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Abstract 

 

Diabetic cystopathy is a chronic and common complication of diabetes with a 

classical triad of symptoms; decreased bladder sensation, increased bladder capacity 

and impaired detrusor muscle contractility (Hunter and Moore, 2003). In animal models 

of diabetes such as streptozotocin-induced diabetes in the rat, abnormalities of bladder 

function have been reported (Longhurst and Belis, 1986). The prototypic TRPV 

channel, TRPV1, is activated by capsaicin, which has been shown to cause contraction 

of the rat bladder (Saitoh et al., 2007), and this is reduced in STZ-diabetic rat bladder 

(Pinna et al., 1994). Therefore we hypothesize that TRPV1 function will be reduced in 

the diabetic bladder.  

The aim of this study are the following: Firstly, to investigate the effect of the 

streptozotocin (STZ) model of diabetes on a range of TRP channel functions in the 

urinary bladder smooth muscle preparation using TRP channel agonists and 

antagonists and to study the neurotransmitters involved in the contractile or relaxant 

responses. Some studies were also performed on colon tissues.  Secondly, to explore 

the involvement of cholesterol modudation in TRP channel signalling. Thirdly, to study 

the change in TRP channel response with time following the treatment with 

streptozotocin. 

The results showed that the contractile responses to the TRPV1 agonist 

capsaicin, TRPV4 agonist 4-α-PDD, and TRPA1 agonist allyl isothiocyanate were 

significantly reduced in diabetic bladder. The selective TRPV1 antagonist, SB-366791, 

inhibited the contractile responses to capsaicin confirming the involvement of TRPV1 

channels. The effect of diabetes is unlikely to be at the level of contractile machinery 

since the contractile responses to muscarinic receptor agonist carbachol were not 

significantly reduced in diabetic tissues. It is reported for the first time that the 

combination of neurokinin 1 and 2 antagonists GR-205171 and SB-207164 inhibited 

the contractile responses to capsaicin suggesting that a neurokinin may be the 

neurotransmitter involved in the capsaicin responses. In addition, the reduction of the 

responses to capsaicin in STZ-induced diabetic tissues occurred not only in urinary 

bladder but also in colon. 

Cholesterol-PEG significantly lowered the maximal contractile responses to 

capsaicin of rat bladder strips. Methyl-β-cyclodextrin, α-cyclodextrin and β-cyclodextrin 

at the same concentrations enhanced the contractile responses to capsaicin in the 

control and diabetic rat bladder strips. These effects of cyclodextrin are specific to 
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capsaicin activated contractions and not seen with TRPA1 activation, suggesting that 

the effects are not mediated downstream of channel activation. Since α-cyclodextrin 

does not sequester cholesterol, the enhanced responses to cyclodextrins may not be 

due to the cholesterol modulations. Instead, theses novel findings may possibly occur 

by changing the local membrane lipid environment of the TRPV1 channel. 

As early as 36 hours after induction of diabetes by STZ, the contractile 

responses to capsaicin were significantly reduced in comparison to those of the 

controls and this reduction persisted until the eight weeks time point. In contrast, 

responses to the TRPA1 agonist allyl isothiocyanate were not affected at early time 

points but were reduced one week after STZ treatment. This detailed time course 

analysis suggests that there are novel mechanisms of modulation of the TRPV1 

channels in this STZ model. 

In conclusion, in the rat urinary bladder or colon preparations, diabetes mellitus 

using STZ animal model caused 1) the impairment of a number of TRP channel 

subfamily functions, TRPV1, TRPV4 and TRPA1 but not TRPM8. The combination of 

NK1 and NK2 antagonists significantly inhibited the responses to capsaicin. This may 

suggest the involvement of neurokinin in postsynaptic transmission in rat bladder 

following the activation of TRPV1 channel, 2) the impairment caused by STZ-induced 

diabetes occurred very early (within 36 hours after diabetes induction) in TRPV1 

channel but not TRPA1 channel. There are specific early effects of STZ treatment on 

TRPV1 channel function at a time when other afferent nerve terminal channels 

(TRPA1) are functioning normally, suggesting that early onset of dysfunction in TRPV1 

signalling may not merely be the consequence of nerve damage, 3) the mechanism of 

this impairment may not be the effect of neuropathy on neurotransmitter release or 

nerve damage. Improving the responsiveness of nerves of bladder in diabetic patients 

might be of therapeutic benefit. The present studies suggest that it is possible to 

enhance function using indirect modulators such as bradykinin which potentiated the 

TRPV1 channel function in diabetic rat bladders. 
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Chapter 1 

 

General Introduction 

 

1.1 Diabetes mellitus 

 

1.1.1 Definition 

 

Diabetes mellitus belongs to a class of metabolic disorders characterized 

by hyperglycemia, which is caused by the deficiency in insulin secretion, insulin 

action, or both. Chronic hyperglycemia is associated with the development of 

damage to various organs in the body including the eyes, kidneys, nervous 

system, and cardiovascular system (Llorente and Malphurs, 2007). 

 Diabetes mellitus can cause long-term damage, dysfunction and failure 

of various organs. The characteristic symptoms of diabetes mellitus include 

thirst, polyuria, blurring of vision, and weight loss. In its most severe forms, 

ketoacedosis or a non-ketotic hyperosmolar state may develop and lead to 

stupor, coma and, in absence of effective treatment, death. The long-term 

effects of diabetes mellitus include progressive development of the specific 

complications of retinopathy with potential blindness, nephropathy that may lead 

to renal failure, and neuropathy with risk of foot ulcers, and features of 

autonomic dysfunction, including sexual dysfunction. People with diabetes are 

at risk of cardiovascular, peripheral vascular and cerebrovascular disease 

(World Health Organization, 1999). 

 Type 1 diabetes mellitus in man is characterized by a specific destruction 

of the pancreatic β-cells. Type 1 diabetes mellitus is caused by destructive 

processes targeting the β-cell of the pancreas, resulting in insulin deficiency 

(American Diabetes Association Position Statement, 2006). It results from T-

cell-mediated destruction of insulin-secreting pancreatic islet β cells (Tisch and 

McDevitt, 1996). It becomes clinically apparent when 80-90% of the insulin-

secreting cells are destroyed. However, the great proportion of people with 

diabetes mellitus (90-95%) have type 2 diabetes mellitus (Harris et al., 1998). 
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Type 2 diabetes mellitus is a consequence of insulin resistance when 

cells do not respond to insulin properly even if it is present at normal levels, and 

is closely associated with obesity and sedentary lifestyle (Suri and Szallasi, 

2007). It is characterized by insulin resistance and impaired insulin secretion. It 

is observed by a raised fasting blood glucose. However, for most patients with 

diabetes, several genetic and environmental factors contribute to the causation 

and progression of the disease and complications (Rees and Alcolado, 2005). 

  

1.1.2 Pathophysiology  

 

In type 1 diabetes mellitus, T cells which act in islet β-cell recognition, are 

stimulated in the lymph nodes. The islet cells in the pancreas are infiltrated by a 

leukocyte subset which causes the death of β cells. There are two mechanisms 

underlying the pathophysiology of type 2 diabetes. One mechanism relates to 

the insulin resistance (when the tissues in the body do not respond to insulin). 

Another mechanism is thought to be due to the insufficient secretion of insulin 

from β-cell in the pancreas. When tissues are resistant to insulin, there are 

abnormalities in glucose metabolism including decreased glucose uptake, 

increased hepatic glucose production, enhanced lipolysis and increased free 

fatty acid which stimulate fat oxidation (Gagnerault et al., 2002; Hoglund et al., 

1999; Levisetti et al., 2004; Shoda et al., 2005). 

One of the possible mechanisms of diabetic complications may relate to 

oxidative stress, which is clearly observed in the cardiovascular complication of 

diabetes. In addition, hyperglycaemia may impair the antioxidant defense 

mechanism. Oxidative stress, the overproduction of oxidants, occurs when free 

radical production is increased or the antioxidant defense mechanism is 

decreased. It leads to the complications of many diseases including diabetes 

mellitus. Free radicals may easily diffuse into cells and damage DNA as well asl 

exert other effects such as lipid peroxidation which may contribute to 

atherosclerosis (Llorente and Malphurs, 2007).The reactive oxygen species 

(ROS) is increased in diabetes because of the abnormalities in catalase (CAT), 

glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) 
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antioxidants. The ROS produced may react with nitric oxide to form 

peroxynitrite, a highly reactive radical species (Green et al., 2004). Nitric oxide 

is produced by nitric oxide synthase (NOS) enzymes, which are present in 

endothelial cells, neurons and other cell types. Inducible nitric oxide synthase 

(iNOS) is present in smooth muscle cells and islet cells. It is Ca2+ independent 

and it produces high amounts of nitric oxide which has been implicated in 

cytotoxicity on target cells (Goycheva et al., 2006). 

It is reported that diabetes mellitus is related to oxidative stress and 

hydroperoxide levels increase in diabetes mellitus. It is believed that auto-

oxidation and protein glycosylation generate free radicals, resulting in oxidative 

stress in diabetes mellitus (Lipinski, 2001; Bennefont et al., 2000). There are 

abnormalities in lipid metabolism caused by diabetes such as an increased 

susceptibility of lipid peroxidation causing atherosclerosis (Llorente and 

Malphurs, 2007). 

 

1.1.3 Genetic influence 

 

Diabetes mellitus is influenced by both genetic and environmental 

factors. In very rare cases, diabetes can be inherited. Therefore, genetics may 

be involved in mature onset diabetes or diabetes due to mutations in 

mitochondrial DNA (Kahn et al., 1996). 

A genetic influence is also evident in twin studies. It is reported that 

monozygotic twins (twins from the same fertilized eggs) have 100% 

concordance while it is 20% for dizygotic twins, indicating that environment in 

the uterus may affect the incidence of diabetes mellitus (Zimmet, 1997; Hales 

and Barker, 1992). 

According to the study by Diamond (2003), it is found that the 

populations of Native Americans, Pacific Islander, Aboriginal Australians, East 

Asians and South Asian of Indian continent have higher prevalence of diabetes 

mellitus than those of European population. 

Environmental factors, particularly obesity and a sedentary lifestyle, are 

important contributors to the development of diabetes mellitus, because of their 
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effects on insulin sensitivity (van Dam, 2003; Shaw and Chisholm, 2003). The 

tremendous increase in rates of type 2 diabetes in recent years has been 

attributed to the dramatic rise in obesity worldwide (Zimmet et al., 2001). It is 

reported that 80% of new cases of type 2 diabetes are due to obesity (Lean, 

2000). 

 

1.1.4 Epidemiology 

 

 The incidence of diabetes mellitus has increased throughout the world. 

The numbers are expected to continue to rise. Worldwide there were 194 million 

adults with diabetes mellitus in 2003, and this number is expected to reach 333 

million by the year 2025 (Llorente and Malphurs, 2007). 

 The risk of developing diabetes mellitus rises not only with obesity and 

lack of physical activity but also with increasing age and a family history. 

Specific population subgroups have a higher prevalence of diabetes mellitus 

than the population as a whole (American Diabetes Association Position 

Statement, 2006). Risk factors for the development of diabetes mellitus include 

hypertension, dyslipidemia, vascular disease, impaired glucose tolerance or 

impaired fasting glucose (Llorente and Malphurs, 2007). 

 

1.1.5 Diagnosis 

 

 There are now three criteria by which to diagnose diabetes mellitus: (1) a 

patient has a fasting plasma glucose level of 126 mg/dl or higher; (2) a 

symptomatic patient has a casual plasma glucose level of 200 mg/dl or higher; 

or (3) a patient has a 2-hour plasma glucose level of 200 mg/dl or higher during 

a 75-g oral glucose tolerance test (OGTT). The diagnosis must be confirmed by 

any of the three methods on a subsequent day (Table 1) (Palumbo, 2001). 
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Table 1 Criteria for the diagnosis of diabetes mellitus (Palumbo, 2001) 

Fasting plasma glucose level  126 mg/dl or 

 

Symptoms (polyuria, polydipsia, unexplained weight loss) plus casual 

plasma glucose level  200 mg/dl or 

 

2-h plasma glucose level  200 mg/dl during a 75-g oral glucose tolerance 

test 

 

The fasting plasma glucose (FPG) is the preferred diagnostic test 

because of simplicity of use, acceptability to patients, and low cost. In the 

presence of symptoms of diabetes mellitus (polyuria, polydipsia, weight loss, 

etc.), a plasma glucose level of > 200 mg/dl is diagnostic (Llorente and 

Malphurs, 2007). 

 In the absence of unequivocal hyperglycemia, any test used to diagnose 

diabetes mellitus must be confirmed on a subsequent day by a plasma glucose 

measured either in the fasting state or two hours after an oral glucose load. The 

use of the hemoglobulin A1c (HbA1c) test for the diagnosis of diabetes mellitus is 

not recommended, as it is less specific and assays are not completely 

standardized throughout the world (Llorente and Malphurs, 2007). 

 Hyperglycemia insufficient to meet the diagnostic criteria for diabetes is 

categorized as either impaired fasting glucose or impaired glucose tolerance, 

depending on whether it is identified by fasting plasma glucose or an oral 

glucose tolerance test. Impaired fasting glucose is diagnosed when the fasting 

plasma glucose is ≥ 100 mg/dl. Impaired glucose tolerance exists when the 

plasma glucose level 2 hours after a 75 g oral glucose load is ≥ 140 mg/dl but < 

200 mg/dl. These are considered to be pre-diabetes mellitus states (Llorente 

and Malphurs, 2007). 
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1.1.6 Treatments 

 

 Dietary managements and increased exercises are the starting point of 

diabetes mellitus treatments. When there is very high blood glucose level and 

nutritional and physical activity fails to improve the diabetic conditions, 

pharmacological tools are essential for the treatment of diabetes mellitus. 

 The drugs for treatments of diabetes mellitus are usually in form of oral 

hypoglycaemic drugs, which are divided into two main groups; sulfonylureas 

and biguanides. Functionally, sulfonylureas enhance insulin production from β-

cells in the pancreas and promote other action around the pancreas while 

biguanides reduce the production of glucose in the liver and increase the use of 

glucose in the body (Table 2) (Modi, 2007). 

Sulfonylureas are believed to close potassium channels in pancreatic 

cells, resulting in an increase of insulin release (Stumvoll et al., 2005) from β-

cells of pancreas. This is confirmed by the reduced fasting plasma glucose. 

Hypoglycaemia and weight gain are the side effect of sulfonylurea derivatives. 

Maglitinides consist of nateglinide and repaglinide. Nateglinide binds to 

the same site of sulfonylurea receptor 1 as those of the sulfonylurea derivatives. 

Repaglinide binds to a nearby site of the receptor, stimulating the release of 

insulin from pancreatic β-cells (Bloomgarden, 1997; Phillips and Dunning, 

2003). 

Metformin lowers the glucose production in the liver and stimulates the 

transport of glucose into muscle (Stomvoll et al., 2005; Modi, 2007). The side 

effects that may be found from using metformin include bloating, flatulence, 

diarrhea and abdominal discomfort and pain (Modi, 2007). 

Thiazolidinediones (TZDs) stimulate the function of insulin in muscle, fat 

and other tissues. They are selective and potent agonists for the peroxisome 

proliferator-activated receptor  (PPAR-) nuclear receptors (Stomvoll et al., 

2005; Modi, 2007). When they are activated, these receptors regulate the 

transcription of insulin responsive genes which are contributed to the control of 

production, transport, and utilization of glucose. The side effects for TZDs are 

edema and weight gain. 
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The α-glucosidase inhibitors consist of acarbose and miglitol. Acarbose 

lowers glycaemic excursions and prevent the development of diabetes and 

cardiovascular disease (Chiasson et al., 1998). They inactivate the rate of 

carbohydrate absorption in the small intestine, leading to a reduction in plasma 

glucose level. The α-glucosidase inhibitors inhibit the conversion of dietary 

starch and sucrose into glucose. The side effects caused by these drugs are 

bloating, flatulence, diarrhea and abdominal discomfort and pain (Modi, 2007). 
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Table 2 Drugs for treatment of diabetes mellitus with their mechanism of action  

    and side effects (adapted from Modi, (2007)). 

 

Oral antidiabetics Mechanism of action Side effects 

Sulfonylureas 

Glimiperide (Amaryl) 

Glipiside (Glucotrol) 

Glipiside-gits (Glucotrol-XL) 

Glyburide (Diabeta, Micronase) 

Glyburide micronized (Glynase) 

Tolbutamide (Orinase) 

Chlorpropamide (Diabinese) 

Tolazamide (Tolinase) 

Acetoheximide (Dymelor) 

 

Stimulate first-phase insulin 

secretion by blocking K
+
 

channel in β-cells 

 

Late hyperinsulinemia and 

hypoglycaemia 

Weight gain 

Meglitinides 

Repaglinide (Prandin) 

Nateglinide (Starlix) 

 

Stimulate first-phase insulin 

secretion by blocking K
+
 

channel in β-cells 

 

Hypoglycaemia 

Weight gain 

Biguanides 

Meformin (Glucophage, Riomet) 

Metformin-XR (Glucophage-XR) 

 

Decrease hepatic glucose 

production 

Increase muscle glucose 

uptake and utilization 

 

Nausea, Diarrhea 

Anorexia, Lactic acidosis 

Thiazolidinediones 

Rosiglitazone (Avandia) 

Pioglitazone (Actos) 

 

Increase insulin sensitivity via 

activation of PPAR- receptors 

 

Fluid retention and weight 

gain 

α-Glucoside Inhibitors 

Acarbose (Precose) 

Miglitol (Glyset) 

 

Decrease hepatic glucose 

production 

Delay glucose absorption 

 

Flatulence 

Abdominal bloating 
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1.1.7 Complications of diabetes 

 

1.1.7.1 Acute complications 

 

The acute metabolic complications of diabetes consist of diabetic 

ketoacidosis, hyperosmolar non-ketotic coma, lactic acidosis, and 

hypoglycaemia. Diabetic ketoacidosis and hyperosmolar non-ketotic coma are 

related to insulin deficiency. Hypoglycaemia results from the treatment of 

diabetes, either with oral agents or insulin. Although hypoglycaemia may occur 

in conjunction with oral hypoglycaemic therapy, it is more common in patients 

treated with insulin. Lactic acidosis is usually associated with other factors that 

may be related to diabetes, such as cardiovascular disease (acute myocardial 

infarction) associated with hypoxia and excess lactic acid production 

(Siperstein, 1992). 

 Diabetic ketoacidosis is clinically defined by absolute insulin deficiency 

with hyperglycaemia (glucose levels usually > 200 mg/dl) with increased 

lipolysis, increased ketone production, hyperketonemia (ketone levels positive 

at 1:4 dilution of serum or greater or beta hydroxybutyrate > 0.5 mmol/L), and 

acidosis (pH ≤ 7.3 or bicarbonate ≤ 15 mEq/L) (Siperstein, 1992). 

 Hyperosmolar non-ketotic coma is the presence of relative insulin 

deficiency and hyperglycaemia, usually > 1,000 mg/dl with associated elevated 

serum osmolarity (> 300 mosm/kg), dehydration, and stupor, progressing to 

coma if uncorrected, without the presence of ketosis or acidosis. These patients 

have sufficient circulating insulin to prevent lipolysis and ketosis (Siperstein, 

1992). 

 Lactic acidosis consists of elevated lactic acid (lactic acidemia, ≥ 2.0 

mmol/L) with acidosis (pH ≤ 7.3) and without ketoacidosis. There may be low 

levels of ketones present (≤ 1:4 on serum dilution, or beta hydroxybutyrate > 0.4 

but < 0.6 mmol/L). Approximate half of the reported cases of lactic acidosis 

have occurred in patients with diabetes (Kreisberg, 1980). 

 Hypoglycaemia is common in insulin-treated diabetic patients. 

Hypoglycaemia may range from low levels of glycaemia (60-70 mg/dl) with 
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minimal or no symptoms, to severe hypoglycaemia with very low levels of 

glucose (< 40 mg/dl) and neurologic impairment.  

 Experimental studies of acute hyperglycaemia have demonstrated 

effects on renal and nerve function, retinal perfusion, vasodilation, coagulation 

factors, and atherogenic vascular disease. Hyperglycaemia may be implicated 

in glomerular hyper-infiltration, which precedes diabetic renal disease. Acutely 

induced hyperglycaemia impaired nerve transduction velocities in diabetic 

patients and in nondiabetic subjects. Acute hyperglycaemia can lower pain 

thresholds in animals and in patients with diabetes mellitus and thereby 

contributes to neuropathic symptoms (Palumbo, 2001). 

 Acute hyperglycaemia impairs gastrointestinal motility in diabetic patients 

and in normal subjects. Gastric emptying is delayed. This delay may be related 

to neuropathic changes. Acute hyperglycaemia may produce gastroparesis by a 

direct effect. It also has adverse effect on oesophageal motility and gall bladder 

contractility (Palumbo, 2001). 

 Acetylcholine-induced vasodilation in vitro is impaired by exposure of 

blood vessel wall samples to acute hyperglycaemia. This impairment of 

vasodilation is glucose dependent. In vivo studies with acute hyperglycaemia 

have shown an increase in blood pressure in both diabetic patients and 

nondiabetic subjects. Acute hyperglycaemia with myocardial infarction and 

stroke is associated with an unfavorable prognosis in diabetic and nondiabetic 

patients and in animal studies. Hyperglycaemia with stroke aggravates neuronal 

damage. It is also accompanied by adverse changes in coagulation factors in 

diabetic patients and control subjects (Palumbo, 2001). 

 Thus, acute hyperglycaemia in patients with type 1 and type 2 diabetes 

mellitus is associated with metabolic and biochemical abnormalities that are 

sustained with persistent hyperglycaemia and lead to progression of 

microvascular and macrovascular disease. Two possible mechanisms for the 

progression to these diseases are enzymatic glycation and free radical 

formation (oxidative stress) (Palumbo, 2001). 
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1.1.7.2 Chronic complications 

 

 Diabetic neuropathy is a common complication of diabetes. It is one of 

the most prevalent diabetic complications with an incidence of 21% in diabetic 

patients. Diabetes may affect the autonomic, sensory and motor nerves and the 

central nervous system (Ozturk et al., 1998). Diabetic neuropathy progress 

gradually and involves small and large sensory fibers. Its symptoms include loss 

of ability to sense pain, loss of temperature sensation and developing 

neuropathic pain. The primary cause of diabetic neuropathy is thought to be 

hyperglycaemia (Wong et al., 2008). 

 In long-term diabetic patients, cardiomyopathy and congestive heart 

failure may develop as a result of the impaired left ventricular function. The 

function of the coronary arteries in diabetic patients is also impaired depending 

on the calcification of the arterial wall. Diabetic gastroenteropathy is one of the 

primary autonomic syndromes related to diabetes. Asymptomatic dilatation of 

the stomach, and impaired gastric acid secretion in diabetic patients have been 

reported. Nephropathy is one of the most significant complications seen in 

diabetes mellitus. Proteinuria, albuminuria, and glomerulopathy have been 

observed in animal model of diabetes. Urinary retention in the urinary bladder is 

another significant complication in diabetic patients. Reproductive complications 

are seen in both male and female patients suffering from diabetes mellitus. 

Impotence, retrograde ejaculation and lower fertility have been reported in male 

diabetic patients (Ozturk et al., 1998). 

 

1.1.8 Animal models of diabetes 

 

 Animal models of diabetes are used to investigate the pathogenesis of 

diabetes and long-term diabetic complications seen in clinical studies. 

Streptozotocin (STZ) and alloxan (ALX) are two chemicals used to induce 

experimental diabetes, mostly in rodents (Ozturk et al., 1998). 

Alloxan (ALX) is a uric acid derivative and is highly unstable in water at 

neutral pH, but reasonably stable at pH 3. ALX acts by selectively destroying 
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the pancreatic beta islets leading to insulin deficiency, hyperglycaemia and 

ketosis (Srinivasan and Ramarao, 2007). 

Streptozotocin (STZ) is isolated from Streptomyces achromogenes. It is 

an alkalating agent that has been shown to interfere with glucose transport, 

glucokinase function and to induce multiple DNA strand breaks. It causes 

hyperglycaemia by cytotoxic action on the pancreatic beta cells (Srinivasan and 

Ramarao, 2007). A single large dose of streptozotocin can produce diabetes in 

rodents, probably as a result of direct toxic effects on the β cells. Alternatively, 

multiple small doses of streptozotocin can be used (e.g.40 mg/kg on five 

consecutive days). In susceptible rodents, this induces the insulinopenic 

diabetes in which immune destruction plays a role, as in human type 1 diabetes. 

The multiple low-dose streptozotocin model has been used extensively to study 

the immunological pathways that lead to insulitis and β cell death (Rees and 

Alcolado, 2005).  

 

1.1.9 The effect of streptozotocin on rodent bladder function 

 

 The streptozotocin-induced diabetic rats showed impaired bladder 

function characterized by increased bladder capacity, decreased bladder 

contractility (voiding efficiency), and an increase in residual urine (Jiang et al., 

2008).  

In Spraque-Dawley rats, streptozotocin-induced diabetes decreased 

average body weight and increased bladder weight, capacity and compliance. 

Peak detrusor leak pressure increased gradually from week 3 to 9 in diabetic 

rats. However, at 12 and 20 weeks diabetic rats deviated strongly from this 

trend with peak detrusor leak pressure decreasing versus controls and post-

void resting pressure increasing from 9-week levels versus controls. In 

contractility studies, increased contractile force response of diabetic animals to 

carbachol, potassium chloride, adenosine 5‟-triphosphate and electrical field 

stimulation peaked at 6 or 9 weeks but 12 to 20 weeks they generally reverted 

toward those of controls (Daneshgari et al., 2006). 
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In rat treated with 60 mg/kg single dose of streptozotocin, there was a 

decreased in the number of urothelium layers, loss of dome shaped cells which 

are replaced with the intermediate layer cells (Kizilay and Uygun, 2005). The 

epithelium from diabetic rat urinary bladders was thicker and heavier and 

absolute amount of endogenous prostaglandin E2 and F2α was higher than for 

control animals. 

In addition, there is the impairment of neurotransmitter release from both 

bladder sympathetic and parasympathetic efferent nerve endings in early (two 

weeks) streptozotocin-induced diabetes (Tong et al., 1996). 

Treatment of rats with streptozotocin induces a diabetic state in which 

the bladder muscle is overactive and also supersensitive to muscarinic 

agonists. Isolated detrusor strips from diabetic animals showed an increased 

spontaneous activity. Carbachol produced contractile responses in tissues from 

both control and diabetic rats, but the diabetic tissues were more sensitive to 

this agonist (Stevens et al., 2006). 

In streptozotocin treated F-334 rats, there were insulin-reversible 

increases in bladder weight, bladder capacity, micturition volume, residual 

volume, micturition pressure and spontaneous activity (Christ et al., 2006). 
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1.2 Urinary bladder 

 

1.2.1 Anatomy and physiology 

 

The lower urinary tract is composed of the bladder and urethra, the 

functional units for storage (the bladder body, or reservoir) and elimination (the 

bladder neck and urethra, or outlet) of urine. The main functions of the lower 

urinary tract are to store urine without leakage for longer period of time and to 

rapidly expel urine during micturition (Anderson and Arner, 2004).  

The urethra contains both smooth and striated muscles. The bladder can 

be divided into two main components; the bladder body, which is located above 

the ureteral orifice, and the base, consisting of the trigone, urethrovesical 

junction, deep detrusor, and the anterior bladder wall (figure 1.1).  

The wall of the bladder body is lined with bundles of intertwining smooth 

muscle fibers, forming the detrusor muscle. The smooth muscles lining the 

bladder neck and the urethra form the internal sphincter, which is surrounded by 

striated muscle, the rhabdosphincter. The periurethral striated muscle-striated 

muscle fibers surrounding the urethra-and the rhabdosphincter together 

constitute the external urethral sphincter (Yoshimara et al., 2007). The bladder 

is a hollow smooth muscle organ lined by a mucous membrane and covered on 

its outer aspect partly by peritoneal serosa and partly by fascia. Its muscular 

wall is formed by smooth muscle cells, which comprise the detrusor muscle. 

The detrusor is structurally and functionally different from trigonal and urethral 

smooth muscle (Anderson and Arner, 2004).  
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Figure 1.1 Schematic drawing of the urinary bladder 

(adapted from Anderson and Arner, 2004) 
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1.2.3 Neurophysiology 

 

 The lower urinary tract is innervated by parasympathetic, sympathetic, 

and somatic peripheral nerves that are components of intricate efferent and 

afferent circuitry derived from the spinal cord. The neural circuits act as an 

integrated complex of reflexes that regulate micturition, allowing the lower 

urinary tract to be in either a storage or elimination mode (Yoshimura et al., 

2008) (Figure 1.2). 

 

 

 

 

 

 

Figure 1.2 Innervations of bladder  

(adapted from Yoshimura et al., 2008) 
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1.2.3.1 Parasympathetic nerves 

 

 The efferent parasympathetic pathway provides the major excitatory 

innervation of the bladder detrusor (Yoshimura and Chancellor, 2007; 

Andersson and Wein, 2004). Preganglionic axons emerge, as the pelvic nerve, 

from the sacral parasympathetic nucleus in the intermediolateral column of 

sacral spinal segments S2-S4 and synapse in the pelvic ganglia as well as in 

small ganglia on the bladder wall, releasing acetylcholine (ACh). ACh excitation 

of postsynaptic neurons is mediated by nicotinic receptors. Postganglionic 

axons continue for a short distance in the pelvic nerve and terminate in the 

detrusor layer, where they transmit ACh to the smooth muscle fibers, with 

consequent contraction of the bladder. This stimulatory effect of ACh at the 

postganglionic axon terminal is mediated by muscarinic receptors in detrusor 

cells (Chapple et al., 2002; de Groat and Yoshimura, 2001; Andersson and 

Wein, 2004). 

 While ACh is the principal excitatory transmitter at the parasympathetic 

nerve terminals, adenosine triphosphate (ATP)-induced stimulation of bladder 

smooth muscle contractions has been demonstrated in many mammalian 

species. This purine nucleotide is considered to be a parasympathetic 

cotransmitter responsible for the atropine-resistant detrusor activity mediated by 

stimulation of one or more members of the P2X family of purinoceptors (de 

Groat and Yoshimura, 2001; Andersson and Wein, 2004). Although purinergic 

stimulation is considered to be only a minor contributor to normal bladder 

function in humans (Husted et al., 1983; O‟Reilly et al., 2001), upregulation of 

purinergic activity through P2X purinoceptors (predominantly the P2X1 subtype) 

have been demonstrated in the overactive bladder (OAB) under pathologic 

conditions such as outlet obstruction (O‟Reilly et al., 2001). 

 

1.2.3.2 Sympathetic nerves 

 

 Sympathetic nerves stimulate smooth muscle contraction in the urethra 

and bladder neck and cause relaxation of the detrusor. Preganglionic 
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sympathetic neurons are located in the intermediolateral column of the 

thoracolumbar cord segments T11-L2 (de Groat and Yoshimura, 2001; 

Yoshimura and Chancellor, 2007). Most of the preganglionic fibers synapse with 

postganglionic neurons in the inferior mesenteric ganglia. The preganglionic 

neurotransmitter is Ach, acting via nicotinic receptors in the postganglionic 

neurons. The postganglionic axons travel in the hypogastric nerve and transmit 

norepinephrine at their terminals. The major terminals are in the urethra and 

bladder neck as well as in the bladder body and postganglionic parasympathetic 

neurons in the pelvic ganglia. Norepinephrine stimulates contraction of the 

urethral and bladder neck smooth muscle, via α1-adrenoceptors, and causes 

relaxation of detrusor, via β2-adrenoceptors (Nomiya and Yamaguchi, 2003). 

 

1.2.3.3 Somatic nerves 

 

 Somatic nerves provide excitatory innervation of the striated muscles of 

the external urethral sphincter and of the pelvic floor. The motor neuron axons 

are carried in the pudendal nerve, and they release Ach at their terminals. The 

Ach acts on nicotinic receptors in the striated muscles, inducing muscle 

contraction to maintain closure of the external urethral sphincter during urine 

storage (Blaivas, 1982; Thor et al., 1989; Yoshimura and Chancellor, 2007) as 

well as stress conditions (Chancellor and Yoshimura, 2004; Chancellor et al., 

2005). 

 

1.2.3.4 Afferent pathways 

 

 The pelvic, hypogastric, and pudendal nerves carry sensory information 

in afferent fibers from the lower urinary tract to the lumbosacral spinal cord 

(Morgan et al., 1981, 1986; Thor et al., 1989; Andersson and Wein, 2004; 

Yoshimura and Chancellor, 2007). The afferent pelvic nerve monitors the 

bladder volume during the storage phase and the amplitude of bladder 

contractions during urination. Thus, this sensory nerve serves to initiate the 

mucturition reflex as well as to reinforce the drive that maintains bladder 



 

 19 

contractions. It is composed of myelinated Aδ-fibers and unmyelinated C-fibers. 

Aδ-fibers, which are located primarily within the detrusor smooth muscle layer 

and respond primarily to detrusor stretching during the phase of bladder filling 

and convey sensations of fullness. Unmyelinated sensory C-fibers are more 

wide-spread and reside in the muscle, close to the urothelial cells themselves 

(Andersson, 2002; Ouslander, 2004; Yoshimura and Chancellor, 2007). C-fibers 

usually have a higher mechanical threshold than Aδ-fibers (Habler et al., 1990; 

Dmitrieva and McMahon, 1996) and can be activated by a variety of 

neurotransmitters and chemical mediators released by the detrusor and 

urothelium, including ATP, neurokinin, nerve growth factor, and others 

(Ouslandder, 2004; Yoshimura and Chancellor, 2002). 

 

1.3 Diabetes and urinary bladder functions 

 

 Type 1 diabetes mellitus is associated with various pathologies, including 

thrombosis, hypertension, atherosclerosis, hyperlipidimia, impotence, 

abnormalities in autonomic nerves, retinopathy, nephropathy and neuropathy 

(Mauer et al., 1984; Cohen, 1993; Richard et al., 1993). Urological diseases are 

found as common health problems with increase in prevalence in diabetes 

(Brown et al., 2005). Urinary bladder disturbances are found in long-term 

diabetes mellitus (Buck et al, 1976; Ellenberg, 1980). The most common 

characteristics of bladder dysfunction in animal models of diabetes are 

increases in distension and bladder capacity (Andersson et al, 1988; Santicioli 

et al, 1987). The presence of residual urine is also a manifestation of the 

condition especially in the later stages (Buck et al, 1974; Ellenberg, 1980), 

which suggests that there may be some compromise of smooth muscle 

contraction. 

 Neuropathy plays a role in urinary bladder impairment (Steer et al, 1994). 

There are reports to suggest that alterations may also exist at the level of the 

bladder smooth muscle itself (Longhurst and Balis, 1986). These include 

changes in postsynaptic muscarinic receptor function (Kolta et al, 1985; 

Malmgren et al., 1989) and possible changes in intracellular messenger 
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systems (Tammela et al., 1994). The possibility that there may be a myogenic 

component to diabetic bladder dysfunction led to several studies of bladder 

smooth muscle contractility in various animal models of diabetes. The results of 

these studies are often conflicting. Some report that contractile responses of 

diabetic bladder, especially to muscarinic agonists, are enhanced (Eika et al., 

1994; Kolta et al., 1985; Tammela et al., 1994; Steer et al., 1990), while others 

suggest that the responses to a variety of contractile stimuli are diminished 

(Santicoli et al, 1987; Longhurst and Balis, 1986). These apparent 

discrepancies may be due to the different animal models and duration of 

diabetes employed as well as the data normalization procedures applied. 

Despite the variability in the results of these studies, it seems likely that 

contractile function of urinary bladder smooth muscle is altered in diabetes. 

Little is known of the possible mechanisms that might underlie these alterations. 

 A high incidence of neurogenic bladder dysfunction (diabetic cystopathy) 

in diabetics has been demonstrated in many studies (Buck et al., 1976; Frimodt-

Moller, 1980). The major clinical feature of this disorder is a gradual loss of 

bladder sensation and motor function resulting in a large bladder with a chronic 

residual urine volume. Much evidence suggests that diabetic cystopathy is a 

manifestation of the peripheral neuropathy which is a common complication of 

diabetes. There is a very good correlation between the incidence of cystopathy 

and of peripheral neuropathies in individual patients (Bartley et al., 1966; 

Andersen and Bradley, 1976). Histological damage was found in diabetic 

bladders, with an absence of or decrease in acetylcholinesterase activity 

(Faerman et al., 1973). 

 

1.4 Diabetes and colon functions 

 

Gastrointestinal disorders in diabetes may due to many reasons. The 

autonomic nervous supply to the gut is affected by long-standing diabetes. 

Segmental demyelination, reduction in size of neurons, altered vasoactive 

intestinal polypeptide, somatostatin and substance P in these neurons 

supplying the gut and axonal degeneration in the Meissneri plexus are 
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abnormalities found in diabetes. The autonomic neuropathy in diabetes seems 

to be a key pathogenetic event in the evolution of the disorders of the 

gastrointestinal tract. Most complications of motility are secondary to 

neuropathy and patients usually have peripheral neuropathy or other features of 

autonomic neuropathy (Sharma, 1989). 

In the ileum from 8-week streptozotocin-induced diabetic rats, contractile 

responses to carbachol, prostaglandin F2α (PGF2α), the calcium ionophore 

A23184 and to EFS were increased in diabetic tissues compared to controls. 

The inhibitory effects of a potent and selective adenosine A1 receptor agonist 

N6-cyclopentyladenosine (CPA) on electrical field stimulation-evoked 

contractions were decreased in diabetic tissues compared to control but its 

ability to relax carbachol-contracted tissues were unaltered (Talubmook et al., 

2003). 

 

1.5 Transient receptor potential (TRP) channels 

 

 The transient receptor potential (TRP) superfamily consists of a diverse 

set of proteins whose primary function is to regulate the plasma membrane 

permeability of animal cells to a variety of ions. They are among the largest 

family of ion channels known, with representative members in many species 

from yeast to humans. The first member of the family to be identified, 

Drosophila melanogaster TRP, was discovered in the analysis of a mutant fly 

whose photoreceptors failed to maintain a sustained response to a prolonged 

stimulus of light (Montell and Rubin, 1989). 

  

1.5.1 Structure of TRP channels 

 

 The TRP ion channels are a large class of channel subunits united by a 

common primary structure and permeability to monovalent cations and calcium 

ions (Ca2+). TRP channels bring Ca2+ into cells at hyperpolarized membrane 

potentials (Clapham et al., 2001). Each TRP channel subunit consists of six 

putative transmembrane spanning segments (S1-6), a pore-forming loop 
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between S5 and S6, and intracellularly located located NH2 and COOH termini. 

Assembly of channel subunits as homo- or heterotetramers results in the 

formation of cation-selective channels (Figure 1.3) (Nilius and Voets, 2005).  

 

 

 

 

 

 

 

Figure 1.3 Structure of TRP channels (adapted from Clapham et al., 2001) 

 

1.5.2 TRP subfamilies 

 

 There are more than 100 TRP sequences reported.  They include 

members from Saccharomyces cerevisiae, Dictostelium discoideum, 

Caenorhabditis elegans, Drosophila and mammals. Based on amino acid 

homology, the TRP subfamily can be divided into seven subfamilies: TRPC, 

TRPM, TRPV, TRPA, TRPP, TRPML, TRPN (Nilius and Voets, 2005; Pedersen 

et al., 2005) (Figure 1.4). 
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Figure 1.4 Phylogenetic analysis of representative channels of the TRP 

subfamily. The distance scale represents the evolutionary distance expressed in 

the number of substitutions per amino acid (Pedersen et al., 2005). 

 

1.5.2.1 TRPC 

 

TRPC channels are non-selective Ca2+ permeable cation channels 

(Ramsey et al., 2006). The TRPC subfamily can be subdivided into four 

subfamilies: TRPC1, TRPC2, TRPC3/6/7 and TRPC4/5. Channels of the TRPC 

family are activated subsequent to stimulation of receptors that activate different 
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isoforms of phospholipase C (PLC). All TRPC channels have been proposed to 

act as stored-operated channels (SOCs), which are assumed to be activated by 

depletion of intracellular calcium stores (Nilius and Voets, 2005; Alexander et 

al., 2007). 

 

1.5.2.2 TRPV 

 

 The TRPV channel subfamily has six members divided into four groups 

on the basis of structure and function: TRPV1/2, TRPV3, TRPV4 and TRPV5/6 

(Gunthorpe et al., 2002). TRPV1-4 are thermosensitive, non-selective cation 

channels that can be activated by numerous stimuli (Benham et al., 2003). 

TRPV5 and TRPV6 are calcium-selective channels involved in the absorption 

and reabsorption of calcium across intestinal and kidney tubule epithelia 

(Alexander et al., 2007). 

 TRPV1 is selective for Ca2+ and Mg2+. It is activated by capsaicin, 

resiniferatoxin, olvanil, moderate heat (≥ 43 ºC), low pH (≤ 5.9), the 

cannabinoid-receptor ligand anandamide, the eicosanoids 12-(S)-HPETE, 15-

(S)-HPETE, 5-(S)-HPETE, leukotrine B4, N-arachidononoyl-dopamine, 

adenosine, and 2-APB (2-amino ethoxyphenylborate) (Nillius and Voets, 2005). 

Blockade of TRPV1 by capsazepine, 6-iodo-nordihydrocapsaicin, BCTC, 

JYL1421, and SB366791 is competitive. All other antagonists act by non-

competitive antagonism (Alexander et al., 2007). TRPV1 is widely expressed, 

but its function has been most thoroughly studied in sensory neurons, in which it 

was first identified (Caterina et al., 1997). TRPV1 was identified in dorsal root 

ganglion (DRG) and trigeminal ganglion (TG) neurons, and is also highly 

expressed in spinal and peripheral nerve terminals, as well as in a multiple non-

neuronal cell types (Cases et al., 2005). TRPV1 is involved in nociception, and 

analysis of vanilloid receptor gene knock-out mice confirmed that the channel 

contributes to the detection and integration of painful chemicals and thermal 

stimuli (Pedersen et al., 2005). TRPV1 is also required for evoked purinergic 

signaling in the bladder urothelium (Birder et al., 2002). This channel is now 
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recognized as being involved in several diseases including inflammation, 

asthma and pancreatitis (Liedtke and Simon, 2004; Nathan et al., 2002). 

 Phosphorylation and dephosphorylation signals are the key factors that 

influence the activation of TRPV1. Phosphorylation will sensitize the receptor for 

activation while dephosphorylation will inhibit or make the receptor to be non-

responsive to stimuli (heat, acid, capsaicin, etc.). Various agonists which 

activate Gαq-protein coupled receptor sensitize TRPV1. Protease can activate 

TRPV1 through protease-activated receptors. In addition, it can be activated by 

ATP (through purinergic receptor), bradykinin (through B1 and B2 receptors), 

and endothelin (through ET-AR). These receptors activate PLCβ, which cleaves 

phosphatidylinositol bisphosphate (PIP2) to produce inositol trisphosphate and 

DAG, leading to the activation of protein kinase C (PKC). It has been reported 

that the isoform of PKC that is activated has been demonstrated to be PKC-ε, 

which requires DAG but not Ca2+ for activation. This kinase has been shown to 

phosphorylate TRPV1 on Ser502 and Ser801 (Premkumar and Ahern, 2000). 

 In addition, some other agonists can potentiate signaling through TRPV1 

by protein kinase A (PKA) activation. These include Gαs-protein coupled 

receptors, which enhance the synthesis of cAMP by adenylyl cyclase, with 

cAMP activating PKA. Agonists that have been reported to show this potential 

include PGE2, which increases cAMP through EP2 and EP4, prostacyclin, 

serotonin and 5-hydroxytryptamine. Seven residues of TRPV1 are 

phosphorylated by PKA in vitro. The residues that are phosphorylated include 

Ser117, Thr145, Thr371, and Ser502. Finally, atrial natriuretic peptide, which uses 

receptors that increase cGMP to signal through protein kinase G (PKG), 

potentiate TRPV1 (Premkumar and Sikand, 2008). 

 PKCε and PKCα, calcium-independent and calcium dependent isoforms 

of PKC, respectively, have been shown to phosphorylate TRPV1 (Premkumar 

and Ahern, 2000). Ca2+ calmodulin-dependent protein kinase II (CaMKII) has 

been reported to modulate TRPV1 function and capsaicin binding (Jung et al., 

2004; Rosenbaum et al., 2004). In contrast, calcineurin-mediated 

dephosphorylation causes TRPV1 desensitization (Docherty et al., 1996). 
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Mutation of CaMKII phosphorylation on TRPV1 (S502 and T704) failed to elicit 

currents in response to application of capsaicin or RTX (Jung et al., 2004). 

 TRPV4 is an active Ca2+ permeable cation channel that responds to 

heating, hypotonic challenge, or the phorbol ester 4α-PDD (Ramsey et al., 

2006). TRPV4 can be activated by stimuli including moderate heat (> 24 ºC) and 

4α-phorbol 12,13-didecanoate (4α-PDD) (Nilius and Voets, 2005). TRPV4 is 

widely expressed in brain, dorsal root ganglion neurons, and multiple excitable 

and non-excitable peripheral cell types (Pedersen et al., 2005). The effect of 

hypotonicity on TRPV4 is attributable to swelling-induced production of the 5‟, 

6‟-epoxyeicosatrienoic acid, which directly activates TRPV4 channels. TRPV4 

also alter voltage-dependent block by ruthenium red. TRPV4 knockout mice 

exhibit reduced pressure and osmotic sensitivity, altered thermal selection, and 

hearing loss (Ramsey et al., 2006). 

 

1.5.2.3 TRPM 

 

 Members of the TRPM (“Melastatin”) subfamily, on the basis of sequence 

homology, fall into four groups: TRPM1/3, TRPM2/8, TRPM4/5 and TRPM6/7 

(Pedersen et al., 2005). TRPM channels exhibit highly varying permeability to 

Ca2+ and Mg2+, from Ca2+ impermeable (TRPM4 and 5) to highly Ca2+ and Mg2+ 

permeable (TRPM6 and 7) (Pedersen et al., 2005).   

TRPM play a role in a range of functions, for examples, a cellular redox 

sensor in TRPM2, microglial and choroid plexus function in TRPM3, contribution 

to myogenic vasoconstriction of cerebral arteries and taste transduction in 

TRPM4-5, and Mg2+ homeostasis in intestine and kidney in TRPM6-7 (Ramsey 

et al., 2006). 

 TRPM8 was originally detected in the prostate gland, but is widely 

expressed in sensory neurons, in which it may function as a cold thermosensor 

(Peier et al., 2002; McKemy et al., 2002). TRPM8 is a channel activated by cold 

temperature (8-28 ºC) and pharmacological agents evoking a „cool‟ sensation 

such as menthol and icilin (Patapoutian et al., 2003). However, Anderson et al. 

(2004) suggested that intracellular pH modulates activation of TRPM8 by cold 
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and icilin, but not menthol. The main physiological role of TRPM8 is serving as 

a thermosensor in sensory neurons (Patapoutian et al., 2003). TRPM8 is 

upregulated in a variety of primary tumors (e.g. prostate, breast, colon, lung, 

skin) (Alexander et al., 2007). However, TRPM8 is also regulated by androgens 

and has been proposed to be important for Ca2+-homeostasis in prostate 

epithelial cells (Zhang et al., 2004). 

 

1.5.2.4 TRPA 

 

 The TRPA family comprises one mammalian member, TRPA1, which is 

likely to be activated by noxious cold and pungent substances including 

isothiocyanates (the pungent compounds in mustard oil, wasabi, horse radish, 

garlic and onions), Δ9-tetrahydrocannabinol (THC, the main psychoactive 

compound in marijuana), and cinnamaldehyde, but it is insensitive to menthol 

and capsaicin. It is also activated by allicin, the active component in raw garlic 

and onions, members of the Allium family. TRPA1 has been thought to gate a 

transduction channel required for the auditory responses in mammals (Corey et 

al., 2004). The protein is present in the tips of stereocilia in hair cells and 

decreasing the TRPA1 expression causes defects in hearing. However, a clear 

mechano-activation of TRPA1 has not yet been demonstrated (Ramsey et al., 

2006). 

 

1.5.2.5 TRPML 

 

 The TRPML family contains three mammalian members (TRPML1-3) 

(Nillius and Voets, 2005; Pedersen et al., 2005). The TRPML channels are 

probably localized to intracellular vesicles and excluded from the plasma 

membrane (Ramsey et al., 2006). 

 TRPML1 is reported to be a nonselective channel that is inhibited by 

lowering pH. It may play a role in endosomal acidification (Raychowdhury et al., 

2004). TRPML1 is important for sorting or transport of endosomes (Alexander et 

al., 2007). TRPML1 are the cause of the neurodegenerative disorder 
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mucolipidosis type IV in man. TRPML3 is expressed in hair cells and stereocilia 

and its function is implicated in hearing (Di Palma et al., 2002; Alexander et al., 

2007). The function of TRPML2 is unknown (Ramsey et al., 2006). 

 

1.5.2.6 TRPP 

 

 The TRPP family subsumes the polycystins that are structurally divided 

into two groups, polycystic kidney disease 1-like (PKD1-like) and polycystic 

kidney disease 2-like (PKD2-like) (Delmas, 2004). Members of PKD1-like group 

are PKD1 (now TRPP1), PKDREJ, PKD1L1, PKD1L2 and PKD1L3. The PKD2-

like members comprise PKD2, PKD2L1 and PKD2L2, which have been 

renamed as TRPP2, TRPP3 and TRPP5, respectively (Moran et al., 2004).  

 TRPP1 and TRPP2 act as a signaling complex. The association of 

TRPP1 and TRPP2 suppresses the G-protein-stimulating activity of TRPP1 and 

also the constitutive channel activity of TRPP2. TRPP2 is important for cilia 

movement, development of the heart, skeletal muscle and kidney. TRPP2 is 

also likely to act as an intracellular Ca2+ -release channel. TRPP3 plays role in 

retinal development (Alexander et al., 2007). 

 

1.5.2.7 TRPN 

 

 These channels are characterized by 29 ankyrin repeats in their N-

terminal cystolic loop (Sidi et al., 2003; Walker et al., 2000). They probably act 

as mechano-transduction channel and are involved in hearing. Mammals lack 

the TRPN gene (Corey et al., 2004). 
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1.5.3 Physiological functions of TRP channels 

 

 TRP channels are cation channels. These ion channels are contributed 

to Ca2+ signalling. Ca2+ influx from the extracellular compartment affects cell 

surface receptor activation. This influx is a feature in most non-neuronal cell 

types and is referred to as capacitative calcium entry (CCE) or store-operated 

calcium entry (SOCE) (Putney and McKay, 1999).  

 

1.5.4 Pathological function of TRP channels 

 

TRPV1 is involved in pain reception especially neuropathic pain (Nilius, 

2007). The impaired inflammatory thermal hyperalgesia is reported to be 

present in the TRPV1 knock-out mice (Caterina et al., 2000; Davis et al., 2000). 

It has been reported that TRPV1 is expressed in sensory neurones and 

urothelium of urinary bladder. Intravesical administration of TRPV1 agonist 

resiniferatoxin (RTX) provided improvement of voiding control by patients with 

incontinence (phase II trials) (Szallasi and Fowler, 2002). 

There are reports about the expression of TRPV1 in sensory neurones 

innervating gastrointestinal tract. Visceral pain, irritable bowel syndrome and 

irritable bowel disease may be related to sensitization or upregulation of TRPV1 

(Chan et al., 2003; Yiangou et al., 2001). 

In addition, TRPV1 is expressed in the bronchial airways suggesting that 

TRPV1 is involved in the aetiology of asthma. Stimulation or inhibition of TRPV1 

may cause the contraction of bronchi and neurogenic inflammation (Carr et al., 

2003; Ji et al., 2002; Karlsson, 1996). Capsaicin-sensitive afferents are found in 

pulmonary fibres (Paintal, 1973). The activation of these fibres leads to cough, 

increased mucosal secretion and bronchoconstriction (Coleridge and Coleridge, 

1984). 

For cardiovascular pathophysiology, neurones expressing TRPV1 

caused cardiogenic sympathoexcitatory reflex in myocardial ischemia. 

Therefore, TRPV1 antagonists may relieve the cardiac pain (Zahner et al., 

2003). It is reported that TRPV1 agonist anandamide stimulates calcitonin 
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gene-related peptide (CGRP) release and cause vasodilation. It is therefore 

possible that TRPV1 antagonist may be used in migraine treatments (Akerman 

et al., 2004). 

 

1.6 TRP channels and urinary bladder functions 

 

 Capsaicin-sensitive C type bladder fibers play a role in micturition. 

Capsaicin sensitive nerves exhibit both a sensory and efferent function which is 

determined by release of peptides including tachykinins such as substance P 

and calcitonin gene related peptides. Sensory function includes the regulation of 

the micturition threshold and the perception of pain from the urinary bladder, 

while the efferent function controls nerve excitability, smooth muscle contractility 

and plasma protein extravasation (Maggi et al., 1990; Szallasi and Bloomberg, 

1999; Birder, 2007) (Figure 1.5). 
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Figure 1.5 Diagram illustrating the involvement of TRP channel in bladder 

physiology (adapted from Yoshimura et al., 2008) 

 

 The use of antibodies to TRPV1 revealed TRPV1-immunoreactive nerve 

fibers in subpopulations of bladder nerves including unmyelined (C-fiber) nerves 

that detect bladder distension or the presence of irritant chemicals. Within the 

muscular layer, these nerve fibers appear close to the smooth muscle cells, 

suggesting that TRPV1 bladder nerves may modulate urothelial function and 

smooth muscle contractility via the release of sensory peptides contained in 

TRPV1 bladder fibers. Other findings suggested that TRPV1 is also expressed 

in non-neuronal cells including urothelial cells and myofibroblasts (Avelino and 

Cruz, 2006). 

 TRPV1 knockout mice do not develop bladder overactivity during acute 

bladder inflammation, suggesting that TRPV1 is involved in bladder 

hyperreflexia in inflammatory states. In addition, patients suffering from 

neurogenic detrusor overactivity exhibit significant increases in the number of 
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TRPV1-expressing nerves and TRPV1 expression within the urothelium (Birder, 

2007). 

 The emergence of the capsaicin-sensitive, C fiber mediated spinal 

micturition reflex is thought to be due to reorganization of synaptic connections 

in the spinal cord and changes in the properties of the afferents. Systemic 

administration of capsaicin is effective in animal models to block the 

hyperreflexia associated with neurogenic bladder dysfunctions following spinal 

cord injury. This effect of capsaicin is attributable to the induction of a long 

lasting refractory state of primary afferent neurons termed “capsaicin 

desensitization” (Birder, 2007).  

Intravesical treatments with vanilloid compounds are beneficial in bladder 

disorders such as neurogenic bladder in patients with multiple sclerosis or 

following spinal cord injury or hypersensitivity disorders such as interstitial 

cystitis (IC). Intravesical vanilloids have also been shown to reduce the number 

of bladder sensory fibers immunoreactive for TRPV1, substance P or CGRP in 

patients with painful bladder symptoms. This is due to either a depletion of 

afferent transmitters or degeneration of peripheral nerve endings in the wall of 

the urinary bladder (Birder, 2007). 

In the patients with neurogenic detrusor overactivity exhibiting increased 

TRPV1 expression in both bladder nerves and the urothelium, intravesical 

treatment with resiniferatoxin (RTX) reduced TRPV1 immunoreactivity in both 

suburothelial afferent nerve and urothelial cells. However, RTX was ineffective 

in a clinical trial and additional studies would not be pursued (Birder, 2007). 

Intravesical application of capsaicin or resiniferatoxin induces reflex 

activation of the bladder smooth muscle and neurogenic inflammation in the 

bladder wall (Maggi et al., 1989; Maggi et al., 1984). Capsaicin or resiniferatoxin 

directly activates capsaicin sensory neurons in the subepithelial layer of 

bladder, which, in turn releases substance P. Substance P then sensitizes 

smooth muscle cells resulting in increased contractions (Quartara and Maggi, 

1998). TRPV1 is also expressed by epithelial cells of the transitional epithelium, 

and activation of these TRPV1-expressing cells results in ATP release, which 

then activates P2X3 receptors expressed by bladder afferents (Birder et al., 
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2001; Ferguson et al., 1997). Stretching of bladder wall during bladder filling 

activates TRPV1-expressing afferents either directly or through the action of a 

mechanotransducer. Co-assembly of TRPV1 with mechanosensitive proteins 

might underlay the mechanosensitivity of the capsaicin receptor in the bladder 

(Caterina, 2003). 

TRPV1-expressing unmyelinated bladder afferents are insensitive to 

mechanical stimuli. It is therefore believed that TRPV1 may not be involve in 

micturition in naive conditions (De Groat and Yoshimura, 2001). However, 

TRPV1 knock-out mice have higher frequency of low amplitude, non-voiding 

bladder contractions and reduced reflex voiding during bladder filling (Birder et 

al., 2002) indicating that TRPV1 is involved in the bladder activity and not only 

in inflammatory conditions. Following sensitization, for example in inflammation, 

the activity of capsaicin-sensitive fibres plays a significant role in the 

pathological micturition reflex, which is characterized by frequent involuntary 

voiding (urge incontinence), decreased bladder capacity and occasional ureteral 

reflex (De Groat et al., 1990; Fowler, 2002). Selective sensory denervation of 

the bladder elicited by intravesical application of capsaicin or resiniferatoxin 

disrupts this overactive spinal reflex, resulting in decreased voiding frequency 

and increased bladder capacity (Cruz et al., 1997a, b; De Ridder et al., 1997; 

Silva et al., 2000). 

The mechanism involved in the sensitization and activation of capsaicin-

sensitive bladder afferents has not been elucidated. Inflammatory mediators, 

such as nerve growth factor released from activated inflammatory cells, have 

been implicated in the sensitization (Chuang et al., 2001; Vizzard, 2000). 

Inflammatory mediators inducing post-translational changes in TRPV1 can 

reduce the heat threshold of the receptor and contribute to the sensitization of 

TRPV1. However, Avelino et al. (2003) have reported that cyclophosphamide-

induced cystitis, similar to toxin A-evoked ileitis (McVey et al., 2003) is 

accompanied by increased anandamide levels in the bladder. Both exo- and 

endogenous anandamide enhance bladder reflex activity in a pattern similar to 

that observed in cyclophosphamide-induced cystitis (Avelino et al., 2003). 
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These findings suggest that anandamide may be a major activator of TRPV1 in 

cystitis. 

A definitive role of TRPV4 in bladder function has not been established. 

However, in other systems TRPV4 seems to play a role in hypo-osmotic 

hyperalgesia and in the development of neuropathic pain (Birder, 2007). 

The installation of cold solutions (the ice water test) elicits involuntary 

detrusor contractions in patients with either chronic spinal cord lesions or 

following bladder outlet obstruction. This reflex is believed to be mediated by 

activation of C-type afferent fibers within the pelvic nerve sensitive to cold 

temperatures. The finding that intravesical installation of menthol facilitates the 

bladder cooling reflex in both the cat and human suggests that TRPM8 may be 

involved in triggering the reflex. In the urinary bladder, TRPM8-positive 

immunoreactivity has been demonstrated within bladder nerves and urothelium 

(Birder, 2007). 

TRPA1 is expressed in sensory nerves that innervate the urinary bladder 

and mediates a contractile effect on bladder smooth muscle, due to release of 

tachykinins and cyclooxygenase metabolites. The effect on smooth muscle 

contractility of agents capable of stimulating TRPA1 was comparable in potency 

to capsaicin, supporting the speculation that this channel may play a role in 

bladder function (Birder, 2007). 

 

1.7 TRP channels and colon functions 

 

 A number of cell types are thought to express TRPV1 in the 

gastrointestinal tract. They include peripheral terminals of primary and vagal 

sensory neurons, intrinsic enteric neurons in the myenteric plexi and gastric 

epithelial cells. Several motor effects of capsaicin on the guinea pig distal colon 

longitudinal muscle have been described (Maggi, 1987a). A specific contractile 

action involves myenteric cholinergic neurons. A more sustained, apparently 

specific inhibitory effect is partly inhibited by tetrodotoxin, probably indicating an 

involvement of intrinsic enteric neurons or “axon reflex” arrangement in 

capsaicin sensitive extrinsic nerves. The circular muscle of the guinea pig 



 

 35 

proximal colon also shows relaxation in response to capsaicin, which seems 

partly mediated by CGRP (Maggi, 1996). 

 TRPV1 expressed by primary sensory neurons in the gastrointestinal 

tract has been implicated in the development of inflammation and hyper-

motility/hyperreflexia. It has been shown that substance P is a major player 

mediating inflammation in the intestines (Pothoulakis et al., 1994). The finding 

that TRPV1 antagonist capsazepine prevents the development of Toxin A-

induced inflammation indicated that the capsaicin receptor is involved in the 

process, and capsaicin-sensitive primary sensory fibres are the major source of 

substance P (McVey and Vigna, 2001). Recent findings suggest that the 

endogenous substance activating TRPV1 during ileitis is anandamide (McVey 

et al., 2003). Anandamide concentration in the inflamed tissues is increased 

and this endogenous TRPV1 ligand exacerbates ileitis. However, Mang et al. 

(2001) mentioned that anandamide induces acetylcholine release from intrinsic 

enteric neurons expressing TRPV1 receptors, suggesting that the capsaicin 

receptor expressed by neurons in the myenteric plexi might contribute to the 

development of enhanced intestinal motility or secretion. However, it should be 

noted that other groups using different chemicals to induce experimental colitis 

or enteritis (Evangelista and Tramontana, 1993; McCafferty et al., 1997; 

Reinshagen et al., 1996) reported a rather accentuated inflammation following 

ablation of capsaicin-sensitive nerve fibres with systemic capsaicin treatment of 

adult animals. This effect was explained by the possible protective actions of 

the sensory neuropeptide, CGRP on the mucous membrane. 

 Activity of TRPV1 has been implicated in the development of abdominal 

pain that occurs in irritable bowel syndrome, which is the most common form of 

the pathological condition termed functional bowel disorders. Since the pain 

experienced by the patients is not matched with any detectable structural 

abnormality by conventional diagnostic methods, the concept of an altered 

nociceptive function as the main etiological factor of irritable bowel syndrome-

associated pain has been developed (Collins et al., 2001; Hunt and Tougas, 

2002). According to the proposed mechanism, sensitization of TRPV1 by a 

variety of ligands including the protease activated receptor 2 expressed by 
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primary sensory neurons (Coelho et al., 2002; Kawao et al., 2004) and by 

paracrine/endocrine substances produced by the enterochromaffin (e.g. 

serotonin) or enteroendocrine (e.g. cholecystokinin) cells underlay the 

development of abdominal pain in irritable bowel syndrome (Hillsley and 

Grundy, 1998). Although the involvement of TRPV1 in the development of 

visceral hyperalgesia has been demonstrated in human (Drewes et al., 2003), 

the contribution of this mechanism to pathogenesis of the irritable bowel 

syndrome is stilled debated. 

 

1.8 Diabetes mellitus and TRP channel functions 

 

 Stimulation of the TRPV1 channel is used in the treatment of neurogenic 

bladder dysfunction (Fowler et al, 1992). TRPV1 levels are reduced in skin 

biopsies from patients with diabetic neuropathy (Facer et al, 2007) and insulin 

has been shown to cause sensitization and translocation of TRPV1 receptors 

(Van Buren et al, 2005).  

 

 

1.9 Cholesterol and TRP channel functions 

 

The plasma membrane of eukaryotic cells contains more lipid species 

than other biological membrane, were need to form a simple bilayer. Specific 

lipids could serve to organize membranes into discrete domains with different 

properties. The microdomain is enriched in cholesterol and sphingolipids. These 

microdomains are usually called lipid rafts, and many studies suggested that 

rafts play a role in a wide range of important biological processes, including 

numerous signal transduction pathways, apoptosis, cell adhesion, and 

migration, synaptic transmission, organization of cytoskeleton, and protein 

sorting during both exocytosis and endocytosis (Hao et al., 2001). 

Lipid rafts, microdomains rich in sphingolipids and cholesterol in the 

plasma membrane are involved in protein trafficking, regulation of cytoskeleton 

and formation of signalling complexes. Ca2+ signals are generated across wide 
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spatial and temporal ranges through various channels that can last from 

microsecond to several minutes. This broad range of Ca2+ signals can be 

efficiently coordinated through organization of specific Ca2+ channels, pumps, 

buffers, exchangers and protein scaffolds into common microdomains. 

Members of rafts provide such a microdomain wherein highly specific signalling 

events can be efficiently executed (Pani and Singh, 2009). Members of the TRP 

family such as TRPC1 are found to form signalling complexes in lipid rafts 

(Lockwich et al., 2000). Liu et al. (2007) suggested that TRPV1 might be 

concentrated in lipid rafts to facilitate interaction with specific lipid metabolites 

and by-products of inflammatory mediators. Cholesterol is an essential 

component of lipid rafts (Zajchowski and Robbins, 2002). It can be extracted 

from the plasma membrane of various cell types by methyl-β-cyclodextrin 

(MCD) (Kilsdonk et al., 1995). 

 

1.10 Objectives 

 

 The purpose of the present study was to investigate the influence of the 

streptozotocin (STZ) model of diabetes, cholesterol modulation and time course 

of the streptozotocin (STZ) model of diabetes on the responses of rat urinary 

bladder to transient receptor potential (TRP) channel agonists and antagonists 

using conventional organ bath techniques. Some studies were also performed 

on colon tissues. In addition, the hypothesis that channel dysfunction is a 

consequence of hyperglycaemia that will be experienced by all tissues in the 

body, will be tested. In order to investigate the mechanism of action, the 

fluorimetry studies were conducted in TRPV1-expressing Human Embryonic 

Kidney (HEK) 293 cell line to explore the calcium ion influx modulated by 

hyperglycaemic state and cyclodextrin molecules. 

 The experimental designs have been conducted according to the three 

main proposed aims. Firstly, to investigate the effect of the streptozotocin (STZ) 

model of diabetes on a range of TRP channel function in urinary bladder 

smooth muscle preparations using TRP channel agonists and antagonists and 

to study the neurotransmitters involved in the contractile or relaxant responses 
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of the smooth muscle preparations. Secondly, to explore the involvement of 

cholesterol modudation in TRP channel signalling. Thirdly, to study the change 

in TRP channel response with time following the treatment with streptozotocin. 

 

The objectives of these investigations are the following: 

 

 1.10.1 To examine the TRPV1, TRPV4, TRPA1, and TRPM8 channel 

function in bladder strips from STZ-diabetic and control rats using conventional 

organ bath techniques and a range of appropriate agonists and antagonists 

which are available 

 1.10.2 To check the downstream mechanisms of these pathways by the 

use of neurokinin ligands 

 1.10.3 To examine the effect of STZ-induced diabetes on TRPV1 

channel function in the rat colon 

 1.10.4 To examine the effect of STZ-induced diabetes on ion secretory 

function in the rat colon 

 1.10.5 To study the effect of cholesterol and cyclodextrins on muscarinic 

receptor function in rat bladder 

 1.10.6 To study the effect of cholesterol and cyclodextrins on muscarinic 

receptor function in HEK 293 cells 

 1.10.7 To study the effect of cholesterol and cyclodextrins on TRP 

channel function in rat bladder 

 1.10.8 To study the effect of cholesterol and cyclodextrins on TRP 

channel function in HEK 293 cells 

1.10.9 To study the effect of time frame of STZ injection on TRP channel 

function 

 1.10.10 To study the effect of elevated glucose level on TRP channel 

function in rat bladder 

 1.10.11 To study the effect of elevated glucose on TRP channel function 

in HEK 293 cells 

 



 

 

Chapter 2 

 

General Materials and Methods 

 

2.1 Animals 

 

 In the present study, male wistar rats with body weight of 300-400 g were 

used. These animals were supplied by the Biological Science Unit (BSU), 

School of Life Sciences, Faculty of Health and Human Science, University of 

Hertfordshire. Animals were divided into two groups: control and diabetic. 

 The animal use and welfare were in accordance with the 

recommendations of the Animals (Scientific Procedures) Act, 1986 under 

Project License No. PPL70 5855. 

 

2.2 Maintenance of animals 

 

 All rats were kept in separate cages. One control and one diabetic rat 

were kept in the same cage. They were provided with feed and water daily for 

up to 8 weeks until used in the study. All groups were kept in a temperature-

controlled room (22 ± 2 ºC), artificially lit from 6.00 to 18.00 hours daily. The 

initial weights and blood glucose levels of the rats were recorded and again at 

sacrifice. 

 

2.3 Induction of diabetes mellitus 

 

 The initial blood glucose level of rats was measured using an Accu-

Check active testing kit. The blood was taken from the tail vein. The initial body 

weight was also measured to quantify the change in body weight over the eight 

weeks. In order to induce diabetes, streptozotocin (STZ) at dose of 65 mg/kg 

bodyweight was injected intraperitoneally to the rats with a single injection. 

Streptozotocin was freshly dissolved in 20 mM citrate buffer at pH 4.5. The 

control rats were injected with 20 mM citrate buffer (pH 4.5) at an equal volume 
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to the diabetic group. To avoid the initial hypoglycemia, 2% sucrose was added 

to drinking water for the streptozotocin-induced diabetic rats for 48 hours. The 

weight of the rats and their blood glucose levels were measured immediately 

after sacrifice. The blood glucose level in control rats should be approximately 

100 mg/dl. For diabetic groups, the blood glucose level of 400 mg/dl or more is 

confirmed as diabetic. 

 In the present study, the high single dose (65 mg/kg bodyweight) of 

streptozotocin was chosen as diabetes model in rat in order to establish 

diabetes in animal model. The reasons behind this decision is that diabetes 

induced by a single intravenous or intraperitoneal injection of streptozotocin is 

probably the most widely used experimental model of insulin-dependent 

diabetes mellitus or type 1 diabetes mellitus. Streptozotocin is efficacious after 

intraperitoneal administration of 40-60 mg/kg body weight, but a single dose 

below 40 mg/kg body weight may be ineffective (Katsumata et al., 1992). 

Streptozotocin can induce severe insulin-deficient diabetes in rats and other 

rodents, either when given as a single high dose (50-100 mg/kg in rats) or as 

multiple low doses. In addition, the high single dose model is simple and less 

time-consuming. It also provides a reproducible diabetes model. In the multiple 

low dose model, diabetes develops more gradually and appears to have an 

autoimmune, rather than toxic, basis (Islas-Andrade et al., 2000). This multiple 

low dose is used predominantly in the mouse (Szkudelski, 2001). 
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2.4 Tissue preparations 

 

2.4.1 Urinary bladder tissues 

 

 The bladder was immediately removed by opening the lower abdomen. 

The bladder was cut at the bladder neck to obtain the whole bladder. Then the 

removed bladder was kept in Krebs solution gassed with 95%O2 and 5% CO2. 

 The bladder was cut longitudinally along the neck to the body. Then four 

strips were taken from the whole bladder. The strips were approximately 1 cm 

long and 0.5 cm wide. The strip was tied with tread at one end to be attached to 

the force transducer. The other end was tied to a hook to be attached to organ 

bath (Figure 2.1). 

 

 

 

 

 

 

Figure 2.1 Diagram illustrating urinary bladder strip preparations 
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2.4.2 Colon tissues 

 

 Eight weeks after injection, the diabetic and control rats were sacrificed 

by asphyxiation with a CO2 overdose. A 3 cm segment of the proximal and 

distal colon was removed from control and STZ-induced diabetic rats and 

immersed in Krebs-Henseleit solution of the composition (in mM): NaCl 118.3, 

KCl 4.7, MgSO4 1.2, KH2PO4 1.2, NaHCO3 25, D-glucose 11.1, CaCl2 2.5, and 

gassed with 95% O2 and 5% CO2 at room temperature (21 ± 4 ºC). 

 The colonic segment was opened longitudinally along the mesenteric 

border after trimming the mesentery and rinsing the faecal contents away with 

Krebs-Henseleit solution. The tissue was then pinned as flat sheet with the 

basolateral (serosal) side up on a cork board lined with a piece of paper towel 

soaked with Krebs-Henseleit solution. The smooth muscle layers with the 

attached mesenteric plexus were then gently stripped away by blunt dissection 

leaving a submucosal plexus-mucosal sheet (Figure 2.2). A maximum of two 

submucosal plexus-mucosal sheets were prepared from the 3 cm segment. 

 

 

Colon segment Mucosal surface

Serosal side Serosal side

Epithelial layer sheet

 

 

 

Figure 2.2 Diagram illustrating the preparation of a submucosal plexus-

mucosal sheet from the colon 
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2.5 Apparatus settings 

 

2.5.1 Organ bath 

 

 The bridge amplifier (Power Lab; AD Instrument, U.K.) was connected to 

the force transducer and Chart 5 software. The force transducer was connected 

to the organ bath apparatus to determine the change in tension caused by 

either contraction or relaxation of the muscle strips (Figure 2.3). The calibration 

of the apparatus was begun by opening the Chart 5 software on the computer 

screen. Two channels were selected in accordance with the two organ baths 

which were available. The range was selected to 2 m/s. For the bridge amplifier 

settings, the low pass was 20 mV and zeroing was set. When the baseline was 

at zero, a one gram weight was attached to the force transducer to obtain the 

initial tension at one gram. To convert the unit from mV to gram, the trace of 

one gram weight was highlighted. The baseline was labeled as zero mV and the 

peak from 1 g weight was labeled as one mV. The unit was then changed from  

mV to grams. 

 

 

 

 

Figure 2.3 Diagram of the organ bath and apparatus setting 

(adapted from Kenakin, 2001)  
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The 10 ml organ bath was rinsed with distilled water. The Krebs’ solution 

was then added. The bath was aerated by 95%O2 and 5% CO2 and warmed at 

37 ºC by thermocirculator.  

 When the calibrations were complete, the longitudinal strips of control 

and streptozotocin-induced diabetic rat bladders were placed into the bath. The 

top end of the bladder strip with thread was attached to the force transducer. 

The bottom end with the hook was attached to the organ bath (Figure 2.3). 

Recording was started after the resting tension on the strip was set to 1 g. The 

bladder strips were equilibrated for at least 30 minutes before any drug 

applications. 

 

2.5.2 Ussing chamber 

 

 Each submucosal plexus-mucosal sheet (Figure 2.2) was gently clamped 

between the Ussing Chambers (WP Instruments, U.S.A) with a circular window 

surface area of 0.63 cm2. Both apical and basolateral surfaces of the 

submucosal plexus-mucosal sheet were bathed with 5 ml of Krebs-Henseleit 

solution maintained at 37 ºC and circulated with a stream of 95% O2 and 5% 

CO2  (Figure 2.4). 

 The chamber was connected through 3M KCl agar electrodes to a 

voltage clamp apparatus (DVC 1000, WP Instruments, U.S.A) and the 

preparations automatically short-circuited by voltage clamping the tissue at a 

holding potential of 0 mV. The short circuit current (Isc) was continuously 

recorded in units of µA.cm-2 on a MacLab data-acquisition recording system 

running the Chart version 3.5 software (AD Instrument, U.K.) on an Apple 

Macintosh computer (Apple Macintosh, U.K.). 

 At the end of every experiment, the chambers were washed thoroughly 

with 70% ethanol followed by 2 M hydrochloric acid and distilled water to ensure 

the complete removal of residual drugs used in the experiments. The 3 M KCl-

agar electrolyte in the electrodes was also renewed regularly. 

 

 



 

 45 

 

 

 

Figure  2.4 Diagram of apparatus settings of Ussing Chamber 

(adapted from Karaki and Kuwahara, 2004) 

 

2.6 Measurement of cholesterol contents from rat bladder tissues  

 

 Cholesterol contents from rat bladder tissues treated with and without 

cyclodextrins were measured by application of the procedure described by 

Maraschiello et al. (1996). The methods are summarized as the follows.  

 

2.6.1 Extraction of cholesterol from rat bladder tissues 

 

 After treated with or without cyclodextrins, 100 mg of rat bladder tissues 

were directly saponified with 2 ml of 0.5 N KOH in methanol for 1 hour at 80 °C. 

After cooling, 2 ml of distilled water saturated with NaCl was added. The tubes 
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were vortexed for 30 seconds followed by addition of 3 ml ether/hexane (1:1, 

v/v) and centrifuged for 10 minutes at 300 g. The upper phase was recovered 

and the hexane/ether extraction step was repeated twice. The extracts were 

combined and evaporated to dryness under a stream of nitrogen and 

redissolved in 1 ml of acetonitrile/isopropanol for HPLC analysis. Cholesterol 

was used as external standard for HPLC analysis. Injection volumes were 20 µl. 

 

2.6.2 High Performance Liquid Chromatography (HPLC) Analysis 

 

 HPLC is a chromatographic technique that can separate a mixture of 

compounds and is used to identify, quantify, and purify the individual 

components of the mixture. HPLC utilizes different types of stationary phase, a 

pump that moves the mobile phases and analyte through the column, and a 

detector that provide a characteristic retention time for the analyte. Analyte 

retention time varies depending on the strength of its interaction with the 

stationary phase, the ratio/composition of solvent used, and the flow rate of the 

mobile phase. 

The HPLC system consisted of a 600 multi-solvent delivery system, an 

octadecylsilica reverse-phase column (150 x 4 mm) with 5 µl particle diameter 

operated at room temperature and diode array detector 990. Detection was 

performed at 210 nm. The HPLC mobile phase consisted of acetonitrile :                  

2-propanol (55:45 v/v) at a flow rate of 1.2 ml/minute. All solvents were HPLC 

grade. 

The response linearity was studied for HPLC. 10, 20, 40, 60 and 90 

µg/ml of cholesterol was injected (Figure 2.5). Linear plot of concentration 

versus peak areas were calculated. Consequently, 20 µl samples from rat 

bladder tissues treated with and without cyclodextrins were injected  

The results show that the peak of cholesterol contents of standard 

cholesterol solution are in concentration dependent manner (Figure 2.6) with 

the retention time of 4.0 minutes. 
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A)      B) 

 

 

C)      D) 

 

 

   E) 

 

 

 

Figure 2.5 Chromatogram illustrating HPLC analysis of standard 

cholesterol samples at concentrations of 10 (A), 20 (B), 40 (C), 60 (D) and 90 

µg/ml (E). The retension time for standard cholesterol samples is 4-5 minutes 

so that the peak of standard cholesterol samples appeared at about 4 minutes. 
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Figure 2.6 Standard curve of cholesterol contents in different 

concentrations of cholesterol standard solution. 
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2.7 Cell culture 

 

 Human Embryonic Kidney (HEK) 293 cell stably expressing rat TRPV1 

were used in the present study (Figure 2.7). Cells were maintained in an 

incubator (37 C, 5% CO2) in Dulbecco’s modified Eagle’s medium (invitrogen, 

UK) containing 110 mg/l pyruvate supplemented with 10% FBS, L-Glutamine, 

Penicillin-Streptomycin, Non-essential amino acid, and 500 g/ml Geneticin as 

a selection agent. Cells were removed from their culture flasks by treatment 

with Accutase (Sigma Aldrich, UK), then plated onto poly-D-lysine-coated 

coverslips and incubated with high and low glucose media at 37 C for 24, 48 

and 72 hours (Figure 2.8) before experimentation. 
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     A) 

 

 B)  

 

Figure 2.7 Morphology of TRPV1 expressing-Human Embryonic Kidney 

(HEK) 293 cells incubated in low (A) and high (B) glucose media for 72 hours. 
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2.8 Calcium imaging 

 

 The coverslips with HEK 293 cells were loaded with Fura 2 

acetyloxymethyl ester (Fura-2 AM) (Molecular Probes, Carlsbad, CA) in 

extracellular solution (containing in mM: 140 NaCl, 5 KCl, 1 MgCl2 5 ml, 1 

CaCl2, 10 HEPES 10 D-glucose, pH 7.3 with NaOH) and incubated for 40 

minutes at 37 C. 

 Fura-2 is UV light-excitable, ratiometric Ca2+ indicators. It is one of the 

most popular Ca2+-indicators used in measurement of intracellular Ca2+ ion 

concentration ([Ca2+]i). It is more practical to change excitation wavelengths 

than emission wavelengths. When binding Ca2+, fura-2 exhibits an absorption 

shift that can be observed by scanning the excitation spectrum between 300 

and 400 nm, while monitoring the emission at 500 nm (Figure 2.8). 

Fluorescence of fura-2 is classically studied using two excitation wavelengths, 

340 and 380 nm (Gillis and Gailly, 1994). 

 Unlike the salt forms, the acetoxymethyl (AM) esters of fura-2 can 

passively diffuse across cell membranes, enabling researchers to avoid the use 

of invasive loading techniques. Once inside the cell, these esters are cleaved by 

intracellular esterases to yield cell-impermeant fluorescent indicators. Cells can 

be loaded simply by immersion in a solution of the permeant acetoxymethyl 

ester form (Fura-2 AM), which is fluorescent but Ca2+-insensitive. Subsequent 

cleavage by intracellular esterases liberates fura-2, which is then trapped into 

the cell (Gillis and Gailly, 1994). 

 For imaging, the coverslip with HEK-293 rTRPV1 cells was placed in a 

custom-built chamber (bath volume of 600 l) and superfused with extracellular 

solution 10 minutes before each experiment. Images were acquired with a CCD 

camera through a 40x oil immersion objective lens of an inverted Nikon Diaphot 

TMD microscope. After application of immersion oil, cells were selected as 

region of interest by marking the whole single cell using cursor. In addition, 

background was selected by marking on the surface of coverslip where there 

are no the cells. Excitation wavelengths of 350 and 380 nm were used with an 
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emission wavelength of 510 nm. Calcium levels were reported as F350/F380 

versus time.  

 Fluorescent readings were made over a 3 minutes period at 1-5 seconds 

intervals following addition of agonist to the cells. Capsaicin (1 M) (Sigma 

Aldrich, UK) was used as a TRPV1 agonist. Stock solutions for all stimuli were 

made in absolute ethanol and diluted in extracellular solution. The maximal 

responses (Fmax) were achieved by using 5 M ionomycin and the minimal 

responses (Fmin) were obtained from treatment with 10 mM EGTA (Figure 2.9). 

 

 

 

 

 

 

 

Figure 2.8 Fluorescence excitation spectra of fura-2 in solutions 

containing 0 – 39.8 l free calcium (adapted from Molecular Probes, 2010). 
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Figure 2.9 Change in Fura 2 ratio in HEK 293 rTRPV1 cells in response 

to capsaicin stimulation and to treatment with 5 M ionomycin and 10 mM 

EGTA. Values represent the mean ± S.E.M for 6 coverslips. 
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2.9 Drugs 

 

 The drugs with their supplier and solvents used in the present study are 

shown in Table 3. 

 

Table 3 Drugs used in the present study 

 

Drugs Mode of action Supplier Solvent 

Carbachol 
Muscarinic receptor 

agonist 
Sigma Distilled water 

Capsaicin TRPV1 agonist Sigma Absolute ethanol 

Allyl isothiocyanate TRPA1 agonist Sigma Absolute ethanol 

Veratridine 
Voltage dependent Na

2+
 

channel activator 
Sigma Absolute ethanol 

Cholesterol-PEG Membrane lipid enhancer Sigma Distilled water 

Methyl-β-cyclodextrin Cholesterol extractor Sigma Distilled water 

β-cyclodextrin Cholesterol extractor Sigma Distilled water 

α-cyclodextrin Cholesterol extractor Sigma Distilled water 

Isoprenaline Adrenoceptor agonist Sigma Distilled water 

Capsazepine TRPV1 antagonist Sigma Absolute ethanol 

Ruthenium Red TRPV1 antagonist Sigma Absolute ethanol 

SB-366791 TRPV1 antagonist GSK Dimethyl sulfoxide 

Spantide Substance P antagonist Sigma Dimethyl sulfoxide 

Substrance P Neurotransmitter Sigma Distilled water 

Allyl isothiocyanate TRPA1 agonist Sigma Absolute ethanol 

Menthol TRPM8 agonist Sigma Dimethyl sulfoxide 

Icilin TRPM8 agonist Sigma Dimethyl sulfoxide 

Neurokinin alpha Neurotransmitter 

Cambridge 

Research 

Biochemical 

Distilled water 

Bombesin Neurotransmitter Tocris Distilled water 

Resiniferatoxin TRPV1 agonist Tocris Absolute ethanol 

4-α-PDD TRPV4 agonist Sigma Absolute ethanol 

Citral TRPV4 antagonist Sigma Absolute ethanol 

CGRP Neurotransmitter Tocris Distilled water 

GSK-1016790A TRPV4 agonist GSK Dimethyl sulfoxide 
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Drugs Mode of action Supplier Solvent 

Chlopromazine 
Dopamine receptor 

antagonist 
Sigma Distilled water 

CP55,940 
Cannabinoid receptor 

agonist 
Tocris Distilled water 

Bradykinin 
Pro-inflammatory 

mediator 
Sigma 0.1 M acetic acid 

SB207164A NK2 antagonist GSK Distilled water 

GR205171A NK1 antagonist GSK Distilled water 

-cyclodextrin Cholesterol modulator Sigma Distilled water 

 

2.10 Data analysis 

 

2.10.1 Motility responses 

 

For the motility studies, the values were expressed as gram of 

contraction or relaxation versus gram of strip’s wet weight. The wet weight of 

strips can vary and this could influence the level of contraction or relaxation. 

Tissue wet weight thus was taken into account. The initial tension at the 

baseline was subtracted and the amplitude of contraction or relaxation after 

drug application was calculated. This difference was then divided by the tissue 

wet weight to obtain the amplitude contraction (g)/wet weight (g). Relaxant 

responses were expressed as a percentage (%) of relaxation with regardless to 

tissue wet weight. Contractile responses were expressed as a g tension/g wet 

weight. All data values were expressed as mean ± S.E.M. Statistical 

significance was determined by using student’s unpaired t-test and two-way 

ANOVA as appropriate. P-values less than 0.05 were taken to be significant. 

 

2.10.2 Ion secretory responses 

 

 The Isc was taken as a measure of active ion transport. A positive change 

in the Isc in response to stimulation of ion transport by a neurotransmitter or 

exogenous agonist indicated a net basolateral to apical anion flux or a cation 

flux in opposite direction, and this increase was recorded as an upward 
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deflection on the computer. The amplitude of the response was taken a 

measure of the intensity of the secretory response. 

 The change in the Isc were measured as units of µA.cm-2 and presented 

as the mean ± S.E.M. Comparisons between the data were performed using a 

Student’s unpaired t-test and the probability of P<0.05 was taken to signify 

statistical difference between groups. 

 

 



 

 

Chapter 3 

 

The effect of streptozotocin-induced diabetes on TRP channel function in 

rat urinary bladder  

 

3.1 Introduction 

 

Lower urinary tract complications are commonly found in diabetic 

patients (Daneshgari and Moore, 2006). Bladder dysfunction is the most 

common lower urinary tract complication in diabetes. Urine storage and 

dispersal are two main functions of urinary bladder. Diabetic bladder 

dysfunction is characterized by a triad of decreased sensation, increased 

capacity and poor emptying with a prevalence estimated to be between 32% 

and 45% (Hunter and Moore, 2003). In asymptomatic diabetic patients, 

increased bladder volume at first voiding sensation and decreased detrusor 

contractility are the main problems (Ueda et al., 2000). Therefore, diabetic 

bladder dysfunction manifestations are a combination of storage and voiding 

problems. It has been proposed that there are two main mechanisms of diabetic 

bladder dysfunction (Daneshgari et al., 2009). In the early diabetic state, there 

is osmotic polyuria causing bladder hypertrophy. However, in the late phase of 

diabetic state, there is decomposition of bladder tissue and function. Moreover, 

diabetic bladder dysfunction induces the alterations in the function of bladder 

detrusor, urethra, autonomic nerves and urothelium (Yoshimura et al., 2005). 

The study in animal models of diabetes especially in streptozotocin 

induced- diabetes in rats indicated that diabetes both decreased (Longhurst and 

Belis, 1986) and increased detrusor contractility (Warning and Wrendt, 2000). 

Abnormalities of bladder function such as reduced contractile responses to 

nerve stimulation and applied acetylcholine have been reported (Longhurst and 

Belis, 1986). In addition, there are abnormalities in afferent nerve signaling in 

bladder from streptozotocin-induced diabetic rats (Steer et al., 1994). A 

decrease in nerve growth factor in bladder from rats with 12 weeks 

streptozotocin-induced diabetes has also been reported (Sasaki et al., 2002). 
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Transient Receptor Potential (TRP) channels are a recently identified 

large group of calcium permeable ion channels that allow calcium entry without 

requiring cell depolarization. It has been documented that TRP channels are 

associated with nociception and mechanosensation in various organs. TRP 

channels that are expressed in bladder include TRPV1, TRPV2, TRPV4, 

TRPM8 and TRPA1 (Andersson et al., 2010).  

The prototypic TRPV channel, TRPV1 is the most investigated channel 

compared to other TRP subfamilies. TRPV1 channel is activated by capsaicin, 

which has been shown to cause contraction of the rat bladder (Saitoh et al., 

2007) and has been used in the treatment of neurogenic bladder dysfunction 

(Fowler et al., 1992). Pinna et al. (1994) have shown decreased capsaicin 

responses in STZ-diabetic rat bladder. TRPV1 levels are reduced in skin 

biopsies from patients with diabetic neuropathy (Facer et al., 2007) and insulin 

has been shown to cause sensitization and translocation of TRPV1 receptors 

(Van Buren et al., 2005). Therefore we hypothesize that TRPV1 function will be 

reduced in the diabetic bladder.  

Three other TRP channels, TRPV4, TRPM8 and TRPA1 are also 

emerging as playing a significant role in bladder function. TRPV4 is a Ca2+ -

permeable stretch-activated cation channel. TRPV4 is expressed in bladder 

urothelium where it may play a role in transducing myogenic tone in the bladder 

wall (Birder et al., 2007). It is suggested to be involved in stretch-induced ATP 

release. The study in TRPV4-deficient mice showed an abnormality in 

frequencies of voiding and non-voiding contraction in bladder. TRPM8 is 

activated at low temperatures and is reported to be expressed in the urothelium 

and suburothelial sensory fibers. Increased TRPM8 expression has been 

demonstrated in nerve fibers of overactive and painful bladder (Mukerji et al., 

2006). TRPV1 is co-expressed with TRPA1 and the later is reported to be 

expressed on capsaicin-sensitive primary sensory neurons. 

This study is aimed to investigate the responses to TRPV1, TRPV4, 

TRPA1, and TRPM8 agonists and antagonists of streptozotocin-induced 

diabetic and control rat bladders. The downstream mechanisms of these 

pathways were checked by the use of, for example, neurokinin ligands. Bladder 



 

 59 

strips from STZ-diabetic and vehicle treated control rats were mounted in organ 

baths for tension measurement.  

 

3.2 Methods 

 

To study whether diabetes had any effects on the functions of TRP 

channel function, TRPV1, TRPV4, TRPA1 and TRPM8 agonists and TRPV1 

antagonists were used. For example, the TRPV1 agonist capsaicin at 

concentrations of 10-10 M to 10-6 M was used. The tissues were equilibrated for 

30 minutes before adding capsaicin or other TRP channel ligand. Capsaicin 

was added to the organ bath in a cumulative manner (Figure 3.3). 

 

3.2.1 TRPV1 agonist 

 
To study whether diabetes had any effects on the functions of TRPV1 

channel, capsaicin at concentrations of 10-10 M to 10-6 M was used. The tissues 

were equilibrated for 30 minutes before adding capsaicin. Capsaicin was added 

to the organ bath in a cumulative manner. Contractile responses to capsaicin of 

the tissues from control and STZ-diabetic rat bladders were measured and 

compared. 

 

3.2.2 TRPV1 antagonists 

 

To check the selectivity of capsaicin for the TRPV1 in the rat bladder 

strips, the TRPV1 antagonists, capsazepine and ruthenium red, were used. 

Capsazepine at the concentration of 10-5 M was added to the organ bath to 

expose the bladder strips to the antagonist. After incubation for 20 minutes, 

capsaicin was added cumulatively at the concentration of 10-10 M to 10-6 M to 

obtain the contractile responses in the presence of TRPV1 antagonist. Another 

TRPV1 antagonist, ruthenium red, was used at the concentration of 10-5 M. In 

addition, another TRPV1 antagonist SB-366791, was used at the concentration 

of 10-6 M. The solvent (vehicle) was added to organ bath with an equal volume 
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as those used for the antagonists. The same experiments were performed in 

STZ-diabetic rat bladder strips. 

 

3.2.3 TRPV4 agonist 

 

 To study another TRPV subfamily member, the TRPV4 agonist 4α-PDD 

was used to activate the TRPV4 channel. 4α-PDD was added to the organ bath 

non-cumulatively. Concentrations of 10-8 M to 10-5 M of 4α-PDD were used 

throughout the study.  

 

3.2.4 TRPV4 antagonist 

  

 The TRPV4 antagonist citral was used to study the inhibitory effect on 

the TRPV4 channel activation. Before adding the antagonist, the tissues were 

contracted with potassium chloride (KCl) (3x10-2 M). When the contractile 

response of potassium chloride reached the plateau, citral was added to the 

organ bath in cumulative manner at the concentrations of 10-8 M to 10-4 M. 

 

3.2.5 TRPA1 agonist 

 

The TRPA1 agonist, allyl isothiocyanate, was used to determine the 

function of another TRP channel in diabetes. The concentration range of allyl 

isothiocyanate used in the present study was between 10-5 M to 10-4 M. This 

agonist was added in non-cumulative manner. This procedure was done 

according to the study of Andrede et al. (2006). They found that when non- 

curves were plotted, a marked increase in the efficacies in comparison to 

cumulative concentration-response was observed. This is evidenced by the 

observations that the contractions of rat urinary bladder to capsaicin, allyl 

isothiocyanate, and cinnamaldehyde was greater in non-cumulative curves that 

those of cumulative ones.  After the first dose of drug was applied, the organ 

bath was washed out. The tissues were equilibrated for 30 minutes before 

application of the next concentration. 
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3.2.6 TRPM8 agonists 

 

 The TRPM8 channel is activated by cooling agents. Thus, the TRPM8 

agonist, menthol was used. Menthol produced relaxations in the urinary 

bladder. The relaxant responses to menthol of control and STZ-induced diabetic 

bladder were studied. To study relaxant responses, tissues were pre-contracted 

with carbachol (10-6 M). When the contractile responses to carbachol reached 

the plateau, cumulative concentrations of menthol were applied. The 

concentration range of menthol used in the present study was between 10-4 M 

and 10-3 M. 

Another TRPM8 agonist, icilin was used to study its potency compared to 

menthol. The effect of icilin on the relaxant responses of control and STZ-

induced diabetic rat bladder were studied using the same protocol as menthol. 

 

3.2.7 Muscarinic receptor agonist 

 

 To determine the effect of muscarinic receptor agonist on the contraction 

of bladder smooth muscle, carbamylcholine chloride (carbachol) was used. The 

cumulative concentration response curve was conducted on the control and              

STZ-induced diabetic rat bladder smooth muscle. The concentration ranges of 

carbachol were between 10-10 M and 10-6 M. 

 

3.2.8 Substance P 

 

 To determine if the diabetic state had a direct effect on smooth muscle, 

substance P was studied. Substance P at the concentrations of 10-10 M to 10-7 

M was added cumulatively to the organ bath. The contractile responses to 

substance P of control and STZ-induced diabetic rat bladder were then 

compared. 
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3.2.9 Neurokinin alpha 

 

 The neurokinin receptor agonist, neurokinin alpha was used to study 

whether diabetes had effects on the receptor in smooth muscle isolated from 

control and diabetic rat urinary bladder. The concentration range of neurokinin 

alpha used in the present study was between 10-9 M to 10-7 M.  Neurokinin 

alpha was added in non-cumulative manner with washing out after each 

application. 

 

3.2.10 NK1-receptor agonist 

 

 The NK1-receptor agonist, bombesin was used to study whether 

diabetes had effects on smooth muscle or on the nerve terminal. The 

concentration range of bombesin used in the present study was between 10-9 M 

to 10-6 M. Bombesin was added in non-cumulative manner with washing out 

after each application. 

 

3.2.11 Substance P antagonist 

 

The substance P antagonist spantide was used to study the inhibitory 

effect of substance P on the responses to capsaicin. Spantide at the 

concentration of 10-5 M was added to the organ bath to expose the bladder 

strips to the antagonist. After incubation for 20 minutes, capsaicin was added 

cumulatively at the concentration of 10-10 M to 10-6 M to obtain the contractile 

responses in the presence of substance P antagonist. 

 

3.2.12 Neurokinin 1 and 2 antagonists 

 

 The combination of neurokinin 1 and 2 antagonist respectively was used 

to study the inhibitory effect of neurokinins on the responses to capsaicin. The 

combination of GR-205171A and SB-207164A at the concentration of 10-7 M 

each was added to the organ bath to expose bladder strips to the antagonists. 
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After incubation for 20 minutes, capsaicin was added cumulatively at 

concentration of 10-7 M to 10-5 M to obtain the contractile responses in the 

presence of the combination of neurokinin 1 and 2 antagonist. The experiment 

was conducted in parallel with the absence of antagonists by using vehicles. 

 

3.2.13 Normalization of data 

 

For the motility studies, the values were expressed as gram of 

contraction or relaxation versus gram of tissue wet weight, measured at the end 

of each experiment. The wet weight of strips can vary and this could influence 

the level of contraction or relaxation. Bladders from STZ-treated animals tended 

to be heavier. Tissue wet weight thus was taken into account. The initial tension 

at the baseline was subtracted and the amplitude of contraction or relaxation 

after drug application was calculated. This difference was then divided by the 

tissue wet weight to obtain the amplitude contraction (g)/wet weight (g). Figure 

3.1 compares data normalized in this way with untransformed data. The trend of 

the results was similar between normal (no wet weight normalization) and 

normalized (g tension divided by tissue wet weight) data (Figure 3.1).Therefore, 

although it was logical to make this transformation, the impact on the data was 

small in most experiments. 
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 Figure 3.1 Contractile responses of bladder to TRPV1 agonist capsaicin 

at the concentration of 10-10 M - 10-6 M from age-matched controls and 36 hours 

STZ-induced diabetic rats. A: normalized (g tension divided by tissue wet 

weight) and B: the same data unnormalized (no wet weight normalization).  
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3.3 Results 

 

3.3.1 Characterization of STZ-induced diabetes model in rat 

 

3.3.1.1 The effect of STZ-induced diabetes on blood glucose level 

 

8 weeks after induction of diabetes by STZ in rats, the blood glucose was 

elevated four-folds compared to the controls (treated with citrate buffer) 

confirming a diabetic state (Figure 3.2). 
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Figure 3.2 Blood glucose level of age-matched controls and STZ-

induced diabetic rats, 8 weeks after the administration of STZ. Values represent 

the mean ± S.E.M for 6 animals. *P<0.05 is significantly different from age-

matched controls (Student’s t test for unpaired observations). 
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3.3.1.2 The effect of STZ-induced diabetes on body weight 

 

In contrast, body weight of rats treated with STZ was stable while it was 

increased in the controls which were treated with citrate buffer. These suggest 

that in diabetes, there is no weight gain while the control gained weight over 

time (Figure 3.3). 
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Figure 3.3 Body weight of age-matched controls and STZ-induced 

diabetic rats, 8 weeks after the administration of STZ. Values represent the 

mean ± S.E.M for 6 animals. *P<0.05 is significantly different from age-matched 

controls (Student’s t test for unpaired observations). 
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3.3.2 Motility studies 

 

The longitudinal muscle of rat urinary bladder taken from both control 

and diabetic rats exhibited spontaneous activity (Figure 3.4). This spontaneous 

activity was greater in the bladder tissues from diabetic rats, characterized by 

the higher amplitudes of the responses than the controls. 

A similar finding has been mentioned by Forrest and Parsons (2003) that 

spontaneous activity was observed in both control and diabetic colon tissues, 

but this activity was almost doubled in colon tissues taken from diabetic rats. In 

addition, Talubmook et al. (2003) reported that spontaneous activity was 

significantly greater in ileum tissues from diabetic animals than controls. The 

significant increase in spontaneous activity in diabetic tissues may reflect the 

hyperactivity of bladder in diseased state. 
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A) 

 

 

 

 

B) 

 

 

 

 

Figure 3.4 Original traces illustrating contractile responses of bladder to 

TRPV1 agonist capsaicin at the concentration of 10-10 M - 10-6 M from age-

matched controls (A) and STZ-induced diabetic rats (B), 8 weeks after the 

administration of STZ.  
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3.3.2.1 TRPV1 agonist capsaicin 

 

 It has been previously reported that capsaicin produced rapidly 

developing phasic contractions within 1 minute in a concentration-dependent 

manner (10-8 – 10-6 M) in rat urinary bladder muscle strips (Saitoh et al., 2007). 

It is also mentioned that EC50 for capsaicin in rat is 10-8 – 10-6 M (Caterina et al., 

1997). The present study decided to use capsaicin at the concentration range of 

10-10 to 3 x 10-6 M to see the whole effect of this agonist on bladder tissues. 

Capsaicin at the concentrations of 10-10 M to 3 x 10-6 M produced contractile 

response in control and STZ-induced diabetic rat bladder strips in a 

concentration-dependent manner. The responses to capsaicin were significantly 

reduced in the STZ-induced diabetic rat bladder strips compared to the controls 

(Figure 3.5).  
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 Figure 3.5 Contractile responses of bladder to TRPV1 agonist capsaicin 

at the concentration of 10-10 M - 10-6 M from age-matched controls and STZ-

induced diabetic rats, 8 weeks after the administration of STZ. Values represent 

the mean±S.E.M for 6 animals. Means are different between age-matched 

controls and STZ-induced diabetic rats (P<0.05, two-way ANOVA). 
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3.3.2.2 TRPV1 antagonist capsazepine 

 

In order to determine whether the contractile responses in rat urinary 

bladder strips were due to the activation of TRPV1 by capsaicin, TRPV1 

antagonists were used. Caterina et al. (1997) reported that IC50 for capsazepine 

in rodent is 10-7 – 10-6 M. To make sure that the concentration of antagonist is 

sufficient to block the response due to the agonist, capsazepine at the 

concentration of 10-5 M was selected for use in the present study. From the 

previous study, capsazepine (3 – 30 µM) produced a concentration-dependent 

rightward shift of the curve to capsaicin in the rat bladder (Maggi et al., 1993). 

In the present study, the contractile responses to capsaicin at the 

concentrations of 10-10 M to 10-6 M in the presence of capsazepine (10-5 M) were 

less than the responses to capsaicin in absence of capsazepine. Responses to 

capsaicin in STZ-induced diabetic rat bladder were very small (Figure 3.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 71 

 

 

 

 

 

 

 

-10

-5

0

5

10

15

20

25

30

35

40

45

-10 -9 -8 -7 -6

Log [capsaicin], M

C
o

n
tr

a
c
ti
o

n
 (

g
/g

)

control +

CZP

diabetic +

CZP

control +

Ethanol

diabetic +

Ethanol

 

Figure 3.6 Contractile responses of bladder to TRPV1 agonist capsaicin 

at the concentration of 10-10 M - 10-6 M in the presence and absence of 

capsazepine (10-5 M) from age-matched controls and STZ-induced diabetic 

rats, 8 weeks after the administration of STZ. Values represent the 

mean±S.E.M for 6 animals.  
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3.3.2.3 TRPV1 antagonist ruthenium red 

 

 Ruthenium red (10 – 30 µM) produces a non-competitive type of 

antagonism of TRPV1, characterized by marked depression of the maximal 

attainable tension (Maggi et al., 1993). It is reported that IC50 for ruthenium red 

in the rat tissues is 10-7 M (Garcia-Martinez et al., 2000). In addition, ruthenium 

red (30 µM) significantly reduced capsaicin induced contraction in rat isolated 

urinary bladder (Patacchini et al., 2005). 

The contractile responses to capsaicin at the concentrations of 10-10 M to 

10-6 M in the presence of ruthenium red (10-5 M) were less compared to the 

responses to capsaicin in absence of ruthenium red. This pattern was found in 

both control and STZ-induced diabetic rat bladder strips. However, the 

responses to capsaicin in presence of ruthenium red cannot reach the same 

responses as those of the absence of ruthenium red (Figure 3.7).  
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Figure 3.7 Contractile responses of bladder to TRPV1 agonist capsaicin 

at the concentration of 10-10 M - 10-6 M in the presence and absence of 

ruthenium red (10-5 M) from age-matched controls and STZ-induced diabetic 

rats, 8 weeks after the administration of STZ. Values represent the 

mean±S.E.M for 6 animals.  
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3.3.2.4 TRPV1 antagonist SB-366791 

 

The selective TRPV1 receptor antagonist SB-366791, (10 µM) blocks 

capsaicin-induced contraction in rat urinary bladder (Andrade et al., 2006). The 

contractile response curve (percentage of twitch contraction elicited by electrical 

field stimulation) to capsaicin in the presence of SB-366791 (10 µM) was shifted 

rightward (Patacchini et al., 2005). In addition, IC50 for SB-366791 in human and 

rat is 10-9 M (Patwardhan et al., 2006). 

The contractile responses to capsaicin at the concentrations of 10-10 M to 

10-6 M in the presence of SB-366791 (10-6 M) were less compared to the 

responses to capsaicin in absence of SB-366791 (Figure 3.8).  
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 Figure 3.8 Contractile responses of bladder to TRPV1 agonist capsaicin 

at the concentration of 10-10 M - 10-6 M in the presence and absence of SB-

366791 (10-6 M) from age-matched controls and STZ-induced diabetic rats, 8 

weeks after the administration of STZ. Values represent the mean±S.E.M for 6 

animals.  
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3.3.2.5 TRPV4 agonist 4--PDD 

 

Phorbol esters, like 4-α-PDD, bind to TRPV4 in a very specific and 

membrane delimited manner (Vriens et al., 2005; Watanabe et al., 2002). In 

addition, it is reported that EC50 for 4-α-PDD in mouse is 10-6 M (Watanabe et 

al., 2002). 

In a preliminary study, the non-cumulative application of the TRPV4 

agonist 4-α-PDD at the concentration of 10-8 M to 10-6 M to organ bath caused 

very small contractions in rat bladder strips. A high concentration of 4-α-PDD 

(10-5 M) produced clear contractile responses in control and STZ-induced 

diabetic rat bladder strips. The responses to 4-α-PDD at this concentration were 

significantly reduced in the STZ-induced diabetic rat bladder strips compared to 

the controls (Figure 3.9).  
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Figure 3.9 Contractile responses of bladder to TRPV4 agonist 4-α-PDD 

at the concentration of 10-5 M from age-matched controls and STZ-induced 

diabetic rats, 8 weeks after the administration of STZ. Values represent the 

mean±S.E.M for 6 animals. *P<0.05 is significantly different from age-matched 

controls (Student’s t test for unpaired observations). 
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3.3.2.6 TRPV4 antagonist citral 

 

Citral from lemon grass oil, a compound commonly used to repel insects, 

inhibits TRPV4 activity with IC50 about 32 µM (Stotz et al., 2008). However, 

citral was found to both activate and inhibit TRP channel function (Stotz et al., 

2008). Therefore preliminary experiments were performed using potassium 

chloride induced contractions to assess the specificity of citral action in the 

bladder. 

After contraction by potassium chloride (KCl), citral at the concentrations 

of 10-8 M to 10-4 M was added to the organ bath. Citral produced relaxant 

responses in control rat bladder strips, suggesting that it inhibits voltage gated 

calcium channel activity. The relaxant responses to citral in diabetic rat bladder 

strips were significantly reduced or abolished in comparison to those of control 

tissues (Figure 3.10). These non-specific effects of citral suggest that it is not 

suitable to use as a TRPV4 antagonist in this preparation. 
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Figure 3.10 Effects of citral on control and diabetic rat bladder 

preparations. Values represent the mean±S.E.M for 6 animals. Means are 

different between age-matched controls and STZ-induced diabetic rats (P<0.05, 

two-way ANOVA). 
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3.3.2.7 TRPA1 agonist allyl isothiocyanate 

 

Activation of TRPA1 with allyl isothiocyanate caused a graded 

contraction of the rat urinary bladder in vitro. Addition of allyl isothiocyanate 

(0.001 – 3000 µM) to the bath solution caused a concentration-dependent 

contraction of rat urinary bladder. When the non-cumulative concentration-

response curves were plotted, a marked increase in the efficacies of allyl 

isothiocyanate was observed (Andrade et al., 2006). For this reason allyl 

isothiocyanate was applied non-cumulatively. 

The non-cumulative application of Allyl isothiocyanate at the 

concentrations of 10-5 M to 10-4 M to organ bath produced contractile responses 

in control and STZ-induced diabetic rat bladder strips in a concentration-

dependent manner. The responses to allyl isothiocyanate were significantly 

reduced in the STZ-induced diabetic rat bladder strips compared to the controls 

at 3x10-5 M to 10-4 M except 10-5 M (Figure 3.11). 
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Figure 3.11 Contractile responses of bladder to TRPA1 agonist allyl 

isothiocyanate at the concentration of 10-5 M - 10-4 M from age-matched 

controls and STZ-induced diabetic rats, 8 weeks after the administration of STZ. 

Values represent the mean±S.E.M for 6 animals. Means are different between 

age-matched controls and STZ-induced diabetic rats (P<0.05, two-way 

ANOVA). 
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3.3.2.8 TRPM8 Agonist menthol 

 

TRPM8 is thought to be activated by cooling agents. Menthol produces 

sensation of cooling and this is associated with the activation of TRPM8. It is 

reported that EC50 for menthol in Xenopus oocyte is 196 µM (Sherkheli et al., 

2010). The contractile response of detrusor strips in organ bath to 0.001 mM 

carbachol was inhibited by menthol in a concentration-dependent manner. At 

0.1, 0.3 and 1 mM, menthol inhibited carbachol-induced contraction by 10.7%, 

36.7% and 97.3%, respectively (Nomoto et al., 2008). After pre-contraction with 

carbachol, menthol at the concentrations of 10-4 M to 10-3 M was added when 

the contractile responses to carbachol reached a plateau. Menthol produced 

relaxant responses in control and diabetic rat bladder strips. However, the 

relaxations were obtained from adding the high concentrations of menthol (10-4 

M to 10-3 M). When the relaxant responses between control and diabetic rat 

bladder strips were compared, there was no significant difference (Figure 3.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 81 

 

 

 

 

Figure 3.12 Relaxant responses of bladder to TRPM8 agonist menthol at 

the concentration of 10-4 M and 10-3 M from age-matched controls and STZ-

induced diabetic rats, 8 weeks after the administration of STZ. Values represent 

the mean±S.E.M for 6 animals. Means are not different between age-matched 

controls and STZ-induced diabetic rats (Student’s t test for unpaired 

observations). 
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3.3.2.9 TRPM8 agonist icilin 

 

Another TRPM8 activator is icilin, which is a more potent agonist than 

menthol, and may have more specific activity on TRPM8. This was used to 

provide further evidence of functional TRPM8 channels in bladder.  It is reported 

that EC50 for icilin on TRPM8 channels expressed in Xenopus oocyte is 7 µM 

(Sherkheli et al., 2010). 

After pre-contraction with carbachol, icilin at the concentrations of 10-6 M 

to 10-5 M were added when the contractile responses to carbachol reached a 

plateau. Icilin produced relaxant responses which were small and variable but 

greater in diabetic than control tissues. However, the relaxations were obtained 

from adding the high concentrations of icilin (10-6 M to 10-5 M). When the 

relaxant responses between control and diabetic rat bladder strips were 

compared, there was no significant difference probably because of the 

variability (Figure 3.13). 
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Figure 3.13 Relaxant responses of bladder to TRPM8 agonist icilin at the 

concentration of 10-4 M and 10-3 M from age-matched controls and STZ-induced 

diabetic rats, 8 weeks after the administration of STZ. Values represent the 

mean±S.E.M for 6 animals. Means are not different between age-matched 

controls and STZ-induced diabetic rats (Student’s t test for unpaired 

observations). 
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3.3.2.10 Muscarinic receptor agonist carbachol 

 

It has been reported that carbachol (10-9 M - 10-5 M) produced 

concentration-related contractile responses of ileum (Talubmook et al., 2003). In 

addition, carbachol induced contraction in isolated bladder tissues taken from 

control and diabetic rats (Stevens et al., 2006). 

In the present study, carbachol at the concentrations of 10-8 M to 10-4 M 

produced the contractile responses in control and STZ-induced diabetic rat 

bladder strips in a concentration-dependent manner. However, no significant 

difference in the responses to carbachol of control and STZ-induced diabetic rat 

bladder strips was found (Figure 3.14). 

 

 

0

20

40

60

80

100

120

140

160

-8 -7 -6 -5 -4

Log [carbachol], M

C
o

n
tr

a
c
ti
o

n
 (

g
/g

)

control

STZ

 

Figure 3.14 Contractile responses of bladder to muscarinic receptor 

agonist carbachol at the concentration of 10-8 M and 10-4 M from age-matched 

controls and STZ-induced diabetic rats, 8 weeks after the administration of STZ. 

Values represent the mean±S.E.M for 6 animals. Means are not different 

between age-matched controls and STZ-induced diabetic rats (P<0.05, two-way 

ANOVA). 
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3.3.2.11 Substance P 

 

 Substance P is a neuropeptide that can be released from presynaptic 

terminals. It is reported that a low concentration of substance P (30 nM) 

produced a rapid contraction which faded to baseline within 10 minutes in 

isolated rat urinary bladder (Maggi et al., 1991). 

In the present study, it was found that substance P at the concentration 

of 10-10 M to 10-7 M produced contractile responses in control and diabetic rat 

bladder strips. The contraction was concentration-dependent. The contractile 

responses were similar between control and diabetic strips without any 

significant difference (Figure 3.15). 
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Figure 3.15 Contractile responses of bladder to substance P at the 

concentration of 10-10 M and 10-7 M from age-matched controls and STZ-

induced diabetic rats, 8 weeks after the administration of STZ. Values represent 

the mean±S.E.M for 6 animals. Means are not different between age-matched 

controls and STZ-induced diabetic rats (P<0.05, two-way ANOVA). 
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3.3.2.12 Neurokinin receptor agonist neurokinin alpha 

 

It is reported that a low concentration of neurokinin A (10 nM) produced a 

slow developing contraction which was still evident at 10 minutes in isolated rat 

urinary bladder (Maggi et al., 1991). 

Neurokinin alpha at the concentration of 10-9 M to 10-7 M produced 

contractile responses in control and diabetic rat bladder strips. The contraction 

was concentration-dependent. The contractile responses to neurokinin alpha in 

diabetic tissues were less than those of the controls, but no significant 

difference was found (Figure 3.16). 
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Figure 3.16 Contractile responses of bladder to neurokinin alpha at the 

concentration of 10-9 M and 10-7 M from age-matched controls and STZ-induced 

diabetic rats, 8 weeks after the administration of STZ. Values represent the 

mean±S.E.M for 6 animals. Means are not different between age-matched 

controls and STZ-induced diabetic rats (P<0.05, two-way ANOVA). 
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3.3.2.13 Bombesin 

 

Bombesin (10 nM) produced a tonic contraction in isolated rat urinary 

bladder similar to that induced by neurokinin A (Maggi et al., 1991). In addition, 

rat bladder body and bladder neck contracted to bioactive peptide bombesin 

(Watt and Cohen, 1991). 

When non-cumulative applications of bombesin at the concentration of 

10-9 M to 10-6 M were performed, bombesin produced contractile responses in 

control and diabetic rat bladder strips, and contractions were concentration-

dependent. The contractile responses to bombesin in diabetic tissues tended to 

be less than those of the controls, but no significant difference was found 

(Figure 3.17). 
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Figure 3.17 Contractile responses of bladder to bombesin at the 

concentration of 10-10 M and 10-6 M from age-matched controls and STZ-

induced diabetic rats, 8 weeks after the administration of STZ. Values represent 

the mean±S.E.M for 6 animals. Means are not different between age-matched 

controls and STZ-induced diabetic rats (P<0.05, two-way ANOVA). 
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3.3.2.14 Substance P antagonist spantide 

 

Spantide is one of the most potent tachykinin antagonists (Yanagisawa 

and Otsuka, 1990). Spantide (3 µM) selectively antagonized substance P-

induced contraction. Spantide (3 µM) also significantly reduced (43% inhibition) 

the peak response to 1 µM capsaicin in isolated rat urinary bladder while 

leaving the late response unaffected (Maggi et al., 1991). 

The contractile responses to capsaicin at the concentrations of 10-10 M to 

10-6 M in the presence of spantide (10-5 M) were similar to the responses to 

capsaicin in absence of spantide in both control and diabetic tissues. No 

significant difference was found. This suggests that spantide can not inhibit the 

responses to capsaicin (Figure 3.18). 
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 Figure 3.18 Contractile responses of bladder to TRPV1 agonist 

capsaicin at the concentration of 10-10 M - 10-6 M in the presence and absence 

of substance P antagonist spantide (10-5 M) from age-matched controls and 

STZ-induced diabetic rats, 8 weeks after the administration of STZ. Values 

represent the mean±S.E.M for 6 animals. 
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3.3.2.15 Neurokinin 1 and 2 antagonists 

 

Since GR-205171A and SB-207164A alone produced very small 

inhibitory effect on the contractile responses of rat urinary bladder tissues to 

capsaicin, the combination of these neurokinin antagonists was used. 

The contractile responses to capsaicin at the concentrations of 10-7 M to 

3x10-5 M in the presence of the combination of GR-205171A and SB-207164A 

at the concentration of 10-7 M were less than those in the absence of these 

antagonists. It is clear that the combination between NK1 and NK2 antagonists 

inhibited the contractile responses to capsaicin in rat bladder strips (Figure 

3.19). 
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Figure 3.19 Contractile responses of bladder to TRPV1 agonist 

capsaicin at the concentration of 10-10 M - 10-6 M in the presence and absence 

of combination of NK1 and NK2 antagonist (10-7 M) from age-matched controls 

rats. Values represent the mean±S.E.M for 6 animals. Note that responses to 

capsaicin in this group of experiments were smaller than normal. Means are 

different between age-matched controls and STZ-induced diabetic rats (P<0.05, 

two-way ANOVA). 
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3.4 Discussion 

 

 In the present study, the contractile responses to capsaicin were 

investigated in muscle strips isolated from the control and STZ-induced diabetic 

rat urinary bladder. The result showed that capsaicin produced contraction in 

control rat bladder strips in the concentration-dependent manner. These 

findings are similar to those observed in the previous studies (Saitoh et al., 

2007). It is found that capsaicin and anandamide produced concentration-

dependent contractions of the muscle strips isolated from the rat urinary 

bladder. Moreover, Saitoh et al. (2007) proposed that capsaicin produces 

muscle contractions by stimulating the TRPV1 receptor, followed by release of 

neuropeptides that can activate tachykinin NK1 and/or NK2 receptors in the 

urinary bladder. This finding explains the possible contractile mechanism in 

normal rat urinary bladder mediated by capsaicin. 

In addition, the responses to capsaicin were significantly reduced in the 

STZ-induced diabetic rat bladder strips compared to the controls in the present 

study. The result obtained from the present study is similar to Pinna et al. 

(1994) who found that the bladder response to capsaicin gradually decreased 

with the progression of streptozotocin-induced diabetes in rat. In rat urinary 

bladder, diabetes provokes impairment of capsaicin-sensitive sensory fibers but 

not of the cholinergic system even at early stage (4 week) of the disease (Pinna 

et al., 1994).  Although there is no report involving the effect of diabetes on 

TRPV1 function in rat urinary bladder directly, our results are consistent with 

those of Facer et al. (2007) who found that TRPV1 levels are reduced in skin 

biopsies from patients with diabetic neuropathy. In additions, Rosta et al. (2007) 

reported that capsaicin reduced neurogenic sensory vasodilation, due to 

impairment of meningeal TRPV1 channel, in STZ-treated rats. From the present 

study, it could be inferred that TRPV1 receptor reduced during the diabetic state 

and consequently decreased the neurotransmitter released. The possible 

mechanism to explain why and where diabetes affect the function of TRPV1 

channel in rat bladder needs further study of the neurotransmitter release 

mediated by capsaicin in STZ-induced diabetic tissue. 
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In the previous studies, there are reports suggesting that capsazepine 

and ruthenium red are the antagonists of TRPV1 channels receptors (Maggi et 

al., 1989; Chahl, 1989; Maggi et al., 1993; Nocerino et al., 2002). To check if 

the contractile response found in rat bladder is due to TRPV1 activation, TRPV1 

antagonists, capsazepine and ruthenium red, were used in the present study.  

The contractile responses to capsaicin in the presence of capsazepine 

were less than the responses to capsaicin in absence of capsazepine in both 

control and STZ-induced diabetic rat bladder strips. Interestingly, the contractile 

responses to capsaicin the presence of capsazepine were increased with the 

high concentration of capsaicin. The change was not statistically significant. 

This finding demonstrates the competitive antagonism of capsazepine on the 

response to capsaicin. The competitively antagonistic responses in rat urinary 

bladder are similar to those found in the study of Alexander et al. (2007) who 

mentioned that blockade of TRPV1 by capsazepine is competitive. In the rat 

bladder, capsazepine (3-30 µM) produced a concentration-dependent rightward 

shift of the curve to capsaicin without any depression of the maximal response 

to the agonist (Maggi et al., 1993). Similar findings were obtained in the rat 

isolated vas deferens in which capsazepine (10 µM) produced a rightward shift 

of the curve to capsaicin (Maggi et al., 1993). The antagonism of the action of 

capsaicin by capsazepine is entirely consistent with the proposed interaction of 

this substance with a vanilloid (TRPV1) receptor located on primary afferents 

(Maggi et al., 1993).  

Like capsazepine, the contractile responses to capsaicin in the presence 

of ruthenium red were less compared to the responses to capsaicin in absence 

of ruthenium red in both control and STZ-induced diabetic rat bladder strips. 

However, the responses to capsaicin in presence of ruthenium red did not reach 

the same maximum as those in the absence of ruthenium red. Ruthenium red 

totally inhibited the contractile responses to capsaicin. This shows the non-

competitive antagonism of ruthenium red. This result is similar to those 

observed by Maggi et al. (1989) who found that ruthenium red (10-100 µM) 

prevented the motor response of the urinary bladder to topical administration of 

capsaicin. Maggi et al. (1989) proposed that ruthenium red acts quite selectively 
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as a capsaicin antagonist preventing both reflex and efferent responses 

activated by peripherally administered capsaicin. In addition, Alexander et al. 

(2007) suggested that blockade of TRPV1 by capsazepine, 6-iodo-

nordihydrocapsaicin, BCTC, JYL1421, and SB366791 is competitive. All other 

antagonists act by non-competitive antagonism.  

However, in the guinea-pig ileum, ruthenium red abolished responses to 

capsaicin. Ruthenium red binds irreversibly to the calcium channel part of the 

complex but reversibly to some other site which prevents the action or binding 

of capsaicin at its specific receptor (Chahl, 1982). It is clear that ruthenium red 

is not a selective antagonist for TRPV1. 

In this study, the contractile responses to capsaicin in the presence of 

SB-366791 were less compared to the responses to capsaicin in absence of 

SB-366791 in both control and STZ-induced diabetic rat bladder strips. These 

results reflect the antagonism of SB-366791 on the contractile responses to 

capsaicin in the muscle strips isolated from rat urinary bladders. The study on 

the effect of SB-366791 on capsaicin-evoked or electrical stimulation-induced 

release of the sensory neuropeptide substance P from isolated rat tracheae 

suggested that SB-366791 is a more selective and potent in vitro TRPV1 

receptor antagonist than capsazepine in the rat (Varga et al., 2005). In 

additions, in cultured sensory neurons, SB-366791 is a TRPV1 antagonist with 

high potency and an improved selectivity profile in comparisons to other 

commonly used TRPV1 antagonists (Gunthorpe et al., 2004). In the present, it 

is found that SB-366791 is a selective antagonist for TRPV1. 

A high concentration of 4α-PDD (10-5 M) produced clear contractile 

responses in control and STZ-induced diabetic rat bladder strips. This result 

corresponds to the study of Birder et al. (2007). Birder et al. (2007) found that 

functional TRPV4 protein is expressed in urothelium of renal pelvis, ureters, 

urinary bladder, and urethra. Exposure of cultured rat urothelial cells from the 

urinary bladder to the TRPV4-selective agonist 4α-PDD promoted Ca2+ influx, 

evoked ATP release, and augmented ATP release evoked by hypo-osmolarity. 

Activation of urothelial TRPV4 by 4α-PDD and release of mediators such as 

ATP trigger a novel neural mechanism that regulates the late phase of detrusor 



 

 93 

muscle contraction after micturition. However, 4α-PDD (1-100 µM) did not alter 

the contractility to electrical stimulation of excised bladder strips (Birder et al., 

2007) which is consistent with the contractile responses to 4α-PDD in high 

concentration of the present study. In additions, Thorneloe et al. (2008) showed 

the weak ability of 4α-PDD to evoke TRPV4 currents in TRPV4 HEK cells and 

4α-PDD demonstrated a poor ability to contract mouse bladder halves eliciting 

only small contractile responses at 10 and 100 µM. This observation also 

support the result obtained in the present study. 

In the present study, the responses to 4α-PDD at this concentration    

(10-5 M) were significantly reduced in the STZ-induced diabetic rat bladder strips 

compared to the controls. It is possible that TRPV4 protein is less expressed in 

diabetic urinary bladder in comparison to those of normal bladder. Although 

there is no report involving the effect of diabetic state on TRPV4 channel 

function, it is known that long-term hyperglycaemia from diabetes lowers the 

function of nerve terminals in many organs seen in diabetic neuropathy. 

Activation of TRPV4 in urothelial cell by 4α-PDD and ATP release triggers a 

neural mechanism regulate the detrusor muscle contraction (Birder et al., 2007). 

Thus, it is possible that the diabetic state may obstruct mediator release or 

other neural mechanisms and consequently disturb the function of TRPV4 

channel in urothelium. 

In normal rat urinary bladder, it was found that activation of TRPA1 with 

allyl isothiocyanate or cinnamaldehyde cause a graded contraction of the rat 

urinary bladder in vitro (Andrade et al., 2006). This finding is confirmed by the 

result from the present study which was found that allyl isothiocyanate produced 

the contractile responses in control and STZ-induced diabetic rat bladder strips 

in a concentration-dependent manner. For the contractile mechanism mediated 

by TRPA1 agonists, Andrade et al. (2006) mentioned that TRPA1 agonists 

contract rat urinary bladder through sensory fiber stimulation, depending on 

extracellular Ca2+ influx and release of tachykinins and cyclooxygenase 

metabolites, probably prostaglandin E2. TRPA1 is expressed in sensory nerves 

that innervate the urinary bladder and mediates a contractile effect on bladder 

smooth muscle, due to release of tachykinins and cyclo-oxygenase metabolites. 
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The effect on smooth muscle contractility of agents capable of stimulating 

TRPA1 was comparable in potency to capsaicin, supporting the speculation that 

this channel may play a role in bladder function (Birder, 2007). 

 However, this study found that the responses to allyl isothiocyanate were 

significantly reduced in the STZ-induced diabetic rat bladder strips compared to 

the controls. This result demonstrates that diabetes had a negative effect on 

TRPA1 function in rat bladder, since TRPA1 is expressed in sensory nerves 

that innervate the urinary bladder and mediates a contractile effect on bladder 

smooth muscle. Diabetic state or long-term hyperglycaemia may destroy the 

nerve terminals or lead to a reduction in release of neurotransmitters. 

 There is a report suggesting that menthol is TRPM8 agonist (Thebault et 

al., 2005). In present study, responses to menthol in control and STZ-induced 

diabetic rat bladder strips were measured. Menthol produced the relaxant 

responses in control and diabetic rat bladder strips. The relaxations were 

obtained from high concentrations of menthol. However, it is interesting that the 

relaxant responses to menthol were greater in diabetic rat bladder strips in 

comparison to the controls. This demonstrates that diabetes may affect the 

function of TRPM8 in rat urinary bladder. TRPM8 is increased in nerve fibers of 

overactive and painful bladder (Mukerji et al., 2006). In addition, there is a 

report suggesting that intravesical installation of menthol facilitates the bladder 

cooling reflex in both the cat and human suggests that TRPM8 function may be 

involved in triggering the reflex. In the urinary bladder, TRPM8-positive 

immunoreactivity has been demonstrated within bladder nerves and urothelium 

(Birder, 2007). 

 In this study, there is a very small response of rat bladder strips to 

menthol. Potency of menthol expressed as EC50 is 4.1 ± 1.3 µM in HEK293 

cells (De Petrocellis et al., 2007). In the present study, menthol has relaxant 

effect on rat bladder strips and there is no significant difference between control 

and diabetic tissues. The relaxant effect occurs at mM concentrations, which 

suggests that menthol could act at other targets than the TRPM8 channel, for 

example menthol was shown to block voltage-gated calcium channels. 
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Icilin produced relaxant responses which were small and variable but 

greater in diabetic than control tissues, although, there is no significant 

difference, probably because of the variability. However, the relaxations were 

obtained from the high concentrations of icilin. The response to icilin in urinary 

bladder strip is less than those of menthol. This is probably because of the 

preparation technique of tissues. In this study, bladder strip preparations were 

used. As TRPM8 is expressed in bladder nerve and urothelium, the whole 

isolated intact bladder preparation should provide the obvious response to icilin 

or menthol in the rat urinary bladder. 

From the findings mentioned above, it is clear that there is a reduction in 

the responses to TRP channel agonists in STZ-induced diabetic rat bladder 

tissues. To explain the reasons behind the impairment of TRP channel function 

caused by the diabetic state, there are some possibilities. Firstly, it may due to 

the effect of STZ-induced diabetes on smooth muscle function. Muscarinic 

receptor agonist were therefore used. In the present study, carbachol produced 

contractile responses in control and STZ-induced diabetic rat bladder strips in a 

concentration-dependent manner. This finding is similar to those observed by 

Abdel-Hakim et al. (1981) in which carbachol was found to produce dose-

dependent increase of the basal tone of the rat bladder detrusor muscle and the 

maximal contraction produced by carbachol was about four times greater than 

that elicited by bombesin or substance P. The contraction in control and diabetic 

bladder tissue is similar without significant difference. This suggests that 

muscarinic receptors on smooth muscle are not affected by diabetes or 

hyperglcaemia. Thus, the contraction produced by muscarinic receptor agonist 

carbachol is the result of its effect on bladder smooth muscle directly. 

In the present study, it is assumed that the effect of STZ-induced 

diabetes may be at the level of the sensory endings. However, there may also 

be other sites of action. Previous studies have shown that TRPV1 is expressed 

not only by afferent nerves that form close contacts with bladder epithelial 

(urothelial) cells but also by the urothelial cells themselves (Birder et al., 2001). 

This leads to the possibility that the deleterious effect of STZ-induced diabetes 

may also be at the level of the urothelium. 
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Secondly, it may be due to the disturbances or alterations of postsynaptic 

receptors caused by STZ-induced diabetes. Therefore the exogenous 

neurotransmitters including substance P, Neurokinin alpha and bombesin that 

are thought to be released following TRPV1 activation, were added.  

In the present study, substance P produced the concentration-dependent 

contractions in control and diabetic rat bladder strips. This result is supported by 

previous studies (Uckert et al., 2002; Pinna et al., 1994). Uckert et al. (2002) 

found that endothelin and substance P elicited dose-dependent contractions of 

human bladder detrusor muscle.  

The contractile responses to substance P were similar between control 

and diabetic bladder strips without significant difference. This result 

demonstrates that the diabetic state did not have any effect on bladder smooth 

muscle cells. The result from the present study is consistent with those 

observed by Pinna et al. (1994). It was found that the bladder contractile 

response to exogenous substance P was similar in both control and STZ-

induced diabetic groups at all stage (1-26 weeks) studied and was proposed 

that diabetes had no effect on the sensitivity of smooth muscle cells to 

substance P. 

Neurokinin alpha produced concentration-dependent contraction in 

control and diabetic rat bladder strips. This finding is supported by the 

observations from the previous studies (Guiliani et al., 2001; Tramontana et al., 

2000; Maggi et al., 1991), which a low concentration of neurokinin A (10 nM) 

produced a slowly developing contraction in the rat isolated urinary bladder 

(Maggi et al., 1991). In isolated strips of the hamster urinary bladder the 

selective tachykinin NK2 receptor agonist [βAla8] NKA (4-10) induced a 

concentration-dependent contraction associated with significant release of 

prostaglandin E2 (Tramontana et al., 2000). In an electrical field stimulation 

study, stimulation by neurokinin A (10 nM) increased the amplitude of twitches 

and produced a concentration-dependent tonic contraction in the hamster 

isolated urinary bladder (Giuliani et al., 2001). 
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The contractile responses to neurokinin alpha in diabetic tissues were 

less than those of the controls, but no significant difference was found. This also 

supports the idea that diabetes had no effect on rat bladder smooth muscle. 

Bombesin is another neurotransmitter which is thought to be involved in 

synaptic transmission. This study showed that bombesin produced contractile 

responses in control and diabetic rat bladder strips and contractions were 

concentration-dependent. This result corresponds with previous studies (Watts 

and Cohen, 1991; Rouisii et al., 1991; Abdel-Hakim et al., 1981). Prostate, 

bladder body, and bladder neck tissues contracted to bombesin (Watts and 

Cohen, 1991). Guinea pig and rat urinary bladder, rat stomach, and guinea pig 

gall bladder responded to bombesin and related peptide with concentration-

dependent contractions (Rouisii et al., 1991). Bombesin was found to produce 

dose-dependent increases of the basal tone of the rat bladder detrusor muscle 

and the contractile effect of bombesin on the rat isolated urinary bladder is likely 

to be the result of a direct effect on the smooth muscle cell (Abdel-Hakim et al., 

1981). 

The contractile responses to bombesin in diabetic tissues were less than 

those of the controls, but no significant difference was found. This also support 

that diabetes had no effect on the sensitivity of bladder smooth muscle to NK1 

receptor agonist bombesin which is similar to those of substance P, although 

there is no supported study on the effect of bombesin on diabetic bladder 

smooth muscle. 

The contractile responses to capsaicin in the presence of spantide were 

similar to the responses to capsaicin in absence of spantide in both control and 

diabetic tissues without significant difference. This suggests that spantide can 

not inhibit the responses to capsaicin. This result is different from the 

observation by Maggi et al. (1991). They found that spantide (3 µM) selectively 

antagonized the SP-induced contraction. Spantide selectively reduced the peak 

response to capsaicin, while leaving the late response unaffected.  

The NK1 receptor antagonists GR205171 (100 M) and SDZ NKT 376       

(1 mM) also reduced the response to capsaicin, indicating that capsaicin acts 

via TRPV1 in series with NK1 (Hu et al., 2005). The results from the present 
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study showed that the combination between the two neurokinin receptor (NK1 

and NK2) antagonist GR205171A and SB207164A totally inhibits the contractile 

responses to TRPV1 agonist capsaicin. From this finding, it would be concluded 

that a neurokinin receptor agonist may be the neurotransmitter mediated by the 

activation of TRPV1 channel. 

 

 



 

 

Chapter 4 

 

The effect of streptozotocin-induced diabetes on TRP channels function in 

rat colon  

 

4.1 Introduction 

 

 Gastrointestinal alterations are reported to occur in diabetic patients. 

Patients with diabetes mellitus suffer from gastrointestinal abnormalities 

including gastroparesis, constipation and diarrhoea (Verne and Sninsky, 1998). 

The mechanisms underlying the gastrointestinal disorders in diabetes are 

believed to be due to autonomic neuropathy or hyperglycaemia (El-Sally, 2002). 

These are believed to be the consequence of altered innervation in the 

gastrointestinal tract in diabetes (Anjaneyulu and Ramarao, 2002).  

 In animal models of diabetes, it is reported that there were alterations in 

presynaptic and postsynaptic function in ileum taken from the eight week 

streptozotocin induced diabetic rats (Talubmook et al., 2003). In addition, 

abnormalities in the adrenergic, cholinergic and peptidergic innervations in the 

gastrointestinal tract of streptozotocin-treated rats are also reported. There is a 

report mentioned about the increase in basal spontaneous contraction in colon 

tissues taken from streptozotocin-induced diabetic rats (Forrest et al., 2003). 

Although the alterations due to diabetes are reported in colon, the mechanism 

underlying these circumstances has been little studied. The gastrointestinal 

absorption and secretion changes in diabetes are interesting and little known.  

Study of these aspects may help clarifying the pathophysiology of diabetes in 

colon.  Using the Ussing chamber technique, Forrest et al. (2006) found that 

short circuit current of colon is not altered in the streptozotocin diabetic rat while 

it is altered in ileal tissues, which was due to a change in cellular glucose 

transport. 

 Enteric nervous system in the gastrointestinal tract modulates function of 

secretory and absorptive processes through the excitatory submucosal 

secretory motor neurons. TRPV1-expressing nerves (capsaicin sensitive 
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sensory nerves) are important in modulating gastrointestinal function (Bomstein 

and Furness, 1988). Release of neuropeptide from these nerve terminals is 

reported to provide “local effector” role in the intestine (Takaki and Nakayama, 

1989). 

In the previous chapter, it was found that there was the reduction in the 

contractile responses to TRPV1 agonist capsaicin at the concentrations range 

from 10-8 M to 10-6 M in STZ-induced diabetic rat urinary bladder strips. In 

addition, the effect of STZ-induced diabetes on the function of TRP channels in 

another tissue was examined to see how widespread the effects were. 

Responses were thus examined in rat colon. 

 

4.2 Methods 

 

4.2.1 The effect of diabetes on TRP channel functions in rat colon 

 

To study whether diabetes had any effects on the functions of TRPV1 

channel in rat colon, the TRPV1 agonist capsaicin at concentrations of 10-5 M 

was used. Before adding the agonist, the tissues were contracted with 

muscarinic receptor agonist, carbachol   (10-6 M). When the contractile response 

of carbachol reached a plateau, capsaicin at a concentration of 10-5 M was 

added to the organ bath. Relaxant responses to capsaicin of the carbachol 

contracted tissues from control and STZ-diabetic rat bladders were compared. 

 

4.2.2 The effect of diabetes on ion secretory function in rat colon 

 

 A minimal 45 minutes equilibration period was established before 

addition of any drug to the tissues. During this time the basal Isc had stabilized. 

Only one concentration of carbachol, veratridine and capsaicin was used per 

tissue because drugs could not be washed out because of the design of the 

chambers. 

 Drugs were only added to the basolateral side of the colon tissue. The 

TRPV1 agonist capsaicin was added 30 minutes prior to the addition of 
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carbachol or veratridine. All experiments were performed in parallel with control 

and diabetic colonic tissues. 

 

4.3 Results 

 

4.3.1 Motility Studies 

 

4.3.2.1 TRPV1 agonist capsaicin 

 

The results showed that capsaicin at the concentration of 10-5 M 

produced relaxant responses in rat colon both from STZ-treated rats and age-

matched vehicle controls. The relaxant responses in the STZ-treated rats were 

significantly reduced in comparison to the controls (Figure 4.1). 
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 Figure 4.1 Relaxant responses of rat colon to TRPV1 agonist capsaicin 

at the concentration of 10-5 M from age-matched controls and STZ-induced 

diabetic rats, 8 weeks after the administration of STZ. Values represent the 

mean±S.E.M for 6 animals. *P<0.05 is significantly different from age-matched 

controls (Student’s t test for unpaired observations). 
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4.3.2 Secretory studies 

 

4.3.2.1 Ion secretory responses to capsaicin  

 

TRPV1 agonist capsaicin produced a reduction in ion secretion (short 

circuit current) both in control and diabetic proximal and distal colon tissues. 

This reduction can be found at concentrations of capsaicin at 10-6 M and 10-5 M. 

The reduction in ion secretory responses to capsaicin in diabetic rat colon 

tissues were greater than those of control tissues but did not reach statistical 

significance (Figure 4.2, 4.3). 

 

 

 

Figure 4.2 Original trace illustrating ion secretory responses of control 

rat proximal colon to TRPV1 agonist capsaicin (10-5 M). When capsaicin (10-5 M) 

was added to the basolateral side of tissues, it produced an initial transient 

increase in short circuit current, followed by a sustained reduction for 20 

minutes. 
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Figure 4.3 Ion secretory responses of proximal colon (A) and distal colon 

(B) to TRPV1 agonist capsaicin at the concentration of 10-6 M and 10-5 M from 

age-matched controls and STZ-induced diabetic rats, 8 weeks after the 

administration of STZ. Values represent the mean±S.E.M for 5 animals.  
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4.3.2.2 Ion secretory responses to carbachol 

 

Muscarinic receptor agonist carbachol produced an increase in ion 

secretion (short circuit current) both in control and diabetic colon tissues. The 

ion secretory responses to carbachol were similar between proximal and distal 

colon but the increase in ion secretory responses to carbachol in diabetic 

tissues were greater than those of control tissues. The responses were 

significantly different between control and diabetes in distal colon (Figure 4.4, 

4.5). 

 

 

 

Figure 4.4 Original trace illustrating ion secretory responses of control 

rat proximal colon to muscarinic receptor agonist carbachol (10-6 M). The 

administration of muscarinic receptor agonist carbachol (10-6 M) produced the 

sustained increase in short circuit current followed by a slightly reduction, 

indicating a biphasic responses. 
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Figure 4.5 Ion secretory responses of proximal colon and distal colon to 

muscarinic receptor agonist carbachol at the concentration of 10-6 M in age-

matched controls and STZ-induced diabetic rats, 8 weeks after the 

administration of STZ. Values represent the mean±S.E.M for 5 animals. 

*P<0.05 is significantly different from age-matched controls (Student’s t test for 

unpaired observations). 
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4.3.2.3 Ion secretory responses to veratridine 

 

The sodium channel activator veratridine produced an increase in ion 

secretion (short circuit current) both in control and diabetic colon tissues. This 

finding is similar to the ion secretory responses to muscarinic receptor agonist 

carbachol. The ion secretory responses to veratridine were similar between 

control and diabetic tissues in proximal colon. However, in the  distal colon, it 

was found that the ion secretory responses to carbachol in diabetic tissues 

tended to be greater than those of control tissues but were not statistically 

different (Figure 4.6, 4.7). 

 

 

 

Figure 4.6 Original trace illustrating ion secretory responses of STZ-

induced diabetic rat proximal colon to sodium channel activator veratridine    

(10-5 M). When veratridine (10-5 M) was added to the basolateral side of tissue 

preparations, it produced a sustained increase in short citcuit current and this 

increase was constant for 20 minutes. 
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Figure 4.7 Ion secretory responses of proximal colon and distal colon to 

veratridine at the concentration of 10-5 M from age-matched controls and STZ-

induced diabetic rats, 8 weeks after the administration of STZ. Values represent 

the mean±S.E.M for 5 animals. 
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4.4 Discussion 

 

In the present study, it was found that the responses to capsaicin in rat 

colon tissues were different from those observed in rat urinary bladder tissues. 

Capsaicin produced relaxant responses in colon tissues but it produced 

contractile responses in urinary bladder tissues. This may due to different 

neurotransmitters released in these tissues. The contractile responses in 

bladder may be caused by an excitatory neurotransmitter release, which is 

induced by capsaicin (Saitoh et al., 2007). In contrast, the relaxant responses in 

colon may be caused by an inhibitory neurotransmitter release induced by 

capsaicin. 

Although there were different responses to capsaicin between urinary 

bladder and colon tissues, significant reduction of the responses to capsaicin in 

both STZ-induced diabetic urinary bladder and colon were observed. This 

confirms that the reduction of the responses to capsaicin in STZ-induced 

diabetic tissues occurred not only in urinary bladder but also in colon. 

In previous studies, it was found that capsaicin was shown to induce 

contraction and or relaxation in different gastrointestinal preparations (Maggi, 

1990). Capsaicin induced relaxation followed by a contraction in stomach 

fundus strips of control rats on the resting tone. Only a contraction was evoked 

in diabetic state (Pinna et al., 1995). Capsaicin evoked relaxation in 

precontracted colonic longitudinal and circular muscle (Smith and Smid, 2005). 

These findings are similar to the results obtained from the present study in 

which capsaicin produced relaxations in colon tissues. 

However, it was found that the relaxations evoked by capsaicin in 

diabetic colonic tissues were less than those of control tissues. Smith and Smid 

(2005) found that capsaicin evoked relaxation was significantly diminished in 

the inflammatory bowel disease-affected colon. This result is similar to those of 

the diabetic colonic tissues, suggesting the deleterious effect of both diseases 

(inflammatory bowel disease and diabetes) on motility in colon. 

In this study, capsaicin produced the reduction in ion secretion (short 

circuit current) both in control and diabetic colon tissues. The reduction in ion 
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secretory responses to capsaicin in diabetic rat colon tissues was greater than 

those of control tissues. 

In a previous study, Yarrow et al. (1991) found that capsaicin caused an 

initial transient increase in short circuit current in the rat descending colon 

mucosa, followed by a more prolonged reduction that lasted for 20-30 minutes. 

Repeated applications of 3μM capsaicin caused desensitization of the secretory 

response. The antisecretory effects (i.e. reduction in short circuit current from 

original baseline) remained, although they were significantly reduced. In some 

preparations described as “non-responders”, 3μM capsaicin did not elicit a 

secretory response. No desensitization of the remaining antisecretory 

responses was observed in these tissues. In fact, these reductions in short 

circuit current were consistently larger than those from tissues which responded 

with a secretory response.  

These findings are similar to the results from the present study in which 

capsaicin produced a reduction in ion secretion (short circuit current) both in 

control and diabetic colon tissues. 

Forrest et al. (2006) found that the basal short circuit current of the 

colonic epithelium did not significantly differ between control and diabetic 

tissues. The calculated resistance of the diabetic epithelium was not 

significantly different to that of the control tissues. The ion secretory response to 

carbachol did not significantly differ between control and diabetic tissue at any 

concentration used. The increase in the short circuit current from basal values 

that was produced by carbachol (1µmol/L) was significant in both control and 

diabetic tissues. In summary, no differences were observed between control 

and diabetic colonic muscosal short-circuit current under basal or carbachol 

(100 nmol/L – 1 µmol/L)-stimulated conditions. 

The results from the present study showed that carbachol produced an 

increase in ion secretion (short circuit current) both in control and diabetic colon 

tissues, similar results to those observed by Forrest et al. (2006). The results 

suggest that diabetes did not have any effect on ion secretion evoked by 

carbachol in rat colon. 
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Veratridine is a Na+ channel opener. It acts at the neurotoxin receptor 

site 2 and preferentially binds to activated Na+ channels causing a persistent 

activation and causes  depolarization of enteric neurones, resulting in increased 

chloride secretion secretion across the colonic mucosa (Fichna et al., 2009; 

Hyland and Cox, 2005). Veratridine induces a fast, monophasic positive change 

in Isc (measured as maximal increase in Isc above baseline) within 3 minutes 

after veratridine administration, and a secondary stabile increase in Isc 

(measured as increase in Isc over baseline within 25 minutes after veratridine 

administration (Hagl et al., 2008). 

In the present study, veratridine produced an increase in ion secretion 

(short circuit current) both in control and diabetic colon tissues. The ion 

secretory responses to veratridine was similar between control and diabetic 

tissues in proximal colon. This suggests that STZ-induced diabetes had no 

effect on sodium channel function. 

In a prevoius study, Hagl et al. (2008) found that the basic Isc, 

representing mainly chloride ion secretion, was reduced in the FGF-2 knockout 

animals; an effect reaching statistical significance. The stimulating of anion 

secretion by the neurotoxin veratridine lead to a decrease only in the caecum 

and distal colon while the duodenal secretion was not altered. The latter being 

consistent with the morphological findings in the duodenum. 

 

 



 

 

Chapter 5 

 

The effect of cholesterol and cyclodextrins on TRPV1 channel function 

 

5.1 Introduction 

 

The TRPV1 ion channel is localized on sensory nerve endings and is 

activated by heat, acid and by lipid ligands including capsaicin. The TRPV1 

channel may be associated with lipid rafts to facilitate interaction with specific 

lipid metabolites that activate the receptor. Cholesterol is an important 

component of lipid rafts. It has been reported that cholesterol depletion caused 

a significant reduction of capsaicin- and proton- induced responses and that 

TRPV1 is regulated by the level of cholesterol in sensory neurons in dorsal root 

ganglia in rats (Liu et al., 2006). TRPV1 is localized in cholesterol rich 

microdomains, regulating the function and membrane expression of TRPV1. 

Many previous studies have mentioned the significant role of lipid rafts in the 

regulations of ion channel functions in different cells or tissues (Bari et al., 2005; 

Hering et al., 2003).  

In diabetes, cholesterol levels in plasma membrane and tissues are 

changed (Torii, 1954). So it was of interest to see if this might potentially affect 

TRPV1 responses in bladder tissues. 

Cyclodextrins are reported to remove cholesterol from membranes, 

affecting their function and also the ion channel located in the membranes.  

Study on the effect of cyclodextrins on human erythrocytes suggested that the 

factor affecting membrane function is not only cholesterol but also 

phospholipids (Ohtani et al., 1989). Liu et al. (2006) showed that the depletion 

of cholesterol from primary cultures of sensory neurons with methyl-β-

cyclodextrin reduced capsaicin-activated currents. Manipulating cholesterol and 

other lipid levels in rat bladder tissues by using cyclodextrin molecules may alter 

the membrane composition of sensory neurons (in bladder) where TRPV1 is 

believed to be expressed.  
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 In streptozotocin (STZ) treated rats, capsaicin evoked contractions in 

bladder are reduced compared to controls (Pinna et al., 1994). We have 

examined the effects of cholesterol depletion with α-cyclodextrin and and β-

cyclodextrin on capsaicin responses in bladder from control and STZ treated 

rats to see if modulation of cholesterol levels might explain the changes in 

response. In addition, the other cyclodextrin molecules, α-cyclodextrin and -

cyclodextrin were used. Since α-cyclodextrin and -cyclodextrin seems not to 

remove cholesterol from the membrane, they are therefore used as negative 

control. 

 In a preliminary study, it was found that contractile responses to the 

muscarinic receptor agonist carbachol were similar between control and 

diabetic rat bladder tissues. It is interesting to investigate whether cholesterol 

and cyclodextrins have any effect on the muscarinic receptor function. These 

experiments were designed to investigate the effect of STZ-induced diabetes on 

the responses to the muscarinic receptor agonist carbachol in the presence and 

absence of cholesterol-PEG.  

 We examined effects of adding cholesterol by incubation in cholesterol-

PEG and removing with methyl-β-cyclodextrin. α-cyclodextrin and -cyclodextrin 

do not remove cholesterol so they were used as negative control. 

 In addition, it is interesting to investigate that modulation by cyclodextrin 

would affect the cholesterol contents in rat bladder smooth muscle since there 

are changes caused by cyclodextrin molecules in rat bladder in vitro. Therefore, 

after treatment with or without cyclodextrin molecules, the tissues were 

extracted to get cholesterol samples. These samples were then identified and 

quantified for cholesterol using High Performance Liquid Chromatography 

(HPLC).  
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5.2 Methods  

 
5.2.1 The effect of cholesterol and cyclodextrins on muscarinic receptor 

function 

 

 The bladder strips were equilibrated for 30 minutes before addition of 

carbachol at cumulative concentrations of 10-8 M to 10-6 M. The tissues were 

then washed out and left for 30 minutes. Cholesterol-PEG (5 mg/ml), methyl-β- 

cyclodextrin (0.005 mg/ml), β-cyclodextrin (10-5 M), and α-cyclodextrin (10-5 M) 

were added to the organ bath. The tissue were exposed to these drugs for               

1 hour before the second addition of carbachol at concentrations of 10-8 M to            

10-6 M.  

 

5.2.2 The effect of cholesterol and cyclodextrins on TRPV1 channel 

function 

 

 The bladder strips were equilibrated for 30 minutes before addition of 

cholesterol-PEG (5 mg/ml), methyl-β-cyclodextrin (0.005 mg/ml), β-cyclodextrin              

(10-5 M), α-cyclodextrin (10-5 M), and -cyclodextrin (10-5 M). The tissure were 

exposed to these drugs for 1 hour before the addition of capsaicin at 

concentration of 10-10 M to 10-6 M. All experiments were performed in parallel in 

the presence and absence of cholesterol-PEG and these three cyclodextrins in 

control and STZ-induced diabetic tissues. 

 

5.2.3 The effect of cyclodextrins on TRPA1 channel function 

 

 Methyl-β-cyclodextrin was used for studying the effect of cholesterol 

modulation on another TRP channel, TRPA1 function. After equilibartion for 30 

minutes, the control and STZ-induced diabetic rat bladder strips were exposed 

to methyl-β cyclodextrin (0.005 mg/ml) for 1 hour. Then the contractile 

responses to TRPA1 agonist allyl isothiocyanate at the concentration of 10-5 M 

to 10-4 M were performed. Allyl isothiocyanate was added to the organ bath in 

non-cumulative manner. 
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5.2.4 The effect of chlorpromazine on muscarinic receptor, potassium ion 

channel and TRP channel function 

 

 To study the disturbance of lipid bilayer, the experiments were designed 

by using dopamine receptor antagonist chlorpromazine to see the inhibitory 

effect in bladder tissue. 

 The bladder tissues were equilibrated for 30 minutes prior to be exposed 

to chlorpromazine at the concentration of 10-5 M for 30 minutes. Then the 

tissues were treated cumulatively with TRPV1 agonist capsaicin (10-10 M to                  

10-6 M), and potassium chloride (50 mM) in the presence or absence of 

chlorpromazine. However, the tissues were treated non-cumulatively with 

TRPA1 agonist allyl isothiocyanate after exposure to chlorpromazine or vehicle 

(distilled water). 
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5.3 Results 

 

5.3.1 The effect of cholesterol and cyclodextrins on muscarinic receptor 

function 

 

5.3.1.1 The effect of cholesterol-PEG 

 

The results indicated that carbachol in the concentration range of 10-8 M 

to 10-6 M produced concentration dependent contractions of urinary bladder 

strips from STZ-treated animals and age-matched vehicle controls. The 

contractile responses to carbachol in the presence and absence of cholesterol-

PEG (5 mg/ml, 1 h) were similar in both control and diabetic tissues. The 

responses were slightly smaller in STZ-treated tissues than in control tissues, 

but these differences did not reach statistical significance (Figure 5.1). 
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Figure 5.1 Contractile responses of bladder to muscarinic receptor 

agonist carbachol at the concentration of 10-8 M - 10-6 M in the presence and 

absence of cholesterol-PEG (5 mg/ml, 1 h) from age-matched controls and 

STZ-induced diabetic rats, 8 weeks after the administration of STZ. Values 

represent the mean±S.E.M for 6 animals.  
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5.3.1.2 The effect of methyl-β cyclodextrin 

   

The results indicated that carbachol in the concentration range of 10-8 M 

to 10-6 M produced a concentration dependent contraction of urinary bladder 

strips from STZ-treated animals and age-matched vehicle controls. The 

contractile responses to carbachol in the presence and absence of methyl-β 

cyclodextrin (0.005 mg/ml, 1 h) were similar (Figure 5.2).  

 In this experiment, there was a significant reduction in responses to 

carbachol  at the concentrations of 10-7 - 10-6 M in STZ-diabetic rat bladder 

tissues. However, this reduction is not consistent with previous experiments. 
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Figure 5.2 Contractile responses of bladder to muscarinic receptor 

agonist carbachol at the concentration of 10-8 M - 10-6 M in the presence and 

absence of methyl-β cyclodextrin (MCD) (0.005 mg/ml, 1 h) from age-matched 

controls and STZ-induced diabetic rats, 8 weeks after the administration of STZ. 

Values represent the mean±S.E.M for 6 animals. 
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5.3.1.3 The effect of β-cyclodextrin 

 

The results indicated that carbachol in the concentration range of 10-8 M 

to 10-6 M produced the concentration dependent contractions of urinary bladder 

strips from STZ-treated animals and age-matched vehicle controls. The 

contractile responses to carbachol in the presence and absence of β-

cyclodextrin (10-5 M, 1 h) were similar in both control and diabetic tissues 

(Figure 5.3).  

 In this experiment, there was a significant reduction in responses to 

carbachol at the concentrations of 10-7 - 10-6 M in STZ-diabetic rat bladder 

tissues. However, this reduction is not consistent with previous experiments. 
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Figure 5.3 Contractile responses of bladder to muscarinic receptor 

agonist carbachol at the concentration of 10-8 M - 10-6 M in the presence and 

absence of β-cyclodextrin (BCD) (10-5 M, 1 h) from age-matched controls and 

STZ-induced diabetic rats, 8 weeks after the administration of STZ. Values 

represent the mean ± S.E.M for 6 animals. 
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5.3.1.4 The effect of  α-cyclodextrin 

 

The results indicated that carbachol in the concentration range of 10-8 M 

to 10-6 M produced concentration dependent contractions of urinary bladder 

strips from STZ-treated animals and age-matched vehicle controls. The 

contractile responses to carbachol in the presence and absence of α-

cyclodextrin (10-5 M, 1 h) were similar in both control and diabetic tissues 

(Figure 5.4). The responses were slightly smaller in STZ-treated tissues than 

those of control tissues. However, these differences did not reach a statisatical 

significance. 
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Figure 5.4 Contractile responses of bladder to muscarinic receptor 

agonist carbachol at the concentration of 10-8 M - 10-6 M in the presence and 

absence of α-cyclodextrin (alpha-CD) (10-5 M, 1 h) from age-matched controls 

and STZ-induced diabetic rats, 8 weeks after the administration of STZ. Values 

represent the mean ± S.E.M for 6 animals. 
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5.3.2 The effect of cholesterol and cyclodextrins on TRPV1 channel 

function 

 

5.3.2.1 The effect of cholesterol-PEG 

 

The presence of cholesterol-PEG (5 mg/ml, 1 h) produced the 

significantly decreased contractile responses to capsaicin in comparison to 

those in the absence of cholesterol-PEG in both age-matched-controls and 

STZ-treated tissues. The reductions of the contractile responses to capsaicin in 

the presence of cholesterol-PEG were seen at both the concentrations of 10-6 M 

and 10-5 M of capsaicin. The contractile responses to capsaicin at the 

concentration of 10-6 M to 10-5 M in the presence and absence of cholesterol-

PEG in STZ-treated bladder tissues were significantly smaller than those of 

age-matched controls (Figure 5.5, 5.6). 
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                 Figure 5.5 Contractile responses of bladder to TRPV1 agonist 

capsaicin at the concentration of 10-6 M in the presence and absence of 

cholesterol-PEG (5 mg/ml, 1 h) from age-matched controls and STZ-induced 

diabetic rats, 8 weeks after the administration of STZ. Values represent the 

mean ± S.E.M for 6 animals.*, #, + P<0.05 is significantly different (Student’s t test 

for unpaired observations). * = significant difference between control + distilled 

water and control + cholesterol PEG. # = significant difference between control 

+ distilled water and diabetic + distilled water. + = significant difference between 

diabetic + distilled water and diabetic + cholesterol PEG. 
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                Figure 5.6 Contractile responses of bladder to TRPV1 agonist 

capsaicin at the concentration of 10-5 M in the presence and absence of 

cholesterol-PEG (5 mg/ml, 1 h) from age-matched controls and STZ-induced 

diabetic rats, 8 weeks after the administration of STZ. Values represent the 

mean ± S.E.M for 6 animals. *’ # P<0.05 is significantly different (Student’s t test 

for unpaired observations). * = significant difference between control + distilled 

water and control + cholesterol PEG. # = significant difference between control 

+ distilled water and diabetic + distilled water. 
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5.3.2.2 The effect of methyl-β-cyclodextrin 

 

 The contractile responses to capsaicin at concentrations of 10-6 M to            

10-5 M in the presence and absence of methyl-β- cyclodextrin in STZ-treated 

bladder tissues were smaller than those of age-matched controls.  

The presence of methyl-β cyclodextrin (0.005 mg/ml, 1 h) produced the 

increased contractile responses to capsaicin in comparison to those in the 

absence of methyl-β-cyclodextrin in both age-matched-controls and STZ-treated 

tissues. The increase of the contractile responses to capsaicin in the presence 

of methyl-β-cyclodextrin was seen at both concentrations of 10-6 M and 10-5 M 

of capsaicin. However, the changes were not statistical significant from control 

(Figure 5.7, 5.8). 
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 Figure 5.7 Contractile responses of bladder to TRPV1 agonist capsaicin 

at the concentration of 10-6 M in the presence and absence of methyl-β-

cyclodextrin (MCD) (0.005 mg/ml, 1 h) from age-matched controls and STZ-

induced diabetic rats, 8 weeks after the administration of STZ. Values represent 

the mean±S.E.M for 6 animals. 

 

 



 

 124 

 

 

 

 

 

 

0

2

4

6

8

10

12

14

16

18

control  STZ

------------ capsaicin (10
-5

 M) ------------

C
o

n
tr

a
c
ti
o

n
 (

g
/g

)

distilled water

MCD

 

 

 Figure 5.8 Contractile responses of bladder to TRPV1 agonist capsaicin 

at the concentration of 10-5 M in the presence and absence of methyl-β-

cyclodextrin (MCD) (0.005 mg/ml, 1 h) from age-matched controls and STZ-

induced diabetic rats, 8 weeks after the administration of STZ. Values represent 

the mean±S.E.M for 6 animals. 
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5.3.2.3 The effect of β-cyclodextrin 

 

 The contractile responses to capsaicin in the absence of β-cyclodextrin 

at concentrations of 10-6 M in STZ-treated bladder tissues were significantly 

smaller than those of age-matched controls.  

The presence of β-cyclodextrin (10-5 M, 1 h) produced increased 

contractile responses to 10-6 M capsaicin when compared to those in the 

absence of β-cyclodextrin in both age-matched-controls and STZ-treated 

tissues. However, there was no change in capsaicin responses in STZ tissues 

in the presence of 10-5 M β-cyclodextrin (Figure 5.9, 5.10). 
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 Figure 5.9 Contractile responses of bladder to TRPV1 agonist capsaicin 

at the concentration of 10-6 M in the presence and absence of β-cyclodextrin 

(BCD) (10-5 M, 1 h) from age-matched controls and STZ-induced diabetic rats, 8 

weeks after the administration of STZ.  *P<0.05 is significantly different 

(Student’s t test for unpaired observations) between diabetic + saline and 

diabetic + BCD. Values represent the mean±S.E.M for 6 animals. 
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 Figure 5.10 Contractile responses of bladder to TRPV1 agonist 

capsaicin at the concentration of 10-5 M in the presence and absence of                        

β-cyclodextrin (BCD) (10-5 M, 1 h) from age-matched controls and STZ-induced 

diabetic rats, 8 weeks after the administration of STZ. Values represent the 

mean±S.E.M for 6 animals. 
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5.3.2.4 The effect of α-cyclodextrin 

 

The contractile responses to capsaicin in the presence of α-cyclodextrin 

at the concentrations of 10-6 M to 10-5 M in STZ-treated bladder tissues were 

significantly greater than those of age-matched controls.  

The presence of α -cyclodextrin (10-5 M, 1 h) produced significantly 

increased contractile responses to 10-6 M capsaicin in comparison to those in 

the absence of  α-cyclodextrin in both age-matched-controls and STZ-treated 

tissues. However, there was no change in capsaicin responses  in STZ tissue in 

the presence of 10-5 M α-cyclodextrin  (Figure 5.11, 5.12). 
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 Figure 5.11 Contractile responses of bladder to TRPV1 agonist 

capsaicin at the concentration of 10-6 M in the presence and absence of                      

α-cyclodextrin (ACD) (10-5 M, 1 h) from age-matched controls and STZ-induced 

diabetic rats, 8 weeks after the administration of STZ. Values represent the 

mean±S.E.M for 6 animals. *, # P<0.05 is significantly different (Student’s t test 

for unpaired observations). * = significant difference between control + distilled 

water and control + ACD. # = significant difference between diabetic + distilled 

water and diabetic + ACD.  
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 Figure 5.12 Contractile responses of bladder to TRPV1 agonist 

capsaicin at the concentration of 10-5 M in the presence and absence of                     

α-cyclodextrin (ACD) (10-5 M, 1 h) from age-matched controls and STZ-induced 

diabetic rats, 8 weeks after the administration of STZ. Values represent the 

mean±S.E.M for 6 animals. 
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5.3.2.5 The effect of -cyclodextrin 

 

The contractile responses to capsaicin (10-6 M) in the presence and 

absence of -cyclodextrin (10-5 M, 1 h) in normal bladder tissues were similar 

(Figure 5.13). This indicates that of -cyclodextrin did not have any effect on the 

contractile responses to capsaicin. Therefore -cyclodextrin did not have any 

effect on the TRPV1 channel function. 
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 Figure 5.13 Contractile responses of bladder to TRPV1 agonist 

capsaicin at the concentration of 10-6 M in the presence and absence of                   

-cyclodextrin (GCD) (10-5 M, 1 h) from age-matched controls. Values represent 

the mean±S.E.M for 6 animals. 

 

 

 

 

 

 

 



 

 130 

5.3.2.6 The effect of cyclodextrin on TRPA1 channel function 

 

The contractile responses to allyl isothiocyanate (10-4 M) in the presence 

and absence of methyl-β-cyclodextrin (0.005 mg/ml, 1 h) in STZ-treated bladder 

tissues were significantly smaller than those of age-matched controls. However, 

contractile responses to allyl isothiocyanate in the presence and absence of 

methyl-β-cyclodextrin were similar (Figure 5.14). 
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 Figure 5.14 Contractile responses of bladder to TRPA1 agonist allyl 

isothiocyanate at the concentration of 10-4 M in the presence and absence of 

methyl-β cyclodextrin (MCD) (0.005 mg/ml, 1 h) from age-matched controls and 

STZ-induced diabetic rats, 8 weeks after the administration of STZ. Values 

represent the mean±S.E.M for 6 animals. 
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5.3.3 The effect of chlorpromazine on muscarinic receptor function 

 

 The contractile responses of normal rat bladder tissues to all 

concentrations (10-8 M – 10-6 M) of carbachol were significantly reduced in the 

tissues treated with chlorpromazine at the concentration of 10-5 M. While the 

responses were significantly greater in tissues treated with vehicle (distilled 

water). This indicated that chlorpromazine inhibited the contractile responses to 

carbachol (Figure 5.15). 
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Figure 5.15 Contractile responses of bladder to muscarinic receptor 

agonist carbachol at the concentration of 10-8 - 10-6 M in the presence and 

absence of chlorpromazine (10-5 M) from age-matched controls. Values 

represent the mean±S.E.M for 6 animals. Means are different between in the 

absence and presence of chlorpromazine (P<0.05, two-way ANOVA). 
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5.3.4 The effect of chlorpromazine on the response to potassium chloride  

 

 Potassium chloride (KCl) caused contraction in normal rat bladder 

tissues. The contractile responses of normal rat bladder tissues to potassium 

chloride at the concentration of 50 mM in the presence of chlorpromazine at the 

concentration of 10-5 M were significantly reduced in comparison to those in the 

absence of chlorpromazine. It is clear that chlorpromazine inhibited the 

contractile responses to potassium chloride (Figure 5.16). 
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 Figure 5.16 Contractile responses of bladder to potassium chloride at 

the concentration of 50 mM in the presence and absence of chlorpromazine    

(10-5 M) from normal rats. Values represent the mean±S.E.M for 6 animals. 

*P<0.05 is significantly different from the vehicle (Student’s t test for unpaired 

observations). 

 

 

 

 

 



 

 133 

5.3.5 The effect of chlorpromazine on TRPV1 channel function 

 

 Chlorpromazine blocked the contractile responses to capsaicin in normal 

rat bladder tissues. The contractile responses to capsaicin in the presence of 

chlorpromazine in normal rat bladder tissues were significantly reduced in the 

presence of chlorpromazine in comparison to those in the absence of 

chlorpromazine. It is clear that chlorpromazine inhibited the responses to all 

concentrations of capsaicin (Figure 5.17). 
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 Figure 5.17 Contractile responses of bladder to TRPV1 agonist 

capsaicin at the concentration of 10-10 M - 10-6 M from age-matched controls in 

the presence and absence of chlorpromazine (10-5 M). Values represent the 

mean±S.E.M for 6 animals. Means are different between in the absence and 

presence of chlorpromazine (P<0.05, two-way ANOVA). 
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5.3.6 The effect of chlorpromazine on TRPA1 channel function 

 

 The contractile responses to allyl isothiocyanate in the presence of 

chlorpromazine in normal rat bladder tissues were significantly reduced in 

comparison to those in the absence of chlorpromazine. The reductions are 

more obvious in higher concentrations of allyl isothiocyanate (Figure 5.18). 
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Figure 5.18 Contractile responses of bladder to TRPV1 agonist 

capsaicin at the concentration of 10-5 – 10-3 M from age-matched controls in the 

presence and absence of chlorpromazine (10-5 M). Values represent the 

mean±S.E.M for 6 animals. . Means are different between in the absence and 

presence of chlorpromazine (P<0.05, two-way ANOVA). 
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5.3.7 The effect of cyclodextrins on cholesterol contents in rat urinary 

bladder tissues 

 

 In these experiments, we try to measure the cholesterol contents 

in rat bladder tissues after treatment with methyl- -cyclodextrin. The aim is to 

see the correlation between cholesterol, cyclodextrins, and the responses to 

TRPV1 agonist capsaicin. With the limitation of size of the rat bladder, the High 

Performance Liquid Chromatography (HPLC) was used according to methods 

presented by Maraschiello et al (1996). The response linearity was studied for 

HPLC. 10, 20, 40, 60 and 90 µg/ml of cholesterol was injected. Linear plot of 

concentration versus peak areas were calculated. Consequently, 20 µl samples 

from rat bladder tissues treated with and without cyclodextrins were injected 

(Figure 5.19). 

 

 

 

 

 

 

Figure 5.19 Chromatogram illustrating HPLC analysis of cholesterol 

samples extracted from whole rat urinary bladder at 20 µl injection. 
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 When the cholesterol contents from different sizes of rat bladder tissues 

(whole bladder and quarter bladder) were compared, it was found that the 

cholesterol contents from whole bladder tissues are higher than those from the 

quarter bladder tissues (Figure 5.20). This is unlikely to happen because when 

the wet weights of the tissues were compared, the cholesterol contents from all 

difference size should be similar. In the present sudy, it is indicated that there is 

loss of cholesterol during the extraction process. 

 Rat bladder tissues treated with 0.005 mg/ml (0.5%) or 0.001 mg/ml             

(1 %) methyl- -cyclodextrin for 1 hours seem to provide the highest cholestreol 

contents than those of the controls (Figure 5.21). However, the difference did 

not reach statistical significance. These results indicate that methyl- -

cyclodextrin is not involved in cholesterol extraction from rat smooth muscle 

tissues. On the other hand, cholesterol may not be involved in the modulation of 

TRPV1 channel function by this concentration of methyl- -cyclodextrin. 
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Figure 5.20 Cholesterol contents from whole and quarter rat urinary 

bladder. Values represent the mean ± S.E.M for 6 animals.  
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Figure 5.21 Cholesterol contents from half rat urinary bladder in the 

presence and absence of 0.5 % (A) and 1.0 % (B) methyl- -cyclodextrin. Values 

represent the mean ± S.E.M for 6 animals. 
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5.3.8 The effect of cyclodextrins on TRPV1 channel function in HEK 293 

cell 

 

 The TRPV1-expressing HEK 293 cells were incubated with and without 

methyl-β-cyclodextrin and γ-cyclodextrin for 1 hour and then activated by 

capsaicin. Changes in intracellular Ca2+ in response to capsaicin were 

examined using fura-2 calcium imaging.  

The results show that methyl-β-cyclodextrin and γ-cyclodextrin had no 

effect on calcium signalling mediated by capsaicin since the fura ratio from the 

cells treated with methyl-β-cyclodextrin and γ-cyclodextrin or vehicle were 

similar (Figure 5.22, 5.23). 
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 Figure 5.21 Peak change in fura-2 ratio mediated by 1 M capsaicin in 

TRPV1 expressed rat HEK293 cells exposed to methyl-β-cyclodextrin (0.005 

mg/ml) and vehicle for 1 hour. Values represent the mean ± S.E.M. for 6 

animals. 
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Figure 5.22 Peak change in fura-2 ratio mediated by 1 M capsaicin in 

TRPV1 expressed rat HEK293 cells exposed to γ-cyclodextrin (10-5 M) and 

vehicle for 1 hour. Values represent the mean ± S.E.M. for 6 animals. 
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5.4 Discussion 

 

In the preliminary study, cholesterol (water-soluble) and methyl-β-

cyclodextrin did not have any effect on the responses of control and diabetic rat 

bladder strips to carbachol. Cholesterol and methyl-β-cyclodextrin enhanced the 

contractile responses to TRPV1 agonist capsaicin in control and diabetic rat 

bladder strips. However, the contractile responses to TRPV1 agonist capsaicin 

in diabetic tissues are reduced compared to controls. The contractile responses 

to capsaicin in the presence of cholesterol and methyl-β-cyclodextrin in the rat 

bladder strip are similar.  

This may caused by the presence of methyl-β-cyclodextrin in the water-

soluble cholesterol used in the first study. The 1 g of water-soluble cholesterol 

contains 48 mg cholesterol and 952 mg methyl-β-cyclodextrin (to be soluble in 

water). Thus, the contractile responses to capsaicin both in the presence of 

cholesterol and methyl-β-cyclodextrin may mainly be due to the effect of methyl-

β-cyclodextrin. The pure cholesterol (cholesterol-PEG) was then used to 

investigate the effect of cholesterol on the activity and amount of membrane 

TRPV1. 

Cholesterol is an essential component of lipid rafts (Zajchowski and 

Robbins, 2002). It has been shown that elevation of cholesterol decreases 

uterine activity. Both LDLs and cholesterol inhibited spontaneous uterine force 

production and associated Ca2+ transients; frequency, amplitude, and duration 

of contraction were all significantly reduced compared with preceding control 

contractions (Smith et al., 2005).  

Decreased levels of membrane cholesterol are accompanied by a highly 

specific inhibition of phasic, but not tonic contractions in rat uterus smooth 

muscle. In additions, the electrically evoked phasic mechanical activity of 

guinea pig ureter and the spontaneous contractions of rat portal vein were 

severely decreased after 40 minutes of cholesterol extraction (Babiychuk et al., 

2004). 

The present study showed that the contractile responses to carbachol 

were unaffected by cholesterol-PEG and cyclodextrins (methyl-β-cyclodextrin, 
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β-cyclodextrin, and α-cyclodextrin) at the concentrations tested. Carbachol 

caused contraction in both control and diabetic tissues. The presence of 

cholesterol-PEG produced the significantly decreased contractile responses to 

capsaicin in both age-matched-controls and STZ-treated tissues.  

Methyl-β-cyclodextrin (MCD) significantly diminished the intracellular 

Ca2+ influx induced by capsaicin, but had no significant effect on the Ca2+ influx 

induced by resiniferatoxin. In contrast, MCD caused significant inhibition in 

TRPV1 receptor activation evoked by capsaicin and resiniferatoxin on cultured 

trigerminal neurons (Szoke et al., 2009). 

In the in vitro studies, it was found that uterine activity (force) was 

significantly increased by cholesterol extraction with MCD or cholesterol 

oxidase treatment (Smith et al., 2005).  Similarly, extraction of cholesterol 

resulted in inhbition of both force and intracellular Ca2+ signals (Babiychuk              

et al., 2004). The depletion of cholesterol with methyl-β-cyclodextrin (MCD) 

disrupts caveolar microdomains. The changes in membrane excitability 

produced by MCD underlies the changes found in Ca2+ signalling and uterine 

contractility (Shmygol and Wray, 2007).  

However, some previous studies have suggested that MCD significantly 

reduced TRPV1-mediated capsaicin- and proton-activated currents. 

Immunoreactivity for TRPV1, but not P2X3, in the plasma membrane was 

markedly reduced by MCD. A reduction of TRPV1 protein in membrane 

fractions was also found following cholesterol depletion (Liu et al., 2006).  

β-cyclodextrins, cyclic oligosaccharides consisting of 7 β(1-4)-

glucopyranose units, are water-soluble compounds with a hydrophobic cavity 

capable of dissolving hydrophobic compounds and thus enhancing their 

solubility in aqueous solution (Kilsdonk et al., 1995). 

In vitro studies have demonstrated that exposure of fibroblasts to 

cyclodextrins can produce cell toxicity, and that the extent of this toxicity is 

reduced by the presence of serum. Exposure of erythrocytes to cyclodextrins 

results in hemolysis in order of β > α > γ. This hemolysis may attributed to the 

removal of erythrocyte membrane components, particularly cholesterol 

(Kilsdonk et al., 1995). 
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Vial and Evans (2005) demonstrated that recombinant and smooth 

muscle (rat tail artery, vas deferens, and bladder) P2X1 receptors are present in 

cholesterol-rich lipids rafts and co-localize with lipid raft markers flotillin-1 and -

2. Addition of the cholesterol-depleting agent methyl-β-cyclodextrin (10 mM for 

1 h) led to a redistribution of the P2X1 receptor throughout the sucrose gradient 

and reduced P2X1 receptor-mediated (α, β-methylene ATP, 10 μM) currents in 

HEK293 cells and contractions of the rat tail artery. Contractions evoked by 

potassium chloride were unaffected by methyl-β-cyclodextrin and the inactive 

analoque α-cyclodextrin had no efect on P2X1 receptor-mediated currents or 

contractions. The  cholesterol-depleting agents MCD and β-CD (both 10 mM for 

1 h) reduced the amplitude of the current with no obvious effect on the time 

course of responses. The inactive analoque α-CD had no effect on P2X1 

receptor current. 

In the present study, methyl-β-cyclodextrin enhanced the maximal 

contractile responses to the TRPV1 agonist capsaicin in control and diabetic rat 

bladder strips. Cholesterol-PEG (pure cholesterol) significantly lowered the 

maximal contractile responses to capsaicin of rat bladder strips in both control 

and STZ treated strips. α-cyclodextrin and β-cyclodextrin are not thought to 

sequester cholesterol (Vial and Evans, 2005) and so these two compounds 

were used as negative controls. Surprisingly, α-cyclodextrin and β-cyclodextrin 

at the same concentrations enhanced the contractile responses to capsaicin in 

the control and diabetic rat bladder strips, an effect similar to that of methyl-β-

cyclodextrin. However, -cyclodextrin did not have any effect on the contractile 

responses to capsaicin. In addition, adding cholesterol as cholesterol-PEG, or 

methyl-β-cyclodextrin did not have any effect on the responses of control and 

diabetic rat bladder strips to carbachol or to the TRPA1 agonist allyl 

isothiocyanate. 

These effects of cyclodextrin are specific to capsaicin activated 

contractions and not seen with TRPA1 activation, suggesting that the effects 

are not mediated downstream of channel activation. The results show that all 

three cyclodextrin molecules produce the same effect on the response to 
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capsaicin in rat bladder possibly by disturbing the local environment of the 

TRPV1 channel.  

 Chlorpromazine acts as a membrane perturbing compound. It is an 

antagonist on different postsynaptic receptors, including dopamine receptors 

(subtype D1, D2, D3 and D4), serotonin receptors (5-HT1 and 5-HT2), 1- and 2-

adrenergic receptors, and M1 and M2 muscarinic acetylcholine receptor 

(Peroutka and Synder, 1980). In the present study, it was found that 

chlorpromazine inhibited the contractile responses to carbachol, potassium 

chloride, capsaicin, and allyl isothiocyanate. This indicates that chlorpromazine 

antagonized muscarinic receptor, potassium ion channel, TRPV1, and TRPA1 

channel mediated responses. Therefore, this antagonist is not selective to 

TRPV1 or TRPA1 channels suggesting that it is not suitable for studying the 

alterations of TRP channel function in rat bladder smooth muscle preparations. 

 In the present study, it was found that treatment of 0.005 mg/ml (0.5%) or 

0.01 mg/ml (1%) methyl-β-cyclodextrin for 1 hour to rat bladder tissue did not 

affect the cholesterol contents. However, from in vitro study, it was found that 

methyl-β-cyclodextrin enhanced the maximal contractile responses to TRPV1 

agonist capsaicin in control and diabetic rat bladder strips. Cholesterol 

significantly lowered the maximal contractile responses to capsaicin of rat 

bladder strips. The mismatch between the functional data and biochemical data 

may be due to the fact that measurement of cholesterol contents in the whole 

rat bladder tissues may not reflect cholesterol level where the ion channels are 

localized on nerve endings. 

 

 



 

 

Chapter 6 

 

Time course studies on changes in TRPV1 channel function following 

streptozotocin-induced diabetes 

 

6.1 Introduction 

 

Peripheral neuropathy, one of the consequences of diabetes, is 

reproduced in the streptozotocin (STZ) model of diabetes in rats (Bestetti et al., 

1981; Filho and Fazan, 2006). In preliminary observations we confirmed the 

reduction in contractile responses to the TRPV1 agonist capsaicin in diabetic rat 

bladder eight weeks after STZ treatment. It was interesting to examine the time 

course of onset of this dysfunction. 

Hyperglycaemia (elevated blood glucose concentration) is the major 

alteration that occurs in diabetes mellitus. The previous studies suggested that 

hyperglycaemia was directly or indirectly related to the development or 

progression, or both, of diabetic complications including retinopathy, 

nephropathy and neuropathy (Talubmook, 2002). 

The aims of these experiments were as follows: firstly, to investigate the 

time cause of onset of TRPV1 channel dysfunction in STZ model of diabetes in 

rat bladder, and secondly, to examine the effect of acute hyperglycaemia to see 

if this was sufficient to produce TRPV1 dysfunction. 
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6.2 Methods 

 

6.2.1 The effect of time frame of streptozotocin-induced diabetes on TRP 

channel function 

 

In order to examine the effect of the time frame for the induction of STZ 

diabetes on TRPV1 channels, the rats were used at eight, two, one week, and 

36, and 24 hours after administration of STZ or citrate buffer. The tissues from 

different time frames after STZ injection were equilibrated for 30 minutes before 

adding capsaicin. Capsaicin at concentrations of 10-10 M to 10-6 M was added to 

the organ bath in cumulative manner. The comparisons of contractile responses 

to capsaicin of the carbachol contracted tissues of control and STZ-treated rat 

bladders were measured. 

To study the effect of time frame of STZ-diabetes induction on another 

TRP ion channel, TRPA1, which is reported to be expressed on the sensory 

nerve terminal similar to the TRPV1 channel, the contractile responses to the 

TRPA1 agonist allyl isothiocyanate at concentrations of 10-5 M to 10-4 M were 

measured. Allyl isothiocyanate was added to the organ bath in a non-cumulative 

manner. The dose response studies to allyl isothiocyanate were performed 

using the tissues from the rat treated with STZ or citrate buffer (control) for 8, 2, 

1 week, and 36 hours to see the changes in the responses according to the 

time courses of STZ treatments. 

 

6.2.2 The effect of elevated glucose concentrations on TRPV1 channel 

function 

 

In the study on the influence of elevated glucose on TRPV1 channel 

function, 4 bladder strips were obtained from the same rat. Two of them were 

incubated in normal glucose concentration media for 30 minutes, 2 hours, and 

24 hours, while the other two strip preparations were incubated in parallel in 

elevated glucose concentration media. The bladder strip preparations were 

mounted in organ bath contained a Krebs solution of the following composition 
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(in mM): NaCl 118.3, KCl 4.7, MgSO4 1.2, KH2PO4 1.2, NaHCO3 25, D-glucose 

11.1, CaCl2 2.5, and gassed with 95% O2 and 5% CO2 at room temperature (21 

± 4 ºC).  

For elevated glucose incubation, 33.3 mM glucose was added into the 

solution to produce 44.4 mM glucose. The preparations were allowed to 

equilibrate in Krebs’s solution with normal and elevated glucose under the 

resting tension of 1 g for 30 minutes and 2 hours before application of 

capsaicin. For the 24 hours glucose incubation experiment, the bladder tissues 

were kept in Krebs’s solution with normal and elevated glucose in the 

refrigerator at 4 ºC for 24 hours before conducting the experiments. 

 

6.2.3 The effect of elevated glucose concentration on TRPV1 channel 

function in HEK293 cell lines 

 

After loading with Fura-2 AM for 45 minutes, TRPV1-expressing HEK 

293 cells cultured in high and low glucose media were washed out with 

extracellular solution. Then the cells were placed under the microscope with the 

objective lens of 40X for calcium imaging. The cells were checked and marked 

the target area. Capsaicin at the concentration of 1 M was administered to the 

cells in extracellular solution. Fluorescence readings were made over a 3 

minutes period at 1-5 seconds intervals following addition of agonist to the cells. 

Excitation wavelengths of 350 and 380 nm were used with an emission 

wavelength of 510 nm. Intracellular calcium levels were measured as a ratio of 

fluorescence F350/F380.  

 

6.2.4 The effect of diabetes on sodium ion channel function 

 

 In order to check if the diabetic state has effect on other receptors or ion 

channels present in sensory nerve terminal other than TRP ion channels, 

veratridine (sodium ion channel activator) was used to study the effect of 

diabetes on sodium ion channel function. The contractile responses of control 

and STZ-induced diabetic rat bladder tissues to veratridine at the concentration 
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of 10-5 M were measured. The contractile responses to veratridine in control 

and STZ-induced diabetic tissues were compared. 

 

6.2.5 The direct effect of streptozotocin on TRPV1 channel function 

 

 It is possible that the reduction of contractile responses to a range of 

TRP channel agonists in diabetic rat bladder preparations seen in these studies  

may be due to the direct effect of STZ on the channels. STZ at the 

concentration of 10-5 M was added to the organ bath. The normal rat bladder 

tissues were exposed to STZ or vehicle (distilled water) for 30 minutes. 

Subsequently, dose responses to TRPV1 agonist capsaicin were conducted to 

see if STZ affects the contractile responses to capsaicin. 

 

6.2.6 The effect of cannabinoid receptor agonist on TRPV1 channel 

function 

 

 The phosphorylation process may be involved in the TRPV1 channel 

function. The cannabinoid receptor agonist CP55,940 was used to study the 

alteration in TRPV1 responses. After equilibration for 30 minutes, the control rat 

bladder tissues were incubated with CP55,940 at the concentration of 10-5 M for 

30 minutes. Afterwards, cumulative dose responses to capsaicin at the 

concentration of 10-10 M to 10-6 M were performed in the presence or absence 

(distilled water) of CP55,940. The similar methods were also used in STZ-

diabetic rat bladder tissues. 

 

6.2.7 The effect of pro-inflammatory agent on TRPV1 channel function 

 

 After equilibration for 30 minutes, the control rat bladder tissues were 

incubated with bradykinin at the concentration of 10-5 M for 30 minutes. 

Afterwards, cumulative dose responses to capsaicin at concentrations of                  

10-10 M to 10-6 M were performed in the presence or absence (distilled water) of 
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bradykinin. The similar methods were also used in STZ-diabetic rat bladder 

tissues. 

 

6.3 Results 

 

6.3.1 The effect of time frame of STZ-induced diabetes on TRPV1 channel 

function 

 

6.3.1.1 Two weeks after STZ-injection 

 

 For 2 weeks after STZ injection, it was found that the blood glucose level 

of STZ-treated rats was significantly elevated, reaching a diabetic state (Figure 

6.1). In addtion, the contractile responses to capsaicin at the concentrations of 

10-10 M - 10-6 M in STZ-induced diabetic tissues tended to be reduced although 

the values did not reach the statistical differences when the control and diabetic 

groups were compared (Figure 6.2). 
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Figure 6.1 Blood glucose levels of age-matched controls and STZ-

induced diabetic rats, 2 weeks after the administration of STZ. Values represent 

the mean±S.E.M for 6 animals. *P<0.05 is significantly different from age-

matched controls (Student’s t test for unpaired observations). 
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 Figure 6.2 Contractile responses of bladder to TRPV1 agonist capsaicin 

at the concentration of 10-10 M - 10-6 M from age-matched controls and STZ-

induced diabetic rats, 2 weeks after the administration of STZ. Values represent 

the mean±S.E.M for 6 animals.  
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6.3.1.2 One week after STZ-injection 

  

 One week after STZ-injection, the blood glucose level in the STZ-treated 

animals were significantly elevated and similar to 8 weeks after STZ-injection, 

confirming the diabetic state in this animal model (Figure 6.3). The contractile 

responses to capsaicin at the concentration of 10-10 M - 10-6 M in one week 

STZ-treated animals were significantly reduced in comparisons to the citrate 

buffer-treated controls (Figure 6.4). 
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 Figure 6.3 Blood glucose levels of age-matched controls and STZ-

induced diabetic rats, 1 weeks after the administration of STZ. Values represent 

the mean±S.E.M for 6 animals. *P<0.05 is significantly different from age-

matched controls (Student’s t test for unpaired observations). 
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 Figure 6.4 Contractile responses of bladder to TRPV1 agonist capsaicin 

at the concentration of 10-10 M - 10-6 M from age-matched controls and STZ-

induced diabetic rats, 1 week after the administration of STZ. Values represent 

the mean±S.E.M for 6 animals. Means are different between age-matched 

controls and STZ-induced diabetic rats (P<0.05, two-way ANOVA). 
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6.3.1.3 Thirty six hours after STZ-injection 

 

 As described above, it was found that eight weeks, two weeks, and one 

week STZ-treated animals had a significant reduction of the contractile 

responses to capsaicin. It is interesting to investigate the more acute time frame 

of STZ-induction to see its effect on contractile responses to TRPV1 agonist 

capsaicin. 

 36 hours after STZ-injection, bladder tissues were used for studying the 

contraction to capsaicin. The results showed that the blood glucose level of 36 

hours STZ-treated rats was significantly elevated, reaching a diabetic state 

(Figure 6.5). In addtions, the contractile responses to capsaicin at the 

concentration of 10-10 M - 10-6 M in STZ-induced diabetic tissues were 

significantly reduced compared to the controls (Figure 6.6). 
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 Figure 6.5 Blood glucose levels of age-matched controls and STZ-

induced diabetic rats, 36 hours after the administration of STZ. Values 

represent the mean±S.E.M for 6 animals. *P<0.05 is significantly different from 

age-matched controls (Student’s t test for unpaired observations). 
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 Figure 6.6 Contractile responses of bladder to the TRPV1 agonist 

capsaicin at concentrations of 10-10 M - 10-6 M from age-matched controls and 

STZ-induced diabetic rats, 36 hours after the administration of STZ. Values 

represent the mean±S.E.M for 6 animals. Means are different between age-

matched controls and STZ-induced diabetic rats (P<0.05, two-way ANOVA). 
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6.3.1.4 Twenty four hours after STZ-injection 

 

 24 hours after STZ injection, it was found that the blood glucose level of 

STZ-treated rats was significantly elevated but did not reach that in the diabetic 

state, only a hyperglycamic state (Figure 6.7). In addtion, the contractile 

responses to capsaicin at concentrations of 10-10 M - 10-6 M in STZ-induced 

diabetic and control tissues were similar. The values did not reach the statistical 

difference when the control and diabetic groups were compared. Capsaicin 

produced the dose-dependent contraction in both control and STZ-treated 

tissues (Figure 6.8). 
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 Figure 6.7 Blood glucose levels of age-matched controls and STZ-

induced diabetic rats, 24 hours after the administration of STZ. Values 

represent the mean±S.E.M for 6 animals. *P<0.05 is significantly different from 

age-matched controls (Student’s t test for unpaired observations). 
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 Figure 6.8 Contractile responses of bladder to TRPV1 agonist capsaicin 

at the concentration of 10-10 M - 10-6 M from age-matched controls and STZ-

induced diabetic rats, 24 hours after the administration of STZ. Values 

represent the mean±S.E.M for 6 animals. 
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To emphasize the changes in blood glucose and TRPV1 induced 

contractions over time the data for 10-8 M capsaicin is summarised in Figures 

6.9 and 6.10 respectively. It is clear that in the STZ model of diabetes in rat, 

blood glucose levels were markedly increased from 24 hours after induction 

with STZ and constant for up to 8 weeks thereafter (Figure 6.9). 

 In contrast, changes in capsaicin-induced contractility became evident 

36 hours after induction of diabetes by STZ and remained depressed over the 8 

weeks period. Surprisingly, contractile responses in controls declined at 2 

weeks but appear to partially recover at 8 weeks (Figure 6.10). The reasons for 

these unexpected changes in controls are unclear but are also seen in some of 

the experiments with cyclodextrins (Chapter 5). 
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 Figure 6.9 Blood glucose levels of age-matched controls and STZ-

induced diabetic rats, 8, 2, 1 week, and 36 and 24 hours after the administration 

of STZ. Values represent the mean±S.E.M for 6 animals. Means are different 

between age-matched controls and STZ-induced diabetic rats (P<0.05, two-way 

ANOVA). 
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 Figure 6.10 A : Contractile responses of bladder to TRPV1 agonist 

capsaicin at the concentration of 10-8 M from age-matched controls and STZ-

induced diabetic rats, 8, 2,  1 week, and 36 and 24 hours after the 

administration of STZ. Values represent the mean±S.E.M for 6 animals. Means 

are different between age-matched controls and STZ-induced diabetic rats 

(P<0.05, two-way ANOVA). B : Percentage contraction of STZ- diabetic tissues 

compared to the controls. 
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6.3.2 The effect of time frame of STZ-induced diabetes on TRPA1 channel 

function 

 

6.3.2.1 Two weeks after STZ-injection 

 

 For 2 weeks after STZ injection, it was found that the blood glucose level 

of STZ-treated rats was significantly elevated, reaching a diabetic state (Figure 

6.11). In addtion, the contractile responses to allyl isothiocyanate at the 

concentration of 10-5 M - 10-4 M in STZ-induced diabetic tissues were reduced 

although the values did not reach the statistical differences when the control 

and diabetic groups were compared (Figure 6.12). 
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Figure 6.11 Blood glucose levels of age-matched controls and STZ-

induced diabetic rats, 2 weeks after the administration of STZ. Values represent 

the mean±S.E.M for 6 animals. *P<0.05 is significantly different from age-

matched controls (Student’s t test for unpaired observations). 
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Figure 6.12 Contractile responses of bladder to TRPA1 agonist allyl 

isothiocyanate at the concentration of 10-5 M - 10-4 M from age-matched 

controls and STZ-induced diabetic rats, 2 weeks after the administration of STZ. 

Values represent the mean±S.E.M for 6 animals. Means are different between 

age-matched controls and STZ-induced diabetic rats (P<0.05, two-way 

ANOVA). 
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6.3.2.2 One weeks after STZ-injection 

 

 For 1 weeks after STZ injection, it was found that the blood glucose level 

of STZ-treated rats was significantly elevated, reaching a diabetic state (Figure 

6.13). In addtion, the contractile responses to allyl isothiocyanate at the 

concentration of 10-5 M - 10-4 M in STZ-induced diabetic tissues were reduced 

although the values did not reach the statistical differences when the control 

and diabetic groups were compared (Figure 6.14). 
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Figure 6.13 Blood glucose levels of age-matched controls and STZ-

induced diabetic rats, 1 week after the administration of STZ. Values represent 

the mean±S.E.M for 6 animals. *P<0.05 is significantly different from age-

matched controls (Student’s t test for unpaired observations). 
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Figure 6.14 Contractile responses of bladder to TRPA1 agonist allyl 

isothiocyanate at the concentration of 10-5 M - 10-4 M from age-matched 

controls and STZ-induced diabetic rats, 1 week after the administration of STZ. 

Values represent the mean±S.E.M for 6 animals. Means are different between 

age-matched controls and STZ-induced diabetic rats (P<0.05, two-way 

ANOVA). 
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6.3.2.3 Thirty six hours after STZ-injection 

 

 The results showed that the blood glucose level of 36 hours STZ-treated 

rats was significantly elevated, reaching a diabetic state (Figure 6.15). However, 

the contractile responses to allyl isothiocyanate at the concentration of 10-10 M - 

10-6 M in STZ-induced diabetic tissues were not significantly different compared 

to the controls. In addition, the contractile responses of diabetic rat bladder 

tened to be greater than those of the controls. (Figure 6.16). 
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 Figure 6.15 Blood glucose levels of age-matched controls and STZ-

induced diabetic rats, 36 hours after the administration of STZ. Values 

represent the mean±S.E.M for 6 animals. *P<0.05 is significantly different from 

age-matched controls (Student’s t test for unpaired observations). 
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Figure 6.16 Contractile responses of bladder to the TRPA1 agonist allyl 

isothiocyanate at concentrations of 10-5 M - 10-4 M from age-matched controls 

and STZ-induced diabetic rats, 36 hours after the administration of STZ. Values 

represent the mean±S.E.M for 6 animals.  
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In contrast to TRPV1, responses to the TRPA1 agonist allyl 

isothiocyanate were not affected at 36 hours but were reduced one week after 

STZ treatment (Figure 6.17). 
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Figure 6.17 Contractile responses of bladder to TRPA1 agonist allyl 

isothiocyanate at the concentration of 10-8 M from age-matched controls and 

STZ-induced diabetic rats, 8, 2, 1 week, and 36 hours after the administration of 

STZ. Values represent the mean±S.E.M for 6 animals. Means are different 

between age-matched controls and STZ-induced diabetic rats (P<0.05, two-way 

ANOVA). 
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6.3.3 The effect of acute elevation of glucose concentrations on TRPV1 

channel functions 

 

 As STZ treatment rapidly induced changes in TRPV1 function, we 

wondered whether directly adding high glucose concentrations to bladder 

tissues may cause some changes in TRPV1 responses.  

 

6.3.3.1 Thirty minutes glucose incubation 

 

 A four fold increase in glucose (44.4 mM) was added to Krebs’s solution 

which is similar to that seen in STZ-diabetic animals. The bladder tissues were 

exposed to the elevated glucose in the bath for 30 minutes before the 

application of capsaicin. After 30 minutes glucose incubation, it was found that 

capsaicin at concentrations of 10-10 M - 10-6 M produced contractile responses 

in tissues exposed to elevated (44.4 mM) and normal (11.1 mM) glucose. The 

contractile responses to capsaicin in tissues exposed to normal glucose were 

slightly greater than those of elevated glucose. However, the differences did not 

reach the statistical significance (Figure 6.18). 
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 Figure 6.18 Contractile responses of bladder in tissues exposed to 

normal (11.1 mM) or elevated (44.4 mM) glucose concentration for 30 minutes 

to TRPV1 agonist capsaicin at the concentration of 10-10 M - 10-6 M. Values 

represent the mean±S.E.M for 6 animals. 
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6.3.3.2 Two hours glucose incubation 

 

 A four fold increase glucose (44.4 mM) was added to Krebs’s solution. 

The bladder tissues were exposed to the elevated glucose in the bath for 2 

hours before the application of capsaicin. After 2 hours glucose incubation, it 

was found that capsaicin at concentrations of 10-10 M - 10-6 M produced 

contractile responses in tissues exposed to elevated (44.4 mM) and normal 

(11.1 mM) glucose. However, the contractile responses to capsaicin in tissues 

exposed to elevated glucose were slightly greater than those of normal glucose. 

However, the differences did not reach statistical significance (Figure 6.19). 
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Figure 6.19 Contractile responses of bladder tissues exposed to normal 

(11.1 mM) or elevated (44.4 mM) glucose concentration for 2 hours to TRPV1 

agonist capsaicin at the concentration of 10-10 M - 10-6 M. Values represent the 

mean ± S.E.M for 6 animals. 
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6.3.3.3 Twenty four hours glucose incubation 

 

 A four fold glucose (44.4 mM) was added to Krebs’s solution. The 

bladder tissues were kept in Krebs’s solution with the elevated glucose in the 

fridge at 4 ºC for 24 hours before the experiments in organ bath. After 24 hours 

elevated glucose incubation in fridge at the 4 ºC, it was found that capsaicin at 

concentrations of 10-10 M - 10-6 M produced the contractile responses in tissues 

exposed to elevated (44.4 mM) and normal (11.1 mM) glucose. The contractile 

responses to capsaicin in tissues exposed to normal glucose were slightly 

greater than those of elevated glucose. However, the differences did not reach 

statistical significance (Figure 6.20). 
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 Figure 6.20 Contractile responses of bladder tissues exposed to normal 

(11.1 mM) or elevated (44.4 mM) glucose concentration for 24 hours to TRPV1 

agonist capsaicin at the concentration of 10-10 M - 10-6 M. Values represent the 

mean±S.E.M for 4 animals. 
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6.2.4 The effect of hyperglycaemia on TRPV1 channel function in HEK293 

cell lines 

 

 When activated by 1 M capsaicin, the calcium ion influx in TRPV1-

expressed HEK293 cells were decreased in cells exposed to high glucose (45 

mM) media in comparison to those exposed to low glucose (11 mM) media. 

When the incubation periods were taken into account, it was found that the 

longer period of exposure (48 hours) the cells to high glucose media caused 

more reduction of calcium influx in comparison to those of shorter period of 

exposure (24 hours). However, there is no significant difference in calcium ion 

influx between the cells treated with high and low glucose media 

 The TRPV1-expressing HEK293 cell exposed to high glucose 

concentration for 72 hours showed the significant reduction in calcium influx in 

comparison to those exposed to low glucose concentration (Figure 6.21). 
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Figure 6.21 Change in fura-2 ratio mediated by 1 M capsaicin in 

TRPV1 expressing rat HEK293 cells exposed to high (45 mM) and low (11 mM) 

glucose media for 24 (a), 48 hours (B) and 72 hours (C). Values represent the 

mean ± S.E.M for 6 animals. *P<0.05 is significantly different from low glucose 

(Student’s t test for unpaired observations). 
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6.3.5 The effect of diabetes on sodium ion channel function 

  

In order to check whether diabetic state has any effect on another ion 

channel function, and to check whether diabetic state has effect at the 

depolarization process, sodium ion channel activator veratridine was chosen to 

study the responses in normal rat bladder in comparison to the diabetic tissues. 

Voltage gated sodium channels are present in all nerve terminals so this will 

also provide evidence of any degeneration of nerve terminals. 

Veratridine at the concentration of 10-5 M caused contraction in both 

control and STZ-induced diabetic rat bladder tissues. The contractile responses 

of control and STZ-induced diabetic rat bladder to veratridine were similar 

(Figure 6.22). 
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 Figure 6.22 Contractile responses of rat bladder to sodium ion channel 

activator veratridine at the concentration of 10-5 M from age-matched controls 

and STZ-induced diabetic rats, 8 weeks after the administration of STZ. Values 

represent the mean±S.E.M for 6 animals.  
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6.3.6 The direct effect of streptozotocin on TRPV1 channel function 

  

It was questioned whether the reduction in contractile responses of STZ-

induced diabetic rat bladder tissues to capsaicin is due to the diabetic state 

(hyperglycaemia) directly or caused by the direct effect of STZ itself on the 

TRPV1 channel since direct effect of STZ on TRPV1 have been reported in 

dorsal root ganglion and TRPV1 expressing human HEK 293 cell (Pabbidi et al., 

2007). 

The experiments were thus designed by directly adding STZ at the 

concentration of 10-5 M to the organ bath with normal tissues. The tissues were 

exposed to STZ or vehicle (distilled water) for 30 minutes and the contractile 

responses to capsaicin were evoked. 

The results showed that the contractile responses of normal rat bladder 

tissues to capsaicin following 30 minutes treatment with STZ were similar to 

controls (Figure 6.23). 
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 Figure 6.23 Contractile responses of rat bladder to capsaicin following 

30 minutes treatment with STZ (10-5 M) from controls. Values represent the 

mean ± S.E.M for 6 animals.  

 

 

 

 

 

 

 

 



 

 176 

6.3.7 The effect of cannabinoid receptor agonist on TRPV1 channel 

function 

  

The contractile responses to capsaicin in the presence and absence of 

CP55,940 were similar. This indicated that cannabinoid receptor agonist did not 

have any effect on TRPV1 channel function in normal condition (Figure 6.24). 

However, in diabetic rat bladder tissues, the contractile responses to 

capsaicin in the presence of CP55,940 were greater than those of the absence 

of CP55,940, suggesting that there is a sensitization of TRPV1 responses by 

cannabinoid receptor agonist in  diabetic condition. However, the effects were 

not statistically significant (Figure 6.25). 
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 Figure 6.24 Contractile responses of rat bladder to capsaicin following 

30 minutes treatment with CP55,940 (10-7 M) from age-matched controls. 

Values represent the mean±S.E.M for 6 animals. 
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 Figure 6.25 Contractile responses of rat bladder to capsaicin in 

the presence and absence of CP55,940 at the concentration of 10-7 M from 

STZ-induced diabetic rats. Values represent the mean±S.E.M for 6 animals. 

Means are different between vehicle and CP55,940 (P<0.05, two-way ANOVA). 
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6.3.8 The effect of pro-inflammatory agent on TRPV1 channel function 

 

 Bradykinin acting through bradykinin receptor is known to potentiate 

TRPV1 function through PKC mediated phosphorylation (Premkumar and 

Sikand, 2008). Thus, it was of interest to examine the effect of bradykinin. The 

results show that the contractile responses of control rat bladder tissues to 

capsaicin in the presence and absence of bradykinin were similar reponses 

(Figure 6.26). 

 In STZ-induced diabetic rat bladder tissues, it was found that the 

contractile responses to capsaicin in the presence of bradykinin were higher 

than those of the absence of bradykinin, suggesting that bradykinin potentiates 

the TRPV1 channel responses (Figure 6.27). 
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 Figure 6.26 Contractile responses of rat bladder to capsaicin in the 

presence and absence of bradykinin at the concentration of 10-5 M from age-

matched controls. Values represent the mean±S.E.M for 6 animals. 
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 Figure 6.27 Contractile responses of rat bladder to capsaicin in 

the presence and absence of bradykinin at the concentration of 10-5 M from 

STZ-induced diabetic rats. Values represent the mean±S.E.M for 6 animals. 

Means are different between vehicle and bradykinin (P<0.05, two-way ANOVA). 
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6.4 Discussion 

 

6.4.1 The time course of changes in transient receptor potential channel 

function following streptozotocin-induced diabetes 

 

The results indicated that eight, two, and one weeks after induction of 

diabetes by STZ, the contractile responses to TRPV1 agonist capsaicin were 

significantly reduced in comparison to those of the controls. Only one week after 

STZ-injection, the blood glucose level in the STZ-treated animals were 

significantly high and similar to the 8 weeks after STZ-injection, confirming the 

diabetic state in this animal models. As mentioned above, it was found that 

eight weeks, two weeks, and one week STZ-treated animals had significant 

reduction of the contractile responses to capsaicin. It was of interest to 

investigate the acute effect of STZ on the contractile responses to capsaicin. 

Streptozotocin (2-deoxy-2-(3-(methyl-3-nitrosoureido)-D-glucopyranose) 

is synthesized by Streptomyces achromogenes and used to induce  both 

insulin-dependent and non-insulin-dependent diabetes  mellitus (Szkudelski, 

2001). It is an antimicrobial agent and has also used as chemotherapeutic 

alkylating agent. The insulinopenia syndrome, called “streptozotocin diabetes”, 

is caused by the specific necrosis of the pancreatic beta cells and 

streptozotocin has been the agent choice for the induction of diabetes mellitus 

in animals (Lenzen, 2008). STZ is efficacious after intraperitoneal administration 

of 40-60 mg/kg b.w. or higher, but single dose below 40 mg/kg b.w. may be 

ineffective (Katsumata et al., 1992).  

Lenzen (2008) proposed that there are triphasic blood glucose 

responses induced by streptozotozin when injected. The first phase starts with 

an increase in blood glucose concentration, 1 hour after administration of the 

toxins, and a decrease in plasma insulin. This first hyperglycaemic phase, which 

usually lasts 2-4 hours, is caused by inhibition of insulin secretion leading to 

hypoinsulinaemia. The second phase, the hyperglycaemic phase, typically 

occurs 4-8 hours after the injection of the toxins and lasts several hours. The 
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third phase is the permanent diabetic hyperglycaemic phase. Morphologically, 

complete degranulation and loss of beta cell is seen within 12-48 hours.  

The results showed that blood glucose level in 36 hours STZ-treated rats 

was significantly high, reaching those in the diabetic state and contractile 

responses to capsaicin were significantly reduced. However, 24 hours after STZ 

injection, the blood glucose level of STZ-treated rats was significantly raised but 

did not reach diabetic state, only a hyperglycamic state. Under these conditions, 

the contractile responses to capsaicin at 24 hours STZ-induced diabetic and 

control tissues were not different. In addition, the contractile responses to 

capsaicin were not affected by the exposure (for 30 minutes, 2 hours, and 24 

hours) of urinary bladder tissues to elevated (44.4 mM) and normal (11.1 mM) 

glucose

 This may suggest that the impaired TRPV1-mediating sensory nerves in 

urinary bladder occurred from 36 hours after the STZ injection. The 

hyperglycaemia has effect on the signalling of the TRPV1 channel. The 

deleterious effect of diabetes on bladder tissue responses to capsaicin may be 

due to the damage of beta cell in pancreas, by streptozotocin,  resulting in the 

decrease of insulin production, high blood glucose level and diabetes mellitus 

but not  simply by the elevated glucose in the tissues.  

As early as 36 hours after induction of diabetes by STZ, the contractile 

responses to capsaicin were significantly reduced in comparison to those of the 

controls and this reduction persisted until the eight weeks time point. In 

contrast, responses to the TRPA1 agonist allyl isothiocyanate were not affected 

by early time points but were reduced eight weeks after STZ treatment. The 

contractile responses of bladder strips to TRPV1 agonist capsaicin were not 

affected by exposure to elevated glucose. There are specific early effects of 

STZ treatment on TRPV1 channel function at a time when other afferent nerve 

terminal channels (TRPA1) are functioning normally, suggesting that early onset 

of dysfunction in TRPV1 signalling may not merely be the consequence of 

nerve damage. 
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6.4.2 The effect of inflammation on transient receptor potential channel 

function following streptozotocin-induced diabetes 

 

The results from this study suggested that bradykinin sensitized TRPV1 

responses in diabetes mellitus, which may cause inflammation. Some previous 

studies have reported that activation of calcium permeant nociceptive ion 

channels on the peripheral and central terminals of sensory neurons leads to 

the synthesis and/or release of a variety of proinflammatory agents and 

neuropeptides such as ATP, BK, PGs, CGRP, SP and vasoactive intestinal 

peptide (VIP). TRPV1 play a significant role in inflammatory thermal 

hyperalgesia. The inflammatory mediators activate their respective G-protein 

coupled receptors to initiate secondary messenger pathways resulting in 

activation of either PKA, PKC, MAPK, extracellular calcium/CaM-dependent 

kinase II (CaMKII) or Src kinase, which phosphorylate TRPV1 (Premkumar and 

Sikand, 2008). 

Activation of CB1 or CB2 receptors has been shown to increase or 

decrease adenylate cyclase levels, which will modulate the phosphorylation 

state of TRPV1. Activation of the CB1 receptors decreases Ca2+ and increases 

K+ conductance in the presynaptic terminals that can interfere with the action of 

TRPV1 distributed at the central terminals of sensory neurons. Phosphoryation 

at S116 in the amino terminus of TRPV1 is vital in PKA mediated regulation of 

TRPV1 desensitization (Bhave et al., 2002). 

Phosphorylation by PKC has been shown to sensitize TRPV1. Various 

algesic agents like BK, ATP, trypsin and PGs are known to sensitize TRPV1 by 

activating PKC downstream of their G-protein coupled receptors in sensory 

neurons and in expressed system (Cesare and McNaughton, 1996). 

 

 

 



 

 

Chapter 7 

 

General Discussion 

 

7.1 Discussion 

 

In preliminary experiments, a reduced contractile response to capsaicin 

in bladder strips from STZ-induced diabetic rats was observed. The aim of the 

present study was to investigate the effect of diabetes on the function of TRP 

channels. The study examined TRPV1, TRPV4, TRPA1 and TRPM8 channel 

function in bladder strips from STZ-diabetic and control rats using conventional 

organ bath techniques and a range of appropriate agonists and antagonists 

available. Downstream functions of these pathways were checked by the use 

of, for example, neurokinin ligands. These observations were extended to 

isolated cells such as HEK 293 cells using calcium imaging and 

electrophysiological techniques. These techniques enable us to find out if the 

signaling pathways of TRP channels are disturbed. The time course of diabetes 

induction on TRP channel function was studied in order to explain the changes 

in these channels during the onset or development of the disease. This study 

may help in our understanding of bladder dysfunction in diabetic patients and 

may suggest novel therapeutic strategies.  
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7.1.1 The effect of streptozotocin treatment on transient receptor potential 

channel signalling  

 

 According to the findings expressed in Chapter 3, it is quite obvious that 

STZ-induced diabetes impair the responses of a range of TRP channel 

subfamilies including TRPV1, TRPV4 and TRPA1. However, its effect is not 

clear in the response of TRPM8 since the results are variable. The possible 

pathway by which TRPV1 and TRPA1 agonists cause bladder muscle 

contraction is expressed in Figure 7.1. 

 

Smooth muscle contraction

TRPV1 TRPA1

Substance P ?

CGRP ?

Bombesin ?

ATP ?

Muscarinic receptor

Carbachol

Diabetic neuropathy

Nerve terminal

Ca 2+

NK receptor

 

 

 Figure 7.1 The possible pathway by which TRPV1 and TRPA1 agonists 

cause bladder muscle contraction 

 

This possible contractile mechanism in normal rat urinary bladder 

mediated by capsaicin has been proposed by the previous study that capsaicin 

produces muscle contractions by stimulating the TRPV1 receptor, followed by 

release of neuropeptides that can activate tachykinin NK1 and/or NK2 receptors 

in the urinary bladder (Saitoh et al., 2007).  
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For the contractile mechanism mediated by TRPA1 agonist allyl 

isothiocyanate, it has been reported that TRPA1 agonists contract rat urinary 

bladder through sensory fiber stimulation, depending on extracellular Ca2+ influx 

and release of tachykinins and cyclooxygenase metabolites, probably 

prostaglandin E2. TRPA1 is expressed in sensory nerves that innervate the 

urinary bladder and mediates a contractile effect on bladder smooth muscle, 

due to release of tachykinins and cyclooxygenase metabolites (Andrade et al., 

2006).  

With regards to the findings in the present study, the results are in 

agreement with Pinna et al. (1994) who found that the bladder response to 

capsaicin gradually decreased with the progression of diabetes. In rat urinary 

bladder, diabetes provokes impairment of capsaicin-sensitive sensory fibers but 

not of the cholinergic system even at an early stage (4 week) of the disease.  

Although there is no report involving the effect of diabetes on TRPV1 function in 

rat urinary bladder directly, the results from the present study correspond to the 

study of Facer et al. (2007) who found that TRPV1 levels are reduced in skin 

biopsies from patients with diabetic neuropathy. In addition, Rosta et al. (2007) 

reported that capsaicin reduced neurogenic sensory vasodilation, due to 

impairment of meningeal TRPV1 channel, in STZ-treated rats. 

To check if the contractile or relaxant responses of bladder smooth 

muscle is mediated by activation of TRPV1 channel, TRPV1 antagonists were 

used. It is found that all antagonists  (capsazepine, ruthenium red and 

SB366791) antagonize the contractile responses to TRPV1 agonist capsaicin. It 

has been previously reported that blockade of TRPV1 by capsazepine is 

competitive (Alexander et al., 2007). In the rat bladder, capsazepine produced a 

concentration-dependent rightward shift of the curve to capsaicin without any 

depression of the maximal response to the agonist (Maggi et al., 1993). Similar 

findings were obtained in the rat isolated vas deferens in which capsazepine (10 

µM) produced a rightward shift of the curve to capsaicin (Maggi et al., 1993). 

The antagonism of the action of capsaicin by capsazepine is entirely consistent 

with the proposed interaction of this substance with a vanilloid (TRPV1) 

receptor located on primary afferents (Maggi et al., 1993). In addition, 
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Alexander et al. (2007) suggested that blockade of TRPV1 by capsazepine, 6-

iodo-nordihydrocapsaicin, BCTC, JYL1421, and SB366791 is competitive. In 

the present study, the results suggest that ruthenium red acts quite non-

competitive as a capsaicin antagonist. The study on the effect of SB-366791 on 

capsaicin-evoked or electrical stimulation-induced release of the sensory 

neuropeptide substance P from isolated rat tracheae suggested that SB-366791 

is a more selective and potent in vivo TRPV1 receptor antagonist than 

capsazepine in the rat (Varga et al., 2005). In addition, in cultured sensory 

neurons, SB-366791 is TRPV1 antagonist with high potency and an improve 

selectivity profile in comparisons to other commonly used TRPV1 antagonists 

(Gunthorpe et al., 2004). Therefore, the potency of the antagonists are 

consistent with TRPV1 blockade. This has been confirmed by the results in the 

present study. These findings confirm that the contractile responses are due to 

the activation of TRPV1 channel by capsaicin.  

To explain the reasons behind the impairment of TRP channel function 

caused by the diabetic state, there are some possibilities. Firstly, it may due to 

the effect of STZ-induced diabetes on smooth muscle function. It has been 

reported that muscarinic receptor agonist carbachol was found to produce dose-

dependent increase of the basal tone of the rat bladder detrusor muscle and the 

maximal contraction produced by carbachol was about four times greater than 

that elicited by bombesin or substance P (Abdel-Hakim et al., 1981). However, 

carbachol produced the hypersensitivity in diabetic gastrointestinal tissues in 

comparison to the controls (Talubmook et al., 2002). In the present study, since 

the contractile responses to muscarinic receptor agonist were not affected by 

STZ-induced diabetes, it can be inferred that diabetes affects at the presynaptic 

level, not postsynaptic level. Therefore, diabetes may impair the 

neurotransmitter transmission function or the TRP channel signalling or gating 

itself.  

Secondly, it may due to the disturbances or alterations of postsynaptic 

receptors caused by STZ-induced diabetes. Therefore the exogenous 

neurotransmitters that are thought to be released following TRPV1 activation, 

were added. It was found that the contractile responses of control and diabetic 
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bladder tissues to neurotransmitters such as substance P, neurokinin alpha or 

bombesin were similar. The result from the present study is consistent with 

those observed by Pinna et al. (1994). It was found that the bladder contractile 

response to exogenous substance P was similar in both control and STZ-

induced diabetic groups at all stage (1-26 weeks) studied and is proposed that 

diabetes had no effect on the sensitivity of smooth muscle cells to substance P. 

This suggests that these neurotransmitter were not released by TRP channel 

agonists or that the receptors of these neurotransmitters were not affected by 

diabetic state.  

The selective tachykinin NK2 receptor agonist [βAla8] NKA (4-10) induced 

a concentration-dependent contraction associated with significant release of 

prostaglandin E2 in isolated strips of the hamster urinary bladder (Tramontana 

et al., 2000). For electrical field stimulation study, stimulation of neurokinin A 

increased the amplitude of twitches and produced a concentration-dependent 

tonic contraction in the hamster isolated urinary bladder (Giuliani et al., 2001). 

The NK1 receptor antagonists GR205171 (100 M) and SDZ NKT 376 (1 mM) 

reduced the response to capsaicin, indicating that capsaicin acts via TRPV1 in 

series with NK1 (Hu et al., 2005). However, when the combination of neurokinin 

1 and 2 antagonists (GR205171A and SB207164A) was used in the present 

study, it can inhibit the responses of bladder smooth muscle to TRPV1 agonist 

capsaicin at all concentrations used. This suggests that the neurokinin may be 

one of the neurotransmitter involved in the contractile responses of bladder 

tissue to TRPV1 agonist. Since the neurokinin receptor is on the postsynaptic 

position, the results confirm that a neurokinin receptor agonist may be important 

in synaptic transmission. 

A number of experiments have focussed a TRPV1 function in the nerve 

terminal and the possibility that responses are affected by diabetic neuropathy. 

The impairment of contractile responses in STZ-treated bladder tissues was 

found not only in TRPV1 activation but also in TRPA1 activation. This confirm 

that STZ model of diabetes caused impairment in both subfamily of TRP 

channel, which are reported to be expressed in the same nerve terminal. 
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In addition, using the quantitative real time PCR assay, it was found that 

TRPV1 gene in periaqueductal gray of diabetic rats has been down-regulated 

by the fold change expression ratio in comparison to those of non-diabetic rats 

(Mohammadi-Farani et al., 2010). Similarly, quantitative PCR confirmed that 

TRPV1 mRNA expression in diabetic hearts was decreased compared to that in 

control heart. CGRP and SP levels in diabetic hearts were also significantly 

decreased (Song et al., 2008). Therefore, it would be inferred that the reduction 

of the contractile responses to TRPV1 activation in STZ-diabetic bladder tissues 

may be due to the decrease in TRPV1 gene and TRPV1 mRNA expression. 

However, polymerase chain reaction (PCR) and western blot technique was not 

carried out in the present study to investigate the TRPV1 expression in control 

and STZ-induced diabetic rat because of the problem with the specificity of 

antibody to TRPV1 receptor and the little quantity of TRPV1 protein in the 

bladder tissues.  

Diabetes is one of the most common causes of neuropathy. Diabetic 

neuropathy may present as severe pain, burning or tingling sensation and even 

loss of pain sensation (Freynhagen and Bennett, 2009). Animals show different 

responses in experimental models of diabetic neuropathy. These include 

hyperalgesia (increased sensitivity to noxious stimuli), hypoalgesia (decreased 

sensitivity to painful stimuli), and allodynia (getting pain from a previously non-

painful stimuli) (Ohsawa and Kamei, 1999a,b; Pabbidi et al., 2008). In the 

present study, decreased contractile responses to TRPV1 agonist capsaicin 

were found. These should belong to hypoalgesia which is the decreased 

sensitivity to painful stimuli caused by diabetic neuropathy. 

However, diabetic hyperalgesia with respect to TRPV1 receptors is 

reported. It was found that painful diabetic neuropathy is associated with 

enhanced function of TRPV1 receptors in neurons of the dorsal root ganglion 

(Hong and Wiley, 2005).  

 

 

 

 



 

 189 

7.1.2 The effect of streptozotocin-induced diabetes on TRP channels 

function in rat colon  

  

The hypothesis that channel dysfunction is a consequence of 

hyperglycaemia that is experienced by all tissues in the body was tested. In 

addition to urinary bladder smooth muscle, the impairment of TRPV1 function 

caused by diabetes was investigated in colon smooth muscle. The relaxant 

responses of diabetic colon tissues to TRPV1 agonist capsaicin were reduced 

in comparison to the controls confirming an impairment of TRPV1 channel due 

to diabetes in another organ, the  gastrointestinal colon. 

According to the motility studies, there was a reduction in TRP channel 

responses in diabetic smooth muscle tissues. It is worthwhile to confirm this 

finding using other parameters. The ion secretory studies were therefore 

performed. In the present study, small changes have been found in ion 

secretory responses evoked by TRPV1 agonist capsaicin in normal and STZ-

induced diabetic colon tissues but there were the clear changes in those 

activated by other activators (carbachol and veratridine). In addition, the 

differences between ion secretory responses in distal colon are clearer than 

those in proximal colon, indicating the different responses along the intestine. 

Taken together, it would be indicated that ion transport parameter shows less 

sensitivity to any changes in TRPV1 channel function in diabetic state. 

 

7.1.3 The effect of cholesterol modulation by cyclodextrins on transient 

receptor potential channel function 

 

Diabetic complications are associated with cholesterol regulation. In 

chronic hyperglycaemic condition, HDL cholesterol level increases. In addition, 

it is associated with obesity, since the obesity affects insulin sensitivity caused 

type 2 diabetes mellitus (Suri and Szallasi, 2007). Cholesterol plays a significant 

role in membrane signalling including ion channel function (Zajchowski and 

Robbins, 2002). Lipid rafts play an important role in maintaining and regulating 

functions of ion channel in various cell types. For example, the properties of 
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type-1 cannabinoid receptor signalling are markedly altered following 

cholesterol depletion (Bari et al., 2005). 

It is interesting to study the modulation of cholesterol at the cell 

membrane using cholesterol modulators, cyclodextrin molecules on TRP 

channel function. It is previously reported that using methyl- -cyclodextrin as 

cholesterol extractor from cultured sensory neurons reduced capsaicin-

activated currents (Liu et al., 2006). However, cholesterol removal increased the 

contractile responses in rat myometrium (Smith et al., 2005; Babiychuk et al., 

2004). It is clear that cholesterol has varied actions on cell signaling. 

The most common mean of modifying the cholesterol content of cell 

membranes with cyclodextrins, a family of compounds, which due to the 

presence of relatively hydrophobic cavity, can be used to extract cholesterol 

from cell membranes. However, the mechanism of this activity of cyclodextrins 

is not completely established. Moreover, under conditions commonly used for 

cholesterol extraction, cyclodextrins may be removed from both raft and non-raft 

domains of membranes. In addition, other hydrophobic molecules such as 

phospholipid may also be extracted from the membranes by cyclodextrins 

(Zidovetski and Levitan, 2007). 

Cyclodextrins are cyclic oligosaccharide consisting of α-(1-4)-linked D-

glycopyranose units, which are primary degradation products of starch. These 

compounds have been long recognized as potent carriers for hydrophobic 

drugs. Cyclodextrins typically exist as hexamers (αCDs), heptamer (βCDs) or 

octomer (γCDs). β-cyclodextrins have the highest affinity for inclusion of 

cholesterol and are the most efficient in extracting cholesterol from erythrocyte 

and model membrane. On the other hand, αCDs are the most efficient in 

extracting phospholipid (Zidovetski and Levitan, 2007). 

It is previously reported that the cholesterol removal or enhancement 

properties of cyclodextrins depend upon the concentration of cyclodextrins, 

duration of exposure to cyclodextrins and the types of cells or tissues used 

(Zidovetski and Levitan, 2007).  In the present study, it is found that cholesterol 

lowered the contractile responses of TRPV1 channel in rat bladder preparation. 

In contrast, cyclodextrin molecules (methyl-β-cyclodextrin, β-cyclodextrin and α-
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cyclodextrin) enhanced the contractile responses of TRPV1 channel in bladder 

smooth muscle preparation but not in TRPV1-expressing HEK 293 cells. 

However, γ-cyclodextrin did not have any effect on the contractile responses of 

rat bladder strips activated by TRPV1 agonist capsaicin. In addition, methyl-β-

cyclodextrin did not have any effect on the contractile responses of rat bladder 

strips activated by TRPA1 agonist allyl isothiocyanate suggesting the specific 

effect of methyl-β-cyclodextrin on TRPV1 channel function.  

According to the results, it can be inferred that the different concentration 

of cyclodextrins and exposure time used in the present study may cause the 

different effects on rat bladder smooth muscle preparations and therefore 

TRPV1 channel function in bladder. In addition, cyclodextrins may remove 

phospholipid as methyl-β-cyclodextrin, β-cyclodextrin and α-cyclodextrin) 

enhanced the contractile responses of TRPV1 channel in bladder smooth 

muscle preparation while γ-cyclodextrin did not have any effect on the 

contractile responses of rat bladder strips activated by TRPV1 agonist 

capsaicin.  

Another possibility is that the different results obtain from the present 

study may be possibly due to the different membrane model used. It is shown 

that there was an impairment in TRPV1 function following cholesterol depletion 

caused by methyl-β-cyclodextrin in dorsal root ganglia (Liu et al., 2006) while 

the increase in TRPV1 responses was found in rat bladder smooth muscle 

tissues treated with methyl-β-cyclodextrin in the present study. 

The study using high performance liquid chromatography (HPLC) to 

measure the cholesterol contents in rat bladder tissues after treatment with or 

without cyclodextrin molecules was carried out. Our hypothesis for this 

experiment is that, if it is correspond with in vitro pharmacology results, 

cholesterol contents of bladder tissues treated with methyl-β-cyclodextrin will be 

reduced in comparison to those of untreated. The results are varied since some 

cholesterol contents from rat bladder tissues have been lost during the 

cholesterol extraction processes. Moreover, the cholesterol amounts in the 

whole tissue may not accurately reflect the cholesterol levels in the nerve 

endings. Thus, we decided not to pursue these experiments further. 
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7.1.4 The time course of changes in transient receptor potential channel 

function following streptozotocin-induced diabetes 

 

As the results showed that TRP channel function is impaired by the 

diabetic state, it is interesting to investigate how rapidly the changes in TRPV1 

function occur following administration of STZ. It is found that impairment of 

TRPV1 channel function occurred very early (36 hours) after STZ-diabetes 

induction and this impairment persisted until eight weeks of the disease. 

However, for another TRP subfamily member, the TRPA1 channel, the 

impairment appeared at the longer time point (1 week) than those of TRPV1 

channel and persisted until the eight weeks time point. These findings were 

confirmed by the study on the effect of hyperglycaemia on the calcium signalling 

in TRPV1-expressing HEK 293 cell. It was found that exposure of the cells to 

high glucose media for 3 days significantly reduced calcium signalling.  

According to the time course of STZ-induced diabetes on changes in 

blood glucose level, it has been proposed that there are triphasic blood glucose 

responses induced by streptozotozin when injected. The first phase starts with 

an increase in blood glucose concentration, 1 hour after administration of the 

toxins, and a decrease in plasma insulin. This first hyperglycaemic phase, which 

usually lasts 2-4 hours, is caused by inhibition of insulin secretion leading to 

hypoinsulinaemia. The second phase, the hyperglycaemic phase, typically 

occurs 4-8 hours after the injection of the toxins and lasts several hours. The 

third phase is the permanent diabetic hyperglycaemic phase. Morphologically, 

complete degranulation and loss of beta cell intergrity is seen within 12-48 

hours. This mechanism is clearly at variance with that which underlies 

autoimmune type 1 diabetes, where beta cell demise is the result of apoptotic 

cell death without leakage of insulin from ruptured secretory granules (Lenzen, 

2008). 

Although there is no direct study on the time course of STZ-induced 

diabetes on the TRP channel function in rat urinary bladder, it was previously 

reported that 8-week streptozotocin-induced diabetes clearly leads to a number 

of significant alterations in the functional responses of the rat ileum (Talubmook, 
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2003). There is the presence of neuropathy in Schwann cell 4 months after 

induction of diabetes by STZ (Bestetti et al., 1981a) and there are neuropathy 

and myopathy in the diaphragm of rat after 12 months of STZ-induced diabetes 

(Bestetti et al., 1981b) 

In addition, STZ-induced diabetes provokes impairment of capsaicin-

sensitive sensory fibers but not of the cholinergic system even at early stage (4 

week) of the disease in rat urinary bladder and the bladder response to 

capsaicin gradually decreased with the progression of diabetes (Pinna et al., 

1994). 

From  the result obtained in the present study, it suggests that at the 

early time point of the onset, diabetes  mellitus affected TRPV1 but not TRPA1 

which are reported to be expressed in the same nerve terminals and that the 

early impairment of TRPV1 channel function may not due to the diabetic 

neuropathy. 

 

7.1.5 The effect of inflammation on transient receptor potential channel 

function following streptozotocin-induced diabetes 

 

To explain what mechanisms might affect TRPV1 function in STZ-treated 

animals, we looked at inflammatory agents as inflammation is known to occur in 

diabetes. In the present study, using the proinflammatory agents, bradykinin or 

cannabinoid ligands, caused the potentiation of TRPV1 channel function in 

diabetic tissues but not control tissues. This suggests that STZ treatment may 

cause inflammation and therefore alter the function of TRPV1. 

Activation of calcium permeant nociceptive ion channels on the 

peripheral and central terminals of sensory neurons leads to the synthesis 

and/or release of a variety of proinflammatory agents and neuropeptides such 

as ATP, BK, PGs, CGRP, SP and vasoactive intestinal peptide (VIP). TRPV1 

play a significant role in inflammatory thermal hyperalgesia. The inflammatory 

mediators activate their respective G-protein coupled receptors to initiate 

secondary messenger pathways resulting in activation of either PKA, PKC, 
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MAPK, extracellular calcium/CaM-dependent kinase II (CaMKII) or Src kinase, 

which phosphorylate TRPV1 (Premkumar and Sikand, 2008). 

Activation of CB1 or CB2 receptors has been shown to increase or 

decrease adenylate cyclase levels, which will modulate the phosphorylation 

state of TRPV1. Activation of the CB1 receptors decreases Ca2+ and increases 

K+ conductance in the presynaptic terminals that can interfere with the action of 

TRPV1 distributed at the central terminals of sensory neurons. Phosphorylation 

at S116 in the amino terminus of TRPV1 is vital in PKA mediated regulation of 

TRPV1 desensitization (Bhave et al., 2002). 

Phosphorylation by PKC has been shown to sensitize TRPV1. Various 

algesic agents like BK, ATP, trypsin and PGs are known to sensitize TRPV1 by 

activating PKC downstream of their G-protein coupled receptors in sensory 

neurons and in recombinant expression systems (Cesare and McNaughton, 

1996). 

TRPV1 is involved in both afferent (sensation of pain) and efferent 

(neurotransmitter release) function. TRPV1 can mediate both inflammation and 

pain. Important properties of the TRPV1 receptor include sensitization, 

desensitization (a reduction in response to continued exposure to an agonist) 

and tachyphylaxis (a reduction in response to repeated application of an 

agonist). Both desensitization and tachyphylaxis require extracellular Ca2+, 

suggesting the involvement of Ca2+ -dependent intracellular signalling 

mechanism. Tachyphylaxis can be abolished by inhibitors of Ca2+ -dependent 

phosphatases, suggesting the requirement for phosphorylation in channel 

activation. Thus, ca2+ -mediated dephosphorylation may render the channel 

inactive leading to desensitization or tachyphylaxis. Prolonged TRPV1 

activation by capsaicin may lead to its desensitization. PKA-, but not PKC-

mediated phosphorylation is able to reverse tachyphylaxis, suggesting distinct 

actions for these kinases. Desensitization may result from Ca2+ -induced 

modulation of TRPV1 sensitivity, and/or Ca2+ toxicity; a large and sustained 

Ca2+ influx via TRPV1 has been linked to neurodegeneration of the peripheral 

nerve terminals (Premkumar and Sikand, 2008). 
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TRPV1 plays an important role in enhancing bladder reflex contractions 

in the chronically inflamed bladder and its responses can be significantly 

potentiated by the activation of PKC. Application of capsazepine resulted in 

decreased contractions in bladder inflamed by cyclophosphamide. In acetic acid 

or lipopolysaccharide-induced inflammation of the bladder, the frequency of 

urinary bladder contraction was significantly enhanced in wild type TRPV1 mice 

but not in TRPV1 knock-out mice. The frequency of bladder reflex contractions 

were reported to be similar in both TRPV1+/+ and TRPV1-/- mice and it was 

shown that high concentration of capsazepine had no effect on the bladder 

reflex activity of normal bladders (Premkumar and Sikand, 2008). These reports 

may be different from the findings in this study that adding inflammatory 

mediators acutely is quite different from possible prolonged inflammation in the 

STZ model. The STZ treatment might produce desensitization due to persistent 

release of inflammatory mediators. This might give opposite effect to acute 

addition of bradykinin. 

 

7.1.6 Possible clinical interpretations 

 

 Diabetic cystopathy is a common symptom found in diabetic patients. 

There is more urination in order to excrete the high levels of blood glucose. In 

this study, the down regulation of TRPV1 in STZ-diabetic rats was found. This 

might suggest a hypoalgesic effect in reducing pain sensation in the diabetic 

rats. TRPV1 is a nociceptive receptor therefore pain receptors will be less 

activated in diabetic rats. In the present study, the reduction in the responses to 

TRP channel activations in the nerves of diabetic rat bladder was found. The 

findings from the present study are consistent with the long term effects of 

diabetes impairing the contractile responses in bladder. This is consistent with 

the observation that diabetic patients suffer from difficulty to empty the bladder. 

Improving the responsiveness of nerves of bladder in diabetic patients may 

improve their bladder function. These studies suggest that indirect modulation 

of TRPV1 through bradykinin receptor activation has potential since it 

potentiated the TRPV1 channel in diabetic rat bladders. 
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7.2 Conclusion 

 

In conclusion, in the rat urinary bladder or colon preparations, diabetes 

mellitus using STZ animal model caused 1) the impairment of a number of TRP 

channel subfamily function, TRPV1, TRPV4 and TRPA1 but not TRPM8. The 

combination of NK1 and NK2 antagonists significantly inhibited the responses of 

TRPV1 channel. This may suggest the involvement of neurokinin in 

postsynaptic transmission in rat bladder following the activation of TRPV1 

channel, 2) the impairment caused by STZ-induced diabetes occurred very 

early (within 36 hours after diabetes induction) in TRPV1 channel but not 

TRPA1 channel. There are specific early effects of STZ treatment on TRPV1 

channel function at a time when other afferent nerve terminal channels (TRPA1) 

are functioning normally, suggesting that early onset of dysfunction in TRPV1 

signalling may not merely be the consequence of nerve damage, 3) the factors 

influence in the mechanism of this impairment may not be the neuropathy effect 

on neurotransmitter release or nerve damage. 

 

7.3 Future work 

 

Since the mechanism involved in the impairment of TRP channel function 

in STZ-diabetic animal model is still unclear, the following issues are waiting to 

be completed in order to explain the whole phenomena. 

 

7.3.1) To study the localization of TRP channels in control and diabetic 

rat urinary bladder smooth muscle preparations using 

immunohistochemistry 

7.3.2) To study the neurotransmitter release mediated by TRP channel 

agonists in control and diabetic rat urinary bladder smooth muscle 

preparation using neurotransmitter release measurement. 

However, it is quite difficult to achieve this experiment since there 

are very few nerve ending in bladder tissues.  
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7.3.3) To compare the TRPV1 receptor expression in control and 

diabetic tissues using western blotting technique. However, the 

problem with this technique is that it is difficult to find the specific 

antibody. Therefore, polymerase chain reaction (PCR) technique 

may be useful to study the TRPV1 expression. As there is very 

little TRPV1 in the bladder tissues, it is unlikely to determine the 

TRPV1 receptor expression using western blot analysis. 

7.3.4) To study the TRPV1 channel function in wild type and knockout 

mice using TRPV1 labeling technique 

7.3.5) To further compare the cholesterol contents from the rat bladder 

tissues treated with or without cyclodextrin molecules by 

increasing the concentration of cyclodextrins 
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