 5.11) 

and microbial biomass (appendix III section III.6) in experimental soil.  

Amendment of soils with carbon sources usually results in elevated microbial 

metabolic activities. In order to understand the correlation of ATP as an indicator of 

microbial activity, this method was compared with the c.f.u of bacterial and fungal 

samples. The correlation value between bacterial c.f.u and soil ATP concentrations was 

high (r= 0.9) whilst correlation to fungal c.f.u was low (r = 0.2) across the degradation 

time curve indicating that soil microbial activity levels are closely linked to bacterial 

populations whereas, fungi initiated degradation at acidic pH representing as an 

important contribution to microbial activity. Moreover, (figure 5.11) day 0 exhibits 

lower ATP levels followed by day 7 and 14. ATP concentrations were converted to 
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biomass using biomass conversion factor from Naseby et al., (1997) C = 171 × soil 

ATP content (conversion data tabulated in appendix III section III.6 & III.7). L-

arginine process was helpful in measurement of ammonia liberated in soil sample also 

with its potential as indicator for microbial activity (Alef, 1987). Interestingly, the 

correlation to ATP biomass and ammonification biomass was (0.8) demonstrated that 

ATP biomass was correlated and closely linked to bacterial population (r = 0.9) Thus, 

the correlation values obtained suggests ATP biomass is more competent indicating 

greater correlation values for measurements of microbial biomass. Mostly ATP 

concentrations reported in literature might be lower due to loss during hydrolysis 

(chemical or enzymatic) in the extraction process or by adsorption on soil colloids 

resulting in lowered measurement of ATP reaction was suggested by Denome et al., 

(1993). The fate of PAHs is determined by the soil pH which is due to the impact of 

microbial activity and microbial communities at varying pH. The soil acidity is based 

on factors involved with active acidity, residual acidity and exchangeable acidity 

(Brady & Weil, 2002). Active acidity involves H+ and Al+3 ions in the soil, residual 

acidity is neutralised by limestone or other alkaline materials and exchangeable acidity 

consists of aluminium and hydrogen cations that are easily replaced by other cations. 

Since many sites in the UK are of neutral soil pH or below it may be necessary to 

adjust the soil pH to improve the intrinsic degradation rates. Also, total bacterial 

populations are greater in alkaline soil pH, particularly in soil at pH 7.5 (Bastiaens et 

al., 2000; Ho et al., 2000; Johnsen et al., 2005). Moreover, this study indicates higher 

fungal populations are also possible at basic pH than neutral and interestingly this 

population is made up of a different group of organisms from those at acidic pH. Tsai 

et al., (1997) indicates microbial biomass, and ATP concentration by addition of 

glucose to soil that are found to obtain with substantial change in short time. It is also 
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notable that degradation rates were at their lowest at pH 6 and 6.5, where fungal 

populations and bacterial population at pH 6 and 6.5 were evident to be lower.   

Soil pH 7.5 is highly suitable for the degradation of PAHs with greater microbial 

populations, and greater ATP concentrations as well as microbial biomass with an 

increasing degradation rate up to seven fold. These results indicate that soil pH is one 

of the most important abiotic factors limiting the degradation of PAHs. 
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5.4.4  Soil enzyme activity 

 The enzyme assays performed allowed study of a range of enzyme activities with 

small soil quantities over a range of different pH. The soil enzyme studies followed the 

methods of Naseby & Lynch, (1997) allowed seven different enzymes to be studied 

and made it possible to study all the activities in same amount of time required for less 

enzymes by other methods.   

Assays for β-glucosidase, L-arginine ammonification, acid/alkaline phosphatase 

representing carbon: nitrogen: phosphorous cycle (C: N: P) activities and manganese 

peroxidase, lignin peroxidase and laccase involved in PAH degradation were 

performed. Each of these activities was measured at buffer pH 5.5, 7 and 8.5 regardless 

of soil pH during bio-degradation. Activities at acidic, neutral and alkaline buffer pH 

would reflect the effect of soil pH providing variation between enzyme activities at 

varying soil pH in order to enhance the bio-degradation rate in the environment. 

Enzyme activities affected by soil pH may be due to the sensitivity of amino acids, 

electrostatic properties and reaction centre (Bonomo et al., 2001). 

 Acid/alkaline phosphatases are important in the P cycle (Phosphorous cycle) (Makoi 

& Ndakidemi, 2008).  In natural soil the enzyme activities are impaired due to 

absorption and immobilization between soil particles and organic matter with respect 

to soil type (Naseby et al., 1997).   

For acid/alkaline phosphatase activity, acidic soils were found to be more 

predominant for acid phosphatase enzyme activity whereas alkaline and neutral soils 

were observed with greater activities for alkaline phosphatase. The soil pH effects 

varied with microbial inoculation and without microbial inoculation soil samples with 

the phosphatase activity significantly greater in soil with microbial inoculation. Greater 

phosphatase activities (approximately 1.2 mg pNP g-1 soil d.w. h-1) were exhibited 
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using buffer pH 8.5 (figure 5.12 B) compared to activity measured at acidic and neutral 

buffer pH. However, the majority of acid phosphatase activity and alkaline 

phosphatase activity is indicated. In general, acid phosphatase is predominantly 

associated with fungal origin whilst alkaline phosphatase is more likely due to bacterial 

origin (Naseby & Lynch, 1997). In this case, the acid and alkaline phosphatase, 

exhibits independent effects regardless of inocula. Naseby & Lynch, (1997) supported 

similar work, indicating rhizosphere acid phosphatase was not significant by 

differentce to that of bacterial inoculation and substrate addition did not make a trend 

with soil depth for phosphatase activity. Thus, acid phosphatase acitivity is more 

closely related to nutrient availability at acidic soil pH, which exhibited lower activity 

and demonstrated loss in higher carbon amount, resulting in reduced phosphate exract. 

Soil phosphatase activity is decreased as the inorganic soluble phosphate increases 

(Tabatabai 1970; Tadano et al., 1993). Therefore, the available phosphate in the soil 

with microbial inocula might be greater at alkaline soil pH due to greater bacterial 

population (greater bacterial population evident at soil pH 7.5) causing an overall 

increase in activity at alkaline soil pH. Moreover, the available phosphate increase 

might be due to an increase in available carbon at alkaline soil pH compared to acidic 

soil. In specific, as the ratio of carbon to phosphate available in soil is increased, the 

microbial phosphates demand for phosphorous also increases. It indicates degradation 

and enzyme activity co-relationship as greater bacterial populations were also evident 

at soil pH 7.5 along with greater phosphatase activity at pH 7.5. Similar research by 

Mobley et al., (1984) exhibited co-relationship between the soil phosphatase activity 

and degradation of PAH in soil indicating ratio of carbon to phosphatase available in 

soil samples. Effect of soil pH on enzyme activities was studied since 1990s to 

understand the phosphatase activity concept (Dick & Tabatabai, 1984; Dick & 
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Tabatabai, 1992; Naseby et al., 1997). The acid and alkaline phosphatase activity by 

Bordetella bronchispetica was found at an optimum temperature of 370C. Moreover, 

studies suggested acid phosphatase at optimum of pH 4.8 and alkaline phosphatase at 

pH 9 exhibited greater activity in clinical and non-clinical isolates of Bordetella 

bronchispetica (Mobley et al., 1984). 

The liberation of ammonia from arginine is due to the activity of microbial cells, 

and extracellular enzymes. Ammonia liberated from arginine correlates well with the 

widely used measurement of water content present in soil demonstrating its potential as 

indicator for microbial activity (Alef, 1987). Decomposition of arginine by organisms 

involves four pathways. These pathways include arginine deiminase, arginine 

transmidinase, and arginine decarboxylase and arginase-urea amidolyase. In all of 

these pathways, apart from arginine transmidinase, the end product obtained is 

ammonium (Abdelal, 1997). In this study it was observed that L-arginine 

ammonification activity measured at buffer pH 8.5 was higher than buffer pH 7 and 

5.5. Also, at buffer pH 5.5, initially activity was low, but as the incubation time was 

increased, activity too increased (figure 5.18). Microbial population and activity 

depends on soil pH. Haemmerli et al., (1986), suggests higher arginine ammonification 

production as buffer pH increases. However, arginine determinations are not 

recommended for low pH soil characteristics that cause high mobile aluminium content 

with negative effect on microbial activity (Mirjana & Licina, 2002). The amount of soil 

biomass has been shown to be proportional to arginine ammonification rates under 

specific conditions (Hund et al., 1998). Microbial biomass was also measured using L-

arginine ammonification process. Also, biomass measurement by ATP and L-arginine 

ammonification was compared. Thus, greater biomass for both the procedures was 
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exhibited similarly on day 35 and the lowest biomass was on day 0 and day 7 

respectively. 

 β-glucosidase activities were measured at buffer pH 5.5, 7 and 8.5 and these showed 

significantly greater activity with microbial inocula (figure 5.15 B, 5.16 B, 5.17 B). 

Also, greater activity was measured in buffer pH 8.5 (approximately 0.06 mg pNP g-1 

soil d.w. h-1) at alkaline soil pH and the lower activity rates obtained in buffer pH 7 

(approximately 0.04 mg pNP g-1 soil d.w. h-1) is potentially associated with bacteria 

respectively. β-glucosidase plays a key role in soil catalysing the hydrolysis and 

biodegradation of β-glucosidase involved in plant debris decomposition in the 

ecosystem (Makoi & Ndakidemi, 2008) 

Manganese peroxidase is an extracellular peroxidase and is a Mn-induced enzyme 

that oxidizes Mn2+ to Mn3+ respectively. Fungal manganese peroxidase also results in 

production of hydrogen peroxide by oxidation of substrate such as NAD(P)H, 

dithiothreitol and dihyroxymaleic acid (Castillo et al., 1994). In this study, greater soil 

fungal manganese peroxidase activities were observed in buffer pH 5.5 followed by 

activity measured at buffer pH 7 and 8.5 respectively.  

Fungal lignin peroxidase results in oxidation of lignin. After incubation of microbial 

inocula in soil, over 0 to 70 days under pH 5, 5.5, 6 and 6.5, greater activity levels of 

lignin peroxidase found were 1.8µmol g-1h-1. Similarly lignin peroxidase activity found 

at neutral soil pH 7-7.5 was between 0.6 and 1.0 µmol g-1 soil d.w h-1 and at alkaline 

soil pH 8 and 8.5 was between 0.6 and 1.0 µmol g-1 soil d.w h-1. Thus, acidic soil pH 

exhibited greater fungal lignin peroxidase activity compared to neutral and acidic soil 

pH.    

Fungal laccase activities measured at three buffer pH exhibited greater activity rates 

for buffer pH 5.5 (figure 5.21 B). Acidic soil pH 5.0, 5.5, 6.0, 6.5 exhibited greater  
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laccase activity (0.06 µmol g-1h-1) from 49 to day 70 whereas in alkaline soil pH 7.0, 

7.5, 8.0 and 8.5 exhibited lower activity levels (0.04 µmol g-1 soil d.w h-1) over 35 to 

70 days.  Studies reported with laccase on Benzo[α]pyrene degradation indicated that 

the greatest activity was at pH 4.0, but decreases rapidly by either increasing or 

decreasing the pH of the moderated soil value from 3.0 to 7.0. Laccase activity was 

almost lost at pH 7.0 (Xuanzhen et al., 2010). 

Studies involving soil enzymes are biologically important for degradation of PAHs 

(Cerniglia, 1984). Three different functions in biological degradation of PAHs involves 

(i) Yield of carbon and energy by assimilative biodegradation for degrading organisms 

is carried out by mineralization of the compound. (ii) Intracellular detoxification of 

PAHs by making it water-soluble as a pre-requisite for elimination of the compounds. 

Broadly, the initial step includes developing ring fission and carbon assimilation in 

bacteria leads to intracellular oxidation and hydroxylation whereas in fungi, 

detoxification is an initial step (Cerniglia, 1984). (iii) Co-metabolism- representing 

degradation of PAHs by cell metabolism without generating energy and carbon. Thus, 

a non-specific enzymatic reaction, with a substrate competing with the structurally 

similar primary substrate for the enzyme’s active site is termed as co-metabolism. 

Benzo(a)pyrene degradation by bacteria growing on pyrene represents an example of 

co-metabolism (Boonchan et al., 2000). Also, Keck et al. (1989) noted that: ‘‘In the 

case of a pure culture, co-metabolism is a dead-end transformation without benefit to 

the organism. In a mixed culture or in the environment, however, such an initial co-

metabolic transformation may pave the way for subsequent attack by another 

organism.” In spite of considerable effort, only a very limited number of bacteria have 

been isolated that can grow in pure cultures on PAHs with five or more aromatic rings 

(high molecular weight (HMW) PAHs). A possible reason is the high retention of these 
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compounds by the solid soil phase, resulting in mass-transfer rates of HMW-PAHs to 

the bacterial cells being too low to match the cells’ basic metabolic requirements. The 

low bioavailability of PAH may have prevented the evolution of suitable enzymatic 

pathways in soil bacteria. According to Perry, (1979) recalcitrant compounds generally 

do not serve as growth substrates for any single microbial organism, but are thought to 

be oxidized in a series of steps by consortia of microbes. Inoculation with selected 

microbes, exhibited significant difference in phosphatase, B-glucosidase, 

ammonification and oxidase activities compared to soil without microbial inoculation. 

This study suggests that altering pH may be most effective method to remediate soil 

contaminated with PAHs.  

Interestingly, with respect to photocatalytic degradation experimental results (chapter 

4), the converse effect of pH was found with fastest rate of biodegradation observed at 

acidic condition in soil pH 6.5 whilst, the results obtained in this report during 

biodegradation degradation exhibits fastest rate of degradation at alkaline conditions 

particularly at pH 7.5. However, biodegradation rates at optimum conditions were 

greater than photo-catalytic oxidation, for example only 65% of phenanthrene was 

degraded by photo-catalytic oxidation after 5 days, and at the same time point 90% of 

phenanthrene was biodegraded at pH 7.5 after 5 days. 

The biodegradation experiments carried out and photo-catalytic oxidation (chapter 4) 

overall suggests, 

a) Optimal conditions for photo-catalytic degradation and biodegradation are different 

and show converse degradation effect of soil pH. 

b) Biodegradation carried out exhibits higher and rapid degradation in comparison to 

that of photo-catalytic degradation. 
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Chapter: 6.0 

Isolation and purification of enzymes 
involved in PAH degradation 
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6.1 Introduction  

Aim: To study the ligninolytic enzymes from fungi and dioxygenase enzyme from 

bacteria involved in PAH degradation and their kinetics studies 

In the environment, degradation of PAHs by organisms depends on the complexity 

of the PAH’s chemical structure and the enzymatic capacity of the indigenous 

microbial population including their response to chronic exposure to aromatic 

hydrocarbons (Heitkamp et al., 1988). Heitkamp et al., (1988) reported in their studies 

that degradation of PAHs with two or three aromatic rings is relatively easy as 

compared to PAHs with four or more aromatic rings. It has been observed that PAHs 

with four or more aromatic rings are often genotoxic and recalcitrant.  

Identified mixed bacterial and fungal cultures degrade PAHs in the soil and release 

CO2 and water without any excretion of intermediary substrates. During degradation, 

different reactions between PAHs and soil particles occur and they undergo co-

metabolic side-reactions resulting in metabolites. These metabolites possess high 

resistance in comparison to parental compounds which makes it difficult to break down 

these metabolites and thus carbon constituents are released (Johnsen et al., 2005). Soil 

organic compounds may be covalently associated with PAHs metabolites which may 

further modulate PAH to carbon mineralization (Richnow et al., 1997).  

Furthermore, Enzymes interact with specific substrate forming an enzyme-substrate 

complex which is extended into transition state [ES] which further dissociates into 

product and free enzyme. 

E   +   S                       ES                        ES*                     EP                  E   +   P 

(Whiteley & Lee, 2006) 

During PAH degradation, degradation process is initiated in bacteria by molecular 

oxygen with the help of atoms which are present in aromatic nucleus. This process is 
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further catalysed by NADH dependent dioxygenase enzyme (Iwabuchi & Harayama, 

1997). The PAH degradation process by bacterial dioxygenase enzyme require NADH 

as a co-factor formed by cell-bounding process (Johnsen et al., 2004). Dioxygenase is 

incorporates with two atoms of oxygen. Bacterial enzymes involved in cleavage of 

double bonds of aromatic compounds are characterized as non-haem iron dioxygenases 

(Wallis & Chapman, 1990). Non-haem iron dioxygenases include catechol 

dioxygenase which are divided on cleavage pattern. One catechol dioxygenases contain 

Fe (ΙΙΙ) that cleaves catechol in an intradiol fashion whereas another catechol 

dioxygenase contains Fe (ΙΙ) that cleaves in an extradiol fashion (Wallis & Chapman, 

1990). Extradoil cleavage is performed by catechol 1, 2-dioxygenases of meta-

substituted substrates (for example 3-methylcatechol or 3-methoxycatechol substrates) 

(Strachan et al., 1998). 

As mentioned above micro-organisms degrade PAH compounds aerobically by 

converting them into more reactive dihydroxylated intermediates. These intermediates 

such as catechol or protocatechuate are further subjected to intra or extra-diol ring 

cleavage which is carried out by molecular oxygen (Strachan et al., 1998). Most 

bacteria degrade PAHs particularly phenanthrene through one of two routes through a 

common intermediate, 1-hydroxy-2-naphthoate (figure 6.1). In general, 1-hydroxy-2-

naphthoate is oxidized to 1, 2-dihdroxynaphthalene which gets degraded via salicylate 

(Iwabuchi & Harayama, 1997). The other route of degradation is also via 1-hydroxy-2-

naphthoate, which is cleaved and is further metabolized via o-phthalate (Evans, 1965; 

Iwabuchi & Harayama, 1997; Kiyohara, 1976). Different genes and enzymes involved 

in PAHs degradation use salicylate which is identified and characterized in many 

strains (Denome et al., 1993; Kiyohara et al., 1983). 
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Fig. 6.1: Pathway representing degradation of phenanthrene (Iwabuchi & Harayama, 

1997). 

  During degradation of PAH by fungal ligninolytic enzyme, HMW-PAHs in soil are 

more likely to be attacked by fungal exo-enzymes in comparison to the intracellular 

bacterial enzymes. The majority of immobile HMW- PAH are diffused with these 

fungal exo-enzymes. Most of the research has suggested fungi as important bio-

remediating agents (Reddy, 1995; Cameron & Aust, 1999; Pointing, 2001). Studies 

have found Pencillium spp., and white rot fungi (Phanerochaete chrysosporium) to be 

more attractive organisms for bioremediation of polluted sites as these exhibit 

extracellular oxidative enzymatic systems (Gianfreda & Rao, 2004). Lignin is 

degraded by white rot fungi. White rot fungi posses high enzymatic activities as it  
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oxidizes lignin extra-cellularly and are considered as ligninolytic fungi. However, non-

ligninolytic enzymes such as dehydrogenases, may also be involved in the 

transformation of polluting substances (Cameron & Aust, 1999). 

Various peroxidases, lignin peroxidase (LiP), Mn-dependent peroxidase (MnP), and 

pholoxidase and laccase (Lac), constitute an enzyme systems present in white-rot fungi 

(Gianfreda & Rao, 2004). H2O2 dependent LiP oxidizes various aromatic structures 

and produces radicals that form aryl cations.  Also, LiP is considered to have high 

oxidation-reduction potential that oxidize xenobiotics (Gianfreda & Rao, 2004). 

Moreover, manganese peroxidases catalyze H2O2 dependent oxidation of various 

phenolic substrates and aromatic compounds (Wallis et al., 1990). Also, laccase 

mediates oxidation of various phenolic substrates to phenoxy radicals using molecular 

oxygen (Gianfreda et al., 2005). Various non phenolic substrates have also been 

oxidized by laccase with either with the help of 2, 2’-azino-bis (3-ethylbenz-thiazoline-

6-sulfonic acid (ABTS) or with the help of different substrates mediatorsthat are 

present in the reaction mixture (Pointing, 2001). In all the developments and studies of 

PAH bioremediation, a key advance has been reported based on the ecologically 

distinct group of wood and litter degrading white rot fungi. Phanerochaete 

chrysosporium. One of the species included in white rot fungi, has gained early 

attention with reference to bioremediation with all these enzymes (Barr & Aust, 1994; 

Cavaleiri & Rogan, 1985; Paszcynski et al., 1985). Biochemical data (Bogan & Lamar, 

1995; Haemmerli et al., 1986; Hammel et al., 1992), liquid-culture studies (Bogan & 

Lamar, 1995; Bumpus, 1989; Hammel et al., 1992) and bench scale solid-phase 

experiments (Orth et al., 1991; Morgan et al., 1993) have studied the importance of P. 

chrysosporium and its extracellular enzymes capable of PAH degradation. However  
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less attention has been focussed on the enzyme systems of Penicillium spp. and 

Aspergillus spp. 

The aim of the work was to isolate, characterize and purify manganese peroxidase 

and laccase enzymes produced by fungi and dioxygenase, 1, 2- catechol- dioxygenase 

produced by bacteria isolated during shaken aqueous enrichment (appendix I: sections 

I.3.6). Enzyme kinetic studies were carried out using Michlaelis –Menten equation. 
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6.2 Materials and methods  

6.2.1 Bacterial and fungal strains 

The six identified bacterial strains (Pseudomonas putida strain, Achromobacter 

xylosoxidans, Microbacterium sp., Alpha proteobacterium, Brevundimonas sp., 

Bradyrhizobium sp.) and two identified fungal strains (Aspergillus niger and 

Penicillium freii) isolated by enrichment culture (appendix I: sections I.3.6) were used 

for further enzymatic studies. 

 

6.2.2 Production/Growth and culture conditions -exposure of cultures to 

PAHs as the sole carbons source 

6.2.2a Bacterial growth 

All bacterial cultures were grown in 50 ml of nutrient broth (Sigma Aldrich) and 

minimal salt broth in 250 ml Erlenmeyer flasks in three replicates kept on a rotary 

shaker maintained at 280C for 24-48 hrs at 150 rpm. The bacterial cultures were then 

harvested and re-suspended in 50 ml of fresh nutrient broth and minimal salt medium 

containing 50 mg of each of phenanthrene, anthracene, fluoranthene and pyrene. PAH 

crystals were dissolved in acetone before adding to flasks to ensure equal distribution. 

Each flask was left overnight in fume-hood capped with a sterile cotton wool bung to 

evaporate acetone. Cultures were inoculated using sterile wire loop in each flask 

maintaining sterile conditions. After inoculation with culture the flasks were incubated 

in a rotary shaker at 150 rpm for 4 days maintained at 280C.  

 

6.2.2b Fungal growth 

Fungal strains were also grown in three replicates in 50 ml of ME broth (Sigma 

Aldrich) and minimal salt broth in 250 ml Erlenmeyer flask along with 50 mg of each  
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individual PAH. PAH crystals were dissolved in acetone before adding to flasks to 

ensure equal distribution. Each flask was left overnight in fume-hood capped with a 

sterile cotton wool bung to evaporate acetone. The fungal cultures inoculated cultures 

were kept on rotary shaker for 7 days at 150 rpm maintained at 220C. 

 

6.2.3 Isolation of PAH degrading bacterial enzymes 

Cultures were harvested to prepare cell- free extracts for all the samples. 

Centrifugation (1200 rpm) was performed and 10ml of supernatant was preserved at 

40C on nutrients agar slopes, for extracellular enzyme assay. Cell-free extracts were 

washed with 0.1M NaCl. After washing, pellet was re-suspended in 50 mM Tris HCL 

buffer with pH 7.8, containing 10% (v/v) glycerol, 10% (v/v) ethanol and 0.5 mM 

dithiothreitol. The cell suspension was transferred to 15 cm centrifugation tube and 

cells were disrupted with an ultrasonic oscillator (Heat systems, Ultrasonic processor, 

Model, XL2015) set at level 5, 50W in an ice bath for 30seconds. Bacterial particulate 

matter was removed by centrifugation for 10 mins at 8000 rpm maintained at 40C. The 

supernatant was filtered using Whatman filter paper (0.45 µm) samples were either 

stored at -200C or used immediately. The Bradford assay was performed to measure 

the protein concentrations using bovine serum albumin as a standard (Bradford, 1976). 

  

6.2.4 Isolation of PAH degrading fungal ligninolytic enzymes 

Fungal ligninolytic cultures were transferred by centrifugation (8000 rpm) and cell- 

extracts were washed using 100 ml of sodium phosphate buffer (0.1 mol/L, pH 6.5) 

containing 0.1 mol/L NaCl, was added to each flask. The supernatant collected was 

used for extracellular enzyme assays. The fungal mycelium in 100 ml of sodium 

phosphate buffer was crushed gently using glass rod and agitated at a room 
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temperature for 45 min on rotator shaker at 120 rpm. The enzyme extract were filtered 

using sterile nylon cloth and centrifuged at 8000 rpm for 20 min at 240C. All the 

filtrates were either stored at -200C or used immediately for purification of enzymes. 

The Bradford assay was performed to measure the protein concentrations using bovine 

serum albumin as a standard (Bradford, 1976). 

 

6.2.5 Enzyme extraction 

Culture broths were harvested and filtered through Whatman filter paper (0.45 µm). 

The filtrates were then centrifuged at 8000 rpm for 15 min at 4 ± 80C and immediately 

washed with 0.1 M NaCl. Cell suspensions in 0.1 M NaCl were re-suspended in 20 

mM phosphate buffer (pH 7.3) containing 10% (v/v) glycerol, 10% (v/v) ethanol and 

0.5 mM dithiothreitol. The pellet obtained was disrupted with an ultrasonic oscillator 

(Heat systems, Ultrasonic processor, Model, XL2015) set at level 5, 50 W in an ice 

bath for 30 seconds. The pellets were separated into centrifuge tubes for enzyme assay 

and for preserved at -200C. Activities for fungal manganese peroxidase were measured 

before purification. One unit of specific activity is termed as the amount of enzyme 

that produces 1 nmol product/min/(mg protein). Also, in this enzyme assay protein 

concentration was based on total cellular protein that was estimated by Bradford 

method using bovine serum albumin as a standard. 

 

6.2.6 Catechol 1, 2-dixoygenase enzyme assay 

  The catechol 1, 2-dioxygenase enzyme assay was performed from procedure by 

Nadaf & Ghosh, (2011) with few modifications.by containing 5 µL of catechol 1, 2 

dioxygenase, 20 µL of 10 mM catechol (Sigma Aldrich) as a substrate and final 

volume adjusted to 1 mL with 50 mM sodium phosphate buffer (pH 7.0). The enzyme  
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activity was measured at 260 nm. Also, one international unit (IU) of the enzyme 

activity was defined as the amount of the enzyme required to catalyze the formation of 

1 μmol of product per min per mg protein at 25°C. The protein amount was determined 

by the Bradford method using bovine serum albumin as a standard (Bradford, 1976). 

 

6.2.7 Manganese peroxidase  assay  

For manganese peroxidase enzyme assay enzyme was followed from the procedure 

by Sadhasivam et al., (2008). The enzyme substrate used was 3-methyl-2-

benzothiazolionone hydrazone hydrochloride (MBTH) and 3-Dimethylaminobenzoic 

acid (DMAB) (Sigma Aldrich). The enzyme assay was performed with total volume of 

2ml consisting of 160 μl of 100 mM succinate-lactate buffer (pH 4.5), 300 μl of 6.6 

mM DMAB, 100 μl of 1.4 mM MBTH, 30 μl of 20 mM MnSO4, and 100 μl of 

supernatant. Further the enzyme substrate reaction was activated by addition of 10 μl 

of 10 mM H2O2 and the deep purple compound colorization was measured at 590 nm. 

One unit is defined as the amount of enzyme needed to form 1 μmol of product in 1 

min per mg protein. 

 

6.2.8 Laccase  assay 

For laccase enzyme assay, procedure by Verdin et al., (2004) was followed. 

Laccase activity in the supernatant collected were measured by oxidation of 2; 2’-

azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) (Sigma Aldrich) Childs and 

Bardsley, 1975). The reaction mixture contained 5mM ABTS in 0.1M sodium acetate 

buffer (pH 5) and an appropriate enzyme. One international unit (IU) of the enzyme 

activity was defined as the amount of the enzyme required to catalyze the formation of  
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1 μmol of product per min per mg protein at 24°C. The protein amount was determined 

by the Bradford method using bovine serum albumin as a standard (Bradford, 1976). 

 

6.2.9 Purification for fungal ligninolytic enzyme 

Purification of ligninolytic enzyme was followed from the procedure by 

Sadhasivam et al., (2008). Two isolated fungal strains were grown under the optimized 

culture conditions in presence of PAHs which relatively helped to obtained purified 

manganese peroxidase using Sephadex G-25 column. 100 ml of sodium phosphate 

buffer (0.1mol/L, pH 6.5) containing 0.1 mol/L NaCl, were added to each flask 

containing fungal cultures. The fungal mycelium were crushed gently with a sterile 

glass rod and agitated on a rotary shaker 180rpm maintained at 240C for 45 min. the 

enzyme extracts were filtered through a membrane filter Whatman paper (0.45 μm) 

and used for purification process using fraction collector. 

 

6.2.10  Purification by fraction collector/sephadex G-25 

The enzyme purification was performed using column sephadex G-25 (Pharmacia), 

which had been equilibrated with 20 mM sodium phosphate buffer pH 5.0. Elution of 

the proteins was achieved with a flow rate of 1 ml min-1 by a gradient with 0 – 2M 

NaCl. Elution of proteins in this column was equilibrated with the same buffer with 

100 mM NaCl. Fractions were collected and specific activity was determined by the 

ratio of total activity/proteins content. Purification yield was measured by total activity 

for each step and the initial one. The purification fold was calculated by the ratio 

between specific activities at each purification step. 
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6.2.11 Extraction of catechol 1, 2-dioxygenase 

Purification of catechol 1, 2-dioxygenase were followed from procedure by Nadaf 

& Ghosh, (2011) with few modifications. As conditions mention in section for 

harvesting cells, similar procedure was used. Further, the harvested cells were washed 

twice with 30 ml of 50 mM sodium phosphate buffer (pH = 7.0) and re-suspended in 

the same buffer (pH = 7.0) and then homogenized by sonication (Heat systems, 

Ultrasonic processor, Model, XL2015) set at level 5, 50 W in an ice bath for 30  

seconds. Sonicated sample was centrifuged for 15 min at 13000 rpm at 4ºC. After 

centrifugation, the supernatants were filtered using Whatman filter paper (0.45 µm) 

and samples were eluted using sephadex G-25 column (Pharmacia). The elution was 

carried out at a flow rate of 1ml min-1. Each eluted fractions were analyzed at 280 nm 

for protein concentrations. The fractions having protein were tested for catechol 1, 2-

dioxygenase activities at 260 nm. Purification yield was measured by total activity for 

each step and the initial one. The purification fold was calculated by the ratio between 

specific activities at each purification step. 

 

6.2.12 Protein estimation: Bradford’s assay 

Protein estimation was performed for all the samples to determine the protein 

concentrations using Bradford’s assay. Protein concentration in all the purification 

steps was estimated by Bradford method with bovine serum albumin as a standard 

(Bradford 1976). The detailed procedure is described in appendix IV section: IV.2 

 

6.2.13 SDS-page analysis 

 Protein confirmation in purified enzymes was performed using SDS-PAGE, 

analysis according to the method of Laemmli using Bio-Rad Protien apparatus 
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(50Χ100Χ1.5mm), using 10% (w/v) polyacrylamind separating gels and 4% (w/v) 

polyacrylamide stacking gel. Detailed procedure for resolving gel and stacking gel 

preparation is described in appendix IV. 

 

Table 6.1: Resolving gel (for 2 gels):                10% 

Reagents Volumes 

Acrylamide stock 30% 3.33 ml 

1.875M Tris/HCl pH 8.8 2.00 ml 

Sterile distilled  water 4.67 ml 

SDS 10% 100 µl 

APS 50 µl 

TEMED 5 µl 

  Before addition of TEMED to resolving gel reagents in the flask, were degassed  

 

      Table 6.2: Stacking gel (for 2 gels);                    4% 

Reagents Volumes 

Acrylamide stock 30% 1.33 ml 

0.6M Tris/HCl pH 6.8 1.04 ml 

Sterile distilled water 7.63 ml 

SDS 10% 100 µl 

APS 50 µl 

TEMED 5 µl 
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6.2.14  Coomassie Staining and destaining 

 The SDS page gels were stained with 0.1% coomassie brilliant blue R-250. 

Standard markers with broad range gel electrophoresis were used (Bio-Rad 161-0317) 

for the estimation of molecular size of purified protein bands.  

 

6.2.15 Characterization of Enzyme 

All the enzyme assays were performed with the enzyme eluted from sephadex 

column G-25 (Phamecia). Various temperature conditions at varying pH were 

performed. 

 6.2.15a Relative pH 

The pH of the buffer was adjusted within a range of 5.0 to 9.5 to determine the 

relative pH activity for enzymes. These activities were performed by adjusting 0.1 M 

acetate buffer with a range of pH 5.0 to 5.5, phosphate buffer for pH and 6.0, 6.5, 7 and 

Glycine-NaOH buffer for pH 7.5, 8, 8.5, 9, 9.5.  Each substrate for specific enzyme 

activity was dissolved in above mentioned buffers (20 mg/ml concentrations) 

according to pH and further standard enzyme assay were performed as described in 

section (6.2.7 & 6.2.8). 

 

6.2.15b Relative temperature 

Relative enzyme activity for temperature procedure by Jordaan and Leukes, (2003) 

was followed with a few modifications. Relative temperatures were regulated using 

spectrophotometer (UV 160 A) along with the water bath. The temperatures to perform 

assay were equilibrated 10 minutes prior to assay time points. For all the enzyme 

activity were measured by incubating substrate along with buffers at different 
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temperatures in the  range of 10-700C at pH 7.0 in 0.1 M phosphate buffer and enzyme 

assays were performed as described in section (6.2.7 & 6.2.8). 

 

6.2.16 Enzyme kinetics 

The enzyme kinetics studies were carried out with the procedure by Wallis & 

Chapman, (1990) with a few modifications. The partially purified enzymes were 

characterized kinetically. Kinetic studies were performed in 0.2 M phosphate buffer 

(pH 7) and at 25 ± 10C apart from optimum pH experiment (which was performed in 

phosphate buffer at varying pH range from pH 5 to pH 9). Enzyme activities were 

measured following the formation of reaction products and also enzymes were 

incubated with various concentration of the substrate. V0 (initial rate, µmol of product 

produced per min) against the substrate concentration graphs were plotted to calculate 

the Vmax and Km values. Further initial rates versus substrate concentrations graphs 

were plotted to confirm the Michaelis – Menten kinetics equation. Also, reciprocal plot 

of reciprocal reaction velocities versus reciprocal substrate concentrations represented 

as Lineweaver-Burk was plotted with same data to yield Vmax and Km values. 
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6.4 Results 

6.3.1 Production for intracellular/extracellular enzymes  

In this study, organisms involved in the degradation of PAHs were investigated for 

the enzymes they posses and the kinetics of theses enzymes. Cell free extracts were 

purified for MnP and Laccase (in fungi) which are ligninolytic enzymes involved in 

PAH degradation. Catechol 1, 2-dioxygenase (in bacteria) was purified from cell 

extracts and kinetics along with optimal condition studied. The six identified bacterial 

strains (Pseudomonas putida, Achromobacter xylosoxidans, Microbacterium sp.,  

Alpha proteobacterium, Brevundimonas sp., Bradyrhizobium sp.) and two identified 

fungal strains (Aspergillus niger and Penicillium freii) were isolated as described in 

appendix I: sections I.3.6 and were compared for the production of manganese 

peroxidase, laccase and catechol 1, 2-dixoygenase enzyme in the presence of PAHs 

either intracellularly or extracellularly.  

 

6.3.2 Production of fungal manganese peroxidase and laccase enzyme 

Production of manganese peroxidase and laccase were studied by Aspergillus niger 

and Penicillium freii in the presence of PAH. In figure 6.2 & 6.3 it was observed that 

both the fungal strains exhibited greater extracellular production of manganese 

peroxidase (approximately 900 µmol ml-1h-1 for Aspergillus niger and 1300 µmol ml-

1h-1 for Penicillium freii) compared to intracellular activity measured (approximately  

300 µmol ml-1h-1 for Aspergillus niger and 380 µmol ml-1h-1  for Pencillium freii) as 

concentration per litre of original culture. Moreover, the fungal laccase activity for 

Penicillium freii exhibited a greater total extracellular activity (2000 µmol ml-1h-1) than 

that of Aspergillus niger (1300 µmol ml-1h-1). Thus, similar results exhibiting greater 

Penicillium freii extracellular activity were obtained for laccase enzyme production. 
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 Thus, Penicillium freii was found to have greater manganese peroxidase and laccase 

activity compared to Aspergillus niger (figure 6.2 & 6.3).  

        

 Fig. 6.2: Fungal manganese peroxidase activity 

 

  

 Fig. 6.3: Fungal laccase activity  
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6.3.3 Production of catechol 1, 2-dioxygenase 

The six distinct identified bacterial cultures isolated during enrichment (appendix I: 

sections I.3.6) were used for production catechol 1, 2-dioxygenase enzyme. All the 

cultures were grown in the presence of four PAHs (phenanthrene, anthracene, 

fluoranthene and pyrene).  

 

 

Fig. 6.4: Production of bacterial catechol 1, 2-dioxygenase activity by 6 different 

bacterial strains 

Figure 6.4 exhibits the catechol 1, 2-dioxygenase activity of by six identified 

bacterial cultures in the presence of PAH which was determined extracellularly and 

intracellularly. It was observed that all the cultures exhibited greater intracellular 

activity compared to extracellular activity. Pseudomonas putida exhibited 250 µmolml-

1h-1 extracellular and 340 µmolml-1h-1 of intracellular catechol 1, 2-dioxygenase activity  
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in presence of PAHs. Achromobacter xylosoxidans exhibited 250 µmolml-1h-1 of 

extracellular activity similar to that of Pseudomonas putida. However, intracellular 

activity exhibited by Achromobacter xylosoxidans was 310 µmolml-1h-1 compared to 

Pseudomonas putida. Microbacterium sp. exhibited highest level of activity 

(approximately 420 µmolml-1h-1of intracellular activity and 300 µmol ml-1h-1 of 

extracellular activity) followed by Bradyrhizobium sp. (390 µmolml-1h-1 intracellular 

activity and 240 µmolml-1h-1 extracellular activity) which was isolated at alkaline 

conditions (appendix I: sections I.3.6). Lower levels of activity (approximately 320 

µmol ml-1h-1 of intracellular and 200 µmolml-1h-1 of extracellular activity) were 

exhibited by Alpha proteobacterium isolated at alkaline conditions and also 

(approximately 320 µmolml-1h-1 of intracellular activity and 260 µmolml-1h-1 of 

extracellular activity) exhibited by Brevundimonas sp. isolated at neutral pH conditions 

(appendix I: sections I.3.6).  
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6.3.4 Purification of ligninolytic enzymes 

Purification of laccase and manganese peroxidase was performed for Aspergillus 

niger and Penicillium freii isolates described in appendix I: sections I.3.6 were used to 

study the ligninolytic enzyme activities (figure 6.5 & 6.6). 

 The manganese peroxidase and laccase activities were measured for the oxidations of 

MBTH and ABTS substrates respectively. However, the each of the substrate are either 

used for manganese peroxidase and laccase activities of both the enzymes and are 

expressed considering a change in OD values (optical density) per minute and were 

measured within the first minute of reaction initiation.  

In figure 6.5, protein concentrations along with manganese peroxidase activity for 

Aspergillus niger and Penicillium freii were plotted against the fractionated samples 

collected at a flow rate of 1 ml min-1. The protein concentration measured for each 

fractionated samples using sephadex G-25 column for Aspergillus niger exhibited two 

non-symmetrical peaks, the first of 1.8 mg/ml obtained peaking at 30th fractionated 

sample and a second 4.5 mg/ml peaking at the 64th fractionated sample. Similary, the 

manganese peroxidase activity measured for each fractionated samples for Aspergillus 

niger exhibited two non-symmetrical peaks. Similarly first peak obtained at 30th 

fractionated sample was 3.8 IU/ml and second peak obtained at 64th fractionated 

sample was 6.9 IU/ml. 

The protein concentration of each fractionated sample collected using sephadex G-

25 for Pencillium freii exhibited similar symmetrical peaks compared to Aspergillus 

niger. First peak was at the 38th fractionated sample (2 mg/ml protein) with a 

manganese peroxidase activity of 4 IU/ml and the second peak was obtained for 70th 

fractionated sample (3 mg/ml protein) with manganese peroxidase activity of 6 IU/ml  
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(figure 6.5). Fractions with the highest activity were used for SDS/Page electrophoresis 

analysis to determine the molecular size of protein. 

 

Fig. 6.5: Elution profile of fungal manganese peroxidase from sephadex G-25 

column. 

  
 
Fig. 6.6: Elution profile of fungal laccase from sephadex G-25 column. 

The fungal laccase was purified using sephadex G-25 column for Aspergillus niger 

and Penicillium freii (figure 6.6). The protein concentration along with fungal laccase 

activity was plotted against fractionated samples collected at flow rate of 1 ml min-1. 

The protein concentration measured for Aspergillus niger exhibited two peaks  
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(approximately 1.8 mg/ml and 5.9 mg/ml) obtained for fractionated sample number 32 

and 65 respectively.  The laccase activity measured for Aspgergillus niger 4 IU/ml and 

8.2 IU/ml for fraction 32 and 65 respectively. Similary, the protein concentration 

measured for Pencillium freii exhibited two peaks of 2 mg/ml and 4.3 mg/ml obtained 

at the 40 and 78 fractionated samples collected. The laccase activity obtained for 

Pencillium freii exhibited 3.8 IU/ml and 6 IU/ml respectively (figure 6.6). 

A single-step procedure was followed to purify ligninolytic manganese peroxidase 

and laccase and catechol 1, 2-dioxygenase using sephadex G-25 column (Pharmecia). 

The activity of manganese peroxidase and laccase enzyme measured at different stages 

of purification is summarised in table 6.3 & 6.4: 

Table 6.3: Purification of fungal manganese peroxidase 

Organisms                  Volume   Protein      Specific activity   Yield    Purification 
                                   (ml)             (mg)            (U/mg)           (%)          fold 
 
Aspergillus     Cell-free    100          239.57           288.63           100             1.00    
niger              extract    
                     sephadex       5           5.503            573.3             60.92          1.98 
                      G-25 
 Penicillium     Cell-free   100            291               359.62          100             1.00 
freii               extract 
                     sephadex       5            12.10             23.2              65.91          1.73 
                      G-25    
 

Table 6.4: Purification of fungal laccase  

Organisms               Volume        Protein      Specific activity     Yield    Purification   
                                       (ml)            (mg)           (U/mg)                   (%)        fold 
 
Aspergillus   Cell-free       100            219.6           296.87                  100            1.00 
niger            extract 
                     sephadex      5                49.20           558.3                     69.52         1.88 
                    G-25  
Penicillium   Cell-free      100             240.7           367.96                  100             1.00 
freii             extract 
                      sephadex       5               64.49            589.7                     71.4            1.602 
                    G-25 
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The purification for fungal manganese peroxidase and laccase is tabulated in table 

6.3 & 6.4. The specific activity of manganese peroxidase using Aspergillus niger was 

296.87 IU/mg in the crude extract which increased to 573.3 IU/mg after purification 

using sephadex G-25 and for Penicillium freii the specific activity in crude extract 

obtained was 367.96 which increased to 623.2 IU/mg after purification. Thus, the fold 

purification for manganese peroxidase resulted in 1.98 for Aspergillus niger and 1.73 

for Penicillium freii along with 60.92 and 65.91 % purification yield. The laccase 

enzyme resulted in a specific activity of 558.3U/mg of specific activity for Aspergillus 

niger and 589.7 IU/mg for Penicillium freii after purification using sephadex G-25. 

The percentage yield obtained for laccase was 69.52 & 71.4 along with fold 

purification of 1.88 for Aspergillus niger and 1.602 for Pencillium freii respectively. 

Manganese peroxidase and laccase purification was confirmed by loading the 

fractionated samples on SDS Page gel electrophoresis analysis. 
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6.3.5  Fungal manganese peroxidase and laccase SDS-page confirmation 

                                        M    1     2    3      4 

                               

Fig. 6.7: SDS-Page analysis of purified fungal manganese peroxidase and laccase 
sample after elution from sephadex G-25 column 
M represents Marker (250 kDa) (Bio-rad). Lane 1, 2, 3 and 4 represents protein 
fractionated samples collected using sephadex G-25 analysed on 10% resolving gel 
electrophoresis. Electrophoresis was performed for 40 minutes followed by Coomassie 
blue staining and destaining of gel for 30 minutes. 
 

Figure 6.7 represents fungal manganese peroxidase and laccase confirmation for 

four different fractionated samples using sephadex G-25 by SDS-Page gel 

electrophoresis. Fractionated samples with higher absorbance readings were used for 

activity measurements and further SDS/Page electrophoresis at (150V) was performed 

to determine the molecular sizes of purified protein.                                

In figure 6.7, a protein band for manganese peroxidase was obtained at 48 kDa and 42 

kDa, whereas for laccase activity the purified protein band was obtained at 64 kDa and 

69 kDa respectively. Substrates MBTH and ABTS, either or both can be used to 

measure the manganese peroxidase or laccase activity.  

Marker 
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6.3.6 Purification of bacterial catechol 1, 2 dioxygenase using fraction 

collector and sephadex G-25 

Purification of bacterial catechol 1, 2-dioxygenase was performed for six bacterial 

isolates (Pseudomonas putida, Achromobacter xylosoxidans, Microbacterium sp., 

Alpha proteobacterium, Brevundimonas sp., Bradyrhizobium sp.) isolates from 

enrichment culture (appendix I: sections I.3.6) (figures 6.8 & 6.9). 

 
Fig. 6.8: Elution profile of Pseudomonas putida catechol 1, 2-dioxygenase from a 
sephadex G-25 column 
 

 
 
Fig. 6.9: Elution profile of Achromobacter xylosoxidans catechol 1, 2-dioxygenase 
from a sephadex G-25 column 
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Fig. 6.10: Elution profile of Microbacterium sp. catechol 1, 2-dioxygenase from a 
sephadex G-25 column 
 
 

 
 
Fig. 6.11: Elution profile of Alpha proteobacterium catechol 1, 2-dioxygenase from 
a sephadex G-25 column 
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Fig. 6.12: Elution profile of Brevundimonas sp. catechol 1, 2-dioxygenase from a 
sephadex G-25 column 
 
 
 

 
Fig. 6.13: Elution profile of Bradyrhizobium sp. catechol 1, 2-dioxygenase from a 
sephadex G-25 column 
 
 
 Protein purification was performed for bacterial catechol 1, 2-dioxygenase using 

6 distinct isolates grown in minimal salt medium supplemented with PAHs.  Figures 

(6.8-6.13) depict purification of catechol 1, 2-dioxygenase by fractionation. 
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A symmetrical peak of bacterial catechol 1, 2-dioxygenase activity along with 

protein concentrations for each fractionated samples has been exhibited in figure 6.8, 

6.10 and 6.12 respectively. Elution profile of Pseudomonas putida catechol 1, 2-

dioxygenase exhibited in figure 6.8 represents the catechol 1, 2 dioxygenase activity 

along with protein concentrations measured against each fractionated sample collected 

using sephadec G-25 column. A single peak purification was formed for Pseudomonas 

putida with highest obtained at fraction 43 exhibiting catechol 1, 2-dioxygenase 

activity of 4IU/ml and protein concentration of 1.7 mg/ml. However, two peaks were 

formed of for Achromobacter xylosoxidans with protein concentrations of 

approximately 1.8 mg/ml peaking at fraction 20 and 3 mg/ml peaking at fraction 52 

and catechol 1, 2-dioxygenase activity of 2.0 IU/ml for first peak and 3.6 IU/ml for the 

second peak (figure 6.9). Similarly two peaks were also obtained for Microbacterium 

sp. with greater protein concentrations, first peak was approximately 1.8 mg/ml 

peaking at fraction 24 and second peak of 2.4 mg/ml peaking at fraction 50. These 

peaks were collected using sephadex G-25 and the catechol 1, 2-dioxygenase activity 

obtained for these fractionated samples were 2.5 IU/ml and 3.5 IU/ml (figure 6.10). A 

single peak was evident for Alpha proteobacterium with protein concentration of 2.5 

mg/ml peaking at fraction 40 and catechol 1, 2 dioxygenase activities of 2.5 IU/ml 

(figure 6.11). A two peaks protein concentration was formed for Brevundimonas sp. 

exhibiting 1 mg/ml for first peak and 1.5 mg/ml for second peak and catechol 1, 2-

dioxygenase activity of 2.6 IU/ml and 2.2 IU/ml for 60th and 87th fractionated sample 

(figure 6.12). A single peak was exhibited using Bradyrhizobium sp. with a protein 

concentration of 2mg/ml and the catechol 1, 2 dioxygenase activity of 2.5 IU/ml 

peaking at fraction 53 respectively. 
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A single-step procedure was followed to purify catechol 1, 2-dioxygenase enzyme. 

The activity of catechol 1, 2-dioxygenase enzyme measured at different stages of 

purification is summarised in table 6.5: 

Table 6.5: Purification of bacterial catechol 1, 2-dioxygenase enzymes  

Organisms                    Volume    Protein   Specific activity    Yield     Purification  
                                            (ml)      (mg)            U/mg)              (%)        fold 
Pseudomonas Crude 100     253.14           335.53           100         1.00 
Putida  extract 

sephadex 5     14.60             482.6             12           1.43 
G-25       

Achromobacter  Crude     100        262.31            311.12          100          1.00 
      xylosoxidans      extract        

         sephadex   5         20.64              408.7             22           1.31 
                        G-25 
            
Microbacterium Crude     100        240.61              412.14          100          1.00 
    sp.                extract                  
                        sephadex    5         9.04                 696.5            62           1.68 
                        G-25 
            
Alpha                Crude        100      294.17               340.27          100          1.00 
proteobacterium extract      
                         sephadex      5        20.70                509.4            25           1.49 
                         G-25 
             
Brevundimonas      Crude    100      276.54             349.76           100          1.00 
 sp.                       extract 
                            sephadex    5      6.30                 525.1             43           1.50 
                            G-25 
             
 Bradyrhizobium     Crude   100       04.68               364               100          1.00 
      sp.                   extract 
                             sephadex   5      18.004             582.8            15            1.60 
                             G-25 
 
 
  Catechol 1, 2-dixoygenase activities were measured, in crude extract for each 

bacterial culture and after purification step, tabulated in table 6.5. For Pseudomonas 

putida catechol 1, 2-dioxygenase purification obtained was around 3IU/ml (figure 6.8) 

with 12% purification yield and 1.43 purification fold, whilst the specific activity was  
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335.53 U/mg in crude extract which increased to 482.6 U/mg after purification using 

sephadex G-25 (table 6.5). Figure 6.9 exhibits two peaks of activity for Achromobacter 

xylosoxidans with a purification yield of 22.58% and purification fold of 1.31, whilst 

the specific activity was 311.12 U/mg in a crude extract which increased to 408.7 

U/mg after purification using sephadex column G-25. Similarly (figure 6.10) exhibits 

two peaks of purified catechol 1, 2 dioxygenase for Microbacterium sp. with specific 

activities of 412.14 U/mg in crude extract which increase to 696.5 U/mg after 

purification using sephadex G-25. Also, purification fold measured was 1.68 with 

highest purification yield of 62% compared to other bacterial strains. A single 

symmetrical peak was formed for the Alpha proteobacterium strain with the specific 

activity of 340.27 U/mg in crude extract which increased upto 509.4 U/mg after 

purification using sephadex G-25. Similarly, two peaks formed for Brevundimonas sp. 

resulted in a specific activity of 349.76U/mg which increased to 525.1 U/mg after 

purification using sephadex G-25 and a purification yield of 43% and purification fold 

of 1.50. A single peak formed for Bradyrhizobium sp. (figure 6.13) resulted with 

increased specific activity of 582.8 U/mg (table 6.5) after purification using sephadex 

column G-25 and purification yield obtained was 15% with 1.60 fold purification. 

After the purification of catechol 1, 2-dioxygenase, Microbacterium sp. produced 

highest specific activity followed by Bradyrhizobium sp., Brevundimonas sp. and 

Alpha proteobacterium and least specific activity was obtained from Pseudomonas 

putida exhibiting 4.82 U/mg (table 6.5). The fractions with the greatest activity were 

used for analysis by SDS/Page electrophoresis. 
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6.3.7  Bacterial catechol 1, 2-dioxygenase SDS-page confirmation 

                                

                              

Fig. 6.14: SDS-Page analysis of purified bacterial catechol 1, 2-dioxygenase sample 
after elution from sephadex G-25column 
Electrophoresis was performed for 40 mins followed by Coomassie blue staining and 
destaining of gel for 30 mins.  
 

Figure 6.14 represents bacterial catechol 1, 2-dioxygenase analysis by SDS-Page 

gel electrophoresis. Fractionated samples with higher absorbance readings were used 

for activity measurement for SDS/Page electrophoresis to estimate molecular sizes of 

purified proteins.  

In figure 6.14, bands with molecular size of 34, 35, 32, 39, 41 and 32 kDa were 

obtained for Pseudomonas putida, Achromobacter xylosoxidan, Microbacterium sp., 

Alpha proteobacterium, Brevundimonas sp. and Bradyrhizobium sp. respectively. 

Catechol 1, 2-
dioxygenase (34, 
35, 32, 39, 41, 
32)(kDa)  

Marker 
size 
(kDa) 

 

120 
100 
75 
50 
 
30 

 

10 
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6.3.8 Characterization of enzymes 

The enzyme activities for the bacterial and fungal cultures with respect to effect of 

pH and temperature were analysed. A pH range of 5 to 9.5 and temperature range of 

200C to 700C were analysed.  

6.3.8a  Effect of pH 

The relative pH for MnP, laccase and catechol 1, 2-dioxygenase enzymes were 

estimated by measuring the activities of these enzymes at 400C in pH ranging from 5 to 

9 with half pH intervals using 0.1M of acetate buffer for pH 5 and 5.5, phosphate 

buffer for pH 6, 6.5, 7 and 7.5 and Glycine-NaOH buffer for pH 8, 8.5, 9 and 9.5 

respectively. The results are displayed as a percentage of the activity of the pH which 

gave the highest activity. 

 

Fig. 6.15: Effect of pH on fungal manganese peroxidase (MnP) activity 

  The pH with the greatest MnP activity was at pH 5 for both strains (figure 

6.15). Manganese peroxidase activity for both Aspergillus niger and Penicillium freii 

was gradually decreased with increase in pH however, relative activity of Aspergillus 

niger was decreased more rapidly between pH 5.5 and 8. Between pH 9 and 9.5 

Aspergillus niger relative activity was greater than Penicillium freii. 
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Fig. 6.16: Effect of pH on fungal laccase activity 

 

 The fungal laccase activity for both Aspergillus niger and Penicillium freii was 

greatest at pH 5 and gradually decreased for both strains to pH 7.5 where relative 

activity was around 60% of the activity at pH 5. However, laccase activity measured 

for Aspergillus strain was found to increase from pH 7.5 to pH 9, whilst relative 

activity of laccase for Penicllium freii continued to decrease to around 20% at pH 9.5 

(figure 6.16). Relative laccase activity for Aspgerillus niger increased to a peak of 

around 80% at pH 9.0. 

 

Fig. 6.17: Effect of pH on bacterial catechol 1, 2-dioxygenase activity 
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The effect of pH on catechol 1, 2-dioxygenase activity was measured using catechol 

as a substrate. The relative pH obtained for catechol 1, 2-dioxygenase activity was pH 

7.5 for all the bacterial cultures. Microbacterium sp. exhibited higher relative activity 

compared to all other cultures across the pH range. Initially the relative activities 

obtained were lowest at pH 5 and as the pH increased the catechol 1, 2-dioxygenase 

activity also increased. Beyond the peak at pH 7.5 the relative activity decreased to 

between 25% and 55% at pH 9.5. The lowest activities for all the cultures were 

obtained at pH 5 and pH 9.5 respectively. Moreover, acidic pH and alkaline pH 

resulted in lower catechol 1, 2-dioxygenase activity. 

 

6.3.8b  Effect of temperature 

Temperature activity for fungal manganese peroxidase, laccase and bacterial 

catechol 1, 2-dioxygenase was carried out by incubating the substrate at a temperature 

range of 200C to 700C. 

 

    Fig. 6.18: Effect of temperature on fungal manganese peroxidase (MnP) activity 
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The effect of temperature on manganese peroxidase relative activity was studied.  

The maximum relative activity was obtained at 500C (figure 6.18). Manganese 

peroxidase relative activity increased at the temperature increased from 200C upto 

500C dropped at 600C and 700C. Greater relative activity of manganese peroxidase was 

obtained for Penicillium freii compared to Aspergillus niger (figure 6.18) at 

temperatures higher and lower than 500C. 

 

Fig. 6.19: Effect of temperature on laccase (Lac) activity 
 

The laccase activity measured with respect to temperature is exhibited in figure 

6.19. Laccase activity was found to be highest at 500C. Pencillium freii has greater 

relative activity when compared to Aspergillus niger at temperatures above and below 

500C. The relative activity of both fungal strains dropped to approximately 20% of the 

peak at 200C and 700C. 

 

6.3.8c  For catechol 1, 2-dioxygenase  

The effect of temperature on catechol 1, 2-dioxygenase activity was measured using 

catechol as a substrate for the enzyme assay. The activities were measured using six 

identified cultures at a temperature range of 20-700C. The maximum activities for all  
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cultures were obtained at 300C. However, as the temperature increased beyond 300C a 

gradual drop was recorded. Microbacterium sp. exhibited highest relative enzyme 

activity compared to other cultures beyond 300C whilst, Bradyrhizobium sp. had the 

lowest relative activity. 

 

Fig. 6.20: Effect of temperature on catechol 1, 2-dioxygenase activity 
 

In general, relative pH and temperature for fungal manganese activity was pH 5 and 

500C respectively. Similarly, the relative pH and temperature for fungal laccase 

activity was pH 5 and 500C, whilst the relative pH and temperature for bacterial 

catechol 1, 2-dioxygenase was pH 7.5 and 300C. 

 

6.3.9 Enzyme kinetics 

Kinetic studies were performed for purified fungal manganese peroxidase, laccase 

and bacterial catechol 1, 2-dioxygenase. Various concentrations of substrate (1-50mM) 

were used to incubate the enzymes to calculate the Vmax and Km values by plotting 

graph of V0 (initial rate, mole of ABTS, MBTH and catechol produced per min) against 

the substrate concentration. Graphs were plotted to confirm whether enzymes follow 

the Michaelis- Menten kinetics by considering initial rates versus substrate  
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concentrations. Reciprocal graphs were plotted to determine Lineweaver –Burk plot 

(figure 6.21 and 6.22). 

 

Fig. 6.21: Lineweaver –Burk plot of fungal manganese peroxidase (MnP)  
 
 
 

 

Fig. 6.22: Lineweaver –Burk plot of fungal laccase using fungal strains 
 

 Figure 6.21 & 6.22 exhibits a set of double reciprocal plots (Lineweaver- Burk plot) 

one calculated for Aspergillus niger and one for Pencillium freii at different  
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concentration of ABTS and MBTH as a substrate (1/s represents reciprocal substrate 

concentrations). The series of concentrations of substrate (1-50 mM) incubated was 

used to calculate the Vmax and Km values by plotting graph of V0 (initial rate, mole of 

ABTS, MBTH and catechol produced per min) against the substrate concentration.  

The Vmax and Km values obtained for Aspergillus niger and Pencillium freii are 

described in table 6.6 and for bacterial cultures are described in table 6.7: 

           Table 6.6: Enzyme kinetics for fungal strains 

       Enzyme         Organisms             Vmax (mM/min)        Km (mM) 

     MnP              Aspergillus niger              0.1402                      0.8575 

                         Penicillium freii                 0.181                       1.0261 

     Lacasse        Aspergillus niger                0.162                       1.700                         

                     Penicillium freii                 0.2358                     2.0425 

 The Lineweaver Burk plot exhibits linear lines with seperate intercept on the 1/V0 

axis however with different slopes (figure 6.22 & 6.23). The intercept of 1/V0 axis 

equals 1/Vmax and it is known that when Vmax is lower, Km is greater for different 

fungal organism which is said to be competitive. The Vmax and Km values were 

calculated for manganese peroxidase and laccase activity from Lineweaver Burk plot 

figure 6.22 & 6.23. For manganese peroxidase, Vmax 0.1402 mM/min and Km 0.8575 

mM were calculated for Aspergillus niger. Similarly, 0.181mM/min Vmax and 1.0261 

mM Km were calculated for Pencillium freii from figure 6.22 & 6.23. Vmax and Km 

calculated for laccase activity exhibited 0.162 mM/min and 1.7mM for Aspergillus 

niger and 0.2358 mM/min and 2.04 mM for Pencillium freii. From L-B plot it is clear 

the two fungal strains are competitive exhibiting manganese peroxidase and laccase 

activity for different substrate concentrations. 



202 

 

 

 Fig. 6.23: Lineweaver –Burk plot of bacterial catechol 1, 2-dioxygenase 
 
        Table 6.7: Enzyme kinetics by bacterial strains 

        Organisms                                                 Vmax (mM/min)                Km(mM) 

        Pseudomonas putida                                       0.0033                          2.7 

        Achromobacter xylosoxidans                           0.0036                          2.6824 

        Microbacterium sp.                                         0.0045                          0.6592 

        Alpha proteobacterium                                    0.0037                          0.8336 

       Brevundimonas sp.                                           0.003                            1.289 

        Bradyrhizobium sp.                                            0.0034                          3.2499 

 

 Figure 6.23 exhibits a set of reciprocal plots (Lineweaver- Burk plot) one obtained 

for six bacterial isolates calculated at different catechol concentration as a substrate 

(1/s represents reciprocal substrate concentrations). The series of concentrations of 

substrate (1-50 mM) incubated was used to calculate Vmax and Km values by plotting 

graph of V0 (initial rate, mole catechol produced per min) against the substrate 

concentration. A set of linear lines were obtained with seperate intercept on the 1/V0 



203 

 

axis however with different slopes (figure 6.23). Intercept of 1/V0 axis equals 1/Vmax 

and it is known that when Vmax is lower, Km is greater for different bacterial organism 

which is said to be competitive. Vmax and Km values for Pseudomonas putida were 

0.0331 mM/min and 2.7 mM (table 6.7) calculated from figure 6.23. Vmax exhibited by 

bacterial isolates Achromobacter xylosoxidans, Microbacterium sp., Alpha 

proteobacterium, Brevundimonas sp., Bradyrhizobium sp. calculated were 0.0369 

mM/min, 0.045 mM/min, 0.0373 mM/min, 0.03 mM/minand 0.034 mM/min  and Km 

calculated were 2.7 mM, 2.68 mM, 0.659 mM, 0.833 mM, 1.28 mM and 3.24 mM 

respectively. Lower Km value was obtained for Microbacterium sp. and higher Km 

value was obtained for Bradyrhizobium sp. however, higher Vmax was obtained for 

Microbacterium sp. and lower Vmax was obtained for pseudomonas putida and 

Bradyrhizobium sp. The Lineweaver-Burk plot represents the six identfied bacterial 

isolates are competitive exhibiting catechol 1, 2 dixoygenase activities for different 

substrate concentrations. 
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6.4  Discussion 

Most studies of PAH degradation focus on two main groups of organisms: soil 

bacteria and ligninolytic fungi that carry out oxidation and mineralization of PAH 

compounds (Baldrian et al., 2000).  

 

6.4.1 Production of fungal and bacterial intracellular/extracellular enzymes 

Enzyme studies in this thesis were conducted in presence of PAHs added to shaken 

cultures of Penicillium freii and Aspergillus niger and resulted in increased manganese 

peroxidase and laccase ligninolytic enzyme activities (figure 6.2 & 6.3). Manganese 

peroxidase and laccase ligninolytic enzymes of fungi play an important role in PAH 

degradation which were studied by extracting purified cell free enzymes intracellularly 

and extracellularly from crude extracts. All the fungal ligninolytic enzymes are rarely 

reported with Aspergillus spp. and Penicillium spp. The white-rot fungi have been 

reported as principal organisms that produce several extracellular enzymes which 

include laccase, manganese peroxidase and lignin peroxidase. Besides white-rot fungi, 

other organisms are also involved in degradation and de-colorization of different 

recalcitrant organic compounds (Kalmis et al., 2008; Kirk & Farrell, 1987). In this 

study, both fungal strains (Aspergillus niger and Penicillium freii) were found to 

produce manganese peroxidase and laccase activities in liquid culture medium. 

Optimum enzyme extraction after performing enzyme assay were determined greater 

in extracellular fungal crude extract whereas; in intracellular activities it was lower 

(figure 74 & 75). Also, Baldrain et al., (2000) has reported that, initial reaction of PAH 

degradation is mostly initiated by extracellular ligninolytic enzymes which include 

laccase, lignin peroxidase and MnP (Mn-dependent peroxidase enzymes). Thus, 
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 extracellular fungal extract results in PAH degradation, for example laccase reached 

the greater enzyme activity of 2000 µmol ml-1h-1 after 8 days of growth which is 

highest than that of manganese peroxidase activity of 1200 µmol ml-1h-1 intracelluarly 

using Penicillium freii and Aspergillus niger (figure 6.2 & 6.3). Thus, extracellular 

fungal activities were greater compared to intracellular enzyme activities. Also, an 

activity measurement contributes to initiation of PAH degradation reaction at initial 

levels by extracellular ligninolytic fungal enzymes. Lower intracellular manganese 

peroxidase activity was observed due to formation of mycelial pellets and O2 limitation 

that is responsible for mycelia and denaturation of enzymes caused by high agitation 

speeds of 100 to 200 rpm, required by fungi for constant consumption of carbon source 

(Venkatadri and Irvine, 1990). Penicillium freii was more compatible with higher 

activity compared to Aspergillus niger. Also, work carried out in this report is 

comparable to the research reported by Giarfreda et al., (2005) reporting 8 times higher 

enzyme activity in popular sawdust extracellularly than that of fir sawdust 

intracellularly by Pleurotus ostreatus cultures. However, studies reported by Bogan & 

Lammar, (1996) indicates Phanerochaete laevis HHB-1625 grown in presence of PAH 

in nitrogen limited liquid medium has complements of extracellular ligninolytic 

enzymes.  Manganese peroxidase activity was found to be strongly regulated whereas 

low levels of laccase activity were detected and no LiP was found in the culture 

medium.  

As catechol 1, 2-dioxygenase is the aromatic ring-cleavage enzyme of catechol 

dioxygenase present in bacteria and is mostly characterized based on biochemical and 

structural properties. Also, among various aromatic compounds catechol 1, 2 

dioxygenases play a vital role in the degradation pathway and are found to be 

ubiquitous in bacterial cultures (Brodrick et al., 1991; Latus et al., 1995; Sauret-Ignazi  
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et al., 1996). Thus, studies related to isolation, production and purification of 

dioxygenases enzyme indicate that they help in complete removal of aromatic 

compounds from industrial and domestic environment suggesting conservation of 

biodiversity (Nadaf & Gosh, 2011).  

In this research reported, catechol 1, 2-dioxygenase enzyme activities in presence of 

PAH were studied intracellularly as well as extracellularly in a crude extract using 6 

different distinct bacterial cultures in minimal medium. All the bacterial strains 

exhibited catechol 1, 2-dioxygenase activity. Moreover, in these studies catechol 1, 2-

dioxygenase production (figure 6.4) exhibited greater intracellular activity for all the 

bacterial strains compared to extracellular enzyme activities. Among all the bacterial 

strains greater intracellular activity of 450 µmol ml-1h-1 was obtained for 

Microbacterium sp. and extracellular activity of 300 µmol ml-1h-1 was obtained for 

Microbacterium sp.. Similar results were reported by Lee et al., (2003) indicating 

catechol 1, 2-dioxygenase activity intracellularly and extracellularly during 

fermentation condition by two strains of Pseudomonas species. Also, Ralstonia sp. Ba-

0323 strain producing 1.6mg/ml of catechol from sodium benzoate in a 20 hours 

growing culture was studied for extracellular and intracellular production of 

dioxygenase indicating greater bacterial intracellular activities (Wang et al., 2001).  

Studies involving fungal manganese peroxidase and laccase activities in this thesis 

exhibit greater extracellular activities than that of intracellular activities. Also, 

Cajthaml et al., (2007) has reported ligninolytic enzymes of Irpex lacteus indicate 

greater extracellular ligninolytic activity in microsomal fraction of biomass grown in 

complex and N-limited medium. However, bacterial catechol 1, 2-dioxygenase 

extracted intracellularly and extracellularly exhibited greater activities for intracellular 

enzymes compared to extracellularly. Difference between intracellular and 



207 

 

extracellular activities in these studies exhibits substantial difference for bacterial and 

fungal strains. This substantial difference may be due to Na+/K+ ATPase in majority of 

organism which sustains high potassium level and low sodium levels which accounts 

for low chemical volatilibility within cells (Masten & Davies, 1997). After the 

production of intra/extracellular enzymes for fungal manganese peroxidase, laccase 

and bacterial catechol 1, 2-dioxygenase activities, single step purification was studied. 

 

6.4.2 Purification of ligninolytic enzymes 

Fungal manganese peroxidase and laccase catalyses MBTH and ABTS that was 

purified by a single step purification using a mixture of crude ligninases (laccase and 

manganese peroxidase) obtained from 8 day old incubated cultures of Penicillium freii 

and Aspergillus niger, grown in presence of PAHs. Crude enzyme solutions after 

determining enzyme activity, loaded onto a sephadex G-25 column imparted single 

step enzyme purification. Protein fractions eluted at a flow rate of 0.5ml/min were 

expressed with two peaks, exhibiting enzyme activity in IU/ml and protein 

concentration in mg/ml for each fractionated sample (figure 6.5 and 6.6). 

Subsequently, the peak point with highest protein concentration for fractionated sample 

was assayed for laccase and manganese peroxidase activities. The manganese 

peroxidase and laccase activities along with their effects were mostly evaluated, as 

these enzymes play important role in degradation of recalcitrant compounds (Steffen et 

al., 2003). The purification to homogeneity of manganese peroxidase and laccase, 

using a single step purification procedure is tabulated in table 6.3 & 6.4. Purification 

fold for manganese peroxidase activity measured for Aspergillus niger exhibited was 

1.98 and for Penicillium freii was 1.74fold. In sepahdex G-25 column chromatography, 

specific activity was increased to 573.3U/mg for Aspergillus niger and for Penicillium  
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freii specific activity measured was increased to 623.2 U/mg. However, laccase 

exhibited greater purification fold of 1.88 for Aspergillus niger and 1.60 for 

Penicillium freii and specific activities 558.3 U/mg for Aspergillus niger and 589.7 

U/mg for Penicillium freii when compared to manganese peroxidase enzyme. This 

suggests that manganese peroxidase purification from both fungi have different values 

in both enzymes i.e. Aspergillus niger was less stable compared to Penicillium freii 

which was evident from the purification yields. Similar results were indicated by 

Steffen et al., (2003) indicating comparison between Agapanthus praecox and S. 

coronilla suggesting A. praecox has lower purification yields than that of S. coronilla. 

In 1883, laccases were first described form Japanese lacquer tree Rhus vernicifera 

(More et al., 2011). Moreover, laccase activity in T. versicolor 951022 has been 

reported with much higher specific activity of 91,443 IU/mg using ABTS as a substrate 

(Han et al., 2005).  The specific activity reported in this thesis has slightly lower values 

compared to literatures. However, specific activities were found to be different 

depending on the substrate and conditions of assay. Also, the unit for activity 

measurement is defined differently by other research groups (Han et al., 2005; Eggert 

et al., 1996; Yaver et al., 1996; Xiao et al., 2003). 

 

6.4.3 Purification of catechol 1, 2-dioxygenase 

The purification and characterization of catechol 1, 2-dioxygenase from 

Rhodococcus sp. NCIM 2891 was first reportedly performed with single step 

purification process by Nadaf and Ghosh (2011). The catechol 1, 2-dioxygenase 

enzyme purification to homogeneity was performed using single step purification 

process by sephadex G-25 column. Elution of protein fractionations along with 

catechol 1, 2-dioxygenase activity plotted versus fraction numbers for each bacterial  
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culture strain using spehadex G-25, were purified (figure 6.8, 6.9, 6.10, 6.11, 6.12 and 

6.13). The protein fractions were eluted at a flow rate of 0.5 ml/min. Subsequently, 

peak points with highest protein concentration for the fractionated sample along with 

highest catechol 1, 2-dioxygnease activity were observed and molecular sizes were 

confirmed by SDS-Page analysis. The purity to homogeneity obtained by single step 

purification using sephadex G-25 for all cultures, exhibited increased specific activity 

of about 482.6, 408.7, 696.5, 509.4, 525.1, 582.8 U/mg whereas, purification fold 

values obtained for 6 cultures were 1.43, 1.31, 1.69, 1.49, 1.50 and 1.60 respectively. 

Similarly, Briganti et al., (1997) has summarized the enzyme purification with more 

similar values to those obtained in this thesis. 

 

6.4.4 SDS-page confirmation 

The manganese peroxidase activity from both fungi after purification step, appeared 

as a purified protein bands on SDS-page with a molecular weight between 41 to 

48kDa, as a common molecular size reported in literatures (Steffen et al., 2003). 

Researchers found similar results where A. biporus strain producing manganese 

peroxidase was found with molecular weight around 40kDa which were grown on 

solid compost (Latus et al., 1995). Similarly, with white-rot fungi particularly 

Phanerochaete chrysosporium producing manganese peroxidase were evident with 

molecular weight around 45kDa (Glenn et al., 1983) and Bjerkandera sp. BOS55 

(Mester & Field, 1998) were reported with molecular weight around 46 kDa and (44-

45 kDa). In addition to this, molecular weight of laccase for both fungi was appeared 

as a single band on SDS-page with molecular weight of 64 kDa (figure 6.7). Laccase 

isolated form Basidiomycota that include Trametes spp. has been generally represented 

as monomeric protein with 50 and 80 kDa molecular mass (Levin & Forchiassin,  
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2003). To confirm, the protein band as a laccase, molecular size was analysed in figure 

85 outcome in the range represented as monomeric protein for Trametes spp. 

Moreover, molecular sizes of proteins evident for fungal enzymes were purified and 

activity measured using ABTS and MBTH as a substrates. Both of these substrates are 

suggested in literature reviews and could express their enzymatic function with either 

manganese peroxidase or laccase activities which makes it difficult to confirm the 

particular band for specific activity of protein analysed on SDS-page gel 

electrophoresis (figure 6.7) (Jordaan and Leukes, 2003).  

In this research work, SDS-page analysis for catechol 1, 2-dioxygenase enzyme from 

six identified bacterial cultures were analysed and molecular weight around 34, 35, 32, 

39, 48, 32 kDa has been obtained. Similar results have been reported by researchers 

where they found molecular weight of catechol 1, 2-dioxygenase around 30 kDa for 

Rhodococcus sp. NCIM 2891 and Ralstonia sp. Ba-0323 (Nadaf & Ghosh, 2011; Wang 

et al., 2001). Thus, results obtained in this study are comparable with the results of 

other researchers. 
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6.4.5 Characterization of purified enzymes 

6.4.5a  Effect of pH 

The effect of pH was studied for purified enzymes for manganese peroxidase, 

laccase and catechol 1, 2-dioxygenase at a range of 5.0 to 9.0 with half intervals. 

Optimum pH for greater relative activity of manganese peroxidase was observed at pH 

5 using ABTS as a substrate. At pH greater than 5.0, decreased manganese peroxidase 

relative activity for both Aspergillus niger and Penicillium freii were observed (figure 

6.15).  

Interestingly, Aspergillus niger exhibited slight increase in relative activity at 

alkaline pH of 7.5, 8, 8.5 and 9, whilst, relative activity for Penicillium freii continued 

to decrease to around 20% at pH 9.5 and relative activity of laccase for Aspergillus 

niger increased to a peak of around 80% at pH 9. 

Interestingly, in chapter 5 (Biodegradation of PAHs) increase in the fungal population 

of one of predominant fungi (Aspergillus niger ) was found at alkaline and acidic pH in 

comparison to neutral pH. 

Moreover, the relative activity of laccase measured at different pH 5 was found 

greater as compared to relative activity of laccase at pH 9.5. Also, as the pH was 

increased the relative activity of laccase was gradually decreased (figure 6.16). Also, 

gradual decrease in laccase was found with increased pH, (figure 6.16) and this gradual 

decrease with increased may be due to the difference in redox potential between the 

reducing substrate and active site of the enzymes (Sadhasivam et al., 2008) present in 

Aspergillus niger and Pencillium freii. Moreover, research conducted on Chalara 

paradoxa CH32, Cerena unicolor, Trichoderma atroviride and  Coriolus hirsutus 

suggested that the optimal pH range for fungal laccase was from 4.0 to 6.0 (Robles et 

al., 1999). All the ligninolytic enzymes including manganese peroxidase has been  
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reported with optimum pH in acidic range However, industry activities particularly 

leading to pulping and bleaching mainly exhibit alkaline conditions and thus, the waste 

generated through these sources is alkaline (O’Mahony et al., 2006) 

The specific relative pH of bacterial catechol 1, 2-dioxygenase was obtained at pH 

7.5 (figure 6.17). Nadaf & Ghosh, (2011) has also reported similar results where they 

found relative pH 7.5, for bacterial catechol 1, 2-dioxygenase. However, their studies 

are focused on phenol degradation whereas, in these studies catechol 1, 2-dioxygenase 

was studied in PAH degrading organisms.  

  

6.4.5b Effect of temperature 

The temperature effect was conducted to characterize the fungal manganese 

peroxidase, fungal laccase and bacterial catechol 1, 2-dioxygenase by incubating their 

relative substrates within a temperature range of 20-700C. The relative temperature 

obtained for all the enzymes corresponded well to the values available in literature. 

The specific relative activity for manganese peroxidase was obtained at 500C (figure 

6.18) and the specific relative activity for laccase was also obtained at 500C (figure 

6.19). Both strains exhibited greater specific relative temperature for laccase and 

manganese peroxidase activity at 500C. A research by Baborova et al., (2006) suggests 

that, the specific relative temperature and pH of manganese peroxidase activity was 

slightly greater for L. lacteus although, stability at elevated temperature was low. Also, 

the laccase specific temperature values obtained for Penicillium freii and Aspergillus 

niger corresponds well with the temperature reported for Botrytis cinerea (Zouari et 

al., 1987). Rogalski, (1991) has reported the relative temperature for laccase from 

Fomes fomentrarius is 520C while laccase from Chaetomium thermophile is reported 

with specific relative temperature between 50 and 600C (Chefetz et al., 1998). 
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The relative temperature obtained for bacterial catechol 1, 2-dioxygenase using all 6 

distinct bacterial cultures was 300C (figure 6.20). The thermal effect of catechol 1, 2-

dioxygenase reported by Nadaf & Ghosh (2011) suggests that enzyme effect is greater 

when exposed to temperature lower than 400C. Similarly, specific relative temperature 

of 300C was obtained for Pseudomonas aerugniosa in studies related to aromatic 

degradation (Chung et al., 2003).  

 

6.4.6 Enzyme kinetics 

Enzyme kinetics studies were conducted to determine the specific formation of 

metabolites by six distinct bacterial and two distinct fungal cultures. The main kinetic 

parameters Vmax (maximum enzyme velocity) and Km (affinity constant) were 

determined for manganese peroxidase, laccase (ligninolytic enzymes) and for bacterial 

catechol 1, 2-dioxygease enzyme by plotting lineweaver Burk plot.    

Kinetic studies for fungal manganese peroxidase and laccase were studied using 

MBTH and ABTS as a substrate with different concentrations (1 mM to 50 mM) (table 

6.3 & 6.4). The Lineweaver Burk plot exhibits linear lines with separate intercept on 

the 1/V0 axis however with different slopes (figure 6.21 & 6.22). The intercept of 1/V0 

axis equals 1/Vm however, when Vmax was lower, Km was greater for different fungal 

organism which is said to be competitive. The kinetic studies for fungal manganese 

peroxidase, exhibited Vmax 0.1402 mM/min and Km 0.8575 mM for Aspergillus niger 

and 0.181mM/min Vmax and 1.0261 mM Km for Pencillium freii from figure 6.21 & 

6.22. Fungal laccase activity exhibited 0.162 mM/min Vmax and 1.7 mM Km for 

Aspergillus niger and 0.2358 mM/min Vmax and 2.04 mM Km for Pencillium freii. The 

lower Km value represents condition where enzyme saturated with substrate does not 

convert much of substrate to product per unit of time. Also, larger the Km lower is the  
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affinity of substrate towards enzyme. Thus, lower the Vmax more enzyme converts 

substrate to product per unit of time. In this study, higher Km values were evident for 

laccase activity compared to manganese peroxidase activity.  

In general, lacasses exhibits non-specificity to their substrates and are able to 

oxidize a wide range of aromatic compounds from contaminated soil and water 

(Sadhasivam et al., 2008). Thus, Vmax and Km at different concentrations suggest a 

different behavior of enzyme for their substrates. The Vmax value obtained for 

Chaetomium thermophilum is 2.6µmol/min/mg for the ABTS as a substrate (Chefetz et 

al., 1998). The Vmax and Km parameters for purified laccase from Pleurotus sp. using 

ABTS indicated by More et al., (2011) were 0.25 mM and 0.33 µmol/min respectively. 

Similar values were obtained for laccase from Melanocarpus albomyces with ABTS 

concentration of 0.28 mM.  

The Km value obtained for laccase from Pleurotus sajor-caju was 0.092mM using 

ABTS as a substrate (Lo and Buswell, 2001). However, the Km values representing 

catalytic constants obtained for Aspergillus niger are lower whereas for Penicillium 

freii are either greater or equivalent to the reported studies in literatures. This indicates 

lower substrate specificity for Aspergillus niger and greater substrate specificity for 

Penicillium freii for fungal laccase.  

Bacterial catechol 1, 2-dioxygenases kinetic values obtained for six different 

bacterial strains exhibit linear lines with separate intercept on the 1/V0 axis however 

with different slopes (figure 6.23). The greater Vmax and lower Km values were obtained 

for Microbacterium sp. (Vmax: 0.04538 and Km: 0.6892) and the minimum Vmax and 

greater Km values were obtained for Bradyrhizobium sp. (Vmax: 0.0345 and Km: 3.2499) 

(figure 6.23). The Vmax and Km values obtained in this study exhibit slightly lower 

values when compared to literature. The Km value obtained by Nadaf and Ghosh, (2011)  
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were 5µmol/ml with Vmax 2.5 U/mg of protein. The lower values may be due to lower 

affinity for substrate (catechol) which is formed during assimilation of culture broth in 

presence of PAHs (Nadaf & Ghosh, 2011). Also, the Km and Vmax values for 

hyroxyquinol 1, 2-dioxygenase obtained were 7 µM and Vmax was 5.25 U/mg using 

hyroxyquinol as a substrate from Escherichia coli (Daubaras et al., 1996). The 

Michaelis constant (Km) of an enzyme is a measure of the affinity of the enzyme for its 

substrate. The value of Km for a particular enzyme is defined as the substrate 

concentration at which half of the enzyme molecules are complexed with substrate. 

Under these conditions, at any instant, half of the total enzyme molecules are capable of 

catalysis. The substrate concentration required to drive half of the enzyme molecules 

into an enzyme substrate (ES) complex that depends on the ability of the enzyme to 

bind its substrate. Thus, an enzyme with a high affinity for its substrate will have a low 

Km i. e, 50% of the enzyme molecules will have bound substrate at a relatively low 

concentration of substrate. In contrast, an enzyme with a low affinity for its substrate 

has a high Km value because a relatively high concentration of substrate is required to 

drive 50% of the enzyme molecules into complexes with substrate. Since the Michaelis- 

Menten constant measures the affinity between enzyme and substrate, the values 

suggested that fungal laccase had a greater affinity for Penicillium freii and bacterial 

catechol 1, 2-dioxygenase had lower affinity for five bacterial strains apart from 

Microbacterium sp. (Table 6.7). 

Thus, the Km and Vmax values calculated by adding a reciprocal plot (Lineweaver- 

Burk plot) confirmed that data obtained follows Michaelis- Menten kinetics. 
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7.1 General Discussion 
 

In recent years, developments using organisms to decontaminate polluted soil have 

been employed within remediation strategies. The effect of soil pH has not been 

investigated, therefore this thesis focused upon evaluating degradation of PAHs using 

photo-catalytic degradation and biodegradation processes at varying pH.  

The effect of soil pH (pH range 5, 5.5, 6, 6.5, 7, 7.5, 8 and 8.5) on photo-catalytic 

degradation was studied and rate of degradation at two different wavelengths were 

monitored using HPLC analysis (chapter 5). Soil pH 6.5 was most suitable for the photo-

degradation of PAHs, whilst in general acidic soil had greater photo-degradation rates 

than alkaline soil pH. Photo-catalytic oxidation, depends on generation of OH- by a photo 

catalyst in the presence of catalyst (e.g. titanium dioxide, TiO2) in order to perform 

oxidative degradation under UV irradiation (Zhang et al., 2008). Thus, Woo et al., (2009) 

suggest in a photo-catalytic process, OH- and/or OOH- radicals play a vital role and these 

radicals are highly generated in presence of charged catalyst, thereby reaction occurs 

directly between the electron/hole pair and organic substrate on the surface. Therefore, at 

soil pH 6.5, TiO2 might be charged generating high number of OH- and/or OOH- radicals. 

PAH degradation was greater for UV irradiation at 375 nm compared to 254 nm. The 

greater degradation rates at 375 nm may be due to characteristic of a catalyst which has a 

better spectral match between its emission spectrum and absorption spectrum of the light 

source (Zhang et al., 2008). A good spectral match between them always results in fast 

and greater photo-catalytic degradation (Zhang et al., 2008). Phenanthrene at both the 

wavelengths had greater photo-catalytic degradation rate representing good spectral 

match and pyrene has lower photo-catalytic degradation rate of the four PAHs.  

Six distinct bacterial cultures and two distinct fungal cultures were isolated by shaken  
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enrichment using road side soil with PAHs as the sole carbon source. This procedure 

was performed with media at varying pH conditions to isolate organisms at acidic, 

neutral and alkaline conditions. Bacterial PAH degraders, isolated via enrichment were 

identified biochemically and by molecular techniques using PCR amplification and 

sequencing of 16S rDNA. Sequences were analyzed using BLAST (NCBI) and their 

percentage identity to known bacterial rDNA sequences in the GeneBank database 

(NCBI) was compared. The six bacterial strains were identified as Pseudomonas 

putida, Achromobacter xylosoxidans, Microbacterium sp., Alpha proteobacterium, 

Brevundimonas sp., Bradyrhizobium sp. Similarly, fungal PAH degraders were 

identified microscopically and with molecular techniques using PCR amplification and 

sequencing of 18S rDNA and identified as Aspergillus niger and Penicillium freii. The 

studies reported by Lal & Khanna (1996); Bharathi & Vasudevan (2001); and Rahman 

et al., (2002) have identified above mentioned genera as hydrocarbon-degrading 

micro-organisms. Biodegradation of four PAH was studied at varying soil pH, and the 

results generated suggest that soil pH plays important role in degradation process 

(chapter 6). Greater rate of degradation were observed at soil pH 7.5 for all of the four 

PAHs. HPLC analysis in this work showed that phenanthrene biodegradation was 

100% in 45 days and that biodegradation was faster than the other pHs studied.  

Bacterial populations were greater at pH 7.5 which was highly correlated 

(correlation value = 0.97) with soil ATP levels. It was therefore evident that the 

greatest rates of degradation were associated with the highest bacterial population. Soil 

enzyme activities in general were also greatest at soil pH 7.5. However, greater fungal 

populations were found at acidic soil pH and alkaline soil pH, in comparison with 

neutral pH 7.0. The fungal populations when correlated with soil ATP levels showed  
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lower correlation (0.23) suggesting bacterial populations were more actively involved 

in PAHs degradation at pH 7.5 compared to fungal populations. Also, fungal 

populations suggest they might be active in PAH degradation at acidic and slightly at 

alkaline soil pH as fungal soil enzyme activities were found greater at acidic and 

slightly at alkaline soil pH. Pencillium freii was found to be more prevalent at acidic 

pH whilst Aspergillus niger was found to be more prevalent at pH 7.5-8.0.  

 Soil enzyme activity measurements at three different pH conditions were studied for 

oxidase, and the carbon: nitrogen: phosphorous cycles in soil samples with microbial 

inocula as test samples and soil samples without microbial inocula used as control. Soil 

bacterial enzymes such as phosphatase, β-glucosidase and L-arginine ammonification 

exhibited greater soil activities at buffer pH 7.5 indicating greater overall microbial 

activity and involvement of bacterial populations at soil pH 7.5, Whereas, fungal 

manganese peroxidase, laccase and lignin peroxidase exhibited greater soil activities at 

acidic buffer pH among varying soil pH. 

 In general, the overall results obtained during the biodegradation experiment 

indicates that soil pH 7.5 results in higher degradation rates which correlates with 

higher bacterial populations, higher soil ATP levels and greater soil enzyme activities 

measured at varying soil pH. Therefore, soil pH is an important parameter that could 

be manipulated for successful enhancement of biodegradation process. 

In this thesis, comparison between biodegradation and photo-catalytic degradation with 

respect to soil pH over the time suggests biodegradation rates are greater than photo-

catalytic degradation at all soil pHs. For example, at soil pH 7.5 (greatest 

biodegradation rates; chapter 5) exhibits 50% biodegradation in seven days. Whilst, in 

photo-catalytic degradation at soil pH 6.5 (optimum for photo-catalytic oxidation; 

chapter 4) 40% photo-catalytic degradation rate were obtained in 20 days. In general, 



220 

 

as a new finding comparison between biodegradation and photo-catalytic degradation 

process has been reported in this thesis. Thus, biodegradation experiments suggest 

greater degradation rates which could be cost effective and easier to perform in 

compared to photo-catalytic degradation. As optimal conditions for photo-catalytic 

degradation and biodegradation are different, combining their effects may prove 

difficult.  

 Oxidase and dioxygenase enzyme studies were purified and characterised (chapter 

6). Results were obtained for ligninolytic enzyme such as MnP and laccase in fungi 

and dioxygenase enzyme such as catechol 1, 2-dioxygenase enzyme in bacteria. Single 

step purification from crude extract was carried out using sephadex G-25 column. 

Protein concentration was determined by Bradford assay and size confirmation of 

purified enzymes was obtained by SDS-page gel electrophoresis.  

The single step purification using sephadex-G25 by fractionation for manganese 

peroxidase resulted in fold purification of 1.98 for Aspergillus niger and 1.73 for 

Penicillium freii along with 60.92 and 65.91 % purification yield. The percentage yield 

obtained for laccase was 69.52 & 71.4 along with fold purification of 1.88 for 

Aspergillus niger and 1.602 for Pencillium freii respectively. Manganese peroxidase 

and laccase purification was confirmed by loading the fractionated samples on SDS 

Page gel electrophoresis analysis. A protein band obtained at 48 kDa and 42 kDa 

confirms for manganese peroxidase when compared to molecular sizes suggested in 

literature, whereas the purified protein band obtained at 64 kDa and 69 kDa indicated 

for laccase activity. Substrates, MBTH and ABTS either or both can be used to 

measure the manganese peroxidase or laccase activity. After the purification of 

catechol 1, 2-dioxygenase, Microbacterium sp. produced the highest specific activity 

followed by Bradyrhizobium sp., Brevundimonas sp. and Alpha proteobacterium and 
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least specific activity was obtained from Pseudomonas putida. Protein bands with 

molecular size of 34, 35, 32, 39, 41 and 32 kDa were obtained for Pseudomonas 

putida, Achromobacter xylosoxidan, Microbacterium sp., Alpha proteobacterium, 

Brevundimonas sp. and Bradyrhizobium sp. respectively.  

Kinetic studies were performed for purified fungal manganese peroxidase, laccase 

and bacterial catechol 1, 2-dioxygenase. Various concentrations of substrate (1-50mM) 

were used to incubate the enzymes to calculate the Vmax and Km values by plotting 

graph of V0 (initial rate, mole of ABTS, MBTH and catechol produced per min) against 

the substrate concentration. Thus, the Km and Vmax values were calculated by adding a 

reciprocal plot Lineweaver- Burk plot (chapter 8). The lower Km value represents 

condition where enzyme saturated with substrate does not convert much of substrate to 

product per unit of time (Sadhasivam et al., 2007). Also, larger the Km the lower is the 

affinity of enzyme to substrate. Thus, larger the Vmax the more the enzyme converts 

substrate to product per unit of time. In this study, higher Km values were evident for 

fungal laccase activity compared to fungal manganese peroxidase activity. Also, the 

greater Vmax and lower Km values were obtained for Microbacterium sp. (Vmax: 

0.04538 and Km: 0.6892) and the minimum Vmax and greater Km values were obtained 

for Pseudomonas putida sp. (Vmax: 0.0345 and Km: 3.2499). 

Relative enzyme activity for pH and temperature effect along with enzyme kinetics 

studies for different substrate concentrations was studied. The fungal laccase and 

manganese peroxidase relative activities for both Aspergillus niger and Penicillium 

freii were greatest at pH 5 and gradually decreased for both strains to pH 7.5 where 

relative activity was around 60% of the activity at pH 5. However, laccase activity 

measured for Aspergillus strain was found to increase from pH 7.5 to pH 9, whilst 

relative activity of laccase for Penicllium freii continued to decrease to around 20% at  
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pH 9.5. Relative laccase activity for Aspgerillus niger increased to a peak of around 

80% at pH 9.0. Moreover, the relative pH activity obtained for catechol 1, 2-

dioxygenase activity was pH 7.5 for all the bacterial isolates which correlates with the 

optimal pH for biodegradation of PAHs in soil (chapter 6). 

 In general, the six distinct bacteria and two distinct fungi isolated via shaken 

enrichment culture were confirmed as PAH degarders by performing biodegradation. 

Also, these organisms were reported by Lal & Khanna (1996); Bharathi & Vasudevan 

(2001); and Rahman et al., (2002) as hydrocarbon-degrading micro-organisms. 

Studying enzyme kinetics in this thesis for isolated organisms has revealed the 

catalytic mechanism which suggests Microbacterium sp. (Vmax: 0.04538 and Km: 

0.6892) with active sites of PAH-degrading enzymes and its metabolism that inhibit 

the enzyme. 

This thesis shows that soil pH is an important factor in degradation as shown by 

significant difference in degradation rates. Interesting results were obtained as soil pH 7.5 

results in greater degradation of PAHs. It is also shown that bacterial populations were 

greater at pH 7.5 and greater soil ATP levels were also measured at soil pH 7.5. 

Therefore bacterial population was associated with the greatest rates of degradation at 

soil pH 7.5. Soil enzyme activities in general were also greatest at soil pH 7.5. Thus, 

results obtained in this thesis have met all objectives.  

As most of the soil in the UK and Europe are acidic (Adamson et al., 1996), adjusting 

soil pH to 7.5 by liming for example, may enhance biodegradation both in-situ and ex-

situ.  
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7.2  Conclusion 

Soil pH has significant impact on photo-catalytic degradation and biodegradation of 

PAHs monitored in J Arthur Bower’s topsoil.  

The effect of soil pH on photo-catalytic degradation of key model PAHs 

(phenanthrene, fluoranthene, anthracene and pyrene) were monitored over a pH range 

pH 4.0 and pH 9.0 with half pH interval. A wavelength of 375 nm resulted in a greater 

degradation rate compared to 254 nm in presence of TiO2 used as a catalyst. Greater 

degradation rates were obtained at acidic soil pH and lower degradation rates were 

obtained at alkaline soil pH. Soil pH 6.5 was found to be optimum pH for photo 

degradation whilst pH 8.5 and pH 9.0 resulted in the lowest photo-catalytic 

degradation of PAHs. Of the PAH studied phenanthrene exhibited greatest degradation 

rates and lower degradation rates were obtained for pyrene. Thus, photo-catalytic 

degradation is found not only depend on soil pH but on chemical nature of PAH, and 

wavelengths of UV light.  

Shaken enrichment culture allowed isolation of pure microbial cultures from road-side 

soil. Each of these microbial cultures was characterized for their ability to use PAHs as 

sole carbons source and were confirmed to grow on PAHs. Biochemical and molecular 

techniques like PCR amplification and sequencing of 16S rDNA were performed to 

identify the PAH degrading bacteria. Six distinct bacterial strains were identified using 

BLAST analysis by comparing the sequences and their percentage identity to known 

bacterial rDNA sequences in the GeneBank database (NCBI). The six distinct bacteria 

were identified as Psuedomonas putida, Achromobacter xylosoxidans, Microbacterium 

sp., Alpha proteobacterium, Brevundimonas sp., Bradyrhizobium sp. Similarly fungal 

PAH degraders were identified microscopically and with molecular techniques using  
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PCR amplification and sequencing of 18S rDNA and were identified as Aspergillus 

niger and Penicillium freii.  

Biodegradation of PAHs were studied with isolates from above. These isolates were 

inoculated into J Arthur Bower’s topsoil and rate of PAH degradation was monitored. 

Over the range of soil pH 5.0 to pH 8.0 with half pH intervals, soil pH 7.5 exhibited 

greatest rate of biodegradation. Lower rates of degradation were obtained in soil pH 

5.0 and 6.5 respectively. The half life of PAHs owing biodegradation was strong at soil 

pH 7.5 (3 days) whilst soil pH 5 and 6.5 had a half life of 21 days which is seven times 

greater than soil pH 7.5. During biodegradation greater bacterial populations were 

evident at alkaline conditions (soil pH 7.5) where as greater fungal populations were 

evident at acidic conditions (pH 5.0 and 5.5). Interestingly, the populations of fungi 

were greater at acidic soil pH but the Aspergillus was also isolated at alkaline soil pH. 

After microscopic identification Pencillium sp. was found to be predominant at acidic 

soil pH and Aspergillus sp. was predominant at alkaline soil pH. 

Correlation between bacterial population and soil ATP levels were found higher (r = 

0.9) when compared to fungal populations and soil ATP levels (r = 0.2). Thus, greater 

degradation rates obtained at soil pH 7.5 also had greater bacterial populations 

indicating bacteria played major role in degradation of PAHs where as greater fungal 

populations at acidic soil pH indicated that fungal populations were more active at 

acidic soil pH in degradation of PAHs. Moreover, soil enzyme activity significantly 

correlated with greater activity levels at soil pH 7.5 for L-arginine ammonification, 

alkaline phosphatase and β-glucosidase. Whereas, manganese peroxidase, lignin 

peroxidase and laccase soil enzyme exhibited greater activities at acidic soil pH. As 

oxidase and laccase soil enzyme activities were significantly correlated to PAH  
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degradation rates confirming fungi actively participated in degradation of PAH at 

acidic soil pH whereas bacterial population played major role at soil pH 7.5. 

PAH degrading fungal (manganese peroxidase and laccase) and bacterial (catechol 1, 

2-dioxgenase) enzyme were isolated and characterized to study the enzyme kinetics. 

In this study, both the fungal strains (Aspergillus niger and Penicillium freii) were 

found to produce manganese peroxidase and laccase activities in liquid culture 

medium. Activities were greater in extracellular fungal crude extract than in 

intracellular activities. The purified fungal manganese peroxidase, fungal laccase and 

bacterial catechol 1, 2-dioxygenase was obtained by single step purification using 

sephadex G-25 column. The size of the purified fungal and bacterial enzymes was 

confirmed by SDS page. 

The fungal ligninolytic and bacterial enzyme activities were characterized with 

respect to pH and temperature. The greatest activity relative temperature obtained for 

bacterial catechol 1, 2-dioxygenase for all six distinct identified bacterial cultures was 

300C and pH obtained was 7.5 (figure 6.19). Thus, PAH degrading bacterial 

populations (chapter 5) were greater at soil pH 7.5 during biodegradation resulting in 

greater degradation rates at pH 7.5 and bacterial enzyme activities also exhibited 

greater relative activity at pH 7.5  

Both the fungal strains exhibited greater relative activity for laccase and manganese 

peroxidase activity at 500C. The greatest activity of manganese peroxidase and fungal 

laccase relative activity was observed at pH 5.0. However, laccase activity measured 

for Aspergillus niger was found to increase from pH 7.5 to pH 9.0, whilst laccase 

relative activity for Penicllium freii continued to decrease to around 20% at pH 9.5. 

Interestingly, greater fungal populations measured during biodegradation (chapter 5) 

were found at acidic soil pH 5.0 and 5.5. Aspergillus niger resulted in increased fungal  
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ligninolytic activity at pH 7.5 to pH 9.0 and greater populations Aspergillus sp. 

populations were obtained at alkaline soil pH during biodegradation than that of 

neutral pH. 

Enzyme kinetics were studied using various concentrations of substrate (1-50mM) to 

calculate the Vmax and Km values by plotting a graph of V0 (initial rate, mole of 

ABTS, MBTH and catechol produced per min) against the substrate concentration. 

Lower Km value was obtained for Microbacterium sp. and higher Km value was 

obtained for Bradyrhizobium sp. however, the higher Vmax was obtained for 

Microbacterium sp. and lowest Vmax was obtained for Pseudomonas putida and 

Bradyrhizobium sp.  

In general, with respect to biodegradation and photo-catalytic degradation the converse 

effect of pH was found at the optimal conditions. Biodegradation rate was greatest at 

alkaline conditions particularly at pH 7.5 whilst, Photocatalytic degradation exhibited 

greatest degredation rate at acidic conditions particularly at pH 6.5. Biodegradation 

rates at pH 7.5 were highest than photo-catalytic degradation. 65% of phenanthrene 

was degraded by photo-catalytic oxidation after 5 days, and at the same time point 90% 

of phenanthrene was biodegraded at pH 7.5 after 5 days. 

 Thus, manipulation of soil to pH 7.5 suggests significant potential for the remediation 

of PAHsessential enhancement for successful biodegradation process. 
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7.3 Future Prospects 

Biodegradation of PAHs (chapter 6) was studied using J. Arthurs Bowers topsoil, so 

as to maintain the constant reproducibility throught the experiments. However, 

biodegradation experiment in future required to study on different types of soil, so as to 

confirm the impact of variation in soil pH on biodegradation process. 

Identified mixed microbial populations were inoculated to study the rate of degradation 

of four PAHs, however, in future individual microbial inocula can help to study the 

degradation rates carried out by individual microbes.  

Studies involving thermalstabilization of PAH degrading enzymes with respect to 

effect of salts, effect of pH, deactivation rate constant can be investigated. 
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Aim: Isolation, Identification and Characterization of PAH degraders–using PCR 

amplification and sequencing of 16S rDNA for bacterial strains and 18S rDNA for 

fungal strains  

I.1 Introduction  

 Polycyclic aromatic hydrocarbons (PAHs) are widely distributed in the environment 

as a result of various natural and anthropogenic activities (Guerin & Jones, 1988). 

PAHs presence in the environment is a major toxicological concern for living 

organisms. As a result, practical remediation technologies that are inexpensive need to 

be developed to eliminate the PAHs in contaminated soils (Lease et al., 2011).  

 In recent years, possible economic strategies for remediation of toxic inorganic 

compounds and PAH-contaminated soil have been encouraged by the success of 

bioremediation techniques (Lease et al, 2011). A number of studies on PAH 

degradation have been reported by various researchers indicating the catabolic 

diversity of bacterial, fungal and algal PAH degradation by shaken enrichment cultures 

(Cerniglia, 1992; Wilson and Jones, 1992; Lease et al., 2011). Also, these studies 

suggest that a major role in the degradation of PAHs is carried out by bacteria and 

fungi as a natural process at contaminated sites. Natural processes to degrade toxic 

compounds via organisms can however be carried out more rapidly by altering abiotic 

factors at the contaminated site (Haritash and Kaushik, 2009). A lists of micro-

organisms capable of PAH degradation is provided in (section 3.25; Table 2). 

An enrichment culture is defined as a specific medium for the growth of particular 

micro-organism. It is mostly suitable for environmental cultures that support growth of 

organisms by inhibiting growth of other organisms (Bass-Becking, 1934). Thus, 

enrichment culture is considered as efficient processes to isolate pure hydrocarbon 
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degrading micro-organisms. Also, microbes capable of PAH degradation by shaken 

enrichment technique was reported by Elsalam et al (2009). In the research reported by 

Elsalam et al (2009), PAH degradation and the genes involved in PAH degradation by 

Pseudomonas, Sphingomonas and Nocardioides species, were studied. These studies 

used shaken enrichment culture and reported increased degradation rate for 

phenanthrene and anthracene by Escherichia coli (EF105548), Soil bacterium strain 

(EF105549), Alcaligenes sp. (EF105546) relative degradation efficiency obtained in 

17hrs was 42.45, 48.44 and 40.45% respectively (Elsalam et al., 2009). Sarma et al., 

(2004) reported an enteric bacterial strain, PS4040 that degrades high molecular weight 

(HMW), four-benzene-ring PAH using pyrene as sole carbon source in shaken 

enrichment culture. Moreover, Mycobacterium species were isolated by Lease et al 

(2011) via shaken enrichment culture to study the degradation of phenanthrene and 

pyrene.  

Previous studies have suggested that fungal mediated degradation of PAHs by shaken 

enrichment is more rapid compared to bacterial populations (Bishnoi et al., 2007). 

Various white rot fungi (WRF) like Phanerochaete chrysosoporium, Pleurotus 

ostreatus and Trametes versicolor are highly efficient in PAH degradation by 

producing extracellular enzymes. These WRF produce lignin peroxidase and 

manganese peroxidase which are actively involved in PAH degradation (Bishnoi et al., 

2007). Also, Bishnoi et al., (2007) have reported degradation of phenanthrene, 

anthracene, acenaphthene, fluoranthene and pyrene in sterilized and unsterilized soil 

through enrichment with P. chrysosporium. 

Studies have been reported shaken enrichment culture using yeasts responsible for 

PAH degradation. However, a number of studies have reported that many yeasts such 

as Saccharomyces cerevisiae, Debaromyces hansenii, Candida lipolytica, C. 
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guilliermondii, C. maltosa and Pichia anomala cannot utilize HMW PAHs as their sole 

carbon sources (Cerniglia & Crow, 1981; McGillivray & Sharis, 1993; Zinjarde & 

Pant, 2002 & Pan et al., 2004). However, Hesham et al., (2009) reported that a yeast 

strain AH70 isolated from petroleum contaminated soil by enrichment in mineral salts 

medium were capable of degrading  low molecular weight (LMW) and HMW PAHs 

with an efficiency of 89.67% for naphthalene, 60.77% for pyrene, 77.21% for 

phenanthrene and 55.53% for benzo (a) pyrene over 10 days. 

In this study, PAH enrichment cultures were prepared to isolate PAHs degrading 

micro-organisms from contaminated sources. The major purpose of enrichment culture 

is that it provides a relatively easy way to isolate pure cultures (particular PAHs 

degraders in this study) among mixed culture in the environments (O’Leary, 1989). 

Isolated organisms were identified morphologically and by sequencing 16S rRNA for 

bacterial culture and 18S rDNA for fungal cultures. The sequences were subjected to 

Blast in order to compare the sequences from the genebank database for particular 

species identification. This extensive available database makes the task of species 

identification much easier (Kurtzman, 2001; Starmer et al., 2001; Wesselink et al., 

2002) and serves as a reliable and practical criteria for identification (Abliz et al., 

2004). 
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I.2 Materials and methods  

Objectives: Isolation of PAH degrading organisms via shaken aqueous 

enrichment culture. 

  I.2.1 Sample collection for enrichment culture  

 Road side soil was collected from the entrance gate of University of Hertfordshire, 

college Lane, AL10 9AB by the traffic lights. These were obtained using a 22-cm 

hand-dug soil auger and put in labeled polyethylene bags and transported to the 

laboratory. The pH of the soil was 7.2, with a 38% water holding capacity.  

 The presence of PAH contamination in the soil samples was confirmed by solvent 

extraction (chapter 3: section 3.4) using round vortex mixer fitted with multi sample 

holder which holds a total of 12 samples (Sigma Aldrich) for 5 minutes prior to HPLC 

analysis. 

 

I.2.2  Media 

The minimal medium contained salts and trace element solution. The composition of 

mineral medium was adapted from Bastiaens et al. (2000) described in appendix II 

(section II.1) with pH adjustment as tabulated in table 3.1: 

Table I.1: pH adjustment of minimal medium 

Minimal salt medium pH 

adjustment 

1M HCl 

(µl) 

0.01M Na2CO3 

(µl) 

5.5 200 - 

7.0 Original pH Original pH 

7.5 - 1000  

 

I.2.3  Addition of PAHs solvent into minimal salt medium 

99 ml of pH adjusted minimal media (minimal salt medium composition (appendix 

II section II.1) was added to Erlenmeyer flasks in 5 replicates each containing 1 ml of 
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trace element solution. 100 mg of each individual PAH: phenanthrene, anthracene, 

fluoranthene and pyrene respectively were added to (1000 ml) of acetone and 10 ml of 

acetone was added to the flasks containing 100 ml of broth. Each of these flasks 

covered with cotton plug bung were kept in fume-hood in order to evaporate the 

acetone. Evaporation of acetone was confirmed by measuring the weights of flasks. 

 

I.2.4 1st Shaken enrichment 

5 g of the road side soil samples (described in appendix I.2.1) were inoculated into 

each flask in 5 replicates. The PAHs in each flask acted as a sole carbon and energy 

source for the growth of the organisms. The flasks were incubated aerobically at 280C 

for 14 days with shaking at 175 rpm.  

 

I.2.5  2nd Shaken enrichment 

 Second enrichment was followed from the flasks incubated for 1st enrichment. 5 ml 

of broth from the 1st enrichment were transferred into the appropriate fresh minimal 

salt medium as described in appendix I.2.2. Similar incubation conditions were 

followed as described in appendix I.2.4. 

 

I.2.6 3rd Shaken enrichment 

3rd enrichment was performed into the appropriate fresh minimal salt medium 

followed as described in appendix I.2.4 and I.2.5. 

PAH-degrading bacterial isolates, 100 µl was plated from second and third shaken 

enrichments were diluted and plated on nutrient agar (Sigma Aldrich) plates for 

bacterial isolates and fungal isolates on malt extract agar (MEA) plates containing 50 

mg rose bengal. 
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Also, after pure culture isolation, growth of isolated pure bacterial colonies was 

confirmed by spraying PAH solution on minimal salt agar plate while pure isolated 

fungal colonies isolated on MEA were confirmed for growth in presence of PAHs by 

spraying PAH dissolved solution in acetone plates along with plates without PAH 

(control). 

 

I.2.7 Biochemical test 

 Biochemical tests were performed on PAH-degrading bacterial isolates obtained 

described in section (5.2.6). The procedure was adapted with modification from Cowan 

& Steel, (1996) for gram staining reactions, catalase and oxidase test and oxidation or 

fermentation (O-F) test as described in appendix II section II.2 
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Objective: Identification of bacterial strains degrading PAHs – using PCR 

amplification and sequencing of 16S rDNA 

 

I.2.8 DNA extraction from isolated bacteria 

 The bacterial cultures isolated from shaken enrichment technique, described in 

appendix I.2.4 were preserved on nutrient agar slopes maintained at 40C. Bacterial 

isolates from nutrient agar slopes were grown overnight in 100 ml of nutrient broth 

(Sigma Aldrich) and further used for DNA extraction.  

 

I.2.9 DNA extraction (Phenol: Chloroform method) 

 The improved phenol: chloroform method was used for genomic DNA (gDNA) 

extraction according to the method of Cheng & Jiang (2006) and Neumann et al., 

(1992) with the elimination of lysis step (SDS/lysozyme or proteinase K steps). The 

bacterial DNA was isolated from Gram-negative and Gram positive bacteria grown in 

100 ml of nutrient broth. The (100 ml) cell suspension was centrifuged in sterile bottles 

for 10 mins at 8000 g. The supernatant was removed, and the 1.5 ml of bacterial cells 

was transferred to sterile 2 ml eppendorf tubes. These bacterial cells were washed 

twice with 400 µl of STE buffer followed by micro-centrifugation for 1 min at 6000 

rpm. The composition of STE buffer is described in table I.2: 

Table I.2: STE buffer preparations 

Reagents Concentration 

NaCl 100 mM 

Tris/HCL 10 mM 

EDTA (pH 8.0) 1 mM 

SDW (sterile distilled water) - 

  After the washing step the bacterial cells were re-suspended in 200 µl TE buffer (10 

mM Tris/HCl, 1 mM EDTA, pH 8.0). Further, 100 µl Tris containing phenol with (pH 
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8.0) was added to eppendorf tubes containing TE buffer along with bacterial cells. All 

the samples were vortex mixed for about 60 s followed by centrifugation at 13000 g for 

5 mins at 40C to separate aqueous phase from the organic phase. From all the samples 

160 µl of aqueous phase was transferred to a clean 1.5 ml eppendorf tubes. 40 µl of TE 

buffer was added to make 200 µl and mixed with 100 µl chloroform and centrifuged 

for 5 min at 13000 g at 40C. The chloroform extraction step was performed to purify 

the lysate the step was repeated 3 times until a white interface completely disappeared 

from the samples. 160 µl of the aqueous layer from at the top of the samples were 

transferred to clean 1.5 ml eppendorf tubes. 40 µl of TE buffer along with 5 µl of 

RNase (Sigma Aldrich) (at 10 mg/ml) was added and incubated at 370C for 10 mins so 

as to ensure no RNA was present in the samples. After incubation, 100 µl of 

chloroform was added to the tubes and mixed well followed by centrifugation at 13000 

g for 5 mins at 40C. The purified DNA present in aqueous phase was transferred to the 

fresh 1.5 ml eppendorf tube. Cold absolute alcohol (375 µL) was added to the mixture, 

mixed gently and left overnight to precipitate the DNA. The mixture was then 

centrifuged for 2 minutes. The supernatant was discarded and the pellet was washed 

with 1 mL of 70% ethanol before centrifuging for 2 minutes. The pellet was dried for 5 

minutes using speed vacuum to remove any residual ethanol. The resultant DNA pellet 

was subsequently re-suspended in TE buffer pH 8 and stored at -20oC.  

 

I.2.10 Concentration and purity of DNA 

The purified DNA was quantified by using the Biophotometer plus (EppendorfTM). 

Eppendorf UVette R specially designed cuvettes were used. 5 µl of isolated DNA was 

dissolved in 9 5µl of sterile distilled water with distilled water used as a blank. For 

absorbance of double stranded DNA the wavelength used was 260 nm. The 
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concentration and purity of DNA was determined by measuring the absorbance at 230, 

260, 280 and 320 nm on the eppendorf spectrometer.  

 

I.2.11 Agarose gel electrophoresis 

DNA isolated from all the bacterial samples was visualised by electrophoresis based 

on molecular weight of DNA samples which was compared with DNA marker. 

 Materials required 

Agarose: Gel running buffer 1X (10.9 g/l Tris base; 0.93 g/l disodium-EDTA (Sigma); 

5.6 g/l boric acid; pH 8.2) 

Samples: Minigel stop mix/Loading dye (1X TBE, 20%w/v sucrose; 10% Ficoll; 10 

mM EDTA; 0.25% w/v bromophenol blue) 

Trackit 100 bp and 1 Kb ladder from InvitrogenTM Life technologies. 

 

 Methods 

The 0.8% Agarose gel concentration was prepared by mixing 0.25 g of Agarose 

with 30 ml of 1X gel running buffer. This mixture was heated in the microwave for 1 

min and swirled to mix the agarose well and was allowed to cool before pouring into 

the gel former with a comb placed in the gel former and allowed to set. After the gel 

had set the comb was taken out of the gel former and the tapes on the side of the 

former were taken off. The gel tank was filled with the gel running buffer. The sample 

was mixed with the loading dye (10:3) and was loaded in the wells and then the 

samples were allowed to run at 80V.  

 

I.2.12 Staining and visualization of gel  

The gel was then stained in freshly prepared 0.5 µg/ml ethidium bromide solutions 

for 10 – 15 minutes and thereafter destained in running buffer alone to wash the excess 
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ethidium bromide for 15 – 20 minutes. It was visualised under UV light   using UVP 

gel documentation imaging and GENE Scan system. 

 

I.2.13 Polymerase chain reaction 

 All DNA samples stored at -200C were used for further PCR amplification. PCR 

amplification was carried out using universal primers that amplify 16S rDNA. The 

PCR reactions and universal primers were followed by modification of the method of 

Hoefel et al., (2005). The bacterial 16S rDNA were amplified using universal primers 

(specifically for environmental isolates) 27F, 5--AGAGTTTGATYMTGGCTCAG-3- 

and 1492R, 5-- TACGGYTACCTTGTTACGACT-3-. PCR reactions were performed 

on a TGradient thermo cycler machine. The reagents for PCR reaction from Sigma 

Aldrich and Invitrogen are tabulated in table I.3. 

Table I.3: Components of PCR reaction 

Genomic DNA from bacterial samples was amplified using Thermal cycler/PCR 

machine (Eppendorf). The parameters for PCR reaction are: 

Initial Denaturation cycle:  960C for 10 min 

The main cycle couple of 34 extensions cycles as below: 

Reagent concentration Concentrations of 

reagents used 

Final volume in 

µl for 6 samples 

SDW  232.8 

PCR buffer  (Sigma Aldrich)® 10X 30 

MgCl2 (Sigma Aldrich)® 50 mM 18 

dNTP (Sigma Aldrich)® 10 mM 6 

Primer 1 (Sigma Aldrich)® 25 µM 6 

Primer 2 (Sigma Aldrich)® 25 µM 6 

Taq pol  (Invitrogen) 5 U/µl 1.2 

DNA template  1 
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Main cycle: Denaturation:  940C for 30 sec. 

                    Annealing:      480C for 1 min 

              Extension:      700C for 2 min. 

                    Final extension cycle: 720C for 10 min. 

PCR amplification products were first analyzed by electrophoresis in 1% (wt/v) 

agarose gels with ethidium bromide staining (Borneman & Hartin, 2000). 

 
I.2.14 PCR purification method 

The DNA fragments were then purified using either the QIAquick® PCR 

purification kit (Qiagen Ltd) or the Sigma Aldrich® GenElute PCR clean up kit (Sigma 

Aldrich) as per the manufacturer’s instructions. Five volumes of buffer PB were added 

to one volume of PCR reaction mixture. The mixture was vortex-mixed thoroughly, 

then placed in a spin column with 2ml collection tube and centrifuged at 13000 rpm for 

1 minute. The filtrate was discarded and the spin column was washed by adding 0.75 

ml of buffer PE and centrifuged for 1 minute at 13000 rpm. The filtrate was discarded 

and the spin column was centrifuged once again at 13000 rpm for 1minute to remove 

residual wash buffer. The collection tube was then replaced by a 1.5 ml eppendorf tube 

and 50µl of Elution buffer (EB) was added to the centre of the spin column. The 

sample was incubated at room temperature for 1 minute and the purified DNA 

fragment was eluted by centrifugation at 13000 rpm for 1 minute. 

 

I.2.15 Sequencing and analysis 

PCR product after amplification was sent for sequencing. The sequences were 

analysed using BLAST (NCBI), and the percentages homology to bacterial rDNA 

sequences in the GenBank database (NCBI) were compared. 
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Objective: Identification of fungal strains degrading PAHs – using PCR 

amplification and sequencing of 18S rDNA 

I.2.16 Fungal microscopic identification 

 The fungal isolates were grown on MEA media containing 50 mg rose bengal added 

to 400 ml of MEA and samples of fungi were viewed at X100 magnification (Nikon, 

model YS100). 

 

I.2.17 Fungal gDNA isolation 

Fungal cultures (isolated from enrichment culture technique) preserved on slopes 

(40) in cold room were inoculated into MEA broth. After inoculation the flask was 

incubated at 220C with shaking for 5 days and fresh mycelium was used for DNA 

isolation. 

 

I.2.18 Fungal gDNA extraction  

The basic method of DNA isolation from fungus was followed using a Kit (Qiagen, 

DNeasy Plant or fungi mini, 69104-1KT, UK) as per the manufacturer protocol. Two 

different DNA isolation protocols were followed to extract the DNA from isolated 

fungus using phenol: chloroform method and using kit (Qiagen, DNeasy Plant or fungi 

mini) their results were compared. DNA isolation of the two different methods the 

(Qiagen, DNeasy Plant or fungi mini) kit provided the purest DNA samples and was 

used for further analysis.    

I.2.18a Fungal gDNA extraction (Phenol: Chloroform method) 

The DNA extraction procedure was adopted with some modification from the 

methods of Plaza, and Upchurch et al., (2004).  
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Materials: liquid nitrogen, Micro centrifuge, eppendorf tubes, chloroform: isoamyl 

alcohol (24:1), RNAase (Sigma), β-mercaptoethanol (Sigma), TE buffer, 75% ethanol, 

isopropanol, small motar and pestle.       

Table I.4: CTAB extraction buffer 

Tris HCL (1 M), pH 8.0                                     10 ml                         0.1M  

NaCl (5 M)                                                         28 ml                         1.4M 

 CTAB                                                                2 g                              2.0% 

(0.5 M) EDTA, pH 8.0                                       4 ml                           0.2M 

Water                                                                  40.3 ml 

The samples containing the eppendorf tubes were kept in liquid nitrogen for 5 

minutes and then kept in room temperature for 2-3 min. This step was repeated 3 to 4 

times and then the material was ground with the help of small pestle mortar. In all the 

eppendorf tubes containing sample 400 μl of CTAB extraction buffer and 4 μl of β-

mercaptoethanol were added. Then the tubes were kept in a water bath at 650C for 

20min. Then to each tube 400 μl of chloroform: isoamyl alcohol (Sigma) was added 

and mixed on an orbital shaker for 15 min. All the tubes were then centrifuged at 

13,000 rpm for 5 min. After centrifugation the top aqueous layer was transferred to a 

new eppendorf tube containing (400 μl) of cold isopropanol. The tubes were kept at 

room temperature for 5min and then centrifuged at 13,000 rpm for 5 min. The 

supernatant was carefully discarded and the pellet was allowed to dry. The pellet was 

resuspended in (100μl) of TE buffer, and 4 μl of RNAase was added and the tubes 

were kept at room temperature for 15 min. Then 500 μl of 100% cold ethanol was 

added to each tube, inverted gently and kept at room temperature for 5 to 10 min. The 

tubes were centrifuged at 13000 rpm for 5 min. The supernatant was discarded and the 

pellet was allowed to dry. The pellet was again re-suspended in 100 μl of TE buffer. 
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The UV spectrophotometric readings were taken for the samples as described in 

appendix I.2.10. Samples were stored at -200C.  

 

I.2.18b Fungal gDNA extraction (Qiagen DNeasy isolation Kit) 

DNA was extracted from selected isolates, based on their observation under 

microscope (100X). Only four isolates were selected among the ones which had the 

same morphology and were identical under microscopic observation. The extraction 

was performed using fungal genomic DNA kit (Qiagen, DNeasy Plant or fungi mini, 

69104-1KT, UK) according to the manufacturer’s instructions.  

    Table I.5: Qiagen DNeasy KIT components 

DNeasy fungi Kit 
Catalog no. 

Mini 
(50) 
69104 

Mini 
(250) 
69106 

Ta Storage 

DNeasy Mini spin columns 50 250 40C 
QIAshredder mini spin columns 50 250 40C 
Buffer AP1 40 ml 200 ml Room temp (15- 250 C) 
Buffer AP2 18 ml 90 ml Room temp (15- 250 C) 
Buffer AP3/E (concentrate) 30 ml 125 ml Room temp (15- 250 C) 
Buffer AW (concentrate) 17 ml 81 ml Room temp (15- 250 C) 
Buffer AE 2 × 12 

ml 
2×60 ml Room temp (15- 250 C) 

RNase A (100mg/ml) 220 µl 5×220 

µl 

40 C 

  I.2.19 Concentration and purity of fungal gDNA 

The purified DNA was quantified and analysed as described in section 5.2.10 by 

using Biophotometer plus (Eppendorf TM) instrument.  

 

I.2.20 Agarose gel electrophoresis 

DNA isolated from fungal samples was visualised by electrophoresis based on 

molecular weight of DNA samples which was compared with DNA marker as 

described in section 3.2.11. 
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 I.2.21 Staining and visualization of gel  

The gel was then stained in freshly prepared 0.5 µg/ml ethidium bromide solution as 

described in section I.2.12. 

 

I.2.22 Polymerase chain reaction for fungal gDNA 

 All DNA preparations were amplified using ITS1 and ITS4 universal primers 

described by White et al., (1990). A modification of the method of White et al., (2005) 

using universal primers to amplify 18S rDNA was used to identify isolates. The first 

round of PCR reactions were performed using the 18S ribosomal DNA universal fungi 

primer set ITS1-F 5--CTTGGTCATTTAGAGGAAGTAA-3- and ITS4, 5-- 

TCCTCCGCTTATTGATATGC-3-. PCR was performed on a TGradient thermo cycler 

machine. 

Table I.6: PCR reaction components 

Fungal genomic DNA was amplified using Thermal cycler/PCR machine (table 3.6) 

from (Eppendorf). The parameters for PCR reaction are: 

Initial Denaturation cycle:  960C for 2 min 

Following 34 extension cycle as mentioned bellowed. 

Main cycle: Denaturation: 950C for 30 sec 

Reagent concentration Concentration of reagents Final volume for in µl 

SDW - 151.2  

PCR buffer  10X 20 

MgCl2  50 mM 12 

dNTP  10 mM 4 

Primer 1 25 mM 4 

Primer 2 25 mM 4 

Taq pol  5 U/ µl 0.8 

DNA template - 1 
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                 Annealing: 650C for 30 sec 

             Extension: 700C for 30 sec 

Final extension cycle: 700C for 7 min. 

PCR amplification products were first analyzed by electrophoresis in 1% (wt/v) 

agarose gels and ethidium bromide staining (Borneman & Hartin, 2000). 

 

I.2.23 PCR purification method 

The DNA fragment was then purified using either the QIAquick® PCR purification 

kit (Qiagen Ltd) or the SIGMA ALDRICH® GenElute PCR clean up kit (Sigma 

Aldrich) as per the manufacturer’s instructions. Five volumes of buffer PB were added 

to one volume of PCR reaction. The mixture was vortex-mixed thoroughly, then placed 

in a spin column with 2 ml collection tube and centrifuged at 13000 rpm for 1 minute. 

The filtrate was discarded and the spin column was washed by adding 0.75 ml of 

buffer PE and centrifuged for 1 minute at 13000 rpm. The filtrate was discarded and 

the spin column was centrifuged once again at 13000 rpm for 1minute to remove 

residual wash buffer. The collection tube was then replaced by a 1.5 ml eppendorf tube 

and 50 µl of Elution buffer (EB) was added to the centre of the spin column. The 

sample was incubated at room temperature for 1 minute and the purified DNA 

fragment was eluted by centrifuging at 13000 rpm for 1 minute. 

 

I.2.24 Sequencing and analysis 

PCR product after amplification was sent for sequencing (GATC-BoxleTM). The 

sequences were analysed using BLAST (NCBI) and the percentages homology to 

fungal rDNA sequences in the GenBank database (NCBI) were compared. 
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I.3 Results 

Objective: Isolation of PAHs degrading micro-organisms by shaken enrichment 

technique 

I.3.1 Enrichment culture technique 

 Isolation of PAH-degrading organisms was carried out via shaken aqueous 

enrichments followed by isolation onto plates containing PAHs resulting in pure 

cultures that were able to utilize one or more of phenanthrene, anthracene, fluoranthene 

and pyrene as the sole carbon sources. The total population in the enrichment cultures 

was enumerated on nutrient agar plate (table I.7) for bacteria and MEA for fungi at 

three pH’s (table I.8). 

Table I.7: Bacterial populations (c.f.u/ml) in shaken aqueous enrichment cultures 

Broth pH       1st Enrichment            2nd Enrichment              3rd Enrichment 

        5.5                    6.949                         6.755                           5.602  

      7                       7.397                         6.832                           6.00  

      8.5                    6.838                         6.491                           5.778 

Table I.8: Fungal populations (c.f.u/ml) in shaken aqueous enrichment cultures  

Broth pH       1st Enrichment            2nd Enrichment              3rd Enrichment 

      5.5                  5.86                           5.41                                 4.48 

      7                     5.68                           5.15                                 0               

      8.5                  5.32                           4.85                                 4.30    

 A total of six distinct bacterial and two fungal isolates from PAHs contaminated 

soil were isolated, after the third enrichment. Each of these isolates was characterised 

by various biochemical bacteriological and growth tests. The isolates were 

characterised by primary identification performing Gram staining, catalase, oxidase 

and oxidation and fermentation (O-F). Results recorded as described in table I.9. 
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Table I.9: Bacteriological characterisation performing biochemical tests 

Isolate 

design-

nation 

pH 

isolated 

from 

Gram 

reaction 

Shape Catalase 

tests 

Oxidase 

test 

O-F 

test 

Preliminary 

identification 

Culture 

1 

5.5 - rod-

shape

d 

+ + Aer

obic 

Pseudomonas 
Alcaligenes 
Burkholderia 
Flavobacteriu
m 
Capnocytopha
ga 
Acidovorax 

Culture 

2 

7 - rod-

shape

d 

+ + Aer

obic 

Pseudomonas 
Alcaligenes 
Burkholderia 
Flavobacteriu
m 
Capnocytopha
ga 
Acidovorax 

Culture 
3 

7 + Irregu
lar 
short 
rod-
shape
d 

+ - Ana
erob
ic 
facu
ltati
ve 

Staphylococcu
s 
Micrococcus 
Rothia*** 

Culture 

4 

7 - rod-

shape

d 

+  Aer

obic 

Pseudomonas 
Alcaligenes 
Burkholderia 
Flavobacteriu
m 
Proteobactriu
m 
Capnocytopha
ga 
Acidovorax 

Culture 

5 

8.5 - rod-

shape

d 

+ + Aer

obic 

Pseudomonas 
Alcaligenes 
Burkholderia 
Flavobacteriu
m 
Proteobactriu
m 
Capnocytopha
ga 
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Acidovorax 

Culture 

6 

8.5 - rod-

shape

d 

+ + Aer

obic 

Pseudomonas 
Alcaligenes 
Burkholderia 
Flavobacteriu
m 
Proteobactriu
m 
Capnocytopha
ga 
Acidovorax 

(+) represents positive test (-) represents negative test. ***represents organism is 
pleomorphic catalase variable, catalas test may not be helpful for differentiation 
 
 
 The bacteriological characterisation performing biochemical tests for isolates 

obtained via shaken enrichment cultures was further followed by 16S ribosomal DNA 

sequencing for bacteria. These isolates were used as inocula for PAH biodegradation 

experiment. 
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Objective: Identification of bacterial PAH degrading strains– using PCR 

amplification and sequencing of 16S rDNA 

 

I.3.2 Bacterial DNA extraction (Phenol: Chloroform genomic DNA  

                 extraction) 

Genomic DNA extraction was carried out by a modification of the method of Cheng 

and Jiang (2005). Extraction was performed by phenol chloroform method using only 

phenol without detergents (example: SDS, Triton X-100). Phenol is a strong oxidizing 

reagent and thus, is used directly to disrupt the cell wall in order to release the gDNA 

from the bacterial cells. The purification of gDNA carried out by chloroform to isolate 

the gDNA form the RNA and different proteins. Further precipitation of gDNA step 

using isopropanol gave reproducible yields of higher quality gDNA which was used 

for PCR analysis. A small aliquot of (8 µl) was analysed by agarose gel electrophoresis 

(figure I.1). A sharp band of high molecular weight indicated the presence of genomic 

DNA.                                                                                             

                                                 M   1    2    3   4     5   6  

                                       
Fig. I.1: Agarose gel electrophoretic analysis of genomic DNA extracted from 

bacterial isolates.  
M represents standard DNA markers (1 Kb) ladder. Lanes 1, 2, 3, 4, 5 and 6 represents 
the genomic DNA samples extracted from bacterial isolates. 
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I.3.3 Purity and concentration for bacterial DNA isolation 

The absorbance at various wavelengths of 230, 260, 280 and 320nm (table I.10) was 

measured by estimating the purity and concentration of genomic DNA. A lower ratio at 

A (260/ 230) nm denotes contamination of DNA by polysaccharides and lower ratio at A 

(260/280) nm denotes contamination of gDNA by proteins (Kamal et al., 2008; Xiao et 

al., (2011) 

 

I.3.4 Purity and concentration for Phenol: chloroform method 

The values of purity and concentration of genomic DNA for each sample isolated 

using phenol: chloroform (table I.10) for A (260/280) and A (260/230) were more than 1.8. 

The specified absorbance ratios for the gDNA extracted from all isolates were recorded 

to be more than 1.6 and 1.8. Culture 1 was found to be 2.05 for A (260/280) and 1.96 for 

A (260/230) (table 14). Similarly, absorbance ratios for culture 2, 3, 4, 5 and 6 were 1.97, 

1.87, 2.74, 2.07 and 2.11 for A (260/280) and 1.84, 1.62, 2.39, 1.98, 2.06 for A (260/230) 

indicating that the purity of all samples was high using phenol: chloroform method. 

Analysing these ratios further, it was observed that none of the samples were 

contaminated with proteins or phenol as the absorbance at 280 nm and 260 nm was 

high.    
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 Table I.10: Purity and concentration for fungal DNA isolation (phenol: Chloroform 

method) 

Sample 

number 

A 

(260/280) 

A 

(260/230) 

A230 A260 A280 A320 Concentration 

(µg/mL) 

Culture 

1 

2.0 1.9 0.3 0.03 0.27 0.08 995.2 

Culture 

2 

1.9 1.8 0.0 1.05 1.00 0.04 701.3 

Culture 

3 

1.8 1.6 1.0 0.72 1.21 0.00 1231.8 

Culture 

4 

2.7 2.3 0.2 1.65 0.00 0.02 1430 

Culture 

5 

2.0 1.9 1.0 0.72 1.21 0.00 1318.6 

Culture 

6 

2.1 2.0 1.0 0.82 1.04 0.05 1625.6 

Absorbance was measured at 230 nm, 260 nm, 280 nm and 320 nm. The absorbance 
ratios A (260/280) and A (260/230) and the concentrations were calculated by the 
spectrophotometer. 
 

I.3.5 Optimized PCR reaction conditions 

 PCR reactions were carried out for isolated gDNA at varied annealing temperatures 

(42 to 550C) and same quantity of 25 mM MgCl2 table (I.11). A 1% agarose gel was 

prepared and the gel was run at 100V for 60 minutes for the analysis of PCR amplicons 

(figure I.2). The PCR conditions for the amplification are summarised in table I.11. 
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 Table I.11: PCR reaction temperature optimization conditions 

Reagent                   Reagent volume (µL) 
10x PCR reaction buffer 10 10 10 10 10 10 
25mM MgCl2 3 3 3 3 3 3 
25mM Forward primer 1 1 1 1 1 1 
25mM Reverse primer 1 1 1 1 1 1 
10mM dNTP's 2 2 2 2 2 2 
gDNA template 2 2 2 2 2 2 
5U/µL Taq polymerase 0.4 0.4 0.4 0.4 0.4 0.4 
Sterile distilled water 40.6 40.6 40.6 40.6 40.6 40.6 
Total 50 50 50 50 50 50 

Annealing temperature 42oC 45oC 48oC 50oC 52oC 55oC 

    
   

 

A)         M 1 2 3 456789101112                        B)     M 123 4 5 6 7 8 9 10 11 12 

                                   
Fig. I.2: Agarose gel electrophoretic analysis of PCR optimization reactions:  

A) Lanes 1, 2, 3, 4, 5 and 6 were samples containing 3.5 µl of 25 mM MgCl2 at 420C and, 
Lanes 7, 8, 9, 10, 11 and 12 at 450C, B) Lanes 1, 2, 3, 4, 5 and 6 with 3 µl of 25 mM 
MgCl2 at 480C. Lane 7, 8, 9, 10, 11 and 12 at 500C respectively. M represents standard 
DNA markers (1 kb). A 1% agarose gel was prepared and run at 100V for 60 minutes. 
            The PCR conditions for all the gDNA samples were optimized as amplification 

was confirmed by analysing samples on a standardized 1% agarose gel electrophoresis at 

100volts for about 60 mins. Performing the PCR reactions at an annealing temperature of 

42 to 48oC produced amplicons of roughly 1421 bp, 1476 bp, 1543 bp, 1472 bp, 1385 bp 
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and 1389 bp respectively when compared to marker (figure 3.2). Annealing temperatures 

of 500C and above resulted in the production of amplicons (data not shown). 

 

I.3.6 PCR product 

                                       M    1    2     3    4   5   6 

                                        
Fig. I.3: Agarose gel electrophoretic analysis of PCR product after the amplification of 

bacterial gDNA.  

M represents standard DNA ladder (100 bp). Lane 1, 2, 3, 4, 5 and 6 represent PCR 
products of gDNA template and lane 7 represents the negative control containing master 
mix (table 5) without template DNA. A 0.8% agarose gel was prepared and run at 100V 
for 60 minutes. 
  

 The PCR product obtained after amplification were analysed on standardized 0.8% 

agarose gel electrophoresis. The product obtained when compared to marker (invitrogen) 

was around expected sizes of about 1421 bp, 1476 bp, 1543 bp, 1472 bp, 1385 bp and 

1389 bp respectively. However, a smear showing primer dimer along with presence of 

nucleic acids contaminants or shearing of gDNA was present in all samples (figure I.3). 

Thus, further purification was necessary. 

 

 

I.3.7 Purification of PCR product 
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                                M        1      2      3       4     5      6 

                               
Fig. I.4: Agarose gel electrophoretic analysis of bacterial samples after the purification 

of PCR product.  

M represents standard DNA ladder (100 bp). Lane 1, 2, 3, 4, 5 and 6 represents PCR 
product of gDNA template after purification procedure. A 0.8% agarose gel was prepared 
and run at 100V for 60 minutes for the analysis of PCR samples. 
 

 The PCR products obtained after amplification were subjected to purification in an 

attempt to purify PCR product from shearing of gDNA, primer dimer and nucleic acid 

contaminants. Purified samples were analysed on standardized 0.8% agarose gel 

electrophoresis at 100V for 60 minutes (figure I.4). The expected product sizes when 

compared to marker were 1421 bp, 1476 bp, 1543 bp, 1472 bp, 1385 bp and 1389 bp 

respectively. However no primer dimer as well as shearing gDNA was visible on agarose 

gel after purification analysis (figure I.4). 

 

I.3.8 Identification and sequencing of 16S rDNA bacteria 

 The PCR products obtained after purification were sent for sequencing (sequencing 

data see appendix.II.1) (GATC-BoxleTM). The sequences were analysed using BLAST 

(NCBI) and the percentages homology to bacterial rDNA sequences in the GenBank 
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database (NCBI) were compared using BLAST analysis and the accession numbers with 

detailed description of the most homogenous sequences are described in table I.12: 

Table I.12: Identification of bacterial 16S rDNA sequences for Apergillus species using 

BLAST analysis against GeneBank database 

Cultures Accession 

number 

Description Max. 

Scor

e* 

Query 

coverag

ea 

E 

Valu

eb 

Max. 

identity
c 

Culture 1 JQ247014.1 Pseudomonas sp. 
SRI 360 16S 
ribosomal RNA 
gene, partial 
sequence. 

520 100% 3e-

144 

98% 

 JQ012750.1 Pseudomonas 
putida strain 
GMC1 16S 
ribosomal RNA 
gene, partial 
 sequence. 

520 100% 3e-

144 

98% 

Culture 2 

 

AB680418.1 Achromobacter 
xylosoxidans 
gene for 16S 
rRNA, partial 
sequence, 
 strain: NBRC 
13495. 

1170 98% 0.0 99% 

 HQ670710.1 Alcaligenes 
sp.MG07 16S 
ribosomal RNA 
gene, partial 
sequence. 

1170 98% 0.0 99% 

Culture 3 JN990375.1 Microbacterium 
foliorum strain 
SR11_1385 16S 
ribosomal RNA 
gene, partial 
sequence. 

 

545 100% 4e-

153 

96% 

 GU549407.1 Microbacterium 
sp. D3(2010) 
16S ribosomal 
RNA gene, 
partial sequence. 

549 100% 4e-

153 

96% 

Culture 4 HM352335.

1 
Alpha 
proteobacterium 

1140 99% 0.0 98% 

http://www.ncbi.nlm.nih.gov/nucleotide/374430961?report=genbank&log$=nucltop&blast_rank=1&RID=KAVV6PDK01R
http://www.ncbi.nlm.nih.gov/nucleotide/364515541?report=genbank&log$=nucltop&blast_rank=1&RID=FPUYP6Y9013
http://www.ncbi.nlm.nih.gov/nucleotide/359803291?report=genbank&log$=nucltop&blast_rank=1&RID=FPUZM1BA012
http://www.ncbi.nlm.nih.gov/nucleotide/317513856?report=genbank&log$=nucltop&blast_rank=21&RID=FPUZM1BA012
http://www.ncbi.nlm.nih.gov/nucleotide/365193008?report=genbank&log$=nucltop&blast_rank=2&RID=FPV1GYCJ01N
http://www.ncbi.nlm.nih.gov/nucleotide/290782614?report=genbank&log$=nucltop&blast_rank=1&RID=FPV1GYCJ01N
http://www.ncbi.nlm.nih.gov/nucleotide/312839661?report=genbank&log$=nucltop&blast_rank=11&RID=JPGE0HZH01S
http://www.ncbi.nlm.nih.gov/nucleotide/312839661?report=genbank&log$=nucltop&blast_rank=11&RID=JPGE0HZH01S
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*Max. Score:  score of high scoring pairs, (HSPs), (Score of longest matching sequence) 
 aQuery coverage: percent of length coverage for the query 
 bE. Value: number of hits one can "expect" to see by chance when searching a database of a 
particular size.  
 cMax. identity:  maximal percent Identity of the HSP 

CmLB11 16S 
ribosomal RNA 
gene, partial 
sequence. 

 HM134009.

1 
Brevundimonas 
diminuta strain 
IPSr105 16S 
ribosomal RNA 
gene,partial 
sequence. 

 

167 100% 3e-

39 

98% 

Culture 5 JQ014523.1 Brevundimonas 
sp. LC348 16S 
ribosomal RNA 
gene, partial 
sequence. 

1423 98% 0.0 99% 

 GQ246696.1 Brevundimonas 
sp. M2T2B5 16S 
ribosomal RNA 
gene, partial 
sequence. 

52.0 100% 2e-

04 

91% 

Culture 6 JN578809.1 Bradyrhizobium sp. 
DOA2 16S 
ribosomal RNA 
gene, partial 
sequence. 

444 100% 1e-

121 

100% 

 FN600560.2 Bradyrhizobium sp. 
GSM-467 partial 
16S rRNA gene, 
isolate GSM-467. 

444 100% 1e-

121 

100% 

http://www.ncbi.nlm.nih.gov/nucleotide/307604298?report=genbank&log$=nucltop&blast_rank=20&RID=JPGRVS9601S
http://www.ncbi.nlm.nih.gov/nucleotide/307604298?report=genbank&log$=nucltop&blast_rank=20&RID=JPGRVS9601S
http://www.ncbi.nlm.nih.gov/nucleotide/363992081?report=genbank&log$=nucltop&blast_rank=1&RID=FPV4YGT501N
http://www.ncbi.nlm.nih.gov/nucleotide/261291226?report=genbank&log$=nucltop&blast_rank=3&RID=JPHC3XV801S
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Objective: Identification of fungal strains degrading PAHs – using PCR 

amplification and sequencing of 18S rDNA 

 
I.3.9 Fungal Microscopic Images 

 a)                                                             b) 

                            

        Penicillium species                     Aspergillus species 

            Fig. I.5: Images of two fungi isolated from PAH enrichment culture 

 

The fungal isolates were grown on MEA media and fresh grown specimens of fungi 

were viewed at X100 magnification (Nikon, model YS100). Image of Pencillium 

species shown in figure I.5a, was isolated from soil pH 5.5 four weeks after 

contaminating the soil. Similarly, the Aspergillus species image shown in figure I.5b 

was isolated form soil at pH 8.5 during week 4.  

 The morphological fungal microscopic identification for isolates obtained via 

shaken enrichment cultures was further followed by 18S ribosomal DNA sequencing 

for fungi. 

 
I.3.10 Fungal gDNA extraction 

 Fungal cultures isolated during enrichment culture were preserved on malt extract 

agar and grown in malt extract broth for genomic DNA extraction. Two different DNA 
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isolation protocols were followed to extract the DNA from isolated fungi. The first 

method involved grinding fungal hyphae in liquid nitrogen, followed by phenol: 

chloroform extraction. The second method was performed using Qiagen, DNeasy 

Plant/ fungi mini kit. 

 

I.3.11  Phenol: Chloroform genomic DNA extraction 

Genomic DNA was isolated from fungal hyphae by breaking the cell wall in liquid 

nitrogen. A smear of fungal DNA was observed (figure I.6 A) on an agarose gel 

indicating the presence of genomic DNA. In the gel image of (figure I.6 A) lanes 1 & 2 

are loaded with Penicillium gDNA extract and lanes 3 & 4 are loaded with Aspergillus 

gDNA.  In lane 2 & 3 the presence of genomic DNA was indicated from above 12216 

bp to 414 bp when compared with marker (Lane1). Similarly, the presence of gDNA in 

lanes 4 was evident from 12216bp to 414 bp. However, a smear of low molecular 

weight DNA indicated the presence of nucleic acid contaminants or shearing of gDNA 

in the samples. The gDNA samples were then subjected to purification in an attempt to 

purify the gDNA from the contaminating nucleic acid, and re-analyzed by agarose gel 

electrophoresis (figure 3.6 B). Penicillium and Aspergillus sp. samples did not contain 

genomic DNA after the purification step as shown on the agarose gel (figure I.6 B).  
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    A)            M    1    2     3      4                           B)       M   1   2    3    4     

                                           
 

Fig. I.6: Agarose gel electrophoretic analysis of genomic DNA extracted from fungal 

isolates.  

     A) Lanes 1 & 2 represents the genomic DNA samples extracted from Penicillium 
species and 3, 4 and 5 represent the genomic DNA samples extracted from Aspergillus 
species. B) Penicillium and Aspergillus species gDNA sample after using purification 
cleanup kit. M represents standard DNA markers (100 bp) ladder.  
 
 

I.3.12 Qiagen, DNeasy Plant or fungi mini kit genomic DNA extraction 

Genomic DNA was isolated from fresh fungal mycelium grown in malt exact broth.  

A sharp band of high molecular weight indicated the presence of genomic DNA (figure 

I.7 A). However, a smear of DNA of low molecular weight indicated the presence of 

contaminants or sheared gDNA in the samples. Penicillium gDNA extract in lanes 1, 2, 

3, & 4 produced sharp bands of gDNA at around 12216bp along with a smear to 512 

bp when compared to marker (figure I.7 A). Similarly, Aspergillus gDNA extract in 

lanes 6, 7, 8, 9 &10 (figure I.7 A) had a sharp gDNA band along with a smear from 

12216 bp to 512 bp. The gDNA samples were then subjected to a purification step in 

an attempt to purify the gDNA from the contaminating nucleic acid, and re-analyzed 

by agarose gel electrophoresis (figure I.7 B). A sharp DNA band of high molecular 
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weight was observed after the purification process as represented figure I.7b; whilst 

much of the smear of contaminating nucleic acid was lost indicating that the 

contaminants were precipitated out. The amount added in each well was (8 µl) of 

original gDNA sample. 

 

   A)  Lane:  M        1 2 3 4 5 6 7 8 9 10     B)   Lane:   M    1     2    3   4 

                                     
 

Fig. I.7: Agarose gel electrophoretic analysis of genomic DNA extracted from fungal 

isolates.  

A) Lanes 1, 2, 3, 4 & 5 represent genomic DNA for Penicillium species sample and 6, 
7, 8, 9 and 10 represent the genomic DNA for Aspergillus species extracted in triplets. 
B) Lanes 1 & 2 represents the genomic DNA sample after using purification cleanup 
kit for Penicillium species sample and Lane 3 & 4 represents genomic DNA after using 
purification cleanup kit for Aspergillus species samples. M represents standard DNA 
markers (1 kb) ladder.  
 
 

I.3.13 Purity and concentration for fungal DNA isolation 

The absorbance at various wavelengths of 230, 260, 280 and 320 nm (table I.13 & 

I.14) was measured to estimate the purity and concentration of genomic DNA. 
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Purity and concentration for Phenol: chloroform method 

The values of purity and concentration of genomic DNA for each sample isolated 

using phenol: chloroform (table I.13) was too low for further PCR amplification. The 

specified absorbance ratios for sample Penicillium and Aspergillus were found to be 

less than 1.8 (table I.13) indicating that the purity of all samples was low using the 

phenol: chloroform method. Analysing these ratios further, it was observed that the 

contaminating factor were either proteins or phenol as the absorbance at 280 nm was 

high.  

 

Purity and concentration for Qiagen, DNeasy method 

The values for each sample isolated using Qiagen DNeasy kit (table I.14) were at 

least 1.8 for A (260/280) and A (260/230). The gDNA samples produced using Qiagen, 

DNeasy kit, absorbance ratios of Penicillium and Aspergillus as per (table I.14) for A 

(260/280) and A (260/230) respectively were achieved; indicating that the DNA was pure. 

However low purity and concentration was measured for DNA isolated through 

phenol: chloroform compared to the Qiagen DNeasy Plant or fungi mini kit method. A 

lot of DNA was lost during the precipitation process as evidenced by the drastic 

reduction in band intensity and concentration prior to purification step. This was due to 

the dilution of gDNA sample from (50 µl) carrying out 1:10 dilution with (30 µl) as the 

final volume during purification process. Therefore, the Qiagen DNeasy kit was used 

to isolate gDNA was used for all the subsequent work.   
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Table I.13: Purity and concentration for fungal DNA isolation (phenol: Chloroform 

method) 

Sample 

number 

A 

(260/

280) 

A 

(260/2

30) 

A230 A260 A280 A320 Concentration 

(µg/mL) 

Pencillium 

strain 1 

1.2 2.1 0.31 0.03 0.27 0.08 42 

 1.4 2.3 0.04 1.05 1.00 0.04 41 

Aspergillus 

strain 1 

1.3 1.6 1.00 0.72 1.21 0.00 74 

 1.2 2.5 0.21 1.65 0.00 0.02 132 

 Absorbance was measured at 230 nm, 260 nm, 280 nm and 320 nm. The absorbance ratios 
A(260/280) and A(260/230) and the concentrations were calculated by the spectrophotometer. 

 
Table I.14: Purity and concentration for fungal DNA isolation (using Qiagen, DNeasy 

Plant or fungi mini kit method) 
Sample 

number 

A 

(260/

280) 

A 

(260/

230) 

A230 A260 A280 A320 Concentration 

(µg/mL) 

Pencillium 

strain 1 

1.9 2.6 0.50 1.08 0.60 0.085 54 

 1.8 2.7 1.06 2.41 1.37 0.043 121 

Aspergillus 

strain 1 

1.6 2.2 1.07 2.48 1.46 0.040 124 

 1.7 2.3 0.72 1.84 1.03 0.033 92 

Absorbance was measured at 230 nm, 260 nm, 280 nm and 320 nm. The absorbance 
ratios A (260/280) and A (260/230) and the concentrations were calculated by the 
spectrophotometer. 
 

 
I.3.14 Optimized PCR reaction conditions 

The PCR conditions for the amplification of one sample are summarised below in 

table I.15.  
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Table I.15: PCR reaction temperature optimization conditions for fungal samples  

Reagent                       Volume of reagent (µL) 
10x PCR 
reaction buffer 10 10 10 10 10 10 10 10 10 

25mM MgCl2 4 4 4 5 5 5 6 6 
 

6 
25mMForward 
primer 1 1 1 1 1 1 1 1 1 
25mM Reverse 
primer 1 1 1 1 1 1 1 1 1 
10mM dNTP's 2 2 2 2 2 2 2 2 2 
gDNA template 2 2 2 2 2 2 2 2 2 
5U/µL Taq 
polymerase 0.4 

0.
4 0.4 

0.
4 0.4 

0.
4 

0.
4 

0.
4 0.4 

Sterile distilled 
water 

39.
6 

39
.6 

39.
6 

38
.6 

38.
6 

38
.6 

37
.6 

37
.6 

37.
6 

Total 50 50 50 50 50 50 50 50 50 
Annealing 
temperature 

64o

C 
65
oC 

660

C 
64
oC 

65o

C 
66
oC 

64
oC 

65
oC 

66o

C 

    
      

 PCR reactions were carried out for isolated gDNA at varied annealing temperatures 

(64, 65 and 660C) and varying quantities of 25 mM MgCl2, (4 to 6 µl) table (I.15). A 

1% agarose gel was prepared and the gel was run at 100V for 60 minutes for the 

analysis of PCR amplicons (figure I.8). 

            1    2     3    4    5   6    7    8     9   10  11   12   M    

            
 Fig. I.8: Agarose gel electrophoretic analysis of PCR reactions:  

Lanes 1, 2 and 3 had samples containing 4µl, 5 µl and 6 µl of 25mM MgCl2 at 650C, 
Lanes 4, 5 and 6 with 4 µl, 5 µl and 6 µl of 25 mM MgCl2 at 660C, Lanes 7, 8 and 9 
with 4 µl, 5 µl and 6 µl of 25 mM MgCl2 at 640C. Lane 10, 11, 12 were samples 
containing 6 µl of 25 mM MgCl2 at 650C, 650C and 640C respectively. M represents 
standard DNA markers (1 kb). A 1% agarose gel was prepared and run at 100V for 60 
minutes. 

Marker 
size (bp) 

8144 
6108 
2036 
1018 
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Figure I.8 depicts a bright and clear single band of 746 bp at an annealing 

temperature of 65˚C with 5 µl of 25 mM MgCl2 in lane 2 (optimisation conditions: 

table I.15). No band was evident for all other samples (represented in lanes 1, 3-12). 

 

I.3.15 PCR product 

The purified genomic DNA was used as a template in the PCR reactions in order to 

amplify the gDNA template using specific forward and reverse primers. The expected 

sequences for each amplicon are described in appendix II section II.5 

Several PCR reactions were performed in an attempt to amplify the gDNA template 

using the primers ITS1 and ITS4. The reactions were carried out at various annealing 

temperatures and also using gDNA templates prior to purification and after 

purification. Bands corresponding to the expected sizes (642 bp & 646 bp) of amplicon 

were observed in the reaction products (figure I.9); whilst primer dimers of less than 

300 bp were observed, therefore a further purification step was conducted.  

                                                     M            1              2 

                                                         642bp 
Fig. I.9: Agarose gel electrophoretic analysis of PCR product after the amplification 

of 18S rDNA from Aspergillus species.  

M represents standard DNA ladder (100 bp). Lane 1 represents PCR product of 
Aspergillus gDNA template and lane 2 represent the negative control containing master 
mix (table 5) without template DNA. A 0.8% agarose gel was prepared and run at 
100V for 60 minutes for the analysis of gDNA samples. 

Mark
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600 
500 
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I.3.16 Purification of PCR product 

PCR reaction product of all four samples after amplification were then purified 

(figure I.9) using the Qiagen PCR purification kit. A band of approximately 646 bp for 

Pencillium PCR product and 642 bp for Aspergillus PCR product were observed in 

lanes 1, 2, 3 and 4. Lane 5 contains negative control containing master mix without 

DNA template (figure I.10).  

                              M       1      2        3      4       5      

                            
Fig. I.10: Agarose gel electrophoretic analysis of 18S rDNA extracted from fungal 

isolates.  

M represents standard DNA ladder (100 bp). The PCR product in lane 1(646 bp), 
2(646 bp), 3(642 bp) and 4(642 bp) represent the PCR product after purification of 
fungal samples. Lane 5 represents the negative control. 
 
 

I.3.17 Identification and sequencing of 18S rDNA fungi 

 The PCR product obtained after amplification was 646 bp for Pencillium and 642 

bp for Aspergillus. Samples were sent for sequencing (sequencing data see appendix. II 

section 1).  
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 The DNA sequences determined in this study were compared to those in the Gene-

Bank database using BLAST analysis and the accession numbers with detailed 

description of the most homogenous sequences are described in table 3.16 to 3.19: 

 

Table I.16: Identification of fungal 18S rDNA sequences for Apergillus species 

using BLAST analysis against the GenBank database 

Accessi

on 

numbe

r 

Description Max. 

Score

* 

Query 

coverag

ea 

 

E 

Valueb 

Max. 

identityc 

HQ014

697.1 

 

Aspergillus niger 
strain WM10.75 18S 
ribosomal RNA gene, 
partial sequence; 
internal transcribed 
spacer 1, 5.8S 
ribosomal RNA gene, 
and internal 
transcribed spacer 2, 
complete sequence; 
and 28S ribosomal 
RNA gene, partial 
sequence 

959 100% 0.0 99% 

HQ014

696.1 

Aspergillus niger 
strain WM10.74 18S 
ribosomal RNA gene, 
partial sequence; 
internal transcribed 
spacer 1, 5.8S 
ribosomal RNA gene, 
and internal 
transcribed spacer 2, 
complete sequence; 
and 28S ribosomal 
RNA gene, partial 
sequence 

959 100% 0.0 99% 

HQ315 Aspergillus 959 100% 0.0 99% 
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 *Max. Score:  score of high scoring pairs, (HSPs), (Score of longest matching sequence) 
aQuery coverage: percent of length coverage for the query 
bE. Value: number of hits one can "expect" to see by chance when searching a 
database of a particular size.  
cMax. identity:  maximal percent Identity of the HSP 
 
Table I.17: Identification of fungal 18S rDNA sequences for Apergillus species 

using Blast analysis against the GenBank database 

841.1 tubingensis internal 
transcribed spacer 1, 
partial sequence; 
internal transcribed 
spacer 1, 5.8S 
ribosomal RNA gene 
and internal 
transcribed spacer 2, 
complete sequence; 
and 28S ribosomal 
RNA gene , partial 
sequence  

HM801

881.1 

Aspergillus sp. 06 
SMR-2010 18S 
ribosomal RNA gene, 
partial sequence; 
internal transcribed 
spacer 1, 5.8S 
ribosomal RNA gene, 
and internal 
transcribed spacer 2, 
complete sequence; 
and 28S ribosomal 
RNA gene, partical 
sequence 

959 100% 0.0 99% 

Accession 

number 

Description Max. 

Score* 

 

Query 

coverage
a 

E 

Valueb 

Max. 

identityc 

JF411067.

1 

 

Aspergillus 
tubingensis strain 
CNU081066 18S 
ribosomal RNA 
gene, partial 
sequence; internal 
transcribed spacer 
1, 5.8S ribosomal 

898 99% 0.0 96% 
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RNA gene, and 
internal transcribed 
spacer 2, complete 
sequence; and 28S 
ribosomal RNA 
gene, partial 
sequence 

HQ89166

6.1 

Aspergillus niger 
strain N internal 
transcribed spacer 
1, partial sequence; 
5.8S ribosomal 
RNA gene and 
internal transcribed 
spacer 2, complete 
sequence; and 28S 
ribosomal RNA 
gene, partial 
sequence 

898 99% 0.0 96% 

HQ72825

5.1 

Aspergillus 
tubingensis isolate 
JH01 18S 
ribosomal RNA 
gene, partial 
sequence; internal 
transcribed spacer 
1, 5.8Sribosoal 
RNA gene and 
internal transcribed 
spacer 2, complete 
sequence; and 28S 
ribosomal RNA 
gene, partial 
sequence 

898 99% 0.0 96% 

HQ01469

9.1 

Aspergillus niger 
strain WM10.78 
18S ribosomal 
RNA gene, partial 
sequence; internal 
transcribed spacer 
1, 5.8S ribosomal 
RNA gene, and 
internal transcribed 
spacer 2, complete 
sequence; and 28S 
ribosomal RNA 
gene, partial 
sequence 

898 99% 0.0 96% 
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*Max. Score:  score of high scoring pairs, (HSPs), (Score of longest matching 
sequence) 
aQuery coverage: percent of length coverage for the query 
bE. Value: number of hits one can "expect" to see by chance when searching a 
database of a particular size.  
cMax. identity:  maximal percent Identity of the HSP 
 

 
 

 Using BLAST (NCBI), the fungal rDNA sequences were compared to sequences in 

the GenBank database (NCBI) and the species were identified with 99% homology 

with a number of Aspergillus niger isolates and two Aspergillus tubingenisis isolates 

with query coverage of 100%. The second Aspergillus isolate again showed homology 

with isolates of Aspergillus tubingenisis (ITSΙΙ) and Aspergillus niger, but with a lower 

identity of 96% and a query coverage of 99% represented in table I.16 and I.17. 

However, the multiple sequence alignment including both Aspergillus isolates obtained 

using ClusterW (section I.3.18), shows that they have the same sequence with 100% 

homology and hence, the two Aspergillus species are the same strains over their 

overlapping query area. 
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I.3.18  CLUSTALW Multiple Sequence Alignments for Aspergillus spp.  

gi|319429243|gb|HQ014697.1|      ------------------AATATACAAGGTTTCCGTAGGTGAACCTGCGG 
gi|329132758|gb|JF411067.1|      TTTAGAGGAAGTAAAAGTCGTA-ACAAGGTTTCCGTAGGTGAACCTGCGG 
                                                     ** *************************** 
 
gi|319429243|gb|HQ014697.1|      AAGGATCATTACCGAGTGCGGGTCCTTTGGGCCCAACCTCCCATCCGTGT 
gi|329132758|gb|JF411067.1|      AAGGATCATTACCGAGTGCGGGTCCTTTGGGCCCAACCTCCCATCCGTGT 
                                 ************************************************** 
 
gi|319429243|gb|HQ014697.1|      CTATTATACCCTGTTGCTTCGGCGGGCCCGCCGCTTGTCGGCCGCCGGGG 
gi|329132758|gb|JF411067.1|      CTATTATACCCTGTTGCTTCGGCGGGCCCGCCGCTTGTCGGCCGCCGGGG 
                                 ************************************************** 
 
gi|319429243|gb|HQ014697.1|      
GGGCGCCTTTGCCCCCCGGGCCCGTGCCCGCCGGAGACCCCAACACGAAC 
gi|329132758|gb|JF411067.1|      GGGCGCCTTTGCCCCCCGGGCCCGTGCCCGCCGGAGACCCCAACACGAAC 
                                 ************************************************** 
 
gi|319429243|gb|HQ014697.1|      ACTGTCTGAAAGCGTGCAGTCTGAGTTGATTGAATGCAATCAGTTAAAAC 
gi|329132758|gb|JF411067.1|      ACTGTCTGAAAGCGTGCAGTCTGAGTTGATTGAATGCAATCAGTTAAAAC 
                                 ************************************************** 
 
gi|319429243|gb|HQ014697.1|      
TTTCAACAATGGATCTCTTGGTTCCGGCATCGATGAAGAACGCAGCGAAA 
gi|329132758|gb|JF411067.1|      TTTCAACAATGGATCTCTTGGTTCCGGCATCGATGAAGAACGCAGCGAAA 
                                 ************************************************** 
 
gi|319429243|gb|HQ014697.1|      TGCGATAACTAATGTGAATTGCAGAATTCAGTGAATCATCGAGTCTTTGA 
gi|329132758|gb|JF411067.1|      TGCGATAACTAATGTGAATTGCAGAATTCAGTGAATCATCGAGTCTTTGA 
                                 ************************************************** 
 
gi|319429243|gb|HQ014697.1|      ACGCACATTGCGCCCCCTGGTATTCCGGGGGGCATGCCTGTCCGAGCGTC 
gi|329132758|gb|JF411067.1|      ACGCACATTGCGCCCCCTGGTATTCCGGGGGGCATGCCTGTCCGAGCGTC 
                                 ************************************************** 
 
gi|319429243|gb|HQ014697.1|      ATTGCTGCCCTCAAGCCCGGCTTGTGTGTTGGGTCGCCGTCCCCCTCTCC 
gi|329132758|gb|JF411067.1|      ATTGCTGCCCTCAAGCCCGGCTTGTGTGTTGGGTCGCCGTCCCCCTCTCC 
                                 ************************************************** 
 
gi|319429243|gb|HQ014697.1|      
GGGGGGACGGGCCCGAAAGGCAGCGGCGGCACCGCGTCCGATCCTCGAGC 
gi|329132758|gb|JF411067.1|      
GGGGGGACGGGCCCGAAAGGCAGCGGCGGCACCGCGTCCGATCCTCGAGC 
                                 ************************************************** 
 
gi|319429243|gb|HQ014697.1|      GTATGGGGCTTTGTCACATGCTCTGTAGGATTGGCCGGCGCCTGCCGACG 
gi|329132758|gb|JF411067.1|      GTATGGGGCTTTGTCACATGCTCTGTAGGATTGGCCGGCGCCTGCCGACG 
                                 ************************************************** 
 
gi|319429243|gb|HQ014697.1|      TTTTCCAACCATTTTTTCCAGGTTGACCTCGGATCAGGTAGGGATACCCG 
gi|329132758|gb|JF411067.1|      TTTTCCAACCATTTTTTCCAGGT-GACCTCGGATCAGGTAG--------- 
                                 *********************** *****************     
      
gi|319429243|gb|HQ014697.1|      CTGAACTTAAGCATATCAATAAGCGGAGGT 
gi|329132758|gb|JF411067.1|      ------------------------------                                                    
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Table I.18: Identification of fungal 18S rDNA sequences for Penicillium species 

using BLAST analysis against the  

GenBank database 

 

Accessio

n 

number 

Description 

 

Max. 

Score* 

Query 

coveragea 

E 

Valueb 

Max. 

identityc 

AJ00547

9.1 

 

Penicillium freii 
(IBT 3464) 
ribosomal internal 
transcribed spacers 
and the 5.8S 
ribosomal RNA gene 
(ITS1-5.8S-ITS2) 

950 100% 0.0 97% 

GU56621

4.1 

Penicillium sp. BR 
18S ribosomal RNA 
gene, partial 
sequence; internal 
transcribed spacer 1, 
5.8S ribosomal RNA 
gene, and internal 
transcribed spacer 2, 
complete sequence; 
and 28S ribosomal 
RNA gene, partial 
sequence 

944 100% 0.0 97% 

FJ38974

4.1 

Penicillium sp. G4 
internal transcribed 
spacer 1, partial 
sequence; 5.8S 
ribosomal RNA gene 
and internal 
transcribed spacer 2, 
complete sequence; 
and 28S ribosomal 
RNA fene, partial 
sequence 

944 100% 0.0 97% 

GU56623

4.1 

Penicillium 
aurantiogreiserum 
strain D8 18S 
ribosomal RNA gene 
partial sequence; 
internal transcribed 
spacer 1, 5.8S 
ribosomal RNA 
gene, and internal 

939 100% 0.0 97% 
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transcribed spacer 2, 
complete sequence; 
and 28S ribosomal 
RNA gene partial 
sequence 

*Max. Score:  score of high scoring pairs, (HSPs), (Score of longest matching 
sequence) 
aQuery coverage: percent of length coverage for the query 
bE. Value: number of hits one can "expect" to see by chance when searching a 
database of a particular size.  
cMax. Identity:  maximal percent Identity of the HSP 
 
Table I.19: Identification of fungal 18S rDNA sequences for Penicillium species 

using BLAST analysis against the GenBank database 

Accessio

n 

number 

Description 

 

Max. 

Score* 

Query 

coveragea 

E 

Valueb 

Max. 

identityc 

GU5662

34.1 

 

Penicillium 
aurantiogriseum 
strain D8 18S 
ribosomal RNA 
gene, partial 
sequence; internal 
transcribed spacer 1, 
5.8S ribosomal RNA 
gene, and internal 
transcribed spacer 2, 
complete sequence; 
and 28S ribosomal 
RNA gene, partial 
sequence 

922 100% 0.0 95% 

GU5662

14.1 

Penicillium sp. BR 
18S ribosomal RNA 
gene, partial 
sequence; internal 
transcribed spacer 1, 
5.8S ribosomal RNA 
gene, and internal 
transcribed spacer 2, 
complete sequence; 
and 28S ribosomal 
RNA gene, partial 
sequence 

911 100% 0.0 94% 

AJ00547

9.1 

Pencillium freii 
(IBT 3464) 
ribosomal internal 

896 97% 0.0 95% 
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*Max. Score:  score of high scoring pairs, (HSPs), (Score of longest matching 
sequence) aQuery coverage: percent of length coverage for the query 

bE. Value: number of hits one can "expect" to see by chance when searching a    
                 database of a particular size.  
cMax. Identity:  maximal percent Identity of the HSP 

 
 Using BLAST (NCBI), the fungal rDNA sequences were compared to sequences in 

the GenBank database (NCBI) for Pencillium species and the species were identified 

with 97% homology with a number of Penicillium freii isolates and two Penicillium 

aurantiogriseum isolates with a query coverage of 100%. The second Pencillium 

isolate again showed homology with the internal transcribed spacer (ITSI) isolates 

Penicillium Ferii (ITSΙΙΙΙ) and Pencillium aurantiogriseum, but with a lower identity 

of 95% and query coverage of 100% as shown in table I.18 and I.19. However, the 

multiple sequence alignment including both Pencillium isolates obtained for 

Pencillium sp. using Clusterw (section I.3.19), shows that they have the same sequence 

with 99% homology and hence, the two Pencillium species are the same strains over 

their overlapping query area. 

transcribed spacers 
and the 5..8S 
ribosomal RNA 
gene (ITS1-5.8S-
ITS2) 

GU5662

21.1 

Penicillium 
polonium strain C6 
18S ribosomal RNA 
gene, partial 
sequence; internal 
transcribed spacer 1, 
5.8S ribosomal RNA 
gene, and internal 
transcribed spacer 2, 
complete sequence; 
and 28S ribosomal 
RNA gene, partial 
sequence 

911 100% 0.0 94% 
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I.3.19 CLUSTALW Multiple Sequence Alignments for Pencillium spp. 
gi|3925736|emb|AJ005479.1|       --------------GGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAA 
gi|291498422|gb|GU566234.1|      CTTGGTCATTTAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAA 

                                               ************************************ 
gi|3925736|emb|AJ005479.1|       CCTGCGGAAGGATCATTACCGAGTGAGGGCCCTTTGGGTCCAACCTCCCA 
gi|291498422|gb|GU566234.1|      CCTGCGGAAGGATCATTACCGAGTGAGGGCCCTTTGGGTCCAACCTCCCA 

                                 ************************************************** 
gi|3925736|emb|AJ005479.1|       CCCGTGTTTATTTTACCTTGTTGCTTCGGCGGGCCCGCCTTTACTGGCCG 
gi|291498422|gb|GU566234.1|      CCCGTGTTTATTTTACCTTGTTGCTTCGGCGGGCCCGCCTTTACTGGCCG 

                                 ************************************************** 
gi|3925736|emb|AJ005479.1|       CCGGGGGGCT-CACGCCCCCGGGTCCGCGCCCGCCGAAGACACCCTCGAA 
gi|291498422|gb|GU566234.1|      CCGGGGGGCTTCACGCCCCCGGGCCCGCGCCCGCCGAAGACACCCTCGAA 
                                          ********** ************ ************************** 
gi|3925736|emb|AJ005479.1|       CTCTGTCTGAAGATTGAAGTCTGAGTGAAAATATAAATTATTTAAAACTT 
gi|291498422|gb|GU566234.1|      CTCTGTCTGAAGATTGAAGTCTGAGTGAAAATATAAATTATTTAAAACTT 

                                 ************************************************** 
gi|3925736|emb|AJ005479.1|       TCAACAACGGATCTCTTGGTTCCGGCATCGATGAAGAACGCAGCGAAATG 
gi|291498422|gb|GU566234.1|      TCAACAACGGATCTCTTGGTTCCGGCATCGATGAAGAACGCAGCGAAATG 

                                 ************************************************** 
gi|3925736|emb|AJ005479.1|       CGATACGTAATGTGAATTGCAAATTCAGTGAATCATCGAGTCTTTGAACG 
gi|291498422|gb|GU566234.1|      CGATACGTAATGTGAATTGCAAATTCAGTGAATCATCGAGTCTTTGAACG 

                                 ************************************************** 
gi|3925736|emb|AJ005479.1|       CACATTGCGCCCCCTGGTATTCCGGGGGGCATGCCTGTCCGAGCGTCATT 
gi|291498422|gb|GU566234.1|      CACATTGCGCCCCCTGGTATTCCGGGGGGCATGCCTGTCCGAGCGTCATT 

                                 ************************************************** 
gi|3925736|emb|AJ005479.1|       GCTGCCCTCAAGCCCGGCTTGTGTGTTGGGCCCCGTCCTCCGATTCCGGG 
gi|291498422|gb|GU566234.1|      GCTGCCCTCAAGCCCGGCTTGTGTGTTGGGCCCCGTCCTCCGATTCCGGG 

                                 ************************************************** 
gi|3925736|emb|AJ005479.1|       GGACGGGCCCGAAAGGCAGCGGCGGCACCGCGTCCGGTCCTCGAGCGTAT 
gi|291498422|gb|GU566234.1|      GGACGGGCCCGAAAGGCAGCGGCGGCACCGCGTCCGGTCCTCGAGCGTAT 

                                 ************************************************** 
gi|3925736|emb|AJ005479.1|       GGGGCTTTGTCACCCGCTCCGTAGGCCCGGCCGGCGCTTGCCGATCAACC 
gi|291498422|gb|GU566234.1|      GGGGCTTTGTCACCCGCTCCGTAGGCCCGGCCGGCGCTTGCCGATCAACC 

                                 ************************************************** 
gi|3925736|emb|AJ005479.1|       CAAATTTTTATCCAGGTTGACCTCGGATCAGGTAGGGATACCCGCTGAAC 
gi|291498422|gb|GU566234.1|      CAAATTTTTATCCAGGTTGACCTCGGATCAGGTAGGGATACCCGCTGAAC 

                                 ************************************************** 
gi|3925736|emb|AJ005479.1|       TTAAGCATATCAATAAGCGGAGGA 
gi|291498422|gb|GU566234.1|      TTAAGCATATCAATAAGCGGAGGA 

                                 ************************ 
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    I.4 Discussion 

Objective: Isolation of PAHs degrading micro-organisms by shaken enrichment 

technique 

I.4.1 Enrichment culture technique 

 An aqueous shaken enrichment method was used to isolate PAH-degrading bacteria 

and fungi from PAHs contaminated road-side soil. PAHs are one of the toxic 

contaminants found in road- side soil and dust particles. Road-side soil is considered 

as highly contaminated with atmospheric PAHs due to higher percentage of 

automobile emissions. Also, higher PAHs concentration in soil is reported suggesting 

traffic density, traffic behavior, road condition, meteorological condition, particulate 

matter present in environment and their deposition rates (Kumar & Kothiyal, 2011). In 

this method, PAHs were the sole carbon and energy sources used for the microbial 

growth.  

The total of six bacterial strains and two fungal strains were isolated. Moreover, liquid 

enrichment culture also led to isolation of bacterial and fungal strains at varying pH 

specifically (acidic, neutral and alkaline). These isolates were confirmed as PAH-

degrading organisms by growing them on PAH sprayed minimal medium agar plates 

(for bacteria) and malt extract agar along with rose bengal (for fungi) plates. The 

aqueous shaken enrichment method was performed for 6 weeks with each lasting 14 

days (section I.2.6). The studies carried out by Jacques & Okeke, (2009) indicated the 

enrichment technique by reducing incubation time to 3 weeks compared to 6-12 weeks 

incubation does not limit the number of strains isolated as reported in other studies. 

Thus, less than 6 week of incubation time would affect the shaken enrichment 

technique to obtain the pure cultures of PAH-degraders (Jacques & Okeke, 2009). 
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Isolation of bacterial and fungal population confirmed by c.f.u counts and performing 

spread plate allowed pure cultures of PAH-degraders to be obtained. Higher bacterial 

population was observed in first enrichment when compared to second and third 

enrichment. During shaken enrichment cultures, bacteria grow slowly by adapting to 

crystalline PAH added as the sole carbon source resulting into growth curve 

characteristics (Johnsen et al., 2005). Higher number of bacteria were found in neutral 

pH (pH 7), whereas lower populations were observed at acidic pH of basal salt 

medium (pH 5.5). However, acidic pH 5.5 resulted in high growth of Penicillium 

species and Aspergillus species also at alkaline pH (pH 8.5). Similar work was 

indicated by Bastiaens et al., (2000) however, their studies reported isolation of PAHs 

degraders mostly bacteria via enrichment on the sorbing carrier and shaken liquid 

enrichment method. Thus, by performing two different enrichment methods they were 

able to isolate Psedomonas species, Sphingomonas species, and Mycobacterium group 

and proved that both enrichment culture methods are useful to select and isolate new 

hydrocarbon degrading bacteria and fungi (Bastiaens et al. 2000). 

Most of the studies are reported on temperature effect. Similarly, PAHs degradation 

under aerobic conditions and nitrate reducing conditions at low temperature in 

enrichment cultures were reported by Eriksson et al., (2003). In their studies, shaken 

enrichment culture was performed at different low temperatures and research indicated 

that after 90 days 52-88% of PAHs were removed at 200C. Also, 53% of PAHs 

removal was obtained at 70C. However less research has been carried out with respect 

to pH effect and its importance. 

Isolates obtained via shaken enrichment culture at acidic, neutral and alkaline 

conditions were identified using biochemical and molecular analysis. Also, these 

isolates were used for further experiments to investigate PAH degradation. 
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Objective: Identification of bacterial strains degrading PAHs – using PCR 

amplification and sequencing of 16S rDNA 

 

I.4.2 Characterization of Bacterial cells and genomic DNA extraction 

(Phenol: Chloroform genomic DNA extraction) 

The enriched pure cultures were subjected to biochemical tests followed by 

genomic DNA isolation. These characterizations were carried out to identify the 

bacteria and fungi and to study whether representative strains isolated from the 

enrichments were distinct organisms that could be used for further experimental work. 

The bacterial strains were categorised into Gram positive and Gram negative. Culture 

1, 2, 4, 5 and 6 groups were gram-negative bacteria and culture 3 was gram-positive 

strains. The cultures were examined for catalase and oxidase reaction, in which all the 

culture were catalase positive and culture 3, 5 & 6 were oxidase negative whilst 

culture 1 & 2 were oxidase positive. Based on biochemical tests performed, each of 

these bacterial cultures was identified in accordance to NHS (BSOP ID 1i1.4) issued 

by standards unit, evaluation and standards laboratory, centre for infection. 

 gDNA extraction was performed on 6 bacterial isolates using a method described by 

Cheng and Jiang (2006) followed by ethanol precipitation. The saturated phenol used 

during extraction, consisted of 72% phenol and 28% water, as phenol is weak acid, the 

solution was equilibrated with buffer to bring the pH to a particular target (pH 7.2), 

which is alkaline for DNA purification. Chloroform (isoamyl alcohol) was used to 

reduce the interphase- white fuzzy border formed during two phases partially help to 

denature the proteins. Low molecular weight DNA and RNA contaminates were 

removed by performing ethanol precipitation step and further confirmation of 

contaminants was observed by their respective absorbance readings in table I.9. DNA 

of high molecular weight recovered from environmental samples, was usually 



310 

 

concentrated by ethanol precipitation and requires no further purification step 

(Somerville et al., 1998). 

Phenol chloroform extraction provided high quality gDNA with no contamination of 

polysaccharides and phenolic compounds. Sharp single bands were observed in all the 

samples with high molecular weight and respective absorbance reading (table I.9). 

The purified gDNA was further used as a template for PCR amplification to obtain 

sequences for identification of the particular organisms. 

 

I.4.3 Purity and concentration for bacterial DNA isolation 

Contamination with carbohydrates, phenolate ions, thiocynates, and other organic 

compounds caused in DNA sample is determined by absorption at 230 nm (Xiao et al., 

2011). 

PCR amplification needs sufficient purity of gDNA measured at A260 nm/ A230 

nm (Jain et al., 2002). The purity and concentration obtained for all the isolates were 

high as as tabulated in table I.9. A lower ratio at A260 nm/ 230 nm denotes 

contamination of DNA by polysaccharides and lower ratio at A260/280 nm denotes 

contamination of gDNA by proteins (Kamal et al., 2008). Xiao et al., (2011) in their 

studies used mucoid Vibrio parahaemolyticus and Klebsiella pneumonia as model 

organisms and showed the effective comparison of two DNA extraction methods. In 

their studies they used methoxy-ethanol in one method and ethyl ether in second 

method for removal of polysaccharides. 

In this study, the phenol: Chloroform method for gDNA extraction showed little 

contamination with polysaccharides and phenolic compounds and other proteins as the 

ratios shown by the spectrophotometer readings obtained at A260 nm / A230 nm were 

1.96, 1.84, 1.62, 2.39, 1.98, 2.06 respectively and at A260 / 280 nm were 2.05, 1.97, 
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1.87, 2.74, 2.07, 2.11 respectively resulting in gDNA was pure without significant 

contamination. 

 

I.4.4 Bacterial PCR product 

Initial attempts were performed to amplify gDNA using PCR (Thermal cycler/PCR 

machine from Eppendorf) resulting into no amplicons for PCR reactions performed. 

However, PCR reaction optimization was carried out using varied annealing 

temperatures with a constant 3 µl of 25 mM magnesium chloride concentration. After 

optimization conditions amplicons of approximately the expected molecular size were 

obtained. The results obtained after PCR amplification confirmed the high purity and 

concentration of DNA template. Moreover the amplicons proved to be of working 

quality for further analysis. It also confirmed that the dNTP mixture, magnesium 

chloride, Taq polymerase and reaction buffer were working. Hence, the universal 

primers 27F, 5--AGAGTTTGATYMTGGCTCAG-3- and 1492R, 5-- 

TACGGYTACCTTGTTACGACT-3- were proved to amplify the template DNA. 

Bej et al., (1991) reported denaturation temperature and re-annealing temperature are 

most crucial step for PCR amplification. Further, in the studies conducted with respect 

to PCR optimization the denaturation temperature was set at 940C as a standard 

denaturation temperature. However, at very high temperatures DNA is highly prone to 

damage during the denaturation step. At high temperatures, cytosine is converted to 

uracil which is an analogue of thymine (Eckert & Kunel, 1991). Hence, such a base 

substitution can lead to errors in the amplified sequences. Thus, re-annealing 

temperature plays an important role in PCR amplification. Kurata et al., (2004) 

reported the importance of re-annealing temperature resulting in 1:1 mixtures of genes 

in final PCR products. The specificity of PCR reaction is completely based on re-



312 

 

annealing temperature. The re-annealing temperature is partially dictated by the primer 

pairs and therefore needs to be optimized (Kurata et al., 2004).  The re-annealing 

temperature was further optimized extensively for each of the samples. However, it 

was found that primers bind to non-target DNA producing multiple amplification 

products due to low annealing temperatures. If the temperature is too high the primers 

cannot anneal to the target template and therefore no amplification would be observed. 

Similar work was reported by Wu et al., (2005) suggesting single- stranded mutagenic 

DNA synthesis at high annealing temperature and low annealing temperatures.  

Further, after optimization of PCR amplicons were observed at 480C with 3 µl of 

25mM MgCl2 concentration (table I.12). However, larger volume of PCR amplified 

sample were loaded in each well as observed on agar gel electrophoresis (figure I.3). 

Amplification of four genomic DNA samples after purification resulted in amplicons 

that were approximately of the expected molecular sizes obtained by running the 

reaction sample on agarose gel electrophoresis was found with 1421 bp, 1476 bp, 1543 

bp, 1472 bp, 1385 bp and 1389 bp sizes when compared to 100 bp marker (figure I.4).  

 

I.4.5 Identification and sequencing of 16S rDNA  

       PCR reactions for all four samples were then purified using PCR purification kits. 

During PCR purification of product the primer dimer present in the amplified samples 

was lost. In this study the DNA sequences determined by GATAC (biolabs ltd., UK) 

using BLAST (NCBI) analysis, the rDNA sequences were compared to sequences in 

the GenBank database (NCBI) and bacterial PAH degraders were identified. Heitkamp 

and Cerniglia, (1988) were among first to document their studies on PAH degrading 

bacterium isolated from contaminated sites. Their studies involve degradation of 
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HMW PAHs and found 0.5 mg/litre degradation of fluoranthene, pyrene, 3-

methylcholanthrene, 6-nitochrysene respectively.  

In this study, a total of 6 bacterial cultures and 2 fungal cultures utilising        

phenanthrene, anthracene, fluoranthene and pyrene as a sole carbon source were 

isolated (section I.3.6). All cultures were isolated from same soil samples (described in 

section I.3.6) with enrichment set at a three pH’s.  

The culture 1 isolated at pH 5.5, after genomic DNA extraction and PCR reactions, the 

PCR product obtained after the purification of amplified region and sequencing of 

1318 bp product was conducted and BLAST analysis undertaken. A match with 100% 

query coverage and 98% maximum identity was found with Uncultured bacterium 

isolate with 16S ribosomal RNA gene, partial sequence. The reverse sequence 

obtained showed size of 1562 bp and was found to match Pseudomonas putida strain 

16S rRNA gene with 100% query coverage and 98% maximum identity. Pseudomonas 

putida is a gram negative soil bacterium which has been used in bioremediation of 

PAHs (Anzai et al., 2000).  

Culture 2 isolated at pH 7.0 found with sequencing of 1456bp product when blast 

analysis was undertaken. The sequence found to match Achromobacter xylosoxidans 

gene strain NBRC 13495, with 98% query coverage and 99% maximum identity. The 

reverse sequence (1440 bp) found to match as Alcaligenes sp. when compared to 

Genebank database with 98% query coverage and 99% maximum identity. 

Weissenfels et al., (1990) reported Alcaligense denitrificans strain, that biodegraded 

fluoranthene at a rate of 0.3 mg/ml per day.  

Culture 3 isolated at pH 7.0 after sequencing (1385 bp) was identified as 

Microbacterium foliorum strain with 100% query coverage and 96% maximum 

identity when compared to Genebank database. The reverse sequence (1414 bp) also 
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was identified as Microbacterium sp. with 100% query coverage and 96% maximum 

identity. Similarly, Bastiaens et al., (2000) studied two different enrichment methods 

for isolation of bacteria from PAH contaminated soil and sludge sample. In their 

studies one method helped in selection of Sphingomonas spp. whereas, the second lead 

to selection of Micobacterium spp. Also, shaken enrich and membranes containing 

sorbed PAH, both enrichment techniques proved as useful method to isolate PAH 

degraders (Bastiaens et al., 2000). Microbacterium cultures simulating pyrene 

mineralization over 60% radio-labelled pyrene in 96 hours was reported by Kanaly & 

Harayama, (2000).  Jackson et al., (2000) suggest, Sphingonomas species are 

commonly found and is capable of degrading HMW PAHs in equal amount when 

compared to Mycobacterium species. However it has also been reported to oxidize 

fluoranthene through fluorenone indicating dual attack on fluoranthene molecules. 

Culture 4 isolated at pH 7 was identified as an Alpha proteobacterium sp. over a 

1451bp product with 99% query coverage and 98% maximum identity and the reverse 

sequence was identified as Brevundimonas diminuta strain with product size of 

1295bp and  100% query coverage and 98% identity. Brevundimonas diminuta El-3.1 

amd Pseudomonas fluorescens El-2.1 has been reported by Tumaikina, (2006) as a 

crude oil degrading organisms isolated from Canadian pondweed. It was indicated that 

these organisms had a wide range and high degree of degradation activities with each 

of these organisms.  

Culture 5 isolated at pH 8.5 was identified as a Brevundimonas sp. (1223 bp) product 

with query coverage 98% and 99% maximum identity. The reverse sequence (865 bp) 

also was identified as Brevundimonas sp. with 100% query coverage and 91% identity. 

Brevundinonas sp. is a Subclass of the Proteobacteria that consists of rRNA group 
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species which were transposed from Proteobacteria to genus Brevundimonas (Anzai 

et al., 2000).   

Culture 6 isolated at pH 8.5 was identified as Bradyrhizobium sp. over 1451 bp 

product with a 100% query coverage and 100% identity. The reverse sequence 

similarly was identified as Bradyrhizobium sp. over 783 bp sequenced product with 

100% query coverage and 100% identity. Similarly, Tang, (2011) has reported 

Bradyrhizobium sp. as a predominant chrysene-degrading strain. Their studies 

indicated that Bradyrhizobium sp. isolated frm activated sludge resulted about 85.2% 

of chrysene degradation within 8 days maintained at 350C at pH 7.0.  

Among above mentioned genera or groups of bacteria has been previously reported as 

PAH degraders, hydrocarbon and petroleum degraders (Mueller et al., 1997; Kastner 

et al., 1994; West et al., 1984; Dyksterhouse et al., 1995). Identification of the above 

described isolated and their capabilities of degradation were further demonstrated by 

biodegradation experiment. Moreover, studies reported by Lal and Khanna (1996); 

Bharathi and Vasudevan (2001); and Rahman et al., (2002) have also identified most 

of the genera including Pseudomonas putida, Brevundimonas, Proteobacterium as 

hydrocarbon-degrading micro-organisms. 
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Characterization of fungi isolated and genomic DNA extraction 

 

Objective: Identification of fungal strains degrading PAHs – using PCR 

amplification and sequencing of 18S rDNA 

 

I.4.6. Genomic DNA isolation (Phenol: chloroform method)  

The genomic DNA was extracted from the four fungal isolates by modification 

from the methods of Plaza, & Upchurch et al. (2004).  The quality of the DNA 

obtained by phenol: choloroform procedure was not suitable for PCR amplification as 

demonstrated in figure I.12. A large smear of fungal gDNA was observed which 

includes low molecular weight fractions. This indicates DNA was sheared, resulting in 

a smear of DNA from low to high molecular weight. Therefore, it was necessary to 

eliminate the contaminants as an important step in the separation of a single band 

gDNA (Kamal et al., 2008).  

 

Qiagen, DNeasy Kit method 

The DNA isolation from fungus was repeated using a Qiagen, DNeasy Plant or 

fungi mini kit according to the manufacturer’s protocol. Sharp bands of high 

molecular weight genomic DNA were observed in lane 1 to 7 respectively (figure 

I.13). Yield and quality of extracted genomic DNA depends entirely on successful 

detection of DNA bands (Jain et al., 2002). However, a smear of DNA of low 

molecular weight due to the presence of nucleic acid contaminants were observed in 

the samples in lane 8, 9, and 10 as demonstrated in figure 42A. As reported by various 

authors prior to precipitation of contaminants from gDNA samples due to 

polysaccharides, the phenolic compounds and other secondary metabolite adversely 

affect the purity and suitability of isolated DNA during ethanol precipitation for future 
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molecular use (Dellaporta et al., 1983; Do & Adams, 1991; Pandey et al., 1996; 

Weishing et al., 1995). Most enzyme activity such as polymerases, ligases and 

endonucleases are inhibited by polysaccharides and hence are found to be more 

problematic (Do and Adams., 1991; Fang et al., 1992; Scott & Playford, 1996). The 

gDNA samples were then purified using purification kit in an attempt to purify the 

gDNA from the contaminating proteins (figure I.13 B). A sharp DNA band of high 

molecular weight was observed after the purification process as represented in figure 

42B whilst the low molecular weight DNA smear of contaminating proteins was lost 

indicating that the contaminants were precipitated out. The genomic DNA was highly 

pure depending on the purification step and removal of endogenous nucleases or other 

proteins.  

The integrity of DNA isolated by Qiagen DNeasy kit was greater than the phenol: 

chloroform method as indicated by a clear single band without a smear.  

 

3.4.1  Purity and concentration for fungal gDNA isolated 

The absorbance at wavelengths of 230, 260, 280 and 320 nm (table I.5 & I.6) was 

estimated for the purity and concentration of genomic DNA.  

 

Purity and concentration for Phenol: chloroform method 

The ratio measured at A260nm/ A230nm needs to be sufficient to proceed with 

PCR amplification (Jain et al., 2002). A lower ratio at A260nm/ 230nm denotes 

contamination of DNA by polysaccharides and lower ratio at A260/280nm denotes 

contamination of gDNA by proteins (Kamal et al., 2008). The phenol: Chloroform 

method was contaminated with polysaccharides as shown by the spectrophotometer 

readings obtained at A260 nm / A230 nm of  1.2, 1.4, 1.34, 1.27 and A260  nm / A280 

nm of 2.1, 2.3l, 1.6, and 2.5 respectively (table I.13). Low purity and concentration 



318 

 

was measured for DNA isolated through phenol: chloroform method. The purity and 

concentration for genomic DNA should be greater than that of 1.8 µg/ml (Kamal et al., 

2008). Thus, values for each sample isolated using phenol: chloroform method was too 

low for further PCR amplification.  

 

Purity and concentration for Qiagen, DNeasy method 

 PCR amplification needs sufficient ratio of gDNA measured at A260nm/ A230nm 

(Jain et al., 2002). The values for each sample isolated using Qiagen DNeasy kit (table 

I.14) were at least 1.8 µg/ml for A (260/280) and A (260/230). The gDNA samples 

produced using Qiagen, DNeasy kit, absorbance ratios of Penicillium strain 1 & 2 and 

Aspergillus strain 1 & 2 as per (table 21) for A (260/230) nm were 2.61, 2.74, 2.21, 2.38 

nm respectively; and at A (260/280) nm were 1.9, 1.87, 1.69 and 1.71 respectively, 

indicating that the DNA was pure without any contamination of protein and 

polysaccharides. Qiagen, DNeasy clean up kit was used to treat impurities and RNA 

present in gDNA samples in order to purify and get more efficient gDNA samples. 

However low purity and concentration was measured for DNA isolated through 

phenol: chloroform compared to Qiagen, DNeasy Plant or fungi mini kit method. The 

values for ratio of A (260/230 nm) for each sample isolated using Qiagen kit was at or 

greater than 1.8 µg/ml compared to the phenol: chloroform method. Therefore, the 

yield and quality of the gDNA obtained using Qiagen DNeasy isolation kit procedure 

were suitable and used for all the subsequent work.  

 
3.4.2   Polymerase Chain Reaction (PCR) 

Two universal PCR primers were used to amplify the DNA isolates ITS1 and ITS4 

respectively. Both primer pairs exhibited strong specificity for fungal rDNA 

sequencing. Results of DNA electrophoresis in 1% agarose gel are demonstrated 
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(figure I.10). Genomic DNA isolation in previous research has carried out based on 

gradient optimization for strong and reliable amplification product (Murray 1980). 

PCR products before the purification step are presented (figure I.11).  

The PCR conditions for the amplification of one sample were optimized as tabulated 

in Table I.15 in order to carry out PCR amplification of isolated gDNA samples. 

According to Mullis, (1997) specific gDNA amplification is possible with the 

optimized conditions. As the conditions can be optimized by using varied annealing 

temperature and/or varied MgCl2 concentration with different volumes (Murry, 1980). 

Thus, for specific amplification of isolated gDNA MgCl2 concentrations and annealing 

temperatures (table 22) were optimised. Specifically, the amplicon was obtained at an 

annealing temperature of 65˚C in lane 2 (figure I.12) with 5 µl of 25 mM MgCl2 (table 

22) with no amplicon obtained in other lanes loaded with other PCR samples at varied 

temperatures. Amplicons of approximate molecular sizes (642 bp) were obtained in 

lanes 1 (figure 44). However, primer dimer was present below 100 bp (figure I.13). 

Amplification of four genomic DNA samples further resulted in amplicons that were 

approximately of the expected molecular sizes ranging between 642 bp to 646 bp 

obtained in lane 1, 2, 3 & 4 (figure I.15). Amplified gDNA with similar range of 

molecular size was observed by White et al., (1990) to identify California populations 

with an ITS-2 fragment size of about 658 bp and the Texas populations of 

ascomycetes with a size of about 1099 bp. 

 

3.4.3  PCR Identification 

PCR reactions for all four samples were then purified using PCR purification kits. 

During PCR purification of product the primer dimer present in the amplified samples 

was lost. 
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The PCR product obtained after the purification of amplified region was of 646 bp for 

Pencillium species and 642 bp for Aspergillus species. Samples were sequenced 

(sequencing data see appendix II: section II.6). Using BLAST (NCBI), the fungal 

rDNA sequences were compared to sequences in the GenBank database (NCBI) and 

the species were identified with 99% homology with a number of Aspergillus niger 

isolates and two Aspergillus tubingenisis isolates with query coverage of 100%. The 

second Aspergillus isolate again showed homology with isolates of Aspergillus 

tubingenisis (ITSΙΙ) and Aspergillus niger, but with a lower identity of 96% and query 

coverage of 99% represented in table I.17 and I.18. However, the multiple sequence 

alignment including the both Apergillus isolates obtained using ClusterW analysis 

(section I.3.18), show that they have same the sequence with 100% homology over 

their overlapping query area and hence, the two Apergillus isolates are the same strain. 

Similarly, using BLAST (NCBI), the fungal gDNA sequences were compared to 

sequences in the Genebank database (NCBI) for Pencillium species and the species 

were identified with 97% homology with a number of Penicillium freii isolates and 

two Penicillium aurantiogriseum isolates with query coverage of 100%. The second 

Pencillium isolate again showed homology with the internal transcribed spacer (ITSI) 

of isolates Penicillium Ferii (ITSΙΙΙΙ) and Pencillium aurantiogriseum, but with a 

lower identity of 95% and query coverage of 100% as shown in tables I.19 and I.20. 

However, the multiple sequence alignment including the both Pencillium isolates 

obtained for Pencillium sp. using ClusterW analysis (section I.3.19), show that they 

have the same sequence with 99% homology over their overlapping query area 

(section I.1.9) and hence, the two Pencillium isolates are the same strain. 

  The fungal strains identified in this report provide evidence that universal PCR 

primers isolates ITS1 and ITS4 are very useful for identifying fungi from 
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environmental samples, such as soil and plant tissues. Thus, these primers are likely to 

be useful for construction of fungal rDNA libraries from the environmental samples, 

for denaturation gradient gel electrophoresis analysis or can be useful as fungus-

specific hybridization probes (Borneman and Hartin, 2000). Biodegradation of 

hydrocarbons can be executed by various microorganisms. Aspergillus sp. and 

Pencillium sp. along with other species have been isolated previously as degraders of 

PAHs and degraders of other pollutants. They are common soil organisms. 

Interestingly, a study was conducted for biodegradation of PAHs between the 

complexity and recalcitrance of PAH compounds using number of Aspergillus spp. 

(Bastiaen et al., 2000). Similarly, George-Okafor identified Aspergillus niger that 

provides better hydrocarbon degradation of PAHs with efficiency of (>98%) (George-

Okafor, 2009). A similar study by Okaro, (2008) indicated that Aspergillus fumigatus 

is more efficient than Rhizopus spp. in the degradation of aromatics. Niu et al., (1993) 

studied removal of toxic waste necessary for bioremediation process by using 

Penicillium chrysogenum. Similarly, P. italicum and P. aurantiogriseum was reported 

for fluoranthene degradation in presence of different cyclodextrins (Garon et al., 

2002). Hence, the species identified in this report may be important organisms in the 

bioremediation processes. 
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Appendix II 

II.1 Media composition for shaken enrichment cultures 

The composition of mineral medium was adapted from Bastiaens et al., (2000) 

containing (per litre) 8.8 g of Na2HPO4· 2H2O, 3.0 g of KH2PO4, 1.0 g of NH4Cl, 0.5 g 

of NaCl, 1.0 ml of 1 M MgSO4, and 1ml of a trace element solution ([per litre] 23 mg 

of MnCl2·2H2O, 30 mg of MnCl4·H2O, 31 mg of H3BO3, 36 mg of CoCl2·6H2O, 10 

mg of CuCl2·2H2O, 20 mg of NiCl2·6H2O, 30 mg of Na2MoO4·2H2O, and 50 mg 

ZnCl2). 

 

II.2 Biochemical test for bacterial isolates: 

II.2.1 Gram staining 

  Isolates were grown for 24- 48 hrs in nutrient broth at 300C. A bacterial smear was 

prepared by applying a drop of sterile water and inoculating the culture on glass slide 

and heat fixing it. Crystal violet stain was applied for 30seconds followed by wash 

step with running tap-water.  The slide was flooded with Lugol’s iodine for 30 seconds 

and immediately washed up with 95% alcohol. 95% alcohol was added until the slide 

appeared to be colourless. Further the slides were washed with tap-water followed by 

carbon fuchsin addition for 10 seconds. The final step was carried out by washing the 

slide with running tap-water.  

 The bacterial were observed at X1000 on microscope (Meiji EMT model number: 

18089). There reaction to gram stain were observed 

 

II.2.3 Catalase 

 Catalase test was performed using hydrogen peroxide (H2O2) reagent. The isolates 

were added to the reagent to confirm for the presence of catalase enzyme. The 
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presence of gas bubbles represents the presence of catalase enzyme resulting in 

oxygen release. 

 

II.2.4 Oxidase 

 Oxidase test was performed using 1% of tetramethyl p-phenlenediamine aqueous 

solution. 10cm diameter Whatman filter paper was used in Petri dish and the drops of 

reagent was added to filter paper. The isolated culture was added to the filter paper 

using a wire loop. The appearance of dark purple colour within few seconds was 

considered as the indication of presence of cytochrome C enzyme resulting into 

position reaction test.  

 

II.2.5 Oxidation or Fermentation (O-F) test 

 Oxidation or fermentation test was performed by preparation of O-F medium for 

testing the isolated cultures. The medium contained 5g of NaCl, 0.3g of K2HPO4, 2g 

of peptone, 3g of agarose and 0.2% of bromothymole blue. The aqueous solution was 

made up to 100ml in distilled water. The medium prepared was heated to 950C and 1% 

of glucose was added to the medium. The medium was dispensed into universal 

bottles. The universal bottles were sterilized by autoclaving. After autoclaving 

(sterilization), the culture was stabbed into the universal bottle using a straight 

nichrome wire. Mineral oil (paraffin oil) was added to a duplicate universal bottle to 

create anaerobic conditions. The universal bottles were incubated for 14 days at 300C. 

After incubation the tubes were observed for yellow colour indicating glucose 

oxidation. If both duplicates (with and without mineral oil) turned yellow the result 

was recorded as fermentation whereas, if the bottle did not turn yellow colour and 

bottle with mineral oil turned yellow the result was recorded as oxidation. Universal 

bottles with culture without mineral oil and one topped with mineral oil both turned 
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yellow representing fermentation whereas, bottle without mineral oil showing no 

yellow colour and bottle with mineral oil showing yellow colour indicated oxidation in 

the bottle. Thus, no colour change in either bottle showed that the bacteria do not 

metabolise glucose in either conditions. 

 

II.3 Bacterial DNA isolation and PCR amplification 

PRIMER DETAILS PRIMER 1 (27F ) PRIMER 2 (1492R) 

Sequence (5’ to 3’) AGAGTTTGATYMTG

GCTCAG 

TACGGYTACCTTGT

TACGACT 

Complementary sequence   

Tm: Desalt adjusted 66 68 

M.W 6168.5µg/mole 6380.7 µg/mole 

GC content 45% 45% 

Length 20 21 

 

II.4 Bacterial sequencing results 

Using BLAST (NCBI), the fungal rDNA sequences in the GenBank database (NCBI) 

were compared as followed: 

II.4.1 Pseudomonas sp.  16S ribosomal RNA gene, partial sequence 

GenBank: JQ247014.1 

LOCUS       JQ247014                1467 bp    DNA     linear   BCT 07-FEB-2012 

DEFINITION  Pseudomonas sp. SRI 360 16S ribosomal RNA gene, partial sequence. 

ACCESSION   JQ247014 

VERSION     JQ247014.1  GI:374430961 

SOURCE      Pseudomonas sp. SRI 360 

  ORGANISM  Pseudomonas sp. SRI 360 

            Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales; 

            Pseudomonadaceae; Pseudomonas. 

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1138163
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ORIGIN       

1 gctcagattg aacgctggcg gcaggcctaa cacatgcaag tcgagcggat gacgggagct 

61 tgctccttga ttcagcggcg gacgggtgag taatgcctag gaatctgcct ggtagtgggg 

121 gacaacgttt cgaaaggaac gctaataccg catacgtcct acgggagaaa gtgggggatc 

181 ttcggacctc acgctatcag atgagcctag gtcggattag ctagttggtg aggtaatggc 

241 tcaccaaggc gacgatccgt aactggtctg agaggatgat cagtcacact ggaactgaga 

301 cacggtccag actcctacgg gaggcagcag tggggaatat tggacaatgg gcgaaagcct 

361 gatccagcca tgccgcgtgt gtgaagaagg tcttcggatt gtaaagcact ttaagttggg 

421 aggaagggca gtaagttaat accttgctgt tttgacgtta ccgacagaat aagcaccggc 

481 taactctgtg ccagcagccg cggtaataca gagggtgcaa gcgttaatcg gaattactgg 

541 gcgtaaagcg cgcgtaggtg gttcgttaag ttggatgtga aagccccggg ctcaacctgg 

601 gaactgcatc caaaactggc gagctagagt acggtagagg gtggtggaat ttcctgtgta 

661 gcggtgaaat gcgtagatat aggaaggaac accagtggcg aaggcgacca cctggactga 

721 tactgacact gaggtgcgaa agcgtgggga gcaaacagga ttagataccc tggtagtcca 

781 cgccgtaaac gatgtcaact agccgttgga atccttgaga ttttagtggc gcagctaacg 

841 cattaagttg accgcctggg gagtacggcc gcaaggttaa aactcaaatg aattgacggg 

901 ggcccgcaca agcggtggag catgtggttt aattcgaagc aacgcgaaga accttaccag 

961 gccttgacat gcagagaact ttccagagat ggattggtgc cttcgggaac tctgacacag 

1021 gtgctgcatg gctgtcgtca gctcgtgtcg tgagatgttg ggttaagtcc cgtaacgagc 

1081 gcaacccttg tccttagtta ccagcacgtt atggtgggca ctctaaggag actgccggtg 

1141 acaaaccgga ggaaggtggg gatgacgtca agtcatcatg gcccttacgg cctgggctac 

1201 acacgtgcta caatggtcgg tacagagggt tgccaagccg cgaggtggag ctaatctcac 

1261 aaaaccgatc gtagtccgga tcgcagtctg caactcgact gcgtgaagtc ggaatcgcta 

1321 gtaatcgcga atcagaatgt cgcggtgaat acgttcccgg gccttgtaca caccgcccgt 

1381 cacaccatgg gagtgggttg caccagagta gctagtctaa ccttcgggag gacggttacc 

1441 acggtgtgat catgactggg tgagtcg 

 

II.4.2 Pseudomonas putida strain YNA121 16S ribosomal RNA gene, partial 

sequence 

GenBank: JN899561.1 

LOCUS       JN899561                 897 bp    DNA     linear   BCT 29-JAN-2012 

DEFINITION  Pseudomonas putida strain YNA121 16S ribosomal RNA gene, partial 

            sequence. 
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ACCESSION   JN899561 

VERSION     JN899561.1  GI:373880214 

KEYWORDS    . 

SOURCE      Pseudomonas putida 

  ORGANISM  Pseudomonas putida 

            Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales; 

            Pseudomonadaceae; Pseudomonas. 

ORIGIN       

1 acctcgcgta ggtggtttgt taagttggat gtgaaagccc ggggctcaac tgggaactgc 

61 atccaaaact ggcaagctag agtacagtag agggtggtgg aatttcatgt gtagcggtga 

121 aatgcgtaga tataggaagg aacaccagtg gcgaaggcga ccacctggac tgatactgac 

181 actgaggtgc gaaagcgtgg ggagcaaaca ggattagata ccctggtagt ccacgccgta 

241 aacgatgtca actagccgtt ggaatccttg agattttagt ggcgcagcta acgcattaag 

301 ttgaccgcct ggggagtacg gccgcaaggt taaaactcaa atgaattgac gggggcccgc 

361 acaagcggtg gagcatgtgg tttaattcga agcaacgcga agaaccttac caggccttga 

421 catgcagaga actttccaga gatggattgg tgccttcggg aactctgaca caggtgctgc 

481 atggctgtcg tcagctcgtg tcgtgagatg ttgggttaag tcccgtaacg agcgcaaccc 

541 ttgtccttag ttaccagcac gttatggtgg gcactctaag gagactgccg gtgacaaacc 

601 ggaggaaggt ggggatgacg tcaagtcatc atggccctta cggcctgggc tacacacgtg 

661 ctacaatggt cggtacagag ggttgccaag ccgcgaggtg gagctaatct cacaaaaccg 

721 atcgtagtcc ggatcgcagt ctgcaactcg actgcgtgaa gtcggaatcg ctagtaatcg 

781 cgaatcagaa tgtcgcggtg aatacgttcc cgggccttgt acacaccgcc cgtcacacca 

841 tgggagtggg ttgcaccaga agtagctagt ctaaccttcg ggaggacggt gacttag 

 

II.4.3 Achromobacter xylosoxidans gene for 16S rRNA, partial sequence, strain: 

NBRC 13495 

GenBank: AB680418.1 

LOCUS       AB680418                1456 bp    DNA     linear   BCT 28-JAN-2012 

DEFINITION  Achromobacter xylosoxidans gene for 16S rRNA, partial sequence, 

            strain: NBRC 13495. 

ACCESSION   AB680418 

VERSION     AB680418.1  GI:359803291 

KEYWORDS    . 

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=303
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SOURCE      Achromobacter xylosoxidans 

  ORGANISM  Achromobacter xylosoxidans 

            Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; 

            Alcaligenaceae; Achromobacter. 

 

ORIGIN       

 1 attgaacgct agcgggatgc cttacacatg caagtcgaac ggcagcacgg acttcggtct 

61 ggtggcgagt ggcgaacggg tgagtaatgt atcggaacgt gcctagtagc gggggataac 

121 tacgcgaaag cgtagctaat accgcatacg ccctacgggg gaaagcaggg gatcgcaaga 

181 ccttgcacta ttagagcggc cgatatcgga ttagctagtt ggtggggtaa cggctcacca 

241 aggcgacgat ccgtagctgg tttgagagga cgaccagcca cactgggact gagacacggc 

301 ccagactcct acgggaggca gcagtgggga attttggaca atgggggaaa ccctgatcca 

361 gccatcccgc gtgtgcgatg aaggccttcg ggttgtaaag cacttttggc aggaaagaaa 

421 cgtcatgggc taataccccg tgaaactgac ggtacctgca gaataagcac cggctaacta 

481 cgtgccagca gccgcggtaa tacgtagggt gcaagcgtta atcggaatta ctgggcgtaa 

541 agcgtgcgca ggcggttcgg aaagaaagat gtgaaatccc agagcttaac tttggaactg 

601 catttttaac taccgagcta gagtgtgtca gagggaggtg gaattccgcg tgtagcagtg 

661 aaatgcgtag atatgcggag gaacaccgat ggcgaaggca gcctcctggg ataacactga 

721 cgctcatgca cgaaagcgtg gggagcaaac aggattagat accctggtag tccacgccct 

781 aaacgatgtc aactagctgt tggggccttc gggccttggt agcgcagcta acgcgtgaag 

841 ttgaccgcct ggggagtacg gtcgcaagat taaaactcaa aggaattgac ggggacccgc 

901 acaagcggtg gatgatgtgg attaattcga tgcaacgcga aaaaccttac ctacccttga 

961 catgtctgga attctgaaga gattcggaag tgctcgcaag agaaccggaa cacaggtgct 

1021 gcatggctgt cgtcagctcg tgtcgtgaga tgttgggtta agtcccgcaa cgagcgcaac 

1081 ccttgtcatt agttgctacg aaagggcact ctaatgagac tgccggtgac aaaccggagg 

 1141 aaggtgggga tgacgtcaag tcctcatggc ccttatgggt agggcttcac acgtcataca 

 1201 atggtcggga cagagggtcg ccaacccgcg agggggagcc aatcccagaa acccgatcgt 

 1261 agtccggatc gcagtctgca actcgactgc gtgaagtcgg aatcgctagt aatcgcggat 

 1321 cagcatgtcg cggtgaatac gttcccgggt cttgtacaca ccgcccgtca caccatggga 

 1381 gtgggtttta ccagaagtag ttagcctaac cgnaaggggg gcgattacca cggtaggatt 

 1441 catgactggg gtgaag 
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II.4.4 Alcaligenes sp. MG07 16S ribosomal RNA gene, partial sequence 

GenBank: HQ670710.1 

 

LOCUS       HQ670710                1440 bp    DNA     linear   BCT 15-SEP-2011 

DEFINITION  Alcaligenes sp. MG07 16S ribosomal RNA gene, partial sequence. 

ACCESSION   HQ670710 

VERSION     HQ670710.1  GI:317513856 

KEYWORDS    . 

SOURCE      Alcaligenes sp. MG07 

  ORGANISM  Alcaligenes sp. MG07 

            Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; 

            Alcaligenaceae; Alcaligenes. 

ORIGIN       

1 catgcaagtc gaacggcagc acggacttcg gtctggtggc gagtggcgaa cgggtgagta 

61 atgtatcgga acgtgcctag tagcggggga taactacgcg aaagcgtagc taataccgca 

121 tacgccctac gggggaaagc aggggatcgc aagaccttgc actattagag cggccgatat 

181 cggattagct agttggtggg gtaacggctc accaaggcga cgatccgtag ctggtttgag 

241 aggacgacca gccacactgg gactgagaca cggcccagac tcctacggga ggcagcagtg 

301 gggaattttg gacaatgggg gaaaccctga tccagccatc ccgcgtgtgc gatgaaggcc 

361 ttcgggttgt aaagcacttt tggcaggaaa gaaacgtcat gggctaatac cccgtgaaac 

421 tgacggtacc tgcagaataa gcaccggcta actacgtgcc agcagccgcg gtaatacgta 

481 gggtgcaagc gttaatcgga attactgggc gtaaagcgtg cgcaggcggt tcggaaagaa 

541 agatgtgaaa tcccagagct taactttgga actgcatttt taactaccga gctagagtgt 

601 gtcagaggga ggtggaattc cgcgtgtagc agtgaaatgc gtagatatgc ggaggaacac 

661 cgatggcgaa ggcagcctcc tgggataaca ctgacgctca tgcacgaaag cgtggggagc 

721 aaacaggatt agataccctg gtagtccacg ccctaaacga tgtcaactag ctgttggggc 

781 cttcgggcct tagtagcgca gctaacgcgt gaagttgacc gcctggggag tacggtcgca 

841 agattaaaac tcaaaggaat tgacggggac ccgcacaagc ggtggatgat gtggattaat 

901 tcgatgcaac gcgaaaaacc ttacctaccc ttgacatgtc tggaattccg aagagatttg 

961 gaagtgctcg caagagaacc ggaacacagg tgctgcatgg ctgtcgtcag ctcgtgtcgt 

1021 gagatgttgg gttaagtccc gcaacgagcg caacccttgt cattagttgc tacgaaaggg 

1081 cactctaatg agactgccgg tgacaaaccg gaggaaggtg gggatgacgt caagtcctca 

1141 tggcccttat gggtagggct tcacacgtca tacaatggtc gggacagagg gtcgccaacc 
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1201 cgcgaggggg agccaatccc agaaacccga tcgtagtccg gatcgcagtc tgcaactcga 

1261 ctgcgtgaag tcggaatcgc tagtaatcgc ggatcagcat gtcgcggtga atacgttccc 

1321 gggtcttgta cacaccgccc gtcacaccat gggagtgggt tttaccagaa gtagttagcc 

1381 taaccgcaag gggggcgatt accacggtag gattcatgac tggggtgaag tcgtaacaag 

 

II.4.6 Microbacterium foliorum strain SR11_1385 16S ribosomal RNA gene, 

partial sequence 

GenBank: JN990375.1 

LOCUS       JN990375                1385 bp    DNA     linear   BCT 27-DEC-2011 

DEFINITION  Microbacterium foliorum strain SR11_1385 16S ribosomal RNA gene, 

            partial sequence. 

ACCESSION   JN990375 

VERSION     JN990375.1  GI:365193008 

SOURCE      Microbacterium foliorum 

  ORGANISM  Microbacterium foliorum 

            Bacteria; Actinobacteria; Actinobacteridae; Actinomycetales; 

            Micrococcineae; Microbacteriaceae; Microbacterium. 

REFERENCE   1  (bases 1 to 1385) 

  

ORIGIN       

1 ctgcagtcga acggtgaaca cggagcttgc tctgtgggat cagtggcgaa cgggtgagta 

61 acacgtgagc aacctgcccc tgactctggg ataagcgctg gaaacggcgt ctaatactgg 

121 atacgagtag cgaccgcatg gtcagttact ggaaagattt attggttggg gatgggctcg 

181 cggcctatca gcttgttggt gaggtaatgg ctcaccaagg cgtcgacggg tagccggcct 

241 gagagggtga ccggccacac tgggactgag acacggccca gactcctacg ggaggcagca 

301 gtggggaata ttgcacaatg ggcgcaagcc tgatgcagca acgccgcgtg agggatgacg 

361 gccttcgggt tgtaaacctc ttttagcagg gaagaagcga aagtgacggt acctgcagaa 

421 aaagcgccgg ctaactacgt gccagcagcc gcggtaatac gtagggcgca agcgttatcc 

481 ggaattattg ggcgtaaaga gctcgtaggc ggtttgtcgc gtctgctgtg aaatccggag 

541 gctcaacctc cggcctgcag tgggtacggg cagactagag tgcggtaggg gagattggaa 

601 ttcctggtgt agcggtggaa tgcgcagata tcaggaggaa caccgatggc gaaggcagat 

661 ctctgggccg taactgacgc tgaggagcga aagggtgggg agcaaacagg cttagatacc 

721 ctggtagtcc accccgtaaa cgttgggaac tagttgtggg gtccattcca cggattccgt 
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781 gacgcagcta acgcattaag ttccccgcct ggggagtacg gccgcaaggc taaaactcaa 

841 aggaattgac ggggacccgc acaagcggcg gagcatgcgg attaattcga tgcaacgcga 

901 agaaccttac caaggcttga catatacgag aacgggccag aaatggtcaa ctctttggac 

961 actcgtaaac aggtggtgca tggttgtcgt cagctcgtgt cgtgagatgt tgggttaagt 

1021 cccgcaacga gcgcaaccct cgttctatgt tgccagcacg taatggtggg aactcatggg 

1081 atactgccgg ggtcaactcg gaggaaggtg gggatgacgt caaatcatca tgccccttat 

1141 gtcttgggct tcacgcatgc tacaatggcc ggtacaaagg gctgcaatac cgcgaggtgg 

1201 agcgaatccc aaaaagccgg tcccagttcg gattgaggtc tgcaactcga cctcatgaag 

1261 tcggagtcgc tagtaatcgc agatcagcaa cgctgcggtg aatacgttcc cgggtcttgt 

1321 acacaccgcc cgtcaagtca tgaaagtcgg taacacctga agccggtggc ctaacccttg 

1381 tggag 

 

II.4.7 Microbacterium sp. D3(2010) 16S ribosomal RNA gene, partial sequence 

GenBank: GU549407.1 

LOCUS       GU549407                 641 bp    DNA     linear   BCT 14-MAR-2010 

DEFINITION  Microbacterium sp. D3(2010) 16S ribosomal RNA gene, partial 

            sequence. 

ACCESSION   GU549407 

VERSION     GU549407.1  GI:290782614 

KEYWORDS    . 

SOURCE      Microbacterium sp. D3(2010) 

  ORGANISM  Microbacterium sp. D3(2010) 

            Bacteria; Actinobacteria; Actinobacteridae; Actinomycetales; 

            Micrococcineae; Microbacteriaceae; Microbacterium. 

REFERENCE   1  (bases 1 to 641) 

ORIGIN       

1 actagttgtg gggtccattc cacggatttc cgtgacgcag ctaacgcatt aagttccccg 

61 cctggggagt acggccgcaa ggctaaaact caaaggaatt gacggggacc cgcacaagcg 

121 gcggagcatg cggattaatt cgatgcaacg cgaagaacct taccaaggct tgacatatac 

181 gagaacgggc cagaaatggt caactctttg gacactcgta aacaggtggt gcatggttgt 

241 cgtcagctcg tgtcgtgaga tgttgggtta agtcccgcaa cgagcgcaac cctcgttcta 

301 tgttgccagc acgtaatggt gggaactcat gggatactgc cggggtcaac tcggaggaag 

361 gtggggatga cgtcaaatca tcatgcccct tatgtcttgg gcttcacgca tgctacaatg 
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421 gccggtacaa agggctgcaa taccgcgagg tggagcgaat cccaaaaagc cggtcccagt 

481 tcggattgag gtctgcaact cgacctcatg aagtcggagt cgctagtaat cgcagatcag 

541 caacgctgcg gtgaatacgt tcccgggtct tgtacacacc gcccgtcaag tcatgaaagt 

601 cggtaacacc tgaagccggg gcctaaccct tgggagggag c 

 

 

II.4.8 Alpha proteobacterium CmLB11 16S ribosomal RNA gene, partial sequence 

GenBank: HM352335.1 

LOCUS       HM352335                1369 bp    DNA     linear   BCT 31-MAY-2011 

DEFINITION  Alpha proteobacterium CmLB11 16S ribosomal RNA gene, partial 

            sequence. 

ACCESSION   HM352335 

VERSION     HM352335.1  GI:312839661 

KEYWORDS    . 

SOURCE      alpha proteobacterium CmLB11 

  ORGANISM  alpha proteobacterium CmLB11 

            Bacteria; Proteobacteria; Alphaproteobacteria. 

ORIGIN       

1 tggcggcagg cctaacacat gcaagtcgaa cggacccttc ggggttagtg gcggacgggt 

61 gagtaacacg tgggaacgtg cctttaggtt cggaatagct cctggaaacg ggtggtaatg 

121 ccgaatgtgc ccttcggggg aaagatttat cgcctttaga gcggcccgcg tctgattagc 

181 tagttggtga ggtaatggct caccaaggcg acgatcagta gctggtctga gaggatgacc 

241 agccacattg ggactgagac acggcccaaa ctcctacggg aggcagcagt ggggaatctt 

301 gcgcaatggg cgaaagcctg acgcagccat gccgcgtgaa tgatgaaggt cttaggattg 

361 taaaattctt tcaccgggga cgataatgac ggtacccgga gaagaagccc cggctaactt 

421 cgtgccagca gccgcggtaa tacgaagggg gctagcgttg ctcggaatta ctgggcgtaa 

481 agggcgcgta ggcggacatt taagtcaggg gtgaaatccc agagctcaac tctggaactg 

541 cctttgatac tgggtgtctt gagtgtgaga gaggtatgtg gaactccgag tgtagaggtg 

601 aaattcgtag atattcggaa gaacaccagt ggcgaaggcg acatactggc tcattactga 

661 cgctgaggcg cgaaagcgtg gggagcaaac aggattagat accctggtag tccacgccgt 

721 aaacgatgat tgctagttgt cgggctgcat gcagttcggt gacgcagcta acgcattaag 

781 caatccgcct ggggagtacg gtcgcaagat taaaactcaa aggaattgac gggggcccgc 

841 acaagcggtg gagcatgtgg tttaattcga agcaacgcgc agaaccttac caccttttga 
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901 catgcctgga ccgccagaga gatctggctt tctcttcgga gactaggaca caggtgctgc 

961 atggctgtcg tcagctcgtg tcgtgagatg ttgggttaag tcccgcaacg agcgcaaccc 

1021 tcgccattag ttgccatcat ttagttggga actctaatgg gactgccggt gctaagccgg 

1081 aggaaggtgg ggatgacgtc aagtcctcat ggcccttaca gggtgggcta cacacgtgct 

1141 acaatggcga ctacagaggg ttaatcctta aaagtcgtct cagttcggat tgtcctctgc 

1201 aactcgaggg catgaagttg gaatcgctag taatcgcgga tcagcatgcc gcggtgaata 

1261 cgttcccggg ccttgtacac accgcccgtc acaccatggg agttggttct acccgaaggc 

1321 gatgcgctaa ccagcaatgg aggcagtcga ccacggtagg gtcagcgac 

 

II.4.9 Brevundimonas sp. LC348 16S ribosomal RNA gene, partial sequence 

GenBank: JQ014523.1 

LOCUS       JQ014523                1223 bp    DNA     linear   BCT 25-DEC-2011 

DEFINITION  Brevundimonas sp. LC348 16S ribosomal RNA gene, partial sequence. 

ACCESSION   JQ014523 

VERSION     JQ014523.1  GI:363992081 

KEYWORDS    . 

SOURCE      Brevundimonas sp. LC348 

  ORGANISM  Brevundimonas sp. LC348 

            Bacteria; Proteobacteria; Alphaproteobacteria; Caulobacterales; 

            Caulobacteraceae; Brevundimonas. 

ORIGIN       

1 tgcagtcgac ggacccttcg gggttagtgg cggacgggtg agtaacacgt gggaacgtgc 

61 ctttaggttc ggaatagctc ctggaaacgg gtggtaatgc cgaatgtgcc cttcggggga 

121 aagatttatc gcctttagag cggcccgcgt ctgattagct agttggtgag gtaatggctc 

181 accaaggcga cgatcagtag ctggtctgag aggatgacca gccacattgg gactgagaca 

241 cggcccaaac tcctacggga ggcagcagtg gggaatcttg cgcaatgggc gaaagcctga 

301 cgcagccatg ccgcgtgaat gatgaaggtc ttaggattgt aaaattcttt caccggggac 

361 gataatgacg gtacccggag aagaagcccc ggctaacttc gtgccagcag ccgcggtaat 

421 acgaaggggg ctagcgttgc tcggaattac tgggcgtaaa gggcgcgtag gcggacattt 

481 aagtcagggg tgaaatccca gagctcaact ctggaactgc ctttgatact gggtgtcttg 

541 agtgtgagag aggtatgtgg aactccgagt gtagaggtga aattcgtaga tattcggaag 

601 aacaccagtg gcgaaggcga catactggct cattactgac gctgaggcgc gaaagcgtgg 

661 ggagcaaaca ggattagata ccctggtagt ccacgccgta aacgatgatt gctagttgtc 
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721 gggctgcatg cagttcggtg acgcagctaa cgcattaagc aatccgcctg gggagtacgg 

781 tcgcaagatt aaaactcaaa ggaattgacg ggggcccgca caagcggtgg agcatgtggt 

841 ttaattcgaa gcaacgcgca gaaccttacc accttttgac atgcctggac cgccagagag 

901 atctggcttt ctcttcggag actaggacac aggtgctgca tggctgtcgt cagctcgtgt 

961 cgtgagatgt tgggttaagt cccgcaacga gcgcaaccct cgccattagt tgccatcatt 

1021 tagttgggaa ctctaatggg actgccggtg ctaagccgga ggaaggtggg gatgacgtca 

1081 agtcctcatg gcccttacag ggtgggctac acacgtgcta caatggcgac tacagagggt 

1141 taatccttaa aagtcgtctc agttcggatt gtcctctgca actcgagggc atgaagttgg 

1201 aatcgctagt aatcgcgatc agc 

 

 

II.4.10 Brevundimonas sp. M2T2B5 16S ribosomal RNA gene, partial sequence 

GenBank: GQ246696.1 

 

LOCUS       GQ246696                1376 bp    DNA     linear   BCT 31-MAY-2010 

DEFINITION  Brevundimonas sp. M2T2B5 16S ribosomal RNA gene, partial 

sequence. 

ACCESSION   GQ246696 

VERSION     GQ246696.1  GI:261291226 

KEYWORDS    . 

SOURCE      Brevundimonas sp. M2T2B5 

  ORGANISM  Brevundimonas sp. M2T2B5 

            Bacteria; Proteobacteria; Alphaproteobacteria; Caulobacterales; 

            Caulobacteraceae; Brevundimonas. 

ORIGIN       

1 ggctcagagc gaacgctggc ggcaggccta acacatgcaa gtcgaacgga cccttcgggg 

61 ttagtggcgg acgggtgagt aacacgtggg aacgtgcctt taggttcgga atagctcctg 

121 gaaacgggtg gtaatgccga atgtgccctt cgggggaaag atttatcgcc tttagagcgg 

181 cccgcgtctg attagctagt tggtgaggta atggctcacc aaggcgacga tcagtagctg 

241 gtctgagagg atgaccagcc acactgggac tgagacacgg cccagactcc tacgggaggc 

301 agcagtgggg aatcttgcgc aatgggcgaa agcctgacgc agccatgccg cgtgaatgat 

361 gaaggtctta ggattgtaaa attctttcac cggggacgat aatgacggta cccggagaag 

421 aagccccggc taacttcgtg ccagcagccg cggtaatacg aagggggcta gcgttgctcg 

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=683011


334 

 

481 gaattactgg gcgtaaaggg cgcgtaggcg gatcgttaag tcagaggtga aatcccaggg 

541 ctcaaccctg gaactgcctt tgatactggc gatcttgagt atgagagagg tatgtggaac 

601 tccgagtgta gaggtgaaat tcgtagatat tcggaagaac accagtggcg aaggcgacat 

661 actggctcat tactgacgct gaggcgcgaa agcgtgggga gcaaacagga ttagataccc 

721 tggtagtcca cgccgtaaac gatgattgct agttgtcggg ctgcatgcag ttcggtgacg 

781 cagctaacgc attaagcaat ccgcctgggg agtacggtcg caagattaaa actcaaagga 

841 attgacgggg gcccgcacaa gcggtggagc atgtggttta attcgaagca acgcgcagaa 

901 ccttaccacc ttttgacatg cctggaccgc cacggagacg tggctttctc ttcggagact 

961 aggacacagg tgctgcatgg ctgtcgtcag ctcgtgtcgt gagatgttgg gttaagtccc 

1021 gcaacgagcg caaccctcgc cattagttgc catcatttag ttgggaactc taatgggact 

1081 gccggtgcta agccggagga aggtggggat gacgtcaagt cctcatggcc cttacagggt 

1141 gggctacaca cgtgctacaa tggcaactac agagggttaa tccttaaaag ttgtctcagt 

1201 tcggattgtc ctctgcaact cgagggcatg aagttggaat cgctagtaat cgcggatcag 

1261 catgccgcgg tgaatacgtt cccgggcctt gtacacaccg cccgtcacac catgggagtt 

1321 ggttctaccc gaaggcgatg cgctaaccgt aaggaggcag tcgaccacgt agtcag 

 

II.4.11     Bradyrhizobium sp. DOA2 16S ribosomal RNA gene, partial sequence. 
LOCUS       JN578809    1361 bp    DNA     linear   BCT 20-DEC-2011 

DEFINITION  Bradyrhizobium sp. DOA2 16S ribosomal RNA gene, partial sequence. 

ACCESSION   JN578809 

VERSION     JN578809.1  GI:363499004 

SOURCE      Bradyrhizobium sp. DOA2 

  ORGANISM  Bradyrhizobium sp. DOA2 

            Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; 

            Bradyrhizobiaceae; Bradyrhizobium. 

ORIGIN       

        1 cagtcgagcg ggcgtagcaa tacgtcagcg gcagacgggt gagtaacgcg tgggaacgta 
       61 ccttttggtt cggaacaaca cagggaaact tgtgctaata ccggataagc ccttacgggg 
      121 aaagatttat cgccgaaaga tcggcccgcg tctgattagc tagttggtga ggtaacggct 
      181 caccaaggcg acgatcagta gctggtctga gaggatgatc agccacattg ggactgagac 
      241 acggcccaaa ctcctacggg aggcagcagt ggggaatatt ggacaatggg ggcaaccctg 
      301 atccagccat gccgcgtgag tgatgaaggc cctagggttg taaagctctt ttgtgcggga 
      361 agataatgac ggtaccgcaa gaataagccc cggctaactt cgtgccagca gccgcggtaa 
      421 tacgaagggg gctagcgttg ctcggaatca ctgggcgtaa agggtgcgta ggcgggtctt 
      481 taagtcaggg gtgaaatcct ggagctcaac tccagaactg cctttgatac tgaagatctt 
      541 gagttcggga gaggtgagtg gaactgcgag tgtagaggtg aaatttcgta gatattcgca 
      601 agaacaccag tggcgaaggc ggctcactgg cccgatactg acgctgaggc acgaaagcgt 
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      661 ggggagcaaa caggattaga taccctggta gtccacgccg taaacgatga atgccagccg 
      721 ttagtgggtt tactcactag tggcgcagct aacgctttaa gcattccgcc tggggagtac 
      781 ggtcgcaaga ttaaaactca aaggaattga cgggggcccg cacaagcggt ggagcatgtg 
      841 gtttaattcg acgcaacgcg cagaacctta ccagcccttg acatgtccag gaccggtcgc 
      901 agagatgtga ccctctcttc ggagcctgga acacaggtgc tgcatggctg tcgtcagctc 
      961 gtgtcgtgag atgttgggtt aagtcccgca acgagcgcaa cccccgtcct tagttgctac 
     1021 catttagttg agcactctaa ggagactgcc ggtgataagc cgcgaggaag gtggggatga 
     1081 cgtcaagtcc tcatggccct tacgggctgg gctacacacg tgctacaatg gcggtgacaa 
     1141 tgggatgcta aggggcgacc cttcgcaaat ctcaaaaagc cgtctcagtt cggattgggc 
     1201 tctgcaactc gagcccatga agttggaatc gctagtaatc gtggatcagc acgccacggt 
     1261 gaatacgttc ccgggccttg tacacaccgc ccgtcacacc atgggagttg gctttacctg 
     1321 aagacggtgc gctaaccagc aatggaggca gccggccacg g 
 

 

II.4.12     Bradyrhizobium sp. GSM-467 partial 16S rRNA gene, isolate GSM-467. 
 

LOCUS  FN600560  1300 bp    DNA     linear   BCT 27-SEP-2010 

DEFINITION Bradyrhizobium sp. GSM-467 partial 16S rRNA gene, isolate GSM-467. 

ACCESSION   FN600560 

VERSION     FN600560.2  GI:298285549 

SOURCE      Bradyrhizobium sp. GSM-467 

ORGANISM  Bradyrhizobium sp. GSM-467 

            Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; 

            Bradyrhizobiaceae; Bradyrhizobium. 

ORIGIN       

        1 agagtttgat catggctcag agcgaacgct ggcggcaggc tttacacatg cagtcgagcg 
       61 ggcgtagcaa tacgtcagcg gcagacgggt gagtaacgcg tgggaacgta ccttttggtt 
      121 cggaacaaca cagggaaact tgtgctaata ccggataagc ccttacgggg aaagatttat 
      181 cgccgaaaga tcggcccgcg tctgattagc tagttggtga ggtaacggct caccaaggcg 
      241 acgatcagta gctggtctga gaggatgatc agccacattg ggactgagac acggcccaaa 
      301 ctcctacggg aggcagcagt ggggaatatt ggacaatggg cgcaagcctg atccagccat 
      361 gccgcgtgag tgatgaaggc cctagggttg taaagctctt ttgtgcggga agataatgac 
      421 ggtaccgcaa gaataagccc cggctaactt cgtgccagca gccgcggtaa tacgaagggg 
      481 gctagcgttg ctcggaatca ctgggcgtaa agggtgcgta ggcgggtctt taagtcaggg 
      541 gtgaaatcct ggagctcaac tccagaactg cctttgatac tgaagatctt gagttcggga 
      601 gaggtgagtg gaactgcgag tgtagaggtg aaattcgtag atattcgcaa gaacaccagt 
      661 ggcgaaggcg gctcactggc ccgatactga cgctgaggca cgaaagcgtg gggagcaaac 
      721 aggattagat accctggtag tccacgccgt aaacgatgaa tgccagccgt tagtgggttt 
      781 actcactagt ggcgcagcta acgcttaagc atccgcctgg ggagtacggt cgcaagatta 
      841 aaactcaaag gaattgacgg gggcccgcac aagcggtgga gcatgtggtt taatttgacg 
      901 caacgcgcag aaccttacca gcccttgaca tcccggtcgc ggactccaga gatggagttc 

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=698988
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      961 ttcagttcgg ctggaccgga gacaggtgct gcatggctgt cgtcagctcg tgtcgtgaga 
     1021 tgttgggtta agtcccgcaa cgagcgcaac ccccgtcctt agttgctacc atttagttga 
     1081 gcactctaag gagactgccg gtgataagcc gcgaggaagg tggggatgac gtcaagtcct 
     1141 catggccctt acgggctggg ctacacacgt gctacaatgg cggtgacaat gggacgctaa 
     1201 ggggcaaccc ttcgcaaatc tcaaaaagcc gtctcagttc ggattgggct ctgcaactcg 
     1261 agcccatgaa gtggaatcgc tagtaatcgt gtcagcacga 
 

 

II.5 Fungal DNA isolation and PCR amplification 

PRIMER 

DETAILS 

PRIMER 1 (ITS1) PRIMER 2 (ITS4) 

Sequence (5’ to 3’) CTTGGTCATTTAG

AGGAAGTAA 

TCCTCCGCTTAT

TGTATGC 

Complementary 

sequence 

GAACCAGTAAAT

CTCCTTCATT 

AGGAGGCGAAT

AACTATACG 

Tm: salt adjusted 66˚c 66˚c 

Tm: nearest 

neighbour 

 44˚c 45˚c 

M.W 6814.4 6035.0 

GC content 36% 45% 

Length 22 20 

 

II.6 Fungal sequencing results 

Using BLAST (NCBI), the fungal rDNA sequences in the GenBank database (NCBI) 

were compared as followed: 

II.6.1 Aspergillus Niger  

Sequence obtained  

acCCTGTTGCTTCGGCGGGCCCGCCGCTTGTCGGCCGCCGGGGGGGCGCCTTTGCCCCC
CGGGCCCGTGCCCGCCGGaGACCCCAACACGAACACTGTCTGAAAGCGTGCAGTCTG
AGTTGATTGAATGCAATCAGTTAAAACTTTCAACAATGGATCTCTTGGTTCCGGCATC
GATGAAGAACGCAGCGAAATGCGATAACTAATGTGAATTGCagaATTCAGTGAATCAT
cGAGTCTTTGAACGCACATTGCGCCCCCTGGTATTCCGGGGGGCATGCCTGTCCGAGC
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GTCATTGCTGCCCTCAAGCCCGGCTTGTGTGTTGGGTCGCCGTCCCCCTCTCCGGGGGG
ACGGGCCCGAAAGGCAGCGGCGGCACCGCGTCCGATCCTCGAGCGTATGGGGCTTTG
TCACATGCTCTGTAGGATTGGCCGGCGCCTGCCGacgTTTTCCAACCATTTTTTCCagGTT
GACCTCGGATcangtaGggaTACCCGCTGaacttaagCATAtcaATAAGCGGAg 
 

> gb|HQ014697.1|  Aspergillus niger strain WM10.75 18S ribosomal 
RNA gene, partial  
sequence; internal transcribed spacer 1, 5.8S ribosomal  
RNA gene, and internal transcribed spacer 2, complete sequence;  
and 28S ribosomal RNA gene, partial sequence 
Length=612 
 
 Score =  959 bits (519),  Expect = 0.0 
 Identities = 520/521 (99%), Gaps = 0/521 (0%) 
 Strand=Plus/Plus 
 
Query  1    
ACCCTGTTGCTTCGGCGGGCCCGCCGCTTGTCGGCCGCCgggggggCGCCTTTGCCCCCC  60 
            
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  90   
ACCCTGTTGCTTCGGCGGGCCCGCCGCTTGTCGGCCGCCGGGGGGGCGCCTTTGCCCCCC  149 
 
Query  61   
GGGCCCGTGCCCGCCGGAGACCCCAACACGAACACTGTCTGAAAGCGTGCAGTCTGAGTT  120 
            
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  150  
GGGCCCGTGCCCGCCGGAGACCCCAACACGAACACTGTCTGAAAGCGTGCAGTCTGAGTT  209 
 
Query  121  
GATTGAATGCAATCAGTTAAAACTTTCAACAATGGATCTCTTGGTTCCGGCATCGATGAA  180 
            
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  210  
GATTGAATGCAATCAGTTAAAACTTTCAACAATGGATCTCTTGGTTCCGGCATCGATGAA  269 
 
Query  181  
GAACGCAGCGAAATGCGATAACTAATGTGAATTGCAGAATTCAGTGAATCATCGAGTCTT  240 
            
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  270  
GAACGCAGCGAAATGCGATAACTAATGTGAATTGCAGAATTCAGTGAATCATCGAGTCTT  329 
 
Query  241  
TGAACGCACATTGCGCCCCCTGGTATTCCGGGGGGCATGCCTGTCCGAGCGTCATTGCTG  300 
            
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  330  
TGAACGCACATTGCGCCCCCTGGTATTCCGGGGGGCATGCCTGTCCGAGCGTCATTGCTG  389 
 
Query  301  
CCCTCAAGCCCGGCTTGTGTGTTGGGTCGCCGTCCCCCTCTCCGGGGGGACGGGCCCGAA  360 
            
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  390  
CCCTCAAGCCCGGCTTGTGTGTTGGGTCGCCGTCCCCCTCTCCGGGGGGACGGGCCCGAA  449 
 

http://www.ncbi.nlm.nih.gov/nucleotide/319429243?report=genbank&log$=nuclalign&blast_rank=1&RID=UG60R2N8015
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Query  361  
AGGCAGCGGCGGCACCGCGTCCGATCCTCGAGCGTATGGGGCTTTGTCACATGCTCTGTA  420 
            
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  450  
AGGCAGCGGCGGCACCGCGTCCGATCCTCGAGCGTATGGGGCTTTGTCACATGCTCTGTA  509 
 
Query  421  
GGATTGGCCGGCGCCTGCCGACGTTTTCCAACCATTTTTTCCAGGTTGACCTCGGATCAN  480 
            
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||  
Sbjct  510  
GGATTGGCCGGCGCCTGCCGACGTTTTCCAACCATTTTTTCCAGGTTGACCTCGGATCAG  569 
 
Query  481  GTAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGAG  521 
            ||||||||||||||||||||||||||||||||||||||||| 
Sbjct  570  GTAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGAG  610 
 
 

II.6.2 Aspergillus tubingensis 

GannatgGTTGGAAAACGTCGGCAGGCGCCGgnnntnnnnnnnnnnnnnnaCAAAGCCCCATA
CGCTCGAggATCGGACGCGGTGCCGCCGCTGCCTTTCGGGCCCGTCCCCCCGGAGAGG
GGGACGGCGACCCAACACACAAGCCGGGCTTGAGGGCAGCAATGACGCTCGGACAG
GCATGCCCCCCGGAATACCAGGGGGCGCAATGTGCGTTCAAAGACTCGaTGATTCACT
GAATTCTGCAATTCACATTAGTTATCGCATTTCGCTGCGTTCTTCATCGATGCCGGAAC
CAAGAGATCCATTGTTGAAAGTTTTAACTGATTGCATTCAATCAACTCAGACTGCACG
CTTTCAGACAGTGTTCGTGTTGGGGTCTCCGGCGGGCACGGGCCCGGGGGGCAAAGG
CGCCCCCCCGGCGGCCGACAAGCGGCGGGCCCGCcgaagCAACAGGGTATAATAGACA
CGGATGGGAGGTTGGGCCCAAAGGACCCGCACTCGGTAATGATCCTTCCgcaggttCACC
ta 
 

> gb|HQ728255.1|  Aspergillus tubingensis isolate JH01 18S 
ribosomal RNA gene,  
partial sequence; internal transcribed spacer 1, 5.8S ribosomal  
RNA gene, and internal transcribed spacer 2, complete sequence;  
and 28S ribosomal RNA gene, partial sequence 
Length=631 
 
 Score =  898 bits (486),  Expect = 0.0 
 Identities = 508/527 (96%), Gaps = 2/527 (0%) 
 Strand=Plus/Minus 
 
Query  5    ATGGTTGGAAAACGTCGGCAGGCGCCGGNNN-Tnnnnnnnnnnnnnn-
aCAAAGCCCCAT  62 
            ||||||||||||||||||||||||||||    |               
|||||||||||| 
Sbjct  566  
ATGGTTGGAAAACGTCGGCAGGCGCCGGCCAATCCTACAGAGCATGTGACAAAGCCCCAT  507 
 
Query  63   
ACGCTCGAGGATCGGACGCGGTGCCGCCGCTGCCTTTCGGGCCCGTCCCCCCGGAGAGGG  122 
            
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

http://www.ncbi.nlm.nih.gov/nucleotide/320584278?report=genbank&log$=nuclalign&blast_rank=2&RID=UG6RJS7301S
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Sbjct  506  
ACGCTCGAGGATCGGACGCGGTGCCGCCGCTGCCTTTCGGGCCCGTCCCCCCGGAGAGGG  447 
 
Query  123  
GGACGGCGACCCAACACACAAGCCGGGCTTGAGGGCAGCAATGACGCTCGGACAGGCATG  182 
            
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  446  
GGACGGCGACCCAACACACAAGCCGGGCTTGAGGGCAGCAATGACGCTCGGACAGGCATG  387 
 
Query  183  
CCCCCCGGAATACCAGGGGGCGCAATGTGCGTTCAAAGACTCGATGATTCACTGAATTCT  242 
            
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  386  
CCCCCCGGAATACCAGGGGGCGCAATGTGCGTTCAAAGACTCGATGATTCACTGAATTCT  327 
 
Query  243  
GCAATTCACATTAGTTATCGCATTTCGCTGCGTTCTTCATCGATGCCGGAACCAAGAGAT  302 
            
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  326  
GCAATTCACATTAGTTATCGCATTTCGCTGCGTTCTTCATCGATGCCGGAACCAAGAGAT  267 
 
Query  303  
CCATTGTTGAAAGTTTTAACTGATTGCATTCAATCAACTCAGACTGCACGCTTTCAGACA  362 
            
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  266  
CCATTGTTGAAAGTTTTAACTGATTGCATTCAATCAACTCAGACTGCACGCTTTCAGACA  207 
 
Query  363  
GTGTTCGTGTTGGGGTCTCCGGCGGGCACGGGCCCGGGGGGCAAAGGCGcccccccGGCG  422 
            
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  206  
GTGTTCGTGTTGGGGTCTCCGGCGGGCACGGGCCCGGGGGGCAAAGGCGCCCCCCCGGCG  147 
 
Query  423  
GCCGACAAGCGGCGGGCCCGCCGAAGCAACAGGGTATAATAGACACGGATGGGAGGTTGG  482 
            
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  146  
GCCGACAAGCGGCGGGCCCGCCGAAGCAACAGGGTATAATAGACACGGATGGGAGGTTGG  87 
 
Query  483  GCCCAAAGGACCCGCACTCGGTAATGATCCTTCCGCAGGTTCACCTA  529 
            ||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  86   GCCCAAAGGACCCGCACTCGGTAATGATCCTTCCGCAGGTTCACCTA  40 
 

 
clustalw.aln 
 
 

4.6.3 Penicillium freii (IBT 3464) 

tgGGTCCAACCTCCCAccnnnnnttannntaCCTTGTTGCTTCGGCGGGCCCGCCTTTACTGGC
CGCCGGGGGGCTCACGCCCCCGGGTCCGCGCCCGCCGAAGACACCCTCGAACTCTGT
CTGAAGATTGAAGTCTGAGTGAAAATATAAATTATTTAAAACTTTCAACAACGGATCT
CTTGGTTCCGGCATCGATGAAGAACGCAGCGAAATGCGATACGTAATGTGAATTGCA

http://www.genome.jp/tools-bin/pushfile?pLphCXNEbj+clustalw.aln
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AATTCAGTGAATCATCGAGTCTTTGAACGCACATTGCGCCCCCTGGTATTCCGGGGGG
CATGCCTGTCCGAGCGTCATTGCTGCCCTCAAGCCCGGCTTGTGTGTTGGGCCCCGTCC
TCCGATTCCGGGGGACgGGCCCGAAAGGCAGCGGCGGCACCGCGTCCGGTCCTcgaGC
GTATGGGGCTTTGTCACCCGCTCcgtaggCCCGgccGgCGCTTGCCGATCAACCCAAATTTT
TATCcAGGTTGACCTcggatcnnntaggGaTACCCGCTGAACTTAagcATATCAATAagcGga 
 

> emb|AJ005479.1|  Penicillium freii (IBT 3464) ribosomal internal 
transcribed spacers  
and the 5.8S ribosomal RNA gene (ITS1-5.8S-ITS2) 
Length=609 
 
 Score =  950 bits (514),  Expect = 0.0 
 Identities = 525/536 (98%), Gaps = 0/536 (0%) 
 Strand=Plus/Plus 
 
Query  1    
TGGGTCCAACCTCCCACCNNNNNTTANNNTACCTTGTTGCTTCGGCGGGCCCGCCTTTAC  60 
            ||||||||||||||||||     |||   
||||||||||||||||||||||||||||||| 
Sbjct  71   
TGGGTCCAACCTCCCACCCGTGTTTATTTTACCTTGTTGCTTCGGCGGGCCCGCCTTTAC  130 
 
Query  61   
TGGCCGCCGGGGGGCTCACGCCCCCGGGTCCGCGCCCGCCGAAGACACCCTCGAACTCTG  120 
            
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  131  
TGGCCGCCGGGGGGCTCACGCCCCCGGGTCCGCGCCCGCCGAAGACACCCTCGAACTCTG  190 
 
Query  121  
TCTGAAGATTGAAGTCTGAGTGAAAATATAAATTATTTAAAACTTTCAACAACGGATCTC  180 
            
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  191  
TCTGAAGATTGAAGTCTGAGTGAAAATATAAATTATTTAAAACTTTCAACAACGGATCTC  250 
 
Query  181  
TTGGTTCCGGCATCGATGAAGAACGCAGCGAAATGCGATACGTAATGTGAATTGCAAATT  240 
            
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  251  
TTGGTTCCGGCATCGATGAAGAACGCAGCGAAATGCGATACGTAATGTGAATTGCAAATT  310 
 
Query  241  
CAGTGAATCATCGAGTCTTTGAACGCACATTGCGCCCCCTGGTATTCCGGGGGGCATGCC  300 
            
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  311  
CAGTGAATCATCGAGTCTTTGAACGCACATTGCGCCCCCTGGTATTCCGGGGGGCATGCC  370 
 
Query  301  
TGTCCGAGCGTCATTGCTGCCCTCAAGCCCGGCTTGTGTGTTGGGCCCCGTCCTCCGATT  360 
            
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  371  
TGTCCGAGCGTCATTGCTGCCCTCAAGCCCGGCTTGTGTGTTGGGCCCCGTCCTCCGATT  430 
 
Query  361  
CCGGGGGACGGGCCCGAAAGGCAGCGGCGGCACCGCGTCCGGTCCTCGAGCGTATGGGGC  420 

http://www.ncbi.nlm.nih.gov/nucleotide/3925736?report=genbank&log$=nuclalign&blast_rank=1&RID=UG6YYP4U014
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|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  431  
CCGGGGGACGGGCCCGAAAGGCAGCGGCGGCACCGCGTCCGGTCCTCGAGCGTATGGGGC  490 
 
Query  421  
TTTGTCACCCGCTCCGTAGGCCCGGCCGGCGCTTGCCGATCAACCCAAATTTTTATCCAG  480 
            
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  491  
TTTGTCACCCGCTCCGTAGGCCCGGCCGGCGCTTGCCGATCAACCCAAATTTTTATCCAG  550 
 
Query  481  GTTGACCTCGGATCNNNTAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGA  
536 
            ||||||||||||||   ||||||||||||||||||||||||||||||||||||||| 
Sbjct  551  GTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGA  
606 
 
 

II.6.4 Penicillium aurantiogriseum  
tgGGTTGATCGGCAAGCGCCGGCCGGgcnnnnnnnnnnnnngACAAAGCCCCATACGCTCG
AGGACCGGACGCGGTGCCGCCGCTGCCTTTCGGGCCCGTCCCCCGGAatcGGAGGACG
GGGCCCAACACACAAGCCGGGCTTGAGGGCAGCAATGACGCTCGGACAGGCATGCC
CCCCGGAATACCAGGGGGCGCAATGTGCGTTCAAAGACTCGATGATTCACTGAATTTG
CAATTCACATTACGTATCGCATTTCGCTGCGTTCTTCATCGATGCCGGAACCAagagaTC
CGTTGTTGAAAGTTTTAAATAATTTATATTTTCACTCnnnctTCAATCTTCagncnGagtTCGa
GGGTGTCTTcggCGGGCGCGGACCCGGGGGCGTGAGCCCCCCGGCGGCCAGTAAAGGC
GGGCCCGCCgannnAACAAGGTAAAATAAACACGGGTGGGaggTTGGACCCaannnGCCC
TCACTcggTAATGATCCTTCCGCaggTTCACCTACGGAAACCttgtnacgnctTTTACTTCCTCT
AAATGAccAag 
 

> gb|GU566234.1|  Penicillium aurantiogriseum strain D8 18S 
ribosomal RNA gene,  
partial sequence; internal transcribed spacer 1, 5.8S ribosomal  
RNA gene, and internal transcribed spacer 2, complete sequence;  
and 28S ribosomal RNA gene, partial sequence 
Length=624 
 
 Score =  911 bits (493),  Expect = 0.0 
 Identities = 524/552 (95%), Gaps = 1/552 (0%) 
 Strand=Plus/Minus 
 
Query  1    
TGGGTTGATCGGCAAGCGCCGGCCGGGCnnnnnnnnnnnnnGACAAAGCCCCATACGCTC  60 
            ||||||||||||||||||||||||||||             
||||||||||||||||||| 
Sbjct  552  
TGGGTTGATCGGCAAGCGCCGGCCGGGCCTACGGAGCGGGTGACAAAGCCCCATACGCTC  493 
 
Query  61   
GAGGACCGGACGCGGTGCCGCCGCTGCCTTTCGGGCCCGTCCCCCGGAATCGGAGGACGG  120 
            
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  492  
GAGGACCGGACGCGGTGCCGCCGCTGCCTTTCGGGCCCGTCCCCCGGAATCGGAGGACGG  433 
 

http://www.ncbi.nlm.nih.gov/nucleotide/291498422?report=genbank&log$=nuclalign&blast_rank=2&RID=UG74E0VH01N
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Query  121  
GGCCCAACACACAAGCCGGGCTTGAGGGCAGCAATGACGCTCGGACAGGCATGCCCCCCG  180 
            
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  432  
GGCCCAACACACAAGCCGGGCTTGAGGGCAGCAATGACGCTCGGACAGGCATGCCCCCCG  373 
 
Query  181  
GAATACCAGGGGGCGCAATGTGCGTTCAAAGACTCGATGATTCACTGAATTTGCAATTCA  240 
            
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  372  
GAATACCAGGGGGCGCAATGTGCGTTCAAAGACTCGATGATTCACTGAATTTGCAATTCA  313 
 
Query  241  
CATTACGTATCGCATTTCGCTGCGTTCTTCATCGATGCCGGAACCAAGAGATCCGTTGTT  300 
            
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  312  
CATTACGTATCGCATTTCGCTGCGTTCTTCATCGATGCCGGAACCAAGAGATCCGTTGTT  253 
 
Query  301  
GAAAGTTTTAAATAATTTATATTTTCACTCNNNCTTCAATCTTCAGNCNGAGTTCGAGGG  360 
            ||||||||||||||||||||||||||||||   ||||||||||||| | 
||||||||||| 
Sbjct  252  
GAAAGTTTTAAATAATTTATATTTTCACTCAGACTTCAATCTTCAGACAGAGTTCGAGGG  193 
 
Query  361  TGTCTTCGGCGGGCGCGGACCCGGGGGCGTGA-
GCCCCCCGGCGGCCAGTAAAGGCGGGC  419 
            |||||||||||||||||| ||||||||||||| 
||||||||||||||||||||||||||| 
Sbjct  192  
TGTCTTCGGCGGGCGCGGGCCCGGGGGCGTGAAGCCCCCCGGCGGCCAGTAAAGGCGGGC  133 
 
Query  420  
CCGCCGANNNAACAAGGTAAAATAAACACGGGTGGGAGGTTGGACCCAANNNGCCCTCAC  479 
            |||||||   |||||||||||||||||||||||||||||||||||||||   
|||||||| 
Sbjct  132  
CCGCCGAAGCAACAAGGTAAAATAAACACGGGTGGGAGGTTGGACCCAAAGGGCCCTCAC  73 
 
Query  480  
TCGGTAATGATCCTTCCGCAGGTTCACCTACGGAAACCTTGTNACGNCTTTTACTTCCTC  539 
            |||||||||||||||||||||||||||||||||||||||||| ||| 
||||||||||||| 
Sbjct  72   
TCGGTAATGATCCTTCCGCAGGTTCACCTACGGAAACCTTGTTACGACTTTTACTTCCTC  13 
 
Query  540  TAAATGACCAAG  551 
            |||||||||||| 
Sbjct  12   TAAATGACCAAG  1 
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Appendix III 

 Biodegradation 

III.1 Calculations for Moisture content of soil:  

1] To calculate the mass of dry Soil:            

      =mass of hillgard soil cup, filter paper, and soil - mass of cup and filter paper 

      =75.01 - 65.93       

         i.e. Mass of dry Soil is 9.0g 

2] To calculate mass of saturated soil by following: 

       =mass of cup, filter paper, and saturated soil - mass of cup and filter paper 

       =81.52 - 65.93 

       i.e. Mass of saturated soil is 15.59g 

3] To calculate mass of water contained in saturated Soil: 

      = mass of saturated soil   - mass of dry soil 

      = 81.52 -75.01 

      i.e. mass of water contained in saturated soil is 6.5g 

4] To Calculate the Percentage of Water Holding Capacity 

     i.e.   Mass of water contained in saturated Soil         ×   100 

                         Mass of saturated Soil 

       =    6.51    × 100 

            15.59 

       =     41.75 % 

 

 

III.2 HPLC-Analytical parameters for determination of rate of degradation of 

polycyclic aromatic hydrocarbons 

The HPLC analytical parameters used were: 

Detector: UV detector (UVD 170 U) 

Column: C16 and C18 

Flow rate: 0.8cm3/min 

Mobile phase (solvent): A. Acetonitrile 
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                                  B. De-ionized water (Milli-Q water) 

Composition of mobile phase:  A =70%, B= 30% 

Temperature: Room temperature 

Elution: Isocratic 

Run time: 20 minutes 

Data analysis: Chromeleon 32® Chromatography Manager 3.2. 

  

III.3 Media and culture conditions 

1) Bacterial culture- Nutrient agar (NA) media was used for isolation of bacterial 

population. 11.20g of nutrient agar (Sigma Aldrich) was weighed and added to 500cm3 

of glass bottle. The 400cm3 sterile distilled water was added to the bottle containing 

nutrient agar powder and mixed well. The bottle containing media was kept for 

Autoclaving at 1210C for 15mins.  

2) Fungal Culture- Malt extract agar (MEA): 

For isolation of heterotrophic microorganisms in the environmental samples, MALT 

extract agar (MEA) (Sigma Aldrich) along with 50mg rose bengal (Sigma Aldrich) to 

prevent bacterial growth, was used for the isolation of fungi from the treated samples.  

 

III.4 Soil enzyme activity 

III.4.1 MnP enzyme activity rate is calculated as shown below and expressed as 

µmol/g/min.        µmol/g/min =    O D value X Total reaction volume   

                                                   E X gram of soil X incubation time 

   Where OD value = Optical density of ABTS oxidized by colour change 

                   Total reaction volume = amount of sample analyzed (1ml) 



345 

 

                    E = extinction coefficient of p- ABTS 

 

III.4.2 LiP enzyme activity rate is calculated as shown below and expressed as 

µM/g/min.        µmol/g/min =           O D value X Total reaction volume    

                                                          E X gram of soil X incubation time 

   Where OD value = Optical density of ABTS oxidized by colour change 

                   Total reaction volume = amount of sample analyzed (1ml) 

                    E = extinction coefficient of p- ABTS (0.0865) 

 

III.4.3 Laccase enzyme activity rate is calculated as shown below and expressed as 

µmol/g/min.        µmol/g/min =   O D value X Total reaction volume     

                                                  E X gram of soil X incubation time 

   Where OD value = Optical density of ABTS oxidized by colour change 

                   Total reaction volume = amount of sample analyzed (1ml) 

                    E = extinction coefficient of p- ABTS (0.0865) 

 

III.4.4 Acid/Alkaline phosphatase enzyme activity rate is calculated as shown 

below (see equation 2) and it is expressed as µmol/g/min. 

        µmol/g/min =           O D value X Total reaction volume …………  (2) 

                                                      E X gram of soil X incubation time 

   Where OD value = Optical density of p- nitrophenol produced 

                   Total reaction volume = amount of sample analyzed (1ml) 

                    E = extinction coefficient of p- nitrophenol phosphate (0.0684) 

 



346 

 

III.4.5 L-arginine ammonification: 

µgNH3/g soil/wk = (O.D Test – O.D Control) X (ml KCl + ml Arginine) ……….  (3) 

                                                            (grams of soil X Time X e) 

 Where O.D Test = Optical density of Test sample (ammonia produced) at 240c 

           O.D Control = Optical density of Control sample (ammonia produced) at 40c 

               ml KCl = Volume of 2M KCl used (8ml) 

  ml Arginine = Volume of 0.2% Arginine (0.5 ml) 

                             gram of soil = mass of soil used (2g) 

                             Time = Incubation time (30mins) 

                              e = Extinctintion coefficient of ammonium chloride (0.1018)  

III.5 Log bacterial cfu/ g of soil 

Day/ pH 5 5.5 6 6.5 7 7.5 8 8.5 
0 5.45 5.60 5.66 5.56 5.79 5.51 5.53 5.30 
7 5.97 5.92 5.86 5.76 6.19 5.94 5.75 5.45 
14 6.26 6.06 5.99 6.18 6.44 6.01 6.04 5.62 
21 6.61 6.52 6.61 6.63 6.87 6.59 6.35 6.15 
28 6.75 6.69 6.64 6.80 6.88 6.81 6.73 6.60 
35 7.23 7.23 7.26 7.28 7.23 7.24 7.21 7.16 
42 6.99 6.99 6.96 7.06 7.06 6.95 6.82 6.69 
49 6.75 6.74 6.81 6.83 6.88 6.63 6.65 5.54 

 

III.6 Log fungal cfu/ g of soil 

Day/pH 5 5.5 6 6.5 7 7.5 8 8.5 
0 5.82 5.46 5.03 4.48 4.06 4.30 4.41 4.45 
7 6.08 5.55 5.47 4.83 4.34 4.45 4.79 4.83 
14 6.15 5.58 5.40 5.25 4.56 4.83 5.00 5.09 
21 6.38 6.29 5.81 5.70 4.82 4.94 5.17 5.25 
28 6.43 6.35 6.07 5.27 4.89 4.79 5.33 5.37 
35 5.65 5.43 5.16 5.13 4.51 4.72 4.82 5.00 
42 5.64 5.26 5.22 4.92 4.41 4.66 4.72 4.95 
49 5.55 5.13 5.13 4.76 4.15 4.58 4.75 4.78 
56 5.42 5.06 4.86 4.38 4.15 4.20 4.62 4.76 
63 5.29 4.91 4.72 4.34 3.60 4.15 4.62 4.66 
70 5.13 4.66 4.48 4.26 3.60 3.30 4.53 4.53 
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III.7 ATP measurements / g of soil 

Day/pH 5 5.5 6 6.5 7 7.5 8 8.5 
0 1.72 2.07 2.094 2.36 2.34 2.16 2.03 1.93 
7 7.02 7.25 8.264 9.38 10.45 9.30 8.01 7.8 
14 9.63 10.12 10.58 10.72 11.55 11.26 8.86 8.18 
21 93.42 94.85 94.93 95.88 94.31 96.25 104.34 103.87 
28 133.58 133.6 137.12 140.07 177.19 150.90 135.81 134.24 
35 158.72 158.94 159.15 160.29 177.90 172.21 156.96 149.4 
42 130.78 130.72 131.51 132.42 152.20 142.18 133.02 131.30 
49 101.57 101.96 102.09 102.46 105.50 103.76 100.50 99.77 
56 97.97 98.76 99.89 100.91 102.01 114.40 110.80 98.24 
63 95.57 96.25 96.6 97.70 99.483 103.27 103.29 96.54 
70 9.13 90.54 91.6 92.82 94.08 89.61 89.61 88.83 

III.8 ATP biomass- 

ATP biomass  (µg biomass C g-1 soil d.w) = 171 Χ C 

Day/pH 5 5.5 6 6.5 7 7.5 8 8.5 
0 294 354 358 403 400 370 347 330 
7 1201 124 141 160 178 159 137 133 
14 1648 173 1810 183 1975 1926 1515 1399 
21 1597 162 1623 1639 1612 1645 1784 1776 
28 2284 2285 2344 2395 3030 2580 2322 2295 
35 2714 2717 2721 2741 3042 2944 2684 2554 
42 2236 2235 2248 2264 2602 2431 2274 2245 
49 1736 1743 1745 1752 1804 1774 1718 1706 
56 1675 1688 1708 1725 1744 1956 1894 1679 
63 1634 1645 1651 1670 1701 1766 1766 1650 
70 1541 1548 1557 1580 1608 1587 1532 1519 
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Appendix IV 

 

IV.1 Bradford assay procedure 

Procedure 

100 µl of each standard solution was pipette into a series of clean, dry test tubes. 

While, 100µl of water was pipette into a separate test tube as control blank. Then 5ml 

of the Bradford reagent was added to each test tube. The solutions were inverted 

gently and left to incubate for between 2 and 60 minutes The spectrophotometer 

wavelength was set to 595nm and the control blank (with zero protein concentration 

was used to zero the spectrophotometer. The other standard samples’ Optical density 

(OD) was measured at 595nm and the samples with the lowest protein concentration 

recorded. Standard curve was plotted.  

100µl of samples was pipette into a series of clean, dry test tubes. 100µl of sodium 

phosphate buffer (0.1mol/L, pH 6.5) containing 0.1mol/L NaCl was pipette into a 

separate test tube as control blank. And 5ml of the Bradford reagent was added to each 

test tube. The samples’ OD was measured at 595nm.The standard graph was used to 

calculate the original concentration of protein in the fungal samples. 

 

IV.2 Calculation of Protein concentration 
 

The protein concentration of the bacterial and fungal samples was calculated from 

the equation of the standard curve of Bovine serum albumin standard solutions versus 

absorbance.  

IV.3 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS PAGE)  
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SDS PAGE of purified samples after using Sphepadex G-25 for bacterial and 

fungal samples was carried out to determine the molecular weight. The molecular 

weight of purified enzymes were carried out using Bovine serum albumin  

Solutions used  

Tris/HCL (1.85M, pH 8.8): 

About 70 ml 1.85M Tris was prepared and pH adjusted using HCl and made up to 

100ml. Then it was kept at 40C. 

Tris/HCl  (0.6M, pH 6.8)  

About 70 ml 0.6M Tris was prepared; pH adjusted using HCL and made up to 100ml.  

kept at 40C.  

Acrylamide stock (30%)   

Kept at 40C.  

TEMED (N,N,N,N-tetramethylenediamine)  

Ammonium persulphate (APS) 10% 

1 ml was prepared fresh. 

SDS (10%) 

10 ml was prepared and kept at room temperature. 

Electrode buffer:   

6g of Tris and 28.8g Glycine was dissolved in ~800ml water, then 2g of SDS was 

added and transferred to a litre plastic bottle and made up to volume and was kept at 

40C. 

Sample buffer                

The x1 sample buffer is used for a small amount of liquid or solid and x2 for when 

diluting a solution 2-fold.  

 Samples for SDS gels 
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SDS Gel Mixture: the following quantities were added in the Small Buchner flask to 

prepare the SDS gels;   

 

IV.4  Calculation for table performed: 
 

Protein concentration in sample = 

 

 Abs (sample) – Abs (blank) 
   ____________________________         X   concentration of control 

Abs (control) – Abs (blank) 

 

                                      Specific activity    

Fold purification =         __________________ 

                                      Initial specific activity 

 

% yield = Total enzyme activity 
                                                                     ______________                   X 100 

                      Initial total enzyme activity 
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Appendix – V Statistics 
 
V.10.1 SPSS statistical analysis for the comparisson between-subject factors of two 

wavelengths among controls and experimental values: 

Within-Subjects Factors 

Measure:MEASURE_1 

Phenanthrene Dependent Variable 

1 Time0 

2 Time24 

3 Time48 

4 Time72 

5 Time96 

6 Time120 

 

Between-Subjects Factors 

  Value Label                                       N 

 1 control 375nm 5 

2 experimental values 375nm 5 

3 control 254nm 5 

4 experimental value254nm 5 

 
V.10.2 Post Hoc Tests 
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Table V.2 : Post Hoc Tests for Multiple Comparisons between-subject 
factors of two wavelengths 

 
Measure:MEASURE_1       

 

(I) 375nm 

(J) 

375nm 

Mean 

Differen

ce (I-J) Std. Error  

95% Confidence Interval 

 
Lower 

Bound 

Upper 

Bound 

 

 

control 375nm experime

ntal 

values 

375nm 

94.7571
* 

25.35043 

 

26.8073 162.7069 

control 

254nm 
38.7339 25.35043 

 

-29.2159 106.6837 

experime

ntal 

value254

nm 

105.569

4* 
25.35043 

 

37.6196 173.5192 

experimental values 375nm control 

375nm 94.7571
* 

25.35043 

 

162.7069 -26.8073 

control 

254nm 
56.0232 25.35043 

 

123.9730 11.9266 

experime

ntal 

value254

nm 

10.8123 25.35043 

 

-57.1375 78.7621 

control 254nm control 

375nm 
38.7339 25.35043 

 

-

106.6837 
29.2159 
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experime

ntal 

values 

375nm 

56.0232 25.35043 

 

-11.9266 123.9730 

experime

ntal 

value254

nm 

66.8355 25.35043 

 

-1.1143 134.7853 

experimental value254nm control 

375nm 

-

10

5.5

69

4* 

25.3

5043 

 

-

173.5192 
-37.6196 

experime

ntal 

values 

375nm 

-

10.

81

23 

25.3

5043 

 

-78.7621 57.1375 

control 

254nm 

-

66.

83

55 

25.35043 

 

-

134.7853 
1.1143 

 

control 375nm experime

ntal 

values 

375nm 

94.

75

71* 

25.3

5043 

 

43.5220 145.9922 

control 

254nm 
38.

73

39 

25.3

5043 

 

-12.5012 89.9690 

experime

ntal 

value254

nm 

105.569

4* 
25.35043 

 

54.3343 156.8045 

experimental values 375nm control 

375nm 

-

94.

75

71* 

25.3

5043 

 

-

145.9922 
-43.5220 
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control 

254nm 

-

56.

02

32* 

25.3

5043 

 

-

107.2584 
-4.7881 

experime

ntal 

value254

nm 

10.

81

23 

25.3

5043 

 

-40.4229 62.0474 

control 254nm control 

375nm -

38.7339 
25.35043 

 

-89.9690 12.5012 

experime

ntal 

values 

375nm 

56.0232
* 

25.35043 

 

4.7881 107.2584 

experime

ntal 

value254

nm 

66.8355
* 

25.35043 

 

15.6004 118.0706 

experimental value254nm control 

375nm 105.569

4* 
25.35043 

 

-

156.8045 
-54.3343 

experime

ntal 

values 

375nm 

-

10.8123 
25.35043 

 

-62.0474 40.4229 

control 

254nm 66.8355
* 

25.35043 

 

118.0706 -15.6004 

control 375nm experime

ntal 

values 

375nm 

94.7571
* 

25.35043 

 

24.3877 165.1265 

control 

254nm 
38.7339 25.35043 

 

-31.6355 109.1033 
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experime

ntal 

value254

nm 

105.569

4* 
25.35043 

 

35.2000 175.9388 

experimental values 375nm control 

375nm 94.7571
* 

25.35043 

 

-

165.1265 
-24.3877 

control 

254nm -

56.0232 
25.35043 

 

-

126.3926 
14.3462 

experime

ntal 

value254

nm 

10.8123 25.35043 

 

-59.5571 81.1817 

control 254nm control 

375nm -

38.7339 
25.35043 

 

-

109.1033 
31.6355 

experime

ntal 

values 

375nm 

56.0232 25.35043 

 

-14.3462 126.3926 

experime

ntal 

value254

nm 

66.8355 25.35043 

 

-3.5339 137.2049 

experimental value254nm control 

375nm 
-

105.569

4* 

25.35043 

 

-

175.9388 
-35.2000 

experime

ntal 

values 

375nm 

-

10.8123 
25.35043 

 

-81.1817 59.5571 
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control 

254nm -

66.8355 
25.35043 

 

-

137.2049 
3.5339 

Based on observed means. 

The error term is Mean Square(Error) 

=3534.544. 

     

*. The mean difference is significant at the .05 

level. 

     

 
 
V.11 Difference between each pH vs time points 

One way between subjects ANOVA was conducted to compare the photo-catalytic 

effect and the difference between varying pH vs. Different time points is measured. 
Table V .3: Difference between each pH vs. Time points 

MEASURE_1 

 

375nm N 

Subset 

 1 2 

Tukey 

HSDa 

experimental 

value254nm 
11 

170.62

04 

 

experimental values 

375nm 
11 

181.43

27 

 

control 254nm 
11 

237.45

59 

237.

4559 

control 375nm 
11 

 276.

1898 

Sig.  .055 .431 

Means for groups in homogeneous subsets are displayed. 

 Based on observed means. 

 The error term is Mean Square(Error) = 3534.544. 

 

a. Uses Harmonic Mean Sample Size = 11.000.   
     
     
 

Between-Subjects Factors 

  Value Label N 

Trea 1 Phenanthrene 6 
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tmen

t 

2 Anthracene 6 

3 Fluoranthene 6 

4 Pyrene 6 

 

Tests of Between-Subjects Effects 

Source 

Dependent 

Variable 

Type III Sum 

of Squares df 

 

Mean 

Square F Sig. 

Corrected Model pH4 
558751.013a 3 

186250.3

38 

1269.62

9 
000 

pH4.5 
519805.238b 3 

173268.4

13 
833.070 000 

pH5 
498034.030c 3 

166011.3

43 

3893.00

7 
000 

pH5.5 
558441.289d 3 

186147.0

96 
776.376 000 

pH6 
1.258E6 3 

419258.0

22 
992.720 000 

pH6.5 
617487.865f 3 

205829.2

88 

1201.79

3 
000 

pH7 
525844.293g 3 

175281.4

31 
4337.41 000 

pH7.5 
795463.583h 3 

265154.5

28 
649.045 000 

pH8 
525696.931i 3 

175232.3

10 

1553.77

0 
000 

pH8.5 
581088.467j 3 

193696.1

56 

2980.41

8 
000 

pH9 
582843.928k 3 

194281.3

09 

2979.26

7 
000 

Intercept pH4 
916730.864 1 

916730.8

64 

6249.15

8 
.000 

pH4.5 
908509.594 1 

908509.5

94 

4368.08

8 
000 

pH5 
854406.156 1 

854406.1

56 

20036.0

33 
000 
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pH5.5 
913896.250 1 

913896.2

50 

3811.64

6 
000 

pH6 
1875468.802 1 

1875468.

802 

4440.73

9 
000 

pH6.5 
1067208.261 1 

1067208.

261 

6231.19

9 
000 

pH7 
872137.919 1 

872137.9

19 

21581.3

62 
.000 

pH7.5 
1155675.323 1 

1155675.

323 

2828.86

0 
000 

pH8 
864736.628 1 

864736.6

28 

7667.54

7 
000 

pH8.5 
745223.808 1 

745223.8

08 

11466.8

16 
.000 

pH9 
744835.133 1 

744835.1

33 

11421.9

05 
.000 

Treatment pH4 
558751.013 3 

186250.3

38 

1269.62

9 
.000 

pH4.5 
519805.238 3 

173268.4

13 
833.070 .000 

pH5 
498034.030 3 

166011.3

43 

3893.00

7 
.000 

pH5.5 
558441.289 3 

186147.0

96 
776.376 .000 

pH6 
1257774.065 3 

419258.0

22 
992.720 .000 

pH6.5 
617487.865 3 

205829.2

88 

1201.79

3 
.000 

pH7 
525844.293 3 

175281.4

31 

4337.40

1 
.000 

pH7.5 
795463.583 3 

265154.5

28 
649.045 .000 

pH8 
525696.931 3 

175232.3

10 

1553.77

0 
.000 

pH8.5 
581088.467 3 

193696.1

56 

2980.41

8 
.000 

pH9 
582843.928 3 

194281.3

09 

2979.26

7 
.000 
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;variance pH4 2933.934 20 146.697   

pH4.5 4159.759 20 207.988   

pH5 852.870 20 42.643   

pH5.5 4795.284 20 239.764   

pH6 8446.651 20 422.333   

pH6.5 3425.371 20 171.269   

pH7 808.233 20 40.412   

pH7.5 8170.608 20 408.530   

pH8 2255.576 20 112.779   

pH8.5 1299.792 20 64.990   

pH9 1304.222 20 65.211   

Total pH4 1478415.811 24    

pH4.5 1432474.591 24    

pH5 1353293.055 24    

pH5.5 1477132.823 24    

pH6 3141689.518 24    

pH6.5 1688121.496 24    

pH7 1398790.444 24    

pH7.5 1959309.514 24    

pH8 1392689.135 24    

pH8.5 1327612.067 24    

pH9 1328983.283 24    

Corrected Total pH4 561684.947 23    

pH4.5 523964.997 23    

pH5 498886.900 23    

pH5.5 563236.573 23    

pH6 1266220.716 23    

pH6.5 620913.235 23    

pH7 526652.525 23    

pH7.5 803634.190 23    

pH8 527952.507 23    

pH8.5 582388.259 23    

pH9 584148.150 23    
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V.12 Regression analysis 

Variables Entered/Removedb 

Model 

Variables 

Entered 

Variables 

Removed Method 

1 Time120, 

Time0, 

Time72, 

Time48, 

Time96, 

Time24a 

. Enter 

a. All requested variables entered.  

b. Dependent Variable: Treatment  

 

Model Summary 

Model R 

R 

Square 

Adjusted 

R Square 

Std. Error of the 

Estimate 

1 .645
a 

.416 .321 2.63632 

a. Predictors: (Constant), Time120, Time0, Time72, Time48, Time96, Time24 

ANOVAb 

Model 

Sum of 

Squares df 

Mean 

Square F 

Sig

. 

1 Regre

ssion 
182.843 6 30.474 

4.3

85 

.00

2a 

Resid

ual 
257.157 37 6.950 

  

Total 440.000 43    

a. Predictors: (Constant), Time120, Time0, Time72, Time48, Time96, Time24 

b. Dependent Variable: Treatment    

Variables Entered/Removedb 

Model 

Variables 

Entered 

Variables 

Removed Method 
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1 pH9, 

pH6.5, 

pH5.5, 

pH7.5, 

pH7, pH8, 

pH8.5, 

pH4, pH5, 

pH6, 

pH4.5a 

. Enter 

a. All requested variables entered.  

b. Dependent Variable: Treatment  
 

Model Summary 

Model R 

R 

Squar

e 

Adjusted 

R Square 

Std. Error of 

the Estimate 

1 .945a .894 .797 .78666 

a. Predictors: (Constant), pH9, pH6.5, pH5.5, pH7.5, pH7, pH8, pH8.5, pH4, pH5, pH6, 

pH4.5 

ANOVAb 

Model 

Sum of 

Squares df 

Mean 

Square F 

Sig

. 

1 Regre

ssion 
62.574 11 5.689 

9.1

92 

.00

0a 

Resid

ual 
7.426 12 .619 

  

Total 70.000 23    

a. Predictors: (Constant), pH9, pH6.5, pH5.5, pH7.5, pH7, pH8, pH8.5, pH4, pH5, pH6, 

pH4.5 

b. Dependent Variable: Treatment    

Coefficientsa 

Model 

Unstandardized 

Coefficients 

Standar

dized 

Coefficie

nts 

t 

Sig

. B 

Std. 

Error Beta 
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1 (Constant) 5.509 1.194  4.614 .001 

pH4 -.005 .039 -.392 -.117 .909 

pH4.5 -.026 .093 -2.127 -.277 .786 

pH5 .159 .052 13.173 3.051 .010 

pH5.5 -.073 .035 -5.326 -2.071 .061 

pH6 .036 .065 2.725 .552 .591 

pH6.5 -.092 .031 -6.770 -2.990 .011 

pH7 -.003 .022 -.306 -.160 .876 

pH7.5 .005 .035 .366 .155 .879 

pH8 -.037 .043 -3.200 -.870 .401 

pH8.5 -.010 .022 -.989 -.473 .645 

pH9 .023 .031 2.275 .761 .461 

a. Dependent Variable: Treatment    
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