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ABSRACT 

The aim of this thesis is to determine the changes in BOLD signal of the human 

brain during various stages of reinforcement learning. In order to accomplish that 

goal two probabilistic reinforcement-learning tasks were developed and assessed 

with healthy participants by using functional magnetic resonance imaging (fMRI). 

For both experiments the brain imaging data of the participants were analysed by 

using a combination of univariate and model–based techniques.  

 In Experiment 1 there were three types of stimulus-response pairs where 

they predict either a reward, a neutral or a monetary loss outcome with a certain 

probability. The Experiment 1 tested the following research questions: Where does 

the activity occur in the brain for expecting and receiving a monetary reward and a 

punishment ? Does avoiding a loss outcome activate similar brain regions as gain 

outcomes and vice a verse does avoiding a reward outcome activate similar brain 

regions as loss outcomes? Where in the brain prediction errors, and predictions 

for rewards and losses are calculated? What are the neural correlates of reward and 

loss predictions for reward and loss during early and late phases in learning? The 

results of the Experiment 1 have shown that expectation for reward and losses 

activate overlapping brain areas mainly in the anterior cingulate cortex and basal 

ganglia but outcomes of rewards and losses activate separate brain regions, 

outcomes of losses mainly activate insula and amygdala whereas reward activate 

bilateral medial frontal gyrus. The model-based analysis also revealed early versus 

late learning related changes. It was found that predicted-value in early trials is 

coded in the ventro-medial orbito frontal cortex but later in learning the activation 

for the predicted value was found in the putamen.   

 The second experiment was designed to find out the differences in 

processing novel versus familiar reward-predictive stimuli. The results revealed 
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that dorso-lateral prefrontal cortex and several regions in the parietal cortex 

showed greater activation for novel stimuli than for familiar stimuli.  As an 

extension to the fourth research question of Experiment 1, reward predicted-

values of the conditional stimuli and prediction errors of unconditional stimuli 

were also assessed in Experiment 2. The results revealed that during learning there 

is a significant activation of the prediction error mainly in the ventral striatum with 

extension to various cortical regions but for familiar stimuli   no prediction error 

activity was observed. Moreover, predicted values for novel stimuli activate mainly 

ventro-medial orbito frontal cortex and precuneus whereas the predicted value of 

familiar stimuli activates putamen. The results of Experiment 2 for the predicted-

values reviewed together with the early versus later predicted values in Experiment 

1 suggest that during learning of CS-US pairs activation in the brain shifts from 

ventro-medial orbito frontal structures to sensori-motor parts of the striatum.  
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Chapter 1 

 

 

Overview of the Thesis 

1.1 Motivation 

Stimuli that we encounter in everyday life get much of their meaning from the 

associations that have been learned from previous experiences. These stimuli may trigger 

associations of rewards and punishments or in certain circumstances they may trigger 

courses of actions including simple stimulus-response mappings (e.g., green light means 

pass in the traffic) or even more abstract socio-cultural rules (e.g., not to start eating 

before the guest sits at the dinner table). As well as being affected from previously taught 

associations there is also a need to learn new associations from scratch, or overwrite new 

rules over the previously learned ones (e.g., reversal learning).  In certain circumstances, 

there is also the need to switch between these associative rules in order to better adapt to 

the environment. Given the complexity of the spectrum of associative mappings, the 

capacity to predict and learn these mappings of associations in a flexible way is likely to 

increase the chance of survival of the organism. For this reason one of the most 

important research questions that behavioural and cognitive neuroscience are concerned 

with is how the brains of animals and humans learn and predict outcomes of rewards and 
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punishments, and make decisions based on these prediction in order to avoid 

punishments and to obtain rewards.  

 In behavioural psychology, this question has been investigated with Pavlovian 

(classical) and instrumental (operant) conditioning, and much evidence has accumulated 

regarding different aspectsof the associative learning mechanisms (e.g., goal directed and 

habit mechanisms). On the other hand electrophysiological and anatomical studies in 

animals suggested that these associative learning mechanisms likely to involve separate 

brain regions (Frank, Cohen, Sanfey; 2009), and transitions might occur between these 

regions in different learning contexts (Packard & Knowlton, 2002; Yin & Knowlton, 

2006; Gaybiel, 2008). Given that evidence from lesion and neuroimaging studies 

suggests that there are multiple learning mechanisms, each utilizing rewards and 

punishments in different ways (Packard & Knowlton, 2002).  

This thesis aims to answer two specific but interrelated questions of associative 

learning. Firstly, what are the neural correlates of monetary gains and losses during 

reinforcement learning? Secondly, what are the neural correlates of goal-directed and 

habitual learning systems (automated and controlled) in relation to novel and familiar 

stimuli? The thesis examines these two questions with two functional imaging studies. 

Furthermore, by using a model-based functional neuroimaging technique this thesis also 

aims to provide answers for where in the brain prediction errors and predicted values 

coded. 
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1.2 Structure of the Thesis 

  

• The literature related to the neurobiological basis of rewards and punishments 

and their affect on learning stimulus-response associations are reviewed in 

Chapter 2.   

 

• Chapter 3 reviews the literature on the neural mechanisms of associative learning 

including a review of the neuroanatomy of basal-ganglia, and a discussion of how 

novelty influence perception of stimuli and action sets during reinforcement 

learning.  

 

•  In Chapter 4, formal models of reinforcement learning are reviewed. The 

models included in this chapter are the linear learning rule of Bush and Mosteller 

(1955), Rescorla-Wagner (1972), Pearce-Hall (1980). In addition to that Temporal 

Difference learning (Sutton & Barto, 1988), Q-learning (Sutton & Barto, 1988) 

and several adaptive learning rate models also reviewed. 

 

• Chapter 5 summarizes general methodology of fMRI including pre-processing 

and statistical analysis. In addition to that it reviews how computational models 

of reinforcement learning are utilized in model-based fMRI.  

 

• Chapter 6 reports the results of the first fMRI Experiment that examined the 

neural correlates of monetary gains and losses with a binary choice probabilistic-

learning task. A related hypothesis concerning the neural correlates of gains and 

losses, which refers to the opponent relationship between successful avoidance of 
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losses versus monetary gains was also tested in this chapter. Additional model-

based analyses were carried out in this chapter, which tested the neural correlates 

of prediction errors for gains and losses and of expected value.  

 

• Chapter 7 is a continuation of Chapter 6 where additional hypothesis were 

tested based on the evidence that suggest a shift of activity in the brain (in the 

rosto-caudal axis) during associative-learning. According to previous work, it was 

hypothesized that neural activity from rostral to caudal brain regions reflect a 

shift from goal directed to habitual learning (Graybiel, 2008). This hypothesis is 

tested by analysing anticipatory responses for predicted values of CS for early 

versus late learning trials, and reported in Chapter 7. It is important however, to 

mention that the additional analyses reported in Chapter 7 have been interpreted 

within a model-based fMRI framework, in terms of the computations that are 

carried out in interpreting fMRI data.  

 

• In order to examine the difference in early versus late learning trials in more 

detail, a second experiment is designed and this is revealed in Chapter 8. More 

specifically, in the second experiment the participants were pre-trained before the 

scanning session with an instrumental conditioning task utilizing the reward value 

of a set of abstract symbols where at the end of training they reach the 

asymptotic levels of the learning curve. After the pre-training session, the fMRI 

session was carried out and during the fMRI session the familiar stimulus set 

were intermixed with a set of novel stimuli in order to identify the brain regions 

that respond more to novel stimulus set than to the familiar sets. The analysis in 

this chapter looked at differences in brain region for novelty and familiarity with 

a uni-variate statistical analysis. An additional functional connectivity analysis was 
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also carried out in order to determine which parts of the stimulus novelty signal is 

broadcasted and received. 

 

• In Chapter 9, model-based analysis was performed for novel and familiar 

stimulus sets in order to find the neural correlates of predicted value, prediction 

error and adaptive learning rate. This analysis was carried out in order to further 

test the hypothesis proposed in Chapter 7. 

 

• Finally Chapter 10 includes a general discussion and conclusion section. The 

contributions of this thesis to the field of decision neuroscience also summarized 

in this chapter with additional suggestion for future research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 6 

___________________________________________________________ 

 

 

Chapter 2  

 

 

Neural Correlates of Gains and Losses 

 

2.1 Brain Mechanisms of Rewards & Punishments 

2.1.1 Rewards and Punishments as Reinforcers 

 In neuroscience there are different definitions for rewards, which are based on 

different properties of it such as its reinforcing features (that make us work for more) or 

hedonistic characteristics (that make us like rewards) (Berridge & Robinson, 2003; 

Berridge & Kringelbach, 2008; Berridge, Robinson, Alridge, 2009). In this thesis, I will be 

primarily concerned with the reinforcer definition of rewards.  

 In his book on animal intelligence written in 1911, Edward Thorndike showed 

that responses that are followed by satisfactory outcomes are more likely to be repeated 

again when the animals' are faced with a similar situation, and responses that produce 

discomforting outcomes are less likely to be repeated in a similar situation. This 

associative mechanism later known as the 'law of effect' holds that animals repeat certain 

responses because those responses end up with pleasurable outcomes (Thorndike, 1911).  

According to Thorndike’s definition of the 'law of effect' rewards are the objects or 

events that make us come back for more, which makes the organism increase the 
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probability of repeating certain behaviours (Thorndike, 1927). These behavioural 

changes, induced by rewards, usually occur through instrumental (operant) conditioning 

and form the basis for theories of reinforcement learning (see Section 2.1.3.2 for a 

more detailed account of learning paradigms). According to this definition, pleasurable 

stimuli are positive reinforcers and elicit approach behaviour in the organism (Schultz, 

2007c). 

Unlike rewards, punishments, or so called aversive stimuli, work through 

unpleasant objects and events that make the organism avoid certain circumstances and 

reduce the frequency of repeating certain behaviours (Estes, 1967). Aversive stimuli can 

take various forms, for example physical pain (e.g., thermal or electrical stimulation of 

skin) is considered to be a common aversive stimulus used in various animal and human 

experimental settings (Seymour et a., 2007). Stimuli that cause a bitter taste are also used 

as aversive stimuli in neurophysiological experiments (Zald et al., 1998).   

 

2.1.2 Differences in Primary and Secondary Reinforcers 

Neuroscientists commonly talk about two types of reinforcers: unconditioned rewards 

that are accepted as primary reinforcers such as the food or water, whereas conditioned 

rewards like money are considered as secondary reinforcers (Grabenhost & Rolls, 2011). 

As with secondary rewards, punishment can also take secondary forms like social 

exclusion (Eisenberg et al., 2003; Eisenberg & Liberman 2004; McDonald & Leary, 2005) 

or monetary loss (O'Doherty, et al., 2001; Yacubian et al., 2006) and even regret and envy 

(Camille et al., 2004; Shamay-Tsoory et al.,2007). 

In order to satisfy the vegetative needs most animals and humans search for 

rewarding reinforcers, which is known as foraging behaviour (Steps and Krebs, 1986). 

The reason for this is that mammalian brains are equipped with certain brain regions, 
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which motivate the organism in the absence of available reinforcers to search for 

rewarding stimuli (Rolls, 2005). For example, in the absence of certain primary 

reinforcers such as food and water, brains of many mammalian species are equipped 

with neural structures that trigger specific hormones and neurotransmitters that create 

the feeling of thirst and hunger, which can make the organism search for these missing 

rewards. These internal self-generated signals are the reason why the term “unlearned” is 

used for primary reinforcers (Rolls, 2005). In fact, there are certain brain regions that are 

specialized for these internal self-generated responses. For example, the lateral 

hypothalamus produces hunger signals, which control food intake, energy expenditure 

(Gao & Horvath, 2007) and body weight (Rolls, 1999). The level of these internal drive 

signals such as metabolic hormones like leptins cause hunger, and evoke changes in 

blood glucose level of the organism (Davis, Choi, Benoit, 2010; Parylak, Koob, Zorilla, 

2011). Understanding which brain regions are involved in the generation of these internal 

signals and how they interact with the reward centers like orbitofrontal cortex are 

considered to be crucial for understanding craving related brain circuits (Siep et al., 2009; 

Rolls and McCabe, 2007; Pelchat et al., 2004) and reward value coding circuits that are 

very much associated with different eating disorders (Palmiter, 2007; Grill, Skibicka, 

Hayes, 2007; Berridge et al., 2010; Wagner et al., 2007; Kaye, Fudge, Paulos; 2009; 

Fladung et al., 2010). Moreover, primary reinforcers like water, food or sex have direct 

evolutionary benefits for the organism, for instance they balance the internal 

homeostasis of the organism and are crucial for survival and reproduction (Rolls, 2005). 

In addition to that, these internal self-generated signals might be species specific and 

differ depending on the evolutionary history of that species (Watson, Shephard, Platt, 

2009; Watson & Platt, 2008). A good example can be found in North American minks 

(Watson et al., 2008). North American minks find splashing in water pools to be as 

rewarding as food rewards and when deprived of water pools they show increased 
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cortisol levels, a response similar to being deprived of food resources (Mason et al., 

2001). Another good example for a species-specific response to primary rewards is 

domestic cats. Domestic cats are devoid of sweet-taste receptors and show no reward 

responses to orally applied sucrose solutions whereas most species such as homo-sapiens 

find sweet drinks pleasurable (Li et al, 2005).  

On the other hand, secondary reinforcers are conceived of as having no value by 

themselves (Huettel, Song & McCharthy, 2004), but they are used to obtain primary 

reinforcers as suggested by the token theory of reinforcement learning1 (Wolfe, 1936; 

Cowles, 1937). Money for example is a secondary reinforcer (Breiter et al., 2001; Delgado 

et al., 2000; Elliott et al., 2000; Knutson et al., 2001; Haruno et al., 2004;Tanaka et al., 

2004), used as a tool to obtain food and other primary reinforcers (see for a discussion, 

Lea & Webley, 2006; Aydınonat & Erdeniz, 2008). Secondary reinforcers might also take 

various abstract forms like playing computer games (Erickson et al., 2010; Vo et al., 

2011), charitable donations (Izuma et al., 2008, Carter et al., 2009), cultural rewards like 

art or certain brands (Erk et al., 2002; Kawabata & Zeki 2004; McClure et al., 2004), or 

even more abstract forms like humour (Mobbs et al., 2003) or academic success (Mizuna 

et al., 2008). It is important to note that, although there is an on-going debate on whether 

primary and secondary rewards activate overlapping or segregated limbic and cortical-

regions (Lea & Webley, 2006; Delgado et al., 2011) providing either a positive or a 

negative reinforcer in learning situations can generate a greater neural response in the 

limbic structures compared to presenting either informative (Ghahramani & Poldrack, 

2009) or non-informative feedback (Bischoff-Grether et al., 2009). 

 

2.1.3 Value Representations for Primary and Secondary Reinforcers 

                                                
1 According to token theory of reinforcement learning monkeys can learn to receive fruit juice by 

exchangingtokens.  
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 One of the most important concepts related to reinforcers is the goal value 

representations. Goal values reflect the motivational significance of the unconditional 

stimuli and are calculated by the brain’s value system during the experience of outcomes. 

In addition to that one might imagine not all positive or all negative reinforcers have 

equal goal values and their values may change according to various factors (e.g., one 

might like grape juice more than apple juice). In fact electrophysiology studies in 

monkeys showed that neurons in the orbitofrontal cortex not only differentiate between 

these objects (Tremblay & Schultz, 1999; Padoa-Schioppa & Assad, 2006) but also 

calculate their economic value in a common value scale (see for a discussion Wallis, 

2006; Stuphorn, 2006; Padoa-Schioppa, 2011). These findings have been replicated in 

humans and showed that the orbitofrontal cortex calculates the value of two 

incommensurable goods such as a box of chocolates and a 2 gigabyte usb disk on a 

common scale (Fitzgerald et al., 2009; Chib et al., 2009). Moreover, orbitofrontal cortex 

not only uses a common value scale between two primary reinforcers, or two secondary 

reinforcers, but it uses a common value scale for comparing both primary (such as juice) 

and secondary rewards (such as money) (Chib et al., 2009) and even the value of two 

fundamentally different primary rewards: taste in the mouth and warmth in the hand 

(Grabenhorst et al., 2010). Likewise certain neurons in the orbito-frontal cortex can also 

calculate the value of negative reinforcers such as electric shock (Hosakawa et al., 2007). 

Furthermore, certain dopamine neurons in the brain adapt their firing rate to the 

level of predicted-rewards and fine-tune their firing rate according to contextual 

expectations (Tobler et al., 2005). This adaptive scaling of reward value allows efficient 

firing rate for different amounts of rewards. For example, firing of my dopamine 

neurons are equal between two situations where I am expecting 100 ml of fruit juice but 

receiving 50 ml and where I am expecting 200 ml but receiving 150 ml of fruit juice.   
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Finally, it is important to note that the goal values of primary rewards are relative 

to the satiation level of the organism (Rolls et al., 1983; Colwill & Rescorla, 1985; 

Balleine & Dickinson, 1998; O’Doherty et al., 2000; Gottfried et al., 2003). Therefore, 

the goal value coding regions only light up as active in imaging studies if the participant is 

deprived (Pickens et al., 2005, de Aruja et al., 2006). For this reason, it is important to be 

aware of differences between primary and secondary reinforcers, because as mentioned 

above rewards have separable hedonic (e.g. subjective experience of taste) and 

quantitative (e.g., reward value) components that can be identifiable by different neuronal 

spiking characteristics in different brain regions (Pecina et al., 2006). A major advantage 

of using monetary reinforcers is that individuals are motivated to gain more money most 

of the time (Hertwig & Ortmann, 2001). 

 

2.1.4 Anatomy and Neuropharmacology of Rewards and Punishments 

2.1.4.1 Involvement of Dopamine in Reward  Processing 

  Until the 1950's the dominant view of rewards was that of Hull's drive reduction 

theory (Hull, 1943). According to this theory newborn infants have innate drives like 

hunger or thirst, which make them attach to their caregivers to satisfy their needs 

(Wolpe, 1950). Although later this theory was challenged by Harlow (1953), until that 

time it was accepted that when newborn infants are deprived then particular drives are 

activated which then control the searching behaviour for rewards (Harlow, 1953). 

Therefore according to the drive reduction theory the primary motivation for searching 

rewards is punishment avoidance (Wolpe, 1950; Brown, 1955).  However, in 1954 Olds 

and Milner published a remarkable paper, in which they showed that rats prefer to press 

a lever in a Skinner box in order to get electrical stimulation of their brains, rather than 

choose food or mating with a female rat although they were starving (Olds & Milner, 

1954). Their study clearly showed that stimulating certain brain regions is experienced as 
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more valuable than satisfying certain primary needs. This was especially found when 

stimulating regions involving ventral tegmental area, nucleus accumbens, hypothalamus, 

thalamus but was not found in all brain regions. For example when the septal and 

midbrain regions were stimulated they pressed the lever several thousand times but when 

cortical regions were stimulated they pressed the lever for approximately a couple of 

hundred times and most of the time their lever pressing was at the chance level (Olds & 

Milner, 1954). What Old's and Milner showed was when the brain regions on the 

dopamine pathway were stimulated rats increased the lever press dramatically not in 

order to compensate the lack of primary rewards but for pure pleasure. Because if rats 

were pressing the lever to compensate for their need of water or food, they would have 

stopped after getting enough stimulation (ie respond as if satiated), but they pressed the 

button until they died (Olds, 1956; 1958).  Later on a similar experiment was repeated 

with human participants and monkeys, which revealed the first evidence of a link 

between the dopamine system and reward mechanisms (see for a review Delgado, 1969; 

Routtenberg, 1978). Since that time dopamine has been found to be the most important 

neuromodulator for reward processing (see for a review Schultz, 2002; 2007a; 2007b). 

 Dopamine neurons have their cell bodies in the substantia nigra pars compacta (A9 

cell group), and ventral tegmental area (A10 cell group) (Anden et al., 1966). Compared 

to the total number of neurons in the brain (estimated to be 120 * 109, Herculano-

Houzel, 2009), there are only a few hundred thousand dopamine neurons in the 

substantia nigra and only a few thousand in the ventral tegmental area (Kreitzer, 2009). 

Midbrain dopamine neurons have long axons and have terminals in various parts of the 

cortex and subcortical regions (Prensa & Parent 2001). The four major axonal pathways 

for dopamine neurons are the mesocortical pathway that connects the ventral tegmental 

area to prefrontal cortex, the mesolimbic pathway which connects the ventral tegmental 

area to the nucleus accumbens, amygdala and hippocampus, the nigrostriatal pathway 
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connects the substantia nigra to neostriatum (putamen and caudate nucleus), and the 

tuberoinfundibular pathway connects the arcuate nucleus (mediobasal hypothalamus) to 

the pituitary gland (Björklund and Lindvall, 1984; Berger and Gaspar, 1994). For 

example, in the neostriatum, dopaminergic boutons are very dense (Arbuthnott & 

Wickens 2007), and they account for nearly 10% of all synapses in the striatum (Groves 

et al. 1994).  

 

 

Figure 2.1 a) Illustration of dopaminergic nuclei in a horizontal section of the brainstem: ventral 
tegmental area and subtantia nigra. b) Midbrain dopaminergic nuclei from a Proton weighted 
MRI image. Substantia Nigra and Ventral Tegmental area are highlighted in the rectangular box. 
Both Figures taken from D'Ardenne et al., (2008). 

 

 Moreover pharmacological studies suggest that certain drugs like cocaine and 

amphetamine affect reward processing via dopaminergic mediation (Koop, 

1992).Cocaine for example is a dopamine re-uptake blocker and binds to DA 

transporters (DAT) (Hyman et al., 2006). This neuropharmocological action of cocaine 

keeps the dopamine in the synaptic gap (Hyman et al., 2006). It has been thought that 

this action gives rise to the feelings of pleasure and relief at the time of committing drug 

administration (Hyman et al., 2006). Similar to cocaine, amphetamines work through 

dopaminergic systems (Koop, 1996; Robinson and Berridge, 2003; Hyman et al., 2006). 

However, because the molecular structure of amphetamine is very similar to that of 

dopamine, amphetamine passes through the synaptic membrane by using dopamine 
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transporters and replenishes vesicles where dopamine is stored (Hyman, 1996; Hyman 

and Malenka, 2001). Studies using self-administration of cocaine and amphetamine in 

rats showed similar findings to electrical self-stimulation studies, as rats pressed the lever 

to receive cocaine until they die, which supports additional evidence on the role of 

dopamine in reward processing (Hyman and Malenka, 2001). Moreover, with the 

developments of optogenetic techniques the role of dopamine in reward processing 

becomes more prominent.   Tsai et al (2009) showed that optogenetic stimulation of 

VTA dopamine circuitry causes rats to look for previously learned conditioned place 

references. Moreover by using a similar technique Adamantidis et al., (2011) showed that 

phasic activation of dopamine neurons in the VTA causes rats to look for previously 

extinguished food seeking behaviour. 

 

2.1.5 Associative Learning and The Role of Dopamine in Calculating Neuronal Prediction 

Errors  

Over the past century associative learning and more particularly the role of 

dopamine in associative learning has been studied using mainly two behavioural 

paradigms: Pavlovian learning and instrumental learning. The best way to explain 

Pavlovian learning is the example of Pavlov's dog. It was thought that Ivan Pavlov first 

realized the effect of rewards when he saw that the dogs in his lab started salivating when 

they saw the lab worker who was serving food for them (Bouton, 2007). In this example 

a neutral stimulus such as the lab workers coat was systematically followed by the 

presentation of an appetitive event ie the food (unconditional stimulus, US+). Over time 

the animal predicted the occurrence of outcomes (appetitive or aversive) by just seeing 

the neutral stimulus (conditional stimulus, CS). The pairing of CS and US causes the 

animal to learn the structure of the environment, which then causes behavioural 

responses (the conditional response, CR) to occur during presentation of the conditional 
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stimulus  (Pavlov, 1927). Moreover a conditional stimulus can predict the occurrence of 

another conditional stimulus that predicts reward through higher-order conditioning, 

which will increase the range of associative chains and make conditioning plausible for 

sequences of events (e.g., Holland & Rescorla, 1975a, 1975b; Rescorla, 1982). On the 

other hand in instrumental conditioning the outcome (such as food) is contingent on the 

animal’s behaviour. The animal has to perform an action to receive a reward (maximize 

the amount of food) or to avoid a punishment (minimize the amount of foot shock). 

Therefore, in instrumental learning the unconditional stimulus becomes a reinforcer to 

motivate the animal to perform certain behaviours and will give the animal some control 

over the environment. The distinction between instrumental and Pavlovian learning 

paradigms is important. The first difference between Pavlovian and Instrumental 

conditioning is that in the Pavlovian conditioning paradigm the animal only observes the 

relationships between events that occur in the environment (conditional and 

unconditional stimuli) and through regular association learns the predictive relationship 

between the CS and the US. In instrumental learning the animal has influence over the 

environment (e.g., can control the occurrences of events) and can learn the predictions 

about the outcomes to guide his choices. Therefore, in the instrumental learning the 

associations between the actions and outcomes are crucial and changing the contingency 

of the outcomes will affect the animal’s choices. In computational models of 

reinforcement learning this dichotomy between Pavlovian and instrumental learning in 

animal learning is captured by open and close loop environments (this is covered in detail 

in Chapter 4). Moreover, in the Pavlovian conditioning animals usually produce almost 

automatic conditional responses (e.g., salivating) to conditional stimuli whereas in 

instrumental conditioning these responses are thought to be controlled by higher-level 

cognitive processes ie are planned rather than automated.  
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In many of the experiments that involve learning stimulus reward associations, 

learning depends not only on the joint occurrence of conditional and unconditional 

stimuli but depends on the discrepancy between the actual occurrence and the predicted 

occurrence of rewards (Schultz, 2000). A good example for this is perhaps Kamin’s 

(1969) blocking effect, which suggests that a new CSx-US association can be "blocked" 

by an already existing association between the CS and the same US. 

In the blocking paradigm a neutral stimulus A is paired with a reinforcer and 

another neutral stimulus let’s say B is paired with nothing. In the next stage, A and B are 

paired with two other stimulus; X and Y to form compound stimuli ie AX and BY, 

which are also paired with rewards. In the test phase when X is presented alone it 

predicts nothing and Y presented alone predicts reward. This is because in the AX pair 

reward is predicted by A alone making X redundant or blocked. Similarly in the BY pair 

Y is free to associate with any reinforcer because it is not blocked by B and hence comes 

to predict reward. The blocking effect in both humans (Martin & Levey, 1991) and 

animals (Kamin, 1969) has shown us that simply pairing two stimuli (e.g. A&X or B&Y) 

with reward is not sufficient for learning that both of these stimuli predict reward, 

instead the reinforcer should be unpredictable if learning is to occur.  

 Although much evidence has accumulated on the role of dopamine in reward 

processing in the last 50 years, the dopamine hypothesis of reward has undergone 

refinement several times (Schultz et al., 1997; Schultz, 2000; Schultz & Dickinson 2000; 

Schultz, 2006, Berridge et al., 2009; Bromberg-Martin et al., 2011). These refinements 

suggests that the specific role of mesolimbic dopamine neurons may be more important 

for the acquisition of the reward-related behaviours than for subjective responses to 

rewards (Schultz & Dickinson 2000). A well-established influential theory about the role 

of dopamine in learning is that of Schultz (1998, 2000; Bayer & Glimcher, 2005). This 
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theory is called the reward prediction-error theory and has its roots in the Rescorla-

Wagner learning rule (Rescorla and Wagner, 1972) and more particularly in the temporal-

difference reinforcement-learning model of Sutton and Barto (1998), both of which are 

summarized in Chapter 3. Indeed, Montague, Dayan and Sejnowski (1996) were the first 

to propose a relationship between the activity of dopamine neurons and prediction 

errors in reinforcement learning, as observed by the group of Wolfram Schultz. In their 

paper they stated “the fluctuating delivery of dopamine from the VTA to cortical and subcortical 

target structures in part delivers information about prediction errors between the expected amount of 

reward and the actual reward” (page 1944). In a series of Pavlovian conditioning experiments 

Schultz and colleagues investigate the nature of dopamine neurons firing properties. 

Dopamine is modulated by two mechanisms, tonic (single spike) and phasic (spike burts) 

dopamine release (Goto et al., 2007). Several studies suggested that the source of the 

tonic dopamine signalling is regulated by the activity of collinergic interneurons (for a 

discussion see Wickens et al., 2003) and others argued that tonic dopamine activity is 

regulated either by the prefrontal cortical afferents (Grace 1991) or by the hippocampus 

(Grace et al., 2007) also see Alcaro et al, (2007) for an alternative interpretation. Phasic 

dopamine release results from the activity of the dopamine-containing cells themselves 

(Schultz, 2002). This activity is characterized by either irregular single spikes, or rapid 

bursts (2-6 spikes) for about 100-500ms (Schultz, 2002; also Kroner et al., 2009). In their 

experiment Schultz and colleagues showed that when an arbitrary stimulus is paired with 

a reward (in this case it is sip of fruit juice) monkeys dopaminergic neurons in the ventral 

tegmental area fire phasically during the occurrence of reward. However, once learning 

was complete ie when the monkeys can fully predict the occurrence of rewards, the 

dopamine neurons did not fire above the baseline levels on receipt of reward. On the 

other hand when the dopamine neurons fully predicted reward but no reward was 

provided dopamine neurons fired were below the baseline levels at the time when the 
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reward was expected (see Figure 2.2a top image). In fact most of the dopamine neurons 

produce a phasic prediction-error signal when the reward prediction, based on previous 

experience, was too low and conversely suppress firing when a prediction of an expected 

reward was not met by the actual reward (see Figure 2.2a bottom image). Hence, during 

the early training cycles, these neurons are activated by the onset of the unconditional 

stimulus, which comes as an unexpected reward. After learning, they are activated by the 

conditional stimulus, which becomes a predictor of future reward. In contrast, the 

response to the actual rewards vanishes after learning, when the conditional stimulus had 

already correctly predicted the reward. Therefore, the amount of phasic signalling is 

directly dependent on the level of surprise during the acquisition of the conditional 

stimuli.  These dopamine activations to reward-predicting stimuli occur in almost 80% of 

dopamine neurons in the substantia nigra and in the ventral tegmental area (Schultz, 

2007). It was argued that several regions receive this prediction-error signal, including 

nucleus accumbens, medial frontal cortex, the dorsolateral prefrontal cortex, and the 

amygdala (Schultz and Dickinson, 2000). Schultz and colleagues proposed that learning 

occurs by sending back and forth the error-signal between different regions. According 

to Schultz and Dickinson (2000), it is possible that dopamine neurons use the 

information about predicted rewards for the control of goal directed behaviour, and they 

suggested that this information helps to construct reward expectations in the form of 

predicted values whereas the prediction-error signal generated by dopamine neurons 

used to update the predicted-values associated with states and actions and these 

predicted-values mightpossibly stored in cortical and subcortical regions (see Chapter 3 

for discussions). 

However the evidence for the prediction error signals in humans comes only 

recently with the advances in human brain imaging techniques.fMRI studies and their 

combination with computational models allow researchers to test specific hypotheses 
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about the prediction errors. For example, similar to the Schultz Pavlovian learning 

experiment in monkeys, homologous experiments have been repeated in humans using 

functional magnetic resonance imaging. In his study, O’Doherty et al. (2003) used a 

Pavlovian appetitive conditioning experiment to monitor the brain regions involved in 

learning by prediction errors. The conditional stimuli were fractal pictures, each paired 

to a different flavour of juice. To enhance prediction errors, neutral juice was delivered 

on a fraction of ‘sweet’ trials, and sweet juice on a fraction of neutral trials. Based on 

electrophysiological studies in monkeys (Schultz, 1997), where dopamine neurons in the 

midbrain were observed to represent the prediction error signal, the reward expectation 

(and concomitantly with it the error prediction signal) was expected to shift over time 

from the unconditional stimulus to the conditional stimulus (see Figure 2.2). Similarly 

the omission of an expected reward is monitored by decrease in activity. The authors 

used a computational model of the temporal difference learning algorithm (see Chapter 

4) to assess the magnitude of the prediction error. The prediction error signal, calculated 

by the TD algorithm, was used as an independent variable in a regression model with 

fMRI measurements as the dependent variable for each time a conditional or 

unconditional stimulus was presented (see Chapter 5 for how similar model fitting 

procedures are applied in general to fMRI data sets). Significant activity was found 

mainly in the ventral striatum for the prediction error signal at the time of both 

conditional and unconditional stimuli (see Figure 2.2). In addition, significant effects 

were also found in the ventral globus pallidus, orbito-frontal cortex and dorsalateral 

prefrontal cortex, including the inferior and middle frontal gyri. The bilateral cerebellum 

also showed significant activity for prediction errors at both time points, especially when 

a slower learning rate was used in the model.  
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Figure 2.2 Shows prediction error activity in the dopaminergic neurons observed in behaving 
monkeys (on the left side) and prediction error signal observed in human brain imaging 
experiment (on the right side). a) Monkey electrophysiology experiment shows phasic excitation 
of dopamine neurons (positive prediction error) for an unpredicted reward outcome at the onset 
of US before learning takes place (top figure). The phasic excitation appears at the onset of the 
CS after learning (middle figure) and when the monkey expects a reward but receive nothing the 
activity occurs below the baseline (negative prediction error) (bottom figure). Figure 1a is taken 
from Schultz et al., (1997) b) Positive and negative prediction-error contrasts for a human fMRI 
study of O'Doherty et al., (2003). c) The results of the O'Doherty et al., (2003) experiment shows 
prediction-errors in the human striatum and orbito-frontal cortex. Figure 2.2b and Figure 2,2c 
are adapted from O'Doherty (2004). 
  

 Later on, several researchers concerned about the existence of prediction errors 

proposed two challenging questions (Pessiglione et al., 2006; Schonberg et al., 2007). 

Firstly(i) if the observed changes in the BOLD activity in imaging studies are actually 

caused by dopamine neurons during learning then the the BOLD signal shouldn’t change if 

the participant already knows the relationship between stimulus and outcome(due to the 

Rescorla-Wagner prediction error having zero value since the outcomes are fully 

predicted )and secondly (ii) dopamine neurons spiking rate should increase or decrease 

with manipulation of the dopamine levels of the participants.  Firstly, to answer the initial 
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question Schonberg et al. (2007) scanned 29 participants separated into two groups 

depending on their behavioural performance in the reinforcement-learning task and they 

showed that the group that perform better in task showed a remarkable increase in the 

prediction error activity but the group with the lower behavioural performance showed 

lesser activity. Additionally, to find an answer to the second question that is related to 

the BOLD activation and dopamine administration Pessiglione et al., (2006) examined 

whether, during instrumental learning, the magnitude of the reward prediction error 

expressed in the striatum is affected by the administration of dopamine modulating drugs 

(L-DOPA, haloperidol). According to their hypothesis, subjects treated with L-DOPA 

should show a greater propensity to choose the rewarding action relative to subjects 

treated with haloperidol in a probabilistic ‘go-no go’ task. Similarly, they expected 

subjects treated with L-DOPA to show greater BOLD activation for prediction errors. 

In the experiment, subjects had to choose between two stimuli in which one of the 

stimuli had a rewarding outcome with a probability of 0.8 and the other a rewarding 

outcome with a probability of 0.2. They also used another set of stimuli for negative and 

neutral outcomes with the same probability values. The experimental procedure was such 

that if the participant pressed the button the program would accept this as the go 

response, or selection of the lower symbol, otherwise the program automatically chose 

the upper symbol as no-go response. In the analysis, outcome prediction errors were 

calculated for each group of subjects (placebo, L-DOPA and haloperidol) with a 

standard action-value learning algorithm. These learning models also perfectly modelled 

the drug enhancement effect. More particularly, the model parameters (e.g. learning rate) 

were adjusted to maximize the likelihood of the subjects' choices under the model. To 

this end, the behavioural learning curve was fitted with an action selection function 

parameterized as the value of the learning rate. Once the learning rate had been 

determined, the value of the action chosen at each trial could be updated in proportion 
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to the prediction error it caused, defined as the difference between expected value and 

actual outcome. The imaging results revealed that subjects under L-DOPA showed 

greater activation in the striatum for reward prediction error signals than subjects under 

haloperidol (see Figure 2.3a). On the other hand, the insular cortex showed greater 

activation for the punishment prediction error during the avoidance-learning condition 

(see Figure 2.3aand Figure 2.13c and alsosection 2.1.5.1.3 for a detailed discussion of 

the role of insular cortex in avoidance learning). 

Moreover, until now only the prediction errors in humans that are observed by 

functional imaging studies are reported. It is important to note that all of these reports 

are indirect measurements (even the DA agonist administration study of Pessiglione et 

al., 2006) due to the physical properties of the BOLD signal (see Chapter 5). Perhaps the 

first direct electrophysiological evidence of prediction errors in humans comes from 

deep brain stimulation studies in Parkinson’spatients. Zaghloul et al., (2009) tested 

Parkinson patients’ (PD) responses to unexpected rewards where they used intracranial 

microelectrode recordings from substantia nigra in a group of PD patients who 

underwent deep brain stimulation surgery. All of the participants engaged in a probability 

learning experiment using financial rewards where half of the conditional stimuli predict 

reward with high probability and other half predicts reward with low-probability. During 

learning neurons in the substantia nigra showed a unique firing pattern that is increased 

for unexpected rewards and decreased firing for expected reward omissions (see Figure 

2.3bbottom figure on the left). However, this activity disappeared after participants 

learned the probabilistic reward contingency (see Figure 2.3bbottom figure on the 

right). 
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Figure 2.3 a) Figure on the top leftthebrainactivations seen as yellow on the coronal slice (left) 
and the grey areas in the axial slice of the glass brain (right) show significant effects of reward 
prediction error signal in the striatum. The bottom figures on the left side show the effect of L-
DOPA in ventral striatum (at the peak voxel) for the reward prediction errorand the effect of 
dopamine antagonist (Haloperidol) forthe punishment prediction error in the Insula (at the peak 
voxel). Figure2.3a is adapted from Pessiglione et al., (2006).b) Anatomical Microelectrode 
recording sites in the substantia nigra (SN) (Top image). Bottom graph on the left shows the 
mean firing rate of SN neurons for unexpected monetary gains and unexpected monetary losses 
and the graph on the bottom right shows the mean firing rate of SN neurons for expected 
monetary gains and expected monetary losses.  Figure2.3b is adapted from Zaghloul et al (2009). 
 

 In summary most of the time in the fMRI studies reward prediction errors in 

humans are observed in striatal regions and this activity interpreted as a proxy measure 

of dopaminergic activity for reward prediction errors (Montague, King-Casas, et al. 

(2006)). However in the last decade several imaging and electrophysiology studies 

showed that not only striatal regions but also other regions such as cingulate cortex and 

medial-frontal cortex (Oya et al., 2005; Amiez et al., 2006; Matsumoto et al., 2007) show 

significant activation for prediction-errors. In addition several studies showed that 

insular cortex and amygdala are also involved in coding prediction-errors that are 

involved in learning the value of aversive stimuli (Yacubian et al., 2006; Pessiglione et al., 

2006). In the following sections, I reviewed these other regions that are involved in 

coding prediction errors for rewards and punishments. Moreover dopamine is not only 

involved in reward related activity but also it is involved in punishments. These functions 

of dopamine in punishments are also reviewed in the following sections. 
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2.1.6 Involvement of Dopamine in Punishment 

 Until now I reported evidence about the role of dopaminergic neurons in 

processing reward information and more specifically their role in learning from 

unexpected reward outcomes. However, recent findings showed that induction of painful 

stimuli also activates dopaminergic neurons across a variety of different species (Ungless, 

2004). For example, Brischoux et al. (2009) showed that giving foot shock to rats 

increase the firing rate of dopaminergic neurons (see also, Mantz et al., 1981; Becerra et 

al., 2001; Coizet et al., 2006).   Moreover, dopamine neurons in monkeys show phasic 

excitation for aversive cues that predict punishments (Schultz & Romo, 1987; 

Matsumoto & Hikosaka, 2009, Joshua et al., 2009).  In humans various imaging studies 

showed activity related to pain in the main projection cites of dopaminergic neurons in 

the ventral striatum (Scott et al., 2006) and dorsal striatum (Bingel et al., 2004; Scott et 

al., 2006).  

Altogether the evidence suggests an increase in dopamine firing for aversive 

outcomes and stimuli that predict aversive outcomes. However, recent discussions put 

together with the classic role of dopamine neurons in punishments suggest that increased 

firing in dopaminergic neurons happens only in minority of dopamine neurons 3-49 % 

where most dopaminergic neurons usually show a decrease in activity for aversive CS 

and aversive US and ithasn’t been clear which aspect of rewards and punishments cause 

differences in firing (see for a discussion see, Ungless et al., 2004; Schultz, 2010; Frank 

& Surmeir, 2009).  

 

2.1.6.1 The Role of Dopamine in the Interaction Between Reward and Punishment Processing 

It is hard to classify rewards and punishments as always objects of desire or objects 

of aversion. There are countless types of rewards and punishments which have many 
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facets for humans where some of them have tremendous consequences for some people 

and some are crucial for those peoples’ survival (Kringelbach & Berridge, 2009; 2011). 

Certain addictive drugs are good examples for this dichotomy. Opiates like morphine are 

both deteriorative objects of pleasure, which can cause addiction in the organism, and 

they are also strong pain killer (analgesics) used in certain medical settings. For example, 

mice whose !-opioid2 receptors are genetically knocked out lackboth the analgesic effects 

of opioids and the effects of physical dependence (Matthess et al., 1996). This suggests 

that most of the time there is a trade-off between the cost of pain and the benefit of 

pleasure, making reward and punishment processing a complicated subject (Leknes & 

Tracey, 2008; Talmi et al., 2009).  In fact several studies suggested that aversive stimuli 

and rewards are not completely different from each other but they interact in various 

psychological and neural levels (Konorski, 1967;  Grossberg, 1984). For example in rare 

conditions people might experience pleasure and pain simultaneously. In certain contexts 

such as when people are engaging in sadomasochistic sex (Stark et al., 2005; Georgiadis 

& Kortekaas, 2009) or when eating spicy food (Grabenhorst et al., 2007; Rolls, 2009) 

they might experience both pain and pleasure. This is because rewards and punishments 

have a shared component that is called motivational saliency (Bromberg-Martin et al., 

2010) because rewards and punishments are both salient objects in the way they deserve 

attention  (Jenson et al., 2006; Cooper & Knutson, 2008).  However, they are different 

from each other in the way they affect learning behaviour such that punishers decrease 

the probability of behaviour (e.g., lever press) and rewards increase the probability of 

behaviour. Then how is it possible that dopamine neurons are coding both the salient 

properties of aversive stimuli as phasic excitations and the value properties as below 

baseline activity? 

                                                
2  This receptor class is one of the main opioid receptor classes. The other two-

receptor classes are !and " opioid receptors. 
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 To resolve this debate about the role of dopamine in appetitive and aversive 

conditioning Bromberg-Martin et al., (2010) proposed the existence of two functional 

distinct types of dopamine neurons. These two distinct types of dopamine neurons 

process two different aspects of rewards and punishments. The first type of dopamine 

neurons encodes motivational-salience properties, which modulates cognitive processing 

and motivational drives and the second type encodes a learning signal such as a 

prediction error signal referred as the motivational-value coding dopamine neurons. They 

suggested that dopamine neurons, which encode motivational-saliencyrespond to both 

rewarding and aversive events but dopamine neurons which encode the motivational-

value respond only to rewarding events and are inhibited by aversive events (see 

Figure2.4a and Figure2.4d). Bromberg-Martin et al., (2010) also suggested that these 

dopamine neurons, which code motivational-saliency, are located in different anatomical 

regions to motivational-saliency coding dopamine neurons. They argued that 

motivational-saliency coding dopamine neurons are located mostly in the dorsolateral 

substantia nigra and medial VTA and motivational-value coding dopamine neurons are 

more densely located in ventromedial substantia nigra and VTA. 

 

Figure 2.4 a) Monkey electrophysiology studies showed that value coding dopaminergic neurons 
increase firing rate for visual cues which predicts rewards and unexpected reward outcomes but 
they show below baseline activity for expected aversive cues and unexpected aversive outcomes. 
d) A separate group of dopaminergic neurons shows above baseline activity for both visual cues 
that predict rewards and punishments and outcomes of rewards and punishment. Figure 2.4a and 
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Figure 2d is taken from Bloomberg-Martin et al., (2010) b-c) On the left side coronal slice shows 
significant activity of NAcc for cues that predict aversive and rewarding outcome. On the right 
side graph shows time course of heamodynamic response changes as increase for cues that 
predict reward and decrease for cues that predict electric shock. Figure 2.4b and Figure2.4c are 
taken from Jenson et al., (2003). d) NAcc activation map in the coronal plane (p<0.05, 
corrected). Time course for the hemodynamic response in the right NAcc cluster. Figure 2.4d is 
taken from Levita et al., (2009). Experiments used in Figure 2.3c and Figure2.3d are very different 
in design with the former includes learning and with the latter excludes learning and any motor 
responses.  

 

Altough the hypothesis of Bromberg-Martin et al., (2010) is hard to test with current 

imaging studies due to inherent nature of the physics of BOLD signal and slow spatial 

resolution of fMRI studies (it is not possible to identify whether same or different DA 

neurons in the VTA are involved in processing motivational-salience or motivational-

value because the BOLD signal is correlated with local field potentials rather than single 

neuron activity), several lines of study havereported parallel findings in humans for the 

motivational-value coding dopamine neurons for aversive stimuli in the striatum. Jenson 

et al. (2003) reported motivational- value coding in ventral striatum. In an aversive 

conditioning experiment they found that BOLD response in the ventral striatum 

increased for conditional stimuli that predict reward but decreased for conditional 

stimuli that predict punishment (see Figure 2.4b). However, Seymour et al. (2004) in a 

second-order Pavlovian aversive conditioning experiment showed that ventral striatum 

and insular cortex code punishment prediction errors supporting the role of dopamine 

neurons in coding aversive values. Moreover in a recent aversive conditioning study 

where participants were randomly allocated to either placebo, amphetamine (DA agonist) 

or haloperidal (D2 antagonist), Diaconescu and colleagues (2010) showed that blocking 

dopamine transmission via haloperidol was associated with significant increase in the 

functional connectivity between theamygdala and the insula making it's role critical for 

the areas involved in the avoidance circuitry (see Section 2.1.5.1.3 for the role of insular 

cortex in prediction errors).  In addition Pessiglione et al., (2006), in an fMRI 

experiment, showed that administration of D2 receptor antagonist haloperidol, affected 
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the performance of learning from negative outcomes and increased the BOLD signal for 

negative prediction errors in the insula. In the light of these studies, administration of 

dopamine agonist seems to impair learning from bad outcomes (decreasing the effects of 

punishments) and vice versa, that is to say, administration of dopamine antagonist should 

improve learning performance from bad outcomes. Actually, this is exactly what several 

studies have found. Administration of D2 agonist prepemoxil, and other agents acting 

upon D2 receptors, impaired the signalling of bad outcomes (Frank and O’Reilly, 2006; 

Santesso et al, 2009; van Eimeren et al, 2009) and caused an increase in loss-chasing 

behavior3 (Campbell-Meiklejohn, et al., 2008; 2011). These results are also supported by 

animal experiments where D2 receptor agonists suppressed pain related responses 

anddopamine D2 receptor antagonistsenhanced pain-related responses (Ben-Sreti et al., 

1983; Lin et al., 1981; Magnusson and Fisher, 2000).  Overall these studies suggest that 

dopamine neurons carry useful information not only about rewarding outcomes but also 

involved in processing of aversive stimuli that predict future punishments. Furthermore, 

it was suggested that dopamine-D2 agonists impair learning from aversive outcomes 

because it decreases the effectiveness of painful stimuli and dopamine D2 antagonists 

improve learning with aversive outcomes perhaps by increasing the value of 

punishments.  

For the motivational-salience part of the hypothesis several lines of evidence 

suggest that even in the absence of learning, VTA and nucleus accumbens, the main 

projection site of DA neurons from VTA, shows increases in BOLD response (Zink et 

al., 2004). Levita et al., (2009) tested whether nucleus accumbens responds to unpleasant 

auditory stimulation in the absence of learning.  They showed increased BOLD response 

                                                

3Loss chasing is commonly observed in people who have gambling addiction, where they play 
again to cover up their losses. It was considered to be an indication of impaired learning from 
negative outcomes. 



 29 

at the onset of both pleasant and unpleasant sound in the right ventral striatum (see 

Figure 2.3e).  

Moreover, Carretie et al., (2009) showed similar findings for unpleasant pictures 

in the caudate nucleus and prefrontal cortex. Finally, in a monetary incentive delay task 

where no learning is involved, Carter et al., (2009) showed increased BOLD response in 

the VTA and nucleus accumbens for stimuli that predict self and charity related 

monetary donation. Bromberg-Martin and Hikosaka's proposal also fits well with non-

reward activity of DA neurons observed in several other experimental settings which 

related to surprising, novel, salient, and aversive experiences (Redgrave et al., 1999; 

Horvitz, 2000; Di Chiara, 2002; Joseph et al., 2003; Pezze and Feldon, 2004; Lisman and 

Grace, 2005; Redgrave and Gurney, 2006). However, as mentioned in section 2.2 

prediction-errors for aversive outcomes might be represented in different brain regions 

such as insular cortex (Pessiglione et al., 2006; Preuschoff et al., 2008) and habenula 

(Matsumto and Hikosaka, 2007; Salas et al., 2010; Ide and Li, 2011) and might be 

influenced more by the activity of serotonergic neurotransmitter system (see Section 

2.1.3.5) than the dopaminergic neurotransmitter system.  

 

2.1.7  Involvement of Serotonin in Reward Processing 

 Like the complexity of dopamine in reward and punishment processing 

serotonins' role in rewards and punishments seems equally complicated due to 

controversial findings (Cools et al., 2008). Over the last years different proposals for the 

role of serotonin in reinforcement learning have been made (Daw, Kakade and Dayan, 

2002; Dayan and Huys, 2008 Rogers, 2010; Boureau and Dayan, 2010; Cools, Nakamura, 

Daw, 2010; Kranz, Kasper, Lanzenberger, 2010). Some of the early evidence from 

electrical stimulation studies of rat serotonergic nuclei (medial raphe nuclei) showed 
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reinforcing effects for lever pressing similar to that of stimulation of ventral tegmental 

(VTA) dopamine circuitry (Miliaressis et al., 1975; Rompré & Miliaressis, 1985; Rompre 

and Boye, 1989). Moreover, these common reinforcing effects of serotonin and VTA 

stimulation could be explained by the neuroanatomical evidence of direct projections 

from serotonin neurons to dopamine neurons (Parent et al., 1981), which might regulate 

dopamine neurotransmission and cause these reinforcing effects (Kapur & Remington, 

1996; Alex and Pehek, 2007).  However, it is not perfectly clear whether serotonin has a 

direct role in reinforcing behaviour or it influences reward processing indirectly via its 

connections with dopaminergic and GABAergic neurons (Liu and Ikemoto, 2007). 

 On the other hand, the serotonin systems' inhibitory effects on behaviour are 

well studied in the literature (Soubrie, 1986; Dayan and Huys, 2008) and shown to be 

opposite to that of dopamine, in that administration of dopamine increases appetitive 

learning, whereas administration of 5-HT serotonin agonist decreases motivation for 

appetitive learning (Curzon, 1990; Cools et al., 2008). In psychiatry for example, selective 

serotonin reuptake blockers (SSRI) are commonly used for the treatment of impulse 

control disorders (Buhot, 1997; Robbins, 2000). More recently, fMRI studies showed 

that increase in 5-HT levels causes participants to increase the amount of delay 

gratification and make the participants choose the option that delivers bigger later 

rewards rather than small immediate rewards(Tanaka et al., 2007; Schweighofer et al, 

2007) and oppositely decreased 5-HT levels makes the participant’s more impulsive 

(Wogar et al., 1993; Bizot et al., 1999). The opponency of dopamine and serotonin can 

be well explained by the studies, which showed that stimulation of raphe nuclei have 

inhibitory effects on substantia nigra dopamine neurons (Drayet al, 1976; Tsai, 1989; 

Trent and Tepper, 1991) which might be involved in delay gratification. Additionally a 

very important empirical finding in the last few years is that of Nakamura et al., (2008) 

which compared firing patterns of neurons in the dorsal raphe nucleus (DRN) and 
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substantania nigra in primates during a learning task. They showed that serotonin 

neurons calculate the size of the reward outcomes by spiking in tonic fashion whereas 

dopamine neurons calculate a reward prediction error signal by making phasic firings as 

predicted by the prediction error learning model (see, Cools et al., 2011 for a discussion). 

This study in summary showed direct evidence that monkey dorsal raphe nucleus is 

involved in reward processing by coding the expected and received rewards with a quite 

different pattern of firing than that of dopamine neurons. 

 

2.1.8 Involvement of Serotonin in Punishment 

 Serotoninergic activity has long been considered to be crucial for aversive 

systems and thought to mediate learning about negative events (Bari et al, 2010; Daw et 

al, 2002; Deakin and Graeff, 1991; Evers et al, 2005).  Several studies suggested a specific 

role for 5-HT in punishment prediction error (Daw et al., 2002). Based on their 

computational models Daw and his colleagues suggested that tonic and phasic serotonin 

have different functions. They proposed that a tonic serotonergic signal might report a 

long-run average reward rate, which was by the later evidence of Nakamura et al (2008) 

and a phasic serotonin signal might report prediction-errors for future punishments. 

Moreover a later study by Dayan and Huys (2008) suggested that reductions in serotonin 

activity (experimental or clinical) could produce increases in the size of negative 

prediction errors, which might be effective in people who experience major depressive 

disorder. Thus evidence exists for two different roles for serotonin in aversive 

processing. Firstly, there is an extensive literature on the role of selective serotonin 

reuptake inhibitors (SSRIs) in the management of clinical depression (Deakin and Graeff, 

1991; Cools et al, 2008; Esher and Roiser, 2010) as well as chronic and neuropathic pain 

(Sawynok et al. 2001, Sommer 2004) where both of them are characterized by increased 
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aversive processing of negative stimuli (Clark et al., 2009; Crockett et al., 2009; 2012).  

Secondly, tryptophan depletion can improve the accuracy of predictions of negative or 

punishing outcomes in healthy adults (Cools et al, 2008). Moreover, Evers et al (2005) 

showed that tryptophan depletion enhances neural activity in response to errors during 

reversal learning within the anterior cingulate region, an area that is activated while 

making decisions to stop chasing losses (Campbell-Meiklejohn et al, 2008). Thus, it was 

shown that tryptophan depletion in healthy adults enhances the salience of bad outcomes 

during gambling tasks (Cools et al., 2008). As a summary, in appetitive learning the 

serotonin system seems to work as a motivational opponent to the dopamine system, but 

its role in aversion behaviour is in fact similar to that of dopamine D2 receptor agonists. 

Such that decreasing the amount of serotonin by selective trytophan depletion increases 

the effectiveness of punishments and punishment prediction errors and increasing the 

serotonin decreases punishment sensitivity. 

 

2.1.9 The Extended Reward and Punishment Networks in Humans 

Until this section I reviewed the role of dopamine and serotonin in processing 

rewards and punishments and summarized their role in calculating computational 

learning signals. In the following sections, I will summarize the role of gross 

neuroanatomical structures that are involved in reward and punishment processing. 

 Functional neuroimaging studies involved in winning or losing monetary 

outcomes become an important research topic for understanding decision making and 

reinforcement learning in humans. There is a wide range of experiments conducted to 

understand the brain areas that are involved in neural processing of monetary rewards 

and punishments. Generally, this aspect has been described in terms of the outcome 

valence (Knutson and Greer, 2008). For example monetary gains have positive valence 



 33 

and monetary losses have negative valence. Recent studies showed controversial findings 

regarding gain and loss related activity in the human brain (for a review see, Knutson and 

Greer, 2008). Some studies showed that monetary gains and losses activate a similar 

fronto-striatal network (Dreher, 2007; Gottfried et al., 2003; Marco-Pallares et al., 2007; 

Nieuwenhuis et al., 2005; Tom et al., 2007; van Veen et al., 2004) whereas other studies 

suggested that gains and losses are processed by a more distributed network (Frank et al., 

2004; Wrase et al., 2007; Yacubian et al., 2006). The proponents of the latter theory 

suggest that positive outcomes are correlated with prefrontal and basal ganglia and 

negative outcomes are correlated mostly with amygdala and insula (Frank et al., 2004; 

Wrase et al., 2007; Yacubian et al., 2006). To resolve this debate Liu et al., (2011) 

performed a meta-analysis of 140 studies that included anticipation and retrieval of 

reward and punishing feedback. They found that during the outcome or the feedback 

period NAcc was activated by both positive and negative outcomes across various stages 

of a task (e.g., anticipation and outcome). However, the medial OFC and PCC responded 

more to the reward outcomes, whereas the ACC, bilateral anterior insula, and lateral PFC 

selectively responded to negative outcomes (see Figure 2.5a). Additionally when they 

categorized the activations based on anticipation and outcome they showed that during 

the anticipation period the activity mostly occurs in the cingulate cortex regardless of the 

outcome valence but during the outcome period the activity occurs in ventro-medial 

prefrontal cortex (see Figure 2.5b). 
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Figure 2.5 Results of the fMRI meta-analysis of Liu et al., (2010). a) Bold activations for reward 
outcomes (red) and loss outcomes (blue) shown in sagittal, coronal and axial views. Regions 
indicated as Purple are overlapping regions for gain and loss outcomes. b) Activations shown in 
blue are involved in outcome processing and activations shown in orange involved in anticipatory 
processes. Both Figures are adapted from Liu et al., (2011). 
 

As the Liu et al., (2011) study showed, there is substantial mount of segregation 

between the processing of reward and punishment information. In the following sections 

the role of these distinct regions are reviewed in terms of their possible role in reward 

and punishment processing. 

 

2.1.9.1 The Ventral Valuation Network 

According to Brodmann (1909) the human map of the medial prefrontal cortex is 

occupied mainly by the Brodmann areas 24, 25, 32 and 10, where as the Brodmann areas 

including 11, 13 and 14 are considered as ventro-medial frontal cortex (see Figure 2.8a 

and Figure 2.8b). In this section and until the rest of this chapter medial and ventro-

medial frontal cortex refers to the region encompassing both medial OFC and adjacent 

ventral medial PFC and they are used inter-changeably (see, Ongur et al., 2000 and 



 35 

Fellows, 2007 for a discussion). Moreover Petrides and Pandya (1994) classified 

Brodmann areas 47/12 as lateral-orbito frontal cortex. In the studies reported herewe 

used the term lateral-orbito frontal cortex inter-changeably with ventro-lateral prefrontal 

cortex, which refers to Brodmann areas 47/12. It is important to note that both the 

medial frontal cortex and the adjacent-lateral frontal regions are thought to play crucial 

roles in choice behaviour and these regions affect particular aspects of reinforcement 

learning as discussed in detail below. 

The general term used to refer to the brain areas that process the reward values of 

reinforcers (both primary and secondary) are called the ‘ventral valuation network’ 

(VVN) (Montague & King-Casas, 2006). Montague and colleagues proposed this term to 

refer to orbito-frontal cortex, striatum and ventro-medial prefrontal cortex. In a meta-

analysis of imaging studies, when participants were instructed to maximize their outcome 

(e.g., money) in a learning experiment, significant activity is found in the brain regions 

that are involved in the ventral valuation network (Liu et al., 2011). One of the brain 

regions in the ventral valuation network, the ventral striatum contains the main 

projection sites of the midbrain dopaminergic neurons and show activation for almost all 

types of salient stimuli such as pleasant odors (Blood et al., 1999), sport cars (Erk et al., 

2002), or pleasant music (Blood & Zatorre, 2001). In addition to that striatum is also 

activated by the feelings of love and trust (Bartels & Zeki 2004, King-Casas & Tomlin, 

2005).  

Even though I discussed earlier in this chapter that the striatum responds similarly 

to rewards and punishments due to dopamine neurons’ excitatory response to both 

positive and negative reinforcers (e.g., the neural signals for the motivationally saliency as 

discussed in the earlier section which refers to Bromberg-Martin et al., 2010) the story 

for the orbito-frontal cortex is a bit more complicated because controversial findings 

have been observed in the orbito-frontal cortex for the outcome related activity. 
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 We think that the reason for this controversy is because during the outcome phase 

the neural responses in the orbito-frontal cortex might differ before and after learning 

due to the presence or absence of goal values, predicted values and prediction error 

signals. For example it has been shown that orbito-frontal cortex is actived by both 

reward predicting CS and the actual US (O’Doherty, 2011) and it is not only involved in 

outcome related activity (goal values) as suggested by the Liu et al., (2011) meta-analysis. 

For the CS related activity, human brain imaging studies showed that medial-frontal 

cortex increased activity for coding the reward value of primary and secondary 

reinforcers during the time of decision making and it was suggested that the type of 

computation is closer to value predictions than prediction errors (Mainen and Kepecs, 

2009).  Supporting this idea several studies showed activity in the ventromedial frontal 

cortex for value prediction. For example, Wunderlich et al., (2010) showed activity in the 

orbito-frontal cortex for the predicted value signal of the chosen stimulus (a post-

decision signal) before the actual action was taken (see Figure 2.6a).  In addition 

activation caused by a predicted value signal in OFC seems unaffected by the type of 

reinforcer (primary or secondary), which was further suggested by Chib et al., (2009) (see 

Figure 2.6b).  

 

 

Figure 2.6 Predicted value coding in the VMPFC correlates of the chosen stimulus value during 
CS presentation. a) Activity in red shows predicted value when no action information is available 
(a type of Pavlovian predicted value signal) and activity in green shows when the action 
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information is available (a type of instrumental predicted value signal) and yellow shows the 
overlap. Figure is taken from Wunderlich et al., (2010). b) Predicted value of the CS that is 
predicted by a primary reward (juice outcome) and a secondary reward (the monetary outcome). 
The result of the conjunction analysis (yellow regions) shows that expecting either juice reward or 
monetaryreward both activates the medial frontal cortex during CS presentation.  Figure is taken 
from Kim et al., (2011). 
 

In addition to the findings reported above, orbito-frontal cortex and striatum 

also code the value of more than one conditional stimulus in the form of an expected 

value signal. For example if there are tworeward-predicting stimuli presented then 

striatum will elicit neural activity for both of these conditional stimuli. This was 

calculated as the weighted sum of the values for all choice options (e.g., Expected Value 

= Probability of the occurrence of CS1* Value of CS1 + Probability of the occurrence of 

CS2* Value of CS2. Note that expected values and also predicted values of chosen 

options are usually calculated with reference to a computational model and inserted as a 

parametric variable, at the time of cue onset, in regression analysis used in fMRI studies 

(see, Chapter 5 for details). From a theoretical perspective, expected values are 

considered in psychology as being the Pavlovian response to the CS in instrumental 

studies and in computational models (see Chapter 4) as state values. Nevertheless, recent 

studies showed that expected value signalsare correlated with the activity in the ventro-

medial frontal cortex and the striatum (see Figure 2.7). 

 

Figure 2.7 Statistical parametric maps of the activity that correlates with expected value signals. 
a) Expected value during the presentation of CS that indicates two available options in an 
instrumental conditioning task. Activity for expected value (QL refers to value of the left option 
and QR refers to the value of right option where as PL refers to the reward probability of the left 
option, PR refers to reward probability of right option) that correlates with the ventro-medial and 
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the lateral-frontal regions. Figure 2.6ataken from Palminteri et al., (2009). b) Activity correlates 
with expected value of four options in a decision making task. Figure is taken from Yacubian et 
al., (2006). 
 

2.1.9.2 Reward and Punishment in Medial and Ventro-Lateral-Prefrontal Cortex 

Previous studies showed that rewarding outcomes primarily activate regions of the 

medial prefrontal cortex and orbitofrontal cortex in general (Haber & Knutson, 2009; 

Liu et al., 2011). This view was supported by the electrophysiological studies in monkeys, 

which showed spiking activity in various frontal regions. For example, during the 

evaluation of rewarding outcomes, spiking neural activations were mainly found in the 

monkey anterior cingulate cortex (ACC), orbitofrontal cortex (OFC) and the lateral-

prefrontal cortex (LPFC) (Niki & Watanabe, 1979; Hikosaka & Watanabe, 2000; 

Tremblay & Schultz, 2000; Walton et al., 2004; Sallet et al., 2007). These studies showed 

that frontal neurons are sensitive to the value of outcomes across multiple decision 

variables (Hikosaka & Watanabe, 2000; Rolls, 2000; O’Doherty et al., 2001; Amiez et al., 

2006; Roesch et al., 2006). Moreover, neuropsychological studies also showed that 

damage to either OFC or ACC impairs the ability to utilize the value of an outcome in a 

decision making task (Shima & Tanji, 1998; Kennerley et al., 2006; Murray et al., 2007).  

In two recent reviews the distinction between ventro-lateral and medial-orbito 

frontal regions were compared in detail in terms of their sensitivity to reward and 

punishment processing (Grabenhorst and Rolls, 2011; Kringelbach and Rolls, 1994). 

Both of these studies showed that lateral regions code for unpleasant outcomes such as 

unpleasant smells or painful stimuli but the medial regions are more sensitive to pleasant 

outcomes such as nice odours (see Figure 2.8c and Figure2.8d).  
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Figure 2.8 a) Broadmann map of the prefrontal cortex (axial view) and b) Broadmann 
map of the medial frontal cortex (sagittal view). Both Figure 2.7a and Figure 2.7b is taken from 
Ramnani and Owen (2004) cross citation from Ongur et al. (2003) c) Meta-analytic review of the 
orbitofrontal cortexfor reward and punishment outcomes. Areas circled with orange colour 
indicate the regions that are sensitive to punishments. Areas circled with green colour indicate 
the regions sensitive to rewards. Figure 2.7c is taken from Kringelbach (2005) and refers to the 
original study of Kringelbach and Rolls (2004) by cross citation. d) Numbers shown in yellow 
represents the studies, which found significant activation for pleasant outcomes, numbers shown 
in white represents the studies, which found significant activation for unpleasant outcomes in 
those particular brain regions. Figure 2.7d is taken from Grabenhorst and Rolls, (2011). 

 
 

Although fMRI studies (Grabenhorst and Rolls, 2011; Kringelback and Rolls, 2004) have 

shown that lateral regions of the orbitofrontal cortex are more engaged with losses 

whereas medial regions are engaged with rewards it is important to mention that in the 

meta-analyses of both Kringelbach and Rolls (2004) and Grabenhorst and Rolls, (2011) 

the activations are not sensitive to the sign of the bold signal (e.g., increase or decrease of 

activity. These arguments lead to the suggestion that information about rewards and 

punishments is either encoded in a common striato-frontal circuitry albeit with 

increased/decreased activity respectively (Elliott et al., 2003; Knutson et al., 2007; Tom 
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et al.,2007), or that gains and losses are processed in different brain regions as mentioned 

earlier (Yacubian et al.,2006; Liu et al., 2007; Seymour et al.,2007).  

The functional connectivity analysis using the ventral striatum as a seed region 

revealed a topographically overlapping subcortical-limbic-anterior prefrontal network for 

monetary gains and losses (Camara et al., 2009a). In their functional connectivity analysis 

study Camara et al., (2009a) showedthat a network including the OFC, the insular cortex, 

the amygdala, and the hippocampus correlated with activity observed in the seed region 

(ventral striatum) for processing of gains and losses. However, although they showed 

that both gains and losses correlate with overlapping regions in the connectivity analysis 

(see Figure2.9a), when they performed a region of interest (ROI) analysis they showed 

that OFC decrease activity for losses (see Figure2.9b). This indicates that a region might 

be involved in a task by showing decreased activity. 

 

 

Figure 2.9 a) The results of the functional connectivity analysis of Camara et al., (2009a). Areas 
show significant connectivity with ventral striatum during the processing of monetary gains 
(green regions) and monetary losses (red regions) and yellow regions are where both monetary 
gains and losses are overlapped. The results suggest that processing of monetary losses also 
engaged with medial orbitofrontal structures.  Figure taken from Camara et al., (2009a). b)The 
results of the univariate analysisof Camara et a., (2008).  When they compared gain and the loss 
condition in the OFC cluster identified in the functional connectivity analysis. They 
foundincreased BOLD signal for gains, and a decreasedbold signal for losses. Figure is taken 
from Camara et al., (2009a). 
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 In fact the results of Camara et al., (2009a) is well supported by the early orbito-frontal 

lesion patients. Bechara et al., (2000) refer to those patients, as having ‘insensitive to 

punishment’ and use this to explain their poor performance in the Iowa gambling task 

(also see for a discussion, Wheeler and Fellows, 2008). Orbito-frontal patients in an Iowa 

gambling task tend to perseveratively choose the high-risk option despite their higher risk 

of loss.  Further follow up studies with variations of the Iowa gambling task showed that 

orbito-frontal patients suffer from failing to accurately predict the outcome of a decision 

(general myopia for the future) rather than evaluating the outcome itself (Bechara et al., 

1997; Fellows and Farah, 2005). It was suggested that they may be able to predict 

unexpected outcomes, but they are unable to predict whether the outcome is going to be 

positive or negative (Fellows and Farah, 2005; Fellows, 2006). Figure 2.10a shows the 

region of the lesion in orbito-frontal cortex of the famous patient Phineas Cage and 

Figure 2.10b shows the lesion sites from another study of 10 subjects with ventromedial 

frontal damage who are impaired in learning with negative feedback (Wheeler & Fellows, 

2008). 

 

Figure 2.10 a) MRI reconstruction of the famous patient Phineas Cage shows that the main 
lesion was in the medial-frontal cortex. Figure 2.9a is taken from Damasio et al., (1994) b)Figure 
shows the lesion sites of 10 patients with ventromedial frontal damage projected on the same 
axial slices of the standard Montreal Neurological Institute brain. Figure 2.9b is adapted from 
Wheeler & Fellows (2008). 
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These studies suggest that both medial and lateral structures are involved in processing 

loss information but to what extend they contribute to decision making is not well 

understood. It seems that when the reward learning data are analysed using a model-

based way, the results show reward predicted-value activity during the presentation of CS 

(see, Figure 2.6) but when it is analysed with a standard GLM analysis CS related activity 

is observed in the cingulate cortex. Furthermore, it is important to note that not finding 

a positive activity in orbito-frontal cortex in an fMRI study shouldn’t lead to the 

conclusion that it is not involved in processing the loss information but a region might 

contribute to processing by significantly decreased activity. As it will be revealed in the 

next section it is possible that during the outcome processing other regions might be 

involved in processing reward and loss information as suggested by Camara et al., 

(2009b). 

 

2.1.10 Avoidance Circuitry 

2.1.10.1  Reward and Punishment in the Cingulate Cortex 

Early studies on the functional segregation of anterior cingulate cortex argued 

that there is a separation of anterior and posterior regions in terms of emotional and 

cognitive processing (Devinsky et al., 1995 Bush et al., 2000) However, recent studies 

based on the cyto-architectonic microanatomy of cingulate cortex suggested that there 

are four distinct regions (Vogt, 2009). According to this cyto-architectonic division 

anterior and midcingulate cortex are divided into two further categories. The 

midcingulate cortex is divided into two parts, anterior (aMCC) and posterior mid-

cingulate (pMCC) and anterior cingulate cortex is divided into perigenual (pgACC) and 

subgenual (sgACC) (see Figure 2.6a).  Recent fMRI studies showed that aMCC is 

consistently active for negative affect(Price, 2000), pain(Peyron et al., 2000; Vogt, 2005, 

Farrell et al., 2005; Rainville et al., 2010) and cognitive control (Yeung et. al., 2004; Cole 
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et al., 2009). Given that aMCC receives nociceptive information from the spinothalamic 

system (Dum et al., 2009) and has reciprocal connections with amygdala (Ghashghaei et 

al., 2007; Morecraft et al., 2007) and insula (Mesulam, M. M. & Mufson, 1982; Cauda et 

al., 2011) it is meaningful to find aMCC activity for anticipation of aversive stimuli 

(Peyron et al., 2005; Vogt, 2005). Moreover aMCC receives dopaminergic inputs from 

substantia nigra and ventral tegmenral area (VTA) making its role important in 

processing of negative reinforcers as well as cognitive control (Williams & Goldman-

Rakic, 1998).  

According to adaptive control hypothesis of Shakman et al., (2011) cognitive 

control is an early warning system that allows the subject to proactively alter attention 

and actions to avoid future errors and perhaps make the aMCC involve in coding 

punishment prediction errors. They suggested that cognitive control and negative affect 

show high functional similarity and are both coded in aMCC (Shakman et al., 2011). A 

recent fMRI meta-analysis showed that aMCC is involved in processing not only 

negative affective situations such as anger, sadness, fear or painful stimulation of skin 

but also monetary loss (Liu et al., 2011). Moreover, Fujiwara et al., (2009) showed that 

there is overlap between regions coding monetary reward outcomes and states of 

happiness (see Figure 2.11b and Figure 2.11c) suggesting that pgACC is involved in 

positive affect but aMCC is involved in negative coding monetary losses and negative 

affect. 
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Figure 2.11 a) Four major sub-divisions of the rostral cingulate cortex. Blue regions show 
subgenual anterior cingulate cortex (sgACC), an orange region shows pregenual-anterior 
cingulate cortex (pgACC), green region shows anterior medial-cingulate cortex (aMCC), and 
magenta shows posterior medial-cingulate cortex (pMCC). Figure 2.11a is taken from Shackman 
et al., (2011). b-c) Meta-analysis of fMRI studies that found activity for (b) monetary gain 
outcome and (c)happiness, respectively.  d-f) Meta-analysis of fMRI studies that found activity 
for(d) monetary loss, (e)anger, sadness, fear  and (f)noxious thermal skin stimulation.  Figures 
from (b) to (f) taken from Fujiwara et al., (2009). 
 

2.1.10.2 The Role of Amygdala in Reward and Punishment 

 Many studies recognize amygdala as one of the most important brain structures 

associated with fear and aversive learning (Gallagher and Chiba, 1996; Klüver and Bucy, 

1939; LeDoux, 2000; Maren and Quirk, 2004; Murray, 2007 Buchelet al., 1998; LaBaret 

al., 1998; Schilleret al., 2008; Daviset al., 2010). Anatomically, it consists of at least three 

anatomically distinct nuclei that comprise two central nuclei and a basolateral nucleus 

(Alheid, 2006, Olmos & Heimer, 2006). Several imaging studies showed that amygdala is 

involved in loss aversion (Tom et al., 2007; Dreher, 2007). In fact one recent study 

showed  in two rare patients,with bilateral amygdala lesions, significant impairment in 
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processing loss aversion compared to matched controls in a monetary gambling task (De 

Martino et al., 2010).Moreover in recent high-resolution fMRI studies the contributions 

of amygdala subregions have been shown in associative learning. During reward and 

avoidance learning Prevost et al., (2011) showed that there is a dissociation between the 

contributions of the basolateral and centromedial during learning, with the basolateral 

complex contributing to reward learning by coding action values for reward outcome, 

and the centromedial complex more to action values for avoidance learning (Prevost et 

al., 2011) (see Figure 2.12). 

 

 

Figure 2.12 a-b) BOLD signals correlating with the expected reward value of the 
chosenactions.Basolateral complex shows significant activity for action values in the reward 
condition(in green) and the centromedial complex for action-values in the avoidance condition 
(in red). c) Anatomical ROI’s for the separation of centromedial (Co & CeM) and basolaeral 
amygdala that is used by the study of Prevost et al, (2011). Both Figures were adapted from 
Prevost et al., (2011). 
 

 

Previous fMRI studies have also reported computational learning signals in amygdala 

such as expected outcome, prediction errors and learning rate during performance of 

similar tasks (Elliottet al., 2004; Seymour et al.,2005; Yacubianet al., 2006; Hampton et 

al., 2007; Li et al., 2011). These studies suggest that amygdala as a whole can contribute 

to both aversive and appetitive learning with its distinct anatomical subregions it can 

carry out multiple computations (Baxter and Murray, 2002). 

 

2.1.10.3 The Role of Insular Cortex in Pain and Avoidance Learning 

Insular cortex is broadly acknowledged as viscerosensory cortex, and implicated 

in mapping internal bodily states (including pain and taste) and in representing emotional 
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arousal and feelings (Price, 2000; Critchley et al., 2004; Craig, 2003, 2009). Also for many 

years insular cortex was considered to be included as a major part of the pain pathway 

(Peyron et al., 2000). According to this view when there is an injury in the body 

peripheral nerves send signals to the central nervous system through spinal cord with 

specific neurons via the dorsal horn of the spinal cord (Craig, 2002). These nociceptive 

signals then ascend to various brainstem nuclei and mainly to the thalamus (see Figure 

2.13a). After thalamus, many areas of the brain receive this nociceptive information that 

is coming from the peripheral system and therefore a variety of brain regions are 

involved in pain processing. These regions mainly include somato-sensory cortex, insular 

cortex, anterior cingulate and orbito-frontal cortex and subcortical areas including 

amygdala, and hippocampus (Jones et al., 1992; Hutchison et al., 1999; Leknes & Tracey, 

2008). 

Accordingly there have been several suggestions that insular cortex supports 

different levels of representation of both current and predictedsubjective states and that 

it calculates error-based learning signals for the feeling states (Singer et al., 2009). In fact 

several studies did shown a risk prediction error signal about the outcomes (Preuschoff 

et al., 2008) (see Figure 2.13b) and punishment prediction error (Pessiglione et al., 2006) 

(see Figure 2.13c). 
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Figure 2.13 a) Nociceptive signals that ascend from spinal cord of lamina-1 and projects to 
posterior ventromedial thalamusand from there they ascend to insular cortex and other cortical 
regions. Figure is taken from Gray and Critchley (2007) b) Activation in bilateral insula correlates 
positively with risk prediction errors in a gambling task. Figure 2.13b is from Preuschoff et al., 
(2008) c) Activation of the insula for the punishment prediction error. Figure 2.13c is taken from 
Pessiglione et al., (2006). 

 

Finally, neuroimaging studies showed that activity in anterior insula cortex and 

anteriorcingulate cortex in response to the perception of unpleasant stimuli reflects the 

experience of expecting an aversive events (Brownet al., 2008;Wager et al., 2004; Hester 

et al., 2010). 

 

2.1.11 Opponent Process Theory 

The two main theoretical frameworks, which suggest an explanation for the 

connection between avoidance and approach behavior, are two-factor theories learning 

(Mowrer, 1939; Mowrer & Lamoreaux, 1942) and opponent process theories (Solomon, 
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1974; Dickenson & Dearing, 1979) of conditioning. In this thesis I am mainly concerned 

with opponent process theory.  

Opponency has an important history in psychology and neuroscience 

(Grossberg,1988). In the classic model of Opponent Process Theory there are two 

systems for representing affective events (Dickinson and Balleine, 2002). The first 

system is responsible from appetitive events (positive affects), and the second system is 

responsible from aversive events (negative affects), and there is a link between those two 

systems that inhibits each other. According to opponent process model of Konorski the 

appetitive and aversive systems work oppositely to each other and it has been stated that 

this opposition “gives rise to four basic categories of motivation” which are “prediction 

of reward (hope), prediction of aversive events (fear), omission of reward (frustration) 

and omission of aversive events (relief)” (Seymour et al., 2003, p: 18).  

In the Konorskian model, there are two types of representations (i) a stimulus 

non-specific representation and (ii) a stimulus specific representation. In the stimulus 

non-specific representation the identity of the outcome (e.g., shock or airpuff) is 

irrelevant and only the valence of the outcome (e.g., aversive or appetitive) is important. 

On the other hand in the stimulus specific representations the natureof the outcome is 

crucial (e.g., air-puff to the eye is crucial for eyeblink conditioning but not for electric 

shock). The basic architecture of these distinct representations is shown in Figure 2.14.  
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Figure 2.14 Konorskian model of Pavlovian appetitive conditioning, showing direct andindirect 
pathways mediating representation of conditioned stimuli (CS) and unconditioned stimuli (US). 
Figure 2.14 is adapted from Dickinson and Balleine, 2002). 
 

2.2 Interim Summary 

In this chapter I showed that there are various types of rewards where someof 

them are species-specific primary reinforcers (e.g., taste of sweetness) where as others are 

species-specific secondary reinforcers (e.g., money for humans). In humans various brain 

regions engagein learning the value ofthese reinforcers, which are usually either 

appetitive or aversive and only few regions like striatum and medial orbitofrontal cortex 

seem to be involved in both rewards and punishments.  In short, these regions include 

medial frontal cortex, which process both reward and punishment expectation and 

retrieval, striatum, which processes reward and punishment expectation and retrieval, 

amygdala, processes mostly punishment expectation and retrieval, insula, processes 

mostly punishment expectation and retrieval and finally anterior cingulate cortex is 

involved in processing mostly punishment expectation. This suggests that not a single 

brain region is involved in processing rewards and punishments but various brain regions 

process various aspects of rewards and punishments and perhaps in synchrony. It is also 

important to note that other brain regions such as frontal eye fields (FEF) (see for a 

review Kable & Glimcher, 2009; Glimcher 2009a, 2009b) and lateral intraparietal cortex 
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(LIT) (Platt & Glimcher, 1999; Gold & Shadlen, 2007) also engage in decision making 

and reinforcement learning with saccadic choices but they were excluded from this 

review.    

Furthermore, I summarized the role of dopamine and serotonin in reward and 

punishment processing. According to that dopamine is not only involved in processing 

reward information (Schultz, 2006) but also information about the painful stimuli (Wood 

et al., 2007; Wood et al., 2009).  The best example for this in humans is the involvement 

of dopamine in a chronic pain disease called Fibromyalgia, which is characterized by 

widespread pain and bodily tenderness in the body (Wood et al., 2007; Wood et al., 

2009). Accumulating evidence indicates that fibromyalgia in humans is caused by the 

decrease of dopamine levels in the brain (Hagelberg et al., 2004; Pertovaara et al., 2004; 

Wood et al., 2007; Wood et al., 2009). These studies suggest that during the experience 

of painful events release of dopamine might decrease the experience of pain in 

individuals.  Beyond dopamine and serotonin, a wider network of neurotransmitters are 

also involved in learning and prediction of rewards, which includes networks of 

epinephrinergic neuromodulators (see for review, Doya, 2008) and oxytonergic system 

(Zak, 2007) excluded from the review because the computational underpinnings of such 

modulators are not well understood and beyond the scope of this thesis. 
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______________________________________________ 

 

All sciences are now under the obligation to prepare the ground for the future task of  

the philosopher, which is to solve the problem of value, to determine the true hierarchy 

of values.  

 
Friedrich Wilhelm Nietzsche  

 

 

Chapter  3 

 

 

Neural Mechanisms of Associative-Learning 

3.1 Functional Neuroanatomy of the Basal Ganglia and Cortico-Striatal Maps 

The basal ganglia is the name given to a collection of limbic structures and it is one of 

the most important of all brain structuresfor understanding complex reward and motor 

processing.Over many years basal ganglia has been studied extensively in order to 

understand the source of variousbrain disorders. The diversity of psychiatric and 

neurological disorders that basal ganglia is involved are huge in quantity such as 

schizophrenia (Carlsson, 1988; Kapur, 2003, Kapur et al., 2005; Howes and Kapur, 

2009), attention deficit hyperactivity disorder (ADHD) (Volkow et al., 2009) as well as 

Parkinson’s disease, Tourette’s syndrome and Huntington’s disease (Bhatia and Marsden, 

1994;Albin and Mink, 2006; Gerfer and Surmeier, 2011). It has also been shown that 

basal ganglia is related to many executive, motor functions that have direct influence on 

our daily lives (Yin & Knowlton, 2006). Moreover, because the basal ganglia’s unique 

anatomical position with its connections to almost the entire cortex, thebasal-ganglia are 
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central to many cognitive processes including decision making, sequence learning, 

category learning, and probabilistic learning.  

Anatomically, the basal ganglia are made up of different structures; the striatum, 

pallidum, subthalamic nucleus (STN) and substantia nigra. One of the most important 

sub-compartments of the basal ganglia for procedural learning is the striatum, which is 

crucial for theoretical themes as explained later in this chapter. The striatum is also 

composed of subcompartments: the caudate nucleus, putamen, and the nucleus 

accumbens. The caudate nucleus and the putamen are one structure at birth and are 

separated during development by the internal capsule (Holt et al., 1972). 

In fact most of our knowledge about the functional neuroanatomy of the basal-

ganglia and its structural connectivity to the cortex and thalamic structures are based on 

animal studies of monkeys and rats. Researchers used various techniques to understand the 

cyto-architecture of basal ganglia and cortex such as antero or retrograde neuronal 

tracers (e.g., rabie-virus) (Strick et al., 1995; Middleton & Strick, 2000). More recently our 

knowledge about the structure of the human basal-ganglia and its internal loop 

architecture (cortico-striatal, striato-pallidal, striato-cerebellar) increased tremendously 

based on a the development of a broad range of techniques coming from various 

neuroimaging studies which used advanced statistical analysis (e.g., effective or functional 

connectivity analysis). In addition to that post-mortem dissection studies provide 

invaluable inputs to our understanding of the human basal ganglia and thalamus, which 

will be revealed in the following section (Morel, 2007).  

Unlike prefrontal cortex, which consists of mostly glutamatergic neurons, the 

basal ganglia are mostly composed of inhibitory GABA (g-aminobutyric acid) containing 

neurons that are spiny in striatum (input) and aspiny in pallidum (Yin & Knowlton, 

2006). These spiny neurons also contain different amounts of neuropeptites such as 

substance P and dynorphin or enkephalin where their relative amount to each other 
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correlates with two types of dopamine receptor that are of type D1 and D2 (see for a 

discussion, Nadjar et al., 2006). It has been suggested that these dopaminergic neurons 

reduce the pallidal output, and facilitate the target motor networks by disinhibition 

(Deniau & Chevalier, 1985; Chevalier & Deniau, 1990). Moreover, the striatum controls 

motor movements through its connections with thalamus and cortex via direct and 

indirect pathways, which are facilitated by D1 and D2 receptors respectively (Albin et al, 

1998). It has been suggested that the direct pathway contains the D1 receptor subtype 

and facilitates approach behaviour whereas the indirect pathway that contains the D2 

receptor subtype facilitates avoidance behaviour (Albin et al., 1989; Gerfen et al., 1990; 

Kravitz et al., 2010; Hikida et al., 2010; Bromberg-Martin et al., 2010) (see Figure 3.1). 

 

Figure 3.1 Box-and-arrow diagrams showing direct and indirect connections of the basal ganglia 
to cortex and thalamus. a) The classic basal ganglia architecture of Albin et al., (1989) shows the 
striato-midbrain-thalamo-corticol loop.  b) A more recent update on the striatal microanatomy. 
It represents connections between sub-nuclei of the basal ganglia, the cerebral cortex and the 
thalamus that is based on Bolam and Bennett (1995). Both Figures are taken from Redgrave et 
al., (2010) 
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Recent theories on reinforcement learning suggest that phasic DA bursts during 

instrumental learning produce conditions of high DA, activate D1 receptors, and cause 

the direct pathway to select high-value movements, whereas DA pauses produce 

conditions of low DA, inhibit D2 receptors, and cause the indirect pathway to suppress 

low-value movements (Frank, 2005; Hikosaka, 2007). Consistent with this hypothesis, 

Bromberg-Martin et al., (2010) suggested that high DA receptor activation promotes 

potentiation of corticostriatal synapses onto the direct pathway and learning from 

positive outcomes (Shen et al., 2008, Frank et al., 2004; Voon et al., 2010), whereas the 

inhibition of D1 receptor release impairs those movements with rewards (Nakamura and 

Hikosaka, 2006). Similarly low DA receptor activation promotes potentiation of 

corticostriatal synapses onto the indirect pathway and learning from negative outcomes 

(Shen et al., 2008; Frank et al., 2004; Voon et al., 2010), whereas blockation of striatal D2 

receptors suppresses movements to nonrewarded targets (Nakamura and Hikosaka, 

2006). This division of D1 and D2 receptor compartmantalization in the basal ganglia 

explains many of the effects of dopamine on reinforcement learning (but see also 

Chapter 2, section 2.1.3.4 for a discussion on the effect of D1 and D2 receptor on 

learning with rewards and punishments). 
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Figure 3.2 a) DA neurons fire a burst of spikes (positive prediction error) activate D1 receptors 
on direct pathway neurons, promoting selection of that action. b) DA neurons pause their 
spiking activity during negative prediction error promote suppression actions. Figure taken from 
Bromberg-Martin et al., (2010). 
 

Our knowledge about the cyto-architecture of the basal ganglia and itsfunctional 

neuroanatomyhas advanced dramatically over the last couple of decades. Early studies 

showed that the basal ganglia coordinate the link between motivation and motor 

processes (Mogenson et al, 1980). In fact an early suggestion by Mogenson et al, (1980) 

proposed that the nucleus accumbens (an important structure in the striatum) works as 

the ‘limbic-motor gateway’ where motivational signals meet motor-actions. On the other 

hand there are a few, rare clinical cases, which also support this limbic-motor-gateway 

hypothesis. For example, a clinical syndrome called “apathy”  (Marin, 1991; Chase, 2011) 

can be seen in patients who have significant loss of dopamine neurons in the basal 

ganglia (Starkstein et al., 1992; Isella et al., 2002; Pluck and Brown, 2002; Aarsland et al., 

2005; Kirsch-Darrow et al., 2006; Levy & Czernecki, 2006), and this causes significant 

decrease in goal directed behaviours in these patients. There is also a more extreme form 

of apathy called PAP syndrome (Psychic-autoactivation-deficit coming from french 
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perte d'auto-activation psychique, or loss of psychic auto-activation) which is 

characterized by the loss of will to execute motor actions and is directly linked with the 

effect of reduced levels of motivational signals triggered by the midbrain dopaminergic 

neurons. In the late, 90s French neurologist Laplane showed that PAP syndrome is 

commonly seen in patients whose major axonal terminals were damaged in the nigro-

striatal pathway (Laplane et al., 1989; Laplane & Dubois, 2001; Levy & Dupois, 2006). 

Since these findings, the striatum has been studied extensively in many vertebrate species 

in order to understand how the basal ganglia with its cortical connections promote 

learning of rewards and actions in the instrumental conditioning context (Yin et al., 2005; 

2006).  

On the other hand a different body of research suggested that rewarding 

outcomes of actions and the actual motor processes that causes actions could be coded 

separately due to the neuroanatomical division of labour between dorsal (caudate & 

putamen) and ventral striatum (nucleus accumbens) (these suggestions being mostly 

based on the assumption that cortico-striatal loops are closed, meaning that the inputs 

from distinct sites of the cortex to the striatum do not converge) (Haber and Knutson, 

2009). These studies suggested that the dorsal and ventral striatum projects to different 

cortical regions;the dorsal striatum projects to premotor and somato-sensory cortex, 

whereas the ventral striatum projects to orbito-frontal and anterior cingulate. Aside from 

the anatomical issues there were also several good reasons to believe that ventral and 

dorsal striatum are involved in segregated functionally independent territories (such as 

ventral-motivation dorsal-sensory motor). Firstly, it was already known that the ventral 

striatum has a direct and reciprocal connection with the dopaminergic neurons located in 

the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA) (Nicola et 

al., 2005; Nicola, 2007). Secondly, human neuropsychological studies and animal lesion 

studies showed that learning of stimulus–action associations is directly affected by 



 57 

activity in the dorsal striatum (Graybiel, 1998; Packard and Knowlton 2002). Thirdly 

electrophysiological studies in animals showed that dorsal-striatal neurons represent 

learned stimulus–action associations (for a review, see Schultz & Dickinson, 2001). 

 Altogether these studies lead to the proposal that cortical regions project to the 

striatum with an organization that can be identified based on different functional 

territories, that is, the ventral striatum (limbic-territory), the caudate nucleus (associative 

territory) and the posterior putamen (sensori-motor territory) (Mchaffie et al., 2005). 

Even though these studies suggested that ventral and dorsal mechanisms are functionally 

separate based on the topographical projections, the boundaries with respect to 

functional roles are imprecise (for a discussion, see Haber, 2003). For example, an 

increasing number of electrophysiological and functional imaging studies have shown 

that the ventral striatum (nucleus accumbens) is also activated at the time of motor 

preparation in procedural learning tasks (for discussion, see Nicola, 2007, Humphries 

and Prescott, 2010; Van der Meer and Reddish, 2010; 2011).  

 Putting these debates aside we know that the dissociation between these 

functional territories for the caudate nucleus, with its links to associative cortex and the 

putamen, with its links to sensorimotor cortex are over simplistic and hence no longer 

valid. More recent neuroanatomical studies based on human post-mortem data, which 

used immuno-reactivity of calcium-binding proteins have shown that caudate and 

putamen are made up of different functional sub-territories as shown in Figure 3.3 

(Morel, 2007). Based on these data it is hard to say for example if the putamen is only 

involved in sensori-motor territory or the caudate is only involved in associative territory. 
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Figure 3.3 A diagram of the human striato-pallidal anatomy with different functional territories 
based on the photomicrographs of Morel et al. (2002). (A) to (C) represent sagital sections of the 
left hemisphere human basal ganglia and (D) represent axial section of the left human basal 
ganglia. The four territories (sensorimotor, T1; associative, T2; paralimbic, T3; and limbic, T4) 
are indicated by different grey levels. Abbreviations are (Cd) Caudate nucleus, (Put) putamen, 
(GPe)  globus pallidus external segment.  Figure taken from Morel (2007). 
 

 

Moreover the basal ganglia are not only organized functionally but also topographically. 

The processing of motor information flows through a segregated sensorimotor loop 

connecting the primary motor cortex (MI), the supplementary motor area (SMA), the 

premotor cortex (PMC), and cingulate motor areas (CMA) with the sensorimotor areas 

of the basal ganglia and the thalamus. An ordered somatotopic distribution of motor 

inputs along the sensorimotor areas of the basal ganglia and thalamus has been 

consistently described in primates as shown by the Figure 3.4. According to Figure 3.4 

lateral putamen of the primates receives inputs from primary motor cortex whereas 

medial parts of the putamen receive input from the supplementary motor area (SMA). 
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Figure 3.4 Somatotopic map of the primate striatum and cortical projections. Motor cortex (MI) 
and  Supplementary motor areas (SMA) projection to the lateral and medial parts of the putamen 
in a somatotopically organized fashion. Figure Taken from Romanelli et al. (2005) 

 

 Furthermore in humans, recent fMRI studies of somatotopic representations ofthe 

foot, hand, face and eye areas in the basal ganglia have shown that each of these 

effectors are coded inpartially segregated regions between these somatotopic territories 

(Gerardin et al., 2003). Gerardin et al. (2003) showed that within the putamen, regions 

activated during movements of thefoot were located in the dorsal part of the structure, 

whereas the regions activated during lipmovements were located more ventrally and 

medially, and regions activated during handmovements inbetween. As we discuss in more 

detail in the next section, this somatotopic organization of the basal ganglia with its 

funnel architecture (reduction in the number of neurons from cortex to striatum through 

midbrain) may allow for convergence of predicted-values for stimulus-action pairs from 

many modalities, making the basal ganglia a effector independent action-value calculating 

system (see, Figure 3.5).  
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Figure 3.5 Somatotopic body representation in the medial (on the left) and lateral (on the right) 
striatum during toe (red), finger (light green), lip (dark blue) and eye (yellow) movements (group 
analysis). Abbreviations: Ant, anterior; CN, caudate nucleus; Post, posterior; Pu, putamen. Taken 
from Gerardin et al. (2003). 
 

 

3.1.1 Multiple Cortico-Striatal Loops  

 The Basal ganglia play a key role in learning new procedures and action-outcome 

associations, implying the necessity for integrative processing by the reward and the 

motor circuitry. Hence, one of the most important research questions is how different 

cortico–basal ganglia loops integrate information in order to promote learning of reward 

values and actions. It has been shown that the striatum interacts with the cortex through 

cortico-striatal loops. Initial neuroanatomical studies suggested that these cortico-striatal 

loops process information in a parallel and segregated way complementing those of the 

cortical areas they interact with (Alexandre et al., 1986). Some of the loops are crucial for 

learning about cognitive (executive), motor, motivational and visual information 

(Alexandre et al., 1986). In the light of recent studies it seems that these multiple loops 

allow processing of information both in parallel and in an integrated way. In this section 

we review the recent findings on the cortico-striatal loops and shed light on how the 

spiral-loop architecture (Haber et al., 2000) of the cortico-striatum connection promotes 

integration of information from motivational and motor loops in order to promote 
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coding of action values. 

 Recent studies suggest that the basal ganglia have a “funnel-shaped architecture” a 

concept used to explain the reduction in the number of cells along the dorsal-ventral axis 

of cortico-striatal and striato-pallidal pathways  (Bar-Gad et al., 2003). This reduction in 

the number of neurons where each striatal neuron receives input from approximately 

10,000 cortical neurons, lead to the suggestion that there is functional convergence of 

information from different cortical regions on the same striatal neurons. Bar-gad et al. 

(2000) suggested a functional description for this process, which is called dimensionality 

reduction. They have argued that cortico-striatal loops can do dimensionality reduction, 

which means that the information from cortex is being compressed towards output 

structures of the striatum (Bar-Gad, Morris, Bergman, 2003). This idea is in fact similar 

to that of Graybiel (1998) who proposed that actions towards automatization become 

motor chunks, which are coded in sensori-motor cortico-striatal loop (for a discussion 

refer to, Graybiel, 2008). 

 In agreement with the funnel-shaped architecture, Haber & Knutson (2010) 

proposed a spiral structure, both between prefrontal structures and striatum and 

between striatum and midbrain. Haber et al. (2000) showed that projections from the 

orbito-frontal cortex, ventromedial prefrontal cortex and dorsal anterior cingulate cortex 

converge largely in the ventral striatum and weakly in dorsal striatum, whereas the 

projections from the dorso-lateral prefrontal cortex and dorsal anterior cingulate cortex 

converge largely in dorsal striatum and weakly in ventral-striatum (see, Figure 3.5). This 

suggests that projections from the cortex are not completely segregated but overlap.   

Moreover, it has been shown that the spiral loop continues from striatum to midbrain 

and back to striatum making a three-layer cortico-striato-midbrain pathway. Hence, this 

cortico-striato-midbrain pathway is very important because it describes the shifts of 

activity towards caudal regions.      
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Figure 3.6 Neural circuits consisting of cortico-striatal and striato-nigral loops. a) DLPFC: 
dorsolateral prefrontal cortex, OFC: orbitofrontal cortex, ACC: anterior cingulate cortex, CMr: 
rostral cingulate motor area, PMd: dorsal premotor cortex, PMv: ventral premotor cortex, MI: 
primary motor cortex. Fibers from different prefrontal cortical areas converge within subregions 
of the striatum and from striatum they project to midbrain. b) Projections from the VTA to the 
shell form a “closed,” reciprocal loop, but also project more laterally to impact on DA cells 
projecting the rest of the ventral striatum, forming the first part of a feed-forward loop (or 
spiral). The spiral continues through the SNS projections, through which the ventral striatum 
impacts on cognitive and motor striatal areas via the midbrain DA cells. Both Figures are taken 
from Haber & Knutson, (2010). 
 

Moreover techniques based on probabilistic diffusion tractography and resting state 

functional connectivity MRI (rs-fcMRI) analysis provide means to assess functional and 

anatomical connectivity non-invasively in humans (Draganski et al., 2008). Overall, these 

studies showed that these multiple loops have overlapping projection sites in the basal 

ganglia and provide additional means of evidence supporting a spiral-loop architecture 

(Postuma & Dagher, 2006; Draganski et al., 2008). The anatomical architecture of basal 

ganglia should readily permit thecalculation of predicted-value signals in various parts of 

the brain in a flexible way. This flexibility can be seen as a shift of activation in the 

cortico-striatal loop from rostral parts of the cortico-striatal loops to caudal parts where 

highly learned actions are processed and the role of these regions are reviewed in the 

following section. 
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3.2 The Fusion of Instrumental Learning and Pavlovian Conditioning 

Early studies showed that Pavlovian learning in animals elicit more than 

Pavlovian conditional responses but also elicit instrumental responses. An example for 

this is in animals’ reactions to aversive cues or omission of rewards where they show 

freezing, running, or fightingresponses (Ulrich and Azrin; 1962; Hutchinson et al., 1968). 

In addition to that instrumental learning also includes certain Pavlovian responses (e.g., 

pupil dilation, skin conductance responses), whichallows learning of potentially highly 

adaptivephysiological responses beyond the restrictive set of instrumental actions. The 

following section reviews the brain regions that are involved in CS specific predictive 

responses about the outcomes of certain stimuli and actions in the context of 

instrumental conditioning.  

 

3.2.1 Neural Correlates of Predicted Values   

As we discussed early on and briefly in Chapter 2 section 2.1.4.1, previous studies 

showed that reward-predicting stimuli by themselves elicit neural activity about expected 

rewards (Schultz et al., 2003). However, in instrumental conditioning, the CS stimuli 

determine not only the expected reward predicted by the stimuli but also the action 

required by the subjects (see for a discussion, O’Doherty, 2011; Fellows, 2011; 

Schoenbaum et al., 2011). Because the action selection requires motor preparation and 

movement execution, it has been argued that these types of processes usually comprise 

of neuronal activity that occurs at the same time as viewing the decision cues (Schultz et 

al., 2003). Perhaps for this reason the predicted-value codingregions of the brain not 

only respond to reward predicting features of stimuli but they also respond to 

preparatory features of motor actions (see for discussion O’Doherty, 2011). It is 

important to note that sometimes the “predicted-values” might directly relate to specific 

actions which refer to the future rewards that are expected to be obtained after taking a 
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specific action (e.g., if red light turns on always press the button with the right hand) and 

can be used interchangeably with action-values (Morita et al., 2012) or it might prefer to 

the expected future rewards for a particular conditional stimulus in the instrumental 

conditioning where the motor action can be arbitrary (e.g., chose right or left response if 

red light turns on) in which case it has been called predicted-value of chosen option 

whereas in computational neuroscience the predicted value of chosen options and 

actions are represented by the letter Q (e.g., QCSx for the predicted value of choosing a 

particular condition stimulus CSx or Qleft predicted value of performing an action with 

the left finger which is coming from Q-learning algorithm see Chapter 4 for details). In 

fact both of these response specific actions and stimulus specific actions are the source 

of predicted value signals, which are very hard to separate in experimental conditions and 

might involve orbito-frontal cortex (see for a discussion, Gerardin et al., 2001; 

Wunderlich et al., 2010; O’Doherty 2011). 

It is important to note that we used predicted-value to refer to the second 

definition unless otherwise mentioned (e.g. action-value). In the following section, we 

review some of the studies that showed correlates of predictive-values in cortical and 

sub-cortical regions. These studies mainly showed predicted value and action-value 

activity in the striatum and various cortical regions.  Some of the striatal regions are 

located in the input structures of the basal ganglia (Kawagoe et al., 1998; Hassani et al., 

2001), and some of them are located in the output structures (Sato and Hikosaka, 2002). 

Moreover various cortical areas beyond medial orbito-frontal cortex (as reviewed in 

Chapter 2 section 2.1.4.1) also showed predicted-value activity. These regions include 

dorso-lateral prefrontal cortex, ventro-medial frontal cortex, lateral-intra parietal cortex, 

motor cortex, and supplemetary motor areas  (Watanabe, 1996; Shima and Tanji, 1998; 

Leon and Shadlen, 1999; Platt and Glimcher, 1999; Wallis and Miller, 2003) which will be 

reviewed below in detail.  
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3.2.2 Predicted Values in the Striatum 

  Many studies suggested that pre movement firing of striatal neurons is usually 

influenced by reward predicting cues (see for a review Nicola, 2007). For example, earlier 

studies showed that neurons that fired to initiate movement showed greater excitation 

when the instruction indicated that the movement was to be rewarded (Hollerman & 

Schultz 1998; Kawagoe et al. 1998). These early studies showed that before the motor 

actions took place striatal neurons enhanced their firing rate by the information that 

movement will result in a rewarding outcome (Schultz, 2003). This enhancement 

probably serves to increase the probability of movement in the direction that maximizes 

reward (e.g., predicted-value of the chosen option or action).  

 For many researchers the dorsal striatum is the key area for coding predicted-

values of options and actions. Perhaps because it has been thought that the main 

function of the dorsal striatum is related to the preparation and execution of movements 

(Yin et al., 2005; Balleine, Delgado & Hikosaka, 2007). More recently Hori et al. (2009) 

studied how dorsal-striatal neurons code for action-values by recording from the 

putamen of  monkeys before and after action execution in a go-nogo task. They showed 

that most of the neurons (~50%) in the putamen code for action-values before and after 

action execution. Also in another reward based choice task with monkeys, Samejima et al. 

(2005) found that during the delay period before action execution more than one third 

of striate projection neurons  (43/142) code the reward value in the direction ofaction 

that is going to be taken. In another experiment Pasquereau et al. (2007) compared 

action-value (ie the action values prior to action execution) and chosen-value (values at 

the time of action execution) in the putamen and globus pallidus internal segment (Gpi).  

They showed that in the period of learning the number of action value neurons in the 

Gpi increased and both of the structures are influenced by incentive value during the 

execution of motor responses. For some researchers the increase in the number of 
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neurons that discharge for action value is an indication of automatization during learning 

(for a discussion, see Graybiel, 2005, 2008). Moreover a study by Arkadir et al. (2004), 

who recorded from globus pallidus (GPe), showed that only a small percentage of 

neurons code for both reward values and actions. They showed that in the initial trials 

the activity was modulated by both reward predictions and movement direction but later 

the activity was modulated mainly by movement direction. Arkadir et al. (2004) argued 

that most of the neurons dynamically changed their response properties as learning 

proceeds. Human brain imaging experiments also support the findings on predicted 

values in the basal ganglia. A study by Haruno and Kawato (2006) showed action-value 

coding activity in the dorsal striatum during a probabilistic reward-learning task. 

 Overall these studies showed converging evidence for representation of action 

values in the basal ganglia. Most of these studies report a high degree of overlap for 

coding reward and action related features (e.g. predicted-values and action values). 

Although, some of the studies report action-value coding by a much smaller number of 

neurons, these studies actually showed that these neurons selectively discharge during 

learning, more particularly in early trials they discharge more for reward-prediction and 

in later trials more for actions (e.g., Arkadir et al., 2004). 

 

3.2.3  Predicted Values in the Cortex 

 Electrophysiological studies showed predicted-value type of activity in various 

cortical regions such as the dorso-lateral-prefrontal cortex (DLPFC), parietal cortex, 

rostral anterior cingulate cortex, and frontal eye fields (FEF) (for a review, see Sugrue, 

2005; Samejima & Doya, 2007).  For example, Sugrue et al. (2004) showed that in an 

oculomotor decision-making task, activity in the lateral intra-parietalregion activity was 

modulated by both the probability of choosing anaction and the reward value of the 

outcome. Moreover by using a computational model of the choice behaviour they also 
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showed that this activity was highly influenced by the history of actions andrewards. 

Other studies also reported predicted-value coding neurons in lateral pre-frontal cortex 

(Watanabe et al., 2002; Kobayashi et al., 2006, Barraclough et al., 2004), and parietal 

cortex (Sugrue et al., 2004). 

 With the advances in human brain imaging recent studies showed predicted-value 

and action-value activity in various cortical regions. Some of these studies showed activity 

in ventro-medial prefrontal cortex (VMPFC) (O’Doherty, 2007) and cingulate cortex 

(Jocham et al., 2009). Another study by Gershman et al. (2009) found action value 

activity in parietal cortex during a dynamic probabilistic learning task. One recent study 

by Palminteri et al. (2009) showed that depending on the hand side (left or right) the 

predited-value activity was located in ipsi-lateral frontal cortex. This study for the first 

time showed that the expected value for both alternatives is first calculated in the medial 

frontal cortex but the predicted value of individual symbols that are determined by 

separate actions (left or right hand responses) are coded in the lateral prefrontal cortices. 

This finding converges with the earlier electrophysiological studies in monkeys (Wallis, 

2007b). For example, Wallis (2007a) showed that orbito-frontal cortex calculates the 

predictive reward value of the outcome and then passes this information to dorso-lateral 

prefrontal cortex in order to promote action selection by calculating action-specific 

values. Moreover, Pessiglione et al. (2008) showed that not only activity in frontal 

regions but also in visual cortex is modulated by the value of actions. In their task, 

participants had to make a go/nogo selection from a masked stimulus that is delivered 

only for very short period of time (33-50ms). They showed that participants learn to 

choose the rewarding outcome even though they cannot consciously differentiate 

between the stimuli.Moreover, in order to compare whether pre-motor action values are 

coded in effector dependent or independent way, Wunderlich et al. (2009) compared the 

action selection with saccades and hand movements. They showed that when participants 
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made saccadic decision the action values appear in the frontal eye fieldsof prefrontal 

cortex whereas when they made the decisions with hand movements the action values 

were found in the supplementary motor area region of prefrontal cortex. 

 Even though this distributed predicted-action-value network is not easy to 

interpret, one can easily see that parietal cortex and frontal eye fields can only code for 

effector-specific predicted values. Also, perhaps because of the somatotopic body 

representations in the striatum, it is possible that the striatum responds to predicted 

values from all motor modalities in an effector-dependent way. Samejima and Doya 

(2007) have argued that due to the hierarchical organization of frontal cortices, it is 

possible that predicted valuescan be represented differently at each level of this hierarchy. 

For example, they have argued that VMPFC and MOFC may only do state-value coding 

and monitoring, but LPFC may be selective both for coding the contextual information 

(goal or subgoal representation in working memory), as well as state predictions and 

action values.  

 

3.3 Cognitive Neuroscience of Automaticity and the Gradual Shift of Activity in the Brain 

3.3.1 Controlled and Automated Mental Processes 

It has been showed that much of the human motor behaviour and cognitive processes 

become automatic after substantial training (Hélie & Cousineau, 2011). A good example 

of an automatic process in the procedural learning context is driving a car, wherein the 

manual gear shifting for expert drivers while recognizing road signs at the same time is 

considered to be an automatic process, unlike novice drivers who can perform only one 

of these tasks at any one time (Shinar et al., 1998). Shiffrin and Schneider (1977) 

proposed a dual-process model of information processing. According to their model 

controlled processes are defined as deliberate and attention requiring whereas the 

automatic processes are simply internal response chain mechanisms that are activated by 
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the external stimuli and do not require active control or attention. Their model became 

very inspirational and has been applied in many areas of cognitive psychology such as 

connectionism (see for a discussion Botvinick and Plaut, 2006). The decisions as to 

whether a cognitive process is automatic or controlled is usually tested with the dual task 

paradigm where subjects need to perform two tasks at the same time, for example 

counting digits backwards and making decisions at the same time (Posner and Snyder, 

1975; Logan, 1979). It has been argued that if after training participants don’t pay 

attention to the secondary distractor task then they are making decisions automatically 

(for a review, Hélie & Cousineau, 2011). However, previous studies showed thatthe 

amount of practice for a certain skill to become automatic usually varies from 

individualto individual and also depends on the type of task being used (Doyon et al., 

2008; Hélie & Cousineau, 2011). More recently studies have suggested that there is no 

one strict criterion for automatization but different operational criteria can be used to 

determine automaticity of motor skills, for example, reduction in the number of errors 

and speedy reaction times (Doyon et al., 2002; 2005; 2009; Lehéricy et al., 2005; Krakauer 

& Shadmehr, 2007).  Utilizing these the psychological definitions of automaticity, fMRI 

studies usinga dual task paradigm have shown that certain brain regions show a change in 

activity during the process of skill automatization (Szameitat et al., 2002; Dreher and 

Grafman, 2003; Jiang 2004). For example, Poldrack et al., (2005) tested participants with 

a dual task aftertraining them on a sequential reaction time task (Nissen and Bullemer, 

1987). They showed that activity in the bilateral ventralpremotor cortex, right middle 

frontal gyrus, and the right caudate body decreases over learning trials while performing a 

dual-task. On the other hand they also showed that activity in the prefrontal and striatal 

regions decreases equallyfor the dual and single task conditions suggesting that the 

decrease in activity might be a general practice effect. They concluded that lateral and 

dorsolateral prefrontal regions together withstriatum could subserve the executive 
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processes involved in novice dual-task performance. Other studies have also shown a 

gradual decrease in activity in in various cortical and subcortical regions during the 

practice of complex motor skills (Jueptner et al., 1997; Poldrack et al., 2005, Doyon et al., 

2009). But before pursuing automaticity in humans in more detail it is important review a 

similar approach that is widely used in animal studies to distinguish deliberate and 

automatic processes, that is the goal directed and habitual actions. 

 

3.3.2 Goal Directed and Habitual Actions  

In experimental psychology a similar distinction between the deliberate and automated 

mental processes can be found for goal-oriented and habitual processes in the animal 

instrumental learning literature. Studies have shown that there are two types of 

instrumental actions: habits, and goal-orientated actions where the former refers to more 

automatic processes whereas the later refers to deliberate calculations of outcome values 

(Dickinson and Balleine, 2002). Goal-directed and habitual actions are mainly studied by 

two experimental methods (Balleine & O'Doherty, 2010). The most common technique 

is the devaluation paradigm. In this method, at the beginning of the experiment rats learn 

via the goal-directed system because they are hungry and motivated to press the lever, 

they work for reaching goals (getting food). Rats highly trained to perform an 

instrumental task while they are hungry (or thirsty) are later subjected to the same task 

when they are satiated. If their response rate is not significantly different compared to 

non-satiated rats it has been argued that the behavior becomes a habit, since it is not 

being driven by goal values (ie hunger or thirst). Similarly in the second technique, 

extinction, rats are first highly trained to perform an instrumental task and later in the 

extinction phase the reward is paired with an illness. If the rats even after the extinction 

phase continue to perform the behaviour it has been argued that the behaviour has 

become habitual (Dickinson, 1985; Balleine & O’Doherty, 2010). 
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Computational studies have shown that habit-based learning systems are 

computationally efficient if the animal is exposed to a familar environment over many 

trials (Daw et al., 2005). However despite their efficiency habits are inflexible once they 

have been learned. In other words although during learning the value of the 

outcomesfacilitate the learningof certain actions, after many trials   habits are acquired 

and these do not involve computations about the outcomes rather the values become 

fixed at a certain value for that specific outcome and no longer use computational neural 

resources for learning and calculation. Performance at this stage is often regarded as 

simple stimulus-response mappings whereas in goal directed actions the outcome is 

always crucial hence they are referred as action-outcome mappings (Dickinson and 

Balleine, 2002). Computationally habit-learning algorithms (e.g., see Q-learning algorithm 

in Chapter 5) use thepredicted-values of individual stimuli and determine the relevant 

actions based on those predicted values (Gläscher et al., 2010; Daw et al., 2011). 

However, recent studies have shown that it may be inefficient to learn predicted values 

of individual stimuli or actions, for example if the outcome is delivered after a series of 

stimulus-response stages forming a chain in which case alternative goal-directed learning 

algorithms have been proposed (Daw et al., 2005; Daw et al., 2011). In these alternative 

algorithms, during goal-directed learning an internal representation of the outcome 

(specific to each action) is always calculated and used to guide actions (Daw et al., 2005). 

 Although there are important differences between the methods used to study 

controlled-automatic processes and the goal directed and habit systems, it was suggested 

that there might be overlapping neural mechanisms controlling both paradigms (for a 

discussion, see Ashby, Turner, Horvitz, 2010). Recent fMRI studies in humans have 

shownactivation in the medial prefrontal cortex, whenthey performed goal-directed 

actions for food rewards (when the participants are hungry) (Valentin et al., 2007) and 

activation was found in the dorsal striatum the actions are no longer goal-directed (when 
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the participants are satiated) (Tanaka et al., 2008)(see Figure 3.7a and Figure 3.7b). 

More recently Tricomi et al., (2009) conducted an fMRI study where some of 

participants trained for 3 days on an instrumental contingency task. In their experiment 

the value of the outcome devalued after extensive training and an increased BOLD signal 

was observed in dorsal striatal in the testing phase (Figure 3.7c). 

 

Figure 3.7 a) Region of human medial OFC exhibiting a response profile consistent with the 
goal-directed system. Activity in this region during action selection for a liquid food reward was 
sensitive to the current incentive value of the outcome, decreasing in activity during the selection 
of an action leading to a food reward devalued through selective satiation compared to an action 
leading to a non-devalued food reward. Figure 3.7a is taken from Valentin et al (2007). b) The 
regions of the human anterior dorsomedial striatum also exhibit sensitivity to instrumental 
contingency when the paricipants are in non-satiated condition. Figure 3.7b is taken from 
Tanaka et al (2008). c) The region of the human posterior lateral striatum (posterior putamen) 
that exhibits a response profile that is consistent with the development of habits in humans. . 
Figure 3.7c is taken from Tricomi et al, 2009. 
 

It is important to note that the distinction between the goal-directed/habitual control of 

actions and the deliberate/automatic mental process do not correspond perfectly since 

the former one is related to acquisition of instrumental behaviour with rewards whereas 

the latter is not. However recent studies have suggested that the underlying neural 

mechanism might partially overlap between these two types of processes (see for a 

discussion, Ashby, Turner, Horvitz, 2010). 
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3.3.3The General Effects of Practice on the Neural Correlates of Procedural Learning 

Although the abovementioned methods are the most generally used techniques to study 

controlled and automated (or goal-directed and habit) processes, the gradual shift in 

activity in the brain towards learning new skills are also studied with various motor tasks 

in humans by comparingeither early and late learning trials or by comparing novel and 

familiar tasks (Jueptner et al, 1997; Toni & Passingham, 1998; 1999). In fact human 

fMRI studies have shown that the caudate nucleus and putamen, the two sub-regions of 

striatum which receive input from different cortical regions are differentially active 

during early versus late learning trials for various probability learning tasks (Haruno & 

Kawato, 2006; O’Doherty et al., 2004), motor sequence learning tasks (Jueptner et al, 

1997; Toni & Passingham, 1998) and visuo-motor learning tasks (Toni & Passingham, 

1999). The activity in the head of the caudate nucleus is correlated with early learning 

trials,  as well as in novel tasks, whereas the putamen is active in late learning trials as well 

as with familiar task sets (see for a review, Ashby, Turner, Horvitz, 2010). 

 In a series of electrophysiological recordings in monkeys Hikosaka and colleagues 

showed that distinct brain regions become preferentially activated in specific stages of 

learning during a sequential finger movement task (Hikosaka et al., 1995; Hikosaka et al., 

1999; Hikosaka et al., 2002). In addition to that, Miyachi et al. (2002) showed that 

neurons in the rostral-striatum (associative striatum) show preferential movement-related 

activations while monkeys learn novel movement sequences in a procedural motor 

learning task. In contrast to the previous studies of Hikosaka and colleagues, Miyachi et 

al. (2002) showed that the activity in these neurons decreases after the learning phase of 

the experiment (see, Figure 3.8).  
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Figure 3.8 Responses of a single neuron in the associative striatum and a single neuron in the 
sensori-motor striatum of a monkey during the performance of a motor sequence learning task. 
The recordings shown are recorded during movement initiation. This figure shows that neurons 
in the associative striatum responded more strongly to the new sequence than the old sequences, 
where as those in the sensori-motor striatum responded more strongly to old sequences than to 
new sequences  (Taken from Miyachi et al., 2002)  
 

 Additionally, differences in activity have been observed in cortical regions for early 

versus late learning (Kubota & Kamatsu, 1985; Assad et al., 1998). For example, several 

electrophysiological studies showed that movement related activity in the prefrontal 

cortex was more sensitive to learning novel stimulus-response pairs than familiar pairs 

(Kubota & Kamatsu, 1985; Assad et al., 1998). The gradual activation shift in the cortex 

has been recently reviewed by Badre and D’esposito (2009), where they argued that 

rostral prefrontal cortex is involved in coding more abstract goals and actions whereas 

caudal prefrontal regions code more concrete motor actions. Graybiel (2008) also 

suggested a similar progression of functional activation in cortico-basal ganglia circuits 

where anterior frontal regions get activated in the early trials whereas when the 

behaviour becomes highly repetitive in the form of habits, addictions, stereo-types the 

involvement of caudal prefrontal regions as well as dorsal striatum increases (see, Figure 
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3.9). Moreover, before moving on to the next section, we want to point out that overall 

these results suggest a similar rostro-caudal shift in activity for predicted-values (Haruno 

& Kawato, 2006). 

 

 

Figure 3.9 An approximate schematic of the dynamic shifts in activity cortical and striatal 
regions as habits and procedures are learned. Sensorimotor, associative, and limbic regions of the 
frontal cortex (medial and lateral views) and striatum (single hemisphere) are shown for the 
monkey. ACC, anterior cingulate cortex; CN, caudate nucleus; CP, caudoputamen; MI, primary 
motor cortex; OFC, orbitofrontal cortex; P, putamen; SI, primary somatosensory cortex; SMA, 
supplementary motor area; VS, ventral striatum. Taken from Graybiel (2008). 
 

The main finding of these studies in general is that during the process of habituation of 

actionsas well as automatization of motor skills activity certain regions such as the 

prefrontal cortex and limbic striatum decreases but activity in the sensori-motor striatum 

increases (see for a review, Graybiel, 2008; Ashby, Turner, Horvitz, 2010).  

 

 

3.4 Novelty Signals as a Possible Source of Explanation for the Shift of Activity in the 

Brain 

We reviewed that there are differences in brain activation during automatization of 

cognitive processes, motor skills and habits. This change of activation might perhaps be 

related to the way, the brain deals with novel information. In order to highlight that point 
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in the next several sections the brain areas involved in processing novel stimuli and novel 

instrumental actions are reviewed.  

 

3.4.1 Novelty Related Activations in the Dorsal-Prefrontal-Circuitry  

Novelty is a puzzling concept and neural correlates of it are still not well understood 

(Redgrave, Gurney, Reynolds, 2007; Dayan, Kakade, Montague, 2000). Perhaps the 

reason for this is that there is more than one way to test and describe novelty in 

experimental settings (Ranganath and Rainer, 2003). Several descriptions used to refer to 

novelty in experimental settings are known as stimulus novelty, contextual novelty, and 

associative novelty (see for a recent discussion, Duzel et al., 2004). Given the strong diversity 

of the definitions and usage of novelty there is no consensus on a single strict definition 

(Ranganath and Rainer, 2003). We think that stimulus novelty and action novelty are crucial 

for understanding the rostro-caudal shift in the brain during instrumental conditioning 

and for that reason, in this thesis “novelty” mostly refers to familiarity of the 

participanteither with the stimulus or related instrumental actions. Thus during the early 

learning trials of an instrumental conditioning task novelty signals influence both the 

stimulus and related actions  

 Stimulusnovelty implies that the current stimulus and its properties are completely 

unknown to the subject (e.g., letters in an unfamiliar language). Stimulus novelty in 

experimental settings is usually tested by showing the participant a set of familiar and 

novel items and the neural responses to each category are compared (see e.g. Tulving et 

al., 1996; Kirchhoff et al., 2000). It has been shown that stimulus novelty activates 

various regions in the brain including lateral prefrontal cortex, hippocampus, basal 

ganglia, and midbrain (Bunzeck and Duzel, 2006; Wittmann et al., 2007). The most 

important evidence for neural responses selective for novelty in the prefrontal cortex 

come from electrophysiological studies (see for a review, Miller & Cohen, 2001). For 
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example, Assad et al. (1998) showed that when monkeys were required to make a 

saccadic choice for novel pictures in an associative learning task then prefrontal neurons 

fired significantly more than to familiar pictures (see Figure 3.10b). Also similar 

findings have been replicated in fMRI studies with humans (for review please see, 

Duncan & Owen, 2000) (see Figure 3.11b).  

 

 

 

 Figure 3.10 a) Bloodoxygenation level-dependent (BOLD) functional magnetic 
resonance imaging (fMRI) study, inwhich activity during a delayed matching-to-sample task was 
compared between trials involvingnovel or familiar stimuli. Activition in the lateral prefrontal 
cortex show increased BOLD response and greater delay for ‘novel’ trials than during ‘familiar’ 
trials. Figure is taken from Ranganath and Rainer, (2003) whereas the original study is based on 
Ranganath & D’Esposito, (2001). b) Single-unit recordings from the sulcus principalis of 
themonkey lateral prefrontal cortex during a delayed matching-to-sample task. Average firingrates 



 78 

across a group of neurons shows that neurons in this region show a greater discharge rate for 
novel objects compared to familiar objects. Figure is taken from Ranganath and Rainer, (2003) 
whereas the original study is based Assad et al., (1998).c) Purple regions in the inferior frontal 
sulcus (IFS) represents brain areas involved in novelty progressing.Figure 3.10c is taken form the 
meta-analytic review of Duncan & Owen (2000). 
 

 

 On the other hand, novel actions are usually studied by asking subjects to learn new 

motor procedures such as a new finger tapping sequence. Passingham & Rowe (2002) 

suggested that the role of the lateral frontal region (BA47) is crucial for learning novel 

actions. In a series of experiments Passingham and his colleagues showed that the 

inferior frontal cortex is active while participants are learning novel motor skills but this 

region is inactive when participants perform familiar motor skills. Moreover his follow-

up work showed that the activity in the dorso-lateral prefrontal cortex is not caused by 

the working memory but by directing of attention to novel actions. 

 Novel information processing in the brain is also studied via response 

suppression and priming tasks, which are based on the fact that repeated stimuli can 

cause a reduction in the discharge rate of neurons and consequently cause a decrease in 

the haemodynamic response (Henson & Rugg, 2003). Even though the exact neuronal 

mechanism of this phenomenon is not clearly understood, it has been shown that it can 

occur in various cortical regions and is supposed to be caused by the sharpening of 

cortical representations due to plasticity (Wiggs & Martin, 1998). Various fMRI studies 

showed that when the stimuli become familiar there is a decrease in the amplitude and a 

delay in the peak latency of the heamodynamic response (Henson & Rugg, 2003). As we 

discuss in the next chapter, it is plausible that the novelty-triggered attention mechanism 

for stimuli and actions might be controlled by dopamine in the form of adaptive learning 

rates (see for details, Chapter 4.3). 
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3.4.2 Dopamine and Novelty 

 In this section we review evidence that novelty and attention is associated with an 

increase in dopamine release in various brain regions, which facilitates cortico-striatal 

plasticity. Early single-cell recordings in monkeys reported that midbrain dopamine 

neurons respond to novel situations (Ljungberg et al., 1992) (see, Figure 3.11b). 

Additionally, Ihalainen and colleagues (1999) showed that hippocampal and prefrontal 

dopamine release in mice increases while the animals were exposed to new cage 

environments. Moreover, Legault and Wise (2001) reported that the novelty-based 

dopamine release in the ventral tegmental area (VTA) can be abolished by interrupting 

the connection between hippocampus and VTA. This suggests that hippocampal 

memory mechanisms seem to control novelty tagging to newly arriving stimuli by 

differentiating familiar and non-familiar items based on memory. Moreover, by 

performing electrophysiological recordings from cat VTA Horvitz et al., (1997) showed 

that mesolimbic dopamine neurons fire to non-rewarding salient events and they 

suggested that dopamine might play a role in attentional processes, rather than a specific 

role in reward (see, Figure 3.11a). 

 

 

 

Figure 3.11 Dopaminergic novelty responses with phasic activation. Figure 3.11a shows a 
histogram of the activity of a single dopamine neuron in cat VTA. This neuron shows increased 
firing in response to novel stimulus. Figure 3.11a is taken From Horvitz, Steward, and Jacobs 
(1997). Figure 3.11b showsphasic dopaminergic activations following novel, physically intense 
stimuli. Overlapping h-eog traces show horizontal eye movements toward the novel stimulus; 
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unfocused h-eogs after >60 trials indicate familiarity, accompanied by loss of dopamine 
responses. Data from Ljungberg et al. (1992) published in Kobayashi and Schultz (2010). Figure 
3.10btaken from the review of Schultz (2011). 
  

 

Moreover, in order to study the effect of novelty in computational reinforcement 

learning, Kakade and Dayan (2002) proposed a model where novelty acts as a “bonus 

reward”. Their model is mainly based on the evidence that in the absence of rewarding 

stimuli novelty acts like an intrinsic reward and in some cases promotes exploration of 

novel environments (Bevins and Besheer, 2005). Moreover, based on the working-

memory models of Braver & Cohen (2000), Kakade and Dayan (2002) proposed that 

novelty-based dopamine release maygate stimulus information into working memory to 

allow for the storage of a new stimulus until its potential rewarding properties are 

evaluated (Kakade and Dayan, 2002) (see Chapter 4, for the details of this 

computational model). 

 Given that novelty attracts attention and that novelty and attention both 

influence processing of actions and objects of perception in similar ways through 

dopaminergic pathways, several studies suggested that they are crucial in guiding 

cognitive control in reinforcement learning situations (Hikosaka and Watanabe, 2000; 

Wittmann et al., 2008).  For example, Schultz et al. (1995) and Roelfsema & van Ooyen, 

(2005) argued that an attentional feedback signal from the output layer of a neural 

network (e.g., cortex) might limit plasticity in earlier layers (e.g., striatum). They argued 

that attentional feedback signals mimic the dopamine activity and this may be related to 

the effect of dopamine release on post-synaptic excitability of striatal neurons. In other 

words, dopamine release helps to enhance the cortical activity on the strongest striatal 

activity, and decreases the weaker activity, which in turn facilitates the focusing (or 

gating) effect (see, Figure 3.12).  
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Figure 3.12 A two-layer neural network model showing the effect of dopamine on the 
connections weights. The top image shows no dopamine activity, the weights are high for all 
connections. In the middle image, dopamine increases the relevant weights causing focusing 
effect. In the bottom image dopamine induce long-term facilitation.  Figure taken from Schultz 
et al. (1995) 
 

3.4.3 Top-Down Influences of Attention on Stimuli and Actions 

 The brain’s ability to selectively allocate resources to certain stimuli, memories, 

thoughts and actions is called attention (Posner & Petersen, 1990). Studies in 

neurological patients and physiological studies in humans and animals implicate a 

distributed network of cortical and subcortical regions for attention (Desimone & 

Duncan, 1995). Neuroimaging and electrophysiological studies identified attention-

related areas in the frontal, parietal, temporal and occipital cortex (see for a review, 

Corbetta & Shulman, 2002). The limited attention processing capacity of our brain allows 

filtering out irrelevant sensory information by top-down (goals) and bottom-up (stimulus 

salience) processes. There are several factors that may affect top-down processing of 

information such as knowledge, expectation or goals (Corbetta & Shulman, 2002). In 

addition to those, novelty and unexpectedness are also counted as factors 

affectingattention (Corbetta & Shulman, 2002). Previous studies have shown that the role 
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of attention in Pavlovian and instrumental conditioning is crucial because it helps the 

organism to select good predictors and inhibit bad predictors of outcomes (Kakade, 

Dayan, Montague, 2000). Both bottom-up and top-down attentions on decisions are 

widely studied in cognitive neuroscience (for a review see, Knudsen, 2007). It has been 

thought that both forms of attention can enhance decisions. For example, according to 

Gazzaley & D’Esposito (2007), top-down attention in decision-making refers to selective 

attention processes on goal-directed decisions. It has been shown that selective attention 

to goal directed decisions inhibit the effects of exogenous factors like saliency and 

novelty and improves decision quality by decreasing reaction times. Moreover, the link 

between top-down attention and working memory has been well studied over the years 

(Corbetta & Shulman, 2002). It has been argued that useful information for decisions 

such as the values of options are kept in working memory over periods of seconds 

(Wallis, 2007a) and top-down attention is responsible for manipulating this information 

by accessing working memory (Knudsen, 2007).  

 In the instrumental conditioning context the term “attentionalset” has been 

generally used to define representations that include both selecting task-relevant stimuli 

(e.g., symbols representing options) and task-relevant actions (Cools et al., 2010). In the 

attentional set-shifting paradigm, subjects discriminate between two patterns according 

to one of two stimulus dimensions (e.g., shapes or lines). It has been shown that PD 

patients are impaired in the attentional set–shifting paradigm as they are impaired in top–

down control attention (Cools et al., 2010).  

Moreover, Armel et al.,  (2008) developed a model to investigate the role of visual 

attention on binary choice. Their model predicts that by increasing the amount of time 

spent on a particular option in a multiple-choice task the probability that an item be 

chosen increases. Their results showed that, in the appetitive condition the attended 

options are 6% to 11% more likely to be chosen than the unattended options. In 
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contrast, aversive items are 7% less likely to be chosen. In a follow up study using eye-

tracking and excluding the fixation, they showed that the participant’s choices exactly 

matched with the drift-diffusion model’s predictions (Krajbich et al., 2010). These studies 

clearly demonstrate the importance of top-down attention on action selection. 

 Although the effect of attention on procedural learning is well studied, its effects 

on predicted-values are less clear. For example, Pessoa and Engelmann (2010) suggested 

that various fronto-parietal attention networks can affect information processing in 

subcortical motivation networks. They proposed three models where the attention 

network and the reward systems can modulate actions. The first model considers that 

attention and motivation don’t interact with each other but both influence the actions 

separately. In the second model, motivation mediates attention in a unidirectional way 

and then attention and motivation influence behaviour separately. In the third model, 

attentional and motivational systems integrate information via bidirectional 

communication and influence the behaviour jointly. Although it is not perfectly clear 

which model provides better accounts for the relation between attention and motivation 

one recent study provides valuable evidence. van Schouwenburg, et al. (2010b) using a 

dynamical causal modelling of functional brain imaging data, demonstrated top-down 

control by prefrontal cortex and selective gating of basal ganglia to salient events 

implying that there may be  functional connectivity between prefrontal cortex and visual 

cortex (see, Figure 3.13).  
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Figure 3.13 The model that best fits to the fMRI model includes connections from the IFG to 
the FFA and PPA (black) and the following inputs: novelty to the IFG, switch to the BG, 
attention to faces to the FFA, and attention to scenes to the PPA. Figure 3.13a is taken from van 
Schouwenburg et al., (2010a). The next two figures show cognitive switching of basal ganglia by 
regulating top-down projections from prefrontal cortex (PFC) to posterior sensory areas. Figure 
3.13b and Figure 3.13c is taken from van Schouwenburg et al., (2010b). 
 

Their study suggests that there is a bidirectional link between inferior frontal cortex, 

which exerts top-down attention to novel stimuli, and the basal ganglia, which 

controlsaccess of salient inputs to other cortical regions (for a review, van Schouwenburg 

et al., 2010a).  

 

3.5 Interim Summary 

Many cortical regions are involved in calculating predicted values during associative 

learning task, especially mPFC which calculates predicted values for goal-directed actions 

and dorsal-striatum which is involved in habitual actions. The anterior posterior shift in 

the brain is also not specific to goal directed learning but also other cognitive-motor 

processes show a similar shift of activation towards caudal regions as they become more 

automatic. Moreover, we also reviewed that midbrain dopaminergic neurons, ventral 

striatum and DLPFC (Ljungberg et al., 1992; Duncan & Owen, 2000; Witmann et al., 

2008; Bunzeck et al., 2010) are involved in processing novel stimuli perhaps via a 

bidirectional link (van Schouwenburg et al., 2010a). Based on that we hypothesized that 

novel stimuli engage with dorsa-lateral frontal cortex and should show increase in the 
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BOLD responses in midbrain compared to familiar stimuli. Furthermore, if the 

predicted-values are calculated for a set of stimuli during early versus late trials (same as 

for novel versus familiar stimuli), the predicted-values for the early trials should engage 

in MPFC and the predicted values in late trials should engage in dorsal striatal regional. 
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Error...  Therefore I am. 

 

 

 

Chapter 4  

 

 

4 Formal Models of Associative Learning 

In this chapter, the historical progress of mathematical models, which leads to 

computational models of reinforcement learning, is reviewed.  Furthermore, the capacity 

of these models in modelling psychological situations (e.g., Pavlovian and instrumental) is 

discussed. 

 

4.1 Associative Learning Models that are Inspired from Psychology  

4.1.1 Bush and Mosteller Model 

It is useful to start this chapter by introducing the linear model of Bush and 

Mosteller (1955) which is the ancestor of many subsequent models (Bower, 1994). Bush 

and Mosteller (1955) focused on modelling peoples’ reactions to binary choices over 

many trials. In a repeated binary choice task there are two options say option, A and 

option B, where choosing one or the other provides a correct feedback with a  

probability P(A) and P(B). In such a case, what Bush and Mosteller wanted to know was 
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the following, if the participant chooses option A with a certain probability value in their 

head, say P'(A), what will be the probability of choosing A again in the next trial, and 

how is the participant’s choice affected by the actual probability of A being rewarded, 

P(A)? They suggested that every time a participant gets rewarded for choosing A there is 

a small increment in the probability of choosing A again and every time a participant gets 

nothing there is a small decrement in the probability of choosing A.  In their model they 

assumed that the probability of choosing option A is calculated by the following rule: 

 

   [4.1] 

 

In Equation [4.1], ! represents the learning rate parameter and R is the magnitude of the 

reinforcer. P`t-1 (A) is the participants estimated probability for choosing option A in the 

prior trial. The idea behind their model was simple and captures the basic choice 

behaviour or the participants. In each trial, t  the probability of choosing A is increased 

or decreased by the difference between the reward outcome and the probability of 

choosing the same option in a previous trial.  

 

4.1.2 Rescorla-Wagner Model 

 One of the most influential mathematical models in the history of associative 

learning is the linear learning rule of Rescorla and Wagner (1972). Earlier studies failed 

to formulate the learning process as accurately as the Rescorla-Wagner model. For 

example, in the early twentieth century Thorndike (1911) did not consider the organisms’ 

anticipation of reward in his associative learning theory, which remained the most 

important missing link for decades. In the Bush and Mosteller model explained in the 

previous section the update was based on response probabilities, which are purely 
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descriptive explanation of behaviour, however in the Rescorla & Wagner model the 

update is based on the internal association strengths, or so called weights (Newell, 

Lagnado, Shanks, 2007). Newell and his colleagues (2007) argue that this modification 

allows predicting various response strategies such as maximizing outcome (choosing the 

high-probability reward option in all of the trials), which was not possible before with the 

Bush and Mosteller model because it learns to match the response probabilities.  

Rescorla and Wagner (1972) attempted to shed light on the very basic question, 

which is under what conditions does the associative strength between an unconditional 

(US) and conditional stimulus (CS) increase ? According to Rescorla and Wagner, their 

model “depends not only on the reinforcement itself but upon the relationship between 

that reinforcement and the reinforcement that the organism anticipated” (Rescorla, 1972, 

p.11). The Rescorla-Wagner learning rule updates the value attributed to a stimulus after 

each trial, by the fraction of what is referred to as the “prediction error”. The latter is the 

calculated difference between the value of the reward predicted by the CS and the value 

of reward received. So this can only be calculated after a CS-US sequence of events. 

According to the Rescorla-Wagner learning rule, the value of an arbitrary stimulus, is 

updated as follows:   

 

    [4.2] 

and the new value of the stimulus becomes: 

 

   [4.3] 

 

Here, is the change in the expected reward value of a particular stimulus x; 

parameter  represents the learning rate for a particular stimulus x; !is the outcome 
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specific learning rate that defines the saliency of the outcome; variable denotes the 

current value attributed to the stimulus or the reward expected by an organism at trial t; 

and l is the actual reward that the organism received. The term refers to the 

difference between the reward gained at the end of the trial and the previous (expected) 

value of the stimulus. Hence the difference between the actual and expected reward is 

called the Rescorla-Wagner prediction error signal, and is represented by ! (Niv 

&Schoenbaum, 2008) where the weight change simply becomes: 

    [4.4] 

The Rescorla-Wagner prediction-error signal represents how surprising (in a positive or 

negative sense) a particular reward is after the organism receives the outcome. The 

Rescorla-Wagner learning rule is generally used to explain Pavlovian conditioning, 

however it can be modified to model instrumental conditioning as well.  In that case the 

level of surprise after choosing a particular option changes the associative strength 

between the US and the associated option. Note that a high learning rate, #x assigns 

greater weight to the prediction error, and can slow down the convergence, or delay 

learning, when the rewards have a stochastic character. 

 In fact this fundamental principle was used early on in the least-mean-square 

error algorithm (LMS) (sometimes referred to as generalized delta-rule in neural 

networks) where it is used to train single-layer neural networks (Widrow & Hoff, 1960). 

In such a single-layer neural network learning occurs by updating the weights of a 

network by the error, ! and its multiplication with the learning rate parameter (see for 

example in the classic back-propagation algorithm, Rumelhart, Hinton, and Williams, 

1985). However, there are two important differences between the Rescorla-Wagner 

learning rule and the least-mean-square algorithm. Firstly, in the least-mean-square 

algorithm the outcome is not a reward but a predetermined teacher signal, which corrects 
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errors in a supervised manner. For example, Klopf (1972) suggested that supervised 

methods lack adaptive behaviour because the trial-and-error behaviour of the agent is 

missing in the equations of supervised learning algorithms. For that reason, the 

supervised error-correcting rules like the delta learning rule, the prediction error is 

calculated as the difference of desired outcome and the observed outcome. In contrast 

the prediction error in the Rescorla-Wagner learning rule is calculated as the difference 

between the reward received and the value of the CS. Several researchers proposed that 

the Rescorla-Wagner learning rule is a special case of least-mean-square algorithm 

(Sutton and Barto, 1981; Quinlan, 1991).  Still, it is important to note that these two 

learning methods are only equal in an artificial setting because in natural ecological 

settings the rewards are embedded in the environment where the animal has to learn by 

trial and error. 

 Secondly, a more fundamental implementational difference exist between the 

least-mean-square algorithm and the Rescorla-Wagner learning rule, which is that in 

neural networks the weight inputs (in this case a CS) are transformed by an activation 

function (that defines activation of a neuron with a particular input) and then the 

prediction-error is calculated, which allows learning of non-linear CS-US relations 

(Dawson, 2008). Having said that Gluck and Bower (1988) used the actual Rescorla-

Wagner algorithm in their connectionist models of human probabilistic category learning  

 

4.1.3 Limitations of the Rescorla-Wagner Learning Rule 

 Although the Rescorla-Wagner model can explain a wide range of behavioural 

phenomena, including classical conditioning, extinction, or blocking it has several 

limitations (Miller, Barnet Grahame, 1995). In this section a few of these limitations are 

reviewed (see for details, Miller, Barnet Grahame, 1995; Pearce and Bouton, 2001). 
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 Firstly, the Rescorla-Wagner learning rule fails to explain certain learning 

phenomena such as latent inhibition (Gluck, Mercado, Myers, 2008). The latent 

inhibition paradigm has two phases (Lubow & Moore, 1959, Lubow, 1973). In the first 

phase animals are pre-exposed to the CS without training and then in the second phase 

they are trained with the US. When compared with a group of animals that have not been 

pre-exposed to the CS, the group of animals who are pre-exposed show decreased 

learning.  Therefore, latent inhibition occurs when the animals are pre-exposed to CS. 

This is problematic for the Rescorla-Wagner learning rule because no unexpected 

outcome occurs (no prediction error) during the first phase of the experiment (just 

familiarization with CS) and one should expect no learning to take place. However, it has 

been shown that this pre-exposure to CS with no feedback affects learning in the second 

phase of the experiment. For this reason, the Rescorla-Wagner learning rule is considered 

to be a US modulation theory because it cannot take into account the CS novelty and 

CS familiarity (Gluck, Mercado, Myers, 2008).  

 Secondly, the Rescorla-Wagner model predicts that the history of conditioning 

has no influence on its present status; only the current association value is important. 

However, experimental evidence shows that history of reward effects have significant 

influence on the value calculation (Kennerly et al., 2004; Amiez et al., 2004; Hampton et 

al., 2006). 

 Third, Rescorla-Wagner models cannot deal with higher-order conditioning since 

during learning of two consecutive conditional stimuli, no unconditional stimulus occurs 

(Seymour et al., 2004). As explained in Section 4.2.2 the Temporal-Difference learning 

algorithm can be seen as a modified Rescorla-Wagner learning rule that is modified to 

account for modelling higher-order conditioning and within trial temporal dynamics. 
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4.1.4 Attentional Approaches to Associative Learning 

 To account for latent inhibition and other phenomena several alternative 

mathematical models have been proposed (Machintosh, 1975, Grossberg, 1975, Pearce 

and Hall, 1980; Schmajuk and Moore, 1989). In these models, stimulus novelty is 

modulated by either the attention paid to the CS, or the US (Schmajuk, 1997), such that 

during learning novelty increases when an unpredicted CS is presented or when a 

predicted CS is absent. For this reason these extended associative learning models are 

usually referred to as CS modulation theories (Gluck, Mercado, Myers, 2008). For 

example, in the Pearce and Hall (1980) learning rule the associability is determined by the 

following equation, 

    [4.5] 

 

In equation 4.5, is the learning rate or associability, which is based on the prediction 

error in the previous trial. Likewise in the Rescorla-Wagner model, is the outcome and 

Vx is the value of stimulus x. Hall (1991) introduced a further change and the latest 

equation became the following: 

 

        [4.6] 

 

In equation 4.6, determines the responsiveness to the associability of the CS that 

controls the speed of learning and the change each trial. Differences between Rescorla-

Wagner learning rule and Pearce Hall learning rule can be easily seen by the following 

two equations: 
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    Rescorla-Wagner:    [4.7] 

    Pearce-Hall:      [4.8] 

Similar to the role of ! in the Rescorla-Wagner learning rule in equation 4.4, Sx in 

equation 4.8 refers to stimulus specific saliency. Eventually the most important difference 

between the Rescorla-Wagner learning rule and Pearce-Hall is that in the latter one the 

prediction error is calculated with the prediction error in the previous trial and called as 

the learning rate which models CS novelty or so called attention (Hall, 1991).  It is 

important to note that according to Schmajuk (1997) in much of the models that follow 

the Pearce-Hall learning rule novelty decreases as learning progress, but it is never totally 

eliminated. 

 

4.2 Associative Learning in Computational Models of Reinforcement Learning 

 Reinforcement learning (RL) is a computational framework used to model the 

behaviour of an artificial agent that receives scalar reward signals. RL has its roots from 

control theory (Bellman, 1957) and psychology (Watkins, 1989; Suton & Barto, 1998). 

Over the last two decades research in reinforcement learning promoted fruitful 

interaction between different disciplines like neuroscience, psychology and artificial 

intelligence perhaps because most of the time the challenges that reinforcement learning 

models are exposed to are similar to actual human and animal behaviour in an 

experimental setting such that when an animal has to learn the environment it needs to 

select and monitor the consequences of its actions to achieve a goal state. During 

learning the environment provides immediate or delayed reward and the animal learns 

the value of intermediate states and to estimate the value of taking particular actions.  

  From the control theory side of RL, initial steps were taken by Bellman (1957) 

who tried to find a solution for the optimal policy problem (learning to choose the 
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actions that maximize expected future reward), and came up with a set of equations 

called the Bellman consistency equation in 4.9. 

 

           [4.9]  

                     [4.10] 

 

 Here in equation 4.9, the real world counter part of the definition of a state can be a 

stimulus in a conditioning trial that predicts reward. Then V(St)  becomes the value that 

is equal to the cumulative sum of all future rewards, r.  The discount factor !  (

) dictates the extent to which rewards that arrive earlier in time are favoured over those 

that arrive later. Equation 4.10 is equal to Equation 4.9 where E[.] denotes the expected 

value of the sum of future rewards. Similarly the cumulative sum of all future rewards or 

called the value of the next time step V(St+1)  can be written as: 

 

         [4.11] 

 

Note that, although t indicates the trial number it can also indicate any variable that 

provides a way to order the states visited during the learning process. Then, the current 

expected return for V(St)  could be re-written in terms of next states value; V(St+1) as:   

 

              [4.12] 

 

Equation 4.12 describes the optimal value equation and is the essential for most RL 

models. A similar Bellman equation can also be written for a Markov Decision Process 
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(MDP) where the outcome and state transitions are stochastic (Doya, 2007). In such a  

system, transitions from one state to another is predefined with a probability 

distribution, P(St+1|St) and the recursive relationship for the state values is written as: 

 

 `       [4.13] 

From that point, the agent can enumerate and store the entire state transition matrix in 

its memory. Similarly the instrumental counterpart for the state transition matrix can be 

written as follows: 

 

        [4.14] 

 

Defining a state transition function is the essence of the markov decision process and 

takes the form in equation 4.14 where the probability distribution over the new state, (s’) 

is conditional on state (s), action (a) pairs. Such a process involves learning the 

probabilities associated with the different states in a model and sometimes referred to as 

the model-based RL or dynamic programming. Action values in model-based RL systems 

are calculated for different routes by searching forward through the map and evaluating 

the potential rewards found therein (Daw, Niv & Dayan, 2005; Doya, Samejima, Katagiri 

& Kawato, 2002).  Then, the optimal policy can be found by determining the best states 

or actions. However, the optimal policy that is explained above are related to two types 

of problems and directly related with the environmental situations of the agent (see 

Section 4.2.1). The first problem is called the prediction problem. Basically, the prediction 

problem refers to the question, how well the agent evaluates (or predicts) upcoming 

events derived from its policy after learning the value of each state? A Policy evaluation 

is used to refer to the prediction problem that is to find, how much reward an agent will 
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get when it follows a certain policy (Sutton and Barto, 1998; Ji and Daw, 2011). On the 

other hand, the second problem is related with the control theory (which also depends 

on the prediction problem) and refers to the question how can the agent make planning 

decisions after finding the optimal policy (Wörgötter & Porr, 2005; 2008). Nonetheless, 

whether there exists an optimal policy or not the aim of the agent is to increase its long 

run sum of the expected future rewards (or minimize punishments).   

 

4.2.1 The Effect of Environmental Dynamics in Reinforcement Learning that Determine 

Pavlovian and Instrumental Conditioning 

 In a learning situation it is important to define the environment of the agent 

because it gives the premises of which updating strategy the agent is going to use. The 

environments in a RL methods are usually non deterministic which indicates that an 

action in a state on two different occasions may result in different next states (Kaelbing, 

1996). There are two types of environments that exist, the open loop and the closed loop 

environment.  In the open loop environment there is no need for an agent to make 

explicit actions but in the close loop environment, it is necessary for an agent to take 

actions to learn the value of a particular state. If the environment is in open loop such as 

in a Pavlovian conditioning situation, the agent will use the state-value updating strategy 

(for details see temporal difference learning algorithm in the next section). On the other 

hand, if the environment is close loop such as the instrumental conditioning experiments, 

the agents has to use an action value updating strategy, where it has to make decisions by 

taking actions and have to learn how desirable those actions are in order to build a policy. 

Algorithms used in the close-loop environments will be returned in section 4.2.3. 
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4.2.2 Temporal Difference Learning Algorithm 

Besides the Rescorla-Wagner model, there are alternative computational models 

for Pavlovian conditioning. One alternative is the temporal-difference (TD) learning 

algorithm (Sutton & Barto, 1998).  As reviewed in detail in Chapter 2, over the last 

decade, the TD algorithm has been commonly used to model the prediction error signal 

of dopamine neurons in various Pavlovian learning experiments. The TD learning 

algorithm is based on the assumption that state values (expected future rewards) are 

coded separately from the actions taken to optimize rewards, hence its suitability for 

modelling Pavlovian conditioning. On the other hand, standard action-value learning 

algorithms (as reviewed in the following Section 4.2.3) are based on the assumption that 

state-action pairs are coded together, hence their suitability for modeling instrumental 

conditioning experiments. The TD algorithm is represented by the following equation: 

  [4.15]                                  

Here in equation 4.15 the prediction error is calculated as the difference between 

the reward in the current trial summed with the value in the next trial minus the value of 

the current state. Although at first sight the TD algorithm is similar to the Rescorla-

Wagner learning rule, TD implements some major generalizations. First, the TD 

algorithm explicitly represents time during the course of a trial. Second, during the 

course of a trial the subject can visit multiple states. Third, the TD-associated values are 

predictions of the cumulative future rewards associated with each state (rather than 

predicting the immediate reward associated with the current stimulus as in the Rescorla-

Wagner rule). In the state value updating strategy, the stimulus-reward schedule is 

defined by the experimenter and the agent can only act as the observer not the decision 

maker. A variant of TD learning, called the actor-critic algorithm, is also used in 

instrumental learning experiments (Barto, 1995, Joel et al., 2002). Even so, it shares lots 
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of similarities with the TD algorithm that is to sum the state values are coded separately 

from actions; optimal actions in Actor-Critic architecture are those that follow the 

trajectory of optimum states.   

 

4.2.3 Computational Models of Action Learning  

 A relatively recent concept in decision neuroscience, action-value coding, aims to 

answer this question: how can learning about stimuli that lead to rewarding outcomes 

guide actions? According to some computational reinforcement learning algorithms, 

action-value coding involves agents first learning the reward value of state-action pairs by 

doing trial-and-error learning and then updating the value of actions by using the 

prediction error, that is the difference between how much reward was expected and how 

much actual reward received by performing that particular action. The basic idea can be 

illustrated with the example, that is if I am in a state where I am wondering over possible 

outcomes then which course of action will make me happier (such as going to the 

kitchen for a cup of water or reaching to the table for a cup of coffee).  

 It has been argued that during the time of stimulus presentation depending on 

the action selection rule (policy) it is highly likely that the action with the higher action value 

will be selected. Over the last twenty years various methods were developed in order to 

explain the underlying computational mechanisms of this selection procedure; e-greedy4, 

sofmax5and winner-take-all selection rules are examples of such methods commonly 

used in reinforcement learning (Kaelbing, 1993; Kaelbing et al., 1996; Sutton & Barto, 

                                                

4  In the e-greedy policy most of the time the action with the highest estimated reward is 
chosen, called the greediest action. However with a small probability e, an action is selected at 
random. The action is selected uniformly, independent of the action-value estimates. The 
epsilon greedy method balances the exploration and exploitation behavior of the agent. This 
method ensures that if enough trials are done, each action will be tried. 

5The softmax method assigns weights to each possible action, according to their action-value  
estimate. Then, a random action is selected taking in to account the weight associated with each 
action. 
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1998; Dayan & Abbott, 2001; Suri & Schultz, 1998, 1999). Recent studies in 

computational neuroscience based on the cortical neuroanatomy suggest that the motor 

cortex represents actions for all available options in the action preparation period, and 

these actions compete with each other in order to take control over the desired action, 

which is in fact similar to unsupervised competitive learning in neural networks (Cisek, 

2006, 2007).  

 A more fundamental question, which is crucial for this thesis, is how the nervous 

system represents action values and where in the brain these action values are encoded. 

In order to answer these questions, it is important to understand the historical evolution 

of the action-value concept in reinforcement learning. The notion of action-value was 

originally borrowed from computational theories of reinforcement learning and used to 

find an optimal solution to the spatial credit-assignment problem. Spatial credit-

assignment simply refers to efficient allocation of actions in a multi-option choice task 

(Minsky, 1963). The first steps for understanding the mathematics behind action-values 

were taken by Richard Bellman (1957). His work showed that it is possible to write a set 

of value functions recursively, which allows an agent to increase its expected cumulative 

reward in a learning situation. Similar to equation 4.11 the expected value of reward for a 

particular action can be represented by the following equation: 

 

      [4.16] 

 

Q represents the state-action value function and E[.] denotes expectations of reward over a 

state s and action a. This major concept not only created new research areas in artificial 

intelligence and operations research but also later lead to Watkins’ (1989) first Q-learning 

algorithm, that is proved to converge to the optimal solution (Watkins & Dayan, 1992). 

The Q-learning algorithm is an off-policy reinforcement learning technique which uses 
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the values of state-action pairs represented by Q(s,a) to calculate the optimal solution 

without needing to store state transition probabilities. This can be simply demonstrated 

by the cliff-walking task shown in Figure 4.1. In the cliff-walking task, the agent starts at 

state S1 (initial state), and can move up, down, left, or right until it reaches the terminal 

state, S8.For each action taken, the agent gets a negative reward of -1.The terminal state 

S8 gives a reward of +100, and the yellow zone (see Figure 4.1) is a “cliff”, which gives a 

negative reward of -100 and sends the agent back to the starting state. It is expected that 

the agent should learn to reach the goal in the least number of steps. The reward value of 

each state-action pair is stored in a table, which is usually referred as the Q-table. When 

the agent in the next trial come to the same state, the algorithm updates this table by 

changing the value of the old state-action pair Q(s,a) to the new state-action pair Q(st+1, 

at+1) by using Equation 4.16.  
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Figure 4.1 Schematic representation of the cliff-walking task that demonstrates the relationship 
between an agent and its environment. (A) There is a set of environmental states “s”; a set of 
actions, represented by black arrows and a set of scalar reward and punishment values at the 
intermediate and terminal states. (B) The policy of Q-learning algorithm (on the left) and (C) The 
policy of the Sarsa algorithm (on the right). The color indicates how many times that state is 
visited (e.g., black-not visited, red-frequently visited, white-most frequently visited. We tested 
both learning algorithms with the epsilon greedy action selection rule with e = 0.1. The results 
obtained were averaged from 1000 episodes. The Q-learning algorithm showed less explorative 
behavior than the Sarsa algorithm with the same exploration rate. The reason for this behavior is 
because the Q-learning algorithm selects the highest value future actions in the next state 

Indeed accidently falling in the cliff does not change the maximum Q-value of 

that state and hence does not diminish Q-values at previous states. The results also showed that 
the agent that use the Q-learning algorithm choose the risky path more often than the safe path 
(see Appendix B for implementations of the above figures in Matlab). 
 

 

 It is important to note that in this example the only problem the agents have to 

deal with is the spatial creditassignment problem, and not the temporal credit-assignment 

problem. The temporal credit-assignment problem, which is also called the distal reward 
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problem in classical conditioning (Hull, 1943) deals with predicting the timing of events 

such as reward delivery. It thus appears that the action-value coding framework can only 

be applicable to actions that lead to immediate rewards, whereas most actions in natural 

settings don’t lead to immediate rewards but serve long-term goals.  As such these are 

related to both the temporal and spatial credit-assignment problems.  

 The key issue to emphasize with the Q-learning algorithm is the similarity between 

an artificial agent in a cliff-walking task and a subject in a real world experimental setting 

and the way in which the problem is approached to find an optimal solution. Perhaps an 

analogy can be made between the cliff-walking task and a saccadic decision making task.  

Consider a monkey making a saccadic decision-making task where it gets fruit juice after 

making a saccade to a symbol on the screen. When the monkey is in the initial state, 

which refers to the situation when it is fixating a cross on the screen, two symbols 

appear on the screen either the right or left side and the monkey has to make a saccade.  

Let’s call these alternatives action one and action two. Byrepeated trials and errors 

through reward processing, the monkey will adjust its behavior by updating the value of 

actions in order to adapt tothe reinforcement contingency (for a slightly different 

example from an actual study please refer to Morris et al., 2006). The prediction error 

here can be represented simply by the difference between reward and the Q-value; 

. In other words, in that kind of experimental setting, subjects will 

continuously update the values of their actions in order to reach that final rewarding 

state that increase their satisfaction (or decrease un-satisfaction in the case of avoidance 

learning). The two algorithms, Q-learning and Sarsa, that were used in Figure 4.1 are 

shown in Equation 4.17 and Equation 4.18 respectively. 

 

QL  off-policy    [4.17] 

4.  
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SARSA on-policy    [4.18] 

 

The only difference between Q-learning and Sarsa is that the former uses an off-policy 

method and the latter an on-policy method where the off-policy algorithm can update 

the estimated value functions using hypothetical actions where as on-

policy algorithms update the value function based strictly on experience.  This explains 

the naming of the SARSA algorithm, an abbreviation referring to state, action, reward, 

state, action.  As such, the optimal policy can be found by determining the best state-

action pairs that will lead to the optimal path.  

 

4.2.4 General Limitations of the Applications of the Computational Models in Functional Imaging 

 Although both the Q-learning and SARSA algorithms calculate the action-values 

and are commonly utilized in electrophysiology and human brain imaging studies (Niv et 

al., 2006), they are not the only plausible models to for action-value representations in 

the human brain. The Rescorla-Wagner learning rule is also utilized in electrophysiology 

and neuroimaging studies in order to help us understand how the values of stimulus-

response pairs are coded (Palmineteri et al., 2009; see also Chapter 5 for a discussion). It 

is important to note that even though algorithmic representation of Q-values is different 

from the value assigned to a particular conditional stimulus, Vx as in the Rescorla-Wagner 

learning rule, both have equivalent potential for representing action values in 

instrumental conditioning tasks if the subject performs an action based on the stimulus 

value.  This is because these different value representations are usually correlated at the 

neural level when the task requires a participants’ choice from multiple options (ref). 

Hence, some recent imaging studies used stimulus values (anticipatory value) Vx at the 

time of motor movement or action selection periods in order to study action values (ref). 

Even though in these studies they used the term “value of stimulus” we believe that this 
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difference between the value of a state-action pair Q(s,a) and the value of a particular 

stimulus Vx is only a question of semantics although they are different algorithmically. 

Therefore, we think that if the task is instrumental, the Rescorla-Wagner learning rule can 

well be used to study action values. However, one should be cautious in interpreting 

these variables, for example the term “action-value” is generally used to indicate values 

that are calculated before the actions and the term “expected value of an action”, “reward 

prediction” or “chosen-value” are calculated during or after the action is executed 

(Wunderlich et al., 2009). Also in certain occasions the term “expected value” is used for 

a different meaning. In that context “expected-value” refer to the mathematical operation 

where one multiplies the value of all possible options with their probability of occurrence 

( ). Hence expected value indicates the expected future sum of all 

rewards and is usually associated with “state-values” rather than action-value (O’Doherty 

et al., 2004).  

 Finally, although, Q-learning, Sarsa and Rescorla-Wagner models provide useful 

information for understanding action-values, these models fail to explain the effect of 

novelty on recently learned action values and the effect of familiarity on those action-

values in the form of habits.  The reason for this is because the effect of novelty is 

usually captured by the learning rate parameter (except dopamine as novelty bonus 

models, see Kakade & Dayan, 2002; Witmann et al., 2008), which seems crucial in 

explaining the differences in activation for learning with familiar and novel stimuli 

explained in Chapter 3. In the next section, examples from adaptive learning rate 

models are given. 
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4.3 Adaptive Learning Rate Methods 

  Similar to the Pearce-Hall learning rule mentioned early in this chapter, which 

updates associability with a dynamic learning rate, early studies in neural network 

research showed that using a fixed learning rate in neural networks have certain 

disadvantages when the step-size of the error surface changes more sharply for one 

weight than the others (ravines) (Jordan, 1988). Due to this disadvantage various adaptive 

learning rate methods were developed in order to improve the convergences and speed 

of learning performance (Jordan, 1988). It has been shown that dynamic learning rate 

methods are not only perform better than fixed learning rate methods in stationary 

problems but they are also better in non-stationary problems where the optimal solution 

to a problem change overtime (Sutton; Behrens; O’Doherty et al., 2006). In fact there are 

many ways to estimate trial by trialchanges in learning rate. State-space models (Smith et 

al., 2004), moving average technique (Eichenbaum et al., 1986), information theoretic 

techniques such as Kullback-Leibler divergence (Haruno et al., 2004), filtering algorithms 

such as Kalman Filter (Kakade Dayan, 2002), Bayesian learning methods (Fahrmeir and 

Tutz, 2001, Behrens et al., 2007),fixed-number of consecutive correct responses models 

(Fox et al., 2003; Stefani et al., 2003) are only few of the dynamic learning rate estimation 

algorithms. Due to this huge variety in the dynamic learning rate techniques in the next 

section only two of the most communally used techniques will be summarized Kalman 

Filtering and Incremental-Delta-Bar-Delta algorithm. 

 

4.3.1Kalman Filter 

 The Kalman Filter is a powerful mathematical method developed to solve Wiener 

problems (named in honour of Norbert Wiener) that is to estimate noise in a continuous 

stochastic-process (Kalman, 1960). In the last ten years a number of studies suggested 

that the cerebellum and the hippocampus are carrying out computations similar to a 
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Kalman Filtering algorithm (Paulin, 1986, Bousquet et al., 1998). Moreover evidence 

suggested that Kalman Filtering might occur in sensory processing and behavioral 

conditioning (Kakade & Dayan, 2000; Kakade, Dayan, Montague,2001;Dayan & Yu, 

2003).The goal of the Kalman filter is to predict the true value of the state (or signal) 

when the measurements are noisy. The basic idea behind the theory can be demonstrable 

with a simple example of dead reckoning. Consider, that somebody wants to estimate his 

precise location by the using global positioning system (GPS) driving a car. In such a case 

the observations from the GPS will be noisy showing the car a couple of meters away 

from the place where it actually is. The GPS might give him noisy measurements for a 

lot of reasons but probably most importantly it will due to driving speed and maneuvers 

he is making. Since, if we are to estimate the true position of his car by using a Kalman 

Filter, we need the speed and wheel direction of his car and add this information to the 

initial noisy position observed from the GPS signal. Daw et al., (2006) applied this 

simple idea to a multi-arm bandit problem where the participants have to learn to allocate 

their choices between different bandits in order to earn maximum amount of money.  In 

their experiment the mean payoffs for each bandit is drawn from independent Gaussians 

with pre-determined mean and variance such that the mean rewards for some bandits are 

better than others. Secondly, the rewarding outcome from each bandit was diffused with 

a Gaussian random walk. Given that the mean reward value and the variance in the 

outcome are assigned a prior, Kalman Filter updates the posterior mean payoff by using 

the following equation: 

    

     [4.19] 

In equation 4.19  refers to the updated mean reward of a particular bandit and 

is the prior mean reward of that bandit with prediction error signal equals to the 

difference between the reward outcome in a trial and the mean reward outcome, which is 
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as follows: 

         [4.20] 

In the Kalman filter the learning rate which is also called the Kalman gainis calculated 

by the following equation: 

            [4.21] 

 Note that while doing parameter estimation these initial mean payoffs  and 

the standard deviation  are the first two free parameters in the model that are 

similar to the initial GPS signal and the speed in the above dead reckoning problem 

respectively. Also the variance for the payoff of the chosen bandit is updated by separate 

functions. In addition to that the Kalman Filter makes the assumption that the subject 

believes that the outcome of the bandits might vary over time and are governed by the 

Gaussian random walk which adds additional free parameters to the system. Overall this 

makes six free parameters (Daw et al., 2006). In conclusion the Kalman Filter is a 

powerful algorithm and had been utilized in fMRI research but due to its high degree of 

free parameters and initial assumptions we don’t think it is suitable for explaining the 

biological plausibility of all reinforcement learning situations. 

 

4.3.2 Incremental-Delta-Bar-Delta Algorithm 

 One such algorithm that uses adaptive learning rates is the Incremental-Delta-Bar-

Delta (IDBD) algorithm. The IDBD algorithm was first introduced by Sutton (1992) 

and is an extension of the previous delta-bar-delta learning algorithm (Jordan, 1988). 

IDBD is a meta-learning algorithm in the sense that it doesn't only learn the weights in a 

network (such as values of stimuli or actions) but it also learns the learning rate. 

 In the IDBD algorithm the learning rate is updated by the following equation: 
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           [4.22] 

In the above equation " indicates the learning rate and is an additional memory 

parameter that is actually modified using another function . The term is 

updated as follows: 

 

        [4.23] 

 

In the above equation 4.23,  is a positive constant, which is a meta-learning rate, and

is a decaying memory trace keeping the records of previous weight changes. The 

aim of learning is to minimize the squared hiand is thus a decaying trace of the cumulative 

sum of recent changes to weights and the basic learning rule for updating weights 

can be calculated as follows: 

 

      [4.24] 

 

 The advantage of the IDBD algorithm over its predecessors such as the delta-bar-

delta-algorithm (Jordan, 1988) is that it has only one free parameter, the meta-learning 

rate, and it works with incremental training of inputs rather than batch training. It has 

been shown that the IDBD algorithm shows greater performance than the least-mean-

square algorithm (LMS) and is as good as the Kalman Filter algorithm in a benchmark 

problem (Sutton, 1992). For example, Sutton (1982) suggested an alternative adaptive 

learning rate framework showing that even though the learning rate in the Rescorla-

Wagner learning rule is stimulus specific it is not capable of modeling positive and 
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negative acceleration of learning also Rescorla-Wagner model can’t be able to model 

capture choice switches in a probabilistic reversal learning task (Glascher et al., 2009). 

 

4.4 Modelling Novelty in Reinforcement Learning  

 According to Kakade and Dayan (2002) novelty in reinforcement learning 

literature, usually acts like an additional reward given to early trials in a learning situation 

and promotes exploration of the novel environments. They proposed that this effect of 

novel stimuli distorts the reward predictions and actions and novel stimuli can come to 

be treated as if it is rewarding. Also it is important to note that in the normal 

circumstances in a reinforcement learning the values of states or actions are set to zero at 

the beginning because the simulated agent doesn’t know anything about its environment. 

However in some cases rather than setting those initial weights to zero some researchers 

set random initial weights to those novel states. In fact there is neurophysiological 

evidence, which shows that the monkeys midbrain dopaminergic neurons shows 

increased spiking for novel stimuli (see Chapter 3 for details). In their reinforcement 

learning model Kakade and Dayan (2002) call this featurenovelty bonus. They modelled 

this by changing the reward r(t) at time t with the following equation: 

 

   [4.25]
 

In equation 4.25,  u(t) is the state at time t and n(u(t),T) is the novelty of this state in trial 

t. According to their proposal n(u(t),T) uses information about the novelty of the stimuli 

associated with state u(t), and makes the novelty signal decrease over trials as the stimuli 

become familiar. Therefore, the effect of the novelty bonus on the prediction error 

signal of the temporal difference equation is written as: 

 

r t( )! r t( )+ n u t( ),T( )
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  [4.26] 

Kakade and Dayan (2002) also introduced a second modification for modelling the 

novelty signal that is called the novelty shaping bonuses. According to this modification 

the value of an initial state v(t) is derived from a potential function "(u) of the state u, so 

that the estimated value v(t) at time t is replaced by the following equation 

 [4.27] 

 

In the above equation  is the value associated with the state at time t and is 

assumed to be set high for states associated with novel stimuli and that therefore deserve 

exploration. The temporal difference equation is written as follows: 

 

                   [4.28]
 

 

In these models described above the novelty signal decays hyperbolically to zero 

overtime as the stimulus repeated over trials. 

 

 4.5 Interim Summary 

  In this chapter various mathematical accounts of Pavlovian and instrumental 

conditioning were summarized. It was emphasized that several mathematical models of 

conditioning suggests that learning rates should change overtime as the animals get 

familiar with the conditional stimulus (CS) or the learning rate should change based on 

the attention capacity of the animal (Pearce & Hall, 1980). Additionally it was 

summarized that both in the past and to day using adaptive learning rates also concerns 

researchers in the computational concerned with the problem related to speed of 
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learning. The common point between psychologist and computer scientists is that over 

successive trials the learning rate decreases (see for a discussion Schumajuk, 1997) and 

the values of conditional stimuli don’t get affected by the late fluctuations in the 

prediction error signal as much as early trials.  Figure 4.2 shows the hypothetical trade 

off between an adaptive learning rate and the stimulus value. On the other hand if a 

fixed learning rate is chosen the prediction error could have a big effect on the value in 

the late learning trials (e.g., due to an unexpected negative feedback).  

 

 

Figure 4.2 (A) The hypothetical trade off between the value of an arbitrary stimulus “a” and the 
adaptive learning rate. Coloured regions indicate hypothetical activity shift in the brain from 
more rostral-executive regions towards caudal-motor regions.   Red crosses under the curve 
indicate the larger learning rates and rostral activity in the cortico-striatal loop whereas blue 
regions indicated small learning rate in the sensori-motor regions.  (B) Schematic representation 
of Wiggs and Martin (1998) shows that neural responses decrease over multiple successive 
repetitions.  
 

  Based on the evidence presented above and in the previous chapters, we 

hypothesized that the novelty signal decreases over time and adaptive learning rates 

might capture changes in attention and novelty fairly well.  Also based on the effect of 

the learning rate on the updating of the prediction error and action values it’s highly 
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plausible that a gradual decrease in learning rate may cause a shift in activity in the rostro-

caudal axis found in neurophysiological experiments (Graybiel. 2008). 

 In order to capture the adaptive learning rate, we used a simple adaptive learning 

rate updating strategy that is based on the following equation: 

 

If  

        [4.29] 

if  

       [4.30] 

if  

        [4.31] 

   

According to the equation 4.29 above, if a prediction error is greater than zero it 

indicates that something better than expected is happing and the agent should decrease 

the learning rate to increase the convergence. Here, # indicates a fixed meta-parameter 

controls the changes in learning rate. On the other hand according to equation 4.30, if a 

negative prediction error happens the agent should increase the learning rate because it 

indicates that something worse than expected is happening whereas if the prediction 

error is zero the learning rate doesn’t changein the following trial.  In general the change 

in weights is implemented by the following rule. 

 

     [4.32] 

 

The advantage of this updating technique is its simplicity because it includes only two 
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free parameters the initial learning rate and the meta-parameter $.  Regardless of its 

simplicity it captures the basic properties of the dynamic learning rate that is it decreases 

when the stimulus becomes familiar and this is based on the quality of the predictions 

the organism is making. On the other hand the current learning rule explained in 

equation 4.32 is different to that of Pearce & Hall’s (1980) learning rule because the 

learning rate in the above equation is based on the signed prediction error rather than the 

absolute value of the prediction error. This have some neurobiological implications as 

explained in Chapter 3 where positive and negative prediction errors project to direct 

and indirect basal ganglia loops. Figure 4.3 shows an example of a simulation of the 

learning rate model described by the equation 4.32 for a binary choice probability 

learning experiment repeated for 20 trials where one of the options gives a reward with a 

probability of 0.8 and the other option gives a reward with a probability of 0.2.   

 

0
!
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Figure 4.3 The results showed that over the course of the learning, the learning rate decreases 
over consecutive trials and in the later trials the value of high probability option didn’t effected 
from the prediction error as significant as in the early learning trials. During this simulation $ 
was equal to 0.4. Please note that all the values relate to prediction error, value and learning rate 
are discrete variables although it was presented as a continuing line to make it visually 
comprehensible.   
 

4.5.2 BOLD Correlates of Learning Rate 

  Numerous imaging studies utilized fixed learning rates in the model fitting 

procedures (O’Doherty et al., 2007). Fixed learning rate models have been successfully 

used to find neural correlates of certain hidden variables like the prediction error 

responses (O’Doherty et al., 2007) and have various advantages when comparing the 

differences in learning rate of different populations when the research question for 
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example is to understand the learning deficits of a particular group or subpopulation (see 

for). However, for the reasons mentioned in the previous sections fixed learning rates 

don’t capture certain behavioural and physiogical findings and so some researchers have 

utilized adaptive learning rate models in model-based imaging studies (see, Chapter 5) 

  Recent neuroimaging studies found correlations between a measure of learning 

rate and BOLD activation in the anterior cingulate cortex, frontal cortex, and basal 

ganglia (Haruno et al., 2004; Behrens et al., 2007; Brown & Braver, 2008, Krugel et al., 

2009).  

 

Figure 4.4 a) The brain regions shown in red show the neural correlates of dynamic learning. 
These brain regions include the dorsa-lateral prefrontal cortex, and the basal-ganglia. The figure 
taken from Haruno et al., (2004). b) The brain regions shown in green shows the neural 
correlates of the volatility signal that is calculated from a Bayesian dynamic-learning rate 
formulation. The regions include the posterior cingulate cortex. The figure is taken from 
Behrens et al., (2007). 
 

In addition, it has been shown that patients with Parkinson’s disease are impaired in 

inhibiting previously learned stimulus values in a probabilistic reversal-learning task, due 

to a decreased learning rate caused by an impaired dopaminergic system (Rutledge et al., 

2009). Moreover, several researchers suggested that dopamine neurons are directly 

involved in coding the learning rate (Friston, 2009).  
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Chapter 5 

 

 

5 Methods: Functional Magnetic Resonance Imaging 

 

5.1 fMRI and Physics of The BOLD Signal 

5.1.1 Physics of the BOLD Signal 

 fMRI measures the neural activity in brain regions indirectly (Logothetis, 2008). 

When action potentials occur in neurons they consume energy in the form of ATP, 

which is created from ADP by oxidative phosphorylation (Mitchell and Moyle, 1967). 

However, in order to do oxidative phosphorylation the cells need oxygen, which is 

delivered through blood by a protein called haemoglobin.  In the center of the 

haemoglobin there is an iron atom and when oxygen binds to haemoglobin it becomes 

oxyhaemoglobin or called oxygenated haemoglobin a diamagnetic material. But when the 

haemoglobin is de-oxygenated it becomes paramagnetic (Pauling and Coryell, 1936). This 

paramagnetic effect of de-oxygenated haemoglobin has %20 greater magnetic 

susceptibility than oxygenated haemoglobin and decreases the transverse magnetization 

of T2* (MRI pulse sequence for functional imaging) weighted images. Therefore, 

increased oxygen in the blood reduces the MR field inhomogeneity by reducing the 

concentration of magnetized materials (de-oxyhaemoglobin), but in turn causes a 2-4% 

increase in the intensity of the T2* weighted functional images (Ogawa et al., 1990; 
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Turner et al., 1991). The observed changes in the magnetic field of oxygenated-

deoxygenated haemoglobin ratio is called the blood oxygenated level dependent signal 

(BOLD) and is represented by the haemodynamic response function (neurophysiological 

model of ideal BOLD signal). However, later studies showed that the BOLD signal 

observed in imaging studies is correlated with local field potentials (LFP) rather the 

single neuron activity (Logothetis et al., 2001; Logothetis and Pfeuffer, 2004). The 

BOLD signal is slow in comparison to the electrical signal and usually takes 4-10 seconds 

to detect (Berens et al., 2010). In order to increase the signal to noise ratio fMRI 

experiments are usually designed to maximize the detection of the small signal variations 

of different regions resulting from different variation of local field potentials (Dale, 

1999; Wager and Nichols; 2003; Henson, 2006).   

 

5.1.2 Dopamine and the BOLD Signal 

Several studies have suggested a direct relation between the observed BOLD 

signal and the quantity of dopamine neurotransmission in the prefrontal cortex (Krimer 

et al., 1998). However, Duzel et al. (2009) argued that the change in BOLD signal might 

be caused by various physiological sources of dopamine activity. For example, they 

argued that glutamatergic inputs can activate tonically active or silent DA neurons which 

can change the local field potentials and might influence the BOLD response. Also it is 

possible that the BOLD signal can be changed by phasic burst firing DA neurons.  

However, the actual source of dopamine activity in BOLD signal remains unknown and 

needs further research. 
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5.2  Analysis of fMRI data using Statistical Parametric Mapping 

5.2.1 Design principles 

In block designs, participants are asked to perform a condition, for example task 

A, which engages the targeted brain regions for about a block of time varying from 10 

sec to several minutes. The task condition sometimes involves multiple presentations of 

the stimuli or multiple responses from the subject in a single block, so that sustained 

activity can be captured. After task A is over, the subject is asked to perform another 

task, B, in a similar blocked fashion which presumably disengages the targeted brain 

region for about the same amount of time. During the design of these two tasks, 

perceptual differences between tasks are minimized such that the different cognitive 

functions required for performing tasks A and B are reduced to the targeted function 

relevant to he research question. The period during which the engaging task is performed 

is called the ON period, and the period of the disengaging task is called the OFF period. 

ON-OFF periods are repeated back to back for N cycles. Multiple 3D fMR images are 

collected for each period, and in the final analysis, the “active” voxels in the brain are 

determined by looking at the statistical significance of the difference between the 

intensitiesobserved in the ON periods versus the OFF periods.  

In the literature, a number of studies used block designs to show reward related 

activity. For example, in one study investigators used a block design and looked for the 

differences between romantic love and maternal love by showing pictures of the 

participants’ partners or family members (Bartels & Zeki, 2004).  Although this study did 

not use a learning paradigm, experiments that use block design fail to differentiate 

between the activities induced by conditional and unconditional stimuli or between a 

decision and its outcome since both events are presented together in the same block.   
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On the other hand a growing number of event-related fMRI studies on reward 

learning have been conducted in the last decade, allowing investigators to study a range 

of hypotheses related to reward detection and prediction. These findings importantly 

extend prior findings by allowing investigators to dissociate different phases of the 

reward process, which is not possible with block designs that cannot differentiate within-

task differences. In the simplest event-related fMRI studies, a single trial consists of the 

delivery of a CS followed shortly afterwards by a US, and then the subject’s response 

time in the case of instrumental learning. 

In event related designs several 3D fMR images are collected for each single trial 

so as to allow for the observation of the transient change in the haemodynamic (BOLD) 

response, as well as the observation of timing differences in the multiple brain regions 

that are recruited to perform the given task. Also between trials there is a random inter-

trial interval (jitter) allow separation of different type of events. However, in this 

paradigm, because the observed activity is transient rather than sustained, the magnitude 

of the signal is much smaller (0.5-1.5%) and fMRI images need to be tightly 

synchronized with the brief stimulus delivery. 

Historically, block design paradigms were used in the early fMRI studies, because 

the subtraction of sustained activities measured during two opposing types of task 

enhanced the signal contrast and allowed overcoming many technical limitations. Upon 

the introduction of higher-strength scanners and improved synchronization between the 

task and scanner data acquisition, event-related studies emerged and became widely 

accepted in the field. Nowadays, most recent reinforcement learning experiments use an 

event-related design, which gives greater flexibility to the investigator for manipulating 

the independent variables. Therefore, event-related designs make much better 

estimations than block designs.  Therefore, block designs are not very practical for 

decision-making and reinforcement learning experiments if the aim is to investigate 
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complex decision variables within a reward-related learning paradigm rather than try to 

identify the effect of changes in a single independent variable.  

 

5.3  Pre-Processing 

5.3.1  Spatial Re-Alignment 

Although in most fMRI studies head movements of participants are restraint, 

displacements of head motion occurs in each scan for about few milimeters. Even 

though this is very small, it can cause significant changes in the observed BOLD signal. 

Realignment of fMRI images involves correcting the functional images for head motion 

by using a 6 parameter (3 translation in x,y,z coordinates and 3 transformation) “rigid-

body” transformation. In rigid-body transformation displacements in successive scans 

are calculate by minimizing the sum of squared differences between the reference scan 

(mean of all scans or the first scan) and successive scans. Then transformations arethan 

applied to each re-sampled image by using tri-linear interpolation (or spline) (Friston et 

al., 1995). However, this re-alignment cannot fix the movement related signal changes in 

functional images. For this reason, these movement parameters are later used as a 

covariate in the general linear model (Friston et al., 2006) to evaluate whether signal 

changes result from head movement per se.   

 

5.3.2   Co-Registration and Spatial Normalization 

After realignment coregisteration is applied to the anatomical image, which refers to the 

process where the anatomical images are registered onto functional images. Then spatial 

normalization applied to the data. Spatial normalization is the process where each 

participant’s brain is normalized to a standard anatomical space by using a template 

image (e.g, Montreal Neurological Institute, MNI Template).  
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5.3.3   Spatial Smoothing 

Spatial smoothing refers to applying a Gaussian kernel to haemodynamic responses for  

each voxel. Although there are various reasons for applying spatial smoothing the most 

important reason is perhaps inter-subject averaging which is due anatomical difference 

between individuals brain (Friston et al., 2006). Also the size of spatial smoothing applied 

to data may vary depending on the size of the effect the researchers expects (Friston et 

al., 2006). 

 

5.3.4   Statistical-Analysis: General Linear Model 

After pre-processing a statistical analysis is carried out to identify active voxels (a 3D 

volume of stored T2* weighted images together written as time series information) that 

respond to stimulus. The most standard way is to analyse voxel time series in a univariate 

way (treating each voxel separately) is general linear modelling (GLM). The simple 

formulation of the general linear model is shown by the following equation when there 

are two stimulus types  x1 and x2: 

 

y(t) = %1 * x1(t) + %2 * x2(t) + c +e(t)    [5.1] 

 

In the above equation y(t) is the BOLD response in the observed data for a single voxel. 

x1(t) andx2(t) are the stimulus functions that are used in the design matrix. For example if 

x1(t)  refers to the appearance of a stimulus on the screen it can be represented by 1 as 

stimulus “on” condition and 0 as stimulus “off” condition. Then for the entire time 

series of for example 56 seconds (each digit represents a typical 3 second TR time, which 

is the collection of  a single brain volume) will look like the following 0 0 0 0 0 0 1 1 1 1 

1 1 0 0 0 0 0 0 where the stimulus appears after the first 18 seconds.  Than in order to 

get a good fit the stimulus function is convolved with the haemodynamic response 
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function. %1 and %1 are the parameters to estimate for the model fit.  If a particular voxel 

is active for stimulus type x1 it’s model-fitting will find a high %1 and if a particular voxel 

is active forstimulustype 2 then model fitting will find high %2 value. The term ‘c’ in the 

equation is the constant such as the baseline and the term ‘e’ is the residual error between 

the fitted model and the data. After finding the best fitted parameter estimates for  %’s 

separately for each voxel they are converted in to T-values by dividing the parameter 

estimates with its’ standard error (derived from the variations of % across whole time 

series) to use in statistical tests. Then the results of each participant the results are 

combined to provide a second-level analysis for group comparison.  

 

5.3.5 The Multiple Comparison Problem and Significance Thresholding 

The multiple comparison problem refers to the situation when the standard significance 

results (e.g., p<0.05) are not acceptable. This problem is due to the total number of 

voxels in the brain. For example, if there are in total 20000 voxels in a brain and a 

confidence interval of 95% is used, 1000 of these voxels might show significant activity 

by chance. In order to decrease this several researchers suggested using Bonferroni 

correction (see for a review Bennett et al., 2009), but this is also problematic given that it 

is too conservative (P value is divided by the total number of voxels, 0.05/20000). Recent 

studies based on the Gaussian random field theory suggested considering the size of the 

cluster of activation using the false discovery rate (FDR) in which the probability of type 

1 error is matched with the type 2 error. 

 

5.3.6  Parametric Modulation of the Stimulus Function 

In the previous section when the stimulus function was introduced it was defined 

as vectors consisting of ones and zeros. However, it is possible to assign different values 

other than ones and zeros to different individual trials. These different values modulate 
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the weights assigned to the heamodynamic response function in a given trial and reffered 

as parametric modulation of the stimulus function (see for deails Friston et al., 2006). 

Parametric modulation can be used in many areas, for example it can be used to model 

the effect of a linear-nonlinear increase or decrease in stimulus intensity or it can be used 

to add the effect of participants reaction time in each trial to modulate the weight of the 

heamodynamic response function (Friston et al., 2006). But more importantly as was 

explained in Section 5.3, it can be used in model-based fMRI in order to modulate the 

haemodynamic response function according to estimates of the hidden model variables 

that are derived from fitting participant’s behavioural data to a computational model.    

 

 

Figure 5.1 Pre-processing and statistical analysis steps of fMRI datausing statistical 
parametric mapping. Taken from Friston et al., (2006). 
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5.4 Model-Based Analysis 

 The classical correlative paradigm in fMRI simply refers to the manipulation of 

the independent variables of interest and observing the changes in BOLD response.  

Even though model independent paradigms (e.g., epoch analysis) have been useful and 

are still used by many researchers (e.g., Bartel and Zeki, 2000; 2004), it is not good 

enough to understand value based decision-making. According to O’Doherty et al., 

(2007) most human decisions are usually guided by subjective variables that are not 

directly observable or controllable by the experimenter. These type of variables might 

depend on a variety of factors such as the subjects’ choice history or reward experience 

and computational models of cognitive processes compute such hidden variables 

(Corrado & Doya, 2007; O’Doherty et al., 2007). Examples of model-based analysis can 

also be found for electrophysiological recording studies from behaving monkeys 

(Samejima et al., 2005). For example, at the electrophysiological level the variables that 

affect the valuation processes considered as transient neural firings where the average 

spiking rate of neurons change from trial to trial depending on the value of that variable 

(Samejima et al., 2005). Also these subjective variables differ proportionately to individual 

differences (e.g., the learning rate). These types of questions have guided researchers to 

use solutions like model-based techniques. The essential point of the model-based 

analysis is not whether the brain uses that particular model or not, but most importantly 

it provides a framework for interpretation and therefore study hidden decision variables 

and their neural correlates that are critical for learning (Corrado & Doya, 2007). 

The central approach in model-based fMRI is to use the behavioural responses 

of a participant to estimate the values of the hidden variables of a model over time. In 

the model-based analysis subjects’ behavioural responses were entered into a 
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computational model, and the computational model calculates the proxy subjective 

decision variables such as the prediction error response (see, Figure 5.2).  

 

 

 

Figure 5.2 A) In the model Independent classic correlative paradigm, the observable variables 
are directly correlated against fMRI data. B) In the model based analysis the hidden (proxy) 
variables were calculated from the behavioural responses of the participants and then convolved 
against fMRI data.  
 
 

However, in every model there are free parameters such as the learning rate or 

exploration rate in the case of reinforcement learning algorithms that need to be 

calculated with model fitting techniques (e.g., maximum likelihood, or mean least-squares 

procedure). After all the decision variables are identified and trial to trial values are 

estimated then they have to be convolved with the hemodynamic function by using 

parametric modulation (see, section 5.2.3) and regressed against the observed bold 

signal. The hidden variables are then correlated with fMRI data (see, Figure 5.2). 
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Figure 5.3 Parametric modulation for the prediction error signal. A) The stimulus function 
parametrically modulated by the prediction error signal. B) The prediction error is convolved 
with the heamodynamic response function. C) Expected BOLD response after convolution. D) 
Taken from Cohen (2007). 

 

In spite of differences in their choice of model, most fMRI studies use similar 

analysis procedures (Friston et al., 2007). In the standard data analysis procedure, images 

are realigned, spatially normalized to a standard template (for instance MNI or Talairach) 

and spatially smoothed with a Gaussian kernel. Later, the time series in each session is 

high-pass filtered to remove potential slow scanner drift or low frequency noise such as 

heart beat (Friston et al., 2007). After this standard analysis procedure, a statistical linear 

regression model is fitted to the data. At this point, each trial is represented in the design 

matrix and the prediction error signal is treated as a parametric modulator to the design 

matrix. However, the prediction error signal has to be computed separately and most 

probably by a second party program (e.g. Matlab). One of the most important issues in 

calculating the prediction error signal is the process of finding the best choice for free 

model parameters, such as the learning rate a (see Chapter 4). There are a number of 
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methods being used in the literature, likelihood estimation (Pessiglione et al., 2006) and 

particle filtering (Samejima et al., 2004: Samejima et al., 2005) being the most popular.  

 One last important issue in model based fMRI analysis is to compare different 

models (Pitt & Myung, 2002). As one can imagine there could be many mathematical or 

computational models that can explain the behavioural data. The responsibility of the 

researcher is either to test the significance of a particular model or if he/she is not sure 

about which model is more biologically plausible he/she might want to compare 

different models by using model comparison techniques such the Akaike’s information 

criterion (AIC) or Bayesian information criterion (BIC) (Pitt & Myung, 2002). 

 

 

 

 

 

 

 

 

 

 

 



 128 

 

 

Chapter 6  

 

 

Experiment 1: Learning Actions from Rewards and 

Punishments 

 

6.1. Analysis for Gains and Losses during the Outcome and Expectation 

Periods  

6.1.1 Introduction 

Recent imaging studies in humans and neural-recording studies in primates and rodents 

revealed the neural correlates of reward and punishment related processes in various 

parts of the brain mostly reporting activity in the basal ganglia and frontal cortex 

emphasizing the involvement of dopamine in learning rewards and punishments (see, 

Chapter 2). However, controversial suggestions have been made concerning the neural 

correlates of anticipation, and outcome related activity for monetary rewards and 

punishments (also see Chapter 2 for a detailed discussion). For example, according to 

some studies, outcomes of monetary rewards and punishments activate similar fronto-

subcortical networks including ventral striatum (Liu et al., 2011) and some other studies 

it was suggested that gains and losses are represented in different neural systems 

including bilateral amygdale (Yacubian et al., 2006), insula (Pessiglione et al., 2006) and 

antero-medial cingulated cortex (Shakman et al., 2011) which were described in more 
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detail in Chapter 2. Therefore, the main research questions that are tested in this section 

are as follows: Does feedback involving monetary rewards and losses activate a similar or 

separate fronto-subcortical network during the outcome phase? Secondly, does the 

activity for expecting potential rewards and losses overlap the same brain regions and 

therefore share common neural systems ? 

Based on the literature described in Chapter 2 it was hypothesized that during 

the anticipation phase rewards and punishments share activity in similar striatal regions 

due to common dopaminergic striatal representation of motivational saliency. In addition 

it was also hypothesized that some distinct brain regions should also get activated during 

the outcome phase because of the emotional feelings that occur due to negative or 

positive valence of the feedbackwhich is also proposed as stimulus specific 

representations of unconditional stimuli in the Konorskian opponency model (for details 

see Chapter 2). Therefore partial overlapping and segregated regions were expected for 

rewards and punishments during the outcome phase. 

It is also important to note that this is an exploratory experiment where different 

statistical thresholds were used for different contrasts in order to see the extent of 

activation for a particular contrast. This is due to different number of trials in each 

contrast (e.g., reward trials compromise 80% of all gain trials whereas punished trials 

compromise almost 20% of all loss trials). Therefore one should be cautious in 

comparing different contrasts. In the following analysis the thresholds were set to 

p<0.005 and p<0.001 (uncorrected). The rationale for using those particular statistical 

thesholds was based on Lieberman and Cunningham (2009) which suggested that using a 

more liberal statistical theshold of p<0.005 is also acceptable when there are not many 

participants (n>20) and in fact if the cluster theshold (k) is set to k>20 voxels it is equal 

to the corrected FDR p-value of 0.05.   
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6.1.2 Materials and Methods 

6.1.2.1 Participants 

Fifteen right-handed healthy normal volunteers (8 male, 7 female; mean age 25, range: 

22-28) were recruited to the experiment but only 12 participants (6 male, 6 female) 

included in the analysis. Three of the participants were excluded from the analysis due to 

excessive movement inside the scanner (movement greater than 6 mm) in one case, and 

the other two participants were excluded due the loss of behavioural data. The 

participants were pre-assessed to exclude those with a prior history of neurological and 

psychiatric illness. All participants filled a written informed consent form before fMRI 

measurements and all the participants were invited by both written and verbal requests 

which outlined the purpose and nature of the study, before the fMRI session and they 

were debriefed after experimental session and paid according to their performance in the 

task. The study was approved by the Bedfordshire NHS Ethics committee board and 

Local Ethics committee. 

 

6.1.2.2 Task 

The whole experiment consisted of 3 sessions each separated from the other with an 

average of ~2 min. In each session the colour of the stimuli indicated the trial type where 

the colour and type of the stimuli differs for each fMRI session for reward and 

punishment trials except for the neutral trials that remained the same for all three 

sessions (see, Figure 6.1). Hence in each session the participants have to learn from the 

scratch which colour indicates which trial type. Within the sessions, each trial is an 

instrumental learning task involving monetary feedback. Each trial began with 

simultaneous presentation of one of three pairs of stimuli (all symbols were letters taken 

from Agathodaimon font) and each pair of symbols signified the onset of three trial 

types: Reward, Avoidance, and Neutral whose occurrence was fully randomized 
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throughout the experiment. The participant’s task was in each trial to choose one of the 

two symbols by selecting the right or the left key button from the response box. For 

each pair of stimuli the position of the symbols (right or left) is also counter balanced 

within the session. When the trials started, a fixation cross (null event) was shown at the 

centre of the screen indicating the start of the trial. The fixation cross-stayed on the 

screen for 0.5 s. This was replaced by the conditional stimulus (two symbols) presented 

on the screen to the left and right of where the cross-had previously been for 4s. The 

participants had to choose which of these two symbols would be rewarded in this 4s time 

period. Once the symbol was selected, the chosen symbol was shown by an arrow for 0.5 

s and it was followed by the outcome. Between the outcome and selected symbol screen 

there was a random inter stimulus interval (ISI) of about average ~2s for the scanner 

trigger. The outcome for the participants’ choice reward (£1), punishment (£-1) and 

neutral was shown on the screen for 3s. When the participants failed to press either 

button they were instructed at the outcome feedback that they will receive a neutral 

outcome for the gain pair or (£-1) for the loss pair. All three trials types were pseudo 

randomly intermixed throughout the three sessions. In the reward trials, when the 

participants choose the high probability of symbol they received monetary reward with 

0.8 probability and received neutral feedback with a probability of 0.2. On the other 

hand, following the choice of a low probability symbol, participants received a reward 

with a probability of 0.2 and neutral outcome with a probability of 0.8. Similarly on the 

loss trials, if participants choose the high probability symbol, they received neutral 

outcome in with 0.8 probability, whereas the choice of the low probability symbol led to 

a loss of with a probability of 0.2, while the low probability symbol gave a loss of (£-1) 

with probability 0.8 and a neutral outcome with probability 0.2. On neutral trials 

participants always received a neutral outcome independent of the symbol choice. 

Allparticipants underwent three ~13 min scanning sessions, each consisting of 60 trials 
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(20 trials per condition). Prior to the experiment participants were instructed that they 

would be presented with three pairs of stimuli where the colour of the stimuli would 

indicate whether it was a gain trial, loss trial or a neutral trial. They were also instructed 

that depending on their choices they would win money, lose money or get a neutral 

outcome. They were not told which coloured pair of stimuli was associated with a 

particular type of outcome. All participants were instructed to win as much money as 

they could. Before the experiment they were told that they could earn a maximum of £30 

if they chose the correct response in all trials otherwise they were told that their earnings 

would depend on their performance in the experiment. 

 

 

 

 

Figure 6.1 Schematic of the experimental design. Three conditions, reward trials (green), 
avoidance trials (red) and neutral trials (white) were represented by different colours and symbols 
where they are randomly intermixed during an fMRI session.  
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6.1.2.3 Functional Magnetic Resonance Image Acquisition 

 The functional imaging was conducted by using 3-Tesla Siemens MRI scanner to 

acquire gradient echo T2* weighted echo-planar (EPI) images with BOLD (Blood 

Oxygenation Level Dependent Signal) contrast. Each slice was collected parallel to the 

anterior-posterior commissure line. Each volume compromised 36 axial slices of 3–mm 

thickness and 3-mm in plane resolution with a TR time (repetition time) of 3s. The flip 

angle was 90 degrees. T1 weighted structural images (1x1x1-mm voxel size) also acquired 

for each participant. Head movement was minimized with padding participants’ head. 

 

6.1.2.4  Functional Magnetic Image Analysis 

Image analysis was performed using statistical parametric mapping SPM8 (Wellcome 

Department of Imaging Neuroscience, Institute of Neurology, London, United 

Kingdom) software. For all participants the images were realigned according to the first 

volume in order to correct for motion in the scanner. For all participants anatomical 

images were co-registered to functional EPI images and were normalized to a standard 

EPI template. Spatial smoothing was applied using a Gaussian kernel with full width 

half-maximum (FWHM) of 8 mm for each participant’s data.  

 

6.1.3 RESULTS 

6.1.3.1 Behavioural Results 

Over the course of the experiment participants showed significant preference for the 

higher probability rewarding option rather than non-rewarding option, t(11)= 21.06, 

p<0.001, two tailed (Figure 6.2a). The high probability reward option chosen more than 

the neutral option in the neutral trials, t(11)= 11.13, p<0.001, two tailed. Participants also 

avoid choosing the high probability punishing option t(11)= 5.48, p<0.001 and show 

successful avoidance of monetary losses. Probability of choosing the punishing option  
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was significantly lower than choosing the neutral option in the neutral condition, t(11)= 

4.69 p<0.05 two tailed,  indicating that they showsuccessful avoidance from monetary 

losses. As expected, participants preferencefor choosing options in the neutral condition 

was not significantly different to chance, significance for the least frequently chosen 

option and most frequently chosen option were t(11) = -1.19, p>0.05, two-tailed;  and t(11) 

= 1.19,p>0.05, two-tailed respectively.Analysis of the mean reaction time (RT) taken for 

participants tomake a choice in the avoidance and reward conditionsrevealed that 

participants had significantly shorter RTs forreward trials than avoidance trials t(11) = 

3.45, p<0.05, two-tailed;  and significantly shorter RTs for reward trials than neutral 

trials t(11) = 5.46, p<0.001, two-tailed. Also comparison of mean reaction times between 

the avoidance trials and neutral trials revealed that participants responded to avoidance 

trials significantly quicker than neutral trials t(11) = 2.19, p<0.05, two tailed. 

 

Figure 6.2 a) Behavioural data averaged across all 12 participants showing the percent of 
responses allocated to high (0.8 probability of getting or losing money) and low (0.2 probability 
of getting or losing money) probability options for the gain, loss and neutral conditions. 
Participants choose the high probability rewarding option significantly more in reward trials than 
the neutral option in the neutral trials and they choose the low punishing option significantly 
more than the neutral option in the neutral trials (** indicates significance p< 0.001, two-tailed, * 
indicates significance p< 0.05, two-tailed). Comparison of high and low probability options that 
provide neutral feedback in the neutral condition is not significantly different than the chance 
level (n.s indicates significance p>0.05, two tailed), which suggests that participants choose 
randomly in the neutral condition. b) Plot of the reaction times for the three conditions 
regardless of the outcome and probability of winning. Participants were significantly faster in the 
reward trials and punishment trials than neutral trials.  
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6.1.3.2 Functional Magnetic Resonance Image Results 

Individual time series data were analysed using a general linear model (Friston et 

al., 1996). There were eight orthogonal regressors. Regressors of interest were:  

expectation in gain trials, a stick function at the time of stimulus presentation (con 1); 

feedback for a correct response on gain trials ( ie 1£ ), or an incorrect response in gain 

trials ie neutral outcome were modelled with two separate stick functions at the time of 

outcome (con 2 and con 3 respectively) , expectation in the avoidance trials (con 4), 

correct feedback as neutral outcomes in the loss trials (con 5), incorrect feedback as -1£ 

loss in the loss trials (con 6), expectation for neutral outcomes (con 7), and (con 8) 

neutral outcomes in neutral trials were modelled in a similar way to their counterparts in 

the gain trials. The motion parameters calculated for the realignment procedure were 

also included to account for the residual effect of movement (covariates of no interest). 

All three sessions were included in the analysis of individual results. A random effects 

analysis for all 12 participants wascomputed for the group analysis (level 2) and the peak 

coordinates of the significant activations were reported in MNI (Montreal Neurological 

Institute) coordinates. 

 

6.1.3.3 Brain Regions Involved in Expectations of Rewards and Losses 

 During the expectation phase in gain trials, results demonstrate a robust activation 

in the basal ganglia and cingulated cortex. Specifically, foci in the midbrain (T= 4.76; 

x=0, y=15, z=11, p<0.001, uncorrected), bilateral NAcc (right, T=11.83, 11, 11, 3; left, 

T=4.09, x=8, y=11,z=1p<0.001, uncorrected), bilateral putamen (right, T=11.26, x=21, 

y=14, z=-11; left, T=9.8; left x=-24, y=8, z=-11 p<0.001, uncorrected), and right 

caudate (T=7.29; x=18, y=14, z=4 p<0.001, uncorrected), showed activation correlated 

with reward expectation. Additionally activation was found in the subcortical clusters 
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specifically in the thalamus (T=5.23;z=7, y=15, z=16 p<0.001, uncorrected), and 

cerebellum (T=4.68; x=3, y=52, z=-35p<0.001, uncorrected) showed. Cortical clusters in 

the right (T=4.76; x=-30, y=53, z=4p<0.001, uncorrected), and left (Z=7.15;  x=36, 

y=53, z=4 p<0.001, uncorrected) medial frontal gyrus, and left and  right dorsolateral 

prefrontal cortex (T=6.33;  x=30, y=44, z=40 p<0.001, uncorrected), left anterior 

cingulate cortex (T=5.45; x=3, y=26, z=37 p<0.001, uncorrected) also showed 

activation. 

A similar analysis was performed for anticipated monetary losses.  The results 

showed a similar pattern of activity which included the head of the caudate nucleus 

bilaterally (T=7.55; right x=15, y=20, z=10; left T=7.75 x=-16, y=14, z=10 p<0.001, 

uncorrected), bilateral putamen (T=10.04; left x=-16, y=14, z=-2; right T= 7.30 x=18, 

y=14, z=-5 p<0.001, uncorrected) and cingulated cortex (T=8.33; x=-12, y=14, z=37) 

show significant activity for anticipated losses at p-value < 0.001 (uncorrected). Activity 

in these regions increased when the participants saw the conditional stimulus that 

predicts future losses (Figure 6.3b).  
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Figure 6.3 Group maps of regions whose activation correlates during expectation of reward, loss 
and neutral expectation with BOLD responses are threshold at p< 0.001 (uncorrected). All group 
level activations were overlaid on single subject T1 weighted images. Yellow color signifies high 
activation (greater z-value), whereas red colour signifies less activation. a) Showing a significant 
change in activity for expectation of future rewards. b) Showing a significant change in activity 
for expectation of future losses. c) Showing a significant change in activity for expectation of 
neutral outcomes. Sagital slice on the left show activity in cingulated cortex and left figure show 
bilateral striatal. d) Figure 6.3a and Figure 6.3b together.Overlay shows activity for reward 
expectation  (red areas) and loss expectation (yellow areas) and the overlapping regions are shown 
orange. 

 

6.1.3.4 Brain Regions Involved in Expectations of Rewards and Losses but 

not in Expecting Neutral Outcomes 

In order to test for the significance of reward and loss expectation compared to 

expectation of neutral outcomes, we performed a subtraction analysis of the reward and 

loss expectation with the baseline of neutral expectation (for the subtraction analysis p 

value was set to p<0.005 uncorrected). This analysis revealed that regions in the bilateral 

putamen (right T=3.75; x=27, y=11, z=-2, left T=3.23; x=-21, y=2, z=-2), lateral 

prefrontal cortex (right T=3.93; x=39, y=53, z=4, left T=4.47; x=-42, y=36, z=-5) and 

medial frontal cortex (right T=3.83; x=6, y=56, z=-8, left T=4.84; x=-12, y=53, z=-8) 

show greater response to reward expectation that neutral expectation.  Regions with 

increased activity during trials in which the participant expected to receive losses 

compared to trials where they expected to receive neutral outcome showed activity in 

ventro-lateral OFC (T= 3.6 right x=27, y=56, z=-8 T= 3.95 left x=27, y=56, z=-8 T), 

right striatum (T=3.77, x=27, y=11, z=-5), and the midbrain (T= 3.60 x=9, y=-10, z=-

8). Group random effect results with activation maps in the PFC and striatum with 

percent signal change plots for the peak voxels are shown in Figure 6.4. 
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Figure 6.4 Blood oxygenation level-dependent (BOLD) responses for reward-expectation > 
neutral-expectation and loss-expectation > neutral-expectation.The contrasts are thresholded at 
p< 0.005 (uncorrected) a) Regions of striatum on the coronal slice (left) and regions of frontal 
cortex shown on the axial slice (left) show greater activity for reward expectation than expecting 
neural outcomes. The graph below shows the percentage signal changes for reward and neutral 
expectations. b) Regions of striatum on the coronal slice (left) and regions of frontal cortex 
shown on the axial slice (left) show greater activity for loss expectation than expecting neural 
outcomes. Down below the percentage signal change graph on the left for the peak voxels shows 
differences in percent signal change For both figures group level activation maps overlaid on the 
single subject structural anatomy. Bars represent means SEM (n12).  
 

6.1.3.5 Brain Regions Involved in Expecting Future Rewards but not in 

Expecting Future Losses  

We performed a subtraction analysis in order to identify the regions that respond more 

to the cues that predicted future rewards (nb the pair of coloured symbols) versus the 

cues that predicted future losses. We observedsignificantly activity for reward cues in the 

leftcaudate nucleus (T=3.85 x=-9 y=5, z=4 p<0.005, uncorrected) right ventral 

orbitofrontal cortex (T=5.01 x=36 y=44 =-14 p <0.005, uncorrected), bilateral midbrain 

(T=4.91 left x=-7 y=-20 z-19and right T=3.75 x=12 y=-20 z-22 p<0.005, uncorrected) 

and left middle frontal gyrus (T=4.24 x=-12 y=29 z40; p<0.005, uncorrected). We 

couldn't find any significant activity for the opposite contrast loss expectation > reward 

expectation at the level p<0.005 (uncorrected). 

 

Figure 6.5Activation of brain regions in the right ventral striatum showing greater activity for 
reward expectation than loss expectation. Group random effects results are shown superimposed 
on coronal and axial slices overlaid on a single subject structural MRI image. Significant effects 
are shown at p<0.005 (uncorrected). 
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6.1.3.6 Brain Regions Involved in ReceivingRewarding and Punishing 

Outcomes  

In this section, we examined the influence of outcome to investigate whether there is a 

specific type of neural adaptation depending on the valence of the outcome (i.e., reward 

or punishment). The outcome phase was defined as a BOLD response evoked by 

neuronal activity at the moment when the result of a choice was revealed to participants. 

As a reminder, for the current study, we hypothesized that both the receipt of rewards 

and losses will activate basal ganglia because of common limbic system representations 

of motivational salience but they will also activate a differential circuitry because of the 

subjective emotional component that are created by negative and positive valence of the 

feedback. 

 

6.1.3.6.1Neural Responses to Monetary Rewards and Punishments  

First we looked at the contrast for just reward receipt leaving out all the missed reward 

trials. We found significant activations mainly in the left ventral striatum (T=4.8 x=-15, 

y=2, z=-2; p<0.005, uncorrected), medial orbito-frontal cortex (T=3.74 x=3, y=56, z=-

14; p<0.005, uncorrected) and precuneus (T=5.2 x=12, y=-46, z=37; p<0.005, 

uncorrected) (see Figure 6.6). We also found significant activation in the midbrain for 

the reward outcome contrast (T=4.4 x=3, y=-19, z=-20;p<0.005, uncorrected) (see 

Figure 6.6). For the loss condition when the participants received a loss outcome we 

found activation in similar regions of the ventral striatum (T=3.83 x=-12, y=2, z=-

8;p<0.005, uncorrected) and in the midbrain (T=6.99 x=6, y=-7, z=-17;p<0.005, 

uncorrected). 
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Figure 6.6 Group random effects results are shown superimposed on the axial, sagittal and 
coronal slices overlaid on a single subject structural MRI image.a)Activation of brain regions in 
the striatum, midbrain, medial-orbito-frontal cortex and precuneus showing significant activity 
for reward receipt (+1£).Significant effects are shown at p<0.005 (uncorrected). b) Activation of 
brain regions in the striatum and midbrain showing significant activity for punishment receipt (-
1£). Significant effects are shown at p<0.005 (uncorrected). The image on the left most side of 
the upper and lower figures shows the activity for those contrasts on the glass brain. 
 
 
Moreover, to confirm that these results were specific to reward/loss outcomes and not 

caused by a general feedback effect, we conducted a comparison with both therewarded 

outcomes andloss-punished outcomes compare with their neutral counterparts (e.g., 

reward received (1£) > reward not-received (0£)). Surprisingly the results of this contrast 

revealed activation in different brain regions (see Figure 6.7). When we looked at the 

contrast for the reward outcome that is greater than neutral outcome,we found activity in 

right hemisphere sub-gyral (T=5.36 x=27, y=29, z=16; p<0.005, uncorrected)  (see 

Figure 6.7) and when we looked at the punishment activity that is greater than the 

neural outcome activity, we found significant changes in the bilateral insula (T=3.9 right 

x=-43, y=-3, z=7; left T=3.89 x=39, y=-1, z=-13; p<0.005, uncorrected)  (see Figure 

6.7). 
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Figure 6.7 Group random effects results are shown superimposed on the axial, sagittal and 
coronal slices overlaid on a single subject structural MRI image. a) Significant activity in the 
bilateral middle frontal gyrus, for reward receipt greater that neutral outcome (P < 0.005, 
uncorrected). b) Significant activity in the bilateral insula shows regions that are involved for 
punished trials greater than neural trials (P < 0.005, uncorrected).  The image on the left most 
side of the upper and lower figures shows the activity for those contrasts on the glass brain. 
 
 
Furthermore, a subtraction analysis was calculatebetween the reward-received and loss-

punishment and the opposite contrast between the regions that respond stronger to the 

punished outcomes than to the reward-receipt was performed.  The regions that respond 

stronger to a received reward contrasted against a received loss are mainly superior 

frontal gyrus (T=8.8 left x=-18, y=32, z=46; right T=6.26 x=15, y=35, z=43; p<0.005, 

uncorrected) and broadmann area 6 (T=5.34 left x=6, y=-4, z=64). Whereas the regions 

that responded more strongly to a received loss contrasted against the reward outcomes 

are mainly bilateral amygdala (left T=2.3 x=24 y= 0 z=-18, left T=2.6 x=-21, y=-1, z=-

23 )(see Figure 6.8) 
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Figure 6.8 Group random effects results are shown superimposed on the axial, sagittal and 
coronal slices overlaid on a single subject structural MRI image. a) Significant activity shown 
greater activity in bilateralBroadmann area 9. b) Significant activation left insula, and bilateral 
occipital activations as revealed by contrast, exemplarily displayed for a coronal slice (P < 0.005, 
uncorrected). The image on the left most side of the upper and lower figures shows the activity 
for those contrasts on the glass brain. 
 

6.1.3.7 Discussion 

Learning of stimulus-outcome relations critically depends on processing of 

positive and negative information at various stages of a reinforcement-learning task such 

as the anticipation phase or the outcome-monitoring phase. As reviewed in Chapter 

2,the behavioural and neuropsychological evidence suggests that processing of positive 

(e.g., gain) and negative (e.g., loss) reward information is hard to dissociate within the 

basal ganglia (Liu et al., 2011) and other parts of the brain (Camara et al., 2009b). In the 

results of analysis reported above, we tested how much of the activations specific to loss 

and reward outcomeswere coded in separate regionsor in similar regions during the 

expectation and outcome phase. 
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6.1.3.7.1Activity During the Expectation Phase 

In the literature, tasks that are similar to the current experiment have 

demonstrated that the ventral striatum, particularly the nucleus accumbens, showed 

increased activation for anticipated rewards (Knutson et al., 2000; Ernst et al., 2005; 

Adcock et al., 2006; Knutson and Gibbs, 2007; Dillon et al., 2008) perhaps given its 

central role in reward prediction (Schultz, 2002). Similar to the previous studies our study 

examined brain activation during anticipation of monetary outcomes that varied in their 

valence (i.e., gain vs. loss). We found activation in these putative reward-related regions, 

namely the basal ganglia (both ventral and dorsal striatum) increased during both reward 

and loss anticipation. More over we showed that both expected rewards and expected 

punishments evoked increased activity compared to control neutral stimuli in the 

putamen as shown by the Figure 6.4. We think that the activation of ventral striatum 

might reflect the involvement of the dopaminergic system, being a key structure for 

motivational saliency for both potential rewards and potential losses (Bromberg-Martin 

et al., 2010). 

Moreover during the anticipation period we found activity in the cingulate 

cortex. Previous studies showed that anterior cingulated cortex is involved in cue 

evaluation, response selection and conflict resolution (see for a review, Botvinick et al., 

2004). Together, these results indicate that anticipatory activation in these regions reflects 

the motivational properties of the potential outcomes, not their valence because these 

regions are activated both by theexpected rewards and by the expected losses. Having 

said that, it is important to mention that the anticipatory activity for potential losses 

show a more robust activity in the aMCC, which is previously associated with negative 

emotions and potential future punishments (see Chapter 2 for a discussion). 
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6.1.3.7.2Activity During the Outcome Phase 

In a recent meta-analysis both ventral and dorsal striatum showed significant 

activity for loss during the outcome received (Liu et al., 2011).  Our results also showed 

significant overlap in the regions activated in the meta-analysis. Hence, both gain and loss 

outcome activate basal ganglia and the midbrain (see Figure 6.5). Activation in the NAcc 

has been reported to correlate with the salience of the stimulus presented (Zink et al., 

2003) However, there is also evidence that NAcc responses positively correlate with 

aversive stimuli (Delgado et al., 2004; Jensen et al., 2007; Salamone et al., 2007; Levita et 

al., 2009). As we discussed earlier it is possible that activation in this regions is modulates 

by the reward valence. 

Furthermore, neurobiological evidence is started to confirm that the underlying 

motivational processes in financial loss share strong similarities with physical pain with 

the activity most commonly seen in the insular cortex (Delgado et al., 2006; Knutson et 

al., 2007; Wrase et al., 2007; Seymour et al., 2007). In our study we also found insular 

cortex activity when the punished outcomes were subtracted from the neural outcomes. 

For example Knutson et al., (2007) and Pessiglione et al., (2006) showed that financial 

loss activates insular cortex, where the activity in this regions previously shown to be 

correlated with expected pain (Seymour et al., 2004). On the other hand, the activity in 

the insular cortex can be interpreted as a response inhibition failure in our study because 

participants were trying the avoid from losses and they could have thought that they 

received negative feedback due to an inability of choosing the aversive option. Previous 

studies, which showed activity in bilateral insula, suggested that it plays a role in 

processing the significance of inhibitory failure (Preuschoff et al., 2006). Finally we 

found that amygdala selectively responsed to loss outcomes that are punished (-£1) 

compared to rewarded outcomes (+£1). Previous studies showed that amygdala is 
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involved in monetary losses (Yacubian et al., 2006) and it is possible that this region 

might control the fight or flee response in a gambling task. Also it is important to keep 

in mind that punishment trials in Figure 6.6, Figure 6.7 and Figure 6.8 are rare events 

compromising roughly 20% of all trials where as reward events roughly compromise 

80% percent of the events. Therefore the influence of punishment trials on learning may 

be greater than rewarding outcomes. 

 

6.2 Analysis for Testing the Opponent Process Theory 

6.2.1  Introduction 

Based on opponent processes theory explained in Chapter 2, Kim et al., (2006) 

suggested that successful avoidance of an aversive outcome acts like a rewarding 

outcome and activates similar brain regions as financial gains in the medial orbito-frontal 

cortex. Additional evidence also supports this hypothesis, which showed that medial 

orbito-frontal cortex is involved in termination of painful events (Seymour et al., 2005). 

Based on this evidence we hypothesized that if avoiding an aversive outcome is itself 

rewarding, missing a rewarding outcome might be equally punishing. Amsel (1958, 1992) 

in his frustration theory argued that omission of an expected reward is a form of 

abstract punishment. Neural correlates of frustration due to missing of rewarding 

outcomes have been shown to increase activity in the insular cortex (Abler et al., 2005), 

as well as medial frontal cortex (Siegrist et al., 2005) and lateral prefrontal cortex (Ng and 

Blair, 2011). In this section we looked at the difference in the neural correlates of reward 

receipt and successful avoidance of punishment and compared the activity for the 

punishment receipt contrast with reward missed. 
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6.2.2 Regions Involving Receipt of Reward and Loss Omission  

The experimental design allowed us to look at brain regions involved in loss omissions 

and reward outcomes. Loss omission is the contrast in which the participants get a 

neutral outcome in loss trials (con 5), and receipt of reward outcome is the contrast in 

which participants get a 1£ outcome in the gain trials (con 2). We first looked at the 

regions involved in reward receipt but not omission of losses (con 2 > con 5). Direct 

comparison of these contrasts revealed activity in the right medial frontal gyrus (T=6.06 

x=30, y=5, z=52) a region previously shown to be involved in coding reward gains 

(Koch et al., 2008) and left sub-gyral (T=4.46 x=-18, y= 26, z=46) with p < 0.001 

uncorrected (no other areas showed significant activity at this p-value). We also looked at 

the opposite contrast, which showed significant activity for omission of losses but not 

for reward receipt (con 5 > con 2) where no brain area showed significant effect at the 

level of p < 0.001 (uncorrected). Furthermore, we performed conjunction analysis (con 5 

& con 2) in order to look for the regions involved in both reward outcomes and 

omission of losses. Consistent with a previous study (Kim et al., 2006), we found 

activation in (x=-6, y=35, z=4) with peak in anterior cingulate cortex and medial frontal 

cortex activity at (x=6, y=44, z=-2). This region showed increased BOLD response not 

only to reward receipt but also omission of losses at p < 0.001 (uncorrected). For the 

same contrast additional activation was also found mainly in posterior cingulate gyrus 

(x=-3, y=-10, z=34), bilateral ventral striatum (right x=26, y=17, z=-5.5) and (Left x=-

20, y=17, z=-5.5), bilateral orbito-frontal cortex (BA 47 right x=30, y=14, z=17) and 

(BA 47 left x=-36, y=17, z=20) midbrain (x=6, y=-28, z=5) and ventral precuneus with a 

peak voxel activity in (x=-3, y=49, z=46). Moreover, activity in medial frontal cortex 

increases for monetary gains just like it increases for omission of losses (see Figure 6.9a 

and Figure 6.9b). Thus at the group random effect level, we provide evidence that 

medial frontal cortex responds both to monetary gains and omission of losses. 
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Additionally, in order to depict the areas responding more to receipt of rewards and 

avoidance of losses but not for omitted rewards and actual losses, we looked at the 

contrast (con 2 + con 4 – con3 – con 5). We found activity in the right putamen (T=3.24 

x=21, y=6, z=13), bilateral pulvinar (left right T=5.52 x=27, y=-28, z=1, T=5 right 

x=21, y=-31, z=-2), Brodmann area 6 (pre-motor cortex) (T=3.89 x=-3, y=-1, z=53) and 

left Brodmann area 11 in the ventro-lateral orbito frontal cortex (T=4.04 x=-24 y=47 

z=-11) at a more liberal threshold of p< 0.005 (uncorrected) (see Figure 6.10). 

 

6.2.3 Regions Involving Receipt of Loss and Omission of Gain Outcome 

We also tested for areas showing significant effects for receipt of loss outcomes (con 6) 

and omission of gain outcomes (con 3). At the group random effects level we first 

looked at the regions involved only in receipt of loss outcomes but not omission of gain 

outcomes (con 6 > con 3) and vice a versa (con 3 > con 6). Neither of these contrasts 

showedsignificant activity at the significance level of p< 0.001 (uncorrected). The results 

of conjunction analysis depict the regions involved both in receipt of loss outcomes and 

omission of gain outcomes (con 3 & con 6). Significant activity was found in the medial 

frontal cortex (BA10, x=6, y=50, z=-2), bilateral ventral striatum (right x=18, y=5, z=-5, 

left x=-15, y=5, z=-6.3) midbrain (x=-6, y=-28, z=-50), posterior cingulated cortex (x=-

6, y=-19, z=46) and precuneus (x=-6, y=-52, z=-40) (see Figure 6.9b).  

In order to depict the areas responding more to aversive loss outcomes and 

frustrative neutral outcomes compared to rewarded gain and loss omission trials we 

looked at the contrast (con 3 + con 6 – con 2 – con 5). Only two regions showed 

significant activity with a more liberal statistical threshold at p< 0.005 (uncorrected), in 

the left insula (T=3.26x=-42, y=29, =z=10) and the brainstem (T=4.33 x=12, y=-31, 

z=-20) (see Figure 6.10). This indicates that left insula is specific to negative outcomes. 

No other brain regions showed significant activity at p< 0.005 (uncorrected). 
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Figure 6.9Areas of whole brain showing significant activity during the outcome period for the 
probabilistic learning task. a) Group random effects results are shown superimposed on coronal, 
sagital and axial slices from on the single subject T1 weighted images (at the MNI coordinate 
indicted in the top right corner of image) for the conjunction contrast for gain outcome received 
and loss omission. Significant effects are shown at p < 0.001 in orange and p<0.01 in red (to 
show the full extent of activation). b) Group random effects results are shown for the 
conjunction contrast for gain omission and loss outcome punished. c) A plot of effect sizes in 
medial frontal cortex for the peak voxel was shown for gain outcome received (red) and loss 
omission (blue).  
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Figure 6.10 a)Areas activated in conjunction of gain trials rewarded (+1£) + Avoidance trials 
neutral outcome (0£) compared to conjunction of gain trials neutral (0£)+ avoidance trials 
punished (-1£). Group random effects results are shown superimposed on axial, sagittal and 
coronal slices at the MNI coordinates indicated (below right corner of each image). Significant 
effects are shown at p<0.001 (uncorrected for multiple comparison) which are lateral OFC; 
occipital lope, pre-SMA. b) Areas activated in conjunction of gain trials rewarded (+1£) + 
Avoidance trials neutral outcome (0£) compared to conjunction of gain trials neutral (0£)+ 
avoidance trials punished (-1£). 
 

6.2.4 Discussion 

The present study provides evidence for overlapping opponent responses in medial 

OFC.  These results suggest that during the outcome, the areas responding to reward 

receipt and avoidance of losses show overlapping activations with receipt of punishments 

and missed reward outcomes in the medial OFC. Previous studies showed that lesions to 

ventromedial frontal cortex disrupt reversal learning that requires a shift in behaviour in 

response to unexpected negative feedback as well as disrupting learning from negative 

feedback in a probability learning task that is similar to ours (Bechera et al., 1997; Fellows 

and Farah, 2005; Wheeler and Fellows, 2008). However, surprisingly we were unable to 

identify a difference between the ventro-medial-frontal region for reward outcomes and 

ventro-lateral frontal region for punishing outcomes as reviewed in Chapter 2. It is 
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possible that this ventro-medial OFC is involved in evaluating feedback regardless of the 

type of feedback. In addition to that, we found a distinguishing activity in the amygdala 

for the trials, where participants received neutral outcome (0£) in gain trials and 

punishing outcome in avoidance trials (-1£). Previous studies also showed amygdala 

activity when they compared the neural correlates of monetary losses withneutral 

outcomes (Yacubian et al., 2006). Hence, the amygdala is well recognized to involve 

aversive learning. A recent gambling study involving mixed gains and losses of money, at 

differing amounts and probabilities, identified loss prediction errors in the amygdale 

(Yacubian et al., 2006) reported similar findings. Although it is difficult to place too 

much emphasis on the respective findings of the Yacubian et al., (2006) andour study, it 

is noteworthy that in both studies the amydgala showed greater response for aversive 

outcomes. 

 

6.3  Model Based Analysis for Prediction Error and Expected Value  

6.3.1 Introduction 

It is well known that both animals and humans are capable of distinguishing conditional 

stimuli based on their positive and negativeoutcomes, but what is not well known is how 

the brain encodes, represents, and uses signals that indicate potential rewards and 

punishments. This was a challenging question for neuroscientists over several decades 

and discussed in more detail in Chapter 2.  As a summary prediction error for financial 

gain and primary rewards has been found in striatum (please refer to Chapter 2). 

Similarly the prediction error for financial loss and aversive conditioning of painful 

shocks activates parts of the ventral striatum (Delgado et al., 2000; 2011). However, it is 

unclear, whether other parts of the brain that are involved in learning can also be 

involvedin processing loss prediction error necessary for aversive learning. Therefore in 

this section we decided to investigate the neural correlates of reward and loss prediction-
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errors. Moreover we decided to look at the CS related activations that are neural 

correlates of the expected value signal, which is calculated by the following equation: 

 

Expected Value = (Predicted Value of CSx *Probability of CSx)+ (Predicted Value of CSy 

* Probability of CSy) 

 

In the above equation HP and LP refers to high probability and low probability 

rewarding options respectively. Finally. In order to determine whether certain brain 

regions calculate specific signals for the reward and loss expected value and prediction 

error, we analysed our data in a model–based functional MRI (fMRI) fashion (O’Doherty 

et al., 2007, Corroda & Doya, 2007; Corrado et al., 2009, Mars et al., 2010). We used a 

reinforcement-learning model to estimate each subject’s predicted-value of choosing an 

option and then calculated the expected value and prediction error profiles during 

learning and these two internal representations (hidden variables) were used in the fMRI 

correlation analysis. 

 

6.3.2 Reinforcement Learning Model 

The amount of information that an individual obtained from choosing a particular 

option (right or left symbol) for the gain trials were estimated by a simple 

Rescorla-Wagner reinforcement learningmodel (Rescorla& Wagner, 1972). This model 

keeps the estimate predited values for both types of options (high probability winning 

option and low probability winning option). The predicted-values are updated (only the 

chosen action value is updated) when the outcome turns up after execution of an action, 

based on the difference between the outcome and the estimated value of choosing that 

action. We used the Softmax action selection rule for updating the probability of 

selecting the options (high probability, HP or Low Probability; LP). For example if the 
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participant chose the high probability-option the probability of choosing that option is 

calculated by the following equation. 

 

! is the inverse temperature, which inversely relates to the randomness in action 

selection. For example, high ! means higher probability of random action selection (!> 

0). The prediction error was calculated by the difference between the actual reward 

received minus the value of choosing left or right symbol. We set the value of the reward 

r to 1 for positive feedback, and -1 for neutral feedback. The action values Q (left, right) 

were also set to 0 at the beginning of each learning session. When the outcome for the 

particular symbol was presented, the value of choosing that symbol was updated by the 

following equation 

 

To determine the parameters with which the model best fit with the behavioural data of 

participants’ actual choices, we calculated the likelihood function l(Q|z)for each set of 

parameters (Q= !,%) with participants actual choices (z). The model fitting procedure is 

as follows: we first calculate the action values with using all possible combinations of 

parameter values (incremental search). Then we estimate the probabilities for all possible 

parameter values for each trial. Then from the probabilities that a participant can select 

the symbol a in trial i was inserted in the likelihood function. The following equation 

shows the likelihood function, which is the product of the probabilities in all trials, 

included in the parameter space, z.  

 

 

The Matlab algorithm can be found from the Appendix B. 
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6.3.3 Behavioural Results 

During model fitting we estimated each individual’s learning rate, ! and exploration 

parameter, %. When we performed a group statistical analysis for the differences in 

learning rate and exploration parameter, we found that there are no differences in 

learning rate between gain and loss condition (p>0.05, two tailed), but there is significant 

difference in the amount of exploration of the other option (see Figure6.11). Based on 

the higher exploration parameter for loss condition we can conclude that participants 

explore more when they were faced with the option that indicate potential losses 

(t(11)=4.3 p<0.05, two tailed). 

 

 

Figure 6.11 Differences of a group of participants for the parameter estimates for gain and loss 
condition. The figure shows that there were no differences in the learning rate of participants 
between the gain and the loss condition, but there is significant difference in the amount of 
exploration they perform. 
 

After estimating each participant’s learning rate and exploration parameter we inserted 

them into the reinforcement-learning model that was summarized above and calculated 

the prediction-error and predicted value of choosing a particular option. Also in order to 

validate how well the reinforcement-learning model fitted with actual choices of 



 156 

participants we looked at the model estimated probabilities of the selected options and 

actual choices of the participants as can be seen from Figure 6.12. 

 

 

Figure 6.12Behavioural model fitting results. Left: observed behavioural choices for reward 
trials (green) and avoidance trials (red). The learning curves depict, trial by trial, the proportion of 
participants that chose the high-probability option (symbol associated with a probability of 0.8 of 
winning £1) for the reward trials (green circles), and the high-probability option (symbol 
associated with a probability of 0.8 of losing £1) in the avoidance trials (red circles). Right figure: 
modelled behavioural choices for gain and loss condition. The learning curves represent the 
probabilities predicted by the computational model. Circles representing observed choices have 
been left for the purpose of comparison.  
 

 

6.3.4 fMRI Results 

As a part of our model based hypothesis, we tested regions correlating with the  la-

Wagner prediction error (PE) and expected value signals derived from our model.We 

inserted the estimated expected-value and prediction error in each trial and entered those 

values in to general linear model with respect to the time of the stimulus presentationand 

at the time of outcome presentation. Then each individual’s results were carried to 

second-level group analysis. We wanted to see the difference between gain and loss 

prediction error during the outcome, and expected value activity during the cue 

presentation.  The results revealed that expected value for reward outcomes are coded 

mainly in the nucleus accumbens (right x=12, y=11, z=-8; left x=-6, y=8, z=-5) (p<0.05 
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small volume corrected) and posterior putamen (right x=27, y=-7, z=1; left x=27, y=-10, 

z=-5)(p<0.05 small volume corrected)(see Figure 6.13).  

 

 

Figure 6.13 Activation for the expected value signal. Upper middle figure shows the activation 
in the NAcc from a coronal view. Lower middle figure shows the activation in the NAcc from 
an axial view.  Functional images are thresholded to a statistical significance level of p<0.005 
(uncorrected). Group level BOLD activation overlaid on to a single subject T1 weighted 
anatomical image. The event related responses extracted from 5mm ROIs as represented with 
white circles (significance, p<0.05 small volume corrected). On the sides expected value for 
reward (green) and expected value for loss trials (red) seen as event-related responses calculated 
from the activations in ROIs (significance, p<0.05 small volume corrected).  
 

Consistent with previous literature, we found significant PE activity in the ventral 

striatum  (x= 6, y = 11, z = 8). Another important region showed significant correlation 

with reward prediction error signal include left medial frontal gyrus (x=-12, y =35, 

z=40).  
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Figure 6.14 Brain areas activated by reward prediction errors. a) Upper figure axial slices show 
areas of Nacc activation by the main effect reward prediction error (P < 0.005, uncorrected for 
multiple comparisons). Most significantly active areas are bilateral ventral striatum (lower left 
figure) and middle frontal gyrus in the prefrontal cortex (lower right and left figure) where both 
show significant activity at the level of p<0.05 small volume corrected, 5 mm ROI.  Upper figure 
on the right shows event-related responses for reward prediction error (green) and loss 
prediction error (red line) shows that Nacc shows a greater response for reward-prediction error. 
 

We also tested prediction error signals for the loss trials. We looked for all areas that 

show a loss prediction error signal, that is, increasing activity when a loss outcome was 

received when unexpected, and decreasing activity when a loss outcome was not received 

when expected. Unfortunately we couldn't identify any significant brain region for this 

loss prediction error (at p<0.005, uncorrected) and decided to perform a subtraction 

analysis between loss and reward prediction errors. The results of the subtraction analysis 

showed greater activation for loss prediction error in left caudate (T=5.4 x =-15, y=14, 

z=16 small volume corrected with 5mm ROI p<0.05) and left insula (T=3.4 x=-46, y=5, 

z=0.7 p<0.01, uncorrected), whereas the opposite contrast that is the regions which 

showed higher activity for reward prediction error than loss prediction error showed 

significantly greater activity in the right ventral striatum  (T=4.36, x=12, y=2, z=-8 small 



 159 

volume corrected with 5mm ROI p<0.05), left amygdala (T=4.28 x=-23, y=1, z=-20 

small volume corrected with 5mm ROI p<0.05).  

 

 

Figure 6.15 Brain areas activated by reward and loss prediction errors. a) Upper figure axial and 
coronal slices show those areas activated by the main effect reward prediction error that is greater 
than the loss prediction error. The statistical significance threshold was set to p<0.01 
uncorrected and small volume correction applied to test further region of interest. Significantly 
active areas for reward PE>loss PE contrast is ventral striatum and the amygdala. b) Lower 
figure shows those areas respond more strongly to loss-prediction error than reward prediction-
error. Areas that show significant activity for that contrast are left insular cortex (axial slice) and 
caudate nucleus (sagittal slice) (p< 0.01, uncorrected) but only caudate nucleus is significant at 
p<0.05 (small volume corrected). 
 

6.3.5 Discussion 

We reported activity in areas in which we had identified in our experimental hypotheses, 

which had been based on the review of all relevant literature. These regions have 

established roles in both aversive and appetitive predictive learning and involve sub-

compartments of basal ganglia. We found evidence that inside the basal ganglia different 

sub-compartments might be differentially active for gain and loss related learning signals. 
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Prediction errors for gain trials generated by the model correlated with activity in the 

nucleus accumbens. This reward prediction error activity in the nucleus accumbens also 

confirms those reported in previous studies given that this the brain region which 

receives a large number of axonal projections from the midbrain DA neurons is very 

likely to be involved in prediction error calculation (Schultz et al., 1997; Waelti et al., 

2001; Daw et al., 2002; Holroyd and Coles, 2002; O’Doherty et al., 2003; Schultz, 2004; 

Seymour et al., 2004; Rodriguez et al., 2006; Abler et al., 2006). However, we couldn’t 

identify any significant activity for loss prediction errors. The results of the subtraction 

contrast revealed that the loss prediction errors influence caudate nucleus activity more 

than reward prediction errors.  

 

6.3.6 Interim Summary 

 The research questions that Experiment 1 answered in this chapter include: 

1. Is there a similar organization within the brain for processing the 

anticipation of gain and loss in reinforcement learning? 

2. Is there a similar organization within the brain for processing the outcomes 

of gains and losses in reinforcement learning? 

3. Which parts of the brain are involved in the computation of prediction 

error and expected value for gains and losses? 

For the first question our results indicate that reward and loss related anticipation 

activate a similar fronto-striatal network including mainly striatum, cingulate cortex, 

medial and dorsa-lateral prefrontal cortex. We found an additional activation in the 

antero-medial cingulate cortex during anticipation of loss outcome but this activity is 

absent for reward expectation.  

In general we also found that reward expectation generates a greater extent of 

activity than losses. This difference can be seen in caudate and ventro-lateral prefrontal 
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cortex (see Figure 6.5). When we looked at the contrasts of reward expectation > 

neutral expectation and loss expectation > neutral expectation both contrasts showed 

ventro-lateral OFC activity but medial OFC activity was only found for the reward 

expectation > neutral expectation contrast. This particular result in fact contradicts  

previously reported findings summarized in Chapter 2, which suggest a distinction for 

reward (ventro-medial OFC) and punishment processing (ventro-lateral-OFC) in the 

ventral orbito-frontal cortex. The findings of the current study can be interpreted as a 

ventro-lateral OFC system involved in both reward and punishment expectation but 

medial OFC involved only in reward expectation. It is also possible that the ventro-

medial reward and ventro-lateral punishment distinction might be more robust for the 

feedback related activity rather that expectation related activity which might be related to 

goal-values of outcomes rather that their predicted values.  

Furthermore, we found differences in brain activity between gains and losses 

during the outcome period. During the outcome period receipt of monetary losses and 

gains both activate ventral striatum but additionally receipt of losses activates bilateral 

amygdale and insular cortex as revealed by the subtraction analysis. In general it is hard 

to distinguish the activity for motivational saliency from action initiation, because the CS 

presentation is also correlated with action initiation and might involve regions involving 

motor preparation. 

Further model based analysis on gains and losses revealed that reward prediction 

error is coded in the ventral striatum and loss prediction error is coded in caudate 

nucleus. These results confirmed the previous studies that showed reward prediction 

error in the ventral striatum but in addition to that we showed the involvement of 

caudate nucleus for loss prediction error. Overall the results are compatible with the 

electrophysiological findings (Haber et al., 2000) and theoretical predictions (Haruno 

&Kawato, 2006). 
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Chapter 7 

 

 

7.1.  Analysis for Early versus Late Learning Trials for Prediction Error and 

Predicted-values 

 

7.1.1 Introduction 

In Chapter 3 a review was provided of human brain imaging studies and non-human 

primate singleunit-recording studies which have shown that the basal ganglia is crucial 

for reward and motor processing (fora review see, Packard & Knowlton, 2002; 

Montague, King-Casas, Cohen, 2006; Yin & Knowlton, 2006; Graybiel, 2008; Rangel, 

Camerer, Montague, 2008; Doyon et al., 2009). Over the years, one of the most 

important findings is that some regions in the striatum which are thought to carry motor 

signals are highly influenced by the probability of upcoming rewards, in other words 

those group of neurons are both responding to actions (motor movements) and reward 

expectations (Apicella et al., 1991; Kawagoe et al., 1998; Tremblay et al., 1998; 

Lauwereyns et al., 2002; Takikawa et al.,2002; Miyachi et al., 2002; Pasupathy and Miller, 

2005; Watanabe and Hikosaka, 2005; Hollermanet al., 1998; Posquire et al., 2007; Hori et 

al., 2009). During the course of learning many of these neurons adapt theirfiring rate for 

the motor actions most likely to result in a reward. We can refer to these as the action 

with highest predicted value (for a review see, Schultz, 2003).  
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In Chapter 3 we also reviewed studies, which showed that during instrumental learning 

of outcomes medial orbito-frontal cortex is involved in coding goal-directed values of 

instrumental actions whereas dorsal striatum is involved in coding the well-learned action 

values in the form of habits. 

 Based on that evidence we hypothesized that during the early learning trials the 

predicted values of chosen options will be coded by a goal directed system and should 

activate frontal cortex but the during the late trials the predicted values should be coded 

by a habit system and activate dorsal striatum. In order to prove that hypothesis, we re-

analysed the data that was presented in Chapter 6. According to this new analysis, we 

separated the behavioural data in to two parts as the early learning trials  (first ten trials) 

and late learning trials (last ten trials) and looked for the neural correlates of prediction-

errors and predicted-values of selected options.  

 

7.1.2 Materials and Methods 

The following analysis is based on thefMRI data of the 12 participants that was 

presented in Chapter 6, Therefore the materials and methods are exactly the same as the 

ones that were used in the previous chapter, therefore for details please refer to Chapter 

6. 

 

7.1.3 RESULTS 

7.1.3.1 Behavioural Analysis 

In order to understand whether there is a performance difference between the early and 

late trials we looked at the differences in response times for selecting an option for the 

reward, avoidance and neutral conditions. Over the course of the experiment participants 

showed significant reduction in the response times for all three conditions when the 

average response times for all three sessions (60 in total) were compared. The 
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comparison between the response time for early and late learning trials revealed a 

statistically significant difference between all conditions (reward condition t(58)=3.105 , 

p<0.01, two tailed, avoidance condition t(58)=4.35 , p<0.01, two tailed, neutral condition 

t(58)= 5.503, p<0.01, two tailed). These results indicate that during learning a participant’s 

response becomes quicker which is an indication of shift to habit or rather automaticity 

in action selection (Figure 7.1). 

 

Figure 7.1Plot of the reaction times for the three conditions regardless of the outcome received. 
Participants were significantly slower in the early trials than later trials for all conditions. Bars 
represent standard errors. (**) Represents significance (p<0.05, two tailed). The data represented 
above belongs to the average of 12 participants. 
 

7.1.3.2 Reinforcement-Learning Model 

The model used in this chapter is the same as the one used in the previous 

chapter where the predicted values are updated only for the symbol that is chosen. The 

updating of the predicted value of the chosen symbol is based on the prediction error. As 

described in Chapter 6, a softmax action selection rule was used for updating the 

probability of selected actions. The predicted-values or so called Q values, (high 

probability, hp and low probability, lp) were set to 0 at the beginning of each learning 
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session. When the outcome for the particular symbol was presented, the value of the 

choosen option was updated by the following equation:
 

 

In the above equation alpha and delta refers to learning rate and prediction error 

respectively and defined earlier in Chapter 6 section 6.3. Given that we are using the 

same behavioural data and same computational model that was used in Chapter 6, we 

didn’t repeat the model fitting procedure (see Chapter 6 section 6.3) and assumed the 

same parameter values for the learning rate (alpha) and exploration parameter (beta) but 

we just separated early versus late predicted values for reward and avoidance conditions. 

The statistical analysis comparing early and late predicted values showed a significant 

difference for the reward condition (t(28)=2.9 p<0.05, two tailed) (see Figure 7.2). The 

average predicted value of the chosen option (Q-value chosen) in the late trials was 

significantly greater than the average in the early trials.  However the early versus late 

predicted values for the loss trials were not significantly different from each other (t(28)=-

1.056 p>0.05, two tailed).  

 

Figure 7.2 Average changes in the predicted value of chosen option for the early versus late 
trials for the reward and avoidance condition.  

Q hp( ) =Q hp( )+!t"t
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It is important to keep in mind that the reason for the statistical comparison of the early 

versus late predicted values are exploratory. Although it is possible that there might be a 

statistically significant difference between the early and late predicted values without any 

neural correlates, the opposite is plausible too. That is to say there might be no difference 

in the predicted values between the early versus late trials but there might be difference 

in their neural correlates. The former might be true for processing reward value and the 

latter true for processing loss. 

 

7.1.3.3 fMRI Results  

Using the model parameters described above, we took the trial by-trial predictions of our 

computational model for the predicted-values and entered these into a regression analysis 

against the fMRI data at the time of cue (CS) presentation. Early and late prediction 

values and prediction errors are entered in to the design matrix as separate contrasts. 

In order to compare the difference in activity for early versus late contrasts 

separateROI (region of interest) analyses were performed for each anatomical sub-

region. In the anatomical ROI analysis medial frontal cortex and several sub-

compartments of the basal ganglia were used. The specific selection of those ROI 

regions was based on the previous studies, which showed significant change in BOLD 

signal for coding reward prediction errors and predicted values of reward outcomes 

(Haruno and Kawato, 2006). The ROI for the sub-regions of basal ganglia was taken 

from the BGHAT template (Prodoehl et al., 2008) and the ROI for the medial orbito 

frontal cortex is taken from the AAL atlas (Tzourio-Mazoyer et al., 2002). However, 

there were no previously defined ROI’s in the MNI (Montreal neurological institute) 

space for nucleus accumbens (Nacc) therefore we have to define Nacc by drawing by 

hand using MRIcron (http://www.mccauslandcenter.sc.edu/ mricro/mricron). The hand 
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drawn Nacc ROI is smoothed with a 3 mm Gaussian kernel and normalized to the 

Montreal neurological institute (MNI) template. There are 12 regions of interest in total 

(6 in each hemisphere) and each of these regions was tested separately for 8 contrasts, 

namely early reward predicted value, late reward predicted-value, early loss predicted 

value, late loss predicted value, early reward prediction error, late reward prediction error, 

early loss prediction error, late loss prediction error. This makes a total of 96 test 

altogether.   



 168 

 

Figure 7.3 ROI’s used in the fMRI analysis. a) BGHAT ROI template for the basal ganglia sub 
regions. b) Hand drawn ROI for the Nacc. c) Overlapping regions between the ROIs for Nacc, 
caudate and putamen. d) Medial orbito-frontal cortex ROI based on AAL atlas.  
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The first contrasts that we looked at were the predicted-values of chosen options for 

reward contrast, where we tested each anatomical ROI (including left and right 

hemispheric regions) separately (see Table 7.1 for the t-values). The results of the early 

reward predicted values showed significant positive BOLD changein the medial-orbito-

frontal cortex (see Figure 7.4a) only and late reward predicted value showed significant 

change in the bilateral putamen only (see Figure 7.4b). 

 

 

Figure 7.4 Predicted-values of chosen options during early and late reward trials. a) Activity in 
the medial frontal cortex correlated with the reward predicted-value in the early learning trials. b) 
Activity in the right and left putamen is correlated with the reward predicted-value in the late 
learning trials. The gray mesh frame includes the medial prefrontal cortex ROI (AAL template), 
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the entire basal-ganglia (BGHAT template) and the Nacc ROI. The activations in each voxels 
have arbitrary dimensions based on multicolor software (www.cns.atr.jp/multi_color_download).  
Eachvoxel is associated with T-values that are represented by the brightness of the colors as 
shown in color bars.  
 
 

We secondly looked at percent signal changes for the predicted value of rewarding 

stimuli (see Figure 7.5). We found that the medial-orbito-frontal cortex is sensitive to 

reward predicted values early in learning but putamen is sensitive to later in learning.  

 

Figure 7.5 Percent signal changes for predicted-value in the medial-orbito-frontal cortex and 
putamen. Percent signal changes calculate using the whole ROI region. 
 

Secondly we tested for statistically significant changes in signal in these ROIs for early 

and late loss predicted-values. None of the ROI’s showed significant signal change for 

the early loss predicted-value (p<0.05, Uncorrected). For the late loss predicted-value we 

found significant signal change (p<0.05, Uncorrected) in the left globus pallidus internal 

segment (Gpi). The comparison of this region with the late reward predicted-value 

showed that this region was only sensitive to loss predicted values.  
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Figure 7.6 a) BOLD activation for loss predicted-value in the left globus pallidus internal 
segment. The activity in the ROI overlaid on the mesh frame (gray) that is created by the 
multicolor software (www.cns.atr.jp/multi_color_download). b) Percent signal change in the left Gpi 
for the first and the last ten trials. c) Percent signal change for the last ten trials of reward 
predicted-value (yellow bar) and loss (green) predicted value. 
 

Finally we carried out the same analysis for loss and reward prediction errors. We found 

that both reward and loss prediction errors produce significant effects only during the 

first 10 trials and no significant effects were found in any of the ROIs’ during late 

learning trials. For the reward prediction error during early trials, significant activity was 

found in the bilateral Nacc and for the loss prediction error we found significant activity 

in the bilateral caudate nucleus (see Figure 7.7). We also looked for the percent signal 

change in the NAcc for the loss prediction errors and vice versa for the caudate nucleus 

for reward prediction error in order to examine the possibility that these regions are 

specific for loss and reward prediction errors (see Figure 7.7b and Figure 7.7d). We 

found that the caudate showed negative BOLD signal for the reward prediction error 

and Nacc showed no percent signal change. 
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Figure 7.7a) Activity in the bilateral Nacc for the reward prediction error during early learning. 
b) Percent signal change for the first and the last ten trials for the reward prediction error (figure 
on the left). Percent signal change for the reward and punishment prediction error for the first 
ten trials (figure on the right) c) Activity in the bilateral caudate nucleus for the loss prediction 
error during early learning. d) Percent signal change for the loss prediction error in the caudate 
nucleus for the first and last ten trials of learning. 
 

 

Table 7.1 Results of the ROI analysis. 

Early Gain Action Value       

  Laterality t-statistic Uncorrected P-Value 

Frontal_Med_ORB_L L 2.2 0.029 

Frontal_Med_ORB_R R 2.67 0.014 

     

Late Gain Action Value       

   t-statistic Uncorrected P-Value 

Putamen  L 2.33 0.019 

Putamen  R 1.85 0.045 

     

Late Loss Action Value       

   t-statistic Uncorrected P-Value 

Gpi  L 2 0.035 

     

Early Gain PE       

   t-statistic Uncorrected P-Value 

NAcc  L 2 0.024 

NAcc  R 4.43 0.002 

     

Early Loss PE       

   t-statistic Uncorrected P-Value 

Caudate  L 2.86 0.01 

Caudate  R 2.78 0.011 

     

Early Loss PE       

   t-statistic Uncorrected P-Value 

Caudate  R 2.33 0.02 
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7.2 Discussion 

We were interested in identifying brain areas responding to changes in predicted-values 

and prediction errors for early versus late learning trials. We found that early in learning 

the reward predicted value correlates with activity in medial-orbito-frontal cortex but 

later in learning this activity shifts to putamen. On the other hand, we found left globus 

pallidus external segment activity for loss predicted-values in late learning trials only. In 

addition to that, we also replicated the well-established findings that showed prediction 

error signal in the ventral striatum for early learning trials only, whereas loss prediction 

error activated caudate nucleus and showed no prediction-error related activity for late 

learning trials.  

Recent studies have suggested that there might be more than one type of value 

signal and predicted-value signals are only one of them (Rangel and Hare, 2010). It was 

suggested that the predicted-value signals are involved in the processes of evaluating the 

anticipated outcome (O’Doherty, 2011). Rangel and Hare (2010) argued that predicted 

values are anticipatory value signals, which reflect the anticipated outcome of each 

possible decision during selecting of an option in a decision making task. Also it is 

important to keep in mind that in instrumental conditioning task outcomes might be 

associated with the actions (see for a discussion, O’Doherty, 2011). Given that, we found 

medial orbito-frontal cortex activity for the early-predicted values and putamen for late 

predicted values this anatomical and functional dissociation between medial-orbito-

frontal cortex and putamen also lends support to the hypothesis that these separate 

regions of human brain are involved in goal directed and habitual learning respectively 

(Balleine & O’Doherty, 2010). Correspondingly, it has been suggested that the sensori-

motor striatum is important in chunking motor patterns in the form of habits (Graybiel, 

1998) and the associative-striatum is important in goal directed learning and sensitive to 

outcomes (Balleine & O’Doherty, 2010). 
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Studies of cortico-striatal anatomy showed that the rostral striatum has 

connections to orbito frontal cortex (limbic loop) and sensori-motor striatum involving 

putamen has connections to motor and supplementary motor areas (motor loop) (Haber 

et al., 2000; Haber & Knutson, 2010) suggesting there might be distinct pathways. 

Therefore, it is plausible that early in learning medial-orbito-frontal cortex might be 

engaged in exploringthe response options and putamen is fine-tuning motor movements 

(Kim et al., 2009; Thorn et al., 2010; Stalnaker et al., 2010). 

Finally, although this study specifically focused on the neural correlates of 

predicted values it is highly related to computational models of reinforcement learning 

and raises the question whether the predicted-values of options are coded with actions or 

not. In the reinforcement learning literature, several possible implementations exist for 

coding action values such as Q-learning or Actor-Critic architecture (see Chapter 4). 

There is a long ongoing debate suggesting that the basal ganglia learns the outcomes of 

actions in a manner similar to that described in the Actor-Critic model (for a review, Joel, 

Niv, Ruppin, 2002). According to this model, dorsal striatum, mainly the putamen and 

caudate nucleus,  learn the action selection policy and are therefore only responsible for 

the selection of motor actions whereas the ventral striatum acts as the critic and 

calculates the prediction error signal and sends this signal to actor. As a working 

hypothesis, depending on the results of the current study we propose that dorsal striatum 

is not only coding the action policyin the form for probability of action selection, or 

policy but it is also coding related Q-values such as the value of selecting an option let’s 

say a, when the agent is in state S: Q(s,a). Crites and Barto (1995) suggested a modified 

Actor-Critic architecture that is equivalent to the Q-learning algorithm that encodes the 

Q-values in the policy. This suggestion by Crites and Barto (1995) seems highly plausible 

given that the putamen is active for predicted-values of selected options in later trials. In 
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the current study however, we didn’t fit our model to the actor-critic architecture (Sutton 

& Barto, 1998) or modified actor-critic architecture (Crites and Barto, 1995) because we 

initially intended to investigate action values. Comparison of those models is necessary as 

a part future work in order to prove the working hypothesis. 
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Chapter 8  

 

Experiment 2: Neural Correlates of Reinforcement Learning with 

Novel and Familiar Stimuli 

 

8.1 Analysis for Familiar and Novel Trials During the Anticipation and Outcome 

Periods  

8.1.1 Introduction 

Most of the time human decisions are performed automatically with little or no attention 

paid to stimuli that indicates available options. This is because most of the time the 

choices we faced are based on familiar stimuli with known outcomes that are learned 

through trials and errors. However, in order to adapt to new environments where people 

are confronted with novel stimuli, they have to pay more attention to the novel stimuli in 

order to learn what the stimuli indicates and decide as quickly as possible in accordance 

with the novel situations demands. Research into the brain areas involved in novelty has 

been rich in quantity (Ranganath & Rainer; 2003). For example, recent neuroscientific 

studies have shown that the occurrence of novel events might trigger activity in brain 

regions that are involved in various cognitive processes including attention, learning and 

memory (Yin & Knowlton, 2006, Graybiel, 2008, Seger & Spiering, 2011).  

 During reinforcement learning the effect of novelty can be seen as changes in 
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behavioural and neural responses to conditional stimuli (Duzel et al., 2010) where it 

implies that the perceptual properties of the stimuli are completely unknown to the 

subject (Tulving et al., 1996). Previous studies showed that neural responses for novel 

conditional stimuli can predict whether the event is occurring with known (familiar) or 

unknown (novel) stimuli. Recent studies showed that familiarization of the novel stimuli 

happens fast, usually in tens of trials (Kobayashi and Schultz, 2010). This process is in 

fact much faster than the acquisition of other novel events like motor-skills, or 

perceptual category judgement which was previously shown to take extensive training 

ranging from few hours to few months (see for a review, Yarrow et al., 2009; Helie & 

Cousineau, 2011). Animal studies showed that during learning reductions in associated 

neural activity occurs in the dorso-lateral frontal cortex (Assad et al., 1998) and 

subcortical brain regions particularly in the midbrain dopaminergic neurons and opposite 

pattern of increased activation was shown in these regions when the conditional stimuli 

are novel (Ljungberg et al., 1992; Redgrave, Gurney, Reynolds, 2007). Effects that are 

similar to animal electrophysiological studies also reported in human functional magnetic 

resonance imaging (fMRI) studies (Bunzeck and Duzel, 2006, Wittmann et al., 2007). 

Detecting novel task-sets have been shown to involve brain regions mainly hippocampus 

(Knight, 1996; Lisman & Grace, 2005; Kamuran & Maguire, 2009), amygdala (Breiter et 

al., 1996; Wilson & Rolls, 1993; Schwartz et al., 2003; Wright et al., 2006), midbrain 

(Krebs et al., 2011) and lateral-prefrontal cortical structures (Alexander et al., 1995; 

Knight and Scabini, 1998; Daffner et al., 2000; Kishiyama et al., 2009).  More specifically 

the effect of novelty during reinforcement learning has been observed in several studies 

as increased activity in dorso-lateral prefrontal cortex (Turner et al., 2004; Duzel et al., 

2004), ventral-striatum (Wittmann et al., 2008) and several studies have shownan increase 

in BOLD signal in midbrain dopaminergic activity to novel stimuli compared to familiar 

stimuli (Bunzeck and Duzel, 2006; Krebs et al., 2011) (please refer to Chapter 3 for a 
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detailed discussion). This effect of dopaminergic neurons to novel stimuli is called 

novelty bonus (Kakade & Dayan, 2002) as reviewed in more detail in Chapter 4. 

 Another important factor that influences stimulus novelty is the predictive 

relationship between the stimulus and the outcome (Kagan, 2009). In reinforcement 

learning when familiarity with a stimulus requires familiarization in two distinct aspects 

of stimulus processing. It can perceptually familiar ie all of its perceptual properties are 

known, or what it signifies in terms of consequences (what it predicts) can be familiar 

familiar . If a stimulus is perceptually familiar but the outcome is unpredictable, then 

exposure to the stimulus will still elicit a novelty orienting response, with attentional 

resources being automatically diverted towards that stimulus (Corbetta & Shulman, 

2002). Several researchers formalized this type of novelty-predictability relationship as 

expected and unexpected uncertainty (Dayan and Yu, 2003). According Yu and Dayan, 

(2005) expected uncertainty arises from known predictive relationships within a familiar 

environment, and unexpected uncertainty rises from unknown predictive relationships 

within a novel environment. For example, mis-forcasting of weather for a familiar region 

like one’s owntown is considered to be as expected uncertainty but when a mis-forcast of 

weather occurs for a region that we are not familiar with then it is considered as 

unexpected uncertainty (e.g., unexpected occurrence of a weather storm in Florida for a 

person who is living in London). Several neurocomputational studies proposed that the 

neuromodulators acetylcholine and norepinephrine play amajor role in the brain’s 

implementation of the expected and unexpected uncertainty computations (Dayan and 

Yu, 2003). There is also a wealth of evidence from electrophysiological and human 

functional imaging studies which suggest that striatal regions also carry additional 

computations for coding uncertainty in the context of learning novel stimulus response 

contingencies (Volz et al., 2003; Preuschoff et al., 2006; Bunzeck et al., 2010). 
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In this study we used functional magnetic resonance imaging to see which brain 

areas are involved in coding stimulus novelty during instrumental learning. To be 

consistent with Expt 1 and be able to compare results we adapted the event-related 

design of a probabilistic reinforcement-learning used Experiment 1 (see Chapter 6). In 

Experiment 2 we pre-trained all participants with a set of stimulus pairs over many trials. 

This was done outside the scanner and before the main experiment in the scanner. As in 

Experiment 1 participants learn via trial and error to select one of the stimuli in the pair 

in preference to the other since it has a higher probability of reward than the other 

stimuli. We shall refer to this pre-training as the familiarization tasksince participants saw 

and responded to some two hundred forty trials using the same set of stimulus pairs. 

From pilot work this results in overlearning, or a high level of familiarity, given that 

participants reach the asymptotic levels of the learning curves after some 30 or so trials. 

 In a separate session (main experiment) each of these subjects completes a 

similar task under the scanner , except that now the subject is not only presented with the 

set of stimuli which have become highly familiar (overlearnt) but they are also presented 

with a set of novel stimuli which they have never encountered previously. This design 

should be more powerful than Expt 1 in distinguishing between novel stimuli (eliciting 

goal directed behaviour) and familiar stimuli (eliciting automatic behaviour) In both the 

familiarization task and the main experiment we only include reward-learning trials with 

loss trials removed altogether. 

There are at least two important reasons why we are conducting this study. 

Firstly, only a few fMRI studies have taken into consideration both the effects of 

stimulus novelty and the effect of outcome predictability when comparing novelty and 

familiarity (Kagan, 2009). The interaction between the neural mechanisms of these two 

types of novelty (stimulus novelty & outcome predictability) is still not well understood. 

For example, some studies used either stimuli with known perceptual properties but 



 181 

unknown stimulus-outcome associations (Elliot et al., 2010), whereas others have used 

abstract stimuli with unknown perceptual properties and unknown stimulus-outcome 

associations (Pessiglione et al., 2006; Palminteri et al., 2009). In such experiments it is 

hard to localize the brain regions that are engaged with coding stimulus novelty and the 

brain regions that engage in coding stimulus-outcome uncertainty. In the current 

experiment we manipulate both the stimulus novelty and outcome predictably by making 

both the novel and the familiar stimuli highly predictable and unpredictable by 

manipulating the uncertainty of CS-US associations.  

Secondly, we used functional connectivity analysis (PPI) in order to see which 

regions that are differentially activite for novel as opposed to familiar stimuli. We believe 

that the results from this approach might reveal underlying mechanisms by which the 

brain operates proactively in recognizing novel and familiar stimuli. 

 

8.1.2 Materials and Methods 

8.1.2.1 Participants 

Nineteen right-handed healthy normal volunteers (12 male, 7 female; mean age 25, range: 

24-32) were recruited but only 18 participants (12 male, 6 female) included in the analysis. 

One of the participants was excluded from the analysis due to insufficient behavioural 

performance (participant couldn't be able to show any learning performance, and 

informed the experimenter saying about his random choices in all conditions). All of the 

participants were pre-assessed to exclude those with a prior history of neurological and 

psychiatric illness. All participants were invited to take part with written and verbal 

instructions about the experiment before the fMRI session. Prior to the main experiment, 

which involved fMRI, participants filled a written informed consent form before 

entering the scanner. All participants were debriefed after experimental session and paid 
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according to their performance in the task. The study was approved by the Bedfordshire 

NHS Ethics committee board and Local Ethics committee. 

 

8.1.2.2 Experimental Design 

The experiment is made up of two parts:a familiarization task followed in a different 

session by the main experiment. The familiarization task was performed outside the 

scanner for pre-training the participants and the main experiment performed inside the 

scanner. For both sessions e-prime software (www.psychologysoftware.com) was used to 

control the presentation of stimuli and collect response data. 

 

8.1.2.2.1 Familiarization task 

The familiarization set of stimulus comprised 3 stimulus pairs. Each pair of stimuli was 

made from either Chinese or Agathadaimon font, which were counter balanced across 

participants, so that each participant was familiarized with only one font type. Three 

types of stimulus pair were used which differed in terms of the uncertainty of reward. 

The reasoning behind this is that by varying the reward contingency it allows us to 

differentiate the effect of expected and unexpected uncertainty of outcome that was 

previously mentioned in the introductory section. For a high outcome uncertainty pair 

the probability of reward is 0.6 for one of the options and 0.4 for the other, with 

corresponding probability of no reward being) 0.4 and 0.6 respectively. For the mid 

outcome uncertainty pair the probability of reward for one of the option was 0.8 (0.2 for 

no reward) whereas the probability of reward for the other option was 0.2. Finally the 

last stimulus category is deterministic rather than probabilistic such that if the participant 

chooses the correct option then the outcome is certain ie he will be rewarded on every 

occasion (probability of 1), whereas if s/he chooses the other option then s/he will 

always receive no reward. The familiarization task included 240 trials (80 for each level 
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of uncertainty). Each trial begins with a fixation cross of 500 milliseconds presented in 

the middle of a LCD screen, which is followed by the presentation of one pair of stimuli 

for approximately 3 seconds. In that 3 seconds participants have to respond by choosing 

one of two response keys to indicate which of the 2 stimuli they prefer. This sequence of 

events is explained to each subject prior to commencing the first trial. Subjects are not 

instructed about the stimulus-reward contingencies. All responses are made with either 

the index finger or middle finger of the right hand. Responding is made on a Lumina 

response box, which is MRI, compatible. The response box has 4 key pads of which only 

the two at one end were used so that the subject could position their index and mid 

finger over the key and minimize hand movements. If the stimulus on the left side of the 

screen is preferred then the participant presses their index finger, and if the right side 

stimulus is preferred then the participant presses the key below their middle finger. After 

the participants make their choice feedback was immediately presented on the screen for 

about 3 seconds.  For each correct prediction the rewarding feedback was large image of 

a £1 coin and for neutral feedback a £1 coin with a well defend red cross centred on the 

centre of the coin. Subjects were informed that the amount of money they would receive 

at the end of the study would be contingent on the money accumulated after completion 

of the both the familiarization task and main experiment. However, in order to avoid 

discrimination among participants at the end of the experiment same mount money 

provided to all participants that is of 20£.  

 

8.1.2.2.2 Main Experiment 

There were four scanning sessions in which each session was separated from the next by 

2 minutes. In each scanning session there were in total 3 sets of novel stimulus-pairs and 

3 sets of familiar stimulus pairs presented. For both pairs the outcome uncertainty 

adopted in the familiarization task was maintained, that is each stimulus pair was either 
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low/mid/certainty outcome uncertainty (ie corresponding to the 3 probabilistic 

categories used in the familiarization task) (see Figure 8.1). The novel and familiar 

stimulus set were presented as separate blocks in order to avoid activity related cto 

ontextual novelty of so called temporal un-expectancy (i.e. unsure which type of stimulus 

pair would come next). This type of novelty (contextual) was commonly seen in tasks 

that are similar to the the oddball task (Knight et al., 1984; Knight and Scabini, 1998) 

where a novel stimulus is presented after familiar stimuli have been presented on several 

previous consecutions of trials and the effects of contextual novelty was avoided in the 

current experiment. During the scanning session each stimulus-pair was presented for 10 

times (for each probability condition in a single session) making a total of 120 trials for 

the novel stimuli and 120 trials for the familiar stimuli for the whole fMRI sessions 

(each scanning session 30 novel and 30 familiar stimuli is used). On the basis of the 

learning curves observed in Experiment 1 asymptotes were reached by about 10 trials, 

although this varied according to outcome uncertainty. In order to maintain stimulus 

novelty throughout the main experiment for the set of novel stimulus pairs we did not 

want to exceed 10 trials for any one pair. Each trial in the scanning session took for 

about 10 seconds and the overall scanning time for a single participant took for about 48 

minutes. Furthermore, at the end of each trial in the main experiment there was a 

random inter trial interval for about 2-8 seconds (jitter) in order to separate the 

rewarding outcome and stimulus presentation in the next trial. This inter-trial interval 

wasn’t used in the familiarization -procedure. The basis of our judgement on the timing 

of the stimulus presentationis based on the statistical efficacy of the BOLD signal (T-

values) of other studies and in particular our experience from the previous fMRI 

experiments.  
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Figure 8.1 Illustration of task display for the probabilistic learning task during the 
scanning session.Subjects were presented with two abstract visual stimuli (either familiar 
or novel pair). During the choice subjects selected one of the stimulus, and their choice 
was followed by a feedback (a pound or nothing). 
 

 

8.1.3 Functional Magnetic Resonance Image Acquisition 

 The functional imaging was conducted using 3-Tesla Siemens Magnetom MRI scanner 

to acquire gradient echo T2* weighted echo-planar (EPI) images with BOLD (Blood 

Oxygenation Level Dependent Signal) contrast (3x3x3-mm voxel size).  Imaging 

parameters were optimized to minimize signal dropout in medial ventral prefrontal and 

anterior ventral striatum: we used a tilted acquisition sequence at 30° to the AC-PC line 

(Deichmann et al. 2003). Each volume compromised 36 axial slices of 3–mm thickness 

and 3-mm in plane resolution with a TR time (repetition time) of 3s. The flip angle was 

90 degrees. T1 weighted structural images (1x1x1-mm voxel size) also acquired for each 

participant. Head movement was minimized with padding the participants’ head. 
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8.1.4  Functional Magnetic Image Analysis 

Image analysis was performed using statistical parametric mapping SPM8 software 

(Wellcome Department of Imaging Neuroscience, Institute of Neurology, London, 

United Kingdom). For all participants the images were realigned according to the first 

volume in order to correct for motion in the scanner. For all participants anatomical 

images were co-registered to functional EPI images and were normalized to a standard 

EPI template. Spatial smoothing was applied using a Gaussian kernel with full width 

half-maximum (FWHM) of 8 mm for each participant’s data. Statistical analyses were 

performed on individual participant’s data using the general linear model in SPM8. The 

fMRI time series data were modeled by a series of events convolved with a canonical 

haemodynamic response function (HRF). The presentation of the conditional stimulus 

and feedback screen was modeled as 1-second duration events. GLM thus included one 

regressor for each conditioned stimulus type (novel vs familiar) and each level of 

uncertainty of outcome (probability of reward for correct choice = 0.6, 0.8, 1.0 ) which 

we will refer to as novel_CS-06, novel_CS-08, novel_CS-1, familiar_CS-06, familiar_CS-

08, familiar_CS-1). There were also six feedback types which shall be refered to 

asnovel_US-06, novel_US-08, novel_US-1, familiar_US-06, familiar_US-08, 

familiar_US-1). We haven’t separated the feedback into further categories of rewarded 

and non-rewarded but coded them as 1 (reward delivered) and 0 ( no reward delivered). 

The second level of the analysis consists of voxel-wise comparisons across subjects (one-

sample t-tests and ANOVA) that were computed from the single subjects' contrast 

images treating each subject as a random effect. Coordinates of significant local maxima 

are reported in a standard stereotaxic reference space (MNI, Montreal Neurological 

Institute) and group functional overlays are displayed on the single subjects' anatomical 

scans. 
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8.1.5 Behavioural Results 

To investigate the differences in learning performance for different stimulus pairs, we 

calculated the percentage of correct responses for each probability condition (0.4/0.6, 

0.2/0.8, 0/1) and for each stimulus category (novel and familiar).  Furthermore, in order 

to measure the learning performance between the novel and familiar stimulus sets, we 

compared these two conditions with the last 60 trials of the pre-training familiarity 

session. For the familiar stimuli, no significant difference is found in the performance 

during pre-training (familiarization session) and the main experiment (scanning session) 

for all three conditions. Also for the novel stimuli there was no significant difference 

(Novel_CS_0.6-Familiar_06, p>0.05, Novel_CS_0.8-Familiar_08 p>0.01, one tailed). 

However we found significant difference for Novel_CS_1 vs Pre_traning_1 (p<0.01, 

one tailed T=4.89), and Novel_CS_1 vs Familiar_CS_01 (p<0.01, one tailed T=5.189), 

(see Figure 8.2) was due to fewer choices made for the correct option for the novel 

pairs as would be expected in the early stages of learning.  

 

Figure 8.2 Behavioural data averaged across all 18 participants showing the percent of correct 
responses for familiar, novel during the scanning session and familiar stimuli during the last 
sixty trials of the pre-training session.  
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Response times (RT) significantly differ between novel and familiar (1069 ±22  ms and  

819 ±99ms, respectively, see Figure 8.3 for details). Responses were significantly slower 

for novel stimuli compared to familiar stimuli (T= 4.83, p<0.01, one tailed). But the RTs 

doesn't change between Familiar Stimuli during the scanning session and familiar stimuli 

during the end of familiarization session (Pre-Training) (p>0.01, one tailed).  

 

 

Figure 8.3 Plot of the reaction times for the novel, familiar stimuli and of familiar stimuli 
during the pre-training session regardless of the outcome probability. Participants were 
significantly faster in the familiar trials compared to novel trials.   
 

8.1.6fMRI Results 

First, we identified the neural correlates of conditional stimulus processing by comparing 

the (novel vs. familiar CS) contrast across all participants. Selected t-tests were 

conducted to compare conditions of interest. This analysis revealed BOLD responses for 

Novel CS > Familiar CS in several regions including the left and right DLPFC and 

parietal cortex (see Figure 8.4).  The opposite contrast (Familiar CS > Novel CS) 

resulted in increased activation mainly in medial surface of the frontal cortex including 

medial frontal and anterior frontal cortex (see Figure 8.5). The coordinates for these 

comparisons (Novel and Familiar) are reported in Table 8.1. Also based on the above 
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contrasts, we extracted the mean BOLD signal change from the peak voxels in order to 

investigate potential modulations by the respective probability factor. In particular, we 

were interested in how far regions involved in novelty would be influencedby the 

outcome uncertainty in the predictive relationship between CS and US (see Figure 8.6). 

The full extent of the activations is reported in Table 8.1. 

 

 

Figure 8.4 Activations shown for the (Novel CS > Familiar CS) contrast across all participants. 
For the 2 images at the top activation is overlaid on the lateral surfaces of the cortex separately 
for each hemisphere (images on the right side of the figure are right hemisphere whereas images 
on the left side of the figure are left hemisphere) and the images at the bottom show activation in 
the medial surface of the cortex. The activations were overlaid on the group average of inflated 
anatomical images using the CARET software. The color bar represents the T-Value where the 
green regions represent less significance and blue and red regions represent higher significant.  
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Figure 8.5 Activations shown for the (Familiar CS > Novel CS) contrast across all participants. 
For the 2 images at the top activation is overlaid on the lateral surfaces of the cortex separately 
for each hemisphere (images on the right side of the figure are right hemisphere whereas images 
on the left side of the figure are left hemisphere) and the images at the bottom show activation in 
the medial surface of the cortex. The activations were overlaid on the group average of inflated 
anatomical images using the CARET software. The color bar represents the T-Value where the 
yellow regions represent less significance and red regions represent higher significance.  
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Figure 8.6 The coronal fMRI image at the top middle shows the Novel CS > Familiar CS 
contrastacross all participants. On the right and left side of the same figure percent signal 
changes and standard errors are shown for Novel CS (red) and Familiar CS (blue) for the right 
and left DLPFC respectively.  At the bottom middle are the coronalfMRI image shows activation 
for the Familiar CS > Novel CS contrastacross all participants. On the right and left side percent 
signal changes and standard errors for Novel CS (red) and Familiar CS (blue) was shown for the 
ACC (on left side) and medial PFC (on the right side) respectively.   
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Table 8.1 The Subtraction Analysis Between Novel CS and Familiar CS 

 

8.1.7 Conjunction and Interaction Analysis 

The full network of regions activated across both novel and familiar event types was 

investigated using a standard analysis of variance (ANOVA) implemented in SPM8 where 

we look at the brain areas engaged by both CS categories (Novel CS and Familiar CS 

trials) and for all probabilistic categories (0.4/0.6, 0.2/0.8, 0/1). A widespread network 

of regions was activated for all CS types including basal ganglia, medial frontal regions, 

cingulate cortex, hippocampus, lateral parietal cortices, precuneus, and cerebellum 

((P<0.000001, uncorrected) (see Figure 8.7).  
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Figure 8.7 Areas activated for all conditional stimulus types (P<0.000001, uncorrected). The 
color bar indicates the F score associated with each voxel. 
 

We also looked at each CS category (Novel and Familiar) separately with an F-Contrast 

(see Figure 8.8). For all Novel CS regardless of the uncertainties in the outcome, the 

analysis revealed activity in various brain regions mainly in the basal ganglia, parietal 

cortex, cingulate cortex, bilateral DLPFC. A similar activation was also found for 

Familiar CS in the basal ganglia, parietal cortex and cingulate cortex. However, the 

activity in the DLPFC and posterior parietal cortex is more prominent for Novel CS 

compared to Familiar CS. 

 

 

Figure 8.8 From left to right axial, sagittal and coronal slices show brain regions whose 
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activation are modulated by Novel and Familiar CS. The brain regions preferentially activated 
when Novel CS is presented (regions in red) compared to Familiar CS is presented (regions in 
blue) are overlaid on to single subject anatomical brain image. Regions that were active in both 
contrasts are shown in Purple. Both the Novel and Familiar contrasts were threshold with 
P<0.000001, uncorrected. 
 

Furthermore, in order to verify the potential interaction between the stimulus novelty 

and uncertainty we applied a two-by-three repeated-measures ANOVA where stimulus 

novelty and uncertainty are the two factors. rANOVA was performed as implemented in 

SPM8 with stimulus novelty with two levels (novel vs. familiar), and uncertainty with 

three levels (0.4/0.6, 0.2/0.8, 0/1). The main purpose of the rANOVA was to investigate 

potential voxel-wise interactions rather than the overall main effects of stimulus novelty, 

since these were illustrated using the contrasts above. The main effect of uncertainty 

revealed activations in left insula and left putamen (see Figure 8.9a), whereas interaction 

between novelty and uncertainty was significant in inferior frontal gyrus (p<0.001, 

uncorrected) (see Figure 8.9b). The interaction analysis suggests that decrease in novelty 

result in increase in uncertainity. The coordinates for activation peaks in ANOVA 

analysis for the main effect of uncertainty and uncertainty novelty interaction reported in 

Table 8.2. 
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Figure 8.9 A) Areas of left insular cortex and putamen showing uncertainty related 
activity for CS regardless of whether the stimulus is novel or familiar. B) Areas of 
inferior frontal gyrus show significant interaction between uncertainty and novelty. 
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Table 8.2 ANOVA The Effect of Uncertainty and Novelty & Uncertainty Interaction 

 

 

We also looked at areas involved in expected and unexpected uncertainty using a T-

contrast. For the expected uncertainty, we looked at the contrast of Familiar CS with 

high uncertainty P=0.6 and Familiar CS with certainty P=1. For unexpected uncertainty 

we used the contrast of Novel CS P=0.6 and Novel CS P=1.  The results revealed that 

the activity for expected uncertainty significantly increases in cingulate gyrus, bilateral 

insula and caudate nucleus. When we looked at the unexpected uncertainty with the 

contrast Novel CS P=0.6 > Novel CS P=1, we couldn’t be able to identify any activation 

even with more liberal statistical threshold at p<0.005 (uncorrected). 

Figure 8.10 From left to right axial, sagittal and coronal slices show brain regions whose 
activation are modulated more by the high uncertainty Familiar CS P=0.6 than 
deterministic Familiar CS P=1. Areas of bilateral insular cortex, cingulate cortex and 
caudate showing significant activity at the level of P<0.001 (uncorrected). 
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8.1.9 Region of Interest Analysis for Stimulus Novelty in the Midbrain 

Previous studies showed that midbrain dopaminergic neurons show increased activation 

for novel stimuli (Krebs et al., 2011).  Based on this prior evidence, we decided to 

explore the relation between the effects of stimulus novelty by applying ROI analysis. To 

further characterize the activity in the midbrain for novelty processing Marsbar toolbox 

was used with SPM8 (http://marsbar.sourceforge.net, Brett et al., 2002) to perform 

Region of Interest (ROI) analyses. In order to be able to delineate spatially confined 

activity clusters within the midbrain, we used the coordinates of two anatomical ROIs 

that were localized in the center of left and right substania nigra of the AAL template 

(Automated Anatomical Labeling Template), which was shown in Figure 8.10.   5 mm 

spherical ROIs were created around the center of each region in order to include VTA. It 

is important to note that this midbrain ROI includes the substantia nigra as well as VTA 

since we were unable to separate VTA from as we were unable to obtain high enough 

resolution anatomical scans of individual participants and wereunable to identify a VTA-

ROI template in MNI space. The beta values were then extracted for each participant in 

order to calculate group percent signal changes for Familiar and Novel CS contrasts. 

 The results showed that both left and right midbrain ROIs’ produced greater 

activity for novel stimulus than for the familiar stimulus for the stimulus pair in which 

there is certainty (probability =1 (p<0.05, one tailed). However we couldn’t identify any 

significant difference in Beta values for the pairs that have 0.6/04 and 0.2/08 (p>0.05, 

one tailed). 
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Figure 8.10 The results of ROI analysis above shows both right and left midbrain are 
shows significantly higher activation for Novel CS than for Familiar CS when the 
outcome is fully predictable p <0.05, (FWE). 
 

8.1.10 Functional Connectivity Analysis 

We investigated the functional connectivity for the novelty-related increase of the 

reward-anticipation signal within DLPFC. In order to do that, a psycho-physiological 

interaction analysis (PPI) is conducted as is implemented in SPM8. PPI analysis assesses 

how the activity within brain networks is modulated by varying task conditions in an 

fMRI experiment. Specifically, the individual DLPFC seed activity for the physiological 

signal was extracted for each participant using the contrast Novel CS >Familiar CS.The 

Novel CS >Familiar CS contrast reflects the additional enhancement of the anticipation 

response by novelty. The seed was defined as 8mm spherical ROI around each 

participants peak voxel in lateral prefrontal cortex (See, Figure 8.11a). In order to 

highlight the center of the seed region we applied 8mm Gaussian smoothing to the peak 

voxels as seen by Figure 8.11b. Note that this smoothing operation is nothing to do with 

PPI analysis and just for representational purposes for the center of mass of the seed 

region. The PPI term was created for each participant by multiplying the deconvolved 

and mean-corrected BOLD signal with the psychological vector. After convolution with 

the HRF, mean correction, and orthogonalization, the three regressors (PPI term, 
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physiological vector, and psychological vector) were entered into the statistical analysis to 

determine condition- dependent changes of functional connectivity over and above any 

main effect of task or any main effect of activity in the corresponding brain areas. In the 

PPI contrasts, the PPI term was computed against implicit baseline. Random-effects 

analyses were performed on single-subject PPI contrast images (p < 0.001, uncorrected) 

and carried to second level group analysis.  

 

 

 

Figure 8.11a) On the upper and lower left side of the figure glass brains are shown from 
a sagittal and coronal view. Red squares represents individual peak voxels of the 
participants for the Novel CS> Familiar CS contrast. The spherical ROIs for seed-
region activity was taken from individual participants' peak voxels. b) On the upper and 
lower right side of the figure the coloured areas show smoothed (8mm Gaussian filter) 
individual peak voxels for demonstrative purpose (smoothing was not applied during 
PPI analysis) to show the centre of  
mass of the peak voxels.  
 

The PPI that focused on novelty-related changes in the context of reward (seed contrast: 

Novel_CS vs. Familiar_CS) revealed co-variations between the DLPFC seed region and 

bilateral ventral striatum (NAcc), bilateral amygdala, insula, and several small clusters in 
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lateral prefrontal cortex and cingulate gyrus (see Figure 8.12).  The clusters in DLPFC 

were highly overlapping with the novelty-sensitive cluster observed in the Novel 

CS>Familiar CS contrast (compare Fig. 2A, right panel). Please see Table 8.3 for a full 

list of activations. 

 

 

 

Figure 8.12 Functional connectivity (PPI) with the DLPFC. Functional connectivity 
between the novelty sensitive right and left DLPFC and bilateral amygdala, insula, ventral 
striatum are show by the top and three bottom images respectively. Activities in these 
regions are increased for novel as compared to familiar reward-predictive stimuli.  
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Table 8.3 Results of the PPI analysis. Coordinates in MNI space. 

 

 

 

 

8.1.11 Activity During the Outcome Period 

Here we compare the outcome to novel stimulus pairs and familiar stimulus pairs 

outcomes (regardless of the feedback valence). The reasons for this are that the 

outcomes for the familiar stimulus pairs would be expected (predicted by the CS) 

whereas those for the novel pairs are not predicted. The contrast Novel US >Familiar 

US showed increased activity in bilateral striatum and right ventro-medial frontal cortex 

(see Figure 8.13). For the opposite contrast (Familiar US > Novel US) the areas showing 

greater responses to Familiar outcomes than novel outcomes were found in the border 

of medial OFC andanterior portion of the cingulate cortex and precuneus (see Figure 

8.13).  
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Figure8.14 A) Areas of ventral PFC showing outcome related activity for Familiar US> 
Novel US contrast. The first image on the left side is the glass brain from the axial view 
shows group effects for the same contrast that enables one to appreciate activations in all 
locations and levels in the brain simultaneously. The next three figures are group random 
effects results that are superimposed on axial, sagittal and coronal slices overlaid on the 
single subject structural MRI image [at the Montreal Neurological Institute (MNI) 
coordinates indicated in the bottom right corner of each image].  B) Similar to the upper 
figure, the figure below shows group random effect results for the areas of striatum that 
show outcome related activity for the Novel US > Familiar US contrast. Significant 
effects are shown at p < 0.005, uncorrected.  
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Figure8.15 On the above coronal fMRI image activation was shown for the (US 
Activity of Novel CS  > US Activity of Familiar CS) contrast across all participants 
(p<0.005, uncorrected). Bar graphs on the left and right side of the upper figure show 
percent signal changes and standard errors for US Activity for Novel CS (red) and US 
Activity for Familiar CS (blue) for the left and right striatum respectively.  b) The sagital 
fMRI image below activation was shown for the (US Activity for Familiar CS  > US 
Activity for Novel CS) contrast across all participants. On the right and left side percent 
signal changes and standard errors for US Activity for Novel CS (red) and US Activity 
for Familiar CS (blue) was shown for ventro-medial PFC (on left side) and medial PFC 
(on the right side) respectively.   
 

8.2 Discussion 

8.2.1 Novelty Responses during The Anticipation Phase   

Our results showed that novel conditional stimuli, compared to the pre-trained familiar 

stimuli elicited a greater activation mainly in the dorsolateral prefrontal cortex and 

posterior parietal cortex with additional activations found in the hippocampus and right 

insula. On the other hand when we performed a subtraction analysis to compare the 

regions that show higher activation for familiar stimuli than novel stimuli we found 

anterior cingulate gyrus activity. The regions activated for the novel stimuli involved a 

network that is frequently referred as dorsal fronto-parietal attention network (Quintana 

and Fuster, 1999; Corbetta and Shulman, 2002). Previous studies have shown that this 

networkusually gets activatedat the early stage of learning when attention is required 

(Duncan and Owen, 2000; Corbetta and Shulman, 2002). In addition dorsal-frontal 

executive functions are especially important in the early, more intentional phase of 

learning, as compared tothe later, more automatic phase (Jenkins et al., 1994; Jueptner, 

1997, Antzoulatos and Miller, 2011).In fact in their meta-analytic review Duncan and 

Owen (2000) identified activation in the dorsa-lateral prefrontal cortex in a range of 

cognitive tasksand they suggest that this region is involved in processing stimulus 

novelty. Also evidence from ERP studies showed that dorsolateral PFC (DLPFC) is 

important for novelty processing (Alexander et al., 1995; Knight and Scabini, 1998; 

Daffner et al., 2000). In humans Kishiyama et al., (2009) showed that patients with lateral 
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PFC damage were impaired in recollection based recognition memory for novel items 

compared to non-novel items. Additional evidence from primate studies also showed 

thatthe effects of stimulus novelty were eliminated when the DLPFC was lesioned 

(Parker et al., 1998). It is possible that DLPFC might actually be involved in encoding 

novel items in to working-memory (van Schouwenburg et al., 2010a, 2010b). In fact 

several studies suggested that DLPFC is involved in “attentional selection” of the items 

that are stored in working memory (Miller, 1999; Passingham & Rowe, 2002).  These 

studies argued that multiple attentional selection processes occur during remembering of 

an item from working memory and the activations found in the DLPFCmight account 

for the selection process of this items (Passingham & Rowe, 2002).  

 Our results also indicate that DLPFC activity might be involved in the response 

selection process when the outcome of each response is uncertain. Evidence to support 

this is that the novel stimuli elicited a stronger activation for stimulus-outcome pairs that 

are uncertain (0.6/0.4 probability pair) compared to stimulus-outcome pairs that are 

predictable (1/0 probability pair) (See Figure 8.6). In fact previous fMRI studies 

showed that LPFC is involved in exploratory decision-making and the activity in DLPFC 

is correlated with trial-by-trial estimates of relative uncertainty (Badre et al., 2012). 

Moreover, several other studies also showed a strong activation in the LPFC when the 

participants required figuring out complex rules in the Wisconsin Card Sorting Task 

(WCST) (Nakahara K, et al. 2002; Mansouri et al. 2006). It is possible that the DLPFC 

activity that is found in the current study might account both for the novelty and 

attention aspects of conditional stimuli, whereas anterior cingulate gyrus and medial 

frontal cortex activity might account for the familiarity aspects of conditional stimuli as 

suggested by previous studies (Chiba et al., 1997; Passingham et al., 2000; Maddock et al., 

2001; Inase et al., 2006) 
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8.2.2 Functional Connectivity of DLPFC  

The current results demonstrated that the human lateral PFC is important for producing 

stimulus novelty effects. Combined with our connectivity analysiswe further identified 

subregions of a distributed novelty-processing network, including the amygdala, ventral 

striatum, and insula. Previous neuroanatomical connectivity studies showed that DLPFC 

is higly connected with the dorsal striatum (Haber and Knutson, 2010) and this might 

seem to contradict our findings on functional connectivity betweenthe ventral striatum 

and the DLPFC for novelty. However several studies suggest that these two regions of 

striatum might be functionally coupled (Gao et al., 2007; Ballard et al., 2011). In fact 

there are two possible sources of explanations for this. Firstly, previous studies showed 

that activity in DLPFC could be modulated by the midbrain dopaminergic activity 

(Durstewitz et al., 2000; Seamans and Yang, 2004; Wang et al., 2004). In this case the 

basal ganglia might serve to choose which contents should be gated into dorsolateral 

PFC, to be subsequently maintained in working memory (Braver & Cohen, 2000; Frank 

et al., 2001; Orielly and Frank; 2006; Hazy et al., 2006; 2007). Recent evidence in 

neuroimaging (McNab, T. Klingberg, 2008) and PD patients (Moustafa et al, 2008) 

provide additional evidence on the role of the basal ganglia in gating working memory 

representations, as well as modulation by DA. 

 In the second scenario DLPFC might function asan inhibitory motor region but in 

a selective manner to ensure the correct behavioural choice is made (Chevalier and 

Deniau, 1990). The selection-related inhibition may constitute the DLPFC activation 

during response inhibition. Connections to the ventral striatum might mediate such 

selective inhibitions as well as disinhibitions (Redgrave et al., 1999). 

  We also found amygdala activation from the functional connectivity analysis.  

Anatomical studies have shown that the basal nucleus of the amygdala are the main 

source of inputs to the ventral striatum (Russchen et al., 1985; Fudge et al., 2002) and 
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amygdala has been previously associated with arousal or attention (Murray, 2007). We 

think thatamygdala is working collaboratively withother circuits for novelty detection, 

which is also suggested by other studies (Writh et al., 2003; Schwartz et al., 2003; 

Blackford et al., 2010; Balderston et al., 2011). 

 Finally, although recently, studieshave proposed that novelty signals originate in the 

hippocampus and modulate the activity of dopamine neurons in the SN/VTA (Lisman 

and Grace, 2005).  We were able to identify a small cluster of hippocampus activity for 

the novel CS > familiar CS contrast perhaps because our task is a reinforcement learning 

task rather than a memory task. Moreover because our functional connectivity analysis 

doesn't look at the directionality of connections between regions the question of how 

these regions interact within the network is an important avenue of future research. 

 

8.2.3 Novelty responses in the Striatum and Midbrain 

We showed that activity in the midbrain for novel CS is significantly greater than for the 

familiar CS that has predictable outcomes. Previous studies showed that, SN/VTA 

showed increased hemodynamic responses to novel stimuli (Bunzeck and Duzel, 2006; 

Wittmann et al., 2008).  In fact there is a wide variety of electrophysiology studies in 

monkeys and rodents suggest that dopamine neurons code more than reward prediction 

errors where they are also involved in alerting and novel events (Schultz, 1998; Redgrave 

et al., 1999; Horvitz, 2000; Lisman and Grace, 2005; Redgrave and Gurney, 2006; Joshua 

et al., 2009; Schultz, 2010). Moreover when we looked at the basal ganglia separately for  

The familiar and novel stimulus sets we found significant activity in the ventral striatum 

for both novel and stimulus types.  
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8.2.4 Uncertainty Related Responses 

We found that the main effect of uncertainty is the activity in the insula and the putamen 

whereas the interaction between uncertainty and novelty activates inferior frontal gyrus. 

Previous electrophysiological studies in monkeys indicate that dopaminergic neurons not 

only code a transient reward prediction error signal but also a sustained signal covarying 

with reward uncertainty (i.e., reward probability= 0.5) (Fiorillo et al., 2003). This finding 

also has been replicated in humans and uncertainty related activation was shown in the 

basal ganglia (Preuschoff et al., 2006) and this is in agreement with the previous findings 

which showed that putamen is involved in coding motor actions with uncertainty 

(Deffains et al., 2010; Vincente et al., 2012). Moreover our results showed that expected 

uncertainty produces significantly increase of activity in cingulate gyrus, bilateral insula 

and caudate nucleus. Previous studies suggested expected and unexpected uncertainty 

play complementary but distinct roles in top-down and bottom up attention and both 

forms of uncertainty are suggested to increase the rate of learning (Yu and dayan, 2003). 

 

8.2.5 Linking Automaticity with Processing Novel and Familiar Stimuli 

Our discussion so far has emphasized a role for novelty related activation, which 

focused on the dorsal fronto-parietal attention network, but these results are also 

consistent with rostro-caudal shift of activity during automaticity (Graybiel, 2008; Ashby 

et al., 2010) and can be interpreted in this direction. During the past ten years research in 

our understanding of how the brain responds to familiar and novel learning situations 

have reveals a number of important findings. One of these findings is the shift of 

activation from anterior to posterior regions in the networks linking cerebral cortex to 

subcortical striatal structures during learning of habits (Salmon & Butters, 1995; 

Hikosaka et al., 1999; Costa, 2007; Graybiel, 2008; Belin et al., 2009; Ashby et al., 2010). 

Studies that perform detailed analysis of novelty vs familiarity in learning of motor-
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movements showed that the brain regions involved in the familiarization procedure 

brain activation depend not only on the reaction time per se but effected by various 

factors including task domain (executive, visual or motor) (Jonides, 2004; Seger & 

Spiering, 2011), amount of practice (Waldschmidt & Aschby, 2011; Bassett et al., 2011), 

task subcomponents, dual task performance (Poldrack et al., 2005) or the speed of the 

response times (Kelly & Garavan, 2005; Saling & Phillips 2007, Bor & Owen, 2007; Helie 

& Cousineau, 2011). Our results showed that the overall effects of practice during the 

familiarization phase significantly decreased the reaction times of participants compared 

to scanning phase of the experiment. This behavioural effect was consistent with the 

existing literature on the development of automaticity suggesting that more automatic 

responses should be faster and more accurate. Overall, these results are consistent with a 

series of recent studies showing that portions of the lateral prefrontal cortex is involved 

in processing of novel stimulus response pair (Assad et al., 1998; Duncan & Owen, 2000; 

Ranganath and Rainer, 2003). 
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Chapter 9  

 

 

Experiment 2: Neural Correlates of Predicted-Value, Prediction Error 

and Learning Rate for Novel and Familiar Stimuli 

 

9.1 Model-Based Analysis of Novel versus Familiar Stimuli 

9.1.1 Introduction 

In this chapter the data that was presented in Chapter 8 is re-analysed in a 

model-based fashion. The reinforcement-learning model used in this chapter is a 

modified version of the reinforcement-learning algorithm that was used in Chapter 6 

and Chapter 7.  The difference between the algorithms lies in the way they update the 

learning rate (see the Methodology section below). The aim of the current chapter is 

similar to that described in Chapter 6-7, namely to identify the neural correlates of 

predicted-values for familiar and novel chosen stimulus and related prediction errors. An 

objectives is also to compare the results of the second experiment with the first 

experiment to check whether the brain regions that are involved in coding reward 

predicted-values during early versus late learning trials (that refers to first 10 and the last 

10 trials) are similar to predicted values for familiar and novel stimuli respectively in the 

second experiment. 

 In addition to that, we reviewedseveral mathematical accounts of adaptive learning 

rate algorithms in Chapter 4 and suggested that the neural networks that are responsible 
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from coding the learning rate should change their firing characteristics in real 

circumstances depending on the familiarity and predictability of the environment. It has 

also been reviewed that this might correspond psychologically to either the level of top-

down attention or stimulus novelty (Pearce & Hall, 1980, Schumajuk, 1997 see also the 

discussion section of Chapter 8). Therefore in order to test that possibility we looked at 

the neural correlates of the learning rate parameter for the novel and the familiar stimuli.  

 

9.1.2 Methodology 

9.1.2.1  Reinforcement-Learning Model 

The model used in this chapter is the same as the one used in Chapter 6-7 where 

the predicted values are updated only for the symbol that is chosen. The updating of the 

predicted value of the chosen symbol is based on the difference between the outcome 

and the estimated value. Similarly a softmax action selection rule was used for updating 

the probability of selected options (High probability “hp”, low probability option ”lp”). 

For example if the participant chose the high probability symbol the probability of 

choosing the symbol is calculated by the following equation. 

 

 

!is the inverse temperature, which relates to the randomness in selecting between two 

options. For example, high !means higher probability of random action selection 

(0<!<1). The prediction error was calculated by the difference of actual reward ,received 

( r ), minus the value of choosing that symbol (i.e., high probability option). 

 

We set the value of the reward r to 1 for positive feedback and 0 for neutral feedback. 

The predicted values Q (high probability, low probability) were also set to 0 at the 
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beginning of each learning session. When the outcome for the particular symbol was 

represented, the value of choosing that symbol was updated by the following equation 

 

The learning rate controls the amplitude of change and is determined by a standard 

recursive procedure as follows: 

if  

         

if  

         

if  

          

To determine the parameters with which the model best fit with the behavioural data of 

participants’ actual choices, the likelihood function l(Q|z) was calculated for each set of 

parameters (Q="0, %, #)with participants actual choices (z) . The model fitting 

procedure is as follows: we first calculate the action values sampling from all possible 

combinations of parameter values (incremental search). Then we estimate the 

probabilities for all possible parameter values for each trial. Then the probability that a 

participant can select the symbol ain trial i is inserted in the likelihood function. The 

highest likelihood parameters were selected as best fits. Note that for the learning rate 

parameter, we only determine the best fitted initial learning rate, "0 . The Matlab 

algorithm can be found from the Appendix C. 

 

9.1.3 Behavioural Results of the Model-Fitting Procedure 

The learning rate is a fundamental feature of behavior that determineshow agents should 
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adjust the decisions that they make in the faceof changing circumstances (Behrens et al., 

2007). Behavioral analysis of the fitted parameters showed that during learning of high-

uncertainty novel stimulus pairsthe mean learning rate is higher than in trials with high-

uncertainty familiar pairs. Even in the beginning of reinforcement learning sessions the 

learning rate for novel stimuli starts higher than the familiar pair which indicates that 

more weight is given to prediction errors during updating the predicted values of novel 

pairs (Figure 9.1). 

 



 213 

 

Figure 9.1 Average changes in learning rate across all 18 participants categorized 
according to reward probability A) The learning rate parameter for each trial of 
each individual is averaged for the high uncertainty familiar and novel stimuli. B) 
Average learning rate change for mid-uncertainty familiar-novel stimuli, C) 
Average learning rate change for deterministic familiar-novel stimuli. 
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Figure 9.2 Average changes in the predicted value of chosen stimulus across all 18 
participants categorized according to reward probability A) The predicted value for each 
chosen symbol of each individual is calculated and averaged for high uncertainty pair of 
familiar and novel stimuli. B) Average predicted-value changes for 0.8 probability 
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familiar-novel stimuli, C) Average predicted-value change for 1 probability familiar-
novel stimuli. 
 
 
9.2 Model-Based fMRI Results 

9.2.1 Neural Correlates of Prediction Errors For Novel and Familiar Stimuli 

We first determined which brain areas are more strongly activated for the 

prediction errors with the novel stimuli. The results showed that activity in several 

regions was significantly positively correlated with the reward prediction error signal,for 

the novel stimuli including the ventral striatum, medial frontal cortex, posterior cingulate 

gyrus, right medial frontal gyrus (BA10), left insula and bilateral extra nucleus (full list of 

activation was presented in Table 9.1). Secondly, in order to determine the difference 

between novel and familiar prediction errors, the prediction errors for the familiar 

stimuli were regressed against fMRI data. The results of the whole brain analysis revealed 

that there was no significant prediction error activity for the familiar stimuli with the p 

value of less than 0.001 (see, Figure 9.3). 

 

Figure 9.3Whole brain analysis showed that there is significant prediction error in 
ventral striatum for novel stimuli on the left panel (p<0.001, uncorrected) but no 
significant prediction error activity for familiar stimuli (right panel) even with a more 
liberal threshold of (p<0.0001, uncorrected). 
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Table 9.1 Activation coordinates for the Novel and Familiar Prediction Errors 

(p<0.0001, uncorrected) 

 

 

9.2.2 Neural Correlates of Predicted Values for Chosen Options For Novel and Familiar Stimuli 

We next tested one of our core hypotheses, which is whether the activation for 

predicted values differ for highly trained familiar stimuli and novel stimuli. To identify 

brain regions whose activation was modulated by predicted value, we regressed our 

predicted value signal onto the BOLD data. BOLD responses correlating with the 

model-derived predicted value for novel stimuli were mainly found in the VMPFC (peak 

at, x=1 y=36, z=-8), and precuneus (x=0, y=-58, z=34). On the other hand, the 

activation for the predicted value of the chosen option for the familiar stimuli were 

found in the left putamen (x=-27, y=-7, z= 13) and right insula (x=36, y=-13, z=10) (see 

Figure 9.4). 
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Figure 9.4 Activations correlating with predicted value for the novel and familiar 
stimulus conditions. Top panel: results of the predicted value signal for the novel stimuli 
for the chosen actions derived from our computational model correlating with the 
medial frontal cortex and precuneus (p<0.001, uncorrected). Bottom panel: results of the 
predicted value signal for the familiar stimuli whose activation show significant changes 
in putamen and insula (p<0.001, uncorrected).  
 

The findings so far support the conclusion that the BOLD signal in the mOFC is 

correlated with goal values, but the signal indorsal striatum is correlated with habit values 

(see Figure 9.4). However, when we used a more liberal statistical threshold p<0.005 

(uncorrected) we observed that a region in the medial OFC (x=0.6, y=56, z=10) also 

shows significant activation for the familiar predicted values (see Figure 9.5a).  In order 

to verify whether this activity is specifcaly caused by the predicted values of expected 

outcomes, we looked at the percent signal change graphs. The results revealed that unlike 

putamen, medial OFC shows negative percent signal changes for predicted values for 

familiar stimuli. We also looked at novel predicted-values with a more threshold and find 

a similar activation pattern as the familiar predicted values. For the novel predicted 

values both bilateral putamen show significant activation but this average percent signal 

change is negative compared to average signal change in medial OFC (see Figure 9.5b). 
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Figure 9.5a The middle picture showsactivations correlating with the predicted value 
for the familiar stimulus conditions. Results of the predicted value signal for the novel 
stimuli for the chosen actions derived from the computational model correlating with 
the medial frontal cortex (p<0.005, uncorrected), left putamen (p<0.001, uncorrect) and 
precuneus (p<0.001, uncorrected). Bottom panel: results of the predicted value signal for 
the familiar stimuli whose activation show significant changes in putamen and insula 
(p<0.001, uncorrected). 
 
 
 

 
 
 
Figure 9.5b The middle picture shows activations correlating with the predicted value 
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for the novel stimulus conditions. Results of the predicted value signal for the novel 
stimuli for the chosen actions derived from the computational model correlating with 
the medial frontal cortex (p<0.005, uncorrected), left putamen (p<0.001, uncorrected) 
and precuneus (p<0.001, uncorrected). Bottom panel: results of the predicted value 
signal for the novel stimuli whose activation show significant changes in putamen and 
insula (p<0.001, uncorrected).  
 

Table 9.2 Activation coordinates for the Novel and Familiar Predicted Values (p<0.001, 

uncorrected). 

 

 
 
9.2.3 Neural Correlates of Adaptive Learning Rates  

Previous studieswhich utilized adaptive learning rate models in their imaging studies (e.g. 

Behrens et al., 2007; Haruno & Kawato, 2006). For example, Behrens et al., (2007) 

correlate model derived learning rateswith BOLD signal at the point of reward outcome 

and describe the brain activations as indicating the level of environmental volatility. In 

the current study however, we looked at the neural correlates of learning rates during the 

presentation of novel and familiar conditional stimulus. We found that during the 
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presentation of novel CS activity in certain regions of the cingulate cortex, dorso-lateral 

prefrontal cortex, bilateral supplementary motor area as well as in occipital cortex (see 

Table 9.3 for a full list of activations). Moreover when we looked at the adaptive 

learning rates for the familiar stimuli, we found a similar activation pattern in the ventral 

striatum and the parietal cortex but no occipital cortex activity (see Figure 9.6).   

 
 

Figure 9.6BOLD activation related to learning rate during CS presentation based on 
stimulus familiarity. On the bottom figureNovel and Familiar contrasts together 
overlapped on the same single subject anatomical image. Red regions show BOLD 
activation for adaptive learning rates for Familiar CS. Yellow regions show adaptive 
learning ratesfor Novel CS. 
 
 
Table 9.3 Activation coordinates for the Novel and Familiar Adaptive Learning Rates 

(p<0.001, uncorrected). 
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Furthermore, in order to look for the effect of environmental volatility on the learning 

rate we analysed the data regardless of stimulus novelty but categorized it according to 

outcome uncertainty. We found that during the presentation of high uncertainty, 

stimulus regions of the dorsal cingulate cortex (pre-SMA) are activated and when the 

outcomes become predictable (i.e. low uncertainty) then regions of anterio-medial 

cingulate cortex get activated. Accordingly when the environment is more volatile the 
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more caudal regions of the cingulate cortex are involved, and when the outcomes are 

predictable the activity occurs in the anterior regions of cingulate cortex.  

 
 

Figure 9.7 BOLD activation related to learning rate during CS presentation with 
different reward probabilities regardless of their familiarty. The red regions show BOLD 
activation when the probability of receiving a reward is highly uncertain. Yellow regions 
show learning rate when probability of receiving a reward has mid-uncertainty. Green 
regions show BOLD activation for learning rate when probability of receiving a reward 
is deterministic.  
 
9.3.Discussion 

9.3.1 Novel versus Familiar Predicted Values 

We found that distinct brain regions track distinct aspects of predicted value: 

VMPFC tracks the predicted value when the stimuli are completely novel that is when 

the outcome of the CS is still unpredictable. The putamen tracks the predicted value of 

the outcome when the outcomes of each CS are familiar to the participant who therefore 

knows which option to choose. Such a result provides strong evidence that VMPFC is 

involved early in learning but putamen is involved later in learning. 

Given the results of this chapter and those of Chapter 7 these collectively 

suggest that medial-orbito-frontal cortex is involved in the earlier goal directed phase of 
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the learning where the predicted values of the rewarding outcomes still unknown (novel) 

but crucial. On the other hand when the participants know the actual predicted value of 

choosing a particular option and execute their selection in automatic fashion putamen is 

involved in coding the predicted value perhaps in the form of habits.  

 

9.3.2 Novel versus Familiar Prediction Error 

According to reward-prediction error models of learning, when the animal fully 

learns the predictive relationship between a conditional stimulus (CS) and a reward, the 

CS becomes the predictor of reward, and the burst of phasic dopaminergic firing for 

prediction error no longer occurs for the expected reward outcome. In supporting of 

this theory we could not identify any significant activation for prediction error in the 

ventral striatum for the familiar stimuli but we did find significant prediction error 

activation in the ventral striatum for novel stimuli (see, Figure 9.3). This result suggests 

that the ventral striatum has an important role in behavioral learning guided by reward 

prediction error, when stimuli are novel. 

 

9.3.3 Neural Correlates of Adaptive Learning Rates 

Learning rate is a fundamental feature of the behaviour of all organisms and even for 

artificial agents. In reinforcement learning theory, adaptive learning rates are expected to 

reflect synaptic plasticity responsible for behavioral change (Schultz, 1998), which is a 

product of the reward prediction error and learning rate. Learning rate alone determines 

how fast an individual adapts itself to new behavioural contingencies. The results of our 

imaging study showed that activity for the adaptive learning rates increased activation in 

ventral striatum and cingulate cortex for both novel CS and familiar CS. Moreover, 

motor cortex activation was also found for both familiar and novel learning rates. In 

addition to that we found activity in DLPFC for the adaptive learning rates for Novel 
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CS.We think that change in activity in the motor cortex might be due to behavioural 

learning via changing the sensori-motor cortico-striatal plasticity for actions, which may 

be linked to the learning rate parameter that determines the impact of the prediction 

error on the motor structures. 

 Furthermore, studies have shown that dopamine neurons code for adaptive 

learning rates, and these in control the gating mechanism of the top-attention in working 

memory in DLPFC (see for a discussion Chapter 3). According to this proposal, novelty 

signals (in our computation model the novelty signal is modelled by the adaptive learning 

rate) that rise from DLPFC or the midbrain dopaminergic system might modulate the 

neural mechanisms in the basal ganglia and anterior cingulate cortex to controlthe speed 

of learning for the predicted-values. Furthermore, the adaptive learning rate can 

modulate the attention networks through bidirectional communication and can influence 

the activity cortico-striatal spiral loop for the anterior-posterior shift.  

Finally the neural correlates of adaptive learning rate in our study show 

similarities with the study of Behrens et al. (2007), who showed that variation in learning 

rate (or volatility) correlated with fMRI signal in the rostral cingulate cortex. Thus, when 

we categorized the learning rate according to the level of reward uncertainty rather that 

stimulus familiarity we found that distinct regions of cingulate cortex are activated for 

different levels of uncertainty where high level uncertainty is correlated with dorsal part 

of the posterior medial cingulate cortex (pMCC) and Pre-supplementary motor area (Pre-

SMA) whereas medium level of uncertainty correlated with more ventral parts of the 

posterior medial cingulate cortex and completely determisitic stimuli is correlated with 

antero-medial cingulate cortex (aMCC). It is important to note that the posterior 

cingulate structures including pre-SMA are more sensitive to conflict resolution  where 

as aMCC is more involved in outcome related activity such as inference based on 

previous outcomes (Botvinick et al., 2001; 2004; Pearson et al., 2011). Various lines of 
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evidence suggest that Pre-SMA is also involved in pro-active switching in response to 

cues in order to facilitate new procedure after the particular action is becomes habitual 

or automatic (Hikosaka and Isoda, 2010). These results suggest that along the cingulate 

line caudal structures are involved in high volatile environments and rostral regions 

involved in deterministic environments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 226 

 

 

 

Chapter 10 

 

10 General Conclusions 

10.1   Summary of the General Findings 

The initial aim of this thesis was to establish the neural correlates of rewards and 

punishments in humans and how they influence learning related changes in the brain. 

Particular attention was given to the potential value of computational models as useful 

explanatory tools in order to achieve this aim. Whilst collecting and analysing the data 

from the first experiment it became apparent from my own empirical findings as well as 

those being published by others that the initial aim required some revision to bear in 

mind different patterns of involvement of the human valuation system in novel as 

opposed to familiar situations. 

During the last two decades, psychological experiments have provided a wealth 

of data, which for learning paradigms consist of time-series of behavioural outcomes. In 

certain circumstances interpretation of these data requires computational models (e.g., 

Rescorla-Wagner Model), often involving additional, mostly hidden, variables (e.g., 

Rescorla-Wagner prediction error). Instrumental and Pavlovian learning in humans and 

animals are two of the most studied, and best understood, processes in experimental 

psychology and neuroscience and perhaps for this reason they have been used widely in 

computational modelling studies (see for a review, Montague, Hyman & Cohen, 2004; 
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Montague, King-Casas & Cohen, 2006) where they provide a framework to 

computational modellers for studying the changes in the hidden variables during a 

learning process.  

Based on this approach during this PhD, two fMRI experiments were designed 

and the results of these experiments were reported between the Chapters 6 and Chapter 

9. In some of these chapters including Chapter 7 of Experiment 1 and Chapter 9 of 

Experiment 2 computational models were used to further analyse the behavioural data in 

order to find the estimated values of hidden variables (reviewed as a methodological 

review in Chapter 5). It was hypothesized that those hidden values have important 

implications forinfluencing the associative learning processes (reviewed in Chapter 3 

and Chapter 4). 

In Experiment 1, the brain activations during the anticipation and outcome periods 

for monetary gains and losses were examined.  

In the case of anticipation activation was found mainly in the cingulate cortex, 

the medial prefrontal cortex and the basal ganglia and in fact all of these structures 

showed increased BOLD response not only during the anticipation of reward outcomes 

but also for the anticipation of monetary losses. Moreover subtraction analyses for the 

anticipation contrast (reward anticipation - neutral anticipation & loss anticipation - 

neutral anticipation) showed that both reward and loss anticipation cause activity in the 

striatum and lateral frontal cortex. In the case of outcomes strong bilateral positive 

activity was found in the insular cortex for loss outcomes only since the difference 

betweenloss outcomes that are punished (-1 pound) andthe neutral outcomes (0 pound) 

was significant but a similar contrast between gain and neutral outcomes was not 

statistically significant in the insula. Activation was also found in amygdala, but this 

region appears to code not only for the difference between loss outcomesthat are 
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punished (-1 pound outcomes only) but also gain outcomes that are rewarded (+1 pound 

outcomes only).  

Considering both these results for anticipation and outcome it would seem that 

gains and losses might be processed by the same neuro-circuitry during the anticipation 

period (where decision making takes place) but processed differentially during the 

outcome period. However, it is important to note that the neural circuitry that was 

shared by reward and punishment expectation might be involve in processing action 

requirements rather than motivational valence. Perhaps this is due to the task design  

which does not separate action preparation from stimulus evaluation. For example, in a 

recent study Guitart-Masip et al., (2011) showed that ventral striatum and partially dorsal 

striatum is involved in coding go responses in a go-nogo task independent of the 

outcome valence suggesting that these regions might be involved in action opponency 

rather than motivational opponency.  In order to understand these results better, we 

turned to computational models and calculated model-based analysis, which involved 

fitting data, derived from computational models. 

 Model based analysis of expected value and prediction error revealed that both 

reward expectation and prediction errors (the model used assumed that prediction error 

is calculated at outcome) are coded in the basal-ganglia specifically in the ventral-striatum 

but loss prediction error is coded in the dorsal striatum. 

 The results of Experiment 1 also included findings which suggested that 

functional organization in human brain differs for novel and familiar stimulus 

processing wherenovel stimuli use goal-directed or deliberate processes which correlate 

with the fronto-cortical activation (due to stimulus and action novelty) but the familiar 

stimuliuse more automated processes which correlate with the sensori-motor regions of 

the striatum and the cortex. This led to an extensive review of the literature on both the 

cognitive psychology of goal directed and automatic processing as well as computational 
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models of these different systems. These were reviewed in Chapter 3. In Chapter 3 it 

was argued that the benefit of this shift from controlled to automated processing might 

be that automated processing frees attentional resources that are allocated to certain 

stimuli or actions, thus making multi-tasking plausible (Passingham & Rowe, 2002). 

Following this review the data from Experiment 1 was re-analysed using a model-based 

analysis (for the neural correlates of predicted value and prediction error) in order to test 

how the brain activities for associative learning change for the familiar and novel 

stimulus-reward associations. The method of analysis involved a comparison of the first 

and the last ten trials since the behavioural data suggested that this might separate goal 

based learning and automated processing. During the analysis we used separate ROIs, 

for the ventro-medial frontal cortex and sub compartments of human basal ganglia, 

which are assumed to serve different cognitive functions. The results showed that 

predicted value of the reward outcomes is coded in the medial frontal cortex during the 

first ten trials (where the learning is more goal directed) but during the last 10 trials 

(where the learning is more habitual) the activation was found in bilateral putamen. In 

contrast for the predicted value of loss outcomes we could notidentify any significant 

activation in the predetermined ROIs during early learning but for the last 10 trials we 

found significant activity in the internal segment of the globus pallidus (Gpi). For the 

reward prediction error we found significant activity in the ventral striatum during the 

early trials but we could not find any significant activation during the late learning trials. 

For the punishment prediction error, we found activity in the head of the caudate 

nucleus during early in learning but no significant activity during late learning trials.  It 

has been argued that the most important difference between reward and punishment 

prediction error is that the reward prediction error is involved in ventral striatum where 

as the punishment prediction error is involved in dorsal striatum. With the model-based 

analysis to Experiment 1, we concluded that there is a shift of activation from anterior 
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to posterior brain regions (from ventro-medial frontal cortex to putamen) for the 

predicted-values of reward outcomes.  

 However, even though there is a vast amount of electrophysiological and 

fMRI evidence (as reviewed in Chapter 3) showing correlations of predicted-value 

signals in cortical and limbic areas it wasn’t clear how these values are affected by the 

stimulus novelty because we only performed model-based predicted value analysis to 

compare early and late learning trials. Given these findings of Experiment 1, a new 

experiment is designed with a more powerful experimental design to evaluate brain 

systems involved in processing novel versus familiar stimuli.  Experiment 2 primarily 

differed from Experiment 1 by comparing overlearnt stimuli, presumably highly familiar, 

with stimuli, which were novel for all presentations. This experiment therefore looked at 

the difference in processing familiar and novel stimulus by pre-training the participants 

with a set of stimuli until overlearnt and intermixing those with a set of novel stimuli 

during scanning. Using these results together with connectivity analysis the results of 

Experiment 2 showed, similar to Experiment 1 dorso-lateral pre-frontal cortex 

involvement in coding novel-stimuli which appears, according to the connectivity 

analysis to modulate activity in the ventral striatum, amygdala and insula as revealed by 

the connectivity analysis. Further model based analyses that were performed in Chapter 

9 also suggest a similar activation pattern that was found in Chapter 7 which showed 

that predicted values for novel stimuli activate ventro-medial frontal structures but 

predicted values for the familiar stimuli activate dorsal parts of the striatum.  

 

10.2   Summary of the Main Contributions 

In this thesis, I have particularly focused on the neural correlates of predicted values and 

learning rates. It was suggested that neural correlates of learning rates might be a proxy 
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measure for dopamine modulation, and it might promote neural transitions between 

mechanisms regulating goal directed and habitual learning by integrating information 

from the regions that are specialized in attentional processes. It was suggested that two 

aspects of reinforcement learning, namely “the adaptive learning rates” and “the 

predicted-values”, are crucial for understanding the transition from momentary simple 

decisions to long-term habits. The functional imaging data presented here provides 

further evidence regarding certain aspects of this neural transition. However, one should 

be cautious that the stated model in this thesis on the interpretation of predicted-values 

and adaptive learning rates does not provide a comprehensive explanation of extreme 

habits like addiction, which would require further investigation with a devaluation 

paradigm.  

 

Main contributions of the findings to Cognitive Neuroscience can be summarized as 

follows: 

 

• The findings add to the existing pharmacological, electrophysiological, and 

functional imaging literature regarding the involvement of the striatum in 

aversive processing during anticipation of monetary losses (as reported in Chapter 

6). 

 

• The findings have important implications for understanding monetary loss 

outcomes becausethe activations found in the insula for monetary losses show 

overlapping regions with the existing imaging studies that looked at the 

phenomenological aspects of pain processing (as reported in Chapter 6).  

 



 232 

• The findings suggest that both avoiding a loss outcome and getting a rewarding 

outcome activate similar regions in the medial frontal cortex but to a differential 

degree. On the other hand the general opponency relationship between gains and 

losses suggests that processing of financial losses need additional activation of 

bilateral amygdala  (as reported in Chapter 6). 

 

• The results add to the growing body of neural and psychological data supporting 

the biological basis of prediction error theory. They showed that reward 

prediction error is coded in ventral striatum and punishment prediction error is 

coded in dorsal striatum (as reported in Chapter 6-7). Furthermore, the results 

showed that prediction error is only involved early in learning, which validates 

that it as a learning signal.  

 

• The results showed that there is a shift of activation for the neural substrates of 

predicted-value in the rostral-caudal axis during the automatization of the 

decision process for the predicted values of chosen stimuli (Chapter 7 and 

Chapter 9).  

 

• The results showed that novel stimuli induce significantly greater BOLD 

activation in the dorso-lateral frontal cortex (DLPFC) and posterior parietal 

cortex (PPC) compared tofamiliar stimuli. As a further implication, we argued 

that increased activity in the bi-lateral DLPFC might explain the effects of 

stimulus novelty and novelty-induced-attentional changes in ventral striatum, 

amygdala and insula (Chapter 8).  
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• Finally the results showed that cingulate cortex is involved in coding the adaptive 

learning rates that are based on the sign of prediction error (positive or negative). 

This result suggests that cingulate cortex might be involved in the acquisition of 

predicted-values and might control the relative-amount of shift of activation 

from anterior to posterior regions (Chapter 9).  

 

The results reported here might also have implications for other closely-related 

disciplines such as cognitive robotics and cognitive science in general which are 

summarized below: 

 

•     In cognitive science, there has been a long-going philosophical debate about the 

content of mental representations (Clark, 1997) including the type of information 

they store (Putnam, 1988), and the way they are encoded by the mind/brain 

(Churchland & Sejnowski, 1992). Keijzer (2001, p.2) defines mental 

representations as “theoretical entities that are the bearers of meaning and the 

source of intentionality”. According to this definition, mental representations 

carry relevant information for an individual about the outside world they are 

interacting with.  Then, the question becomes what type of information 

predicted-values carry and how individuals use that information during the 

process of learning. The first fundamental problem an individual has to solve in 

an experimental setup like the ones presented in Chapter 6 and Chapter 8 is to 

make an identification of the options to choose from displayed on the screen. 

Perhaps this question is partially solved by the visuo-sensory system with the 

guidance of dorsal and ventral visual pathways which process, respectively, what 

certain objects are and where they are located in space (Cisek & Kalaska, 2010). 

According to traditional cognitive models, the individual evaluate each option 
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and compare their utilities in a serial manner (Shafir & Tversky 1995). Then, by 

using these representations, they make decisions on which actions to choose. 

However this approach has difficulty in explaining the interaction between 

different mental representations such as the transition between perception and 

action or between action and value representations. These decision-making 

models are usually slow due to their serial information processing capacity 

(Sternberg, 1969, 1977). In the current thesis, the reinforcement learning model 

and the brain imaging data suggest that participants make a value-based 

comparison among options and that the neural activity shifts from the brain 

regions mostly associated with cognitive-emotional processing toward those 

regions that are associated with motor-related processing. This suggests that the 

same decision variable elicits the activation in multiple brain regions, which 

depends on the individuals’ familiarity with the stimuli. 

 

• A second implication of the predicted-value coding is related to common 

representation framework in cognitive science (Hommel, 2001). This conceptual 

view is called event-coding framework which tries to connect the linkage 

between (late) perception and (early) action (Hommel, 2004; 2010). In the event–

coding framework the perception and action could be based on a common 

representational domain (e.g, a neuron coding both motor features and 

perceptual features of a task) and it is different from other representational 

schemes where it assumes that the mental representations for stimulus and action 

are not coded separately but together in a common representational code 

(Hommel, 2001). The common representation view of Hommel et al. (2001) is in 

fact very similar to the action-value concept in reinforcement learning theory 

because it assumes that the same neurons (or brain regions) responds both to the 
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visual properties of an object and the action features of an object. However, the 

most significant difference between the common-coding framework and value-

based action coding in reinforcement learning is that in reinforcement learning 

there is no assumption about how predicted-value coding neurons respond to 

visual properties of a perceived object but rather the question is about the 

relationship between the motivational properties of an object (e.g., conditional 

stimulus) and its’ action requirements (e.g., reaching movement). Perhaps 

common coded representations are used in decision-making but further 

investigation is needed in order to understand how the values are attributed to 

these common representations (for a discussion, see Cisek & Kalaska, 2010).  

 

•    Another implication of the findings reported in this thesis might be related to 

advancements in cognitive robotics. A cognitive robot should be fluent in 

routine operations and it should be capable of adjusting its behavior when it’s 

faced with an unexpected situations (Kawamura et al., 2005; Ratanaswasd et. al., 

2005). In order to maintain adaptability in complex environments, robots should 

be cabaple of controling their actions in order to select and focus important 

information throughout their task executions. These abilities are known to exist 

in humans as executive functions, and are usually studied under the title of 

cognitive control (Cohen et al., 1990). Cognitive control observed in humans is 

thought to be useful for a cognitive robot during the action-selection process as 

well as learning as it guides the robot through the search for component 

behaviors that might be combined and used efficiently to execute routine tasks as 

well as to behave in novel situations (Ratanaswasd et. al., 2005). Several 

paradigms in artificial intelligence (AI) and robotics have been developed in order 

to explain the behavior of an agent in terms of stages of perception and action 
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(Kadihasanoglu, Erdeniz, Kucuktunca, 2007). In neuroscience and robotics this 

is commonly referred to as the perception-action cycle (Cutsuridis et al., 2011; 

Fuster, 2003). According to the reinforcement learning models used in this thesis 

when the agents learn the predicted values, there is no further need for 

calculation of the predicted values and a hypothetical robot should select actions 

based on its policy. During the last decade reinforcement learning models that 

are similar to the ones used in this thesis have been successfully used in robotic 

projects (Peters et al., 2003; Lapko, 2007). It is possible that the fMRI results 

found in this thesis might lead to reinforcement learning models for future 

robotic applications which consider the involvement of functional neuroanatomy 

of cortico-striatal loops. Such robotic applications might show big performance 

increases in situations, where the task requirements for a robot need efficient 

sensori-motor control for routine task sets and high-level cognitive control for 

novel task sets. 

 

10.3 Challenges and Limitations 

 One of the most important limitations is the total number of participants in the 

first experiment. As reported in Chapter 6 data was collectedfrom 15 participants and 

before that we had piloted with two participants. Unfortunately, we could not include 2 

participants from the 15 participants because most of the button press onset times were 

lost for those two participants (a software error). We thought that the problem was 

related to the synchronization of the scanner with the Superlab software. Considerable 

effort was put into finding the cause of the problem and how to program the 

experimental software (superlab) to avoid this problem in subsequent experiments. This 

involved much support and assistance from the technicians in the School of Psychology. 
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In the end the technicians contacted the suppliers of Superlab who acknowledged that a 

feature of the experimental design could not be accommodated. Thus we switched to E-

Prime in the second experiment, which resolved the problem. 

Secondly in several chapters of this thesis the contributions of computational 

models to our understanding of the brain function were reviewed. It was suggested 

computational models of reinforcement learning are good theoretical guides where they 

provide evidence for “where”, “when” and “how” in the brain certain variables (e.g., 

action-value, prediction error) are represented (O’Doherty et al., 2007; Corroda & Doya, 

2007; Mars et al., 2010). This approach might lead psychologists/neuroscientists to study 

cognitive/psychological phenomena, through specifying essential structures, divisions of 

modules, and relations between variables in the brain and used very commonly as 

common approach in cognitive science. As it was reviewed in Chapter 3 and Chapter 4 

it is easy to find a large body of literature of fMRI studies which used computational 

models in their data analysis. However, one might ask the question such as which 

reinforcement algorithm provides the best modelling framework to study the effect of 

novelty in associative learning? The answer to this question is not easy, and it is possible 

that there might be more than one computational model that is suitable for modelling a 

particular task such as the one used in Chapter 9. For example, there are alternative 

adaptive learning rate models than the one used in Chapter 9. One such model is 

Kalman Filter, which captures the essential relationship between the prediction error and 

learning rate fairly well (Daw et al., 2006). In addition to that several reinforcement 

learning models might provide solutions as good as adaptive learning rate models, which 

include the heterarchical reinforcement learning model of Haruno & Kawato (2006), the 

attention gated reinforcement learning model of Roelfsema & van Ooyen (2005), the 

model-based framework of Daw et al., (2005, 2011) and Dayan (2008), the hierarchical 

reinforcement learning model of Botvinick et al., (2009), actor-critic architectures (Barto, 
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1995; Joel et al., 2002), and reinforcement learning models based neural network 

(O’Reilly et al., 1999; Frank et al., 2001).  Given that how the brain uses such models is 

still not well understood, where much theoretical and empirical research in this are needs 

further research.  

 

9.2 Future Research 

Some ideas are suggested as extensions to my work are as follows:  

Some fMRI chapters in this thesis used statistical parametric analysis based on the 

principles of computational models as predictors of BOLD signal changes under the 

framework of reward-related learning. A number of sub-cortical and cortical areas were 

found to be involved in learning of stimulus-response associations as well as predictions 

and it was therefore suggested that these activations might be modelling dopaminergic 

modulation. To our knowledge dopamine is the best candidate for explaining such 

complex learning processes in humans and animals. However, as we reviewed in Chapter 

5 the evidence that indicates a direct relation between BOLD signal and dopamine is not 

yet strong enough to make a direct casual link. Therefore, in order to support the 

dopamine part of our hypothesis, we need direct measures of dopamine activity perhaps 

by using positron emission tomography (PET). 

 

9.3 List of Publications  

During the four years of my PhD, I have attended several conferences; I have presented 

3 posters, and two full conference papers.  

 

The following conference papers were presented in the conferences: 
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Erdeniz B., Done. J., Maex. R (2011) From Simple Decisions to Habits: Adaptive Coding 

of Action Values Through Multiple Cortico-Striatal Loops. International Cognitive 

Neuroscience Congress. Turkey/Marmaris  

 

Erdeniz B., Done. J Davey. N Frank. R Maex, R. (2009) Model Based fMRI: A novel 

technique for combining computational models and Brain Function. International 

Cognitive Neuroscience Congress. Turkey/Marmaris  

 

The following posters were presented in conferences: 

 

Erdeniz B., Done. J Davey. N Frank. R , (2012)Neural Correlates of Chosen Action 

Values Early Vs Late Learning SIXTEENTH INTERNATIONAL CONFERENCE 

ON COGNITIVE AND  NEURAL SYSTEMS, Boston University, United States 

(Poster)  

 

Erdeniz B., Done. J (2012) Neural Correlates of Chosen Action Values Early Vs Late 

Learning.Second Symposium on "Biology of Decision-Making", Paris, France 10-11 May, 

2012 (Poster)  

 

Erdeniz B., Done. J Davey. N Frank. R , Maex R. Annett L. (2009) Modeling Self 

Control Behavior in a Reinforcement Learning Environment using Quasi Hyperbolic 

Discounting. Dopamine Agonists. THIRTEENTH INTERNATIONAL 

CONFERENCE ON COGNITIVE AND NEURAL SYSTEMS, Boston University, 

United States (Poster)  
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The following papers are in preparation for submition: 

(In Preparation) Erdeniz B., Done. J Davey. N Frank. R, Maex R. (2012) Neural 

Correlates of Stimulus Novelty During Associative Learning  

 

(In Preparation) Erdeniz B., Done. J Davey. N Frank. R , Maex R. (2012) Neural 

Correlates of Opponent Processes for Financial Gains and Losses:The Role of Medial 

Frontal Cortex  

 

(In Preparation) Erdeniz B., Done. J Davey. N Frank. R , Maex R. (2012) Adaptive 

Coding of Predicted Values, Early versus Late Learning.  
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Appendix A 
 

Cliff Walking Task in Qlearning MATLAB Code 
 

 

clear; 

stateNum = 40; 

actionNum = 5; 

up    = 1; 

down  = 2; 

left  = 3; 

right = 4; 

stay = 5; %stay if you can, 

Q = zeros(40,5); 

r = zeros(40,5); 

r(1,up) = -1;  r(1,down) =   -1;   r(1,left) =   -1; r(1,right) =   -100;  r(1,stay) =   
-1; 

r(2,up) = -1;   r(2,down) =  -1;   r(2,left) =   -1; r(2,right) =   -100;  r(2,stay) =   
-100; 

r(3,up) = -1;  r(3,down) =   -1;   r(3,left) =   -1; r(3,right) =   -100;  r(3,stay) =   
-100; 

r(4,up) = -1;   r(4,down) =  -1;   r(4,left) =   -1; r(4,right) =   -100;  r(4,stay) =   
-100; 

r(5,up) = -1;   r(5,down) =  -1;   r(5,left) =   -1; r(5,right) =   -100;  r(5,stay) =   
-100; 

r(6,up) = -1;   r(6,down) =  -1;   r(6,left) =   -1; r(6,right) =   -100;  r(6,stay) =   
-100; 

r(7,up) = -1;   r(7,down) =  -1;   r(7,left) =   -1; r(7,right) =   -100;   r(7,stay) =   
-100; 

r(8,up) = -1;   r(8,down) =  -1;   r(8,left) =   -1; r(8,right) =   100;   r(8,stay) =   
100; 

r(9,up) = -1;   r(9,down) =  -1;   r(9,left) =   -1; r(9,right) =   -1;    r(9,stay) =   
-1; 

r(10,up) = -1;   r(10,down) =  -1; r(10,left) =   -1; r(10,right) =   -1;  r(10,stay) =   
-1; 

r(11,up) = -1;   r(11,down) =  -1; r(11,left) =   -1; r(11,right) =   -1;  r(11,stay) =   
-1; 

r(12,up) = -1;   r(12,down) =  -1; r(12,left) =   -1; r(12,right) =   -1;  r(12,stay) =   
-1; 

r(13,up) = -1;   r(13,down) =  -1; r(13,left) =   -1; r(13,right) =   -1;  r(13,stay) =   
-1; 



r(14,up) = -1;   r(14,down) =  -1; r(14,left) =   -1; r(14,right) =   -1;  r(14,stay) =   
-1; 

r(15,up) = -1;   r(15,down) =  -1; r(15,left) =   -1; r(15,right) =   -1;  r(15,stay) =   
-1; 

r(16,up) = -1;   r(16,down) =  100; r(16,left) =  -1; r(16,right) =   -1;  r(16,stay) =   
-1; 

r(17,up) = -1;   r(17,down) =  -1; r(17,left) =   -1; r(17,right) =   -1;  r(17,stay) =   
-1; 

r(18,up) = -1;   r(18,down) =  -1; r(18,left) =   -1; r(18,right) =   -1;  r(18,stay) =   
-1; 

r(19,up) = -1;   r(19,down) =  -1; r(19,left) =   -1; r(19,right) =   -1;  r(19,stay) =   
-1; 

r(20,up) = -1;   r(20,down) =  -1; r(20,left) =   -1; r(20,right) =   -1;  r(20,stay) =   
-1; 

r(21,up) = -1;   r(21,down) =  -1; r(21,left) =   -1; r(21,right) =   -1;  r(21,stay) =   
-1; 

r(22,up) = -1;   r(22,down) =  -1; r(22,left) =   -1; r(22,right) =   -1;  r(22,stay) =   
-1; 

r(23,up) = -1;   r(23,down) =  -1; r(23,left) =   -1; r(23,right) =   -1;  r(23,stay) =   
-1; 

r(24,up) = -1;   r(24,down) =  -1; r(24,left) =   -1; r(24,right) =   -1;  r(24,stay) =   
-1; 

r(25,up) = -1;   r(25,down) =  -1; r(25,left) =   -1; r(25,right) =   -1;  r(25,stay) =   
-1; 

r(26,up) = -1;   r(26,down) =  -1; r(26,left) =   -1; r(26,right) =   -1;  r(26,stay) =   
-1; 

r(27,up) = -1;   r(27,down) =  -1; r(27,left) =   -1; r(27,right) =   -1;  r(27,stay) =   
-1; 

r(28,up) = -1;   r(28,down) =  -1; r(28,left) =   -1; r(28,right) =   -1;  r(28,stay) =   
-1; 

r(29,up) = -1;   r(29,down) =  -1; r(29,left) =   -1; r(29,right) =   -1;  r(29,stay) =   
-1; 

r(30,up) = -1;   r(30,down) =  -1; r(30,left) =   -1; r(30,right) =   -1;  r(30,stay) =   
-1; 

r(31,up) = -1;   r(31,down) =  -1; r(31,left) =   -1; r(31,right) =   -1;  r(31,stay) =   
-1; 

r(32,up) = -1;   r(32,down) =  -1; r(32,left) =   -1; r(32,right) =   -1;  r(32,stay) =   
-1; 

r(33,up) = -1;   r(33,down) =  -1; r(33,left) =   -1; r(33,right) =   -1;  r(33,stay) =   
-1; 

r(34,up) = -1;   r(34,down) =  -1; r(34,left) =   -1; r(34,right) =   -1;  r(34,stay) =   
-1; 

r(35,up) = -1;   r(35,down) =  -1; r(35,left) =   -1; r(35,right) =   -1;  r(35,stay) =   
-1; 

r(36,up) = -1;   r(36,down) =  -1; r(36,left) =   -1; r(36,right) =   -1;  r(36,stay) =   
-1; 

r(37,up) = -1;   r(37,down) =  -1; r(37,left) =   -1; r(37,right) =   -1;  r(37,stay) =   
-1; 



r(38,up) = -1;   r(38,down) =  -1; r(38,left) =   -1; r(38,right) =   -1;  r(38,stay) =   
-1; 

r(39,up) = -1;   r(39,down) =  -1; r(39,left) =   -1; r(39,right) =   -1;  r(39,stay) =   
-1; 

r(40,up) = -1;   r(40,down) =  -1; r(40,left) =   -1; r(40,right) =   -1;  r(40,stay) =   
-1; 

 

Set up transition functions from state to action 
%%% For Example if I am in state 1 and 

d(1,up) = 9;    d(1,down) = 1;  d(1,left) = 1;   d(1,right) = 2;   d(1,stay) = 1; 

d(2,up) = 10;   d(2,down) = 2;  d(2,left) = 1;   d(2,right) = 3;   d(2,stay) = 2; 

d(3,up) = 11;   d(3,down) = 3;  d(3,left) = 2;   d(3,right) = 4;   d(3,stay) = 3; 

d(4,up) = 12;   d(4,down) = 4;  d(4,left) = 3;   d(4,right) = 5;   d(4,stay) = 4; 

d(5,up) = 13;   d(5,down) = 5;  d(5,left) = 4;   d(5,right) = 6;   d(5,stay) = 5; 

d(6,up) = 14;   d(6,down) = 6;  d(6,left) = 5;   d(6,right) = 7;   d(6,stay) = 6; 

d(7,up) = 15;   d(7,down) = 7;  d(7,left) = 6;   d(7,right) = 8;   d(7,stay) = 7; 

d(8,up) = 16;   d(8,down) = 8;  d(8,left) = 7;   d(8,right) = 8;   d(8,stay) = 8; 

 

d(9,up)  = 17;   d(9,down)  = 1;  d(9,left)  = 9;    d(9,right)  = 10;   d(9,stay) = 9; 

d(10,up) = 18;   d(10,down) = 2;  d(10,left) = 9;    d(10,right) = 11;   d(10,stay) = 
10; 

d(11,up) = 19;   d(11,down) = 3;  d(11,left) = 10;   d(11,right) = 12;   d(11,stay) = 
11; 

d(12,up) = 20;   d(12,down) = 4;  d(12,left) = 11;   d(12,right) = 13;   d(12,stay) = 
12; 

d(13,up) = 21;   d(13,down) = 5;  d(13,left) = 12;   d(13,right) = 14;   d(13,stay) = 
13; 

d(14,up) = 22;   d(14,down) = 6;  d(14,left) = 13;   d(14,right) = 15;   d(14,stay) = 
14; 

d(15,up) = 23;   d(15,down) = 7;  d(15,left) = 14;   d(15,right) = 16;   d(15,stay) = 
15; 

d(16,up) = 24;   d(16,down) = 8;  d(16,left) = 15;   d(16,right) = 16;   d(16,stay) = 
16; 

 

d(17,up) = 25;   d(17,down) = 9;   d(17,left) = 17;   d(17,right) = 18;  d(17,stay) = 
17; 

d(18,up) = 26;   d(18,down) = 10;  d(18,left) = 17;   d(18,right) = 19;  d(18,stay) = 
18; 

d(19,up) = 27;   d(19,down) = 11;  d(19,left) = 18;   d(19,right) = 20;  d(19,stay) = 
19; 

d(20,up) = 28;   d(20,down) = 12;  d(20,left) = 19;   d(20,right) = 21;   d(20,stay) = 
20; 

d(21,up) = 29;   d(21,down) = 13;  d(21,left) = 20;   d(21,right) = 22;   d(21,stay) = 
21; 



d(22,up) = 30;   d(22,down) = 14;  d(22,left) = 21;   d(22,right) = 23;   d(22,stay) = 
22; 

d(23,up) = 31;   d(23,down) = 15;  d(23,left) = 22;   d(23,right) = 24;   d(23,stay) = 
23; 

d(24,up) = 32;   d(24,down) = 16;  d(24,left) = 23;   d(24,right) = 24;   d(24,stay) = 
24; 

 

d(25,up) = 33;   d(25,down) = 17;  d(25,left) = 25;   d(25,right) = 26;   d(25,stay) = 
25; 

d(26,up) = 34;   d(26,down) = 18;  d(26,left) = 25;   d(26,right) = 27;   d(26,stay) = 
26; 

d(27,up) = 35;   d(27,down) = 19;  d(27,left) = 26;   d(27,right) = 28;   d(27,stay) = 
27; 

d(28,up) = 36;   d(28,down) = 20;  d(28,left) = 27;   d(28,right) = 29;   d(28,stay) = 
28; 

d(29,up) = 37;   d(29,down) = 21;  d(29,left) = 38;   d(29,right) = 30;   d(29,stay) = 
29; 

d(30,up) = 38;   d(30,down) = 22;  d(30,left) = 29;   d(30,right) = 31;   d(30,stay) = 
30; 

d(31,up) = 39;   d(31,down) = 23;  d(31,left) = 30;   d(31,right) = 32;   d(31,stay) = 
31; 

d(32,up) = 40;   d(32,down) = 24;   d(32,left) = 31;  d(32,right) = 32;   d(32,stay) = 
32; 

 

d(33,up) = 33;   d(33,down) = 25;  d(33,left) = 33;   d(33,right) = 34;   d(33,stay) = 
33; 

d(34,up) = 34;   d(34,down) = 26;  d(34,left) = 33;   d(34,right) = 35;   d(34,stay) = 
34; 

d(35,up) = 35;   d(35,down) = 27;  d(35,left) = 34;   d(35,right) = 36;   d(35,stay) = 
35; 

d(36,up) = 36;   d(36,down) = 28;  d(36,left) = 35;   d(36,right) = 37;   d(36,stay) = 
36; 

d(37,up) = 37;   d(37,down) = 29;  d(37,left) = 36;   d(37,right) = 38;   d(37,stay) = 
37; 

d(38,up) = 38;   d(38,down) = 30;  d(38,left) = 37;   d(38,right) = 39;   d(38,stay) = 
38; 

d(39,up) = 39;   d(39,down) = 31;  d(39,left) = 38;   d(39,right) = 40;   d(39,stay) = 
39; 

d(40,up) = 40;   d(40,down) = 32;  d(40,left) = 39;   d(40,right) = 40;   d(40,stay) = 
40; 

 

 

 

 

%%%how many learning episodes it take to fully learn the reward matrix 

episodes = 10000; 



 

%%%discounting parameter 

gamma = 0.99; 

 

%%%learning rate 

alpha = 0.9; 

 

%%%random action selection parameter, exploration vs exploitation 

epsilon= 0.1; 

 

%%%%%define initial counting parameter for each state 

statecounting=zeros(40,1); 

 

%%%%%define initial counting parameter for sum reward collection 

sumreward=zeros(10000,1); 

 

for i=1:episodes, 

 

   Qold = Q; 

   % Start from initial state 

 

   s = 1; 

 

 

   while s~=8, % Repeat until terminal state is reached. 

         randomnumber1= unifrnd(0, 1); 

 

        if (randomnumber1<epsilon) % 

                a1= RandomPermutation([up down left right stay]);   % randomize the 
possible action 

 

                  a=a1(1);        % select the initial randomized action 

          else 

 

 

                  a1=find(max(Q(s,1:5))==Q(s,1:5)); 

                   a=a1(1); 



         end; 

 

Receive reward 
      reward = r(s,a); 

 

Determine new s' (sNew) state depending on the previous action 
      sPrime = d(s,a); 

 

Update Q(s,a) function 
 

     Q(s,a) = Q(s,a) + alpha*(reward + gamma*max(Q(sPrime,[up down left right stay])) - 
Q(s,a)); 

 

     %p(i)=reward + gamma*max(Q(sPrime,[up down left right stay])) - Q(s,a); 

 

      s = sPrime; 

 

 

      %%counts how many times each state is visited 

   statecounting(s,1)= statecounting(s,1)+1; 

   if s == 2 

 

     elseif s == 3 

         elseif s == 4 

 

   elseif s == 5 

 

   elseif s == 6 

 

     elseif s == 7 

     break; 

   end; 

 

   end; 

 

      %counts average reward collected by the agent 



      sumreward(i,1)= sum(sum(Q)); 

end; 

   rew1=sumreward; 

%%%%% plot learned Q table 

figure(1) 

imagesc(Q); 

   colormap(hot); 

 hold 

 

%%%%plot how many times each state is visited 

figure(2) 

statecount(5,:)= statecounting(1:8)'; 

  statecount(4,:)= statecounting(9:16)'; 

  statecount(3,:)= statecounting(17:24)'; 

  statecount(2,:)= statecounting(25:32)'; 

  statecount(1,:)= statecounting(33:40)'; 

  imagesc(statecount); 

  colormap(hot); 

  hold 

  %%%%plot sum of reward 

%   %%%%plot how many times each state is visited 

figure(3) 

plot(sumreward); 

hold 

 

 

     savefile = 'dataqlearning.mat'; 

 

    save(savefile, 'rew1'); 

% 

 

%   figure(3) 

% 

%     qvalue1=Q(1:8,1:5)'; 

%       qvalue2=Q(9:16,1:5)'; 

%   qvalue3=Q(17:24,1:5)'; 



%     qvalue4= Q(25:32,1:5)'; 

%    qvalue5= Q(33:40,1:5)'; 

% 

% 

%   greatq=cat(1,qvalue5,qvalue4,qvalue3,qvalue2,qvalue1); 

%   imagesc(greatq); 

%   colormap(hot); 

%   hold 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix B 
 

Parameter Estimation for Experiment 1, MATLAB Code 

 

 

% Parameter estimation for Experiment 1 

 

 

LL=zeros(100,100);  % initialise vectors for the loglikelihood of alpha x beta 

 

% loop through all combinations of alpha and beta 

for i=1:100 

    alpha=i/100;  % thus 0 <= alpha <= 1 

    for j=1:100 

        beta=j/100; % thus 0 <= beta <= 1 

 

        selectdata=data(data(:,3)==1,:); % only look at gain trials 

        %selectdata=data(data(:,3)==3,:); % only look at loss trials 

 

        qA=0;  % intialise q values to zero 

        qB=0; 

 

        proba=[];  % record the probabilities corresponding to the chosen actions 

        error=[]; % record prediction errors (outcome - expectation) 

 

        % loop through trials 

        for t=1:length(selectdata) 

 

            % calculate probabilities of choice A and choice B using softmax function 

            pA=exp((qA/beta))/(exp((qA/beta))+exp((qB/beta))); 

            pB=exp((qB/beta))/(exp((qA/beta))+exp((qB/beta))); 

 

            reward=(selectdata(t,8)==1); % for gain trials 

            %reward=-(selectdata(t,8)==-1); % for loss trials 



 

            if selectdata(t,7)==1 % correct choice, chose A 

                proba(t)=log(pA);  % note p(chosen action) 

                % update q values, arbitrary reward value set at 1 

                error(t)=reward-qA; 

                qA=qA+alpha*error(t); 

 

            else % incorrect choice, chose B 

                proba(t)=log(pB); % note p(chosen action) 

                % update q values, arbitrary reward value set at 1 

                error(t)=reward-qB; 

                qB=qB+alpha*error(t); 

            end 

        end 

 

        % update likelihhod array 

        LL(i,j)=LL(i,j)+sum(proba); 

    end 

end 

 

[alpha,beta]=find(LL==max(max(LL))); % find optimal values of alpha and beta 

alpha=alpha/100; % thus 0 <= alpha <= 1 

beta=beta/100; % thus 0 <= beta <= 1 

imagesc(LL),colorbar; % display log likelihood array 

 

 

 

 

 

 

 

 

 



Appendix C 
 

Parameter Estimation for Experiment 2, Adaptive Learning Rate 
MATLAB Code 

 

 

function[alpha1,beta,teta]=model_estimate(choice,r) 

 

%LL=zeros(100,100);  % initialise vectors for the loglikelihood of alpha x beta 

LL=zeros(100,100,100); 

% loop through all combinations of alpha and beta 

% for i=1:100 

%     alpha1=i/100;  % thus 0 <= alpha <= 1 

%     for j=1:100 

%         beta1=j/100; % thus 0 <= beta <= 1 

for i=1:100 

    alpha1=i/100  % thus 0 <= alpha <= 1 

    for j=1:100 

        beta=j/100; % thus 0 <= beta <= 1 

  for k =1:100 

  teta =  k/100; 

 

 

        qA=0;  % intialise q values to zero 

        qB=0; 

 

        proba=[];  % record the probabilities corresponding to the chosen actions 

        delta=[]; % record prediction errors (outcome - expectation) 

       learning_rate(1)= alpha1; 

        % loop through trials 

        for t=1:length(choice) 

 

            % calculate probabilities of choice A and choice B using softmax function 

            pA=exp((qA/beta))/(exp((qA/beta))+exp((qB/beta))); 



            pB=1-pA; 

            reward=r(t); % for gain trials 

            %reward=-(selectdata(t,8)==-1); % for loss trials 

 

            if choice(t)==1 % correct choice, chose A 

                proba(t)=pA;  % note p(chosen action) 

                % update q values, arbitrary reward value set at 1 

               delta(t)=reward-qA; 

                qA=qA+learning_rate(t)*delta(t); 

 

           if delta(t) > 0 

                 learning_rate(t+1)= learning_rate(t)-learning_rate(t)*teta; 

                 end; 

                 if delta(t) < 0 

                  learning_rate(t+1)= learning_rate(t)+learning_rate(t)*teta; 

                 end; 

                 if delta(t) == 0 

                 learning_rate(t+1)= learning_rate(t); 

                 end 

            else % incorrect choice, chose B 

                proba(t)=pB; % note p(chosen action) 

                % update q values, arbitrary reward value set at 1 

                delta(t)=reward-qB; 

                qB=qB+alpha1*delta(t); 

 

           if delta(t) > 0 

                 learning_rate(t+1)= learning_rate(t)-learning_rate(t)*teta; 

                 end; 

                 if delta(t) < 0 

                  learning_rate(t+1)= learning_rate(t)+learning_rate(t)*teta; 

                 end; 

                 if delta(t) == 0 

                 learning_rate(t+1)= learning_rate(t); 

                 end 

            end 

 



        end 

 

        % update likelihhod array 

      %  LL(i,j)= prod(proba); 

  LL(i,j,k)=prod(proba); 

    end 

 

end 

end 

[maxLL, index] = max (LL(:)) 

[alpha1, beta, teta] = ind2sub (size(LL), index) % 

 

%[alpha1,beta1]=find(LL==max(max(LL))); % find optimal values of alpha and beta 

alpha1=alpha1/100; % thus 0 <= alpha <= 1 

beta=beta/100; % thus 0 <= beta <= 1 

teta=teta/100; 

 

 

 


