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Abstract: The traditional means of monitoring the health of industrial systems involves the use of 

vibration and performance monitoring techniques amongst others. In these approaches, contact-

type sensors, such as accelerometer, proximity probe, pressure transducer and temperature trans-

ducer, are installed on the machine to monitor its operational health parameters. However, these 

methods fall short when additional sensors cannot be installed on the machine due to cost, space 

constraint or sensor reliability concerns. On the other hand, the use of acoustic-based monitoring 

technique provides an improved alternative, as acoustic sensors (e.g., microphones) can be imple-

mented quickly and cheaply in various scenarios and do not require physical contact with the ma-

chine. The collected acoustic signals contain relevant operating health information about the ma-

chine; yet they can be sensitive to background noise and changes in machine operating condition. 

These challenges are being addressed from the industrial applicability perspective for acoustic-

based machine condition monitoring. This paper presents the development in methodology for 

acoustic-based fault diagnostic techniques and highlights the challenges encountered when analyz-

ing sound for machine condition monitoring. 
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detection and classification of acoustic scenes and events 

 

1. Introduction 

Unplanned interruption of industrial processes can result in serious financial losses; 

as such, it becomes of significant relevance to prevent unplanned shutdowns of machin-

ery. The monitoring and diagnosis of the current health state of the machine is crucial in 

achieving this. 

The conventional approach of machine health monitoring involves the use of vibra-

tion and other performance monitoring techniques. In these circumstances, sensors such 

as accelerometer, proximity probe, pressure transducer and temperature transducer are 

installed on the machine to monitor its health state. However, these methods are of an 

intrusive nature, requiring physical modification of the machine for their installation. Al-

ternatively, the use of acoustic-based monitoring provides an improved approach which 

is non-intrusive to the machine operation. Sound signals from a machine contains sub-

stantial relevant health information; however, acoustic signals in an industrial environ-

ment can be affected by background noise from neighbouring operating machineries; 

thus, posing a challenge during industrial condition monitoring. 

The analysis of sound has been successful in speech and music recognition, especially 

for creating smart and interactive technologies. Within this context, there exist several 

large-scale acoustic datasets such as Audio Set [1] and widely available pre-trained deep 
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learning models for audio event detection and classification such as: OpenL3 [2,3], 

PANNs [4] and VGGish [5]. However, within the context of machine condition monitor-

ing and fault diagnostics, these is a nascent problem for the detection and classification of 

acoustic scenes and events [6–8]. 

This paper presents the development in methodology for acoustic-based diagnostic 

techniques and explores the challenges encountered when analysing sound for machine 

condition monitoring. 

2. Methods—Acoustic-Based Machine Condition Monitoring 

2.1. Detection of Anomalous Sound 

The goal of anomalous sound detection is to determine if the sound produced by a 

machine during operation typifies a normal or an abnormal operating state. The ability to 

detect such automatically is fundamental to machine fault diagnostics using data driven 

techniques. However, the challenge with this task is that sound produced from anomalous 

state operation of the machine is rare and varies in nature, hence presenting difficulty in 

collecting training dataset of such observed abnormal machine operating state. Further-

more, in actual industrial applications, it would be costly and damaging to consider run-

ning machines with implanted faults for the sake of data collection. Therefore, the tradi-

tional approaches which may be initially apparent such as framing the problem as a two-

class classification problem becomes impractical. 

In addressing the anomalous sound detection problem, consideration must be given 

to the fact that only training dataset of the machine running in its normal state would be 

available. As such, this forms the context within which the problem should be considered. 

Any such technique would have to learn the normal behaviour of the machine based on 

this available training dataset. 

In furtherance of actualizing anomalous machine sound detection for industrial en-

vironment, saw the birth of the Detection and Classification of Acoustic Scenes and Events 

(DCASE) challenge task “Unsupervised Detection of Anomalous Sounds for Machine 

Condition Monitoring” in 2020. With the provision of a comprehensive acoustic training 

dataset combining ToyADMOS [9] dataset and MIMII dataset [10], six categories of ma-

chines (i.e., toy and real) of toy car, toy conveyor, valve, pump, fan, and slide rail, operat-

ing both in normal and abnormal conditions were considered; researchers were expected 

to develop and benchmark techniques for detection of anomalous machine sounds. Since 

the inclusion of this task as part of the DCASE Challenge, over the subsequent years, the 

task has evolved to account for challenges such as: domain shifted conditions (i.e., ac-

counting for changes in machine operating speed, load, and background noise) [11] and 

domain generalisation (i.e., invariant to changes in machine operating speed, load, and 

background noise) [12]. 

The challenge of machine anomaly detection is to find a boundary between normal 

and anomalous operating sound. In achieving this, the following methods have emerged. 

2.1.1. Autoencoder-Based Anomaly Detection 

An autoencoder is a neural network, trained to learn the output as an accurate recon-

structed representation of the original input. As an unsupervised learning technique, it 

has been used by several studies for the detection of anomalous machine operating sound 

[7–10,13–15]. 

Autoencoder acts as a multi-layer neural network as shown in Figure 1, consisting of 

the following segments: encoder network, which accepts a high-dimensional input and 

transforms to a low-dimensional representation, decoder network, which accepts a latent 

low-dimensional input to reconstruct the original input, and at least a bottleneck stage 

within the network architecture. The presence of the bottleneck stage acts to compress the 

knowledge representation of the original input in order to learn the latent space represen-

tation. When the autoencoder is used for anomaly detection the goal during training is to 
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minimize the reconstruction error between the input and the output using the normal 

machine operating sounds. Herein, the reconstruction error is used as the anomaly score. 

Anomalies are detected by thresholding the magnitude of the reconstruction error. Based 

on the application, this threshold could be set. Once an anomalous machine operating 

sound is provided to the system, it would yield a higher-than-normal reconstruction error, 

thereby flagging as a fault mode. Table 1 provides baseline autoencoder architecture pa-

rameters as applied for anomaly detection. Purohit et al. [10] implemented AE for anom-

aly detection based on acoustic dataset of malfunctioning industrial machines consisting 

of faulty valve, pump, fan, and slide rail. Although the dataset used MIMII [10] has been 

made publicly available, a key part of their work is the adopted architecture of their AE 

model. Purohit et al. [10] based the input layer on the log-Mel spectrogram. The Mel spec-

trogram is a spectrogram where frequencies have been transformed to the Mel scale. The 

Mel spectrogram provides a good correlation with human perception of sound, due to the 

Mel scale representing scale of pitches that humans would perceive to be equidistant from 

each other. As such, it not uncommon to find log-Mel spectrogram as performant input 

feature representation for acoustic event classification amongst others [16]. In [10], the log 

Mel spectrogram was determined for a frame size of 1024 acoustic time series data points, 

with a hop size of 512 and 64 Mel filter banks. This results in a log Mel spectrogram of size 

equal 64. This process was repeated for five consecutive frame sizes. The final input layer 

feature is formed by concatenating the log Mel spectrogram of five consecutive frames, 

resulting in an input feature vector size of 5 × 64 = 320. This is feed into an auto-encoder 

network with fully connected layers (FC) such as: encoder section—FC (input, 64, ReLU), 

FC (64, 64, ReLU), and FC (64, 8, ReLU) and decoder section—FC (8, 64, ReLU), FC (64, 64, 

ReLU) and FC (64, Output, none). Here, FC (x, y, z) translates fully connected layer with 

x input neurons, b output neuron, and z activation function such as rectified linear units 

(ReLU). The implemented AE model is trained for 50 epochs using Adam optimization 

approach. Similar approach can be adopted using the baseline AE topologies in Table 1. 

 

Figure 1. Schematic of an autoencoder [17]. 

Table 1. Baseline auto encoder system architecture for anomaly detection. 

Input Autoencoder Topology Ref. 

Frequency domain signal analysis: 

Log Mel spectrogram 

Input layer 

 STFT * frame size 64 ms (50% hop size) 

 Log Mel-band energies (F = 128 bands) 

 5 consecutive frames are concatenated (P = 2, 2P + 1 = 5). 

 Input dimension (D): 640 (D = F × (2P + 1)) 

Hidden layers 

Dense layer (layers 1–4) 

 Dense layer (units: 128) 

 Batch Normalization 

[13] 
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 Activation (ReLU *) 

Bottleneck/latent layer 

 Dense layer (units: 8) 

 Batch Normalization 

 Activation (ReLU *) 

Dense layer (layers 5–8) 

 Dense layer (units: 128) 

 Batch Normalization 

 Activation (ReLU *) 

Output layer 

 Dense layer (units: 640) 

 Learning (epochs: 100, batch size: 512, data shuffling between 

epochs) 

 Optimizer: Adam (learning rate: 0.001) 

Frequency domain signal analysis: 

Log Mel spectrogram, 

MFCC, 

Spectrogram, 

Harmonic Percussive Source Separa-

tion (HPSS-h [harmonic], HPSS-p 

[percussive]) 

Input layer 

 STFT * (Hanning window size: 1021 samples, hop length: 512 sam-

ples) 

 Log Mel-band energies (128 bands) 

 Input dimension (D): log-Mel, log-linear, and MFCC* = 640; hpss-h, 

and hpss-p = 513 

Hidden layers 

Dense layer (layers 1–4) 

 Dense layer (units: 128) 

Bottleneck/latent layer 

 Dense layer (units: 5) 

Dense layer (layers 5–8) 

 Dense layer (units: 128) 

Output layer 

 Dense layer (units: input dimension = 640 or 513) 

[18] 

Frequency domain signal analysis: 

Log Mel spectrogram 
Autoencoder architecture as [13] [9,10] 

* STFT: Short-Time Fourier Transform; ReLU: Rectified Linear Unit; MFCC: Mel-Frequency Cepstral 

Coefficients 

2.1.2. Gaussian Mixture Model-Based Anomaly Detection 

Gaussian Mixture Model (GMM) is an unsupervised probabilistic clustering model 

that assumes each data point belongs to a Gaussian distribution with unknown parame-

ters. As an unsupervised learning technique, it has been used by several studies for the 

detection of anomalous machine operating sound [19–21]. 

GMM approach finds a mixture of multi-dimensional Gaussian probability distribu-

tions that most likely model the dataset. To achieve this, expectation-maximisation algo-

rithm is used to estimate the parameters of the Gaussian distributions: mean, covariance 

matrix and mixing coefficients. Expectation-maximisation method is a two-step iterative 

process which aims to find the maximum likelihood estimates of the Gaussian mixture 

parameters. It alternates between the expectation step and the maximisation step. Within 

the expectation step, the responsibilities (which data point belongs to which cluster) are 

determined using the current estimate of the model parameters, while the maximisation 

step estimates the model parameters for maximizing the expected log-likelihood function. 

GMM for anomaly detection uses trained GMM model based on acoustic features as 

shown in Table 2 to predict the probability of each datapoint being part of one of the k 

Gaussian distribution clusters. An anomaly is detected by a data point having a probabil-

ity lower than a threshold which could be either a percentage or a value threshold. 
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Table 2. Baseline GMM acoustic features. 

SN Signal Analysis Domain Acoustic Features Ref. 

1 

Time Domain Zero Crossing Rate, 

[19] 

 Mean, Max, Min, Covariance of the waveform 

  

 Short-time Energy, 

Frequency Domain Entropy of Energy, 

 Spectral Centroid, 

 Spectral Spread, 

 Spectral Entropy, 

 Spectral Flux, 

 Spectral Roll-off, 

 MFCC, 

 Chroma Vector, 

 Chroma Deviation 

2 Frequency Domain Fisher Vectors [20] 

3 Frequency Domain Log Mel Spectrogram [21] 

2.1.3. Outlier Exposure-Based Anomaly Detection 

Outlier Exposure (OE) is an approach for improved anomaly detection in deep learn-

ing models [22]. Key in this method is the use of an out-of-distribution dataset, to fine tune 

a classifier model that enables it to learn heuristics that discriminate in-distribution data 

points from anomalies. The learned heuristics then has the capability to generalize to new 

distributions. The OE methodology, first proposed by [22], is achieved by adding a sec-

ondary loss to the regular loss for in-distribution training data, which is usually a cross-

entropy loss or an error loss term. For classification models, the secondary loss is also a 

cross-entropy loss computed between the outlier logits and a uniform distribution. 

The OE approach has already been applied in the domain of detecting anomalous 

machine operating sound using classifier models such as MobileNetV2 [11,12]. Herewith, 

MobileNetV2 [23] is trained to identify from which data segment within both in-distribu-

tion and out-of-distribution datasets the observed signal was generated (machine anom-

aly identification). The trained classifier then outputs the SoftMax value that is the pre-

dicted probability for each data segment. The anomaly score becomes the averaged nega-

tive logit of the predicted probabilities of the correct data segment. Table 3 shows baseline 

parameters for an OE approach using MobileNetV2 classifier model. 

Table 3. Baseline OE architecture based on MobileNetV2. 

Input OE Topology Ref. 

Frequency domain signal 

analysis: 

Log Mel spectrogram 

Input layer 

 STFT frame size 64 ms (50% hop size) 

 Log Mel-band energies (F = 128 bands) 

 64 consecutive frames are concatenated (P) 

 Input image size (64 × 128) 

 Hop frames (strides): 8 

Triplication layer 

 Triplicate input image to each color channel) 

MobileNetV2 

 Input: 64 × 128 × 3 image 

 Output: Softmax for sections 

 Learning (epochs: 20, batch size: 32, data shuf-

fling between epochs) 

[11] 
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 Optimizer: Adam (learning rate: 0.00001) 

2.1.4. Signal Processing Methods 

Acoustic signal processing methods are an adaptation from existing vibration-based 

approaches reliant on time, frequency, and time-frequency domain analysis of the signal. 

Time domain analysis is performed on the acoustic signal time series representation 

through statistical analysis for calculating feature parameters such as mean, standard de-

viation, skewness, kurtosis, decibel, crest factor, beta distribution parameters, root mean 

square, maximum value, etc. These calculated statistical feature parameters from the 

acoustic signal are used to provide an overall indication of the current health condition of 

the machine. This approach, although simplistic, has been explored by various investiga-

tions for acoustic-based machine fault detection: e.g., Heng and Nor [24] evaluated the 

applicability of the statistical parameters such as crest factor, kurtosis, skewness, and beta 

distribution as fault indicators from acoustic signals for monitoring rolling element bear-

ing defect. 

For a machine operation under steady state conditions, frequency domain analysis 

techniques are commonly applied to examine the acoustic signals. Fast Fourier Transform 

(FFT), a computationally cheap technique to transform time-domain signals to the fre-

quency domain, has been applied in acoustic-based condition monitoring of electric in-

duction motors [25,26], engine intake air leak [27], among others. To capture nonlinear 

and nonstationary processes in machine operations, Ensemble Empirical Mode Decom-

position (EEMD) method has been used [28]. EEMD simulates an adaptive filter, extract-

ing underlying modes in the signal to decompose into a series of intrinsic mode functions 

(IMF) from high to low frequency content. Spectrum of IMFs has been adopted as a fault 

indicator for detecting incipient faults in wind turbine blades from acoustic signals [29]. 

Furthermore, time-frequency domain analysis, such as, short time Fourier transform 

and wavelet transform, are also powerful approaches for capturing nonstationary pro-

cesses within machinery acoustic signals. Grebenik et al. [30] used consumer grade micro-

phones and applied EMD and wavelet transform as diagnostic criteria for the acoustic 

fault diagnostics of transient current instability fault in DC electric motor. Spectral auto-

correlation map of acoustic signals has been applied for detection of fault in belt conveyor 

idler [31]. EMD and wavelet analysis has been applied to extract features from acoustic 

signals produced by a diesel internal combustion engine for monitoring its combustion 

dynamics [32,33]. Anami and Pagi [34] used the chaincode of the pseudospectrum to an-

alyse acoustic fault signals from a motorcycle for fault detection. 

2.2. Classification of Anomalous Sound 

The goal of classification of anomalous sound is to categorise a machine sound re-

cording into one of the predefined fault classes that characterises the machine fault state. 

Two main approaches have emerged for machine fault diagnostics based on acoustic 

signal. The first based on feature-based machine learning techniques and the second based 

on 2D acoustic representation deep learning approaches. 

2.2.1. Feature-Based Machine Learning Methods 

Feature-based machine learning methods can be broken into three stages. The first 

stage involves, extracting features from the machine condition acoustic signals. Features 

are important as fault descriptors are determined using statistical methods, fast Fourier 

transform, EEMD, or wavelet transform, etc. Extracted features are used to train a machine 

learning classifier such as Support Vector Machine (SVM), k-Nearest Neighbor (kNN), 

Random Forest (RF), logistic regression, naïve Bayes, Deep Neural Network (DNN), etc. 

The trained ML model is then used as a predictor for machine health state based on un-

known machine condition acoustic signals. 
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This approach for machine fault detection based on acoustic inputs is presented in 

Figure 2. Although the system consists of several steps, the focus here would be in ad-

dressing the challenges in engineering feature extraction and for selecting appropriate 

classifier learning algorithm. 

 

Figure 2. Schematic of feature extraction-based technique for machine fault detection based on 

acoustic inputs. 

(1) Feature Extraction 

An approach for acoustic signal representation is required, which is capable to dif-

ferentiate normal and abnormal operating sound from machinery, utilising low-level fea-

tures derived from the time domain, frequency domain and time-frequency domain of the 

acoustic signal. This is achieved as follows and summarized in Table 4: 

(a) Time domain-based feature extraction 

Time domain features find their basis from descriptive statistical parameters derived 

from the acoustic signal time-series for representation of both healthy and faulty machine 

states and training various machine learning models. This approach has been adopted by 

several investigators [35] and relevant time-domain parameters summarized in Table 4. 

(b) Frequency domain-based feature extraction 

Frequency domain features take their basis from the Fourier transform spectral trans-

formation of the acoustic signal. Pasha et al. [36] used a band-power ratio as discriminant 

feature from acoustic signals to monitor air leaks in a sintering plant associated with pallet 

fault. Here, band-power ratio refers to the ratio of the spectral power within the fault fre-

quency band to the spectral power of the entire signal spectrum. In [36], the feature ex-

traction from a sound recording consisted of the band-power ratio performed repeatedly 

at fixed sampling window length (i.e., 1024 samples) within the fixed time duration/re-

cording. Other potential parameters can be extracted from the frequency spectrum as 

demonstrated by [37] and listed in Table 4. 

(c) Time-frequency domain-based feature extraction 

Time-frequency signal analysis refer to approaches that enable the simultaneous 

study of signals in both time and frequency domain. The time-frequency representations, 

such as STFT, wavelet transform, Hilbert-Huang transform, amongst others, provide use-

ful parameters to characterise acoustic signals. Based on the work of [37], relevant time-

frequency parameters are provided in Table 4. 

Table 4. Feature extraction parameters [37]. 

SN Signal Analysis Domain Features Summary 

1 Time Domain Zero Crossing Rate 
The rate of sign-changes along a signal within a frame 

length. 

2 Frequency Domain Short-time Energy 
The sum of squares of the signal values normalised by 

frame length. 
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3 Frequency Domain Entropy of Energy 
Shannon entropy of the normalised energies within a 

frame length. 

4 Frequency Domain Spectral Centroid 

The centre of mass of the spectrum of a frame. Determined 

by the weighted mean of the frequencies present within 

the spectrum of a frame length. 

5 Frequency Domain Spectral Spread 
The second central moment of the spectrum of a frame 

length 

6 Frequency Domain Spectral Entropy 
Shannon entropy of the normalised spectral energies 

within the spectrum of a frame length. 

7 Frequency Domain Spectral Flux 
The squared difference between the normalised magni-

tudes of the spectra of the two successive frame length. 

8 Frequency Domain Spectral Roll-off 
This is the frequency below which 90% of the spectral dis-

tribution for the frame is concentrated. 

9 Frequency Domain MFCC 

Mel-Frequency Cepstrum Coefficient (MFCC) provide an 

effective representation of sound which closely mimics the 

sound perception of the human ear. MFCC are determined 

by taking the linear Discrete Cosine Transform (DCT) of 

the log power spectrum on the nonlinear Mel scale. 

10 Frequency Domain Chroma Vector 

A representation of the spectrum projected onto 12 bins 

representing the 12 distinct semitones (or chroma) of the 

musical octave. 

11 Frequency Domain Chroma Deviation Standard deviation of the chroma vector. 

12 Frequency Domain Band-power ratio Normalised spectral peaks within fault frequency band 

(2) Classifier Learning Algorithms 

Classifier learning algorithms provide an automated intelligent approach for the de-

tection and classification of machine faults. The generally adopted approach for the de-

velopment of these machine fault inference systems are based on machine learning classi-

fiers. The machine learning classifier is a supervised learning model that can learn a func-

tion that maps an input to a categorical output based on the example input-output pairs 

[38]. The input for the machine learning classifier model includes the extracted features 

from the acoustic signal, while the output is the class labels which represent different op-

erational or health state of the machine. To further estimate the optimal classifier model, 

a cross validation technique can be applied to tune the hyper-parameters of each model. 

There are several types of supervised machine learning classifier models, such as: 

logistic regression, naïve Bayes, decision trees, RF, k-nearest neighbor (kNN), SVM, dis-

criminant analysis, DNN, etc. [39,40]. Each machine learning classifier model has its 

strengths and weaknesses; for an application, choosing the most appropriate is mostly 

based on comparing the accuracy and other performance metrics, such as recall rate, F-

score, true positive rate, false positive rate, etc. Table 5 highlights exemplar applications 

of machine learning classifiers for the classification of machine operating sounds. 

(a) K-Nearest Neighbors (KNN): KNN is a non-parametric and instance-based machine 

learning algorithm which can be used for both classification and regression [39,41]. 

It is classed as a non-parametric method because it makes no explicit assumption 

about the underlying distribution of the training data and an instance-based method 

because it does not learn a discriminative function from the training data but memo-

rises it instead [39,41]. When KNN is used for classification, its input consists of the 

K closest training instances to the unknown instance in the feature space based on a 

similarity distance metric, e.g., Euclidean distance, hamming distance, Chebyshev 

distance, Minkowski distance, etc. The output class membership of the unknown in-

stance is determined by a majority vote of its K nearest neighbors. Although KNN is 
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a simplistic classifier model, it is very versatile (i.e., used in many applications), ro-

bust (i.e., tight error bounds) and often used as a benchmark for comparison with 

more complex classifiers [42,43]. 

(b) Linear Support Vector Machine (SVM): SVM can be viewed as a discriminative clas-

sifier model defined by a separating hyperplane [39]. In a nutshell, when an SVM is 

given labeled training data, the algorithm outputs an optimal hyperplane which clas-

sifies new unseen data. The optimal hyperplane is determined by maximising the 

margin or distance between the nearest points (support vectors) to the hyperplane. 

Sometimes, the data are not linearly separable, SVM circumvents this by adopting 

either a soft margin parameter in the optimisation loss or using kernel tricks to trans-

form the feature set into a higher dimensional space. 

(c) Random Forest: Random Forest is an ensemble method of learning based on contri-

bution from multiple decision trees [39]. A decision tree is a simple model to classify 

a dataset, where the data is continuously split based on parameters such as infor-

mation gain, Gini index, etc. When random forest is used as a classifier, each decision 

tree in the ensemble, makes a class prediction, and the class with the most vote is the 

model prediction. A key aspect of the random forest classifier model is that the deci-

sion trees are uncorrelated. To achieve uncorrelated decision trees, several tech-

niques such as bagging and feature randomness during tree split are used. Bagging 

ensures that each individual tree, randomly sample from the dataset with replace-

ment, thus producing different trees in the ensemble. 

(d) Decision Tree: Decision tree is used for solving classification problems by crafting a 

tree-structure where internal nodes represent data attributes, branches represent de-

cision rules and end leaf nodes represent outcomes. It applies a hierarchical structure 

in determining patterns within data with the intent of creating decision-making rules 

and predicting regression relationships between dependent and independent varia-

bles [39,40]. Optimising the decision tree model, relevant hyperparameters are mini-

mum leaf size, maximum number of split and split criteria, e.g., Gini index, infor-

mation gain, etc. 

(e) Naive Bayes: Naive Bayes classifier rely on Bayes theorem for solving classification 

problems [39]. Bayes theorem provides a means to formalise the relationship of con-

ditional probabilities or likelihoods of statistical variables. In Naive Bayes classifier, 

the interest lies in determining the posterior probability of a class label (Y) given some 

observed features, i.e., 𝑃(𝑌|𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠). Using Bayes theorem, this posterior probabil-

ity is expressed as: 

𝑃(𝑌|𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) = (𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠|𝑌) × 𝑃(𝑌)) 𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)⁄  (1) 

where 𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠|𝑌) represent probabilities or likelihood of the features given the 

class label determined from a naïve assumption of a generative model underlying 

the dataset such as Gaussian distribution, multinomial distribution, or Bernoulli dis-

tribution; 𝑃(𝑌) is the prior probability or initial guess for the occurrence of the class 

label based on the underlying dataset. 

(f) Artificial Neural Network (ANN)/Multi-Layer Perceptron (MLP): ANN or MLP is 

inspired by the brain biological neural system. It uses the means of simulating the 

electrical activity of the brain and nervous system interaction to learn a data-driven 

model. The structure of an ANN comprises of an input layer, one or more hidden 

layers and an output layer as shown in Figure 3 [39]. Each layer is made up of nodes 

or neurons and is fully connected to every node in the subsequent layers through 

weights (w), biases (b), and threshold/activation function. Information in the ANN 

move in two directions: feed forward propagation (i.e., operating normally) and 

backward propagation (i.e., during training). In the feedforward propagation, infor-

mation arrives at the input layer neurons to trigger the connected hidden neurons in 

subsequent layer. All the neurons in the subsequent layer do not fire at the same time. 

The node would receive the input from previous node, this is multiplied by the 
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weight of the connection between the neurons; all such inputs from connected previ-

ous neurons are summed at each neuron in the next layer. If these values at each 

neuron is above a threshold value based on chosen activation function, e.g., sigmoid 

function, hyperbolic tangent (tanh), rectified linear unit (ReLU), etc. the node would 

fire and pass on the output, or if less than the threshold value, it would not fire. This 

process is continued for all the layers and nodes in the ANN operating in the feed-

forward mode from the input layer to the output layer. The backward propagation 

is used to train the ANN network. Starting from the output layer, this process com-

pares the predicted output with actual output per layer and updates the weights of 

each neuron connection in the layer by minimize the error using a technique such as 

gradient descent amongst others as shown in Figure 3. This way, the ANN model 

learns the relationship between the input and output. 

 

Figure 3. Structure of an artificial neural network (ANN) (a) ANN (b) single neuron or node (c) 

optimizing weights using gradient descent. 

Table 5. Exemplar classifier learning algorithm for classification of machine operating sounds. 

SN Classifier Learning Algorithms Features Application Ref. 

1 SVM 
Frequency domain signal analysis: 

Band-power ratio 

Detection of air leaks between grate 

bars lined sinter strand pallets in a 

sintering plant 

[36] 

2 
Decision Tree (J48/C4.5 Algo-

rithm) 

Frequency domain signal analysis: 

Band-power ratio 

Detection of air leaks between grate 

bars lined sinter strand pallets in a 

sintering plant 

[36] 

3 Deep Neural Network (DNN) 

Frequency domain signal analysis: 

Short-Term Fourier Transform 

(STFT) 

Detecting changes in electric motor 

operational states such as supply 

voltage and load 

[14] 

4 

Decision tree, Naive Bayes, 

kNN, SVM, Discriminant Anal-

ysis, Ensemble classifier, with 

Bayesian Optimisation 

Frequency domain signal analysis: 

Wavelet packet transform, with 

Principal Component Analysis 

(PCA) 

Detecting of internal combustion en-

gine fault 
[40] 
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5 
kNN, SVM, and Multi-layer 

Perceptron (MLP) 

Frequency domain signal analysis: 

Wavelet packet transform with 

various mother wavelets 

Detecting of internal combustion en-

gine fault 
[44] 

6 
Artificial Neural Network 

(ANN) 

Frequency domain signal analysis: 

Spectral peaks from the fast Fou-

rier Transform of acoustic signal 

(0–2996.25 Hz) 

Detecting loose stator coils in induc-

tion electric motors 
[6] 

2.2.2. Acoustic Image-Based Deep Learning Methods 

This approach leverages techniques from the field of machine hearing [45]. Machine 

hearing involves sound processing considering inherent sound sensing system structures 

as humans and sound mixtures in realistic context [45]. 

In emulating human hearing, machine hearing adopts a four-layer architecture 

within which each layer represents a distinct area of research. The first layer, auditory 

periphery layer (cochlea model), mimics the representation of the nonlinear sound wave 

propagation mechanism in the cochlea as cascading filter systems; the second layer, audi-

tory image computation, provides a projection of one or more forms of auditory images 

to the auditory cortex mimicking the auditory brain stem operation; the third layer ab-

stracts the operation within the auditory cortex via extraction of application-dependent 

features from the auditory images; the final and forth layer addresses the application spe-

cific problem using appropriate machine learning system [46]. 

For application in classifying anomalous machine operating sound, variations are 

made in the auditory image computation representation; as such, best referred to as acous-

tic image representation. From the literature, there have been several possibilities for the 

2D acoustic image representation such as: spectrogram (from STFT), Mel-spectrogram, 

cochleagram, amongst others [47,48]. Table 6 provides a summary of acoustic image rep-

resentation in combination with deep learning models for classifying anomalous machine 

operating sounds and Figure 4 shows examples of acoustic image representations. 

 

Figure 4. Acoustic image representation (a) acoustic input (b) spectrogram of acoustic input (c) coch-

leagram of acoustic input (d) Mel spectrogram of acoustic input [16]. 

(1) Acoustic Image Representation 
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(a) Spectrogram: This is a two-dimensional representation of the frequency characteris-

tics of a time-domain signal as it changes over time as shown in Figure 4. Spectro-

gram is generated using Fourier transform of the time-domain signal; the time-do-

main signal is first divided into smaller segments of equal length with some overlap; 

then, fast Fourier transform (FFT) is applied to each segment to determine its fre-

quency spectrum; the resulting spectrogram becomes a side-by-side overlay of the 

frequency spectrum of each segment over time. FFT represents an algorithm to com-

pute the discrete Fourier transform (DFT) of the windowed time-domain signal, rep-

resented as [16]: 

𝐹𝑛 = ∑ 𝑥𝑛𝑤𝑛𝑒−2𝜋𝑖𝑛𝑘 𝑁⁄ , 𝑛 = 0, ⋯ , 𝑁 − 1𝑁−1
𝑘=0   (2) 

where 𝐹𝑛 is discrete Fourier transform, N is number of sample points within the win-

dow, 𝑓𝑘 is the discrete time-domain signal, and 𝑤𝑛 is the window function. 

The spectrogram is obtained as the logarithm of the DFT, as such [16]: 

𝑆𝑛 = 𝑙𝑜𝑔|𝐹𝑛|2 (3) 

where 𝑆𝑛 is spectrogram, and 𝐹𝑛 is discrete Fourier transform. 

(b) Mel Spectrogram: This is a spectrogram where frequencies have been transformed to 

the Mel scale as shown in Figure 5. The Mel scale is a linear scale model of the human 

auditory system, represented as [49,50]: 

𝑓𝑚𝑒𝑙 = 2595 × 𝑙𝑜𝑔10(1 + 𝑓 700⁄ ) (4) 

where 𝑓𝑚𝑒𝑙 is frequency on the Mel scale, and f is frequency from the spectrum. 

As shown in Figure 5, Mel spectrogram is computed by passing the result of win-

dowed times-series signal FFT for each smaller segment of the divided signal through a 

set of half-overlapped triangular band-pass filter bank equally spaced on the Mel scale. 

The spectral values outputted from the Mel band-pass filter bank are summed and con-

catenated into a vector of size dependent on the number of Mel filters, e.g., 128, 512, etc. 

The resulting Mel spectrogram becomes a side-by-side overlay of the resulting vector rep-

resentation from each consecutive time-series signal segment over time. 

 

Figure 5. Mel spectrogram operation. 

(c) Cochleagram: A cochleagram is a time-frequency representation of the frequency fil-

tering response of the cochlea (in the inner ear) as simulated by a bank of Gammatone 

filters [48]. The Gammatone filter represents a pure sinusoidal tone that is modulated 

by a Gamma distribution function; the impulse response of the Gammatone filter is 

expressed as [16]: 
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ℎ(𝑡) = 𝐴𝑡𝑛−1𝑒−2𝜋𝑏𝑡 cos(2𝜋𝑓𝑐𝑚𝑡 + 𝜙) (5) 

where A is amplitude, n is filter order, b is filter bandwidth, 𝑓𝑐𝑚 is filter centre fre-

quency, 𝜙 is phase shift between filters, and t is time. 

As shown in Figure 6, cochleagram is computed by passing the result of windowed 

times-series signal FFT for each smaller segment of the divided signal through a series of 

overlapping band-pass Gammatone filter bank. The spectral values outputted from the 

Gammatone filter bank are further transformed by logarithmic and discrete cosine trans-

form operations before been summed and concatenated into a vector of size dependent 

on the number of Gammatone filters, e.g., 128, etc. The resulting cochleagram becomes a 

side-by-side overlay of the resulting vector representation from each consecutive time-

series signal segment over time. 

 

Figure 6. Cochleagram operation. 

(2) Deep Learning Methods 

(a) Convolution Neural Network (CNN): CNN is inspired from the operation of the 

mammalian visual cortex. As shown in Figure 7, CNN is a multi-stage neural net-

work made up of key stages: filter stage (i.e., convolution layer, pooling layer, nor-

malisation layer and activation layer) and classification stage (i.e., fully connected 

layer of multilayer perceptron) [51]. The convolution layer functions to extract fea-

ture set from acoustic image representation into a feature map, pooling layer reduces 

the dimensionality of the feature map, and the classification stage performs the clas-

sification task using the multilayer perceptron. [47] has applied CNN with a combi-

nation of log-spectrogram, short-time Fourier transform and log-Mel spectrogram 

features to classify rolling-element bearing cage fault based on acoustics signals. Im-

plemented CNN model consisted of three stage feature extraction layers: fully con-

nected layer (shape = 16 × 16, rectified linear unit (ReLU) activation function, max. 

pooling = 2 × 2), fully connected layer (shape = 32 × 32, ReLU, max. pooling = 2 × 2), 

and fully connected layer (shape = 64 × 64, ReLU, max. pooling = 2 × 2) and a final 

classification stage based on multi-layer perception with 512 hidden nodes, ReLU 

and sigmoid activation function. Dataset was very sparse, and model was not opti-

mized; therefore, impacting model performance on training accuracy. Table 6 high-

lights other applications of acoustic image-based classifiers of anomalous machine 

operating sounds. 
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Figure 7. CNN basic architecture [51]. 

(b) Recurrent Neural Network (RNN): RNN is a type of neural network which uses se-

quential data or time series data to learn. Unlike CNN, RNN have internal memory 

state (i.e., can be trained to hold knowledge about the past); this is possible as inputs 

and outputs are not independent of each other, prior inputs influence the current 

input and output; simply put, output from previous layer state are feed back to the 

input of the next layer state. As shown in Figure 8, x is input layer, h is middle layer 

(i.e., consist of multiple hidden layers) and y is output layer. W, V and U are the 

parameters of the network such as weights and biases. At any given time (t), the cur-

rent input is constituted from the input x(t) and previous x(t − 1); as such the output 

from x(t − 1) is feedback into the input x(t) to improve the network output. This way, 

information cycles through a loop within the hidden layers in the middle layer. RNN 

uses the same network parameters for every hidden layer, such as: activation func-

tion, weights, and biases (W, V, U). Despite the flexibility of the basic RNN model to 

learning sequential data, they suffer from the vanishing gradient problem (i.e., diffi-

culty training the model when the weights get too small, and the model stops learn-

ing) and exploding gradient problem (i.e., difficulty training the model due to very 

high weight assignment). To overcome these challenges, the long short-term memory 

(LSTM) network variant of RNN is normally used. LSTM has the capability to learn 

long-term dependencies between time steps of sequential data. LSTM can read, write 

and delete information from its memory. It achieves this via a gating process made 

up of three stages: forget gate, update/input gate and output gate which interacts 

with is long-term memory and short-term memory pathways used to feedback its 

memory states amongst hidden layers. As shown in Figure 9, “c” represents the cell 

state and long-term memory, “h” represents the hidden state and short-term 

memory, and “x” represent the sequential data input. The forget gate determines 

how much of the cell state “c” is thrown away or forgotten. The update gate deter-

mines how much of new information is going to be stored in the cell state, and output 

gate determines what is going to be outputted. [52] has applied LSTM RNN with 

cochleagram features to classify varying rolling-element bearing faults based on 60 s 

acoustics signals. Implemented model consisted of an input feature set based on 128 

gammatone filter bank cochleagram; Considering a 1 s. duration as a frame, the 60 s 

dataset generated 60-time frames. Each frame is represented as a cochleagram. 67% 

of the dataset was used to train the LSTM RNN model and 33% for testing. Model 

accuracy on fault classification task was 94.7%. Table 6 highlights other applications 

of acoustic image-based classifiers of anomalous machine operating sounds. 
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Figure 8. RNN basic architecture. 

 

Figure 9. LSTM RNN architecture [52]. 

(c) Spiking Neural Network (SNN): SNN is a brain-inspired neural network where infor-

mation is represented as binary events (spikes). It shares similarity with concepts such 

as event potentials in the brain. SNN incorporates time into its propagation model for 

information; SNN only transmit information when neuronal potential exceeds a 

threshold value. Working only with discrete timed events, SNS accepts as input spike 

train and outputs spike train. As such, information is required to be encoded into the 

spikes which is achieved via different encoding means: binary coding (i.e., all-or-noth-

ing encoding with neurons active or inactive per time, rate coding, fully temporal codes 

(i.e., precise timing of spikes), latency coding, amongst others [53]. As shown in Figure 

10, SNN is trained with the margin maximization technique, described in [54]. During 

first epoch, SNN hidden layer is developed based on neuron addition scheme. In sub-

sequent epochs, the weights and biases of the hidden layer neurons are updated further 

using the margin maximization technique. Here, weights of the winner neuron are 

strengthened, while those of the others are inhibited; this reflects the Hebbian learning 

rule of the natural neurons; as a result, neurons are only connected to their local neu-

rons, so they process the relevant input patterns together. This approach maximizes 

the margin among the classes which lends itself to training the spike patterns. Ref. [48] 

has applied SNN with cochleagram features to classify varying rolling-element bearing 

faults based on 10 s acoustics signals. Implemented model consisted of an input feature 

set based on 128 gammatone filter bank cochleagram; later reduced to 50 using princi-

pal component analysis (PCA). Considering a 10 ms duration as a frame, the 10 s da-

taset generated 1000-time frames. Each frame was encoded into a spike train using the 

population coding method. 90% of the dataset was used to train the SNN model and 

10% for testing. Model accuracy was above 85%. Table 6 highlights other applications 

of acoustic image-based classifiers of anomalous machine operating sounds. 
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Figure 10. SNN architecture [48]. 

Table 6. Exemplar acoustic image representation and classifier models. 

SN Acoustic Image Representation Deep Learning Methods Application Ref. 

1 Spectrogram/Log-Spectrogram CNN * 
Detection of rolling-element bearing fault 

such as cage defect 
[47] 

  RNN * 

Detection of air leaks between grate bars 

lined sinter strand pallets in a sintering 

plant 

[36] 

2 Cochleagram RNN * 

Detection of rolling-element bearing fault 

such as inner race defect, outer race de-

fect, rolling-element defect, combined de-

fect, and heavily worn bearing 

[52] 

3 Cochleagram SNN * 

Detection of rolling-element bearing fault 

such as inner race defect, outer race de-

fect, rolling-element defect, combined de-

fect, and heavily worn bearing 

[48] 

4 Spectrogram (from STFT) CNN * 
Detection of rolling-element bearing fault 

such as cage defect 
[47] 

5 Log-Mel Spectrogram CNN * 
Detection of rolling-element bearing cage 

fault 
[47,55] 

* CNN: Convolutional Neural Network, RNN: Recurrent Neural Network, SNN: Spiking Neural 

Network. 

3. Datasets for Detection and Classification of Anomalous Machine Sound (DCAMS) 

Openly available datasets are vital for progress in the data-driven machine condition 

monitoring approaches. In recent time, there have been significant progress in the corol-

lary area of acoustic scene classification mainly due to opensource dataset such as: Audi-

oSet dataset [1], which provides a collection over 2 million manually labelled 10 s sound 

segments from YouTube within 632 audio event classes. However, nothing of such large 

scale is available for Detection and Classification of Anomalous Machine Sounds 

(DCAMS). Within limited scale, several research projects are beginning to lay the founda-

tion as they were bridging the dataset gap for DCAMS. 

3.1. ToyADMOS Dataset 

This dataset provided by [9], is a collection of anomalous machine sounds produced 

by miniaturised machines (i.e., toy car, toy conveyor, and toy train) as shown in Figure 

11. It is designed to provide scenarios such as: inspecting machine condition (toy car), 

fault diagnostics for a static machine (toy conveyor) and fault diagnostics for a dynamic 

machine (toy train). The data acquisition setup for each scenario is performed using four 

microphones sampled at 48 kHz and measurement locations are shown in Figure 12. To 
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provide anomalous operating conditions for the miniaturised machines, systematic fault 

modes as shown in Table 7 are imbedded in the various toy machines. 

 
 

 

(a) (b) (c) 

Figure 11. Schematic of ToyADMOS miniaturised machines (a) toy car (b) toy conveyor (c) toy train 

[9]. 

 

(a) (b) (c) 

Figure 12. Schematic of microphone installation setup for ToyADMOS miniaturised machines (a) 

toy car (b) toy conveyor (c) toy train [9]. 

Table 7. Imbedded faults in ToyADMOS miniaturized machines [9]. 

Toy Car Toy Conveyor Toy Train 

Parts Condition Parts Condition Parts Condition 

Shaft Bent Tension pulley Excessive tension 
First  

carriage 
Chipped wheel axle 

Gears 
Deformed 

Melted 

Tail  

pulley 

Excessive tension 

Removed 

Last  

carriage 
Chipped wheel axle 

Tires 
Coiled (plastic ribbon) 

Coiled (steel ribbon) 
Belt 

Attached metallic object 1 

Attached metallic object 2 

Attached metallic object 3 

Straight rail-

way track 

Broken 

Obstructing stone 

Disjointed 

Voltage 
Over voltage 

Under voltage 
Voltage 

Over voltage 

Under voltage 

Curved rail-

way track 

Broken 

Obstructing stone 

Disjointed 

3.2. MIMII Dataset 

The MIMII (Malfunctioning Industrial Machine Investigation and Inspection) dataset 

comprises normal and anomalous machine operating sounds of four types of real ma-

chines such as valves, pumps, fans, and slide rails [10]. The dataset was captured using an 

8-microphone circular array with machine configuration in Figure 13 and sampled at 16 
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kHz. Each recording consists of 10 s. segments recordings of the machines with various 

faults as shown in Table 8. 

Table 8. Imbedded faults in MIMII real machines [10]. 

Machine Type Operations Examples of Anomalous Conditions 

Valve 
Open/close repeat with  

different timing 

More than two kinds of contamina-

tion 

Pump 
Suction from discharge to a wa-

ter pool 

Leakage, contamination, clogging, 

etc. 

Fan Normal work 
Unbalanced, voltage change, clog-

ging, etc. 

Slide rail Slide repeat at different speeds 
Rail damage, loose belt, no grease, 

etc. 

 

Figure 13. Schematic of microphone installation setup for MIMII [10]. 

3.3. DCASE Dataset 

The DCASE dataset [13] is a merge of subset of ToyADMOS and MIMII dataset com-

prising both normal and anomalous machine operating sounds. To harmonise both da-

tasets, each audio file includes a single channel and 10 s in duration. All the audio files are 

resampled at 16 kHz. The dataset relates to the following machine operating sounds: toy 

car (ToyADMOS), toy conveyor (ToyADMOS), valve (MIMII), pump (MIMII), fan 

(MIMII) and slide rail (MIMII). 

3.4. IDMT-ISA-ELECTRIC-ENGINE Dataset 

The IDMT-ISA-ELECTRIC-ENGINE dataset [14] consists of anomalous operating 

sounds of three brushless electric motors. Different operational states such as good, heavy 

load and broken are simulated within the electric motors by changing the supply voltage 

and loads. The dataset provides mono audio for each sound file sampled at 44.1 kHz. For 

each of the operational states, IDMT-ISA-ELECTRIC-ENGINE dataset provides 774 sound 

files for “good” state, 789 for “broken” state and 815 for “heavy load”. Figure 14 shows 

the setup for acoustic data acquisition in the electric motor machines. 
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Figure 14. Three electric motor setups for IDMT-ISA-ELECTRIC-ENGINE dataset [14]. 

3.5. MIMII DUE Dataset 

The MIMII DUE (Malfunctioning Industrial Machine Investigation and Inspection 

with domain shifts due to changes in operational and environmental conditions) provides 

a sound dataset for training and testing anomalous sound detection techniques and their 

invariance to domain shifts [56]. This builds on the authors’ previous released MIMII da-

taset [10] which had the limitation of not representing industrial scenarios with changes 

in machine operational speed and background noises. 

MIMII DUE provides normal and anomalous sounds for five industrial machines: 

fan, gearbox, pump, slide rail and valve. For each of the machines, six sub-division is pro-

vided referred to as sections. Each section refers to a unique instance of machine product; 

this provides for manufacturing variability within machine type. Furthermore, each sec-

tion has its dataset is split into source domain and target domain. The source domain con-

tains machine operating sound running at design point while target domain contains ma-

chine operating sound running at off-design point. 

3.6. ToyADMOS2 Dataset 

ToyADMOS2 dataset also provides for training and testing anomalous machine 

sound detection techniques for their performance in domain shifted conditions [57]. As 

opposed to ToyADMOS its predecessor, it only carters for two types of miniature ma-

chines: toy car and toy trains. The recording and system setup is same for ToyADMOS [9]; 

however, a key difference, ToyADMOS2 has the normal and anomalous machine operat-

ing sounds recorded with machines operating under different speeds. This provides for a 

source domain consisting of machines with specified operating conditions and the target 

domain with machines having different operating conditions. Suitable for training and 

testing with the different domains. 

3.7. MIMII DG Dataset 

MIMII DG dataset provides normal and anomalous machine operating sounds for 

benchmark Domain Generalisation techniques [58]. It comprises five groups of machines 

including valve, gearbox, fan, slide rail and bearing. The audio recording for each machine 

consists of three sections representing different types of domain shift conditions, which 

for each machine could be operating condition change and environmental background 

noise change. 
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4. Challenges 

4.1. Sound Mixtures with Background Noise 

The presence of background noise interfering with machine fault signature during 

acquisition of acoustic data poses a challenge in terms of accuracy and repeatability of 

machine fault diagnostics. Background noise in this context refers to sound from other 

operating machines that are different from the target machine. Additionally, it includes 

the sounds from other activities in the industrial environment. 

Approaches are therefore required to eliminate background noise from the collected 

acoustic data. The challenge lies in the fact that the background noise sources are uncor-

related, as such, filtering techniques are not applicable. Techniques, such as Blind Signal 

Separation (BSS) and Independent Component Analysis (ICA), have the potential to ad-

dress this challenge by recovering the signal of interest out of the observed sound mix-

tures. BSS has been applied in [59] for extracting the unobserved fault acoustic signal dur-

ing metal stamping with a mechanical press. Wang et al. [60] also applied BSS using sparse 

component analysis for separating sound mixtures of power transformer origin. In [48], 

ICA was applied together with variational mode decomposition, to separate the inde-

pendent components hidden in the observation low signal-to-noise ratio signals, for an 

intelligent diagnosis application. 

In practice, the mixture of acoustic signals is formed by the random mixing of multi-

ple sound sources resulting in non-linear mixture models, which is an area requiring fur-

ther attention for acoustic-based machine condition monitoring. 

4.2. Domain Shift with Changes in Machine Operation and Background Noise 

Domain shift represents the change in machine operating and environmental condi-

tions. This is common in industrial settings as machines would not always operate in their 

design point conditions. There is always a need for the machine to run at an off-design 

point, indicating changes to both speed and loading as well as changes in the background 

noise from auxiliaries during operation. Tackling the domain shift problem is important 

for effective anomaly detectors applicable to machine operating sound. 

The concept of domain adaptation is gaining prominence as an approach for anomaly 

detection in domain shifted conditions [11,61]. Domain adaptation addresses the problem 

as: when provided with a set of normal data from a source domain and a limited set of 

normal data from a target domain, how do you develop a performant anomaly detector 

in the target domain. From the literature, the following approaches for domain adaptation 

have emerged: learning the transformation from the source domain to the target domain 

[62,63], learning invariant representations between the source and the target domains [64–

67] and few-shot domain adaptation [68,69]. With the option of domain adaptation, it 

opens opportunities for application to acoustic-based machine condition monitoring and 

fault diagnostics. 

4.3. Domain Generalisation Invariant to Changes in Machine Operation and Background Noise 

Domain generalisation is an attempt to provide an alternative to the domain adapta-

tion techniques when dealing with domain shift due to the computational cost of the do-

main adaptation techniques. Domain generalisation poses the problem of learning com-

monalities across various domains (i.e., source and target) to enable the model to general-

ize across the domains. Such generalisation would need to account for domain shift 

caused by differences in environmental conditions, machine physical conditions, changes 

due to maintenance, and differences in recording devices for instance. 

Fundamentally, domain generalisation attempts the out-of-distribution generalisa-

tion by using only the source domain data. In the literature, several techniques have 

emerged such as [70]: domain alignment, meta-learning, ensemble learning, data augmen-

tation, self-supervised learning, learning disentangled representations, regularisation 

strategies, and reinforcement learning. With the development and application of domain 
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generalisation techniques for machine fault diagnostics problem, it would open compel-

ling opportunities for the applicability of the acoustic-based approaches. 

4.4. Effect of Measurement Distance, Measurement Device and Sampling Parameters 

4.4.1. Measurement Distance (Microphones Positions) 

Sound propagates through air as a longitudinal wave; as it moves through the air 

medium, from the source to the listener or observer, sound as characterised by sound in-

tensity, experiences attenuation, i.e., loss in energy. For a point source (i.e., uniformly ra-

diating sound in all directions), this attenuation follows the inverse square law as shown 

in Figure 15, which is dependent on the measurement distance. In practice, for every dou-

bling of measurement distance, the sound intensity reduces by a factor of 4; alternatively, 

the sound pressure level reduces by 6 dB. From sound propagation theory, it is evident 

that, the measurement distance of anomalous machine operating sound is important [71]. 

However, very little consideration has been given to this effect during experimental setup 

for anomalous machine sound data acquisition as corroborated by the benchmarking 

opensource datasets such as ToyADMOS, MIMII, IDMT-ISA-ELECTRIC ENGINE, MIMII 

DUE, ToyADMOS2, and MIMII DG. One can argue, the measurement distance effect can 

be accounted for within domain adaptation or domain generalisation challenges. Yet, the 

various datasets do not provide a systematic grouping of the dataset based on the meas-

urement distance for this to be considered. The parameters often considered are changes 

in machine operating parameters (i.e., rotating speed and load) and environmental/back-

ground noise. 

An important question is then raised; how far should the microphones be from the 

sound source considering the measurement distance effect? 

In acoustics, two physical regions exist that shed light to the above question: the 

acoustics near field and acoustics far field as shown in Figure 16. The transition from near 

field to far field occur in at least 1 wavelength of the sound source [72]. It is important, to 

note, as wavelength is a function of frequency, this transition distance would change as 

the frequency content of the sound source changes. The near field exist very close to the 

sound source with no fixed relationship between sound intensity and distance. Within the 

far field, the inverse square law of sound propagation holds true. In practice, this is the 

region where the measuring microphone should ideally be located. As a minimum, a sin-

gle microphone can suffice for accurate and repeatable measurement of sound. Although 

fundamental acoustics theory would place the far field at least 1 wavelength of the sound 

source [72]; ISO 3745, provides several guidelines or criteria for microphone placement 

within the far field for sound power measurement [73]: 

(a) 𝑟 ≥ 2𝑑𝑜 (6) 

(b) 𝑟 ≥ 𝜆 4⁄  (7) 

(c) 𝑟 ≥ 1 𝑚𝑒𝑡𝑟𝑒 (8) 

where r is measurement distance, 𝑑𝑜 is characteristic dimension or largest dimension of 

the sound source, and 𝜆 is the lowest wavelength of the sound source, 

For small, low-noise sound sources with measurement over a limited frequency 

range, the measurement distance can be less than 1 m, but not less than 0.5 m, provided 

consideration for criteria (a) and (b) above are adhered to [73]. 

Within the near field, measurement is feasible; but would require multi-microphone 

array. For the measurement of anomalous machine operating sound, guidelines are lack-

ing in the literature and further research is required. 
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Figure 15. Distance effect on sound intensity propagation and attenuation [74]. 

 

Figure 16. Acoustic sound field consideration [72]. 

4.4.2. Single Microphone Measurement Device and Sampling Parameters 

Acoustic measuring device mismatch between development data acquisition and 

testing can occur in practice. As every microphone have its unique transfer function which 

dictates its frequency response and perception of sound, measuring device mismatch 

needs to be considered. Very little has been done in considering this challenge in the de-

tection and classification of anomalous machine operating sound. However, such consid-

eration is already attracting attention in the corollary field of acoustic scene classification 

[75]. Key to this consideration in acoustic scene classification field, is the realization of the 

TUT Urban Acoustic Scenes dataset which consists of ten different acoustic scenes, rec-

orded in six large European cities with four different microphone devices: highlighting 

the importance of considering the acoustic measuring device for robust pattern learning 

algorithm [75]. 

As very little work has been explored on the effect of recording device mismatch in 

anomalous machine operating sound detection and classification to inform device choice; 

still, some learning can be gleaned from the choice of microphones, sampling frequency 

and sample duration as shown in Table 9 from the opensource dataset projects on 

DCAMS. 
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Table 9. Exemplar acoustic measurement devices and sampling parameters. 

Datasets Microphone Brand Microphone Type 
Sampling  

Frequency 
Sample Duration Ref. 

ToyADMOS Shure SM11-CN 
Omni-directional 

Microphone 

16 kHz (Downsam-

pled) 
10 s, and 10 min [9] 

MIMII 

TAMAGO-03 

(Circular micro-

phone array with 8 

distinct micro-

phones) 

- 16 kHz 10 s. [10] 

IDMT-ISA-ELEC-

TRIC-ENGINE 
- - 44.1 kHz 3 s. [14] 

MIMII DUE 

TAMAGO-03 

(Circular micro-

phone array with 8 

distinct micro-

phones) 

- 16 kHz 10 s. [56] 

ToyADMOS2 
Shure SM11-CN 

TOMOCA EM-700 

Omni-directional 

Microphone 

Condenser Micro-

phone 

48 kHz 12 s. [57] 

MIMII DG 

TAMAGO-03 

(Circular micro-

phone array with 8 

distinct micro-

phones) 

- 16 kHz 10 s. [58] 

4.4.3. Microphone Array Measurement (Acoustic Camera) 

Acoustic camera measurement provides the capability for sound source localisation, 

quantification and visualization using multi-dimensional acoustic signals processed from 

a microphone array unit and overlaid on either image or video of the sound source as 

shown in Figure 17 [76]. An acoustic camera, is a collection of several microphones, acting 

as a microphone array unit, where the microphones within the array can be arranged ei-

ther as uniform circular configuration, uniform linear configuration, uniform square con-

figuration or customized array configuration for specific application. Acoustic camera can 

provide acoustic scene measurement both in the near and far acoustic fields. 

For localizing anomalous machine operating sound in application, acoustic camera 

has been used to map the variation in machine emitted sound for fault detection as fol-

lows: localizing sources of aircraft fly by noise [77], characterising emitted sound from 

internal combustion engine running idle in a vehicle [78], fault detection in a gearbox unit 

[79], fault localisation in rolling-element bearing [80], etc. 
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Figure 17. Acoustic camera for fault detection based on variation in emitted sound (a) Acoustic 

camera setup (b) test object without a fault (c) test object with a fault [81]. 

Central to the analysis and interpretation of the multi-dimensional acoustic signals is 

acoustic beamforming technique [76,82]. Ref. [82] provides an extensive review on acous-

tic beamforming theory including consideration for acoustic beamforming test design cri-

teria. 

Acoustic beamforming is a spatial filtering technique used in far field acoustic do-

main, for localisation and quantification of the sound source; where it amplifies the acous-

tic signal of interest while suppressing interfering sound sources (e.g., background noise) 

[82]. In principle, the beamforming algorithm works by summing individual acoustic sig-

nals based on their arrival times from the sound source to the microphone array. This 

summation process suppresses the interfering signals while enhancing the acoustic signal 

of interest. The technique can be performed both in the time-domain and frequency do-

main [82]. 

(1) Delay and Sum Beamforming in the Time-Domain: This is demonstrated in Figure 18 

as follows, considering only two sound sources as an example (i.e., source 1 and source 

2). For each sound source, the travel path of emitted sound to the microphone array 

would be different; as such, captured signals by the microphone array would show 

different delays and phases for the measured signals from both sources. As both pa-

rameters, delay, and phase, are proportional to the travelled distance between micro-

phone array and source; with the knowledge of the speed of sound in the medium (e.g., 

air), the runtime delay is estimated for the signal of interest (source 1) reaching all the 

microphone locations. The measured signal for every microphone in the array is then 

shifted by the calculated runtime delay for that channel, creating an alignment in phase 

in the time-domain for the signal of interest (source 1). The resulting signals from every 

microphone channel are summed and normalised by the number of microphones in 

the array; As shown in Figure 18, the signal of interest (source 1) is amplified due to 

constructive interference while source 2 is minimized due to destructive interference. 

To create the final acoustic scene representation, for each microphone channel, the root 

mean square (RMS) amplitude value or the maximum amplitude value of the time-

domain acoustic signal can be evaluated for visualization as an acoustic map. 
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Figure 18. Schematic of delay and sum beamforming in the time domain for acoustic sources [83]. 

(2) Delay and Sum Beamforming in the Frequency Domain: This is demonstrated in Fig-

ure 19 as follows, considering only two sound sources as an example (i.e., source 1 

and source 2). For each sound source, the travel path of emitted sound to the micro-

phone array would be different; as such, captured signals by the microphone array 

would show different delays and phases for the measured signals from both sources. 

The delay for the signal of interest can be determined using information such as, dis-

tance between source and microphone and the speed of sound in the medium. Fou-

rier transform is performed at all microphone channel resulting in a complex spec-

trum for amplitude and phase. To eliminate the delay in phase for the signal of inter-

est at all microphone location, the complex spectra is multiplied by a complex phase 

term as shown in Figure 19, bringing the interested acoustic source in phase without 

impacting the amplitude of the spectra. The resulting complex spectra from all the 

microphone channels are summed and normalised by the number of microphone 

channels. The interest sound source signal (source 1) is enhanced due to constructive 

interference, while source 2 is diminished due to destructive interference. 

 

Figure 19. Schematic of delay and sum beamforming in the frequency domain for acoustic sources 

[84]. 
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Application of acoustic camera to machine diagnostics have been attracting increas-

ing interest [77–80,85,86]. Of note, is the approach proposed by [85,86] to localise faults in 

rotating machinery using acoustic beamforming and spectral kurtosis (i.e., spectral kurto-

sis is an effective indicator of machine fault [87,88]). As shown in Figure 20, spectral kur-

tosis is used as a post-processor of the multi-dimensional acoustic time-domain signals 

from the microphone array to identify and localise fault-related frequency bands (i.e., fre-

quency bands that are impulsive); the resulting kurtogram having a spatial dimension 

provides the capability to localise the high kurtosis region providing indication of ma-

chine fault. 

 

Figure 20. Application of spectral kurtosis to acoustic beamforming for machine fault diagnosis 

[85,86]. 

5. Outlook 

Anomalous machine operating sound provides a rich set of information about a ma-

chine’s current health state upon which to automate the detection and classification of 

machinery faults. Despite advances in data-driven machine learning and deep learning 

approaches as currently applied for acoustic-based machine condition monitoring, there 

still exist areas for further research for this technique to be industrially applicable. 

5.1. Addressing Pitfalls in Acoustic Data Collection 

The performance of data-driven models and their ability to generalize during train-

ing and testing depends on the available datasets being a representative of the actual fault 

scenario. However, generating machine fault dataset for actual machines is a costly en-

deavor. If the training dataset is too small, the model learns sampling noise. As a work 

around, most of the opensource dataset for the detection and classification of anomalous 

machine operating sounds have focused on either toy machines or scaled down machine 

models. This approach has provided initial seeding to be able to benchmark currently de-

veloped techniques. Generally, available datasets account for steady-state changes in ma-

chine operational parameters such as speed and load, consideration of varying degree of 

background noise during acoustic signal measurement, and different models of similar 

machine class. These datasets are lacking in the following areas: consideration of the dis-

tance effect during grouping of the dataset (i.e., it would be relevant to have measure-

ments at different distances from the source to test the robustness of developed ap-

proaches working in the field where it would be difficult to maintain repeatable measure-

ment distance), consideration of transient operation regime of machines during dataset 

grouping (i.e., steady-state dataset alone is a non-representative training data; developed 

approach need to be able to differentiate transient operation from anomalous operation), 

and consideration of device mismatch during data acquisition (i.e., recording for same 

machine fault with different types of microphones, such as omni-directional microphone, 

pressure-free field microphone, condenser microphone, etc.; Furthermore, it would be rel-
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evant to specify a standard reference microphone such as the omni-directional micro-

phone, in other for spectrum correction coefficients for various microphones to be pro-

vided with respect to this [89]; using spectrum correction coefficients opens up the possi-

bility of data transformation to account for device mismatch). 

5.2. Addressing Measurement Artifacts (i.e., Background Noise, and Distance Effect) 

In the industrial environment, acoustic-based machine condition monitoring is often 

plagued with the problem of having multiple signals mixing such as acoustic signal of 

interest indicative of anomalous machine operation and the background noise, i.e., neigh-

boring machinery, factory noise, etc. It is required for the sound mixture to be separable, 

i.e., separating the acoustic signal of interest from the background noise. Conventional 

approaches such as spectral subtraction methods which rely on the background noise hav-

ing a constant magnitude spectrum and acoustic signal of interest been short-time station-

ary would not be applicable as there is the possibility of removing fault frequencies from 

the spectrum of the acoustic signal of interest [90]. Blind signal separation can be useful 

as it offers sound mixture separation without prior knowledge of either of the signals or 

the way in which they are mixed [91]. Application and optimisation of blind signal sepa-

ration for acoustic-based machine condition monitoring provides an area for further re-

search. 

The effect of distance between the acoustic source and microphone leads to attenua-

tion of the measured sound intensity. Furthermore, it places a burden of repeatability be-

tween laboratory conditions and industrial conditions, impacting data-driven model ac-

curacy for application. Eliminating or minimizing the distance effect on the acquired 

acoustic signal is an area requiring further research. [71] proposed a normalisation scheme 

(i.e., d-normalization) in the frequency domain using the spectrum representation of the 

acoustic signal which minimized the distance effect as shown in Figure 21 and expressed 

as: 

𝐼(𝑓) =  𝐼(̅𝑓)/𝜇𝐼 (9) 

where 𝐼(𝑓) is the normalised spectrum of the measured sound intensity, 𝐼(̅𝑓) is the un-

normalised spectrum of the measured sound intensity (i.e., determined from fast Fourier 

transform of the time-domain acoustic signal), and 𝜇𝐼 is the mean of the rectified time-

domain acoustic signal intensity, given as: 

𝜇𝐼 = (1 𝑁⁄ ) × ∑ |𝑋𝑖|
𝑁
𝑖=1   (10) 

where N is number of sample points in the acoustic time-domain signal, |𝑋𝑖| is the abso-

lute amplitude value of the acoustic time-domain signal. 

Although the result is promising, it is applicable to the spectral representation of the 

acoustic signal. Alternative normalisation scheme be required for other acoustic image 

representation such as cochleagram, Mel-spectrogram, amongst others? Furthermore, 

what would be the impact on the data-driven model accuracy due to normalisation of the 

input acoustic representation? These are open questions for further research. 

5.3. Improving Data-Driven Model Accuracy for Application: Domain Adaptation versus 

Domain Generalisation 

Domain shift (i.e., changes in machinery operating speed and load) is inevitable in 

industrial processes due to machines operating in off-design conditions and harsh envi-

ronment. As such, training data-driven models for the DCAMS problem to account for 

this system dynamics is a must have. However, learning robust model representation by 

using data from multiple domains to identify invariant relationships between the various 

domains is still a challenging problem. Two schools of thought have emerged to address 

the domain shift problem in acoustic-based machine condition monitoring: domain adap-

tation [92,93] and domain generalisation [94]. Both approaches tackle the same problem 

based on the available dataset. Domain adaptation assumes you have dataset from the 
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source domain (i.e., machine operating at design point) and some set of data in the target 

domain (i.e., machine operating at off-design point), it attempts to learn the mapping be-

tween the source and target domain based on these criteria. Alternatively, domain gener-

alisation assumes you have dataset from two different source domains, it attempts to learn 

the mapping to an unseen domain. Although several domain adaptation and generaliza-

tion techniques have been proposed in the literature, the model performance for both ap-

proaches is yet to reach satisfactory level in applications as evident from DCASE2021 and 

DCASE2022 Task 2 challenges [11,12]. 

 

Figure 21. Minimizing distance effect on measured acoustic signal using d-normalisation [71]. 

5.4. Addressing Multi-Fault Diagnosis 

In industrial environment, machinery may need to operate in both off-design condi-

tions and harsh conditions continuously for extended periods of time. As such, machine 

components are liable to the occurrence of multiple faults at the same time. When these 

multi-faults occur, their impact to machine performance and lifespan is more severe as 

compared to the presence of a single fault due to fault interactions [95]. Fault diagnosis 

approaches needs to be able to accommodate both single fault and multi-faults detection 

scenarios. From the literature, within acoustic-based condition monitoring methodology, 

the focus has been on addressing the single-fault diagnosis problem; multi-fault diagnosis 

of machinery is still lacking. This area of research needs consideration for viable industrial 

applications, e.g., fault diagnosis in gearbox, electric motor, compressor, pump, amongst 

others. 

5.5. Improving Acoustic Camera Spatial Detection of Machine Faults 

Acoustic camera for machine fault diagnosis provides spatial information not possi-

ble with conventional condition monitoring approaches such vibration analysis. How-

ever, interpreting the visualization of the emitted sound field from the machine from 

acoustic beamforming is very limited; It is important to note that regions of high sound 

pressure level does not necessarily correlate with the presence of a fault. Further research 

is required to analyse the multi-dimensional acoustic time-domain signals as a function 

of space from the acoustic beamforming analysis using either signal processing methods 

or data-driven machine learning/deep learning approaches. Pioneering in this regard, 

[85,86] have proposed spectral kurtosis as means to filter the multi-dimensional acoustic 

time-domain signals from acoustic beamforming to localise impulsive-related machine 

faults, e.g., gearbox faults, rolling-element bearing faults, etc., as well as extract the time-

domain acoustic signals from the region of high spectral kurtosis. This area of research is 
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still limited in correlating regions of high spectral kurtosis to a fault. The extract time-

domain signal provides an opportunity to be explored for evaluation using data-driven 

approaches. Furthermore, beyond spectral kurtosis, what other signal processing ap-

proaches are relevant with improved sensitivity to localizing machine faults from the 

multi-domain acoustic signals provided by the acoustic camera? 

6. Conclusions 

Acoustic-based machine condition monitoring has been attracting increasing atten-

tion, especially with the annual DCASE challenge task on unsupervised anomalous sound 

detection for identifying machine conditions. Given the industrial relevance and signifi-

cance of this research area, it becomes important in this paper to address the following 

questions: (i) are there commonalities or differences amongst the developed methodolo-

gies for detecting and classifying anomalous machine operating sounds, (ii) what open 

datasets are available for benchmarking the developed techniques, and (iii) what chal-

lenges are still there for the applicability of acoustic-based machine condition monitoring. 

Hopefully, this review of the state-of-the-arts can inspire more advancement in the acous-

tic-based machine condition monitoring research area. 
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