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Abstract 

The deep cerebellar nuclei (DCN) function as output gates for a large 

majority of the Purkinje cells of the cerebellar cortex and thereby determine how 

the cerebellum influences the rest of the brain and body. In my PhD programme I 

have investigated how the DCN process two kinds of input patterns received from 

Purkinje cells: irregularity of spike intervals and pauses in Purkinje cell activity 

resulting from the recognition of patterns received at the synapses with the 

upstream parallel fibres (PFs). 

To that objective I have created a network system of biophysically realistic 

Purkinje cell and DCN neuron models that enables the exploration of a wide 

range of network structure and cell physiology parameters. With this system I 

have performed simulations that show how the DCN neuron changes the 

information modality of its input, consisting of varying regularity in Purkinje cell 

spike intervals, to varying spike rates in its output to the nervous system outside 

of the cerebellum. This was confirmed in simulations where I exchanged the 

artificial Purkinje cell trains for those received from experimental collaborators. 

In pattern recognition simulations I have found that the morphological 

arrangement present in the cerebellum, where multiple Purkinje cells connect to 

each DCN neuron, has the effect of amplifying pattern recognition already 

performed in the Purkinje cells. Using the metric of signal-to-noise ratio I show 

that PF patterns previously encountered and stored in PF - Purkinje cell synapses 

are most clearly distinguished from those novel to the system by a 10-20 ms 

shortened burst firing of the DCN neuron. This result suggests that the effect on 

downstream targets of these excitatory projection neurons is a decreased 

excitation when a stored as opposed to novel pattern is received. 
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My work has contributed to a better understanding of information 

processing in the cerebellum, with implications for human motor control as well 

as the increasingly recognised non-motor functions of the cerebellum. 
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Glossary 

 CV: coefficient of variation – the standard deviation divided by the mean 

 CV2: an alternative to the CV, measuring local variation of interspike 

intervals 

 DCN: Deep cerebellar nucleus/nuclei 

 GABA: gamma-amino butyric acid – a neurotransmitter, usually acting 

inhibitorily 

 hoc: An interpreted programming language used in NEURON for all 

coding other than the ion channel and synaptic mechanisms which are 

implemented in NMODL. 

 ISI: interspike interval  

 LTD: Long-term depression 

 LTP: Long-term potentiation 

 NEURON: software for simulating neurons and networks of neurons 

 NMODL: a compiled C-like language used in NEURON for coding the ion 

channel and synaptic mechanisms.  

 PC: Purkinje cell 

 PF: parallel fibre – the axonal processes of cerebellar granule cells 

 STD: Short-term depression 
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1.  Introduction 

The cerebellum is a part of the brain that is important for motor control 

and associative learning, as well as increasingly being implicated in purely 

cognitive functions. It is well characterised in terms of anatomy, morphology of 

the constituent cell types, and cellular physiology. The highly stereotypical wiring 

between its neurons makes it an ideal target for studying the function of neuronal 

circuits. Yet, understanding of the computations that the cerebellum performs 

remains elusive. 

Cerebellar output to the rest of the brain and body is gated through the 

deep cerebellar nuclei (DCN). These small assemblies of neurons receive inputs 

from the Purkinje cells of the cerebellar cortex and from other sources outside of 

the cerebellum. Their function has often been seen as a relay station for the much 

studied Purkinje cells. In recent years, however, they have been shown to be 

involved in learning such as the paradigm of eyeblink conditioning. 

This thesis focuses on the connection between DCN neurons and Purkinje 

cells and how different types of activity in the latter are modified by the DCN 

neurons and their synapses for communication with targets outside of the 

cerebellum. For that purpose, the projects underlying the thesis use biological 

data on the cerebellar circuitry and physiology and integrate these data using the 

technique of biophysically realistic computational modelling. Two main topics are 

addressed. The first is how variations in the regularity of Purkinje cell output 

influence the DCN neuron output. The second regards the role of DCN neurons in 

interpreting the output of pattern recognition performed by Purkinje cells. 
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1.1  Contributions to knowledge 

Scientific contributions from the work underlying this thesis have been 

published (Luthman et al., 2009a; Luthman et al., 2009b; Luthman et al., 2011) 

and include the following: 

 In simulations of pattern recognition in Purkinje cells based on long-term 

depression of synapses with parallel fibres, it has previously been shown 

that the length of pauses in Purkinje cell firing (Steuber et al., 2007), as 

well as the firing rate of the Purkinje cell (Steuber et al., 2007; Walter and 

Khodakhah, 2009) carry information about stored PF patterns. The results 

in this thesis imply that irrespective of the coding mode of the Purkinje 

cell, the most effective readout mechanism in the resulting cerebellar 

output is the length of a burst of DCN neuron spikes. 

 The convergence of many Purkinje cells onto each DCN neuron that is a 

feature of the circuitry has the potential to modify the output of the DCN 

neurons. One way it does so is by increasing the signal-to-noise ratio of 

pattern recognition; another is by decreasing the DCN neuron firing rate.  

 Short-term depression of the synapse between Purkinje cells and DCN 

neurons endows DCN neurons with the ability to change the modality of 

information transfer, from a code based on levels of regularity to a code 

based on firing rate. 

 Efficient pattern recognition is possible in Purkinje cells that are 

spontaneously active, in addition to Purkinje cells that are quiet in the 

absence of synaptic inputs. 

 Feed-forward inhibition of Purkinje cells may improve the pattern 

recognition performance of the network. 
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1.2  Structure of the thesis 

This document is structured into chapters: after this introduction, Chapter 

2 introduces the neurobiology of the project, followed by an introduction to 

computational neuroscience (Chapter 3). The interdisciplinary nature of the field 

has led me to aim at making the biology understandable for readers with a 

computer science background and vice versa. 

Chapter 4 covers the work of translating an existing DCN neuron model to 

a neuronal modelling environment more suited for the purposes of this work; it 

also includes the ensuing work of updating parts of the model and making it 

ready to work in a Purkinje cell and DCN neuron network. Chapters 5 and 6 

contain the scientific studies of the project, concerning pattern recognition and 

irregularity, respectively. While, as mentioned, parts of the projects have been 

published, the outline used in Chapters 5 and 6 is not one of scientific journal 

writing but instead brings up methods and materials as they are needed, 

hopefully giving better readability. The two chapters include discussions of the 

respective results and are followed by a chapter containing overarching 

conclusions (Chapter 7). This is followed by the references of the thesis, and 

appendices that list the simulation and analysis code and contain additional data 

from the pattern recognition project. 

The following flowchart illustrates the work described in the present 

thesis. 
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1.3  Flow chart of the main steps of the thesis work   

Translation of a DCN neuron model from the 
simulator GENESIS into NEURON 

Modifications to the translated DCN neuron 
model, giving it in-vivo–like firing 

Pattern recognition project Spiking irregularity project 

Creating Purkinje cell models that fire in the 
absence of synaptic inputs 

Creation of a network consisting of the 
Purkinje cell models connected to the DCN 

neuron model 

Creation of a network of artificial spike 
generator PCs (GammaStim) connected to the 

DCN neuron model 

Use of the GammaStim network to explore 
effects of short-term depression at different 
convergences and GammaStim firing rates 

Obtaining real PC trains of varying irregularity: 
mouse mutant tottering and wild-type mice 

Reaching main results of pattern recognition 
simulations: 1) pattern readout is transmitted 
in a DCN neuron burst; 2) convergent inputs 

give amplification of pattern recognition 

Exploring theoretically achievable versus 
actual amplification from convergent inputs 

A large number of parameter explorations of 
pattern recognition 

Creating sets of tottering and wild-type spike 
trains with identical firing rates 

Testing to what extent the results depend on 
DCN neuron properties: an integrate-and-fire 
neuron receiving the same inputs as the DCN 

neuron model 

Using those sets to explore effects of STD in the 
DCN neuron 

Exploring different metrics of pattern 
recognition in the DCN neuron model – 

finding the optimal metric (the number of 
spikes in the burst) 

Overarching conclusions, limitations, future directions 
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2.  Neurobiology 

This chapter will deal with introducing the biology of neurons and 

specifically of the cerebellum and its nuclei. 

2.1  Neurons are electrically excitable cells 

Neurons are cells with properties setting them apart from other cell types. 

Among those are: 

 Electrical excitability  

 Complex morphology, with protrusions from the cell body (the soma) 

often making up the largest part of the cell (Figure 1) 

 One of the extensions, the axon, carries electrical charge from its proximal 

end at the soma to its branching distal ends, which form connections to 

other neurons at synapses 

Electrical excitability refers to the ability of the membrane to generate 

varying membrane potentials. These potentials depend on the presence of 

different concentrations of ions on the inside compared to the outside of the cell. 

Neurons use four ion species for this purpose: sodium (Na+), potassium (K+), 

calcium (Ca2+), chloride (Cl-). When the electrical potential on the inside of a 

neuron is lower than on the outside, it is referred to as hyperpolarisation, while 

the inverse is called depolarisation. 



   

 

Figure 1 Components of a neuron with zoom-ins on the membrane and its ion channels. From top 
left: While a neuron contains a multitude of organelles, loose protein and other molecules, and a 
highly complex cytoskeleton, of relevance for the neuronal modelling done in this thesis is the 
neuronal membrane (top right) and especially its ion channels (bottom right). Ion channels specific for 
four ion species used to create membrane current flow are shown with arrows depicting the direction 
of flow: all but potassium are present at a higher concentration in the extracellular fluid and hence 
generate inward flow (for positively charged ions, this results in inward currents). Sources: 
en.wikipedia.org/wiki/File:Complete_neuron_cell_diagram_en.svg (left part of the picture); 
en.wikipedia.org/wiki/File:Cell_membrane_detailed_diagram_en.svg (top right); lower right: Purves 
(2004). 



   

Ion-species specific channels are diagrammed in Figure 1 with arrows 

showing the direction of current flow when the channels open. Note that while all 

ion species but potassium give rise to inward flows, it is only sodium and calcium 

that act to depolarise on the neuron; the negative charge of the chloride ion gives 

a hyperpolarising effect with its inflow.  

To maintain different extra- and intracellular concentrations of ions, 

pumps are located in the membrane and can transport ions in the opposite 

direction of the ion concentration gradient. The latter is utilised for generating 

flows of ions through ion channels, thus creating a current.  

2.2  Ion channels govern excitability and current 

flow 

Ion channels regulate the membrane potential of a neuron by controlling 

the in- and outflow of ions across the cell membrane. While some channels are 

open constantly, most channels regulate the ion flow through their cavity tightly, 

in a process called gating. The term refers to how the channels are opened to let 

ions pass through the cell membrane, and closed to prevent further flow. 

Common types of gating are response to membrane potential (voltage-gating) and 

to intracellular ion concentrations. 

When channels are open, the amount of current carried by an ion species 

through the channel depends on the electrochemical driving force for the species 

across the neuronal cell membrane. The electrochemical driving force in turn 

depends both on the reversal potential E of the ion species and on the potential 

across the membrane, the membrane potential. 

The reversal potential is created by the relative abundance of an ion inside 

compared to outside of a cell and can be calculated by the Nernst equation: 
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where R is the gas constant, T is the absolute temperature, z is the valence of the 

ion (+2 for calcium, +1 for sodium and potassium, and -1 chloride ions), F is the 

Faraday constant, and [X]i, [X]o are the ion concentrations inside and outside the 

cell, respectively. 

With the reversal potential determined, the current I through a channel is 

given by: 

)EV(gI x  (2) 

where g is the conductance of the channel; V is the membrane potential. The 

equation shows that the reversal potential, Ex, is the membrane potential where 

no electrochemical driving force is exerted on the ion species and, thus, no 

current flows through the channel. 

2.3  Signal propagation in neurons 

Open ion channels create current flows into the different parts of a 

neuron; this current response is both passively and actively propagated 

throughout the parts of the neuron (see Figure 1 for the parts of a neuron). The 

currents from these parts add up in the soma. The part of the soma connecting to 

the axon, the axon hillock, contains a large density of sodium channels, which 

implements a thresholding mechanism: when a certain membrane potential level 

is crossed, the sodium channel activation at the hillock leads to an all-or-none 

event, an action potential. The action potential rapidly propagates down the axon 

by the opening and closing of sodium channels in consecutive axonal segments. 

This ensures the fast one-way flow of the action potential to the distal parts of the 
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axonal branches; there, the signal is transferred to the downstream target – a 

neuron or other cell – via the release of chemical messengers, neurotransmitters, 

at the synapse.  

It should be added that there are exceptions to these general principles; 

many neuron types are able to generate action potentials that back-propagate into 

the dendrite, in addition to axonal action potentials. Further, in addition to the 

more common chemical synapses mentioned above and described in the next 

section, there are electrical synapses that communicate via direct transfer of ions, 

and thereby electrical current, to the postsynaptic target. 

2.4  The synapse 

The ends of an axon are called boutons or axonal end plates. These 

expansions of the axonal processes (circular inset at the top left of Figure 1) 

contain vesicles with neurotransmitter, which are used for the signal transfer to 

the postsynaptic target. After the arrival of an action potential results in the 

fusion of vesicles with the cell membrane of the bouton, neurotransmitter is 

released from the presynaptic neuron. For the signal transfer to take place, the 

transmitter needs to travel the extracellular space (the synaptic cleft) to the 

postsynaptic density of the downstream cell. The postsynaptic density contains 

receptors for the transmitter molecule; binding of the transmitter to its receptors 

may elicit a wide variety of different effects depending on the receptor type, 

including ion channel opening and signalling cascade initiation. 

Many synapses exhibit plasticity, meaning that their strength can depend 

on prior activity. Long-term synaptic plasticity is regarded as a fundamental 

mechanism of learning and memory (for review see e.g. Tsukada, 2008) and 

comprises the opposite events of long-term potentiation (LTP) and long-term 
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depression (LTD). While long-term synaptic plasticity leads to changes in 

synaptic strength that persist for hours and longer, there are also short-term 

forms of synaptic plasticity, which induce changes in synaptic strength that decay 

back to baseline in less than a second. Short-term synaptic plasticity has been 

implicated in a number of computational functions. Abbott et al. (1997) show that 

short-term depression (STD) of synapses allows neurons to dynamically modify 

the strength of responses to inputs based on the frequencies of the inputs. Thus, a 

presynaptic neuron that fires very fast results in a decreased synaptic strength 

compared to a slower-firing neuron, giving the receiving neuron an increased 

sensitivity to the slower input. Abbott et al. investigated this in neurons of the 

cerebral cortex, but STD is also present in synapses of the cerebellum including 

the inhibitory synapse between Purkinje cells (PCs) and DCN neurons. The 

dependence of STD on the spike rate of the presynaptic PCs is shown for these 

synapses in Figure 2. These neurons, and the inhibitory connection between 

them, will be discussed in detail in Section 2.7. 
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Figure 2 Short-term depression (STD) of the Purkinje cell to DCN neuron synapse 

(Figure source: Shin et al., 2007a). (A) Steady-state probability (Rss) of the Purkinje 

cell synaptic bouton to release neurotransmitter (GABA) at different spiking rates of 

the neuron. (B) Conductance of the synapse for regular firing at 10, 30, and 100 Hz, 

respectively. 

There is more direct evidence of computational roles of STD, reported by 

Rothman et al. (2009). They show that single cerebellar granule cells can perform 

multiplications and divisions on inputs and that this capability is fully accounted 

for by the presence of STD in the synapses.  

2.5  Neuronal coding 

Neurons communicate with action potentials, spikes: the way that one 

neuron signals to another is via the transfer of information from its axonal end 

plates upon arrival of a spike from the axon hillock. The study of how one neuron 

communicates with the next is therefore the study of spiking. Relevant to this 

thesis are these three characteristics of spiking over time: 

1. Spike rate 

2. Degree of regularity of the intervals between spikes 
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3. Temporal spike patterns 

The first spiking type is often known as a rate code or more precisely, an 

independent-spike code (Dayan and Abbott, 2001). The second and third can be 

classified as temporal codes or in the terminology of Dayan and Abbott, 

correlation codes. 

The last item requires explanation: I mean something akin to the Morse 

code with a hypothetical example being that a neuron sends one spike, followed 

by a second spike at 23 ms after the first, followed by a ten ms burst of four spikes 

yet another five ms later. 

The three types of code can be combined so that for example a specific 

degree of regularity at two different rates can be hypothesised to convey two 

different “messages”. 

2.6  Analysis and visualisation of neuronal spiking 

A series of neuronal spikes is called a spike train; the analysis of neural 

coding is based on spike train analysis. Several kinds of metrics of spike trains 

characteristics have been devised, the simplest being the rate of spiking, usually 

given as hertz (Hz or 1/s, the unit Hz is used even though a spike train usually 

cannot be described with a single wave function). The traditional metric of 

regularity of spiking is the coefficient of variation (CV) of the interspike intervals 

(ISIs), which is defined as the standard deviation divided by the mean. A high CV 

may mask parts of more regular firing within a spike train, for which the metric of 

CV2 was introduced to spike train analysis (Holt et al., 1996). The CV2 measures 

the discrepancy between two consecutive ISIs and is defined as: 
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Figure 3 illustrates the differences between the CV and CV2 metrics.  

 

Figure 3 The CV and CV2 as metrics of neuronal spiking regularity. The upper spike 

train is a Poisson process and gets a high score on irregularity both by the CV and the 

CV2. The lower train is drawn from a gamma distribution of degree 50 (see 2.6.2); 

such a regular process scores low on both metrics. The middle train is the type of 

train where the CV2 metric gives information on the presence of local regularity in 

the midst of high irregularity of the train as a whole. From Holt et al. (1996). 

2.6.1  Interspike interval distributions 

Graphing of spike train data is often helpful in their analysis. Two of the 

most common types of graphing methods are raster plots and ISI distribution 

plots. An example of each is shown in Figure 4. 
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Figure 4 Visualisation of neuronal spiking. A) Sample raster plot of six spike trains 

over one second of firing. B) ISI distribution for 20 seconds of spiking from the 

entirety of the top train of A). The black curve is a gamma probability density 

function of order 7.2 (See text and Figure 5) fit to the data using the gamfit and 

gampdf functions of MATLAB (v 2006a, MathWorks Inc), which includes 89% of the 

ISIs of the train. The solid blue lines show the quartiles of the distribution and the 

thick dashed blue line, the median. 

ISI distributions give a compact picture of the overall spike train structure 

(as opposed to the microstructure, described by the CV2). For example, Figure 4 B 

shows that this particular spike train has a rather condensed distribution (50% of 

the spikes are within the two outer vertical blue lines, at 18 and 30 ms) and a 

relatively short tail of long ISIs; this would not have been shown conclusively by 

the CV. 

The ISI distribution can be modelled by the fitting of a gamma probability 

density function, as shown by the black curve in the panel. Section 2.6.2 gives an 

introduction to gamma probability density functions. 

 



 27 
 

2.6.2  The gamma probability density function and its use in 

modelling ISI distributions 

When the ISI distribution of a spike train is modelled with a gamma 

probability density function, the probability p of an ISI to be of length x ms can be 

computed as: 

b

x

a

a
ex

)a(b
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p(x)  (4) 

where a is the order parameter and b is the scale parameter. Γ(a) is the gamma 

function with order a and is calculated as: 





0

1dtte)a( at
 (5) 

The plotting of p (Equation 4) over all ISI values gives the particular gamma 

probability density function. Examples of gamma distributions with different 

order and scale values are given in Figure 5.  
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Figure 5 Gamma probability density functions of varying order and scale. The plots 

were created in MATLAB with the gampdf function. 

A gamma distribution of order one (top panels, Figure 5) equals a negative 

exponential function and can be generated by a Poisson process (Figure 6 A). 

More regular ISI distributions can often be described by higher-order gamma 

distributions (Figure 6 D). 
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Figure 6 Gamma distributions of interspike intervals. A-C depict theoretical ISI 

distributions with: A) Poisson distribution; B) the distribution of A, shifted with an 

(exaggerated) refractory period, illustrating how a higher-order gamma probability 

density function comes about; C) higher-order gamma distribution; (D) a real 

neuronal spike train, showing the ability to model spike trains with gamma 

distributions (approximately gamma order three). 

2.7  The cerebellum 

Neurons are organised into neuronal circuits where inputs from either 

other brain areas or sensory neurons are received and processed by neurons of 

several types, including interneurons that often serve feedback or feed-forward 

functions within the neuronal circuit. This thesis focuses on the deep cerebellar 

nuclei (DCN), in particular, on the excitatory DCN projection neurons and their 

input from the Purkinje neurons of the cerebellar cortex (Figure 9). 

The cerebellum is a major part of the vertebrate central nervous system, 

and contains more than half of the total number of neurons in the human brain 

(Glickstein, 2007). It is known to play a crucial role in motor functions (reviews 
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by Middleton and Strick, 1998; Saab and Willis, 2003; Glickstein, 2007), but is 

increasingly implicated in purely cognitive functions as well (see, for example, 

Thach, 2007). 

An overview of the anatomy of the human cerebellum and its position in 

the brain is shown in Figure 7. 

 

Figure 7 Gross anatomy of the human cerebellum with its position in the brain. Like 

the cerebrum, the cerebellum consists of a folded cortex (grey matter) and internal 

white matter. Interior to the white matter are the cerebellar nuclei. These constitute 

the output region of the cerebellum and connect to the brain stem (leftmost) and 

further to targets over large parts of the brain. Figure source: 

www.a2zpsychology.com/images/BIOLOG8.GIF. 

The pink areas in Figure 7 constitute the cerebellar cortex; medial to those 

are the deep cerebellar nuclei (DCN) which form the main cerebellar output 

region (Thach, 1970; Eccles, 1973). 

The cerebellum is characterised by a highly regular circuitry (Thach, 

2007), consisting of millions of repeated units of one basic circuit which is almost 
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identical between different species of mammals (Voogd and Glickstein, 1998). Its 

anatomy is shown in Figure 8. A simplification of this network structure is 

illustrated in Figure 9, which depicts the constituent cells of the cerebellar circuit 

and shows that two types of axons carry the main input to the cerebellum – the 

mossy fibres and climbing fibres. 

 

Figure 8 Anatomy of the cerebellum with its principal cell types. The picture shows 

one of the cortical folds of Figure 7. Arrows point out the direction of axons from 

soma to boutons. Cerebellar inputs are shown in the lower right part of the picture 

and its output in the lower left. From Squire et al. (2008). 
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Figure 9 Circuit structure of the cerebellum where the two cells that are central to 

this thesis are in the middle of the diagram (The Purkinje cell and the DCN neuron). 

Red arrowheads indicate excitatory synapses; blue, inhibitory synapses. 

The mossy fibres originate in cell bodies of multiple precerebellar nuclei in 

the brain stem and spinal cord. The climbing fibres constitute the other afferent 

connection and convey information from the inferior olive, which receives input 

from many brain sites, including the motor cortex. 

Mossy fibres connect to the cerebellar granule cells with excitatory 

synapses, while one of the cerebellar interneuron cell types, the Golgi cell, inhibits 

the granule cells. The axons of the granule cells form the PFs which connect to the 

Purkinje cells with excitatory synapses. The climbing fibres also act excitatory on 

the Purkinje cells, with one climbing fibre surrounding the Purkinje cell like ivy 

on a tree. Thus, the two main fibres that convey information to the cerebellum 
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stimulate Purkinje cells and thereby increase their propensity to fire action 

potentials. This stimulatory effect on the Purkinje cells is counteracted by the 

inhibitory signalling of the basket cells, the stellate cells, and the unipolar brush 

cells. 

Purkinje cells are at the centre of the cerebellar circuit, directly or 

indirectly contacted by all the other cell types. With the exception of a minor 

direct connection from Purkinje cells to the vestibular nuclei, Purkinje cells 

transmit the output of the cerebellar cortex to the deep cerebellar nuclei (DCN) 

neurons (Jahnsen, 1986a); this is mediated by inhibitory synapses (Ito et al., 

1964). 

The DCN neurons constitute the output of the circuit as a whole. In 

addition to the signals from the Purkinje cells, the DCN receive branches of the 

mossy and climbing fibres (Chan-Palay, 1973; Sugihara et al., 1999; Wu et al., 

1999; Shinoda et al., 2000). Hence, on top of being the main output of the 

Purkinje cells, the DCN obtain the same signals as the Purkinje cells do, without 

the processing in the granule cells. This placement of the DCN neurons has been 

highlighted by Llinas and Muhlethaler (1988): “Indeed, the connectivity of these 

neurones places them in a truly privileged position.” 

2.7.1  Deep cerebellar nuclei neurons 

The DCN (Figure 10) contain at least four types of neurons (Czubayko et 

al., 2001; Sultan et al., 2003; Uusisaari et al., 2007; Uusisaari and Knopfel, 2010). 

The one classified as large and non-GABAergic is an excitatory projection neuron 

that uses the neurotransmitter glutamate and carries the main output from the 

DCN (Batini et al., 1992; Voogd, 2004a). The neuron transmits this output to the 

brain stem, thalamus, and spinal cord (Voogd, 2004b) and is the main neuron 
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modelled in this thesis work. The term “DCN neuron” will therefore be used to 

refer to this neuronal type. 

 

Figure 10 The cerebellar nuclei in humans (left) and a zoom-in on seven DCN neurons 

of the dentate nucleus of the cat (right). Legend to the left picture: fastigial nucleus: 

hatched; globose nucleus: filled squares; emboliform nucleus: open squares; the 

remainder is the dentate nucleus. Right picture: seven nucleus neurons are shown 

with their axonal projections as they leave the cerebellum. Sources: left picture: 

Paxinos and Mai (2004); right picture: Cajal (1894). 

There are few studies that have characterised only the excitatory 

projection neurons of the DCN; the majority of studies have investigated a mix of 

the neuronal types in the DCN, which have similar electrophysiological 

characteristics (Jahnsen, 1986a). The following paragraphs refer to such a 

heterogeneous population. 

Spontaneous firing rate 

Typical for the DCN neurons is that they fire spontaneously even in the 

absence of synaptic inputs. Studies have shown spontaneous firing rates of ca 25 

Hz of DCN neurons in vitro for guinea pig (Jahnsen, 1986a) and rat (Mouginot 
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and Gaehwiler, 1995). In the presence of synaptic input in vivo,  higher firing 

rates of about 50 Hz have been recorded in rats (LeDoux et al., 1998; Rowland 

and Jaeger, 2005). 

Rebound firing after hyperpolarisation 

The term “rebound firing” refers to the situation where a neuron has 

received an inhibitory stimulus which is subsequently removed, leading to a 

burst-like response (Figure 11). It is a characteristic response of DCN neurons 

(Cody et al., 1981; Jahnsen, 1986a; Llinas and Muhlethaler, 1988; Aizenman and 

Linden, 1999) and its molecular mechanisms have been investigated in several 

studies. Llinas and Muhlethaler (1988) showed that low-voltage activated calcium 

channels (CaLVA) participate in DCN neuron rebound firing. Other currents that 

contribute to the rebound firing are an h current (Aizenman and Linden, 1999) 

and a persistent sodium (NaP) current (Llinas and Muhlethaler, 1988; Sangrey 

and Jaeger, 2010). 
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Figure 11 Rebound firing of a DCN neuron. The uppermost line shows the injection of 

a negative current into the neuron, leading to the membrane hyperpolarisation 

shown in the second trace. The rebound is the period of enhanced firing rate 

following the removal of hyperpolarisation, and lasts until the end of the trace in this 

picture. The first few spikes of the rebound can be of very high frequency, as shown 

in the enlarged picture at the bottom. Picture source: 

www.ucalgary.ca/~rwturner/images/dcn_rd_400x454.jpg 

2.7.2  Purkinje cells 

Purkinje cells (Figure 12) are the principal cell type of the cerebellar 

cortex; they have flat dendritic trees that receive an unusually large number of 

synaptic connections. The PFs which arise from the granule cells and run in 

perpendicular arrays through the Purkinje cell dendritic structure form an 

estimated 80,000 (Palkovits et al., 1972) to 200,000 (Eccles et al., 1967) synapses 

(Figure 8).  
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Figure 12 Human Purkinje cell, showing the large and flat dendritic tree which 

receives approximately 100,000 synapses from PFs running orthogonally to the tree. 

From Cajal (1894). 

Purkinje cells have a characteristic electrophysiology with two different 

kinds of spikes: simple and complex spikes, respectively (Figure 13). Simple 

spikes are the most common ones and consist of single spikes, which occur at 

frequencies of up to more than 200 spikes per second and are the results of 

stimulation by PFs (Armstrong and Rawson, 1979). Complex spikes are elicited by 

stimulation of the single climbing fibre which reaches each Purkinje cell. These 

spikes are typified by one initial strongly depolarising spike, followed by several 

spikes of lower amplitude. Complex spikes are normally dispatched at rates of 

only 1-2 per second (Armstrong and Rawson, 1979). An example of a train of 

simple spikes and of one complex spike are shown in the following figure. 
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Figure 13 Types of Purkinje cell spikes. The membrane potential trace in black 

depicts a train of simple spikes (from De Schutter, 1997) while the blue trace shows a 

complex spike (from Kakizawa et al., 2007), with one forceful depolarisation followed 

by a number of irregular, less strongly depolarising spikes. 

2.7.3  The Purkinje cell to DCN neuron synapse 

Purkinje cells connect to the DCN neuron with inhibitory synapses using 

the neurotransmitter GABA; on binding to the GABAA receptor of the DCN 

neuron, chloride ion channels are opened and give a hyperpolarisation. The 

connection is the dominating input to the DCN with more than ten thousand 

synapses per DCN neuron (Palkovits et al., 1977). Palkovits et al. also found an 

average of 26 times more Purkinje cells than DCN neurons and that the synapses 

from the Purkinje cells make up the majority of synapses on DCN neurons. The 

number of Purkinje cells converging onto a DCN neuron was estimated at 860, 

but newer estimates are much lower (Chris De Zeeuw and Indira Raman, 

personal communication). 

The Purkinje cell to DCN neuron synapse (PC-DCN synapse) has the 

ability to express LTP (Aizenman et al., 1998), LTD (Morishita and Sastry, 1996), 

and STD (Morishita and Sastry, 1993; Telgkamp and Raman, 2002; Pedroarena 

and Schwarz, 2003). The plasticity of this synapse is a prominent part of this 

thesis and will be discussed in some detail in the following paragraphs. 
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STD of the PC-DCN synapse was introduced in Section 2.4 with the 

illustration of Figure 2. As shown in the figure, each Purkinje cell spike decreases 

the strength of the synapse. How large this effect is depends on the interval 

between spikes, with increasingly large decreases in conductance resulting from 

shorter intervals.  

A high frequency input to the synapse, repeated several times, has the 

ability to induce LTD (Morishita and Sastry, 1993; Aizenman et al., 1998). A 

similar stimulus with longer duration induces LTP (Aizenman et al., 1998). Thus, 

the same kind of stimulus causes either LTD or LTP depending on its length 

(Figure 14). 
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Figure 14 Bidirectional change in strength of the PC-DCN synapse, shown by 

Aizenman et al. (1998). LTP results from stimulation that evokes a strong rebound 

firing on its release, while LTD results from stimulation giving slower rebound firing. 

(A) A pulse train of ten pulses at 100 Hz was applied to the cerebellar cortex directly 

neighbouring the DCN. The recording electrode was inserted in the DCN, registering 

inhibitory postsynaptic potentials (IPSPs) following the cortical stimulation. The 

upper picture shows a sample DCN cell responding to the pulse train by 

hyperpolarisation from its resting membrane potential (mean = -58mV over 33 cells). 

The lower picture shows the response to the same train from a point of 

hyperpolarised membrane potential (mean = -67mV), giving a less intense rebound 

firing response. (B) The bidirectional change in strengths of subsequent IPSPs 

following the application of the protocol in (A). The increased IPSP sizes resulting 

from the protocol applied to cells at resting membrane potential are shown with 

open circles, while the IPSPs of the tonically hyperpolarised cells are shown with 

closed circles. 

2.7.4  Learning in the cerebellum 

The cerebellum is involved in learning of several types of motor behaviour 

(Mauk et al., 2000). The present section will discuss theories relevant to this 

A 

 

B 
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learning and will then exemplify the learning with a famous cerebellar 

experimental procedure called eyeblink conditioning. 

Hebbian and non-Hebbian learning  

Most theories of learning in the brain are based on the concept of Hebbian 

learning (see e.g. Cooper, 2004). Hebbian learning refers to the paradigm 

outlined by Donald Hebb (1949). The essence of his idea is that neurons that fire 

together wire together: 

“When an axon of cell A is near enough to excite a cell B and repeatedly or 

persistently takes part in firing it, some growth process or metabolic change takes 

place in one or both cells such that A’s efficiency, as one of the cells firing B, is 

increased.” (Hebb, 1949) 

However, not all types of synaptic plasticity that have been implicated in 

learning can be considered as Hebbian. LTP and LTD at the inhibitory Purkinje 

cell – DCN neuron synapse result in an increased (decreased) inhibition after 

increased (decreased) postsynaptic activity and are therefore cases of non-

Hebbian synaptic behaviour. Moreover, non-Hebbian LTP and LTD are also 

found in the cerebellar cortex at the parallel fibre to Purkinje cell synapse (PF-PC 

synapse), where they are often seen as foundations of memory (Ito, 2001). At this 

synapse, LTD is induced when the climbing fibre input is active together with 

parallel fibre input (Ito et al., 1982). Thereby, the synaptic strength is decreased 

with each such pairing until saturation sets in, which prevents the complete 

removal of synaptic capacity (Hansel et al., 2001) [but conflicting data indicates 

that the synapses are completely silenced (Isope and Barbour, 2002)]. 

The Marr-Albus theory 

The perhaps most famous theory of cerebellar computation, the Marr-

Albus theory, proposed a central role of the PF-PC synapses and assumed that a 
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modifiable strength of these synapses would be both necessary and sufficient for 

motor learning to take place (Marr, 1969; Albus, 1971). The theory was proposed 

before the experimental evidence of LTD of the PF-PC synapse was discovered by 

Ito et al.; Subsequently to the discovery, the theory has often been called the 

Marr-Albus-Ito theory (for example De Schutter, 1997; Hansel et al., 2001). 

The Marr-Albus theory was formed on the basis of the structure of the 

cerebellar circuit (Figure 9) and of the cellular morphology and physiology of the 

participating cells. The theory has not been conclusively proven, and parts have 

been shown to be incorrect, such as Marr’s assumption that no other cerebellar 

synapses than the PF synapses are modifiable, but it is an important theoretical 

framework for the thinking of what the cerebellum does (Ghez and Thach, 2000).  

The different Purkinje cell responses to the stimulation of parallel and 

climbing fibres (Figure 13) together with the wiring differences between the 

parallel fibres and the climbing fibres play an important part in the Marr-Albus 

theory, which assumes that the climbing fibres carry information about the 

intention of a movement, relayed from the motor cortex, while the PFs carry 

information about the sensory input and other circumstances surrounding the 

instruction from the cerebral cortex. 

The theory, reviewed by Tyrrell and Willshaw (1992), predicts that one 

single Purkinje cell can convey one particular muscle stimulus. In a non-learned 

state, the instruction for the Purkinje cell to stimulate a muscle will come from a 

climbing fibre. In this state, the movement is non-automatic, requiring the 

participation of input from the motor cortex to the inferior olive. 

The Marr-Albus theory hypothesises how the learning of the movement 

controlled by one Purkinje cell becomes automatic. Through plasticity in the PF-

PC synapses, the Purkinje cell learns to associate inputs from mossy fibres with a 

particular cortical instruction from the climbing fibre. Upon this learning, the set 
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of sensory inputs from the mossy fibres triggers the movement controlled by the 

Purkinje cell without the requirement of a simultaneous cortical instruction. 

Thus, the motor action has become automatic. 

Tyrrell and Willshaw give an example of the cerebellum’s involvement in 

motion. When one stretches out an arm and moves it around to form a circle, the 

cerebellum makes sure that the correct set of muscles comes into play at the 

correct time – in the arms, the shoulders, trunk, legs, etc. This automatic, 

smooth, and correctly timed action of the miscellaneous muscles can be explained 

by the Marr-Albus theory. Each Purkinje cell that controls either of the involved 

muscles has learnt – through the practice of movement from childhood to 

adulthood – to react to each combination of sensory state.  

As Tyrrell and Willshaw explain, the cerebellum can be seen as a 

computation device that relieves the consciously thinking cortex of work. This 

sort of back-up computing that is available after training can be seen in for 

example the fact that a driver simultaneously can press the brake pedal, release 

the gas, and steer out of the way of an animal standing on the road. For a 

beginner driver, where the non-conscious back-up computation has not been 

learned, merely pressing the brake pedal may in a similar situation take up all 

processing capacity of the motor cortex. 

Evidence that supports the Marr-Albus theory includes that mice with 

abolished long-term depression of PF-PC synapses have impaired adaptation to 

the vestibulo-ocular reflex – the following of moving objects with the eyes to 

stabilise pictures on the retina (Goossens et al., 2004). Additional evidence comes 

from eyeblink conditioning, a case of associative learning, which is discussed in 

the following. 

However, more recent evidence speaks against the involvement of LTD at 

the PF-PC synapse in both of these learning tasks (Schonewille et al., 2011). 
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Eyeblink conditioning – cerebellar associative learning 

The cerebellum is today known to be involved in associative learning, such 

that occurs in eyeblink conditioning (Christian and Thompson, 2003). In this 

procedure, a subject is first exposed to an unconditioned stimulus – for example a 

puff of air to the eye, leading to a reflexive blink of the eyelid. This air puff is 

combined with another stimulus, such as a tone, which leads to the subject 

learning to respond to the second stimulus alone with a reflexive eyeblink (the 

conditioned response), in the same fashion as to the air-puff. The subject has thus 

been conditioned to the tone – the conditioned stimulus. 

 

Figure 15 Eyeblink conditioning circuitry. The interpositus nucleus is one of the deep 

cerebellar nuclei. The figure shows the interactions between several cerebellar 

locations in the learning of this paradigm. US stands for unconditioned stimulus, CS, 

conditioned stimulus, CR, conditioned response. Picture source: www.iam.u-

tokyo.ac.jp/coe/mishina/index_e.html. 

Although there is a large body of evidence for the involvement of the 

cerebellum in eyeblink conditioning (see Figure 15), the exact locations of the 

storage of the conditioned behaviour have not been determined conclusively 
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(reviewed by Lavond, 2002). Abiding by the Marr-Albus-Ito theory, it has been 

demonstrated that learning the conditioned response involves LTD of the PF-PC 

synapse (Koekkoek et al., 2003). Jirenhed et al. (2007) in turn demonstrate how 

single Purkinje cells respond to learning by their paused firing, an effect which 

disappears upon extinction of the learned response. 

In addition to the involvement of Purkinje cells and their afferent 

synapses, the involvement of the DCN in eyeblink conditioning has been shown in 

several studies (e.g., Woodruff-Pak et al., 1985; Berthier and Moore, 1990; 

Christian and Thompson, 2005). The learning of the conditioned behaviour has 

even been shown to increase the number of excitatory synapses to DCN neurons 

from mossy fibre and climbing fibre sources (Kleim et al., 2002). 

Notably, the involvement of neither Purkinje nor DCN neurons in this 

learning precludes the involvement of the other neuronal location. Indeed, 

increasing evidence shows the importance of both sites and their interactions to 

acquire and display the conditioned eyeblink response (Wada et al., 2007; 

Woodruff-Pak and Disterhoft, 2008).  

As regards the electrophysiological response of the Purkinje cells to 

learning, the Marr-Albus-Ito theory assumes that as a result of the LTD of the PF-

PC synapse, the output of the Purkinje cell is decreased (for example, Hansel et 

al., 2001). This makes intuitive sense since the synapse is excitatory and the 

result, according to the theory, is a disinhibition of the DCN neurons. Thus, the 

presentation of a tone, stored in the weights of the PF-PC synapses, would lead to 

an increased output from the cerebellar nuclei, which would lead to the execution 

of the eye-blink response. 
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2.7.5  A comparison between the cerebellar cortex and the 
cerebral cortex 

The cerebellar cortex has several features that are not seen in the cerebral 

cortex. While the main cell type of the cerebral cortex – the pyramidal cell – is not 

spontaneously active, the central cell in the cerebellar cortex – the Purkinje cell – 

is. This may be required for the cerebellum to function as there is no recurrent 

excitation as in the cerebral cortex. A baseline level of activity, whether caused by 

intrinsic mechanisms or by recurrent excitation, can enable inputs to bi-

directionally modulate the spiking of a neuron, providing a bigger repertoire of 

possible neuronal responses.   

3.  Computational neuroscience and 

neuronal modelling 

In order to understand neural functions, neuroscientists have used a 

variety of approaches, including the use of morphological techniques such as 

staining of neural tissue for microscopy (for an example, see the Purkinje cell by 

Cajal 1894, Figure 12), axonal tracing with radioactive compounds, and more 

modern imaging techniques like magnetic resonance imaging. Another approach 

is to record neuronal currents and membrane potentials.  

These areas of experimentation have contributed to the understanding of 

morphology and electrical properties of neurons. Computational neuroscience 

introduces the possibility of a more holistic understanding of how neurons work. 

This is achieved by combining data gathered using different experimental 

techniques and synthesising the facts into models of neuronal behaviour. The 
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next section will outline how this is undertaken, with a focus on the methodology 

used for this thesis. 

3.1  Neuronal modelling techniques 

One of the simplest ways to model neurons is with an integrate-and-fire 

model (Lapicque, 1907). This type of neuronal model sums up all the electrical 

inputs to the neuron, integrates the effects they have on the membrane potential 

of the neuron, and sends out a spike if the threshold voltage has been reached. 

Without an additional modification, such an integrate-and-fire model is 

not realistic in that effects of inputs remain over time (Gabbiani and Koch, 1998). 

An improvement is the addition of a gradual disappearance of effects of inputs, a 

feature included in the leaky integrate-and-fire neuron model. However, 

unrealistic behaviours compared to real neurons remain in the leaky integrate-

and-fire neuron model; for example, behaviours such as adaptation and bursting, 

which depend on the interaction of different ion channels and intracellular 

calcium, are not represented. 

More realistic neuronal firing can be produced with the Izhikevich neuron 

model (Izhikevich, 2003). It uses a set of differential equations with parameters 

that can be adjusted to reproduce many types of neuronal firing, such as bursting 

and tonic spiking. However, the Izhikevich model also does not contain any 

representation of ion channels or ion concentrations, and like an integrate-and-

fire model it treats a neuron as one single compartment without accounting for 

neuronal morphology. 

Neuronal morphology has been shown to be important for computations 

(review by London and Hausser, 2005), and it has been shown that neuronal 

spike patterns such as the rebound responses in DCN neurons are shaped by 
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specific combinations of ion channels (see for example Steuber et al., 2010). Thus, 

for examining neuronal behaviour in response to new stimuli it can be expected 

that a neuronal model that captures the neuronal morphology and represents the 

biophysical mechanisms is better suited (Beeman, 2006a).  

For this reason, the work in this thesis was based on the methodology of 

biophysically and morphologically realistic modelling of neurons. I have assumed 

that the morphology of the DCN neuron and the ion channels that are present in 

DCN neurons can potentially affect computational functions such as pattern 

recognition and the decoding of irregular inputs, and have used a DCN model that 

includes these features. Although this approach is more computationally 

expensive than a modelling study that uses an integrate-and-fire or Izhikhevich 

model, it also enables me to investigate the effect of individual biophysical 

mechanisms on certain computations by removing them from the model (for 

example the rebound conductances in Section 5.5.4). In a second set of 

simulations, the predictions made by a complex model can then be tested against 

results based on simplified models; I have performed such a control simulation 

with an integrate-and-fire model (described in Section 6.3). 

The ensuing sections will describe how biophysically and morphologically 

realistic modelling is undertaken in general and are followed by Chapter 4 which 

gives the details of the setup of the DCN neuron model for the projects in this 

thesis. 

3.2  Morphologically realistic modelling of neurons 

One of the tools available for the computational modelling of neurons is 

GENESIS (Bower and Beeman, 2007), a system which also allows the use of 

reconstructed neuronal morphologies and provides functions that govern the 
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electrical behaviour of a neuron: ion channels and membrane properties, along 

with such matters as the axial resistance along neuronal branches. The technique 

employed by GENESIS is called biophysically realistic neural modelling and is 

also the type used in this thesis. 

Another widely used neuronal simulator, which shares a lot of 

functionality with GENESIS and has now overtaken GENESIS in terms of the size 

of its user base (based for example on the number of published models in 

ModelDB, http://senselab.med.yale.edu/modeldb/) is NEURON (Hines and 

Carnevale, 1997). Sections 3.3 and 3.4 in the following will discuss the 

construction of a conductance-based compartmental model and its 

implementation in GENESIS and NEURON, both of which have been used in the 

simulations for this thesis (GENESIS version 2.3, NEURON version 6.1). 

The first step in constructing a biophysically realistic neuronal model is to 

reconstruct the three-dimensional structure of the neuron. The neuron is stained 

for visualisation; the morphology is then reconstructed using microscopy and 

custom-made software (Beeman, 2006b). 

Secondly, the passive electrical properties of the neuron are identified; 

these include the membrane and axial resistance and membrane capacitance, 

which are characterised in electrophysiological experiments performed in the 

presence of ion channel blockers.  
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Figure 16 The process of reconstructing neuronal morphology for use in a computer 

simulation. A) Neuronal morphology and characterisation of the passive electrical 

properties of a neuron. B) The neuronal morphology is divided into compartments of 

length and diameters corresponding to distinguishable parts of the original neuron. 

C) Compartments are represented as electrical circuits, with parameters given from 

the experiments in A). From Beeman (2006b). 

The three dimensional picture of a neuron is then translated into a set of 

iso-electric compartments. The sizes and numbers of these are determined from 

the electrical properties, specifically the length constant which gives how voltage 

decreases over distance in the neuron (Beeman, 2006b). The process of 

constructing a passive multi-compartmental model of a neuron is illustrated in 

Figure 16. Figure 17 shows the reconstructed morphology of the DCN neuron and 

the representation of the morphology in the NEURON implementation of the 

DCN neuron model that is the subject of the present thesis. 
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Figure 17 Example of reconstructing a neuronal morphology: at the left is the DCN 

neuron (Steuber et al., 2004) that is the basis for the DCN neuron model of the 

present thesis (right). The model contains 517 compartments, most of which 

constitute the dendritic tree. The most striking visual differences are the soma 

(centre) and the axon (L-shaped structure emanating from the soma, right picture 

only). While the soma in the NEURON model is represented by a cylindrical 

compartment with approximately the same surface as in the reconstructed neuron, 

the axon was not captured in the microscopy and the axon in the model was added 

to allow axonal spike initiation.  

Taking the next step in the construction of the realistic model – going from 

a passive to an active neuronal model – requires the assembly of as much 

information as possible about the ion channels of the neuron (Beeman, 2006b). 

This involves consulting published literature of the channels in the specific 

neuron type, where available; where not available, either channels from other 

neurons in the published  literature are used or additional experiments are made 

to identify the missing channel characteristics. In either case, the result is that 
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each compartment is constructed as shown in Figure 18 where the passive and 

active properties are represented by electrical circuit components. 

 

Figure 18 A compartment from the neuronal reconstruction shown in Figure 16. Each 

compartment is represented by an equivalent neuronal circuit as shown in this 

picture. Cm is the membrane capacitance; Em and Rm are the equilibrium potential 

and resistance of the membrane leak channels; Ek and Gk are the equilibrium 

potential and the conductance (=1/resistance) of a representative gated ion channel. 

Iinject is current injected into the neuron. Vm is the membrane potential of the 

compartment, while Vm' and Vm'' are the membrane potentials of the neighbouring 

compartments. Ra and Ra' are the resistances in the connections to the neighbouring 

compartments; whether current flows across these and in which direction is 

determined by the relative values of Vm to Vm', and Vm to Vm'', respectively. From 

Beeman (2006a).  

The change of membrane potential Vm of a compartment can be 

calculated by: 
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with explanations to the terms given in Figure 18. 
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The models of the ion channels are the computationally expensive parts of 

neuronal modelling. The standard way to model these is to use the formalism that 

has come to be known as the Hodgkin-Huxley model (Hodgkin and Huxley, 

1952). 

3.3  The Hodgkin-Huxley model of ion channel 

kinetics 

Voltage-gated ion channels have been modelled since the 1950s using the 

methodology introduced by Hodgkin and Huxley (1952). The approach is to fit 

functions to the experimentally identified plots of ion channel conductances as a 

function of voltage. Hodgkin and Huxley found that this is best achieved with a 

model that assigns voltage-dependent variables to the activation and, for some 

channels, inactivation of the channel. Thus, in the Hodgkin-Huxley model, the 

conductance g of a voltage-gated ion channel is described by 

ba

max hmgg   (7) 

where gmax is the maximum conductance of the channel; m is the fraction of 

activated channels (named the activation variable); h is the fraction of not 

inactivated channels (inactivation variable); and a and b are constant exponents 

of the activation and inactivation variables, respectively. Simulation results of the 

model from the original paper by Hodgkin and Huxley are shown in part (a) of 

Figure 19; the experimental data from giant squid axon that the model is based on 

are shown in part (b). 
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Figure 19 The Hodgkin-Huxley model. The illustration shows how the model of a 

potassium ion channel together with a sodium ion channel reproduces the behaviour 

of an actual neuronal action potential. A) The dashed curve (left y-axis) shows the 

membrane potential relative to the resting membrane potential. The solid line (right 

y-axis) shows the specific membrane conductance. B) The experimental data of a 

recording from giant squid axon on which the model was based, with the dotted line 

showing the membrane potential and the upper black-to-white interface showing 

the membrane conductance. Note the close to perfect fit of the model in B). Source: 

Hodgkin and Huxley (1952). 

In the following, m and h will be referred to as state variables and the 

letter x will be used to refer to both m and h. 

By its multiplication with gmax, the expression bahm  gives the actual 

conductance through the ion channel at any point in time. The exponents a and b 

of the state variables influence the time course of each channel activation and 

inactivation; in the original Hodgkin-Huxley model (Figure 19) these are 4, and 0, 

respectively (for the potassium channel) and 3, and 1, respectively for the sodium 

channel. 
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The Hodgkin-Huxley model further assigns each state variable a 

corresponding steady-state value, x∞, which depends on the membrane potential. 

The value of x is determined by x∞ as well as by the value of x in the previous time 

step. The following equation shows how a state variable changes value over time 

(Hille, 2001, page 49):  

x

xx

dt

dx




 

 (8) 

The equation also contains the time constant of the state variable, τ, which 

determines how fast the value of x changes with fluctuations of the membrane 

potential. τ, as x∞, is voltage dependent and, as for the exponents of the state 

variables, is chosen for each ion channel model to make the channel kinetics fit 

electrophysiological data. 

The set of Hodgkin-Huxley-like equations describing the set of ion 

channels for a specific neuron are generally too complex to be solved analytically 

(Hines and Carnevale, 1997). Thus, in both GENESIS and NEURON, equation 8 

is modified to be applied to a neuronal model system which has been discretised 

in space and time. The discretisation in space consists of the continuous, smooth, 

morphology of a real neuron being represented by a number of computational 

compartments as previously discussed. Differential equation (8) can for example 

be discretised in time using forward Euler integration; this results in equation (9) 

which is then applied to each state variable of every channel in each 

compartment. 

x

xx

t

x








 
 (9) 
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Having calculated the channel conductance as described above, the channel 

current can then be derived using Equations 1 and 2 in Section 2.2, and the 

resulting change of membrane potential is given by Equation 6 (3.2). 

As an example for the voltage-dependence of ion channel conductances in 

the Hodgkin-Huxley model, a channel mechanism of the DCN neuron model will 

be used: the NaF channel. This is a model of the fast-kinetics sodium current that 

creates the upstroke of an action potential, using the same state variables and 

their exponents as the original Hodgkin-Huxley model of Figure 19. In the 

following equation, the generic Equation 7 has been modified to show the specific 

case of the NaF channel conductance in the DCN neuron model. 

hmgg 3

max  (10) 

As in Equation 7, gmax denotes the maximum conductance of the channel (NaF); 

m, its activation variable; h, the inactivation variable. Equations 11 and 12 give the 

voltage dependence of the steady-state values of m and h: 

3.7

45
exp1
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m  
(11) 

9.5
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exp1

1





V

h  
(12) 

The suffix “” denotes that the steady-state value of the variable is given; V is the 

membrane potential in millivolts. Equations 11 and 12 are plotted in Figure 20 for 

a typical range of membrane potentials encountered in the DCN neuron model. 
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Figure 20 Steady-state values of the activation (m∞) and inactivation (h∞) variables of 

the NaF channel, plotted over the range of typical membrane potentials of the DCN 

neuron model. The third trace, m∞
3h∞, gives the degree to which the channel can be 

persistently open to passage of sodium ions. Due to the longer time constant of the 

inactivation variable than that of the activation variable, much larger values of m3h 

are obtained than those that m∞
3h∞ reaches in the graph. Thus, during parts of an 

action potential, the NaF channel is more open to inflow than the up to 0.12 times of 

maximum conductance shown to be persistently possible for -38mV in the graph. 

As described in Section 2.2, what drives current to pass through an ion 

channel is the difference between the membrane potential and the reversal 

potential of the ion species (V - E). With ENa of the model being +71 mV, a strong 

driving force is exerted on the sodium ions to pass through the NaF channel when 

the membrane potential is close to its negative rest value, in line with what can be 

expected from an ion channel mechanism driving the action potential. As the 

gating expression of equation 10 opens the ion channel, the passing sodium 
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current brings the membrane potential to the height of the action potential – the 

“spike” in a voltage trace, as shown in Figure 21. 

 

Figure 21 Action potential generation in the DCN neuron model, shown in the 

absence of synaptic inputs. The top trace shows the deflection of the membrane 

potential from the resting state at ca -60 mV to the action potential peak at ca 20 

mV. The initial increase of the membrane potential is almost completely accounted 

for by the NaF current (see text). The repolarisation is caused by a combination of 

potassium channel mechanisms. 

3.4  Constructing ion channel models in NEURON 

and GENESIS 

This section describes how an ion channel mechanism can be created in 

the NEURON and GENESIS simulators. The NaF channel of the DCN model will 

again be used to illustrate the concepts. 
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NEURON contains a mechanism-description language, NMODL, which is 

a modified version of MODL [MOdel Description Language, (Kohn et al., 1994)]. 

NMODL is used for implementing the computation-intense mechanisms and is 

compiled before execution, in contrast to the language that describes the model 

morphology and run system, hoc, which is interpreted. The NaF channel 

implementation in NMODL is given in Syntax listing 1. 

Syntax listing 1. The fast sodium channel (NaF) constructed in NEURON. 

NEURON { 

   SUFFIX NaF 

   USEION na READ ena WRITE ina 

...         

} 

BREAKPOINT { 

   SOLVE states METHOD cnexp 

   ina = gbar * m^3 *h * (v - ena) 

} 

DERIVATIVE states { 

   rate(v) 

   m' = (minf - m)/taum 

   h' = (hinf - h)/tauh 

} 

PROCEDURE rate(v(mV)) { 

   TABLE minf, taum, hinf, tauh  FROM -150 TO 100 WITH 300 

   minf = 1 / (1 + exp((v + 45) / -7.3)) 

   hinf = 1 / (1 + exp((v + 42) / 5.9)) 

   ... 

} 
 

An NMODL mechanism starts with the NEURON block, where the names of ions 

used by the mechanism are specified. The example shows that the NaF channel 

uses the sodium ion (USEION na) and that it reads the reversal potential of sodium 

(ena; its value is set in hoc code elsewhere in the simulation code). Further, the 

NEURON block gives that the NaF channel writes to hoc the calculated value of the 

sodium current (ina) passing through the imaginary pore of the channel (“...” 

indicates code removed for brevity). 



 60 
 

In the BREAKPOINT block the integration of the states of the simulation takes 

place; it is so called because hoc calls the attention of NMODL at each time step 

(25 s in the NEURON model of the DCN neuron). The code in the BREAKPOINT 

block calls the DERIVATIVE block states where the activation and inactivation 

variables m and h are updated. The updating is done in the following steps: 

1. The steady-state values, minf and hinf, are read in from the interpolated 

TABLE values calculated in the procedure rate at the outset of the 

simulation. In the code listing above it can be seen that the table contains 

the values of the steady-state variables at 300 equidistant values of 

membrane potential (v) between -150 and +100 mV. 

2. The time constants, taum and tauh, at the given membrane potential are 

read in from a similar interpolated table. 

3. The statements m' = (minf - m)/taum and the corresponding one for h' 

are calculated to give the present values of m and h. The expression m' 

takes the time step, ∆t, of the simulation into account automatically and is 

thus the implementation in NEURON of Equation 9 (or a modified form of 

Equation 8 if another numerical integration scheme than Euler integration 

is used).  

4. The channel current is calculated in the statement ina = gbar * m^3 * h * 

(v - ena), using the new values of m and h. 

 

The division by the time constants (tau) in the updating of the state 

variables sets the degree of inertia in the responsiveness of a channel to 

environmental changes (here, voltage). In the DCN neuron model, the time 

constants vary greatly between the channels, from a close to instantaneous 

response of NaF to changed membrane potential (the NaF activation time 
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constant is shorter than 0.1 ms at all voltages) to the magnitudes slower h channel 

(activation time constant is a constant 400 ms). 

Channels in the GENESIS simulator language are part of the main 

simulation code; the GENESIS NaF channel code is given here, where the 

inactivation variables have been excluded for compactness: 

Syntax listing 2. The NaF channel implementation in GENESIS. 

create tabchannel NaF 

setfield NaF Ek ENa Gbar Ginit Ik 0 Gk 0 Xpower 3 Ypower 1 Zpower 0 

 

call NaF TABCREATE X tab_xdivs tab_xmin tab_xmax 

 

x = tab_xmin 

dx = (tab_xmax - tab_xmin)/tab_xdivs 

 

for (i = 0; i <= tab_xdivs; i = i + 1) 

    ... 

    act = 1.0/(1.0 + exp (x + 0.045)/-0.007324) 

    ... 

    x = x + dx 

end 

... 

call NaF TABFILL X tab_xfills 0 

 

A notable difference is how in GENESIS the code loops explicitly over the 

values of v (usually given in volts in GENESIS, versus millivolts in NEURON) to 

assign values to the state variables, while in NEURON this looping is handled 

automatically with the TABLE statement. Another difference is how programming 

in GENESIS to a large extent relies on function calls to create functionality which 

in NEURON is coded directly in NMODL. An example in Syntax listing 2 is the 

call to setfield, giving values to the reversal potential of sodium (Ek ENa), the 

maximum conductance of the NaF channel (Gbar Ginit), and the exponents of the 

state variables (Xpower, etc). 
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4.  Translation of the DCN neuron 

model 

Note: part of this Chapter has been published as a technical report at the 

School of Computer Science, University of Hertfordshire (Luthman, 2008). 

For the purpose of studying the behaviour of DCN neurons, a biophysically 

realistic computational model of a DCN neuron (Figure 17) was previously created 

in the GENESIS simulation environment based on the morphology and functional 

characteristics of DCN neurons in rats (Steuber et al., 2004; Steuber et al., 2010).  

The DCN neuron model contains 517 compartments and ten ion channel 

mechanisms. An example of the correspondence of the GENESIS implementation 

of the model to DCN physiology is shown in Figure 22. 

 

Figure 22 The behaviour of a typical DCN neuron in a brain slice experiment (left) 

compared to the behaviour of the simulation implemented in GENESIS (right), with 

spontaneous frequency of firing in both graphs in the range of 10-12 Hz. From Figure 

1 in Steuber et al.  (2010). 

The GENESIS implementation of the DCN neuron model has been used to 

investigate the dependence of DCN neuron rebound firing on properties of 
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voltage-gated channels of the DCN neuron and on synaptic input patterns to the 

neuron (Steuber et al., 2010). In order to use the model for the purposes of the 

present thesis, the NEURON simulation environment was considered a more 

suitable one. NEURON allows easier implementation than GENESIS of STD and 

of the creation of several types of calcium pools, both of which were deemed 

essential for the thesis work. The importance of STD was discussed in previous 

chapters; the following section will discuss the need for an additional type of 

calcium pool. 

4.1  Current-voltage relationships of ion channels 

In Section 2.2, the current through an ion channel was described as a 

linear function of conductance and voltage (Equation 2). This is an approximation 

commonly used in modelling ion channels (Yamada et al., 1998), including the 

original Hodgkin-Huxley model  (Hodgkin and Huxley, 1952) where it was used 

to accurately model sodium and potassium ion flows (Figure 19). 

However, the assumption of a linear (Ohmic) relation between current and 

voltage is increasingly inaccurate as the ratios of extra- to intracellular ion 

concentrations increase (Hille, 2001, pp. 445-448). These ratios are up to ca 30 in 

mammalian neurons for the sodium, potassium, and chloride ions, while the 

calcium ion ratio is approximately one thousand times larger (Purves, 2004, p. 

40). A more correct model for non-linear current-voltage relationships through 

ion channels was introduced by Goldman (1943) and Hodgkin and Katz (1949), 

with the Goldman-Hodgkin-Katz (GHK) current equation (Hille, 2001, p. 445): 
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where p is the permeability of the ion (in meters/second; the permeability 

replaces the conductance, g, in Equation 2); z, the valence of the ion; F, the 

Faraday constant; V, the membrane potential; R, the gas constant; T, the absolute 

temperature; [X]i, [X]o are the ion concentrations inside and outside the cell, 

respectively. 

In analogy to the expression used to calculate the conductance in the 

standard version of the Hodgkin-Huxley model (Equation 7), the permeability 

can be calculated as the product of a maximal permeability pmax and the activation 

and inactivation variables m and h raised to their respective exponents a and b: 

ba

max hmpp   (14) 

where pmax is the maximum conductance of the channel; m is the activation 

variable; h is the inactivation variable. 

It is commonly accepted practice in the computational neuroscience 

community to use linear current – voltage relationships for modelling sodium, 

potassium, and chloride ion channels, while calcium channels are often modelled 

using the computationally more demanding GHK current equation (De Schutter 

and Smolen, 1998; Yamada et al., 1998). In order to be able to use the GHK 

formalism to model calcium channels, the internal calcium concentration that 

influences the channel current has to be calculated using an exponentially 

decaying calcium pool: 
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where Ica is the calcium current; kCa2+ is a free parameter (tuned for the GENESIS 

DCN model and kept unchanged in the NEURON version); [Ca2+]base, the baseline 

calcium concentration; τCa2+, the decay time constant. 

The DCN neuron model channel functions include two calcium channel 

mechanisms, a low-voltage activated calcium channel (CaLVA) and a high-voltage 

activated calcium channel (CaHVA); see Table 1. Further, the small-conductance 

calcium-dependent potassium channel (SK) in the model is activated by the 

concentration of calcium in its vicinity. This calcium pool is controlled by the 

CaHVA channel while the CaLVA channel is assumed to be without influence on 

these membrane-close calcium ions (Alvina and Khodakhah, 2008). 

In the GENESIS implementation of the DCN model, the CaHVA channel 

was modelled using the GHK current equation and coupled to a calcium pool that 

was linked to SK channel activation, while the CaLVA channel used the linear 

current equation and was not linked to any calcium pool. 

With NEURON allowing the addition of a second calcium pool, the CaLVA 

channel was modified to use the GHK current equation too. Hence, the CaHVA 

and CaLVA channels had two separate calcium pool mechanisms so that the 

CaLVA-controlled calcium would not influence the SK channel conductance. 

4.2  Overview of the process of translating the 

model 

The translation of the DCN neuron model from GENESIS to NEURON and 

its modification followed these main steps: 
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1. Constructing the ion channels and the calcium concentration mechanisms from 

their mathematical descriptions. 

2. Converting the DCN neuron morphology file from the GENESIS format to 

that of NEURON. 

3. Incorporating the ion channels and the calcium concentration elements into the 

neuronal morphology. 

4. Constructing synapses and synapse-stimulus elements followed by their 

incorporation in the morphology. 

5. Updating the NEURON DCN neuron model. 

Each of steps 1-4 was followed by testing to ensure the correct replication of the 

GENESIS model. 

4.3  Construction of ion channels and calcium 

concentration mechanisms 

The construction in NEURON of the channel mechanisms of the DCN 

neuron was done as described for the NaF channel in Section 3.4. 

4.3.1  The ion channels of the DCN neuron model 

The DCN neuron model incorporates ten ion channel mechanisms, listed 

in Table 1. The ten channel mechanisms model the experimentally observed DCN 

neuron currents; their presence in the model results in the reproduction of the 

physiological DCN neuron behaviour by the GENESIS simulation (cf. example 

shown in Figure 22). 
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Table 1 The ion channel mechanisms of the DCN neuron model. The first seven 

mechanisms are voltage gated channels, followed by the SK channel and the two 

passive currents pasDCN and TNC. The latter are not channels in the molecularly 

identified sense; instead, they correspond to the leak over the membrane, and a 

collectively modelled range of cation channel currents not accounted for by the 

other mechanisms. The gating expressions correspond to bahm  in Equation 7.  

Name of current Abbreviation Gating 

   
Fast sodium current NaF hm3  

Persistent sodium current NaP hm3  

Fast delayed rectifier (potassium current) 
 

fKdr 4m  

Slow delayed rectifier (potassium 
current) 
 

sKdr 4m  

High-voltage-activated calcium current 
 

CaHVA 3m  

Low-voltage-activated calcium current 
 

CaLVA hm2  

h current h 2m  

Small-conductance calcium-dependent 
potassium current 
 

SK calcium 
concentration 

Tonic non-specific cation current 
 

TNC none 

Passive current pasDCN none 

 

4.3.2  Conversion of the GENESIS morphology into NEURON 

format 

The morphology code specifies the physical dimensions and three-

dimensional locations of the compartments of the DCN neuron model and their 

grouping into different kinds of neuronal parts (soma, proximal/distal dendrites, 

axonal hillock, etc).  
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In GENESIS the morphology specification follows the following pattern, 

repeated for each compartment: 

compartmentName parentCompartmentName  X  Y  Z  diameter 

where parameters X Y Z specify the position of the end point of the added 

compartment (compartmentName) in the 3-dimensional morphology of the neuron. 

The start position of compartmentName is given by the end position of the parent 

compartment (parentCompartmentName). The shapes of all compartments in 

GENESIS are cylindrical, except the soma which can also be a sphere. In the 

GENESIS DCN neuron model, the morphology specification for the soma and one 

of the dendritic compartments connecting to the soma is: 

soma  none  0  0  0  21.597 

p1[1]  soma  -1.708  15.872  6.12  2.52 

The soma is treated as the starting point of the neuron, with parent 

compartment given as none.  

The GENESIS morphology file was converted into NEURON format using 

the program neuroConstruct version 1.01 (Gleeson et al., 2007). The visualisation 

of the GENESIS morphology imported into neuroConstruct is shown in Figure 23 

along with the resulting NEURON morphology. 



 69 
 

 

Figure 23 DCN neuron morphology, with the GENESIS morphology displayed in 

neuroConstruct to the left, and the exported NEURON format morphology, visualised 

in NEURON, on the right. Note the different shapes of the soma (middle of each 

picture). 

The DCN neuron morphology was exported from neuroConstruct as 

NEURON hoc code. The following hoc code specifies the same morphology as the 

GENESIS example: 

connect p1[1](0), soma(0.5) 

soma pt3dadd(0, 0, 0, 21.597) pt3dadd(21.597, 0, 0, 21.597) 

p1[0] pt3dadd(0, 0, 0, 2.52) pt3dadd(-1.708, 15.872, 6.12, 2.52) 

The connection point between two compartments in NEURON can be set 

to any part of either of the two compartments, using the expression: 

connect comp1(fractionOfLength), comp2(fractionOfLength) 

Thus, from the given example, connect p1[1](0), soma(0.5) instructs 

NEURON to connect the beginning of dendrite p1[1] to the middle of soma. 

The next line uses the pt3dadd command, which as in GENESIS gives X, Y, 

Z coordinates followed by the diameter of the compartment. In NEURON this is 

done twice, first for the position and diameter of the beginning of the 

compartment, followed by the same for the end. 

The translation resulted in one obvious morphological difference. 

NEURON does not allow spherical compartments and neuroConstruct therefore 
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translated the soma as a cylinder with equal length and diameter. The cylindrical 

soma is shown with its side facing the viewer in Figure 23. 

4.3.3  Inserting the channel mechanisms into the model 

Each compartment of the model belongs to one of the groups in Table 2. 

Table 2 Compartments of the DCN neuron model. 

Compartment group 
Compartments 
per group 

soma 1 

axon hillock 1 

axon initial segment 10 

axonal node 20 

proximal dendritic 83 

distal dendritic 402 

 

Each of the groups in Table 2 contains a specific set of channels and 

channel conductances. The insertion of the channels in NEURON required their 

units to be changed. NEURON uses units commonly used in neurophysiology, for 

example millivolts and milliamperes/cm2, while GENESIS allows any consistent 

set of units. In the GENESIS DCN neuron model, SI units were used throughout 

(volts and amperes/m2 for the given NEURON examples). 

A complication in the comparison of currents passing through the ion 

channel mechanisms in GENESIS and NEURON is that while NEURON gives 

current in units per area, GENESIS gives current in absolute units. Thus, when 

comparing currents between the two simulators, a correction factor had to be 

applied individually for each evaluated compartment based on its surface area.  
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4.3.4  Synaptic mechanisms 

Synapses were constructed in NMODL in a manner similar to the one 

previously described for voltage and concentration gated ion channels. As for ion 

channels, GENESIS provides functions and objects that enable the creation of 

synapses (the synchan object) and their stimulus elements (the timetable and 

spikegen objects), while NEURON requires more programming but offers more 

flexibility, such as the ability to include STD. The synapses of the NEURON DCN 

model were constructed with most of their code based on the included exp2syn 

mechanism. The synapse mechanism responds to inputs from afferent neurons; 

these were created using the NEURON NetStim object which corresponds to 

timetable and spikegen in GENESIS. 

The synapses of the model are located in the soma and the dendritic 

compartments. Of the inhibitory GABAergic synapses, originating from Purkinje 

cells, one synaptic mechanism is added to the soma and 400 to randomly selected 

dendritic compartments. The excitatory inputs to DCN neurons comprise three 

mechanisms: an AMPA channel, and fast and slow NMDA channel components. 

The model contains one excitatory synapse on the soma, and 100 on a group of 

randomly selected dendritic compartments. 

The somatic synapses of the original DCN neuron model receive input at a 

50 times higher frequency than the dendritic synapses. This is a computationally 

efficient way of creating the effect of the larger number of synapses that reach the 

much larger somatic compartment than the dendritic ones. The result is that the 

soma receives one third of all excitatory and one ninth of all inhibitory synaptic 

input to the DCN neuron model. 
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4.3.5  The run system of the NEURON model 

The run system is the part of the NEURON model that differs most from 

GENESIS, with operations such as recording (of membrane potential, currents, 

state variables, etc), injections of current, and sending stimuli to synaptic 

compartments. The NEURON DCN neuron model run system was constructed to 

set up a simulation comprising the following main steps: 

 The simulation start file DCN_simulation.hoc defines the number of 

phases of the simulation, the length of time of each phase and what it 

contains in the form of frequency of synaptic inputs and current injection 

strength (if any). 

 DCN_simulation.hoc also defines what compartments to record from and 

what variables to record and then in turn loads the rest of the files: 

DCN_morph.hoc, DCN_mechs.hoc, DCN_withoutgui.hoc, and 

DCN_recording.hoc. 

 DCN_morph.hoc contains the morphology and specifies the compartment 

groups. 

 DCN_mechs.hoc inserts the NMODL mechanisms: ion channels, the 

calcium concentration element, synapses, and synapse-stimulus elements. 

 DCN_withoutgui.hoc steps through the simulation, time step by time step, 

controlling when to record variables and save files, tasks it outsources to 

DCN_recording.hoc. 

4.4  Results of the model translation 

This section will assess the translated DCN neuron model, with a focus on 

comparisons between the behaviour of the GENESIS and NEURON 
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implementations. Features that will be evaluated include how the spike shape and 

spike trains compare and how the models respond to injected current. The 

behaviour of the model takes a few seconds to stabilise after a simulation is 

started: in the NEURON version of the DCN neuron model from directly after 

translation 5 seconds were required for perfect equilibration, while both the 

GENESIS and NEURON models reached firing rates within 2% of the final firing 

frequency after 2.5 seconds of equilibration. Analyses of simulation data in this 

thesis are based on the time following 4 seconds of initial equilibration time. The 

firing rates given in the ensuing evaluations are means of 15 seconds (i.e., from 4-

19 seconds of the simulation output).  

The spontaneous firing frequency in the model with no synaptic input and 

no current injection applied was 11.59 Hz in the translated model (NEURON), 

compared to 11.79 Hz in the GENESIS original, giving a difference of less than 

2%. With 20 Hz excitatory and 40 Hz inhibitory background synaptic inputs, the 

NEURON model had a firing frequency of 19.45 Hz while the GENESIS model 

fired at 19.55 Hz (a difference of ca 0.5%). 

4.4.1  Shape of spikes and spike trains 

The shapes of spikes were correctly reproduced in the NEURON model 

and are shown in Figure 24. 

  



 74 
 

 

 
Figure 24 Spike shape on spontaneous firing in the NEURON and GENESIS versions of 

the DCN neuron model. The lower graph shows the overlay of the parts of the action 

potential and reveals a remaining 2% difference in spike rate between the models. 

The bar in the upper two figures indicates 5 milliseconds. Both simulators were set to 

use the Crank-Nicholson method of numeric integration with an integration time 

step of 25 µs in NEURON and 5 µs in GENESIS. 
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The spike shape of the original GENESIS spike, in turn, is a good 

replication of the physiological spike shape of DCN neurons as shown in Figure 

22. 

Spiking in the DCN neuron model without synapses was completely 

regular in both implementations, meaning that each interspike interval (ISI) had 

an equal length after the end of the initial equilibration period had been reached. 

With background levels of synaptic inputs applied, typical spike trains 

from both implementations are shown in Figure 25. 

 

Figure 25 A sample 2-second spike train from the NEURON and GENESIS 

implementations of the DCN neuron model. The trains are from simulations with 

background synaptic input (at a level of 20 Hz excitatory and 30 Hz inhibitory inputs). 

The NEURON model features a firing frequency of 19.45 Hz while the GENESIS 

version fires at 19.55 Hz (averages of 100 seconds). The GENESIS spike train displays 

a smaller level of variability in the intervals between spikes (interspike intervals, ISIs), 

an observation which is confirmed by the ISI distribution plot of Figure 26. 
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While the average spiking rate of the neuron differed very little between 

the two models in the presence of synaptic input, the ISI distributions of the two 

models exhibited clear differences, shown in Figure 26. 

 

Figure 26 ISI distributions of the NEURON and GENESIS models with background 

synaptic input applied (20 Hz excitation and 30 Hz inhibition). The histograms show 

the percentage of ISIs in each 1-ms-bin, for each model based on a sample of ca 3800 

spikes over 200 seconds. The ISI distribution of the NEURON model displays a larger 

standard deviation (14.9 ms) and a non-normal distribution (p-value = 0.002 in the 

Kolmogorov-Smirnov test for normality of distribution) compared to the GENESIS 

model’s standard deviation of 10.4 ms and its normally distributed ISIs (Kolmogorov-

Smirnov p-value > 0.2).  

In contrast to the GENESIS model, the ISIs of the spikes fired by the 

NEURON version of the DCN model did not comprise a normal distribution (see 

caption to Figure 26 for test of normality). To investigate the cause for these 
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disparate distributions, the output of the synaptic stimulus elements provided by 

the simulators (NetStim in NEURON, timetable and spikegen in GENESIS) was 

analysed. The two synaptic stimulus elements, which generate the time series of 

input spikes that activate the synapses of the DCN neuron model, had clearly 

different ISI distributions as shown in Figure 27, below. The attempts to create a 

modified input-spike ISI distribution that resembles those found in vivo will be 

discussed in Section 4.5.7. 

 

Figure 27 ISI distributions of 30 Hz inhibitory synaptic inputs to the GENESIS and 

NEURON models. The plotted data are based on ca 10000 input spikes to each model 

and show how the built-in NEURON synaptic input element, NetStim, produces 

Poisson-distributed inputs while the GENESIS DCN model uses a setting giving 

gamma distributed input spikes. 

4.4.2  Rebound firing 

Post-inhibitory rebound firing is a prominent feature of DCN neuron 

electrophysiology (2.7.1); its reproduction in the model is one of the metrics of 

successful modelling. Rebound responses comprise a combination of fast rebound 

bursts and/or slow and prolonged periods of accelerated spiking that are 

expressed to variable extents (Steuber et al., 2010). The shape of a slow and 
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prolonged rebound response in a DCN neuron in slice recording is shown in 

Figure 28, while a similar rebound spike train from each of the GENESIS and 

NEURON models is shown in Figure 29 (note that the latter shows 0.5 seconds 

while the recording spans 1.5 seconds, giving the recorded spike train a more 

compressed appearance than a same-scale comparison would show). 

 

Figure 28 Rebound spike train recorded from a DCN neuron in a cerebellar slice, 

showing the end portion of 150pA of hyperpolarising current injection to the left. 

Total time displayed in the figure is 1.5 seconds. Adapted from a figure provided by 

Dieter Jaeger (unpublished data). 
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Figure 29 Rebound responses of the NEURON and GENESIS implementations of the 

DCN neuron model after the offset of 300 Hz of inhibitory synaptic input, showing 

good correspondence between the two models.  

The spike trains of Figure 29 show a satisfactory reproduction of the 

GENESIS model behaviour in the NEURON translation, with the same triad of 

tightly spaced spikes followed by longer interspike intervals. 

4.4.3  Response to current injection 

Another electrophysiological signature of a neuron and thereby necessary 

to be replicated in a model is its response to current injection. The DCN neuron 

reacts to increasing levels of positive current injection by firing at increasing rates 

(Figure 30). The spike rate does not saturate for the range of input currents tested 

(<= 400 pA), but the f(I) curve resembles the initial part of a sigmoid, which is a 

commonly observed shape of f(I) curves in real neurons and computational 

models (see for example Silver, 2010). This response to current injection was well 
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reproduced in the NEURON translation, with a comparison to the original 

GENESIS model shown in Figure 31. 

 

Figure 30 Spike rate in response to current injection into the soma of three DCN 

neurons (dotted lines) and the GENESIS DCN neuron model (solid line). From 

(Steuber et al., 2010). 

   

Figure 31 Spike rate in response to current injection into the soma of the DCN 

neuron model in GENESIS (dotted red line) and in the model after translation into 

NEURON. The time step of integration was 5 µs and the temperature was 32°C. The 

GENESIS result corresponds to the solid line of Figure 30.  
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4.4.4  Effect of integration time step  

The length of the time step of integration (∆t) determines the time 

required to execute a simulation in a directly proportional fashion. While this 

gives a motivation for using a long ∆t, the degree to which the results of a 

simulation correspond to the exact mathematical descriptions of the modelled 

mechanisms decreases upon lengthening ∆t (Carnevale and Hines, 2006, p 64). 

The original DCN model in GENESIS used ∆t = 5 µs. The spontaneous 

firing rate resulting from varying ∆t was investigated in the two models, and is 

presented in Figure 32. Surprisingly, decreasing ∆t from the default value of 25 s 

down to 1 s resulted in a slightly larger rather than smaller difference in 

spontaneous firing rate between the two models. 25 µs was used as the time step 

of integration in all subsequent NEURON simulations of this thesis. 
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Figure 32 Spontaneous firing rate of the GENESIS and NEURON models as a function 

of the integration time step, ∆t. Note how the results of the GENESIS simulation are 

more susceptible to changes in ∆t, while the firing frequency of the NEURON model 

remains stable for values of ∆t between 1 and 10 s. Crank-Nicholson integration 

was used in both models. 

4.4.5  Fidelity of reproduction 

I have shown how the translated model reproduces several important 

characteristics of the original DCN neuron model to a satisfactory degree. These 

metrics include the spike shape, firing frequency with and without background 

levels of synaptic input and over a range of current injections, and rebound spike 

train characteristics. 

Up to two percent difference in firing rate remained between the models. 

Several rounds of meticulous proof-reading of the code and of testing of currents, 

ion concentrations, and state variables from a range of different compartments 
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failed to reveal any remaining differences in the mathematical descriptions of the 

models. 

Differences in how the simulators compute membrane potential and other 

variables may account for the remaining differences, although the same 

numerical integration method has been chosen for the two models (Crank-

Nicholson). The GENESIS model uses compartment type compartment where the 

axial resistivity is located at one side of each compartment. The alternative 

method, dividing the axial resistivity into two components on either side of the 

midpoint of the compartment, is the only way it can be done in NEURON (De 

Schutter and Steuber, 2001). This is an additional possible source for the small 

difference between the two DCN neuron models. 

4.5  Modifications to the translated model 

The introduction to this chapter discussed the main reasons for the 

translation of the DCN neuron model to the NEURON simulator. These and 

additional features to be modified or added are listed in Table 3. 

Table 3 Modifications and additions to the translated DCN NEURON model. 

 Synaptic short-term depression (STD) 

 Calcium channel currents 

 Temperature adjustments to run simulations at in vivo temperature 

 Synaptic input with gamma distributed spike trains, including the provision of 

a refractory period 

 GABAA receptor synaptic input from Purkinje cell spike train files 

 Synaptic strengths, numbers and activation rates 

 Adjusted DCN neuron model output to that of DCN neurons recorded in vivo 
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The remainder of Section 4.5 will describe briefly how the changes listed in 

Table 3 were made. “DCN neuron model” hereafter denotes the NEURON version 

of the model. 

4.5.1  STD 

The experimental data on STD at the PC-DCN synapse by (Pedroarena and 

Schwarz, 2003) were mathematically described and modelled by Shin et al. 

(2007a). In their model, the synaptic depression is assumed to be caused by a 

decreased probability of presynaptic transmitter release; the steady-state release 

probability and the ensuing synaptic conductance at different Purkinje cell firing 

frequencies were shown in Figure 2. 

The STD model from Shin et al. was incorporated into the DCN neuron 

model, using the following equations to calculate the release probability for each 

input spike n. 

r.r.

ss e.e..)r(R 020842 320600080    (16) 

r.r. ee)r( 02202740 10025002    (17) 

)e)(RR(RR
nISI

nssnn




  111  (18) 

where r is the instantaneous firing rate (in Hz) calculated as the inverse of the 

preceding interspike interval; Rn-1 is the release probability for the previous spike; 

ISIn is the interspike interval (in ms) between the present spike and the preceding 

spike; Rss is the steady-state release probability; and  is the time constant of 

depression, given in ms. 
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The computed release probability Rn is used in the DCN neuron model as a 

scaling factor applied to the synaptic conductance for each input spike. For 

example, this gives a synaptic conductance of 0.42 times the maximum 

conductance at regular 1 Hz Purkinje cell firing, and 0.18 times the maximum 

conductance at 60 Hz (compare with Figure 2).  

4.5.2  Modifying calcium channel currents 

The change to use the GHK current equation for calculation of current of 

all calcium channels was implemented with one additional calcium concentration 

element (CalConc.mod) and a modified CaLVA channel, where the linear current-

voltage relationship was changed to use the GHK current equation (Equation 13). 

The comparison between the new and old model versions showed no 

difference. In the presence of background synaptic input (20 Hz excitatory and 30 

Hz inhibitory) the DCN neuron firing rates were 20.20 Hz in both versions. 

4.5.3  Adjusted kinetics to give physiological behaviour at 

37°C 

The original GENESIS model was constructed to replicate experimental 

data obtained in electrophysiology experiments in cerebellar slices performed at 

32°C (Steuber et al., 2010). The model used a temperature adjustment 

mechanism for the voltage-gated channel kinetics with a Q10 of 3, which means 

that a temperature change of 10 degrees Celsius alters the speed of ion channel 

gating three-fold (Hille, 2001, page 51). The rise and fall time constants of 

synaptic channels were not provided with temperature adjustment in the original 

DCN neuron model. 

The aim in this thesis work was to reproduce in vivo neuronal behaviour 

and therefore to run simulations at 37°C. The DCN neuron model was therefore 
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modified so that in addition to utilising the same level of temperature adjustment 

as the GENESIS original, temperature adjustments were added for synaptic 

channel gating, conductances of all channels and synapses, as well as calcium 

concentration kinetics. The Q10 of synaptic rise and decay constants was set to 2 

based on measurements of temperature sensitivity of the kinetics of inhibitory 

(Otis and Mody, 1992) and excitatory (Silver et al., 1996) synapses. Conductances 

are less temperature sensitive than gating kinetics and the conductances of the 

DCN model were given a Q10 of 1.4, in the middle of the experimentally 

determined range (Hille, 2001, page 51). Finally, the calcium concentration pools 

were set to use Q10 = 2. No data on calcium concentration temperature response 

was found in the published literature; the used value is based on the reasoning 

that calcium concentration is affected by changes in actions of protein pumps 

(plausibly with a Q10 in the range of that of channel gating) and by changes in 

diffusion of the ion species (with a Q10 as of conductances). 

4.5.4  Synaptic input with gamma distributed spike trains 

Figure 27 showed how the synaptic input in the NEURON model differed 

from the synaptic input to the GENESIS version; while the former was initially 

provided by a Poisson process, the latter constituted a higher-order gamma 

function. 

Since Purkinje cell spiking has been quantified to be of gamma order 3.4 

(Shin et al., 2007b) the GENESIS model synaptic input was the better match. It 

was created using the timetable object in GENESIS, allowing the setting of 

synaptic input to a gamma distribution of integer order 1 to 6. The synaptic input 

generator in NEURON, NetStim, can only generate Poisson distributed spikes. 

Hence, I translated the code of timetable from GENESIS and added it as a new 

mechanism in NEURON: GammaStim; this mechanism was uploaded to the 
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computational neuroscience tools repository, which is part of the ModelDB 

database curated at senselab.med.yale.edu. Like the GENESIS original, 

GammaStim can be set to integer gamma orders 1-6. The DCN neuron model 

used GammaStim with order 3, both for Purkinje cell inputs and for the excitatory 

mossy fibre inputs. 

Another functionality added with GammaStim compared with NetStim is 

the ability to specify a refractory period between spikes. This was set to a default 

of 1 ms which has been used for all simulations where a different refractory period 

is not explicitly given. The inhibitory inputs to the DCN neuron model replicate 

Purkinje cell firing, which has been shown to be faithfully transmitted down the 

Purkinje cell axon at a maximum of ca 300 Hz (Monsivais et al., 2005), 

corresponding to a refractory period of ca 3 ms. Due to the gamma shape of the 

input distribution, few spike intervals reach below this value when the 

GammaStim is set to a refractory period of 1 ms; the de facto minimum spike 

interval in a sample of 1000 input spikes was 2.42 ms at an input spike rate of 30 

and 1.84 ms at 50 Hz. 

4.5.5  GABAA receptor synaptic input from Purkinje cell spike 

train files 

For the research projects described in Chapters 5 and 6, it was necessary to 

be able to use recordings from real Purkinje cells from electrophysiology 

experiments and from the Purkinje cell model (De Schutter and Bower, 1994b, a). 

This functionality was added to the DCN neuron model run system so that 

up to 450 different spike train files could be read in from a repository of spike 

trains on the computer running the simulations. 
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4.5.6  Modified synaptic strengths, numbers and activation 

rates 

The conductances and firing rates of excitatory inputs to the model were 

kept as in the default setup of the GENESIS version, with 20 Hz excitatory firing. 

In the original model the synapses to the soma were modelled as one excitatory 

and one inhibitory synapse, each sped up 50 times compared to the dendritic 

synapses, yet with the same maximum conductances. While this was 

computationally efficient, it created close to tonic excitatory and inhibitory input 

currents. To make this more realistic, in the NEURON version of the model the 

single excitatory and inhibitory synapses were replaced by 50 synapses each, 

which were activated at the same rate as the dendritic synapses. 

The peak conductance of the GABAA synapses was drastically increased 

from the GENESIS model to reflect more recent experimental data (Telgkamp et 

al., 2004). While Steuber et al. (2010) used GABAA synaptic conductances in the 

range of 50 to 200 pS, I set the peak GABAA conductance to 1.6 nS at 32°C which 

corresponded to 1.89 nS at the used simulation temperature, 37°C (applying a 

Q10 of 1.4, see Section 4.5.3). Yet, since the DCN neuron model in GENESIS did 

not use STD, in that model the actual conductance resulting from an input spike 

equalled the peak conductance, while in the new GABAA synapse with STD 

(Section 4.5.1) the actual conductance was computed for each input according to 

Equations 16 to 18. Hence the actual conductances depended on the input rate 

prior to each spike and effectively never reached the peak conductance. Table 4 

shows how the actual conductance in the modified DCN neuron model depends 

on the firing rate, for an input where each interspike interval has the same length 

(i.e., the input is completely regular). 
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Table 4 Conductance of GABAA synapses of the modified DCN neuron model with 

short-term depression (STD) applied. STD makes the conductance generated by a 

synaptic input depend on the prior input rate whereas in the GENESIS version each 

input to the GABAA synapse created the same conductance. The data in the table are 

for a peak conductance of 1.89 nS and for inputs with completely regular interspike 

intervals.  

Input rate (Hz) Conductance (pS) 

0.1 1.61103 

1 810 

10 646 

100 233 

 

The reversal potential for the inhibitory inputs is that of the chloride ion 

that GABAA receptor channels are selective for; it was changed from -90 mV of 

the NEURON model directly after translation to -75 mV for all subsequent 

simulations (Jahnsen, 1986b; Llinas and Muhlethaler, 1988; Morishita and 

Sastry, 1996; Alvina et al., 2008). The inhibitory input rate was set to a default 40 

spikes per second, reflecting the available data on adult rats (Savio and Tempia, 

1985; Stratton et al., 1988; LeDoux and Lorden, 2002). 

4.5.7  Adjusting the DCN neuron model output to that of DCN 

neurons recorded in vivo  

A literature review revealed two published ISI distributions of in vivo 

recordings from DCN neurons at spontaneous firing, one from cats (Figure 5 B in 

Delgado-Garcia and Gruart, 2002) and one from the rat strain (Sprague-Dawley) 

the DCN neuron model is based on (Figure 2 B in Rowland and Jaeger, 2005). 
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The ISI distribution of the rat DCN neuron is shown in Figure 33 and is highly 

similar to the distribution of ISIs in the cat (not shown). 

 

Figure 33 Interspike interval distribution of a spontaneously firing DCN neuron in 

vivo (Figure 2 B in Rowland and Jaeger, 2005). Compare this distribution with the ISI 

distributions in the two versions of the DCN neuron model (Figure 26 in Section 

4.4.1).  

The result of the steps described above was a DCN neuron model output 

with a firing rate of 50.1 Hz (ISI = 19.9) and an ISI distribution with a gamma 

order of 6.7 (mean of 11 trains of 20 seconds each). An example ISI distribution of 

one of the 20 s spike trains that were used to calculate the mean firing rate and 

gamma order is shown in Figure 34. 
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Figure 34 ISI distribution of a 20 second train of the DCN neuron model after 

introducing the modifications described in Section 4.5. The mean ISI is 19.8 ms 

(dotted vertical line) and the modelled gamma probability density function is of 

order 7.05. The solid vertical lines show the quartiles of the distribution. 

4.6  Spiking behaviour after modifications 

Following the changes detailed above, the firing rate in the absence of 

synaptic inputs was 26.5 Hz. The response curve to current injections remained 

slightly sigmoid (Figure 35); the shapes of spikes and spike trains were slightly 

altered compared to the original model with a shallower interspike 

hyperpolarisation Figure 36. 
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Figure 35   Spike rate in response to current injection into the soma of the DCN 

neuron model in GENESIS (dotted red line), NEURON directly after translation (blue) 

and in NEURON after modifications (green). The integration time step was 25 µs in 

the post-modifications NEURON case and 5 µs in the NEURON version after 

translation as in GENESIS. The lower two lines of the graph are replicas from Figure 

31.  

 

Figure 36 Spontaneous firing of the DCN neuron model after modifications were 

incorporated. The firing rate increased to 26.5 Hz from 11.6 Hz in the model directly 

after translation; this was almost exclusively a result of running the simulations at 

37°C instead of 32°C (comparison not shown).  
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The default excitatory synaptic input rate was kept at 20 Hz; together with 

the increased inhibitory default rate of 40 Hz and the new default temperature of 

37°C, the DCN neuron fired at 50.3 Hz (mean of ten 15-second trains; all synaptic 

inputs were individually randomised). This result reached the above stated goal of 

producing in vivo firing rates of DCN neurons, replicating the mean of 50 Hz 

discussed in Section 2.7.1. 

4.6.1  No effect of modified calcium kinetics 

The lack of effect of the modified CaLVA channel kinetics (Section 4.5.2) 

on the baseline firing rate was surprising. As mentioned in Section 4.1, the 

consensus in the field of computational modelling of neurons is that the 

Goldman-Hodgkin-Katz (GHK) current equation is required for correct modelling 

of calcium currents. Since the CaLVA channel is involved in rebound firing, I 

wanted to evaluate the effect of the changed kinetics on such firing. The mean 

currents at baseline firing of the old and new channels were set to be identical, 

but if a difference in behaviour of the channel would be seen during rebound 

firing, the case for using the GHK channel would be strengthened. 

Figure 37 shows the CaLVA current inflow to the soma of the DCN neuron 

model in simulations of rebound, using (left) the original CaLVA model with 

linear current-voltage response, versus the new GHK current equation (right). 

While the currents have different shapes, especially during the first rebound 

spikes, there is no change in the overall number of spikes in the rebound phase. 

Combined with the lack of changed firing rate at baseline firing, it appears 

unlikely that the CaLVA channel modifications play any role in the setup of the 

DCN neuron model used in this thesis. 

 



 94 
 

 

Figure 37 CaLVA channel current during rebound firing. The graphs show the current 

going through the CaLVA channel in the DCN neuron model soma during high-

frequency inhibitory input (150 Hz, from 4 to 4.5 seconds) to the DCN neuron model 

followed by the return to baseline inhibitory input (40 Hz). The excitatory input 

remained constant at 20 Hz. 

 

 

 

5.  Pattern recognition by Purkinje cells 

and DCN neurons 

The computations performed by the cerebellum remain poorly 

understood. As discussed in Section 2.7.4, a main theory of cerebellar function is 

the Marr-Albus theory, which predicts a central role for the parallel fibre to 

Purkinje cell synapses (PF-PC synapses) in storing information. This assumption 

is tested in the work on cerebellar pattern recognition that will be presented in 



 95 
 

this chapter. The investigation involves several steps following the initial 

modelling of presentation of parallel fibre patterns to Purkinje cells. To simplify 

the understanding of the project, the flow chart in Figure 1 summarises the main 

steps of the work. 

 

 

Figure 38 Work flow for the pattern recognition simulations of the present 

thesis. The performed work is summarised in the boxes to the left and will be 

presented in detail in the remainder of the chapter. The figures to the right show the 

locations in the modelled network where the steps to the left were taken. Compare 

with the outline of the cerebellar circuitry shown in Figure 9 in Section 2.7.  
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5.1  Past studies of cerebellar pattern recognition 

5.1.1  Models of associative memory in cerebellar cortex 

The Marr-Albus theory of cerebellar computation has been explored in 

previous computer simulations. One early example is the work of Tyrrell and 

Willshaw (1992) where the Marr-Albus theory was implemented and compared to 

an associative net. 

An associative net (Willshaw et al., 1969) is a type of artificial neural 

network which has the ability to detect and remember simultaneously active 

inputs and outputs, making it function as a pattern recognition device. The 

principles of its operation are shown and explained in Figure 39. 
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Figure 39 The principles of an associative net. (a) The initial state where no learning 

has taken place. (b) learning mode: inputs and outputs are presented and the 

intersections between active inputs and outputs are switched on. (c) and (d) show 

the retrieval mode, where in (c) the re-presentation of the learned input pattern 

activates the output lines, whereas in (d) the presentation of a novel pattern does 

not. Although three output units receive input through an intersection that has been 

switched on in (d), the threshold is not reached since it is set to the sum of the active 

input lines. From Tyrrell and Willshaw (1992). 

Tyrrell and Willshaw (1992) argue that the Marr-Albus theory can be seen 

as the representation of the cerebellar cortex as an associative net, where the 

parallel fibres (PFs) constitute the input lines; the Purkinje cells the output lines; 

the PF-PC synapses the nodes (intersections) of the net; and the climbing fibres 

the signal to invoke the learning mode. 
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Tyrrell and Willshaw created a simulation of the circuitry of the cerebellar 

cortex based on the Marr-Albus theory. Their results show that the Purkinje cell 

may be able to distinguish with low error levels approximately one hundred 

different patterns presented along its parallel fibre input lines. These parallel 

fibre input patterns involved the activation of 1% of PF-PC synapses; learning in 

the synapses was coded as a binary event where synapses had weight 0 initially 

and were set to 1 during learning (Figure 38). 

5.1.2  A simple model of cerebellar pattern recognition based 

on LTD 

Steuber and De Schutter (2001) developed a more biologically realistic 

associative net based on depressing synapses, and they compared pattern 

recognition in this associative net with results from a Purkinje cell model with a 

passive soma which did not contain any voltage-gated ion channels and could 

therefore not generate action potentials. The synaptic strengths of the associative 

net were set to 1 initially and were halved each time LTD was induced. The 

principles of the construction of the net was the same as that used for the 

associative net used in this thesis and will be described in detail in Sections 5.2.1 

and 5.2.2. During the learning phase, the net was presented with varying numbers 

of patterns that the system was instructed to store; this is illustrated 

schematically in Figure 40. During the recall phase, the net was then presented 

with the same stored patterns and an equal number of novel patterns, and the 

responses of the output unit were calculated as inner products of the pattern 

vectors and the synaptic weight vector. 

The weight vectors that resulted from storing the patterns based on the 

LTD learning rule were saved and used to determine the PF synaptic 

conductances of a passive soma version of the biophysically realistic Purkinje cell 
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model (PC model) of De Schutter and Bower (1994a, b). This simulation system 

consisted of the PC model receiving 147,400 PF-PC synapses, which were 

synchronously activated by vectors corresponding to novel and stored patterns 

presented to the associative net. The effect on the model of the pattern 

presentations was evaluated by measuring the voltage responses in its soma. The 

main findings of this study were that the associative net outperformed the 

Purkinje cell model by more than an order of magnitude, and that pattern 

recognition in the Purkinje cell model benefitted from the presence of active ion 

channels in the dendrites, which amplified the difference of voltage responses to 

stored and novel patterns. 
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Figure 40 The type of associative net underlying the pattern recognition simulations 

in this thesis. The illustrations show how a set of five synapses store and retrieve 

information presented via activity of the parallel fibres. Leftmost, three different 

patterns are presented to the system, resulting in from zero to two halvings of the 

synaptic strengths depending on the number of times the synapses receive input. 

The middle part shows the re-presentation of one of the three patterns, giving a 

depressed response (summed weight = 0.75) compared to the novel pattern 

(rightmost) that produces a summed weight of 1.5. From Steuber and De Schutter 

(2001). 

5.1.3  Pauses in Purkinje cell firing are shown to contain 

information 

The work on pattern recognition by Purkinje cells with a passive soma by 

Steuber and De Schutter (2001) was extended to a more biologically realistic 

Purkinje cell model with an active soma by Steuber et al. (2007). The results of 

presenting novel and stored patterns to the active-soma PC model showed that 

the most sensitive metric for pattern recognition by the Purkinje cell was the 

length of a pause in firing that followed the PF inputs. Stored patterns gave a 

shorter pause than the novel ones, in spite of the higher excitatory strength of the 
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novel patterns. Pause length was thereby identified as a new type of neuronal 

coding feature. Figure 41 shows the differential pause responses to a set of novel 

and stored patterns in Steuber et al. (2007). Parenthetically, I will use the term 

“stored pattern” rather than “learned pattern”, so as not to imply an assumption 

of intention on behalf of the system. 

  

 

Figure 41 Purkinje cell firing patterns resulting from stored (“learned” in the Figure) 

and novel patterns. The most characteristic change in Purkinje cell firing on 

recognition of a stored pattern was found in the length of pause (see top of the 

picture for the metrics). The recognition of stored patterns led to shorter pauses 

than those resulting from novel patterns. From Steuber et al. (2007) 

The pattern recognition results in the PC model were intriguing and raised 

the follow-up question of how these differential pause lengths affect the targets of 
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the Purkinje cells in the cerebellar nuclei. For this thesis the issue was 

investigated by the creation of a network model where up to 450 instances of one 

of three different PC models were connected to the DCN neuron model. The 

responses to the inputs of novel and stored patterns, respectively, to the Purkinje 

cells were analysed primarily on the DCN level; comparisons with the pattern 

recognition capability of the PC models were made where deemed interesting.  

5.2  Modelling of PC pattern recognition in this 

thesis 

The PC model was used as in Steuber et al. (2007), with a few 

modifications. These included the change of the inhibitory inputs to the model to 

be no longer tonic: the 1000 Hz inhibition to the soma of the Purkinje cell of 

Steuber et al. (2007) was here reduced to 1 Hz, with a concomitant increase of the 

peak inhibitory synaptic conductances by a factor of 1000. Thus, in the 

simulations for this thesis, the original PC model inhibitory synaptic conductance 

of 7 mS/cm2 was used (“Stellate cell synapses” in De Schutter and Bower, 1994b). 

The reason for this change was that Purkinje cell output rates could not be 

titrated with 1000 Hz inhibitory input; this will be described in detail in Section 

5.2.8. 

All simulations were run at 37°C as in the original PC model. 

5.2.1  The configuration of the associative net 

The associative net was constructed as in Steuber and De Schutter (2001) 

and Steuber et al. (2007). As in these studies, the assumption is that patterns of 

activity among the circa 150,000 actual PF inputs to the Purkinje cell are stored 

in the values of the conductances of the PF-PC synapses. The storage mechanism 
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is long-term depression where each time a pattern is stored, conductances of all 

activated synapses halve. 

The full version of the original PC model contained 147,400 spines where 

each spine head received one PF-PC synapse. While this number of spines was 

biologically realistic, it was computationally expensive and was simplified to a 

version where only 1% of spines were explicitly modelled, giving a total of 1474 

spines (De Schutter and Bower, 1994b). Steuber et al. (2007) showed that the 

pattern recognition results of such a simplified model were indistinguishable 

from those of the full model. During pattern presentation, the PF-PC synapses 

received a synchronised burst of activity with input strength determined by a 

1474-entry vector. The following section will explain how these vectors resulted 

from the presentation of patterns to the associative net. 

5.2.2  Pattern recognition in the associative net 

As in the previous studies, simulations to create the PF activity vectors 

were based on the Marr-Albus theory, which predicts sparseness of coding in the 

PF-PC synapses. Marr (1969) estimated that a minimum of 0.25% of PF-PC 

synapses would need to be active for the pattern they make up to be read out by 

the Purkinje cell, and that the mean number of PFs being active in a pattern must 

be much closer to that minimum than to the total number of PFs. Accepting a 1% 

error rate, he predicted that the Purkinje cell could learn to respond to 240 

different patterns if a pattern would be made up of the activation of 0.5% of all 

PF-PC synapses; at 1% activation, the number of patterns would be 119. 

The PF-PC synapses were modelled as a vector of size 147,400 where each 

entry was set to an initial weight of 1 (unitless). PF activity was likewise modelled 

as a vector of size 147,400 where all entries were set to an initial level of 0. A 

subset of these entries was activated, modelled by setting them to 1. The default 
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number of active entries was 1000 (0.7% of PFs); 1000 simultaneously active PFs 

were previously found to give optimal pattern recognition by the passive soma PC 

model (Steuber and De Schutter, 2001), and this number will be used in the 

following explanation. 100 of such PF activity vectors were presented to the 

synapses in the learning mode, giving a halving of synaptic strength each time at 

each synapse that received an input (Figure 40, left). In the subsequent retrieval 

stage, each of these stored patterns was presented to the now modified synapses. 

The strength of the excitatory effect of a pattern was now given by the inner 

product of its PF activity vector and the synaptic weight vector; i.e., each of the 

entries of the PF activity vector (1000 ones, 146,400 zeros) was multiplied by the 

corresponding synaptic weight (ranging from a theoretical minimum of 0.5100 for 

a synapse that has received input from all 100 patterns, to the maximum being 

the original weight of 1).   

Another 100 PF activity vectors were created with 1000 randomly selected 

entries set to 1. These vectors were only presented to the synapses in the retrieval 

mode; they constitute the “novel” patterns. 

For the application of these 147,400-entry vectors to the PC model with 

1474 spines, the entry-wise products were summed in clusters of 100 each, giving 

a total of 1474 activation values for each pattern; these vectors will be called final 

PF activity vectors. For the above given number of 1000 active PFs, a final PF 

activity vector containing a novel pattern yields a theoretical maximum sum of its 

entries of 1000, which would be reached if neither of the corresponding PF-PC 

synapses were depressed by any of the 100 stored patterns. Similarly, the 

maximum sum of entries of a final PF activity vector of stored patterns would be 

500, reached if no synapse was activated by more than one pattern during the 

learning phase. The actual mean sum of the 100 novel vectors was 712 and for the 
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stored patterns, 357, resulting from approximately half of all synapses having 

been included in at least two patterns. 

5.2.3  Evaluation of pattern recognition capability 

The ability of the associative net to distinguish between novel and stored 

patterns given by the PF activity vectors was quantified by the calculation of 

signal-to-noise ratios (Dayan and Willshaw, 1991). These are commonly 

abbreviated S/Ns or SNRs; the latter will be the choice here to avoid confusion 

with the subscripts s (for stored) and n (novel): 
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where µs and µn are the population means and σs
2 and σn

2 the population 

variances of responses to stored and novel patterns, respectively. For the example 

with the associative net above, SNR  2.2103. 

In the case where the metrics of novel and stored patterns belong to two 

normal distributions with equal variance, Equation 19 can be rewritten as: 
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where σsn
2 is the variance of the distributions. The probability of correct 

discrimination (Pc) can now be calculated with the cumulative normal 

distribution function, which gives (Schultz, 2007): 
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where SNR is the signal-to-noise ratio and erf is the error function: 



 106 
 

dte)x(erf
x

t




0

22


 (22) 

However, not all metrics used for discriminating between novel and stored 

patterns in this thesis will be normally distributed. With that caveat, the 

probabilities of correct discrimination for different signal-to-noise ratios are 

given in Table 5, calculated from Equations 21 and 22. 

Table 5 Probability of correct discrimination for different signal-to-noise ratios in a 

classification task where the incidence of the desired case is 0.5. The symbols SNR 

and Pc are from Equation 21. 

Signal-to-

noise ratio 

(SNR) 

Probability of correct 

discrimination              

(Pc) 

0 0.5 

0.3 0.608 

1 0.692 

3 0.807 

10 0.943 

30 0.997 

50 0.9998 

 

5.2.4  Biological significance of signal-to-noise ratios  

The size of the signal-to-noise ratio (Equation 19) is influenced on one 

hand by the size of the numerator, which depends on the difference of means 

between the groups; on the other hand, it depends on the denominator, which 

depends on their corresponding variances. Hence, a large signal-to-noise ratio 

can be achieved in the extremes by either a large difference in means or small 
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variances. Considering the inherent noise in biological computing, a very small 

difference of means is unlikely to carry a relevant signal. For this reason, I will at 

times present the numerator and denominator of the signal-to-noise ratio in 

addition to the actual signal-to-noise ratios, where this is needed to understand 

the likely biological significance of the pattern readouts. The numerator and 

denominator values will be normalised in a way similar to that done when the 

coefficient of variation is calculated from a standard deviation: The normalised 

signal-to-noise numerator and denominator are their raw values divided by the 

square of the sum of the means of the underlying novel and stored data. 

5.2.5  Pattern presentation to the Purkinje cell 

The following will explain how the final PF activity vectors were presented 

to the Purkinje cell in the Steuber et al. (2007) work; the few modifications made 

for this thesis will be introduced in the next section. 

The patterns constituted by the PF activity vectors were synchronously 

presented to the Purkinje cell, superposed on the background excitatory input. 

The default excitatory background input to the Purkinje cell was 28 Hz, providing 

an average of 1,474  28  41,000 input spikes per second. Each input spike 

activated an AMPA receptor peak conductance g0 = 0.7 nS, while the presentation 

of a PF activity vector induced peak conductances equal to the elements of the PF 

activity vectors multiplied by g0. Hence, for the final PF activity vectors described 

above, this induced a total AMPA receptor conductance at the time of the pattern 

presentation averaging 712 input spikes for novel patterns, and 357 spikes for 

stored patterns, plus an average of 0.8 background spikes for both patterns. 

The effects of this input on the Purkinje cell action potential generation 

was shown in Figure 41 from the work by Steuber et al. (2007). The rest of the 

present chapter builds on that work by exploring the effects of the PC model 
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pattern recognition on the DCN neuron model and by exploring pattern 

recognition by the Purkinje cell and DCN neuron models in networks with 

spontaneously firing versions of the PC model. The first step in this work was the 

construction of new, spontaneously active, PC models. 

5.2.6  Methodology of creating a spontaneously active PC 

model 

The original PC model did not fire in the absence of synaptic inputs, that 

is, it was not spontaneously active; however, since it was constructed it has been 

found that a large majority of Purkinje cells are spontaneously active (Hausser 

and Clark, 1997; Raman and Bean, 1997). There has been criticism of the Steuber 

et al. (2007) work based on the lack of spontaneous activity in the PC model 

(Walter and Khodakhah, 2009), where the authors argue that spontaneous 

activity of Purkinje cells may be incompatible with efficient pattern recognition. 

Based on that criticism and the advantage of showing the ability of pattern 

recognition to exist in alternative biophysically realistic PC models, I created a 

range of PC models, in the simulator GENESIS, with the original morphology but 

with modified electric properties that resulted in model variants with 

spontaneous background firing. The term background firing will be used to refer 

to the output of the model prior to pattern presentation. 

Neuronal models are most often the result of parameter searches within 

wide ranges of values for constants such as peak ion channel conductances. Often, 

as with the Purkinje cell, lack of precise and consistent experimental data makes 

this a reasonable methodology and that is therefore how I proceeded to create a 

spontaneously firing PC model. The following will describe the main steps of that 

work; all values of Purkinje cell output variables will refer to their steady-state 

after three seconds of simulation.  
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The initial attempt to render the model spontaneously active was made by 

making the reversal potential of the leak current less negative from its original 

value of -80 mV. The constant flow of the leak current acts to hyperpolarise the 

cell membrane; with a less negative reversal potential, the reduced strength of the 

leak current could be assumed to allow the membrane potential to reach the 

action potential threshold more often and thereby give increased spiking. Indeed, 

this modification made the PC model spontaneously active, but either at too fast 

(> 100 Hz) or too slow (15-20 Hz) rates of firing compared to the rates measured 

in vitro of ca 50 Hz (for example, Raman and Bean, 1997). 

Continuing the methodology of modifying one parameter at a time, I 

changed several ion channel conductances without causing the firing rate to reach 

values close to the 50 Hz target rate. For that reason, I changed strategy to 

perform a combinatorial search where I simultaneously changed up to seven 

different ion channel conductances together with membrane resistance and leak 

conductance. Several thousands of combinations were examined. Where 

published data on Purkinje cell firing characteristics in vitro differed from those 

of the original model, criteria were based on reproducing the in vitro behaviour 

rather than that of the original model. Metrics included the response to injected 

current and to channel blockers, the firing rate in the soma, the level of dendritic 

excitability, and the lowest membrane potential reached during the spike cycle. Of 

crucial importance was to eliminate doublet spiking. This repetitive pairing of 

spikes within a few milliseconds is not a feature of real Purkinje cells and its 

presence was the cause of failure for the majority of the tested combinations. 

5.2.7  Evaluating the in vitro behaviour of the PC models 

The lowest possible spontaneous firing rate in a model fulfilling these 

requirements was 74 Hz, placing it at approximately the 75th percentile of firing 



 110 
 

rates of Purkinje cells in vitro (Raman and Bean, 1997). Two spontaneously firing 

models were chosen for use in pattern recognition simulations; their properties 

are given in Table 6. 

  



 111 
 

Table 6 Properties of the PC models used in the pattern recognition simulations of 

this thesis. non_spontPC is the original model (De Schutter and Bower, 1994a); 

spontPC and spontPC_2 are the two spontaneously firing models used in the pattern 

recognition project of the thesis. 

Model name non_spontPC spontPC spontPC_2 

Spontaneous firing rate N/A 73.8 74.6 

Firing rate (Hz) with 28 

Hz excitatory + 1 Hz 

inhibitory input 

91.9 56.6 59.6 

Membrane resistance 

of soma ( m2) 

1 1 0.9 

Initialisation membrane 

potential (mV) 

-55 -60 -60 

Reversal potential of 

leak channel 

mechanism (mV) 

-80 -77 -77 

Peak ion channel conductances of soma compartment (S/m2) 

Fast sodium current 

(NaF) 

75,000 72,000 65,000 

Slow sodium current 

(NaP) 

10 40 40 

Delayed rectifier (Kdr) 6,000 7,500 8,000 

Persistent potassium 

current (KM) 

0.4 8 10 

A current (KA) 150 600 750 

P-type calcium current 

(CaP) 

45 46 45 
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The response to current injections of various amplitudes gives the f(I) 

curve of a neuron, where firing rate is plotted as a function of the current injected 

into the soma compartment, in the absence of synaptic input to the neuron.  

 

Figure 42 Purkinje cell firing rate response to current injection in the soma. (A) Two 

PC models with different ion channel conductances, rendering them differently 

responsive to current injection; neither is spontaneously active. The filled circles are 

the version that has been used in this thesis with the name non_spontPC. From De 

Schutter and Bower (1994a). (B) In vitro experiments underlying the models of (A). 

From Llinas and Sugimori (1980). 

The f(I) curves of the original PC model (Figure 42, A) plot the firing rates 

in the interval 300-700 ms of the simulations (De Schutter and Bower, 1994a). In 

analysing the behaviour of the model, I noticed that the simulations did not reach 

equilibrium until later; see for example Figure 43, where the injection of 1.5 nA 

into the soma of the original PC model results in burst firing only after ca 500 ms. 

At injections below 1.5 nA no burst firing resulted but stable firing rates were not 

reached until after approximately 1 second of simulated neuronal time for all 

examined current values. Therefore the interval of 4-15 seconds was used to 

construct the f(I) curves in this thesis, with results shown in Figure 44. 

A B 
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Figure 43 Current injection into the soma of the original PC model (non_spontPC). 

Injection of 1.5 nA shows how burst firing begins at ca 500 ms. The metrics for the 

f(I) curves in (Figure 44) are based on the interval of 4-15 seconds (not displayed). 

 

Figure 44 The three versions of PC models used in the pattern recognition work of 

this thesis. The different shape of the f(I) curve of non_spontPC compared with that 

from the original publication (Figure 42) is caused by the measurement here of 

stable firing, whether regular or burst firing, in the interval of 4-15 seconds. In the 

original f(I) curve the measurements were made in 300-700 ms, where the firing has 

not yet reached steady-state. The initial monotonically increasing parts of the curves 

correspond to currents below the levels that induce burst firing, which begins at 1 nA 

for the two spontaneously firing models and at 1.5 nA for non_spontPC.  
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5.2.8  Tuning the in vivo firing rate of the PC model  

Similarly to the effect of modifying the amount of current injected to a 

neuronal model to achieve different output rates in the absence of synaptic 

inputs, when modelling the in vivo behaviour of a neuron the background 

synaptic inputs can be used to reach a desired background firing rate. 

The first PC pattern recognition studies I performed – before having 

created the spontaneous PC models – suffered in that I could not slow down the 

PC firing rate as I desired. The solution was to reinstate a non-tonic inhibitory 

input to the PC model as in De Schutter and Bower (1994b) and will be described 

in the following.  

I wanted to make sure that the pattern presentation was always done after 

full equilibration had taken place. As shown for the current injections to the PC 

models (5.2.7), the PC models require a second or more to fire stably. The tonic 

inhibition used by Steuber et al. produced 48 Hz firing in the first 200 ms of the 

simulation, while at steady-state firing in the interval 3-4 seconds, the firing rate 

was 84 Hz with a coefficient of variation (CV) of 0.10. Purkinje cells of adult rats 

have an in vivo firing rate of 35-40 Hz, with a CV of approximately 0.4-0.5 (Savio 

and Tempia, 1985; Stratton et al., 1988; LeDoux and Lorden, 2002) (but see Shin 

et al., 2007a). Hence, I considered the PC model setup to give too high and too 

regular a firing rate to correctly model in vivo behaviour and therefore attempted 

to decrease the firing rate by decreasing the excitatory input from its initial 

setting of 28 Hz. This, however, revealed an instability of the PC model with firing 

rates only possible to be lowered to ca 59 Hz: excitatory inputs set to 25.70315 Hz 

gave 1.67 Hz output, while a 0.00001 Hz higher rate gave 58.65 Hz. In addition to 

59 Hz remaining too high as the lower output limit, it gave too low CVs for 

realistic modelling of in vivo conditions. 
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The solution was to change the inhibitory input from 1000 Hz – in effect 

giving a tonic inhibition – to 1 Hz, while simultaneously increasing the maximum 

conductance of the inhibitory synapses by a factor of 1000. The result was a no-

longer unstable PC model which could be titrated to any desired output rate by 

the manipulation of its excitatory input rate. 

The input rate of 1 Hz had previously been used in the Purkinje cell model 

(De Schutter and Bower, 1994b); since this input rate worked to create good 

output characteristics, I judged that the much more laborious undertaking of 

titrating the Purkinje cell model to fire in a satisfactory way at either 1000 Hz or 

intermediate rates was an unnecessary procedure. 

1 Hz inhibitory input was subsequently used with the spontaneously firing 

PC models which, likewise, could be titrated to any output rate, exemplified with 

the first version of the spontaneously active model (spontPC) in Table 7. 

Table 7 Firing rates of PC model spontPC. The inhibitory input rate was 1 Hz while 

the excitatory input rate was titrated to reach different rates of firing to be used in 

the subsequent pattern recognition modelling. The data are mean values for 

background firing of 750 trains (see Section 5.2.9). 

Excitatory input 

rate (Hz) 

Output rate (Hz) CV of interspike 

intervals 

26 35.3 0.76 

28 56.6 0.56 

37 98.6 0.16 

56.6 Hz was used as the default in vivo output spike rate, since although 

this rate is slightly higher than those of rats at rest, the mean CV of the trains 

(0.56) is closer to the mean in vivo (0.4-0.5). The other two train types shown in 

Table 7 were used in parameter explorations. 
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To allow comparisons between the PC models in pattern recognition trials, 

the excitatory input to the other two models (non_spontPC and spontPC_2) was 

titrated to give the default background output rate of spontPC, 56.6 Hz. With the 

inhibitory input rate kept static at 1 Hz, the excitatory input rates were titrated to 

24.034 Hz for non_spontPC and 27.548 Hz for spontPC_2. 

5.2.9  Creating a repository of spike trains resulting from 

pattern recognition by PC models 

To supply spike trains resulting from pattern recognition by the PC model 

as input to the DCN neuron model, a repository of PC model spike trains was 

created. The pattern recognition simulations followed the methodology outlined 

in Section 5.2; here I will describe the implementation details. 

The associative net implementation of Steuber et al. (2007) was translated 

into Microsoft Visual C++ and was run for many different settings of number of 

patterns and size of patterns in order to provide for the range of simulation 

settings used in Section 5.6. 

For comparability with previous work (Steuber et al., 2007), I created the 

same type of setup as there, with each simulation of PC pattern presentation 

consisting of the presentation of 75 novel PF patterns and 75 stored PF patterns 

to the PC model, randomised for each run to create varying background activity at 

the moment of pattern presentation. This simulation setup was run ten times, 

resulting in a total of 750 each of spike trains from Purkinje cells receiving novel 

and stored patterns. For each of the ten runs, a new set of associative net pattern 

recognition output vectors (PF activity vectors, as described above) was created 

and the Purkinje cell simulation was initialised with different randomised 

settings. Signal-to-noise ratios of pause lengths and other parameters were 

calculated for each run of 275 simulations; results were presented as the mean 
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signal-to-noise ratio of the ten runs, with standard errors of that mean based on 

its sample size of ten. The 2750 spike trains resulting from the ten runs were 

stored as a spike file repository to be used as input to the DCN neuron model in 

the next step. 

The setup was different from the Steuber et al. (2007) work in two 

respects: the inhibitory input was non-tonic (described in Section 5.2) and the PC 

model simulation was run for a four second equilibration time followed by four 

seconds of background firing. The PF patterns were presented after these eight 

seconds of simulation, and the simulation was continued for one second after 

pattern presentation. In the Steuber et al. work the pattern was presented after 

200 ms of equilibration time. 

5.2.10  Testing correctness of the PF-PC implementation 

The Steuber et al. (2007) publication on PC pattern recognition forms 

much of the foundation for the pattern recognition work in this thesis. To validate 

my implementation of PC pattern recognition, I ran simulations with their 

original setup, and calculated signal-to-noise ratios for four spike train metrics 

described by the authors: the latency to the first spike after pattern presentation; 

the number of spikes in the 25 ms following pattern presentation; the firing rate 

of those burst spikes (measured as the inverse of the mean interspike interval); 

the length of the pause after the burst spikes. 

The resulting mean signal-to-noise ratio of the pause equalled 18 as in 

Steuber et al. (2007), but the best metric for pattern recognition was in my hands 

the firing rate of the burst phase. The mean burst spike rate was 198 Hz for novel 

patterns and 118 Hz for stored patterns, with a mean signal-to-noise ratio of 41. 

The corresponding mean signal-to-noise ratio in Steuber et al. (2007) was 1.4 
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which was not possible to reproduce in the present work, perhaps due to different 

methodologies of calculating the burst phase firing frequency. 

5.2.11  Pattern recognition by the modified PC models 

The Purkinje cell firing rate after PF input is the best metric in most 

settings 

For the calculations of signal-to-noise ratios in the three PC models with 

many different settings of output rate, synchronicity of PF pattern presentation, 

and other features, I modified the definitions of spike response metrics from 

Steuber et al. (2007) to ensure that the pause would be found even if occurring 

later than 25 ms following pattern presentation. The minimum ISI classified as 

pause was extended to 30 ms and a number of alternate metrics were introduced; 

those are listed in Table 8. 

Table 8 Spike train metrics of the outputs of PC models presented with stored and 

novel PF patterns. The metrics are relative to the time of PF pattern presentation 

(See Figure 46 in Section 5.4). 

Metric 

Time of first spike 

ISI of the first two spikes 

Number of spikes in the burst following 

pattern presentation (i.e., before the pause) 

Length of the burst 

Firing rate of the burst 

CV of ISIs in the burst 

Time at start of the pause 

Length of the pause 

Time of the first spike after the pause 
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By a wide margin, the best pattern recognition metrics were (1) the 

interval between the first two Purkinje cell spikes following the PF pattern 

presentation, and (2) the spike frequency of the burst these spikes were part of. 

This was true at all but the highest of the four examined Purkinje cell firing rates 

(36 Hz, 57 Hz, and 77 Hz). The highest firing rate (99 Hz) resulted in the length of 

the pause being the best metric. The metrics of Table 8 were measured in each 

analysis of PC pattern recognition.  

The best five metrics of PC pattern recognition at 56.6 Hz baseline firing 

are plotted for each of the three PC models in Figure 45. Note the much lower 

pattern recognition results compared to those of Steuber et al. (2007), accounted 

for by the change here to non-tonic inhibition and longer equilibration time. 

 

 

Figure 45 Pattern discrimination with the five best metrics in the examined PC 

models when simulated with a background firing rate of 56.6 Hz. These metrics were 

the best in all three models, but the internal ranking differed between the models.  
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5.2.12  Spontaneous Purkinje cell firing activity is compatible 

with pattern recognition 

As can be seen in Figure 45, the two spontaneously active PC models are 

both capable of pattern recognition, with some metrics being better than in the 

non-spontaneous model while others are worse. It is therefore hard to state which 

of the models is best for pattern recognition. In any case, as Purkinje cell output is 

interpreted by DCN neurons before it affects any systems outside of the 

cerebellum, PC pattern recognition is likely to be of lesser importance than 

pattern recognition in the DCN. The exception, which is not covered by this thesis 

work, is the effect of Purkinje cell firing on the vestibular nuclei, the only Purkinje 

cell target outside of the cerebellar nuclei (De Schutter and Steuber, 2009). 

Hence, the interpretation of the outputs of pattern recognition by the DCN 

neuron is the important question which will be the focus in the following; the 

corresponding Purkinje cell signal-to-noise ratios will be given but will not be 

analysed exhaustively. 

5.3  Simulations of pattern recognition in a network 

of PFs, Purkinje cells, and a DCN neuron 

With three biophysically realistic PC models created, the next step was to 

analyse the DCN neuron model responses to Purkinje cell trains generated by 

novel and stored PF pattern presentations (these will henceforth be called novel 

and stored trains, respectively). 

For that purpose, I needed to feed the DCN neuron with the outputs from 

the PC models, as described in Section 4.5.5. Since the PC models were made in 

GENESIS, the easiest solution was to first run the simulations with PF pattern 

presentation to the PC model, save the Purkinje cell outputs to spike time files, 
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and then run the NEURON-based DCN neuron model simulation where the files 

were read in and their spike times were sent to the DCN neuron synapses. 

While the simulations of PC pattern recognition were divided into 10 runs 

to be able to average out variations in the signal-to-noise ratios, for providing 

inputs to the DCN neuron model, the Purkinje cell spike trains were pooled into 

two groups, one with the 750 novel trains and the other with the 750 stored 

trains. 

The number of Purkinje cells that each DCN neuron receives input from is 

not well characterised. Section 2.7.3 introduced the data from Palkovits et al. 

(1977) which remains the only published study of this convergence ratio of 

Purkinje cells to DCN neurons, giving the value 860. Others argue that the 

convergence ratio is lower (Chris De Zeeuw and Indira Raman, personal 

communication); further, synchronisation of nearby Purkinje cells (Ebner and 

Bloedel, 1981) would lower the effective convergence ratio from that of the 

physical convergence ratio. Therefore the DCN neuron model was designed so it 

could be run with different convergence settings, allowing the exploration of 

convergence effects on pattern recognition. However, the model always received 

input to its full set of inhibitory synapses. Thus, with the simplest case of a 

convergence level of one PC per DCN neuron, each of the 450 PC-DCN synapses 

received input from the same single Purkinje cell, while at the other extreme of 

convergence 450 independently firing Purkinje cells provided input to the 450 

synapses. These two extremes of convergence as well as the intermediate values 

were created by the randomised selection of the required number of Purkinje cell 

trains from the pool of 750 trains of novel or stored trains, with no duplicate train 

selections. 

As with the simulations of PC pattern recognition, 75 simulations were run 

with Purkinje cell novel pattern readout presented to the DCN neuron model, 
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followed by 75 simulations with stored pattern readouts. A new random selection 

of Purkinje cell trains was drawn from the 750-train pool for each simulation, and 

the randomiser was differently initialised. As in PC pattern presentation, the 

simulations were repeated in 10 such runs, and the signal-to-noise ratios were 

calculated and averaged as described for the Purkinje cell simulations. 

When the DCN neuron is said to receive a novel (stored) pattern, all 

Purkinje cells providing input to its synapses have been presented with novel 

(stored) PF patterns, unless otherwise specified. 

5.4  Analysis of DCN neuron pattern recognition 

The presentation of PF patterns to the network resulted in the PC model 

burst-pause response causing a characteristic spike response in the DCN neuron 

model, comprising a short pause that was followed by a burst and then another 

pause. Typical raster plots showing these responses in a Purkinje cell and DCN 

neuron are shown in Figure 46. The plots show that the number of spikes in the 

novel pattern DCN neuron burst is larger than in the stored burst, corresponding 

to the longer pause in PC firing in response to novel PF patterns. This is true in all 

examined cases in this thesis. 
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Figure 46 Novel (top) and stored (bottom) pattern readouts in the PC model spontPC 

and the DCN neuron model with the raster plots aligned in time. Both of the graphs 

display 75 trains of PC and DCN pattern readouts. In all cases, the convergence is 450 

Purkinje cells to 1 DCN neuron; the DCN trains in the plots are not the result of the 

particular Purkinje cell trains that are shown but are instead responses to PC spike 

trains drawn from the entire 750+750 pools of Purkinje cell trains as in all 

simulations (see method description in Section 5.2.9). The scale of the graphs shows 

the time in milliseconds relative to the PF pattern presentation (the actual simulation 

time is the default of 4 seconds). 

The high-convergence case shown in Figure 46 was the default network 

setup, meaning that the DCN neuron received the outputs of 450 different 

Purkinje cells firing at a background rate of 56.6 Hz and that those Purkinje cells 
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had been presented with PF weight vectors resulting from the learning of 100 

patterns with 1000 active units at the associative net stage. 

5.4.1  Defining characteristics of DCN responses to patterns 

While Steuber and collaborators (2007) defined a minimum length of the 

pause response in the Purkinje cell after PF input to detect and measure pauses in 

spiking, the DCN responses are not amenable to such an algorithm. This is 

exemplified by the low convergence case in Figure 48 which shows that the burst 

phase often has no clear end. Conversely, other simulation settings created trains 

where the preceding pause phase was hard to define while the end of the burst 

was clear. To enable the largest possible number of analyses of pattern 

recognition, I found that the most successful alternative was to define the burst as 

a DCN rebound response, that is, a response that follows a period of inhibitory 

input of such strength that the neuron temporarily stops firing. A published 

definition of DCN rebound gives that all spikes in the rebound have an 

instantaneous firing rate equal to or larger than the previous mean firing rate plus 

25 Hz (Molineux et al., 2006). Using this requirement to identify the burst phase 

made it possible to analyse a number of different characteristics of the spike 

responses of the DCN neuron model and quantify their contribution to pattern 

recognition. The different metrics for the DCN neuron response are shown in 

Figure 47. The bar plot shows that the best metric for pattern recognition in the 

DCN is the number of spikes in the burst; this is discussed in more detail in 

Section 5.6. 
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Figure 47 Pattern recognition capability of different metrics of the DCN readout. The 

top graph shows the twelve different characteristics of the DCN neuron spike trains 

that were measured for novel and stored trains in each simulation setup; the inset 

explains the meaning of each metric. The bar graph shows the pattern discrimination 

power – determined by signal-to-noise ratios – of the metrics when applied in the 

high convergence setup of Figure 48; the Purkinje cell pause value is added for 

comparison. 

5.4.2  Modified and additional spike train metrics 

While I was analysing some of the simulation results it was clear that the 

raster plots of the kind shown in Figure 48 in some cases showed an obvious 

difference between novel and stored responses which did not show up in the 
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signal-to-noise ratios. For example, some DCN burst phase responses were 

visually distinguishable without fulfilling the rebound definition. 

This made me develop an alternative set of metrics, based on the types of 

neural coding listed in Section 2.5: (1) spike rate; (2) degree of regularity of spike 

intervals; (3) temporal spike patterns. The metrics were designed to capture each 

of these coding modalities in different time windows of the DCN neuron output 

following pattern presentation, with the quantification in each window of: (1) 

number of spikes; (2) CV2 of spike intervals; (3) time of first spike. 

Based on the visual evaluation of raster plots from dozens of different 

simulation setups, I chose to examine those three metrics for differences between 

the DCN neuron response to novel and stored trains in the following consecutive 

intervals: 

 eight 10-millisecond intervals 

 nine 20-millisecond intervals 

 four 50-millisecond intervals 

As starting point for all intervals I chose the point in time where the 

hyperpolarising effect of the PF pattern presentation could be seen in the DCN 

neuron soma. 

The metrics will be referred to as interval-based metrics and they have 

been used in a subset of simulations, mainly where the original metrics could not 

be used because their requirements were not fulfilled.  

In order for any metric – original or alternative – to be used with the 

results of a simulation, I required that less than 5 percent of the calculated values 

were missing; such missing data occurred for metrics CV2 and the time of first 

spike when there were no spikes in the interval; number of spikes was still used 

with the value 0. 
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With less than 5 percent missing data allowed, a total of 7510 data meant 

that the maximum number of data points allowed to be missing was 37 in the 

novel and 37 in the stored DCN neuron outputs. As it turned out, all signal-to-

noise ratios included for the analyses in the present work were based on metrics 

where all measurements could be made. 

5.5  Main results of DCN readout of PC pattern 

recognition 

The modelled cerebellar network has many parameters open to 

exploration. I identified more than a dozen such explorations that I judged to be 

biologically relevant and interesting. Before proceeding to the entire range of 

those investigations, I will discuss what I see as the two main results of the 

pattern recognition project, followed by questions they pose and simulations run 

to answer those questions. The first is that the DCN neuron model reads out the 

PC output of pattern recognition in a clearly defined burst firing. The second is 

that the signal-to-noise ratio of the readout is highly dependent on the 

convergence ratio of PCs onto the DCN neuron. 

5.5.1  The modelled DCN neuron is highly proficient at 

discriminating between novel and stored patterns and 

transmits this information in a burst of spikes 

As can be seen in Figure 47, the best metric of pattern recognition readout 

in the DCN neuron model at maximum convergence is the number of spikes in 

the burst phase. Figure 46 showed that this burst phase corresponds in time to 

the period where the Purkinje cell pauses. 
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In the default setup, novel trains give a mean of 6.8 spikes in the DCN 

neuron burst while stored trains give 5.0. The difference is read out with a signal-

to-noise ratio of 30.23.1, while the next best metric – the length of the burst in 

time – gives a lower signal-to-noise ratio (20.51.9) due to its larger variance 

rather than a smaller normalised difference between the mean of novel trains 

compared to the mean of stored trains. 

5.5.2  Pattern recognition depends on the convergence ratio 

of PCs onto the DCN neuron 

Eccles (1973) proposed the cerebellar arrangement of multiple Purkinje 

cells conducting signals to one DCN neuron to function as a device to average 

Purkinje cell signals so as to decrease noise and thereby increase the reliability of 

the cerebellar output. The idea was confirmed in an artificial neural net by Walter 

and Khodakhah (2009). 

I investigated the effect of such averaging by varying the convergence ratio 

of the Purkinje cell inputs (spontPC at 56.6 Hz) to the DCN neuron model. The 

450 synapses were divided randomly into groups where synapses within each 

group received the same Purkinje cell train, synchronised in time. The group sizes 

were divisors of 450 and resulted in simulations with convergence ratios of 1, 3, 9, 

18, 50, 90, 150, and 450. 

The extremes of convergence ratios are illustrated in Figure 48. The Figure 

shows how the low convergence setting gives a high variability of DCN neuron 

responses from trial to trial while the high convergence setting gives a more 

reproducible point in time where the DCN neuron starts to fire a burst following 

its readout of the Purkinje cell pause – supporting Eccles’ idea of increased 

reliability of signals at high convergences. 
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Figure 48 Pattern presentation from PFs (at the time of the vertical red or black line 

at 4 seconds) to the PC model spontPC and its subsequent readout in the DCN 

neuron model at the two extremes of convergence settings. Top: 75 each of novel 

and stored patterns are presented to the PC model with one simulation per line, with 

an SNR of 2.0 for the duration of pauses. Bottom: 75 novel and stored readouts in 

the DCN neuron model when all its 450 synapses receive input from the same PC 

(left: convergence = 1, SNR = 0.90), and when all synapses receive input from 

different PCs (right: convergence = 450, SNR = 48.3). Each SNR here is the result of 

one 275 simulation each; therefore these SNRs differ from those of Figure 49 which 

are means of ten 275 simulations. The background firing was kept constant in the 

two convergence settings via titration of the excitatory input to the DCN neuron.  
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The initial simulations (not shown here) suffered from a problem of 

comparability. With constant excitatory input rates the DCN neuron background 

firing was 67.8 Hz when the PC inputs were provided at a convergence of 1 while a 

convergence of 450 gave a background rate of 39.3 Hz. At intermediate levels of 

convergence, the background firing rate was decreasing with increasing 

convergences ratio. The cause of the dependence of the background firing rate on 

the convergence is, at least partly, explained with the following example of the 

extreme convergences. 

At a convergence of 1, each of the 450 synapses receives input from the 

same Purkinje cell whose spiking thereby activates hyperpolarising currents at all 

synapses simultaneously. Hence, this input mode results in a powerful inhibition 

of the DCN neuron at the times of Purkinje cell input, while the intervals between 

Purkinje cell spikes provide a window of enhanced firing ability. With the short 

rise and fall time constants of the GABA conductance (0.2 and 3.6 ms, 

respectively, at 37°C), the average Purkinje cell ISI of 18 ms allows for several 

DCN spikes. 

At the other end of the convergence spectrum, 450 independently firing 

Purkinje cells provide input to the synapses, making the likelihood of drastic 

deviations from the mean hyperpolarising effect on the spike generation 

mechanisms in the axon hillock unlikely. 

The DCN neuron background rate affects the pattern recognition capacity 

as will be shown in Section 5.6.3. Thus the simulation was rerun with excitatory 

input rates to the DCN neuron titrated so as to keep its background firing rate 

constant. The resulting trains are shown in Figure 48 and give the signal-to-noise 

ratios plotted in Figure 49. The Figure shows that the DCN neuron signal-to-noise 

ratio goes up with every increase in the convergence ratio and rises above that for 

the Purkinje cell burst frequency as the convergence reaches 30 or more. While 
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the burst frequency metric of PC pattern recognition gives a signal-to-noise ratio 

of 16.81.9, the Purkinje cell pause gives 1.80.2. This value is similar to the 

signal-to-noise ratio for the DCN burst at the convergence ratio of 1, which is 

1.20.1 for the burst length and 1.00.1 for its number of spikes (this is the only 

convergence setting where the number of spikes is not the best metric). 

 

Figure 49 Effects of convergence on the readout of patterns by the DCN neuron. The 

diagram shows how the pattern recognition performance of the DCN neuron 

(number of spikes in the burst) goes up as the Purkinje cell to DCN convergence 

increases. The background firing rate was kept constant at all convergence settings 

via titration of the excitatory input to the DCN neuron. 

As it appears improbable that the cerebellar circuitry wastes a large 

amount of information in the Purkinje cell to DCN neuron information transfer 

(convergence 1 is the “raw” measurement where no averaging takes place to 

enhance pattern discrimination), it is reasonable to assume that the length of the 

pause – which is a likely candidate for determining the number of spikes in the 
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burst in the DCN neuron – is the actual information-containing metric for the PC. 

The simulations in 5.5.4 will show the likelihood of this being the case; I will use 

the Purkinje cell pause as the reference metric for DCN pattern recognition and 

will refer to the ratio of the Purkinje cell pause SNR to the best DCN SNR as the 

amplification of the circuitry. With the given SNRs, the amplification equals 17.0 

at a convergence of 450 and 0.68 at a convergence of 1. 

5.5.3  Cause of amplified pattern recognition by the DCN 

neuron 

Walter and Khodakhah (2009) showed that the signal-to-noise ratio in an 

artificial neural net model of the PC-DCN neuron circuitry scales linearly with the 

convergence ratio. This contradicts the results above which can more clearly be 

seen in Figure 50 where the DCN SNRs and the inverse of its denominator have 

been re-plotted at different convergences along with plots of scaling with the 

convergence and with the square root of the convergence. The Figure shows that 

the SNR of the readout in the biophysically realistic DCN neuron model scales 

sub-linearly with the convergence ratio and even approaches the square root of 

the convergence for large convergence ratios. 
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Figure 50 Normalised plots of convergence effects; data were normalised by division 

with the SNR at convergence 1 (=1.02). The circles give the SNRs and the crosses give 

1 divided by the denominator of the SNR, thereby ignoring the effect of changing 

differences of novel to stored means (see definition of SNR in 5.2.3). The dotted 

black line is the result of linearly scaling the SNR for a convergence of 1 by the 

convergence ratio, while the dashed black line is the same for scaling by the square 

root of the convergence. 

The study by Walter and Khodakhah demonstrated that the standard 

deviations of the means of metrics decreased with the square root of the 

convergence ratio; the linear scaling of the signal-to-noise ratio follows from the 

definition of the signal-to-noise ratio since the denominator consists of the 

squares of the standard deviations (Equation 19).  

To clarify this scaling, my primary supervisor and I conducted a set of 

simple calculations using MATLAB. The results are illustrated in Figure 51 which 

contains the results of calculations based on 450 matrices of size 100  n, where n 

equals the serial number of the matrix (1-450). Each of the 100 rows of a matrix 

corresponds to one pattern presentation, and each of the n columns to one 

Purkinje cell synapsing with a DCN neuron. Each entry in the matrices contains a 

response metric for that particular pattern and PC, which for the purposes of the 
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present argument was a value randomly drawn from a normal distribution with 

mean 0 and standard deviation 1. 

 

Figure 51 Simulations of how the Purkinje cells to DCN neuron convergence ratio 

influences standard deviations of observed metrics (A) and the resulting signal-to-

noise ratios (B). The black curve in A is a plot of 1 divided by the square root of the 

convergence ratio; in B, the black line plots the convergence ratio. See text for 

details. 

In Panel A, the blue crosses show the results of first calculating the 

standard deviation of the 100 values for each of the n Purkinje cells (where n is 

the convergence, the value on the x-axis) and then taking the average of the n 

standard deviations. The result is that at 1 on the x-axis, there has been no 

averaging of the standard deviation of the 100 pattern presentations, while at 450 

the standard deviation value is the mean of 450 raw standard deviations. 

The red circles in A are the corresponding observations of the Purkinje cell 

data from the point of view of the DCN neuron. For each convergence, the DCN 

neuron has effectively calculated the mean of the n Purkinje cells for each of the 
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100 pattern presentations, and then taken the standard deviation of the 100 

resulting sample means. This makes it the standard error of the mean which is 

defined as the standard deviation of sample means and is calculated as in 

Equation 23 (Field, 2005). 

n

s
SEM   (23) 

where s is the sample standard deviation and n is the sample size. The standard 

error of the mean was calculated for each of the convergences and was plotted in 

graph A as the black line, which shows that the standard deviation of the DCN 

neuron readout indeed develops as the square root of the convergence in this 

simulation. 

In the case of constant differences between means, signal-to-noise 

calculations scale with one divided by the square of the standard deviation. Panel 

B of the Figure 50 gives the squares of the standard deviations of graph A and 

shows that the DCN neuron signal-to-noise ratio in this simulated data set 

develops linearly with n, as in the Walter and Khodakhah data. 

The matrix calculations were then rerun with the random numbers 

exchanged for pause lengths from the pattern recognition trials with PC model 

spontPC, and with the number of patterns changed to 75 (the number of 

repetitions performed in each pattern recognition simulation with the DCN 

neuron model). With this modified setup of the matrix, the convergence-driven 

amplification as seen from the DCN neuron would be demonstrated using 

biophysically realistic PC model data.  

However, neither in this simple calculation nor in the biophysically 

realistic DCN neuron simulations could the convergence be simulated without 

correlated Purkinje cell outputs being fed to the DCN neuron. The PC model spike 
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trains were the results of 750 independent presentations each of novel and stored 

PF patterns, while the DCN neuron simulations with inputs of 75 pattern 

combinations where each contained up to 450 Purkinje cells would require 

33,750 Purkinje cell simulations each for novel and stored pattern presentations. 

This was impossible given the computational constraints; the solution that I 

settled on (for the DCN neuron model simulations as well as the present matrix 

calculations) was instead to create randomly drawn sets from the pool of 750 

trains. For the n = 450 settings of convergence explored in the matrix 

calculations, 75 individually randomised sets of n = 450 Purkinje cell trains each 

were drawn from the pool. This procedure meant that at convergence 450, 60% of 

all trains were used for each set, giving a very high degree of correlated pause 

lengths, while the lower convergences resulted in increasingly diminishing 

amounts of correlated inputs. 

The results are displayed in Figure 52 where Panels A and B show the 

standard deviations from novel and stored pattern presentations, respectively, as 

in the previous figure; the black curves show the standard deviation of the 

Purkinje cell at each convergence ratio divided by the square root of that 

convergence. Panel C gives the calculated signal-to-noise ratios for each 

convergence ratio based on the means and standard deviations from the matrix 

simulations. The black line is the Purkinje cell signal-to-noise ratio at each 

convergence ratio multiplied by that convergence. Panel D shows an enlarged 

display of convergences 1-90 from graph C. 
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Figure 52 Replication of the calculations of Figure 51, here using the PC model pause 

lengths instead of random numbers. The calculation uses the pauses resulting from 

novel (A) and stored (B) pattern presentations; C gives the signal-to-noise ratio 

calculated for the novel and stored response at each convergence setting; D shows 

only convergences 1-90 from C and displays the close-to-linear scaling of signal-to-

noise ratios in this range. 

The graphs of signal-to-noise ratios in C and D show that the signal-to-

noise ratios scale supralinearly with the convergence ratio, but only at the higher 



 138 
 

convergences. Up to a convergence of about 50, the scaling is linear; the 

differential results are probably caused by the increasingly correlated pause 

lengths in the higher convergence cases. Independent of the causation, the linear 

scaling at the lower convergences is comforting in that most of the amplification 

effect in the biophysically realistic simulations has already happened by a 

convergence of 50 (Figure 50). At a convergence of 50, the SNR is 19.31.5 while a 

convergence of 450 gives SNR = 30.23.1. Thus, at a convergence of 50, the 

amplification equals 10.9. 

The linear SNR scaling with convergence has therefore been confirmed to 

be theoretically valid for PC model pause lengths (up to a convergence of 50) 

while the biophysically realistic DCN neuron model readout scales much slower; 

the causes of this discrepancy will be discussed in Section 5.7.3. 

5.5.4  Investigation of the contributions of rebound excitation 

to pattern recognition 

The following simulations aimed to show how the DCN burst response 

relates to the initial fast spikes of the Purkinje cell. As shown in Section 5.5.1, the 

burst is the part of DCN trains that gives the highest signal-to-noise ratio from 

comparisons of novel and stored trains, but it follows 20-30 ms after the best 

Purkinje cell metric, which is the frequency of the initial spikes of the Purkinje 

cell. 

Note that with the Purkinje cell transferring a strong inhibitory stimulus to 

the DCN neuron following synchronised PF inputs, the only DCN output spikes 

that could possibly carry information about the PF event are those in the burst – 

the neuron does not fire any spike prior to those (see raster plots in Figure 48 

where the few DCN spikes before its pausing are within the synaptic delay time). 

While the fastest information transfer thereby would be based on the length of the 
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DCN pause, this feature carries close to no information (SNR = 0.070.00). 

Naturally, the length of a pause can only carry information towards its end where 

the length of the pause differs between the novel and stored patterns. Thus, the 

time of the first burst spike of the DCN neuron could perhaps be as fast a feature 

as the DCN pause length. This feature does carry information (SNR = 3.140.14) 

which, however, is far less than the number of spikes in the burst (SNR = 

30.23.1). For this reason I will assume that the biologically important feature of 

the DCN neuron spiking in pattern recognition is the burst length (in number of 

spikes and/or length in time). 

Here I aimed to elucidate what ability the Purkinje cell initial burst could 

have in affecting the pattern recognition capacity of the DCN burst. If the initial 

PC burst has little or no influence on the length of the DCN burst, we can limit 

ourselves to considering the PC pause length when comparing the PC and DCN 

pattern recognition capacities. 

The frequency of its burst is the best discriminator of the PC model 

spontPC (which will be the one referred to when using the term “PC model” 

without specification). The number of spikes is not a good discriminator, however 

(SNR = 0.220.04). Hence, in order for the fast Purkinje cell burst phase to 

influence the readout in the DCN, the relative timing of the two or three spikes of 

the Purkinje cell burst would have to influence the length or number of spikes of 

the DCN burst.  

A possible mechanism for the timing of the Purkinje cell burst spikes to 

influence the generation of differential DCN burst responses to novel and stored 

patterns is by contributing to rebound responses in the DCN neuron (see Section 

2.7.1). Thus, the simulations to be described below examined DCN pattern 

recognition under block of channels implicated in the DCN rebound response: the 
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CaLVA, h, and NaP currents. Figure 53 shows the membrane voltage and the 

currents flowing through the rebound channels of the DCN neuron during a 

typical pattern presentation trial. Note the lack of a large difference in 

hyperpolarisation prior to bursting, where the novel pattern induces a minimum 

membrane potential of -69.3 mV while the stored pattern reaches -68.9 mV. 

 

Figure 53 DCN neuron currents that are implicated in the rebound response 

following membrane hyperpolarisation. The graphs show a representative response 

to the standard DCN setup, with dashed red lines the novel pattern response and the 

solid blue lines the stored response. A) The membrane potential of the DCN neuron; 

B) Persistent sodium current (NaP); C) the hyperpolarisation activated cation current 

(h); D) low-voltage activated calcium current (CaLVA). Note the different y-axis 

scales. 

To simulate the effect of blocking the ion channels in vivo, the rebound 

conductances were set to zero. This procedure affected the background firing 

rates of the neuron; to prevent this from affecting the pattern recognition 
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capacity, the excitatory inputs to the DCN were titrated as previously described, 

giving equal firing rates prior to pattern presentation. 

The standard setup of 1075 runs each with novel and stored pattern 

inputs was performed once for each of the three rebound channels blocked in 

isolation and once for all blocked in combination. Neither of these simulations 

resulted in a removed burst response or even a much decreased firing rate in it. In 

the original setup with all channels included, the mean firing rate of the DCN 

neuron burst was 179 Hz for the novel patterns and 182 Hz for the stored ones; 

the number of spikes in the burst was 6.81 vs. 5.02. In the four simulations 

simulating blocking of channels involved in rebound, these values stayed within 

1.5% of the originals and the SNRs were 20 or above for all cases while the 

default version gave 30.2 (Table 9). 

Table 9 Pattern recognition simulations where channels involved in the DCN neuron 

rebound response have been blocked. The first line shows the baseline case of the 

default simulation setup, followed by the blocking of all three rebound channels and 

finally the channels blocked individually. In all cases the background firing rate of the 

DCN neuron has been titrated via the excitatory inputs to remain at the baseline 

level of 39.3 Hz. 

Channels blocked SNR (number of 

burst spikes) 

Number of spikes in 

novel burst 

Number of spikes in 

stored burst 

None 30.2 6.81 5.02 

CaLVA, h, and NaP 25.0 6.78 5.01 

CaLVA 20.0 6.71 4.97 

H 27.7 6.80 5.00 

NaP 30.0 6.82 5.00 
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The most decreased SNR – that of the CaLVA knock-out – was caused by 

slight decreases in normalised summed variances (the denominator of the SNR 

calculation) rather than changed normalised differences of means (numerator). 

 

5.5.5  Split novel and stored Purkinje cell trains 

An additional way of examining the different contributions of the PC burst 

versus its pause would be to create synthetic Purkinje cell spike trains containing 

parts of the output from recognition of stored patterns and parts from novel 

patterns. As the Purkinje cell response following pattern presentation includes a 

pause whether the cell is presented with novel or stored patterns, the synthetic 

spike trains can be made by identifying the last spike in the PC burst response 

and then have the following time contain the pause of the opposite pattern type. 

An example of such a procedure is shown in Figure 54, where the lowest third 

shows a synthetic PC train with the burst response resulting from novel PF 

patterns while the pause and the following response from stored patterns. Such 

trains will be referred to as N+S trains in the following, while the inverse splicing 

and synthesis of trains will be called S+N trains. The original trains are N+N and 

S+S, respectively. 

I ran simulations of the standard setup with N+S and S+N trains fed to the 

DCN neuron model and calculated signal-to-noise ratios for all combinations of 

real trains versus synthetic trains: N+N versus N+S, N+N versus S+N, etc. 
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Figure 54 Synthetic Purkinje cell spike trains with parts from recognition of both 

novel and stored patterns. The top third shows a sample of 75 Purkinje cell trains 

resulting from presentation of novel PF patterns; the middle third, 75 trains with 

stored pattern presentation; the lowest third, the same novel and stored PC trains, 

split and synthesised so that the part before the pause consists of the novel response 

while the time following the pause is the stored response. 

 

The readout in the DCN neuron model of 75 runs where the input was 

made up of N+S Purkinje cell trains is shown in the bottom third of Figure 55. 

The comparison with the rasters where input was made up of N+N trains and S+S 

trains, respectively (the top and middle thirds), indicates that the DCN neuron 

burst response was very similar with S+S compared with N+S, while N+N versus 

N+S gave a larger difference. This was confirmed with the calculations of signal-

to-noise ratios of the number of spikes in the burst where N+N versus N+S gave 

the second highest SNR (8.510.39) of all the combinations while S+S versus N+S 

gave the lowest (1.500.18). 
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Figure 55 75 readouts in the DCN neuron model of synthetic novel+stored Purkinje 

cell trains (bottom third) with ordinary novel and stored (75 each) DCN readouts 

above added for reference. 

The SNRs of all combinations are listed in Table 10. 

Table 10 Signal-to-noise ratios of the number of spikes in the DCN neuron model 

burst phase during input of stored and novel PC trains versus synthetic trains with 

portions of novel and of stored. S=stored, N=novel; see previous text for explanation 

of the procedure for synthesising trains. 

Comparison Signal-to-noise ratio 

N+N vs. N+S 8.51±0.39 

N+N vs. S+N 1.86±0.18 

S+S vs. N+S 1.50±0.18 

S+S vs. S+N 11.57±0.71 

N+S vs. S+N 2.52±0.15 

N+N vs. S+S (vanilla) 30.23±3.11 
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With hindsight, these results were very difficult to interpret, however, as 

the initial burst response in the PC was of different length for novel and stored 

pattern inputs. Thus, the splicing of the initial burst phase from one type 

(stored/novel) of trains with the pause response of the other type gave an 

influence on the pause length from the burst phase. 

A cleaner way of creating the spliced trains would probably have been to 

follow this procedure: 

1. Find the last spike in the burst response in one type – train A. 

2. Identify the length of the pause in a train of the other type – train 

B. 

3. Shift the spikes in the post-pause part of train B by the difference of 

the length of the burst phase in train B and A. 

4. Splice the burst response of train A with the shifted post-pause part 

of train B. 

With the evidence for the overwhelming importance of the PC pause phase 

in comparison with its burst phase presented previously and with additional 

backup in the following set of parameter explorations, such a modified splicing 

procedure was deemed to be outside of the scope of this thesis project. 
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5.6  Further DCN pattern recognition investigations 

Following the presentation of the main DCN pattern recognition results 

and their causes, this section will deal with parameter explorations of the 

Purkinje cell to DCN neuron network, introduced in Table 10. 

Table 11 Further parameter explorations of pattern recognition, described in this 

section. For each exploration, the default value (i.e., the value used in all other 

parameter explorations) is marked in bold. 

1. The DCN neuron model receiving pattern readouts from the not-

spontaneously-active PC model (non_spontPC) versus the two 

spontaneous models: spontPC and spontPC_2. 

2. Firing rate of the Purkinje cell in the absence of pattern presentation: 35, 

57, 99 Hz. 

3. Firing rate of the DCN neuron in the absence of pattern presentation: 22, 

39, 60, 92, 127, 165, 198 Hz. 

4. Asynchronous versus synchronous pattern presentation to the Purkinje 

cell. Asynchronous pattern presentation means that the PF-PC synapses 

are activated at a random time point over an interval of 2, 5, 10, and 25 

ms, respectively. 

5. The number of PFs (out of the total of 147,400) that participate in 

presenting a pattern to the associative net: 18 settings in the range 50 - 

25,000. The default setting is 1000. 

6. The number of PF patterns presented to the associative net: 7 settings in 

the range 50 - 1,500. The default setting is 100 (100 novel + 100 stored 

patterns). 
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7. Feed-forward inhibition to the Purkinje cell during pattern presentation, 

with 1.4 ms post-pattern-presentation stellate cell input. Default is to have 

no feed-forward inhibition. 

8. Limitation to the frequency with which spikes propagate down the 

Purkinje cell axon: no limit versus 330 Hz. 

9. Sensitivity of the DCN neuron to the PC pattern outputs. Here the number 

of DCN neuron synapses that receive the PC pattern is titrated down from 

450 to the level where the signal-to-noise ratio falls below 1. 

10. GABAA receptor synaptic short-term depression: in use or not. 

11. Mossy fibre collateral connections to the DCN neuron. The default 

simulations ignore the direct connection between the mossy fibres and 

the DCN (Figure 9 in Section 2.7) during pattern presentation. In this 

simulation I examine the effects of transmitting a synchronised excitatory 

input to the DCN neuron, a few milliseconds before the output of PC 

pattern recognition reaches the neuron. 

5.6.1  Readout in DCN of patterns presented by the non-

spontaneous versus the spontaneous PC models 

In Section 5.2.11 I evaluated the pattern recognition performance at the 

Purkinje cell stage with non_spontPC and the two spontaneously firing models. 

While I argued that no conclusive differences in pattern recognition capabilities 

could be seen, we are now interested in the effects on the DCN neuron and will 

therefore focus on the Purkinje cell pause length. The SNRs of that feature 

differed slightly between the models, with the SNRs shown in Table 12. 
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Table 12 Signal-to-noise ratios of the length of the pause in the three PC models. 

Model version Signal-to-noise ratio 

non_spontPC 1.64 (SEM=0.17) 

spontPC 1.78 (SEM=0.24) 

spontPC_2 2.29 (SEM=0.23) 

 

The corresponding results in the DCN neuron are given in Figure 56 and 

show that there is no clear correspondence between the SNRs of the pause length 

in the Purkinje cell and any of the five best features of the DCN neuron readout 

(this would show as a gradual increase in signal-to-noise ratios from 

non_spontPC over spontPC to spontPC_2). 

 

Figure 56 DCN readout of the three PC models, with the five best metrics using the 

original PC model (non_spontPC) and the spontaneously active models. In all models, 

the number of spikes in the burst was the best metric and the length of the burst 

was second. The PC background rate was 56.6 Hz and the convergence was 450. 
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The number of burst spikes gives the best signal-to-noise ratio with all 

models, and it is highest using non_spontPC. Figure 57 displays the pattern 

separation ability for non_spontPC and spontPC with histograms of numbers of 

spikes in the burst. Compare this with the table of the probability of correct 

discrimination (Table 5 in Section 5.2.3): this table gives a numerical correlate to 

the observed complete separation at a signal-to-noise ratio of 55 while a minor 

overlap remains at SNR = 30. 

 

Figure 57 Readout of PC pattern recognition by the DCN neuron as number of spikes 

in the burst phase, using PC model non_spontPC (left) and spontPC (right). Signal-to-

noise ratios: 55.1 for non_spontPC, 30.2 for spontPC. The PC background rate was 

56.6 Hz and the convergence was 450 (the default settings). 

5.6.2  Background firing rate of the Purkinje cell 

In this set of simulations, I examined how the Purkinje cell background 

firing rate affects the pattern recognition capacity of the DCN neuron. For this 

purpose I created PC models with three different background firing rates (35, 57, 
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and 99 Hz) in spontPC and the higher two of those in non_spontPC. A 

complication is that the DCN neuron pattern recognition capability is affected by 

its background firing rate (shown next, in parameter exploration 3). Therefore, 

the different Purkinje cell rates were compensated for via the excitatory inputs to 

the DCN; those were titrated as previously to keep the DCN firing rate constant at 

all levels of Purkinje cell background rate. 

Table 13 shows that with spontPC as input the DCN neuron pattern 

recognition capacity increases as the Purkinje cell receives patterns on a higher 

background rate. This is not seen with inputs from non_spontPC, which however 

gives almost twice the SNR of spontPC at the default Purkinje cell rate and stays 

at that level. With both PC models, the number of spikes in the DCN burst 

remains the best metric at all settings. 

Table 13 Effects on pattern recognition from using different Purkinje cell background 

firing rates. The best metric for the DCN neuron is in all cases the number of spikes in 

the burst and is the one given in the table. Abbreviations for metrics of PC pattern 

recognition are: FBu = firing rate of the initial burst; ISI = interspike interval of the 

first two spikes of the burst; LPa = length of the pause. 

 Purkinje 

cell firing 

rate (Hz) 

Purkinje cell SNR of the 

best metric and of the 

pause length 

DCN 

neuron 

SNR 

spontPC 35.3 23.2 / 0.24 (ISI / LPa) 11.9 

 56.6 16.8 / 1.8 (FBu / LPa) 30.4 

 98.6 7.6 (LPa) 39.6 

non_spontPC 56.6  13.2 / 1.7 (ISI / LPa) 63.0 

 98.6 9.7 (LPa) 60.5 

 

This parameter exploration shows that the pattern recognition principles 

of the DCN neuron are likely to hold over a broad range of Purkinje cell firing 
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rates. This is a comforting result in the light of the wide ranges of mean firing 

rates reported for Purkinje cells in awake animals in vivo, with some examples 

given in the following list. 

 Young rats: 41 Hz (LeDoux and Lorden, 2002) 

 Adult rats: 36 Hz (Savio and Tempia, 1985) 

 Young/aged mice: 66/43 Hz (Schiffmann et al., 1999) 

5.6.3  Background firing rate of the DCN neuron 

DCN neurons also display a wide range of firing rates, with 10-80 Hz 

spontaneous firing reported in behaving animals and much higher rates in 

rebound bursts (Jaeger, 2011). As in the previous simulation for Purkinje cells, it 

is therefore of interest to see whether pattern recognition persists at different 

background firing rates of the DCN neuron model. Here, the excitatory synaptic 

inputs were set to a range of different levels: 15, 20, 25, 31, 37, 45, and 54 Hz 

(default is 20 Hz). The resulting DCN neuron background firing rates were 22, 39, 

60, 92, 127, 165, and 198 Hz. The pattern recognition results at these firing rates 

are plotted in Figure 58 and show that pattern recognition is possible at all these 

DCN neuron firing rates, with a signal-to-noise ratio above 15 at all but the 

highest rate. 
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Figure 58 Effect of background firing rates of the DCN neuron on the SNR of its 

number of burst spikes. The PC spike trains were firing at a mean of 56.6 Hz in all 

simulations; the firing rate of the DCN neuron was varied over its dynamic range by 

changing its excitatory inputs. 

5.6.4  Asynchronous pattern presentation  

In this simulation, PF patterns were presented to the PC model 

asynchronously, as a control simulation to check that the Purkinje cell / DCN 

neuron circuit would perform pattern recognition even in the absence of perfect 

synchronisation of pattern inputs. 

To this end, new sets of Purkinje cell spike trains were created by feeding 

PF patterns randomly dispersed over 2, 5, 10, and 25 ms time intervals 

respectively, which included the intervals examined by Walter and Khodakhah 

(2009). The Purkinje cell trains were then used as input to the DCN neuron in the 

usual way. A robust pattern recognition capability was maintained at up to 10 ms 

of pattern dispersion: while the fully synchronised presentation gave 30.2 as 

signal-to-noise ratio for the number of spikes in the burst, the 2 ms asynchronous 
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presentation gave 23.42.0; 5 ms gave 24.92.4; 10 ms, 17.00.6. Only the 25 ms 

interval gave a much declined pattern recognition result, with SNR = 2.10.1; this 

result is displayed in Figure 59 with one of the ten repeats each of the DCN 

neuron readouts for temporal spreads of 10 and 25 ms. 

 

Figure 59 Readout by the DCN neuron of asynchronous PF pattern presentation to 

upstream Purkinje cells. The figure shows the results of 75 trials each for 10 ms (top) 

and 25 ms (bottom) intervals of pattern presentation. Note the almost removed 

difference of burst characteristics in the 25 ms situation, which is accompanied by an 

almost ten-fold decrease in the SNR for the number of spikes in the burst phase with 

19.1 and 2.3, respectively in these trains (means of ten repeats were 17.0 and 2.1). 

Pattern recognition was preserved in the Purkinje cell as well: the pause 

gave a signal-to-noise ratio of 1.80.2 at synchronous pattern presentation; 2 ms 

asynchronous presentation gave 2.10.2; 5 ms, 2.40.3; 10 ms, 2.10.2; 25 ms, 

0.240.04. In contrast, the SNRs of the firing rate of the initial burst fell quickly 
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with increasing asynchronicity (16.8, 13.5, 7.2, 3.4, and 0.65). This parallel 

development of the pause SNRs but not of the burst frequency SNRs with the 

readout in the DCN is another indicator of the relative lack of importance of the 

Purkinje cell burst in DCN pattern recognition. Furthermore, these results argue 

against the previous claim of severely limited pattern recognition ability of pause-

based PC pattern recognition with asynchronous pattern presentation (Walter 

and Khodakhah, 2009). 

5.6.5  Number of active PFs  

In these simulations the number of PFs that are active in a pattern – the 

sparseness of patterns – was varied, below and above the default of 1000. Steuber 

et al. investigated this, with 250 to 10,000 simultaneously active PFs (Steuber et 

al., 2007, Supplemental Data). Their finding was that PC pattern recognition 

using the pause length as a metric is robust to this variation, with signal-to-noise 

ratios of 5 and above, from a PF pattern size of 750 up to and including 7000. 

With my modified, spontaneously firing, PC model (spontPC), I sought to 

repeat those tests and to investigate how the DCN neuron could distinguish the 

Purkinje cell readout at the different sparsity levels. While the Purkinje cell 

modifications that I have made – described previously in this document – have 

worsened the pattern recognition performance of the Purkinje cell pause, the 

discovery that DCN neuron averaging over many Purkinje cell inputs improves 

the pattern recognition capability made me decide to examine a broader range of 

PF numbers than Steuber et al. 

The procedure for the presentation of the PF activity vectors to the 

Purkinje cell was as previously described except that the large number of Purkinje 

cell simulations made me limit the number of runs to 2901 instead of the usual 
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27510 runs. The errors of the mean for the Purkinje cell pause length SNR 

could therefore not be calculated. 

The DCN neuron was presented with the 90 resultant spike trains at the 

maximum possible convergence of 90; this was run the usual 10 times for 75 

novel and 75 stored Purkinje cell spike trains and SEMs of the SNRs were 

calculated. Figure 60 A shows the best DCN neuron pattern recognition results 

over the examined range of 50 – 25,000 active PFs. The graph shows the 

robustness of pattern recognition in that a wide range of differently sized patterns 

could be presented with well-preserved DCN neuron ability to discriminate 

between novel and stored patterns. Only when the number of pattern-carrying 

inputs went below 200 or above 10,000 did the signal-to-noise ratio go below 5. 

The range of 900-5000 PFs resulted in the number of spikes in the burst being 

the best metric; the best metrics at the other settings are listed in the appendix. 

Graph B presents the ratios of the SNR for the best DCN metric to the SNR 

for the Purkinje cell pause lengths, that is, the amplification of the circuitry. It 

shows an intriguing property of increased amplification at the extremes of 

sparseness/denseness: the smaller differences between the novel and stored 

readouts in the Purkinje cell pause length are read out at approximately 100 times 

amplification for 200 and 15,000 active PFs, compared with the value of 14.1 for 

the default number of active PFs (this value, which has been obtained at a 

convergence ratio of 90, differs from that in the standard simulation setup where 

it was 17.0). 
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Figure 60 Effect of how many of the total 147,400 PF inputs to the associative net are 

active in a pattern. The patterns were presented to Purkinje cells converging in a 

90:1 ratio on the DCN neuron. Due to the large number of Purkinje cell simulations 

required, these simulations are based on 90 repeated simulations rather than the 

standard 750, giving minor differences in SNRs; see text for details. A) The signal-to-

noise ratios of the best DCN neuron metrics, all of which are metrics of the burst 

phase. B) The ratios at each PF setting of the SNR for the best DCN metric and the 

SNR for the Purkinje cell pause length; the ratio gives the amplification performed by 

the Purkinje cell to DCN neuron circuitry.  
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5.6.6  Number of stored patterns 

Another important PF pattern parameter is how many different patterns 

can be stored so that there is still a clear distinction between novel and stored 

patterns in the Purkinje cell and, more pertinently, in the DCN neuron. To 

investigate this, the number of different patterns that were presented to the 

associative net and stored in its weights was varied in the range 50 – 1500, 

including the default 100.  All were based on the default number of PFs active in a 

pattern (1000). This simulation was performed in the same way as the previous 

investigation of the number of active PFs per pattern: 90 Purkinje cell runs were 

presented with unique PF activity vectors; the resultant spike trains were 

transmitted to the DCN neuron at a convergence of 90. 

The best SNRs at the different settings are plotted in Figure 61; the best 

metric at each setting is given in the appendix. 
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Figure 61 Pattern recognition at varying settings of the number of patterns 

presented to the associative net. A) Best signal-to-noise ratios in the DCN neuron; B) 

the amplification of the PC-DCN circuitry at each setting.  

As with the simulations in 5.6.5, these results show that DCN pattern 

recognition suffers only modestly as the number of patterns is changed from the 

default of 100 patterns. Only at the highest setting, 1500 stored patterns, is the 

ability of the DCN readout of questionable value to downstream systems. Note 
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that at this stage, 1,500,000 changes of synaptic weight have taken place (1500 

stored patterns, with each pattern of size 1000), meaning that the average PF-PC 

synapse has been halved in strength more than 10 times. Even so, the DCN 

neuron gives different means for the novel and stored patterns with the best 

metric – the time of the first spike after pattern presentation – at 19.1 ms and 17.0 

ms, respectively, albeit with a very low signal-to-noise ratio of 0.07.  

5.6.7  Feed-forward inhibition to the Purkinje cell during 

pattern presentation 

Apart from their role of exciting Purkinje cells, PFs excite inhibitory 

interneurons (stellate and basket cells) which in turn synapse onto Purkinje cells. 

Thus, when a beam of PFs is stimulated, a Purkinje cell connected to this beam is 

initially excited by the PFs, and is a short time thereafter inhibited by stellate and 

basket cell inhibitory synapses (Eccles et al., 1967; Bao et al., 2010).  

The timing of this feed-forward inhibition was quantified by Mittmann et 

al. (2005) as having a mean of 1.4 ms relative to the PF excitation of the Purkinje 

cell.  

Steuber et al. (2007) examined the effects of feed-forward inhibition 

modelled based on the Mittmann et al. data and found that as the ratio of the 

delayed inhibition to the synchronised excitation exceeded approximately 1, the 

signal-to-noise ratio of the Purkinje cell pause started going down, from 18 

without feed-forward inhibition, to 15 at a feed-forward inhibition ratio of 1, and 7 

at a ratio of 2.  

In the simulations presented here, feed-forward inhibition was added to 

the PC model in order to investigate its influence on the pattern recognition 

ability of the Purkinje cell – DCN neuron circuitry. The ordinary 75  10 setup 

was created with the PC model receiving feed-forward inhibition at different 
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inhibition/excitation ratios and the resultant spike trains were fed to the DCN 

neuron. 

As in the Steuber et al. (2007) work, the ratio of feed-forward inhibition to 

the excitatory stimulus was calculated using the mean excitatory conductance in 

response to stored and novel patterns. As the conductances evoked by stored 

patterns on average were lower than those from novel patterns (approximately 

half, see Section 5.2.2) the actual ratio of inhibition to excitation was higher for 

stored patterns. Although it is possible that the storage of PF patterns by PF LTD 

could also lead to LTD at the inhibitory synapses onto Purkinje cells (Mittmann 

and Hausser, 2007), it has been shown previously that pattern recognition in 

Purkinje cells is unaffected by this inhibitory synaptic plasticity (De Sousa et al., 

2009), and the inhibitory synaptic conductance was therefore kept the same for 

presentations of stored and novel patterns. 

The Purkinje cell and DCN neuron pattern recognition results are 

presented in Figure 62, with A, the data for the signal-to-noise ratio of the 

Purkinje cell pause; B, the best metric of PC pattern recognition – the initial burst 

frequency at all ratios; C, the readout in the DCN where the best metric was the 

number of spikes in the burst at all settings. 
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Figure 62 Pattern recognition effects of feed-forward inhibition onto the Purkinje 

cell. A) The Purkinje cell pause length signal-to-noise ratio; B) The best Purkinje cell 

metric, the frequency of spikes in the burst following the pattern presentation; C) 

the signal-to-noise ratio of the best DCN neuron model metric, the number of spikes 

in the burst. 

It is an interesting finding that pattern recognition actually improves as a 

result of feed-forward inhibition at strengths up to equality with the excitatory 
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inputs. This is achieved both by an increased difference of means and a decrease 

in the normalised denominator of the signal-to-noise ratio, both in the Purkinje 

cell and the DCN neuron. 

The best Purkinje cell metric was included in Figure 62 in order to give 

another indication that the SNR of the DCN neuron burst is largely determined by 

that of the pause length in the Purkinje cell. Comparing graphs (A) and (C) shows 

that the signal-to-noise ratios display the same trend of increasing up to the 

inhibition / excitation ratio of 1 and decreasing thereafter; this trend is not seen 

with the signal-to-noise ratios of the Purkinje cell burst frequency (B). 

While it is well established that feed-forward inhibition of the Purkinje cell 

occurs, I judged that there are too many unknowns and complexities in the feed-

forward inhibition network for it – within the scope of this project – to be so 

realistically modelled as to allow a 1.4 ms delayed feed-forward inhibition to be 

added as a default feature of the network. There are uncertainties in the timing: 

the 1.4 ms figure is the mean of a range of 11 neurons with a range of delays at 

0.7-2.5 ms (Mittmann et al., 2005). Further, there is the complexity of different 

characteristics of the basket and stellate cell inhibitory effects (Bao et al., 2010). 

Hence, no simulations apart from this parameter exploration utilised feed-

forward inhibition. 

5.6.8  Limitation to the speed of Purkinje cell axonal 

transmission 

In 4.5.4 I introduced the finding of Monsivais et al. showing that the 

Purkinje cell axon cannot reliably transmit somatic firing rates above 

approximately 300 Hz. This was used as the default setting in the pattern 

recognition simulations; before being used to provide inputs to the DCN neuron 

model, all Purkinje cell spike trains were filtered with an algorithm that examined 
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each spike interval and removed the second spike if it occurred less than 3 ms 

after the first spike, corresponding to a firing rate of 333 Hz. The Purkinje cell 

SNRs were always calculated using these filtered trains since the main interest 

was to compare the results of readout from the DCN with that of the readout of 

the Purkinje cell as seen from another cell – not from an electrode in its soma. 

In this simulation, I have examined the pattern recognition capacity of the 

DCN model when presented with raw Purkinje cell trains. The simulation was 

only run for PC model non_spontPC, where 726 out of the total 750 novel trains 

had one or more spikes removed while no stored trains had any interspike 

intervals shorter than 3 ms. The first spontaneous PC model, spontPC, could not 

be used since no ISIs were shorter than 3 ms; I chose not to use spontPC_2 either 

– with only 81 of the novel trains filtered the results would probably not be very 

revealing. 

The DCN model was run with the standard parameter values. The capacity 

of PC pattern recognition was analysed using its “raw”, non-filtered trains. The 

results are slightly decreased signal-to-noise ratios in the absence of filtering both 

in the Purkinje cell (SNR of raw trains = 1.64±0.17; of filtered, 1.69±0.17) and in 

the DCN neuron (55.1±2.8 versus 59.6±3.8). 

5.6.9  Reduced number of DCN neuron synapses receiving 

pattern inputs 

A sign of the sensitivity of DCN neuron pattern recognition is how many of 

the 450 synapses of the neuron would need to receive Purkinje cell inputs 

resulting from PF pattern presentation of the same pattern type to create a DCN 

neuron output in which it is possible to distinguish a novel pattern from a stored 

pattern. In this simulation the DCN neuron was supplied with novel and stored 
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Purkinje cell trains as usual, but with increasing numbers of its synapses 

receiving pure background firing of Purkinje cells instead of pattern outputs. 

A remaining high signal-to-noise ratio with a large proportion of the DCN 

synapses fed irrelevant information would allow pattern recognition to operate in 

a very noisy environment and thus make it more probable to function in real 

neuronal circuits. 

The results of the simulations supported such a narrative. With inputs 

from spontPC, the DCN neuron stayed above a signal-to-noise ratio of 7 for the 

best metric with as few as 30 percent of its Purkinje cell synapses receiving a 

stored or a novel pattern (with all synapses from Purkinje cells receiving patterns, 

the convergence 450 setup has SNR = 30.2). The readout at this level is shown in 

Figure 63, which also serves to illustrate the utility of what I have called the 

interval-based metrics, as described in the caption of the Figure (see also Section 

5.4.2). 
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Figure 63 Result of the DCN neuron receiving pattern inputs to 135 of its 450 

GABAergic synapses (convergence = 450). With only 30 percent of synapses receiving 

the pattern, the end of the burst can no longer be identified in several of the runs. 

Instead, the number of spikes in the first 50 ms after pattern presentation is the best 

metric, with means 5.0 versus 4.0 (novel/stored), giving a signal-to-noise ratio of 8. 

The number of spikes in the burst averages 2.9 versus 2.5 but the high variances 

caused by the ill-defined ends of the bursts make the signal-to-noise ratio only reach 

0.5. 

The simulation was repeated with all three PC models as inputs, with a 

fine-grained variation of the number of pattern-presenting synapses revealing 

several jumps in the signal-to-noise ratios, yet showing an overall trend of the 

SNR remaining above 9 in all models for 60% or more of synapses receiving 

pattern inputs (Figure 64), while showing that the active and/or passive electric 

properties of the three PC models create quite different trajectories of pattern 

recognition sensitivity.  
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Figure 64 Effect of having different percentages of the Purkinje cell – DCN neuron 

synapses receive the pattern output, while the remainder receives background firing. 

At all points, the best metric has been used ; for all three PC models it is the number 

of burst spikes down to 50-60% of GABA receptors receiving patterns. For the lower 

percentages, see appendix. 

5.6.10  Short-term depression of Purkinje cell synapses 

Section 4.5.1 discussed short-term depression (STD) at the PC-DCN 

synapse and its incorporation into the network model. As it is well established 

that STD is present in the synapses, its range of neuronal coding functions 

(Section 2.4) made it interesting to evaluate whether it may be implicated in 

pattern recognition as well. 

To be able to evaluate the contribution of STD at PC-DCN synapses to the 

pattern recognition performance of the DCN neuron, simulations with and 

without STD had to inject the same mean inhibitory conductance into the DCN 

neuron model before the pattern presentation. This relates to the discussion in 

Section 4.5.6 where I showed how the peak conductance is never reached when 
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STD is applied. If the peak conductance would not be adjusted in the absence of 

STD, the total inhibitory conductance in the background firing phase of the DCN 

neuron would be higher in the absence of STD and thereby the effect of 

background firing rate would interfere with the effects of STD. 

To avoid this bias, I measured the mean conductance of the PC-DCN 

synapse in a sample of simulations both with STD switched on and off. Based on 

those measurements I decreased the peak GABAA conductance of the simulations 

with STD turned off to give the same mean GABAA conductance (76 pS) in the 

time before pattern presentation when STD was turned off as with STD on. 

The results of the simulations with the default simulation setup in all other 

respects apart from STD being switched off and the GABAA peak conductance 

adjusted, revealed that STD worsens the pattern recognition performance. The 

number of spikes in the burst remained the best metric in the absence of STD, 

giving a signal-to-noise ratio of 43.6±3.0 (the default gave 30.2±3.1). The mean 

number of burst spikes increased by 0.3 to 7.1 for novel trains and by 0.1 to 5.1 for 

stored trains. 

5.6.11  Projections of mossy fibres both to PCs and the DCN 

neuron during pattern presentation 

The final investigation looks at the cerebellar circuitry on a larger scale. In 

Section 2.7 the collateral connections of the mossy and climbing fibre systems to 

the DCN were described. For the purposes of the simple spikes that we assume 

make up the PC pattern output, the mossy fibres are the relevant collaterals. 

The granule cells that project PFs to Purkinje cells receive excitatory 

inputs from mossy fibres. At least two in vivo recording studies have 

characterised excitatory and inhibitory responses in the soma of DCN neurons (in 

the interpositus nucleus) as a result of sensory stimulation of the animal (Cody et 
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al., 1981; Rowland and Jaeger, 2005). Both studies found the expected inhibitory 

response that PC firing onto the DCN neuron would cause; in addition, some of 

the cells responded with a short-latency excitation, followed by the inhibitory 

effect. A possible explanation for this phenomenon is that those DCN neurons 

receive input from one or more mossy fibres that are involved in exciting the 

Purkinje cells that connect to the DCN neuron. It is known that the circuitry of 

climbing fibres to the Purkinje cell and the DCN neurons maintains somatotopy 

and there are indications that this holds for the mossy fibre system as well (Manni 

and Petrosini, 2004). 

Published quantifications of the latency and their use in these 

simulations 

The Cody et al. (1981) study found the excitatory response at a mean of 

13.0 ms after paw stimulation in awake cats, and the inhibitory response at a 

mean of 25.6 ms, giving a latency for the inhibitory response relative to the 

excitatory at a mean of 12.6 ms. Rowland and Jaeger (2005)  performed 

experiments in anaesthetised rats where air puffs to the upper lip evoked the 

excitatory and inhibitory responses at mean times of 15.1 ms and 21.9 ms, 

respectively, giving a mean latency of 6.8 ms. 

While the DCN neuron model is primarily based on rat recordings and on 

rat morphology, the cat study of Cody et al. was made in awake animals and 

therefore of special interest. In either case, the pattern recognition study would 

benefit from showing effects at two different realistic settings. Hence I created 

simulations where the default setup of Purkinje cells and DCN neuron was 

modified so that the excitatory inputs to the DCN neuron provided a 

synchronised burst, apart from their usual randomised background firing. This 

synchronised burst was designed so that it could be seen as a membrane potential 
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deflection in the DCN neuron soma 6.8 or 12.6 ms prior to the onset of the 

inhibitory response in the DCN neuron soma (based on the two experimental 

studies mentioned above). A typical membrane potential response to this 

excitation of the DCN neuron before pattern presentation is shown in Figure 65 

(bottom, shown for a delay of 6.8 ms).  

 

Figure 65 Mossy-fibre collateral bursts to the DCN neuron concomitant with PF 

pattern presentation to the Purkinje cells (spontPC) that connect to the DCN neuron. 

The upper voltage traces show the default simulation setup where the excitatory 

inputs to the DCN provide mere background stimulation, while the lower traces 

show the same setups but with the addition of a synchronised input to 100 out of all 

150 excitatory synapses; this happened 6.8 ms before the effect of the synchronised 

PF firing reached the DCN via the Purkinje cell inhibitory firing. Note how the 

modified setting gives a decreased hyperpolarisation during the DCN pause before 

its burst. 

The lower traces of Figure 65 show the DCN neuron response at the setting 

giving the best SNR, at 49.2±4.9; a similar improvement from the default setup 

(SNR = 30.23.1) was present at several proportions of the excitatory synapses 

receiving collateral inputs. 
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As the sample traces show, the mossy fibre collateral firing is accompanied 

by a decreased hyperpolarisation, both when novel and stored patterns are 

presented. With the 100 out of 150 excitatory synapses active as in Figure 65, the 

mean membrane potential minimum in the DCN pause phase changed from on 

average -69.0 to -66.6 mV for novel patterns and from -68.5 to -66.2 mV for 

stored patterns. The increased SNR in the face of decreased DCN neuron 

hyperpolarisation is yet another indicator of the relative irrelevance of the 

Purkinje cell burst response in evoking a differential burst response in the DCN 

neuron. 

Examinations to show if improved pattern recognition results are local 

extremes or general trends 

I decided to investigate whether improved pattern recognition results 

observed at some settings constituted local extreme values or were part of a 

general trend of improved pattern recognition in the presence of mossy fibre 

collateral inputs. For this purpose I made a detailed characterisation of the 

intervals around these points and repeated all simulations in non_spontPC and 

spontPC_2. The results, shown in Figure 66, are that the mossy fibre collateral 

firing only gives improved pattern recognition in one particular range of the 

number of active PFs (recognisable from the density of data points) , and only in 

model spontPC. 
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Figure 66 The DCN neuron model recognising PC pattern outputs accompanied by 

increasing proportions of mossy fibre collateral inputs firing 6.8 ms prior to the DCN 

receiving the PC pattern output. 

Additionally, I ran the full set of simulations with the 12.6 ms delay found 

in the Cody et al. study (1981). This resulted in the spontPC model no longer 

being the one improving with collateral firing, but this performance increase was 

now present in spontPC_2, and at any examined setting of the number of these 

active collaterals (see Figure 67). 
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Figure 67 Same as Figure 66 but with 12.6 ms delay between the synchronised 

inputs. 

In sum, the addition of the biologically probable mossy fibre collateral 

firing to the DCN neuron, prior to the PF to PC pattern presentation, does not 

consistently decrease or increase pattern recognition capacity overall in these 

examined models with realistic delay times. That is another reassuring result 

which rounds off the pattern recognition results part. 

5.7  Discussion and limitations of the pattern 

recognition project 

I will here address some of the limitations of my studies of cerebellar 

pattern recognition. Several of the parameter exploration studies raise more 

questions than they answer and many suffer from lacking physiological data. For 

example, the study of mossy fibre collateral firing shows that with the right level 
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of excitation, there is an amplification of pattern recognition resulting from the 

collateral connection. If we were to assume that this connection plays a role as 

amplifier, are there physiological mechanisms to ensure that the inputs reach 

such optimal levels? To answer this, it would first need to be more precisely 

established to what extent the mossy fibres providing the granule cell input for 

the pattern presentation actually connect to the excitatory DCN neurons, and how 

many different mossy fibres reach each DCN neuron. Following this, recordings 

of such connected neurons would have to be undertaken simultaneously with 

granule cells, Purkinje cells, and DCN neurons. 

A limitation to my approach to analysing pattern recognition data is that of 

the lacking statistical significance testing of pattern recognition metrics. The 

interval-based metrics added 63 new metrics to the original 12 ones, in principle 

necessitating that results of significance (the SNRs) be corrected for the 75 

multiple observations. Although most of both the original and the interval-based 

metrics turned out to be of no use, it raises the problem that a multitude of tests 

tends to find something, even if that something is not causal to the phenomenon 

observed. 

Yet, the original metrics were developed based on the inspections of the 

raster plots of DCN neuron pattern readout and it was clear that the burst was an, 

or the, essential feature before the signal-to-noise ratios confirmed it. The metrics 

that do not relate to the burst give a high SNR in many cases, but the highest 

SNRs have always been those relating to the burst, even when the interval-based 

metrics were the best. For example, in the study with different numbers of 

Purkinje cell synapses being provided with PC pattern readout, many of the lower 

percentages (see appendix) gave best results for “3rd 20 ms, number of spikes”; 

this metric of the number of spikes in 40-60 ms following pattern presentation is 

in effect a metric of the burst length. 
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The simulations in this chapter have all assumed that patterns are 

presented in a distributed fashion over the Purkinje cell dendritic tree. If it were 

to turn out that the 1000 out of 147,400 parallel fibres that were active during 

pattern presentation were localised to specific parts of the dendritic tree, the 

simulation results would likely turn out differently. For example, if clusters of 

active PFs would be firing onto the same dendritic branch, saturation of the 

current flow in the dendrite would likely set in and therefore, the difference in 

responses to stored and novel patterns would likely be much less pronounced. 

The remaining sections of this chapter will discuss specific results in terms 

of their importance and the new questions they raise. 

5.7.1  The shortened burst of the DCN neuron upon pattern 

recognition contradicts earlier theories 

Section 5.5.1 described how the DCN neuron responded with a burst of 

spikes when a PF pattern was presented to the PCs of the network. The burst was 

shortened when the PC recognised a previously stored pattern (see for example 

Figure 48) and the number of spikes in the burst was the best metric of pattern 

recognition in the DCN neuron. 

The result stands in contrast to the commonly held theory of how LTD-

based learning in the PF-PC synapses would affect cerebellar output. As discussed 

with regard to eye blink conditioning at the end of Section 2.7.4, it is often 

assumed that learning would lead to increased DCN neuron output, which in the 

case of a motor behaviour such as conditioned eye-blink responses would help 

initiate movement. Note however that even a decreased DCN neuron output upon 

pattern recognition could fit with the theory of movement induction if an 

inhibitory interneuron in the chain of neurons leading from the DCN neuron to 
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the muscles would be found to be spontaneously active, thereby recoding a 

decreased DCN output to an increased firing rate. 

5.7.2  Mechanism of the modulation of the burst duration 

The shortened length of the DCN burst was most likely caused by the 

similarly shortened pause in PC firing, as opposed to being caused by changes in 

the PC burst following pattern presentation. This was shown in Section 5.5.4 and 

in several of the pattern recognition explorations of Section 5.6 with evidence that 

the SNR of the DCN readout changed in concert with changes in the SNR of the 

PC pause length rather than with SNRs of metrics of the PC burst phase. 

Steuber et al. (2007) showed that the pause of the PC resulting from input 

to the PF-PC synapses could be caused by intracellular Ca2+ rises that activated 

calcium-dependent potassium channels (KCa). These channels create an 

afterhyperpolarisation (AHP), that is, a period of lowered membrane potential 

following the PF-triggered spikes, and thereby prevent further spikes following a 

strong PF input. Steuber et al. (2007) further suggested that the stronger input 

caused by a novel PF pattern increased the Ca2+ influx and the AHP and thereby 

caused a longer pause (see Figure 41 A).  

5.7.3  Convergence causes amplification of pattern 

recognition 

The results of exploring PC to DCN convergence showed that the network 

produced a much lower than theoretically possible averaging effect. This can be 

expected to happen in any biological pattern recognition device since such devices 

operate with inherent noise that digital computations can filter out. Possible 

sources of noise that could decrease the averaging effect include the introduction 

of spatial noise by the distribution of synapses over the DCN neuron dendritic 
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tree. The ideal averaging device would have equally fast transmission times from 

all points of the dendritic tree, while the DCN neuron has variable transmission 

delays from the dendritic synapses to the soma reaching up to a couple of 

milliseconds. This spread of delays will increase the variance of somatic responses 

to stored and novel patterns, which will decrease the signal-to-noise ratio and 

result in a diminished pattern recognition performance. 

A severe limitation of the convergence study was shown in the matrix 

simulations of theoretical convergence effects. Those indicated that with the 

random drawing of spike trains from the pools of Purkinje cell spike trains, 

correlations between Purkinje cell spike trains were introduced, driving noise 

lower and giving higher SNRs at the higher convergences. However, the 

supralinear scaling only began for convergences above 50 at which point the 

averaging function of the network had already been established; at convergence = 

50 the amplification was 10.9 (DCN neuron number of burst spikes / Purkinje cell 

pause length). 

5.7.4  Pattern recognition amplification is independent of 

linear coding 

Walter and Khodakhah (2009) imply that the Purkinje cell to DCN neuron 

convergent connectivity is ideally suited for amplifying what they call a linear 

code, that is, with information provided in the frequency of the Purkinje cell burst 

following pattern presentation. The pattern recognition study in this thesis has 

shown that not only is this linearly coded information unlikely to significantly 

contribute to the pattern recognition capability of the cerebellar circuitry, but also 

that the pause-based pattern recognition opposed by the same authors can be 

amplified in a convergence-based manner. 
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5.7.5  Averaging in the efferent connections of DCN neurons 

It is interesting to note that many of the pattern recognition results 

presented here predict that the targets of DCN neurons should be able to 

distinguish between novel and stored pattern presentations particularly well 

should there be mechanisms in place to effect a second stage of averaging – of the 

outputs of DCN neurons themselves. It is not clear how the DCN projection 

neurons that I have modelled are connected to create eventual outputs in the 

forms of, for example, muscle contractions. 

As a hypothetical example, I briefly discuss the study where only 50 PFs 

were active in each pattern presentation. This resulted in a mean SNR of 1.0, 

which was shown to correspond to 31% faulty classification (Table 5). If 30 DCN 

neuron outputs would be averaged via relay neurons in the brain stem and spinal 

cord to reach motor neuron targets, the percent of incorrect responses would 

decrease in a supralinear fashion to 0.3% (also Table 5). Hence, were such post-

DCN averaging mechanisms to be found, they would drastically extend the 

pattern discrimination capabilities of the cerebellum. 

5.7.6  Information content in the DCN neuron burst 

The DCN neuron burst was shown to contain the most information in the 

number of spikes it contains rather than in its length in units of time (Section 

5.5.1). This was caused by a larger variance of the length of the burst in time – 

that is, there was more noise present in the signal, giving a lower mean signal-to-

noise ratio. It is tempting to speculate that the number of spikes generally is a 

more noise-resistant metric than the duration of a spike train or burst, given that 

the thresholding mechanism of neurons means that adding an extra spike to the 

output of the neuron likely requires more changes in the amount of synaptic 
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inputs (and other mechanisms that influence the membrane potential) than 

merely shifting the timing of a spike. 

5.7.7  Marr’s predictions 

In relation to the discussion of the results of the number of active PFs 

during pattern presentation, it is worthwhile to revisit the predictions made by 

David Marr (1969). His expectation was that a minimum of 0.25% of PF-PC 

synapses need to be active for the pattern they make up to be read out by the 

Purkinje cell, corresponding to approximately 600 PFs presenting patterns to the 

associative net of these studies. In my parameter exploration, 500 such PFs gave 

an SNR of 0.53 while the next setting of 750 gave an SNR of 1.36. The 

corresponding data for the DCN readout are 11.0 and 13.2. Marr did not include 

DCN neuron averaging in his theory, but its presence proves his minimum to be a 

realistic estimate. 
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6.  DCN neuron readout of irregularity 

in Purkinje cell firing 

Note: part of this chapter has been published as a journal article (Luthman 

et al., 2011). 

This project investigates the irregularity of timing of Purkinje cell (PC) 

spikes and its effects on the DCN neuron. The concept of irregularity was 

introduced in Section 2.6 together with its quantification using the coefficient of 

variation (CV), CV2, and gamma probability functions (gamma functions for 

short) for describing the ISI distributions. 

PC spike trains typically show a wide variation in the interspike intervals 

(Figure 68), giving CVs of approximately 0.4-0.5 for PCs in adult rats (Savio and 

Tempia, 1985; Stratton et al., 1988; LeDoux and Lorden, 2002). It has, however, 

been shown that the seemingly irregular firing of PCs masks periods of regular 

firing and that those periods coincide with behavioural states (Shin et al., 2007a). 

Purkinje cells are bistable; the membrane potential and spike output 

switches between two states, the up- and down-states, where the downstate is 

characterised by hyperpolarisation of the membrane potential and lacks simple 

spike firing. Via sensory stimulation, activity in the climbing fibres can switch PCs 

between the two states (Loewenstein et al., 2005; Rokni et al., 2009). 

In the study of Shin et al. (2007a), regular firing only occurred during the 

up state of the membrane potential and Rokni et al. (2009) showed that the up 

state is intrinsically made up of high-frequency regular firing that is modulated 

into more irregular firing by inhibitory synaptic inputs. 
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Thus, the property of bistability inherently gives an irregularity to the 

output of the Purkinje cell.  

For any kind of difference in PC irregularity to affect the behaviour of the 

animal, it must be assumed to change the output from the DCN neurons. Short-

term depression (STD) of the PC-DCN synapses can be expected to contribute to 

how the DCN neuron output is modified. 

 

Figure 68 Interspike interval distributions of Purkinje cells recorded in vivo. The left 

figure is from Goossens et al. (2001); the right, from De Schutter and Bower (1994b). 

STD of the PC-DCN synapse was described in Section 2.4 and its 

incorporation into the DCN neuron model in 4.5.1. As discussed there, STD 

makes the unitary conductance of the PC-DCN synaptic channel depend on the 

prior firing rate of the connecting Purkinje cell. Figure 69 shows how STD 

decreases the inhibitory conductance to the DCN neuron that results from a PC 

spike when it receives PC input that fires with a high rate compared to that with a 

lower firing rate. Since irregularity of PC firing implies variations in the 

instantaneous firing rates it can be expected that irregular inputs lead to modified 

conductances of the PC-DCN synapse; those changes should influence the firing 

of the DCN neuron. 



 181 
 

 

Figure 69 The short term depression (STD) element introduced in Chapter 2 (Figure 

2). It is here depicted both depending on firing rate (A) and its inverse, the interspike 

interval (B). 

Another factor that can be expected to be of importance is the convergence 

ratio of PCs to DCN neurons. I discussed in Section 5.5.2 how high convergence 

ratios of desynchronised firing of PCs would lead to a more tonic hyperpolarising 

effect than inputs of low convergence or inputs that are synchronised. In the 

latter case one can therefore expect longer windows where the inhibitory stimulus 

is reduced and where the spontaneous firing of the DCN neuron would combine 

with the excitatory inputs to cause a fast firing. On the other hand, naturally, the 

periods of enhanced inhibitory input would decrease DCN neuron firing. Taken 

together, low-convergence inputs should give a more varying output than high-

convergence input. 

The present project aimed at elucidating the effects of STD and of 

convergence in the presence of different levels of irregularity of PC firing. I did 

this by modelling PC firing of varying irregularity and firing rate using the 

artificial spike generator element GammaStim (Section 4.5.4); later, I repeated 

simulations using real PC recordings of different levels of irregularity to confirm 

observations in a more biologically realistic setting. Thus, this project did not use 
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the PC model as input. Further, the inhibitory input rate to the DCN neuron 

model was 60 Hz instead of the 56.6 Hz of the PC model. In other respects, the 

simulation setup equalled that of the pattern recognition project. 

6.1  Simulations of irregularity using the 

GammaStim spike generator 

In this part of the present project, the GammaStim spike generator was 

used to model PC input to the DCN neuron model. Based on personal 

communication by Chris de Zeeuw (Erasmus MC Rotterdam) I chose 90 as the 

default convergence ratio in this part of the project. 

As when the contribution of STD to pattern recognition was evaluated 

(Section 5.6.10), the GABAA conductances needed to be identical in the case of full 

regularity of PC firing when STD was used as when it was not. With this baseline 

equality of conductances, the contribution of STD to the conductances and to the 

DCN neuron firing could be evaluated. The equalising of baseline conductances 

was done in the same manner as in the pattern recognition project and was 

described in Section 5.6.10. 

6.1.1  Modelling irregularity of PC firing 

Different levels of irregularity of PC firing were modelled with the 

GammaStim synaptic element, using irregularity settings from 0 to 1 where 0 was 

completely regular input – that is, ISIs of constant length – and setting 1 gave ISI 

lengths drawn from a gamma distribution of specified order. Equation 24 

describes how the ISI lengths were calculated: 

 (24) 
zyxyxISI  )1(
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where x is the irregularity setting, y is the desired mean of the ISIs, and z is a 

random number between 0 and 1, drawn from a third degree gamma distribution. 

Figure 70 shows some examples of ISI distributions resulting from different 

irregularity settings sampled over 15 seconds of GammaStim firing. 

 

Figure 70 Examples of ISI distributions of GammaStim outputs with an irregularity 

setting (Equation 24) of 0.4 in (A), 0.7 in (B), and 1.0 in (C). (B) has a similar gamma 

order as that of the wild-type real PCs used in Section 6.2, while (C) in the same way 

corresponds to the tottering PCs (compare with Figure 74). 

6.1.2  First results 

The first set of simulations was with GammaStim firing at 60 Hz at a range 

of settings of increasing irregularity: 0 (fully regular trains), 0.2, 0.4, 0.6, 0.8, and 

1. This PC output was sent to the PC-DCN synapses, with and without STD. The 

DCN neuron was allowed to equilibrate for 5 seconds and simulations were then 

run for 90 seconds of neuronal time. The results of these simulations are plotted 
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in Figure 71: with STD switched on, the DCN neuron firing rate increased from 

33.3 Hz at regular PC firing to 40.6 Hz at the highest irregularity, an increase of 

22.0%. This was in contrast to the situation with STD switched off where firing 

only increased by 1.4%, from 33.3 Hz to 33.8 Hz. Thus, at this firing rate and 

convergence ratio, irregular inputs speed up the DCN neuron spiking and STD is 

the main cause of it. 

 

Figure 71 DCN neuron firing as a function of PC irregularity, in the presence and 

absence of short-term depression (STD), showing how the DCN neuron responds 

with increasing firing rates as the irregularity of its GABAA synaptic inputs increases. 

The insets below the graph are of two spike trains, both with a frequency of 60 Hz. 

The left train has constant ISI lengths, resulting from an irregularity setting of 0. The 

right train illustrates the effect of increasing the irregularity setting to 0.7 

(corresponding to ISI distribution B in Figure 70). 

The increased firing rate in the presence of STD was accompanied by a 

decreased GABAA conductance, with the mean GABAA input over all synapses 

decreasing by 11.2% from 38.0 nS at fully regular inputs to 33.7 nS at inputs of 

irregularity = 1. In the absence of STD, the conductance was unchanged at 38.0 

nS.  
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The decreased GABAA conductance with irregular firing in the presence of 

STD is understandable from the shape of the curve of the STD function in Figure 

69. As irregularity is introduced, the previously constant ISI length of 16.7 ms 

changes to a mix of ISI lengths, still with a mean of 16.7 ms. Graph B in Figure 69 

shows that for example a one-millisecond decrease in the length of an ISI from 

16.7 ms (or anywhere else from ca 5 ms to 100 ms, i.e., a firing rate of 10–200 Hz) 

creates a larger decrease in the GABAA conductance than the increased 

conductance resulting from the same increase in the length of an ISI. The graph 

shows how this relationship covers most of normally occurring PC firing rates; 

this means that the decreased GABAA conductance from STD during irregular 

firing can be expected to be a general feature at the PC-DCN synapse. 

However, the larger range of PC ISI lengths that results from irregular 

firing may have another effect. If the PCs fire synchronously or if the physical 

convergence is low, the longer ISIs may allow an increased number of 

spontaneously generated DCN neuron spikes, just like the shorter ISIs may allow 

fewer spikes. I discussed this in Section 5.5.2 together with its implications for 

pattern recognition and it could be part of the explanation for the effects of 

irregularity too, at low levels of synchronicity/convergence. 

To evaluate these hypotheses, I designed experiments to test the effects of 

PC firing irregularity in the presence and absence of STD, at different PC firing 

rates and levels of convergence. 

6.1.3  Parameter exploration 1: GammaStim firing rate 

The first parameter exploration was of GammaStim firing rate, in the 

range 10–150 Hz with 10 Hz intervals. The same irregularity levels as previously 

were used and all simulations were run with a convergence setting of 90. Results 

are shown in Figure 72. 
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Figure 72 DCN neuron firing at PC inputs of different rate and irregularity. A) The 

results of STD switched on, with higher PC irregularity causing higher DCN firing rates 

across the spectrum of PC firing rates. B) Without STD, little of the speedup occurs. 

The irregularity-induced speedup from STD remained at all PC firing rates 

in the range, but was most pronounced at the intermediate ranges (Figure 72, A), 

covering the most commonly occurring rates in vivo (Figure 68). 

6.1.4  Parameter exploration 2: convergence ratios 

In another parameter exploration I investigated the effect of different 

convergence ratios on the STD-dependent speedup for increased irregularity 

values. The following divisors of the total number of GABAA synapses (450) were 

used as convergence ratios: 1, 3, 9, 18, 45, 90, and 450. The simulations were run 

with GammaStim firing at 60 Hz, at the previously used irregularity settings, and 

in the presence and absence of STD. The results are shown in Figure 73.  
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Figure 73 Exploration of different convergence ratios of PCs to the DCN neuron: the 

STD-based acceleration of firing for irregular inputs goes up with increasing 

convergence ratios. The graph plots results of the equation (STDon-STDoff)/STDoff. 

As was the case with the pattern recognition effects of convergence 

(Section 5.5.2), a saturation of the effect (here, increased DCN firing; in pattern 

recognition, signal-to-noise ratios) sets in at the highest convergence ratios. 

Below the point of relative saturation of effects – at convergence of 45 – the 

speedup from STD abates as the convergence ratio is lowered. With full 

synchronicity or with a convergence of 1, the presence of STD led to an increase of 

DCN neuron firing rate by only 3.8% with maximally irregular input compared to 

with fully regular input, while the GABAA conductance decreased by 9.3%. In 

comparison, convergence 450 gave a 21% increased firing rate together with a 

larger GABAA conductance decrease, at 11%. The diminished effect of STD at low 

convergence ratios will be discussed in detail in the following section. 
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6.2  Investigating effects on the DCN neuron of real 

PC inputs of varying irregularity 

Understanding the two potential effects of irregularity – the decreased 

conductance in the presence of STD and the changed firing opportunities which 

result from irregular ISI lengths – should benefit from being studied for spike 

trains recorded from real Purkinje cells in mice. 

In addition to the normal variation in the firing rate of PCs, there are 

mutated strains of mice with an increased irregularity of PC spiking. One of these 

strains is tottering, which has a mutation in the Cacna1a gene that encodes the 

pore-forming α1A-subunit of P/Q-type voltage-gated calcium channels. Tottering 

mice have poor motor control; some of this phenotype can be rescued by 

decreasing the irregularity of PC firing (Hoebeek et al., 2005; Walter et al., 2006). 

I made contact with experimental neuroscientists at Erasmus MC, 

Rotterdam: Freek Hoebeek and Chris de Zeeuw, who kindly provided recordings 

from awake and head-restrained mice of tottering as well as wild-type mice. The 

total number of neurons recorded from was 37 tottering and 28 wild-type 

Purkinje cells, with a total time of approximately 5000 and 4000 seconds, 

respectively. Figure 74 shows the firing characteristics of these tottering and wild-

type mice. 
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Figure 74 Samples of tottering and wild-type PC spike trains. A) 500 ms of firing from 

each of the 37 tottering and 28 wild-type trains. B) ISI distributions of the 15-second 

trains used as input to the GABAA synapses of the DCN neuron model. The panel 

shows a typical case each of tottering and wild-type; the given firing rates, CVs of 

ISIs, and gamma function orders are close to the respective mean values (Table 14). 

6.2.1  Selecting PC spike trains for use as DCN neuron input 

To use the Purkinje cell spike trains in simulations with the DCN neuron 

model, I divided the raw spike trains into 15-second stretches, yielding 326 

tottering and 251 wild-type trains. Of those, the tottering trains had a mean firing 

rate of 54.5 ± 33.4 Hz (SEM) while the wild-type trains had an average of 70.4 ± 

21.1 Hz. Figure 74 shows samples of tottering and wild-type trains. 

As in the pattern recognition project, a spike-removal algorithm was 

applied which eliminated the second spike of each ISI that was shorter than 3 ms. 

The procedure reduced the mean firing rates to 52.2 ± 29.6 Hz for tottering 

versus 70.1 ± 21.0 Hz for wild-type. 
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In order to allow the results of simulations using wild-type trains to be 

compared with those of tottering, the mean firing rates of the trains were made 

equal. I did this with a biased selection procedure: of the raw tottering trains I 

used the trains with higher firing frequencies more often than the slower ones. 

Inversely, for the wild-type, I used slower trains more often than faster ones. 

150 trains each of tottering and wild-type were drawn from the pools of 

326 and 251 fifteen-second trains, respectively, to allow simulations with a PC-

DCN convergence level of up to 150. I created 204 sets with each 150 tottering 

and 150 wild-type trains where the mean of a set was confined to the interval 

61.3–62.3 Hz. The groups were analysed using the same metrics as for the pool of 

raw trains and revealed a good consistency of variability metrics pre- versus post-

selection (Table 14). 
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Table 14 Statistics of spike trains from tottering and wild-type Purkinje cells before 

and after selection. 

 Firing 
rate 

CV of ISIs Gamma order CV2 of ISIs Percent of 
time in long 

patterns 

 

Raw Purkinje cell spike trains 

 Wild-type 
(n=251) 

70.1 0.45 4.56 0.39 18.4 

St. Dev. 21.0 0.16 2.40 0.10 12.5 

Tottering 
(n=326) 

52.2 1.72 2.23 0.56 7.8 

St. Dev. 29.6 1.28 1.57 0.18 9.6 

 

After selection: per-set means 

 Wild-type 
(n=204x150) 

61.8 0.46 4.87 0.38 20.0 

Min 61.3 0.44 4.59 0.37 18.5 

Max 62.3 0.47 5.13 0.39 21.5 

Tottering 
(n=204x150) 

61.8 1.70 2.18 0.53 8.3 

Min 61.3 1.52 1.98 0.50 6.6 

Max 62.3 1.91 2.42 0.55 10.0 

 

The distributions of firing rates of tottering and wild-type trains before 

and after the selection mechanisms are shown in Figure 75. 



 192 
 

 

Figure 75 Purkinje cell spike trains before and after using a biased selection method 

to create train sets where the tottering and wild-type trains had the same mean 

frequency, yet retained the characteristics of increased variation of firing within the 

group of tottering trains. A) All original 326 tottering and 251 wild-type trains (mean 

spike rates indicated by dashed lines). B) One each of the 204 paired sets of 150 

tottering and 150 wild-type trains where each set in the pair had the same mean 

firing rate, here 61.8 Hz (dashed line). 

6.2.2  Simulations using wild-type and tottering PC trains 

The studies using the GammaStim elements were repeated with the real 

PC trains as input, to the extent possible. Thus, while the effects of different PC 

firing rates could not be explored in a practical manner using real PC trains, the 

following set of convergence ratios were used to examine effects of the different 
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levels of irregularity that tottering and wild-type corresponded to, in the presence 

and absence of STD: 1, 2, 3, 5, 15, 50, and 150. The convergence setting of 150 

used all spike trains in each 150 + 150 pool, while for the lower convergence 

ratios, trains were drawn randomly from the pool without duplicate drawings. 

Simulations were run for a 5 second calibration period during which artificially 

generated trains with the mean firing rate of the 204 sets – 61.8 Hz – were used. 

Thereafter, the simulations were continued for a simulated neuronal time of 15 

seconds where the real PC trains were used. 

Statistical data were calculated for each of the resulting 204 + 204 wild-

type + tottering DCN spike trains and then averaged over the 204 simulations. 

The firing rates and GABAA conductances are presented in Figure 76.  



 194 
 

6.2.3  Effects on DCN neuron firing rate 

 

Figure 76 The DCN neuron model response to tottering and wild-type inputs in the 

presence and absence of STD at different levels of PC-DCN convergence. Data are 

presented ± standard error of the mean (n=204). A) This graph of spike rates shows 

that the irregularity-driven acceleration depends on the presence of STD for high 

convergence ratios, but becomes less dependent of STD for low convergence ratios. 

B) Means of the GABAA conductance to the DCN neuron model injected by the spike 

trains used in (A), showing consistency across the convergence spectrum. 

As in the results from the GammaStim simulations with varying 

convergence (Section 6.1.4), the DCN neuron firing rates and the STD  dependent 

firing rate increases were very similar at the highest convergences (here, 50 and 
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150), supporting the validity of comparing these results with those of convergence 

90 where GammaStim inputs were used (Figure 71). 

In these simulations in the presence of STD, at a convergence of 150 the 

DCN neuron model responded with a 27.4% higher firing rate to the irregular 

spike trains from tottering Purkinje cells than to the more regular trains from 

wild-type cells (48.8 Hz versus 38.3 Hz). In the absence of STD, the difference in 

DCN neuron firing rate in response to tottering and wild-type Purkinje cells was 

reduced to 2.4% (34.0 Hz versus 33.2 Hz). 

However, at lower convergence ratios the irregular inputs from tottering 

mice resulted in an accelerated spike rate in the DCN neurons, which was less 

dependent on STD, and the STD dependence of the irregularity based spike rate 

acceleration disappeared completely at a convergence ratio of 1 (Figure 76 A), 

mirroring the situation with GammaStim inputs (Figure 73). The mechanism for 

this STD-independent acceleration will be explored in Section 6.2.6. 

6.2.4  GABAA conductance changes 

The changes in GABAA conductance caused by STD were more 

pronounced than in the GammaStim case: at a convergence ratio of 150, the 

presence of STD resulted in a 16.0% reduction of the mean GABAA conductance 

injected into the DCN neuron model by the tottering spike trains compared to the 

wild-type trains (tottering: 29.5 nS, wild-type: 35.1 nS). Without STD, the 

difference between the mean conductances from tottering and wild-type spike 

trains at a convergence ratio of 150 was reduced to 0.8% (tottering: 38.0, wild-

type: 38.3 nS). 

Note that the difference between wild-type and tottering in terms of 

gamma order of ISI distribution were smaller than the differences between fully 

regular and maximally irregular trains in the GammaStim simulations (from 
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Table 14: mean gamma order of a wild-type 150-set is 4.9, tottering, 2.2; 

GammaStims: an irregularity setting of 0 gives an infinite gamma order, while 1.0 

gives 2.5). In spite of this, the DCN neuron firing rate increase caused by the 

irregularity of inputs was larger with tottering as compared with wild-type than 

in irregular GammaStims compared with regular GammaStims (27.4% versus 

22.0%, with convergence 150 vs. 90). The corresponding values for the GABAA 

conductance were 16.0% for real PC trains and 11.2% for GammaStims. 

However, the metric of gamma order does not capture other irregularity 

features of tottering spike trains. The tottering ISI distributions are characterised 

by a larger variation of interspike intervals than the GammaStim element 

produces even at the highest irregularity setting (Figure 74 and Figure 70, 

respectively). This is quantified with the CV of the ISI distributions, which has an 

average of 0.46 for wild-type and 1.7 for tottering (Table 14) and 0 vs. 0.52 for 

fully regular GammaStim trains versus those of irregularity setting 1.0. 

6.2.5  Exploring differences in DCN responses to spike 

generators compared to real PC spike trains 

To understand why the real PC trains gave a stronger effect than the spike 

generators, I performed simulations with GammaStim elements where I created 

the same mean firing rate as that of the real PC trains – 61.8 Hz – and as close as 

possible a gamma order of the GammaStim spikes to replicate wild-type and 

tottering PC trains (2.8 and 5.2, respectively). These simulations were run with 

the same convergence ratios as those with real PC trains had been. In addition, I 

ran simulations where the GammaStim output was fully regular, also at 61.8 Hz. 

The result is shown in Figure 77. 
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Figure 77 Firing rate of the DCN neuron when receiving GammaStim inputs where 

spike rate and irregularity has been set to imitate the real PC trains from tottering 

and wild-type, as well as fully regular trains. Data are presented ± standard error of 

the mean (n=204). 

At a convergence ratio of 150 and in the presence of STD, the acceleration 

caused by irregularity in the tottering-like trains compared with the wild-type–

like trains was 8.9% (wild-type-like: 37.7 Hz, tottering-like: 41.4 Hz). The mean 

summed GABAA conductance decreased by 6.6%, from 35.3 nS to 33.1 nS. Thus, 

the STD-caused firing rate acceleration with tottering-like inputs compared with 

wild-type–like inputs was lower than that caused by real tottering versus wild-

type trains (27.4%) and was accompanied by a lower GABAA decrease than seen 

with the real trains (16.0%). Unsurprisingly, the fully regular PC trains gave no 

difference in DCN neuron output rate in the presence versus absence of STD 

(Figure 77). 

Further, I examined samples of GABAA conductance and membrane 

potential traces from the wild-type and tottering trains. Figure 78 shows how the 

GABAA conductance varies more for tottering inputs and how STD works as a 

low-pass filter, decreasing the conductances when inputs arrive at short intervals. 
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Figure 78 Sample traces of the DCN neuron model as it receives input from tottering 

(left) and wild-type (right) PCs at a convergence of 150, with STD (red traces) and 

without (black). The traces are 100 ms long and are from the same time point in the 

15 second long simulations. (A) and (B) show the conductance of one GABAA 

synapse, while (C) and (D) show the conductance sums of all 450 GABAA synapses. 

Note the larger fluctuations in conductance when tottering inputs are received, 

especially on the level of one synapse. Also note how the higher instantaneous input 

rates of tottering leads to a larger effect of STD (A). (E) and (F) show the membrane 

potential of the DCN neuron (red traces). The firing rate of the DCN neuron is 

increased with tottering input in the presence of STD; the additional spikes with 

tottering coincide with periods of decreased GABAA conductance sums. 
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The graph in Figure 78 A shows that the larger variability of ISIs in the 

tottering trains compared to the wild-type trains leads to a forceful depression of 

GABAA conductance when spikes are closely spaced, yet not to a correspondingly 

strong recovery of conductance when spikes are far apart (see difference between 

the +STD and -STD traces). This effect is also expected to occur more strongly for 

tottering trains than for tottering-like trains and is the most likely explanation for 

the lowered GABAA conductance with real PC trains compared with spike 

generators; the lowered GABAA conductance in turn causes the increased firing 

rate of the real PC trains. This is supported by the lack of difference in firing rate 

between the regular, the wild-type-like, and the tottering-like trains at the highest 

convergences when STD is not used (Figure 77). 

At a convergence of one, input from tottering Purkinje cells led to 

accelerated DCN neuron spiking both in the presence and absence of STD, and 

both for the real PC trains and for GammaStim inputs (Figure 76 A and Figure 

77), whereas the reduction of the inhibitory conductance only occurred when STD 

was present (Figure 76 B). This implies that other mechanisms must be involved 

in the irregularity-based spike rate acceleration at a convergence ratio of one. One 

such potential mechanism could be the contribution of the spontaneous firing of 

the DCN neuron and its excitatory inputs when the single tottering PC that 

provides input to the DCN neuron at a convergence ratio of one pauses. 

6.2.6  Synchronised pauses in PC firing 

The effects that tottering and wild-type trains have on the DCN neuron 

output at a convergence of 1 is exemplified in Figure 79, A and B. The endogenous 

spike generation mechanism, in combination with the excitatory inputs and the 

likely generation of rebound responses at the offset of inhibitory input (not 

shown), is activated in the longer PC input pauses caused by the tottering trains 
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(A), giving instantaneous firing rates during those pauses of up to 170 Hz. This is 

a sufficiently high rate to drive up the tottering firing rate to its mean of 81.0 Hz 

when STD is in use, and to a similarly high rate when STD has been switched off 

(78.6 Hz). Most of the difference between DCN firing rate when receiving 

tottering input through the STD-enabled compared to STD-disabled synapse that 

is present at higher convergence ratios has thereby been swamped by these fast 

regular firing periods which are unaffected by STD. This conclusion is confirmed 

by the frequent presence of periods of long regular patterns in the output of the 

DCN neuron receiving tottering input at convergence 1 (Figure 79, C). Long 

regular patterns are defined as periods of firing where four or more consecutive 

ISIs have a CV2 ≤ 0.2 (Shin et al., 2007a). 
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Figure 79 Periods of pauses in PC firing allow regular high-frequency firing to be 

generated by the spontaneous firing of the DCN neuron in combination with its 

excitatory inputs and rebound responses. A, B) 500 ms of DCN neuron spiking 

resulting from input from tottering and wild-type real PC trains (vertical black lines), 

respectively, at a convergence ratio of 1, with STD active. The DCN neuron model 

membrane potential is plotted below the PC spikes; note that there is a slightly 

delayed effect of PC spikes (approximately 3 ms) which is caused by synaptic delays 

as well as the time required for the membrane potential to spread down the PC axon 

and, for dendritic DCN synapses, from the DCN dendrites to the DCN soma. C) The 

extent of long regular patterns (see text) of DCN firing at different convergence 

ratios of real PCs to the DCN neuron. The error bars show standard error of the mean 

(n=204). 

The proportion of DCN spike trains that comprise long regular patterns as 

determined by the CV2 metric (Figure 79 C) shows two trends as the convergence 

ratio changes, with the highest proportion given at a convergence ratio of 1, but 
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only in tottering. Using +STD for exemplification, this proportion decreases 

quickly, from 21.9% at a convergence of 1 to 1.8% at a convergence of 5. As the 

convergence ratio increases further, the percentage of long patterns goes up 

again, to 8.7% at a convergence of 150. To understand the mechanism underlying 

this change, I plotted the membrane potential and the summed GABAA 

conductance for the tottering trains at convergence 5 and at convergence 150. The 

results, where STD has been in use, are shown in Figure 80. 

 

Figure 80 Membrane potential (top traces) and summed GABAA conductance 

(bottom) of the DCN neuron model as it receives input from tottering PC trains at 

convergence ratios 5 (A) and 150 (B). STD was in use at both convergence ratios. 

Combined with the membrane potential plot of the DCN neuron receiving 

tottering input at a convergence of 1 (Figure 79 A), the trains of Figure 80 suggest 

an explanation for the non-monotonic dependence of the percentage of long 

patterns in tottering (+STD) on the convergence ratio. The minimum of the 

percentage of long patterns at a convergence of 5 could be caused by the absence 
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of long periods of sufficiently low GABAA conductance to allow continuous 

spiking driven by the combination of the spontaneous firing of the neuron and its 

excitatory inputs; those stretches are much diminished at a convergence of 5 

(Figure 80 A) compared to a convergence of 1. 

With convergence 150, on the other hand, there are no longer any periods 

without significant GABAA conductance (Figure 80 B). Instead, the averaging 

effect of the 150 independently firing PCs that connect to the DCN neuron leads 

to a more tonic GABAA conductance; the result is that there are no periods of such 

spontaneous firing at a convergence of 150. The long regular patterns are there 

instead made up of the longer ISIs seen, for example, in the middle of the 

membrane potential trace of Figure 80 B.  

This interpretation is supported by the similar dependence of the 

percentage of long regular patterns on convergence ratio in wild-type, with a third 

of the percentage of long patterns of tottering at the lowest convergence ratio 

(wild-type, +STD: 7.4%). As for tottering, the percentage of long pattern first 

decreases and then increases with increasing convergence ratios, with an increase 

in regular patterns from convergence 5 up to a convergence of 150 (Figure 79 C). 

The three times lower percentage of long patterns in wild-type compared to 

tottering at a convergence of 1 is explained by its lack of long silent periods of PC 

activity, while the higher percentage than in tottering at the higher convergence 

ratios is explained by its evenly spaced PC spikes and thereby higher tonicity of 

GABAA conductance injected into the DCN neuron. 

6.2.7  Another mechanism sets output rate at regular PC firing 

with full synchrony 

The results of the simulations using tottering- and wild-type–like PC 

trains as input were shown in Figure 77 together with a control simulation using 
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GammaStim spike generators that fired at the same rate as the tottering- and 

wild-type–like PC trains. The firing rate of the DCN neuron when receiving those 

regular trains at a convergence of 1 was 58.1 Hz, very similar to the input rate 

(61.8 Hz). Further, the DCN neuron output was highly regular with 64.2% of 

simulation time consisting of long regular patterns as compared to 4.6% for 

tottering-like inputs (+STD). Such a high proportion of long regular periods at 

58.1 Hz could not plausibly originate from the 170 Hz firing that was mediated by 

spontaneous firing combined with excitatory inputs (Section 6.2.6), especially 

since the strong inhibitory inputs arrived every 1000/61.8 = 16.2 ms. This 

indicated that another type of regular firing than that caused by synchronised PC 

pauses was present here. 

The plot of the membrane potential of the DCN neuron under these 

circumstances in Figure 81 shows that the cause most likely was that the DCN 

neuron becomes phase locked to the inhibitory input, with a few omitted spikes 

likely due to the randomised nature of the excitatory inputs. 

 

Figure 81 DCN neuron firing as it receives completely regular PC firing at 61.8 Hz with 

a convergence ratio of 1. 
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6.2.8   Effects of PC irregularity on DCN neuron irregularity 

The main result of this project is the increased firing rate of the DCN 

neuron as it receives inputs of higher irregularity. Were this accelerated firing the 

only modification of the DCN neuron output, we would have a case of pure 

information modality change. However, the graph of percentages of long patterns 

(Figure 79 C) shows that there is an effect on the regularity of the DCN neuron 

output from varying the input regularity. As mentioned above, at a convergence of 

1 the DCN neuron output from wild-type PCs contains only a third as much of 

long regular periods as the output with tottering input; this gives an inverse 

correlation between the irregularity of inputs and outputs. Yet, in the absence of 

PC synchronisation, the actual convergence ratio of the network (see Section 5.3) 

makes the situation at the higher part of the convergence spectrum of larger 

interest; for large convergence ratios regular inputs give more of long regular 

stretches of DCN neuron output (+STD: wild-type: 11.2%, tottering: 8.7%). 

In addition to the CV2 metric of local regularity, I quantified the effect of 

the increased irregularity of spike trains from tottering Purkinje cells on a global 

metric of irregularity – the CV of the DCN neuron spike output (Figure 82). 
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Figure 82 CV of interspike intervals of DCN neuron output when receiving PC spike 

trains from wild-type and tottering in the presence and absence of STD, at different 

convergence ratios. Error bars show standard error of the mean (n=204). 

In all cases, the increased irregularity of the inhibitory input resulted in an 

increased CV of the DCN neuron spike trains. This effect was most pronounced 

for a convergence ratio of one (+STD: tottering: 1.01 ± 0.28, wild-type: 0.75 ± 

0.08, n = 204; -STD: tottering: 1.20 ± 0.46, wild-type: 0.80 ± 0.13, n = 204) but 

still present for a convergence ratio of 150 (+STD: tottering: 0.34 ± 0.01, wild-

type: 0.32 ± 0.00, n = 204; -STD: tottering: 0.34 ± 0.01, wild-type: 0.32 ± 0.01, n 

= 204). 

Thus, although STD adds a coding modality in the form of increased firing 

rate to the irregular inputs, differences in irregularity remain in the DCN output, 

as reported in the experimental literature (Hoebeek et al., 2008). 
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6.3  Control simulations with an integrate-and-fire 

neuron model 

With a biophysically and morphologically realistic model such as the DCN 

neuron model used in this thesis, the complexity of the dendritic tree and the 

voltage and ligand gated ion channels can be expected to influence results. For 

this reason, I carried out control simulations where the DCN neuron model was 

replaced with an integrate-and-fire neuron model. This control model was made 

up of a single compartment which contained 45 GABA synapses and 15 AMPA 

synapses, whereas the original model contained 450, and 150 synapses, 

respectively. The input rates to the synapses were kept at those used as default in 

the GammaStim based simulations with the full model, with 60 Hz for the 

inhibitory synapses and 20 Hz for the excitatory synapses. The kinetics of the 

synapses also remained as in the full model. The maximum GABA conductance 

was kept as in the original model (1.6 nS at 32°C, adjusted to 1.89 nS at the used 

temperature of 37°C), while the AMPA synapse conductance was titrated to give 

the same firing rate as the original model, with 33.3 Hz at fully regular GABA 

input.  

The resting membrane potential was set to -63 mV and the threshold for 

firing was -45 mV. When the threshold was reached, a spike was counted and the 

membrane potential was reset to -63 mV and kept there during the 2.5 ms 

refractory period. 

The model was supplied with input at the same irregularity levels as the 

full model and the effect on the neuronal output rate was examined. The results 

are depicted in Figure 83. 
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Figure 83 Results of control simulations using an integrate-and-fire neuron receiving 

inputs of the same regularity levels used in the simulations with the full model. The 

result of increased DCN neuron output rate as the GABAergic input irregularity 

increases remains with this simplified model, where the speedup is more 

pronounced; compare with the results of the full model (Figure 71). 

As with the full model, the general trend with the integrate-and-fire 

neuron model was that the application of GABA STD gave an increased firing rate 

as irregularity increased (Figure 83). Also as in the full model, only the +STD case 

gave a decreased GABA conductance as irregularity increased, with an 8.0% lower 

summed conductance at irregularity 1 compared to irregularity 0 (sum of all 45 

GABA synapses: 6.25 nS vs. 5.75 nS). The firing rate increase from irregularity 0 

to 1.0 was 38.7% in the +STD case, vs. -6.5% without STD. 

Thus, the effects of irregular and regular inputs to the integrate-and-fire 

neuron version of the DCN neuron model are very similar to those seen in the full 

model (Figure 71 and surrounding text). This shows that the effects are based on 

the synaptic properties of STD and are not dependent on a complex neuronal 

morphology or physiology. 
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6.4  Additional discussion 

6.4.1  The convergence ratio determines the relative 

contributions of different mechanisms of irregularity-caused 

speedup 

The results of this project showed that a function of STD at the PC-DCN 

synapse may be to recode irregularity of inputs from the Purkinje cells into 

differences in DCN neuron firing rate. The observation that this effect is strongest 

at the most common PC firing rates (Figure 72 A) argues for the usefulness of this 

function of STD at the PC-DCN synapse. 

Further, the data support different mechanisms behind irregularity-

induced accelerated firing. Both with the tottering versus wild-type PC trains and 

with tottering-like versus wild-type–like artificial PC trains, high convergence 

ratios show an irregularity-induced acceleration that is STD-dependent, and is 

caused by the lowered GABAA conductance that results from irregular compared 

to regular trains. Without STD the firing rate acceleration disappears at the 

highest convergence ratio (Figure 76 and Figure 77). However, as the convergence 

ratio is decreased, the contribution from STD to the irregularity-caused speedup 

is lowered; at a convergence ratio of 1, it is a relatively unimportant contributor. 

One likely reason for the STD-independent speedup at low convergence ratios is 

the presence of synchronised pauses of PCs that fire irregularly. These pauses 

allow the spontaneous firing of the DCN neuron to combine with the excitatory 

inputs to produce a high-frequency firing that is not dependent on the presence of 

STD. Moreover, the journal article this project has been described in (Luthman et 

al., 2011) includes an analysis of another likely contributor to the STD-

independent speedup at low convergences: the GABAA conductance variance is 

higher at lower convergence ratios, which causes increased membrane potential 
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variations and therefore an increased propensity of the DCN neuron to fire. In the 

interest of brevity, the investigation was not included in the present thesis. 

6.4.2  Different metrics of irregularity give opposing results 

At a convergence of 1, the global regularity metric of coefficient of 

variation (Figure 82) and the local regularity metric, CV2 (Figure 79), gave 

opposite results: while the global metric showed that the regularity of DCN output 

is decreased from receiving tottering inputs, the CV2 showed that the percentage 

of periods of regular firing were increased by the irregular inputs. This result 

shows the importance of analysing the local regularity since the effects on 

downstream targets of the DCN neurons very likely will respond to moment-to-

moment changes in regularity rather than the mean of many seconds of firing. 

 

7.  Conclusions 

7.1  Results and their implications 

This thesis programme set out to further the state of knowledge about 

computations of the excitatory projection neurons of the deep cerebellar nuclei. 

The most important of the novel findings achieved in the work will be discussed 

here, with the goal of placing them in the framework of the field of cerebellar 

studies. The less important results will not be commented here as they have 

already been discussed in the respective chapters. 
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7.1.1  DCN burst length is the best criterion for parallel fibre 

pattern recognition 

The Purkinje cell output during parallel fibre pattern recognition was 

shown in Chapter 5 (Section 5.5.1) to be most efficiently read out by the number 

of spikes in a burst of DCN neuron firing. This burst was decreased in length 

when Purkinje cells recognised previously stored patterns. 

The cerebellum is known to be important in timing of motor behaviours 

(review by Ivry et al., 2002). In Section 2.7.4 I described how the cerebellum can 

be seen as a device to ensure that the right muscles are active at the right time 

during the execution of movement. I gave the example of the drawing of a circle 

with one’s arms and how successive groups of muscles need to be activated at 

precise times, with the relevant body parts in the correct positions, to perform 

this in a smooth manner. Since any smooth, goal-directed, movement can be seen 

as a result of learning (newborns are not capable of performing such movements), 

the following discussion attempts to place the pattern recognition results of this 

thesis in the context of such motor behaviour. For the purpose of this argument, 

let us assume that the Purkinje cells are provided with the positional information 

of the relevant body parts via the pattern presented by parallel fibre activity. As 

long as novel patterns are presented (that is, the current positional state has not 

been stored) the long DCN neuron bursts that result could comprise signals for 

muscular contractions to be executed. If those contractions lead to the desired 

positional state, the parallel fibres will present the Purkinje cells with the 

information that a stored pattern has been encountered; the result is, as Chapter 

5 showed, a shortened burst and a removed error correction signal. 

While the above clearly is speculative, the state of knowledge in 2011 of the 

involvement of the DCN in controlling the muscle activity that underlies complex 
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movements is still to a large extent not conclusive (Ebner et al., 2011). The major 

projections of the cerebellar nuclei were briefly introduced in Section 2.7.1 as the 

brain stem, thalamus, and spinal cord. To my knowledge only for very simple 

movements, such as conditioned eye-blink reflexes, has it been possible to trace 

the output of DCN neurons to motor neurons, thus making it possible to 

determine the final result of DCN neuron firing. The issue is complicated by the 

indications that the diverse targets of DCN neurons are contacted by collaterals of 

branching axons from single DCN neurons (Voogd, 2004b). Thus, the output of a 

DCN neuron could simultaneously activate targets in the ventral lateral nucleus of 

the thalamus, in the red nucleus (a part of the mesencephalon, in the brain stem), 

and in parts of the spinal cord. The spinal cord target may be only a few relay 

neurons from a motor neuron target; yet, with several steps of relays where each 

relay may have several other inputs than the one originating in the DCN neuron, 

the complexity can be assumed to be large. When the collateral targets, and their 

further connections, are taken into account, the DCN neuron output can be 

expected to influence the activity of a large number of neurons, including neurons 

involved in conscious motor planning, since the motor and premotor cortices are 

the targets of the ventral lateral nucleus of the thalamus (Nieuwenhuys et al., 

2008). 

7.1.2  Convergence of PCs to DCN neurons amplifies DCN 

neuron pattern recognition performance 

Chapter 5 showed how the pattern recognition signal-to-noise ratio 

increases as the convergence ratio of Purkinje cells to DCN neurons increases. In 

Section 5.5.3 it was demonstrated how this could be theoretically proven based on 

the decreased error of the sampled means of the spike train metrics used for 

pattern recognition. However, the simulations using the biophysically and 
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morphologically realistic DCN neuron model showed that the amplification was 

much lower than that theoretically achieved. With the DCN neuron model, signal-

to-noise ratios scaled approximately with the square root of the convergence ratio 

while the calculations resulted in scaling that was linear with the convergence 

ratio. The reasons for this remain unexplored, but can be expected to include the 

variable delays from the synapses to the soma that a dendritic tree imposes. 

7.1.3  Irregularity of Purkinje cell firing and its ability to 

function as a neural code 

The main result of the study of different levels of irregularity of Purkinje 

cell firing and the effects that those have on the DCN neuron output was that 

irregular input firing caused an increased output firing rate. At the most likely 

high convergence ratios, this accelerated firing was caused by the decreased 

GABAA conductance that short-term depression induced. In this way, I showed 

that short-term depression of the synapse between Purkinje cells and DCN 

neurons endows DCN neurons with the ability to change the modality of 

information transfer, from a code based on levels of regularity to a code based on 

firing rate. 

7.2  Limitations 

A great obstacle in the study of computations in the cerebellar nuclei is the 

lack of available connectivity data, which in this thesis has been highlighted by 

the range of broad parameter explorations that I performed. For example, the 

convergence ratios of Purkinje cells to DCN neurons was shown to be of great 

importance in determining the pattern recognition efficiency (Section 5.5.2), 

firing rate (Section 6.2.3), and firing regularity (Section 6.2.6) of the DCN neuron 
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model, but in the absence of firm evidence of the actual convergence ratios, it is 

only possible to give a range of different effects as the study outcome. However, 

recent evidence suggests that most Purkinje cell input to the DCN is tonic during 

behaviour (implying high convergence ratios, see the GABAA conductance of 

Figure 80 B) and that the low-convergence or high-synchrony relationship 

explored in this thesis is found seldomly and is restricted to synchronous complex 

spikes in response to inferior olivary input (Bengtsson et al., 2011). 

Another gap in the state of knowledge regards whether branching mossy 

fibres project both to Purkinje cells and to the same DCN neuron that receives the 

Purkinje cell output during pattern presentation (Section 5.6.11). Generally, the 

interplay between the excitatory and inhibitory inputs to the DCN has not been 

much explored in the projects of this thesis. This leads to another limitation of the 

studies herein: the DCN neuron has been viewed in isolation from the 

interneurons of the DCN. The connections from those to the excitatory DCN 

projection neuron examined in the thesis are poorly known, comprising a great 

obstacle to an understanding of the DCN (Uusisaari and De Schutter, 2011). 

7.3  Future directions 

Several questions about the computations performed by DCN neurons 

have been raised in this thesis. Apart from the need for a general advancement of 

the knowledge of anatomy and connectivity within the DCN that was discussed in 

the previous section, this section presents some ideas about future work to 

continue the research in this area. 
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7.3.1  Inhibitor of STD as a treatment for cerebellar ataxia 

Tottering PCs fire more irregularly than wild-type PCs, while their firing 

rates during optokinetic stimulation is indistinguishable from that in wild-type 

littermates (Hoebeek et al., 2005). Since they also show impaired motor function 

including an abnormal optokinetic reflex, the data indicate that the regularity of 

Purkinje cell spiking is relevant for motor control. At the same time, the data raise 

the question of how the degree of regularity in Purkinje cell activity can be read 

out by neurons downstream. As the postsynaptic target neurons of the Purkinje 

cells in the DCN fire at higher rates in anesthetised tottering mice than in wild-

type ones (Hoebeek et al., 2008), the effect of the increased Purkinje cell 

irregularity on impaired motor control might be caused by an increased DCN 

neuron spike rate. The results of the simulations in this thesis predict that the 

increased DCN neuron spike rate in tottering mice can be caused directly by the 

increased irregularity in the Purkinje cell activity. This argues for the possibility 

that the motor abnormalities of tottering mice depend at least to an extent on 

STD at PC-DCN synapses. It also argues for the possibility of lessening the motor 

deficiencies by inhibiting STD pharmacologically. 

The short-term depression of the PC-DCN synapse appears to be 

presynaptic in origin (Pedroarena and Schwarz, 2003). To alleviate the symptoms 

of tottering mice, and more pertinently, of the human cerebellar ataxias (Figure 

84) that tottering serves as a model for, an inhibitor of this process would need to 

show specificity for STD at the PC-DCN synapse. As mentioned in Section 2.4, 

STD is found in other parts of the brain and has been implicated in computational 

functions of neurons; blocking those functions can be expected to lead to possibly 

grave side-effects. 
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Figure 84 The phenotype of human cerebellar ataxia, with a diagnosing physician’s 

drawing at top; below: the attempt by a cerebellar ataxia patient to reproduce the 

drawing. From Thomas (1912). 

While the simulations of Chapter 6 show that differences remain between 

DCN neuron output in tottering versus wild-type also in the absence of STD, 

especially in the length of regular periods of firing (Figure 79 C), the increased 

firing rate with DCN neurons receiving tottering inputs has almost disappeared at 

the higher, and more likely to be predominant, convergence ratios with STD 

absent. 

7.3.2  The effect of feed-forward inhibition to Purkinje cells on 

pattern recognition 

The pattern recognition work revealed that feed-forward inhibition of 

Purkinje cells with strength equal to the excitatory input to the Purkinje cell could 

cause an improved pattern recognition performance, both of the Purkinje cell and 

in the DCN neuron readout (Section 5.6.7). Lower or higher ratios of inhibition to 

excitation did not achieve this amplification of signal-to-noise ratios. 



 217 
 

In the DCN neuron, the increased signal-to-noise ratio was caused both by 

a decreased trial-by-trial variation of the metric (the number of spikes in the 

burst) and an increased difference of means of the metric. It would be interesting 

to investigate what the mechanism is that underlies this effect in the Purkinje cell 

model and what, if any, the behavioural effects would be of blocking the feed-

forward inhibition in vivo, if technically feasible. 

7.3.3  The effect of different GABAA reversal potentials on 

pattern recognition  

One parameter that was not varied in the simulations was the GABAA 

reversal potential. As discussed in Section 4.5.6 this value was set at -75 mV for all 

simulations, based on the majority of the evidence for adult animals. The GABAA 

reversal potential changes drastically during growth of an animal; one study 

showed a value of -54 mV in 2-day old rats while the mean membrane potential 

was -63 mV (Ouardouz and Sastry, 2005). This illustrates why the transmitter 

substance, GABA, has an excitatory effect in young animals instead of an 

inhibitory one as investigated in this thesis; the electrophysiological effect of 

activating the GABAA receptor depends on the relationship between the 

membrane potential and the reversal potential of the chloride ions used by the 

channel of the receptor. Animal experiments that record both these two 

parameters at different stages of development and in different species could be of 

great value in clarifying the effects of Purkinje cell input to DCN neurons. 

Moreover, the computational implications of different GABAA reversal 

potentials could be studied in additional computer simulations. 
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7.3.4  In search of a holy grail: species-, strain-, age-, and sex-

specific modelling 

The studies underlying the neuronal modelling of this thesis were 

performed in several different species of mammals: rats, mice, guinea pigs, and 

cats. While all mammals share much of their brain structure and even more so, 

the basic cellular mechanisms underlying neuronal physiology, there are many 

important differences in function even on the single neuron level. For example, 

the mean firing rates of Purkinje cells are higher in mice (55-65 Hz; Schiffmann et 

al., 1999; Goossens et al., 2001; Yoshida et al., 2004)  than rats (35-40 Hz; Savio 

and Tempia, 1985; Stratton et al., 1988; LeDoux and Lorden, 2002). These data 

are from adult yet not aged animals: while the young adult mice in the study by 

Schiffmann et al. (1999) fired with a mean rate of 66.2 Hz, aged mice fired at 42.9 

Hz. These data serve to exemplify the dependence on species and age of neuronal 

electrophysiology. In order to minimise such natural variation, when intervention 

studies are undertaken on laboratory animals (for example in testing 

pharmaceuticals), it is preferable to standardise the samples so that in addition to 

originating from the same species, the used animals are of the same inbred strain 

and are thus genetic copies of one another. Further, one aims at only using age- 

and sex-matched animals. 

A similar approach would be highly desirable for computational 

neuroscience. Thus, in the ideal world of greater funding opportunities, a DCN 

neuron model would be created with a keen eye on the published 

electrophysiology of DCN neurons, but with subsequent replication of the 

identified studies in similarly standardised animals. Many recordings and hence 

many different neurons are needed for characterising the many different types of 

ion channels in a neuron; the neurons used for those characterisations would be 
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limited to those found within a small area of stereotaxic coordinates in the DCN 

in order to minimise variation. Moreover, several different neurons would be 

reconstructed to allow the examination of effects of morphological variation. 
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Appendix – metrics of pattern 

recognition 

The appendix lists the best DCN neuron pattern recognition metrics when those 

are not the number of spikes in the burst. 

Parameter exploration 5 

Number of 
parallel fibres in a 
pattern 

Metric Mean StoN SEM of StoN 

50 ISI of first two burst spikes 1.0 0.1 
100 ISI of first two burst spikes 1.7 0.1 
200 1st 50 ms, number of spikes 7.0 0.5 
500 1st 50 ms, number of spikes 11.0 0.8 

750 1st 50 ms, number of spikes 13.2 0.4 
900-5000 Number of spikes in burst   
500 1st 50 ms, number of spikes 13.2 0.5 
10000 Frequency of burst 7.8 0.3 
15000 ISI of first two burst spikes 2.1 0.1 
25000 8th 10 ms, number of spikes 0.03 0.01 
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Parameter exploration 6 

Number of stored 
patterns in the 
associative net 

Metric Mean StoN SEM of StoN 

50 Number of spikes in burst 16.7 0.8 
100 Number of spikes in burst 20.5 1.3 
150 1st 50 ms, number of spikes 13.3 0.4 
300 Number of spikes in burst 14.3 1.4 
450 1st 50 ms, number of spikes 10.2 1.0 
750 ISI of first two burst spikes 1.7 0.1 
1500 Time of first spike after 

pattern presentation 
0.07 0.01 

Parameter exploration 9 

7.3.5  spontPC 

Percent of DCN 
GABAA receptors 
receiving the PC 
pattern readout 

Metric Mean StoN SEM of StoN 

6.7 4th 20 ms, number of spikes 0.7 0.1 
13.3 3rd 20 ms, number of spikes 0.9 0.1 

20 5th 20 ms, time of first spike 1.8 0.2 
22.2 5th 20 ms, time of first spike 2.6 0.2 
26.7 3rd 20 ms, number of spikes 2.9 0.1 
30 1st 50 ms, number of spikes 8.1 0.7 
33.3 3rd 20 ms, number of spikes 7.2 0.3 
40 3rd 20 ms, number of spikes 8.6 0.4 
50 1st 50 ms, number of spikes 7.7 0.3 
60 1st 50 ms, number of spikes 8.9 0.2 
66.7 1st 50 ms, number of spikes 10.4 0.5 

68.9 1st 50 ms, number of spikes 13.2 0.6 
70 1st 50 ms, number of spikes 13.7 1.0 
71.1 1st 50 ms, number of spikes 14.2 1.2 

73.3 1st 50 ms, number of spikes 12.4 0.7 
75.6 - 100 Number of spikes in burst   
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7.3.6  spontPC_2  

Percent of DCN 
GABAA receptors 
receiving the PC 
pattern readout 

Metric Mean StoN SEM of StoN 

6.7 4th 20 ms, number of spikes 0.1 0.0 
13.3 4th 20 ms, number of spikes 0.2 0.0 
20 3rd 20 ms, number of spikes 0.5 0.0 
22.2 3rd 20 ms, number of spikes 0.6 0.1 
26.7 3rd 20 ms, number of spikes 0.8 0.0 
30 3rd 20 ms, number of spikes 0.9 0.1 
33.3 1st 50 ms, CV2 of ISIs 1.1 0.1 

40 Number of spikes in burst 2.0 0.2 
50 Length of burst 4.4 0.3 
60 – 100 Number of spikes in burst   

7.3.7  non_spontPC  

Percent of DCN 
GABAA receptors 
receiving the PC 
pattern readout 

Metric Mean StoN SEM of StoN 

6.7 4th 20 ms, time of first spike 0.1 0.0 
13.3 2nd 50 ms, time of first spike 0.2 0.0 

20 7th 10 ms, number of spikes 0.5 0.1 
22.2 5th 20 ms, number of spikes 0.6 0.1 
26.7 2nd 50 ms, time of first spike 0.8 0.1 
30 2nd 10 ms, number of spikes 1.2 0.1 
33.3 5th 20 ms, number of spikes 1.5 0.1 
40 2nd 10 ms, number of spikes 2.1 0.2 
50-100 Number of spikes in burst   
 


