INFORMATION FLOWS IN CAUSAL NETWORKS

NIHAT AY! AND DANIEL POLANI?

ABSTRACT. We introduce a notion of causal independence based on virtual intervention, which
is a fundamental concept of the theory of causal networks. Causal independence allows for
defining a measure for the strength of a causal effect. We call this information flow and compare
it with known information flow measures such as the transfer entropy.
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1. INTRODUCTION

What is mind? No matter.
What is matter? Never mind.
George Berkeley

Information theory provides important quantities for the characterization of complex systems,
and there are also some reasons to believe that it pervades the physical world in general (Wheeler,
1990). The use of the measure of Shannon’s mutual information is ubiquitous in this context.

A particular interest lies in the identification of the “fHow of information”, in the sense as to
identify how information is processed in a given system. For this purpose, typically variants
of mutual information measures are used (Shaw, 1981, 1984; Matsumoto and Tsuda, 1988;
Schreiber, 2000). However, as much as these measures are used in the context of a “flow of
information”, they are essentially of correlative character. This, in particular, creates some
situations where such quntities are difficult to be interpreted as a “flow”. The utility of having
a proper measure for a “flow of information” can be seen in a number of recent papers that
use simplified forms of information flow measures to characterize complexity of information
processing (Wennekers and Ay, 2005), robustness (Ay and Krakauer, 2006), or information
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processing in agents (Klyubin et al., 2004, 2005). Thus, the variety of applications for a notion
of information flow signals an increased need for a well-founded measure of information flow and
promises a wide and fruitful scope of applications for such a measure.

How to go about constructing such a measure? As we mentioned above, a pure correlative
measure does not precisely fit the bill. Different parts of a system may share information (i.e.
have mutual information), but without information flowing between these parts. Rather the
joint information stems from a common past.

For an intuitive picture how to move towards a measure of information flow, consider e.g. a
river whose waterflow one wishes to track. The standard method to track the waterflow is to
introduce a tracer (color or radioactivity) into the river and to trace the occurrence of this tracer
throughout the river (Werner et al., 1997). Central for the success of the method is that the
tracer consists of a material not usually found in the river.

In a similar mode, one could try to trace down information in a system. Given an information
processing system, one would add (“inject”, Klyubin et al., 2006) some noise uncorrelated with
any of the unperturbed parts of the system and measure the mutual information of different parts
of the perturbed system with the noise. Since the noise is uncorrelated with the unperturbed
system (corresponding to the tracer material not found in the river before the measurement),
any mutual information found is an indicator for an information flow.

There is, however, a central difference to measuring the flow of matter (as in the river illustra-
tion). Matter flows are additive. This allows to estimate the unperturbed flows via infinitesimal
perturbations of the system. Information flows, however, are non-additive. Thus, one can not
expect naive “active probing” to be a suitable direct measure for the information flow in an
unperturbed system (Klyubin et al., 2006). This task of calculating the information flow in the
unperturbed system will occupy us for the rest of this paper.

Similar to the models of material flow, we will employ graph models. The realization of the
information-theoretic perspective is achieved by considering the nodes of this graph to be ran-
dom variables. The formalism to do so, (causal) Bayesian networks, is well developed. Above
“injection” of information is modeled in this context as intervention in a given network, i.e. as
a modification of the original network (Pearl, 2000). In particular, this is intimately connected
with a thoroughly studied framework for the treatment of causal dependencies (Lauritzen, 2005,
1996). The concept of information flow that we will develop on the basis of causal Bayesian
networks can be seen as an information-theoretic counterpart of the probabilistic formalism from
(Pearl, 2000).

As in (Pearl, 2000), we will consider Bayesian networks with a finite number of nodes who take
on a finite discrete number of states. While it is difficult to say whether the formalism generalizes
easily to systems with continuous nodesets, we expect the formalism to generalize naturally to
the case where the state spaces for the nodes may be continuous.

2. DIRECTED AcycLic GRAPHS

We consider a finite set V # @) of nodes and a set E CV x V of edges between the nodes. Such
a directed graph G := (V,E) serves as a model for the causal interactions of the nodes, and
we write v — w if (v,w) € E. Two nodes v, w are adjacent, in symbols v ~ w, if v — w or
w — v. An ordered sequence (v1,...,v;) is called a path from from vy to vy if v; ~ v;41 for all
1=1,...,k — 1. A path is directed if it satisfies v; — v;51 for alli =1,..., k — 1. If v; = vy,
the directed path is called directed cycle. A directed graph without directed cycles is called a
directed acyclic graph (DAG).
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In his graphical models approach to causality, Pearl (Pearl, 2000) assumes DAG as the structural
specification of causal networks. Within this approach one aims at understanding the relation
between these structural and the corresponding observational properties such as stochastic de-
pendence or independence of the nodes. In this regard d-separation (d stands for directional)
has been identified as the graphical separation property that is consistent with stochastic con-
ditional independence (see Theorem 1). It is defined as follows: We say that a path (vq,...,vg)
is blocked by a set S, if there is a node v; of the path such that

e cither v; € S, and edges of the path do not meet head-to-head at v;, or
e v; and all its descendants are not in S, and edges of the path meet head-to-head at v;.

A set A is d-separated from B by S if all paths from A to B are blocked by S. While this con-
dition is characterized by its consistency with stochastic conditional independence structures,
Pearl’s notion of causality suggests an unidirectional separation condition as graphical represen-
tation of causal conditional independence structures, which we call ud-separation:

Definition 1 (ud-Separation). Let G = (V. E) be a DAG, and let A, B, S be three disjoint
subsets of V. We say that B is ud-separated from A by S (in G) if all directed paths from A to
B go through S. If this is the case, we write (B L,4 A|S)q or, to simplify notation, B 1,4 A|S.

Example 1 (DAG Layers). Let G = (V, E) be a DAG. We stratify the set V in a natural
way into layers. We start with Vi := {v € V : pa(v) = 0}. Obviously, V; is not empty,
because otherwise we could construct a directed cycle. In order to get the next layers we iterate
according to

Vigr == {fveV\(ViU---UVg) : pa(v) N (VL U---UV) # 0}, k=1,2,...

For some k, Vi1 is an empty set, and therefore all sets Viio, Viis, ..., are also empty. With
L :=max{k : Vj # (0} we have the disjoint union

V=Viu---uVp
and the corresponding map [ : V' — {1,..., L} that assigns to each v € V its layer number [(v).

Now, it turns out that for 1 < r < s <t < L, the layer V; is ud-separated from V, by V. In
order to see this, consider a directed path (v1,...,v;) from V; to V;. Then the corresponding
layer numbers [(v1),1(v2),...,l(vg) start with r and end with ¢. By definition of the layers we
know that for I(v; 1) > I(v;) we always have [(v;11) = l(v;) + 1. This implies that the numbers
have to go through s, and therefore the path (vq,...,v;) meets V.
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Proposition 1. Let G = (V, E) be a DAG, and let A, B, S be three disjoint subsets of V. If B
is d-separated from A by S, then B is also ud-separated from A by S.

Proof: Let (v1,...,vx) be a directed path from A to B. The d-separation property implies that
this path is blocked by S. Because all nodes in the path are head-to-tail, that is — v; —, the
only way for the path to be blocked by S is that there exists a v; € S. |

Example 2. Consider the set V :={1,2,3,4,5} of nodes and the set
E = {(1’ 2)’ (1’ 3)’ (2’ 3)’ (4’ 2)’ (3’ 5)}

of edges as shown in the following figure:

4 @5 )5
1A

Furthermore, A := {1}, B := {4,5}, S := {3}. Obviously, B is ud-separated from A by S but
not d-separated.

3. CAUSAL MODELS

In Section 2 we presented the structural model for causal interactions. In order to specify these
ineractions we need a concrete mechanistic description of the nodes. We assume that each node
v € V has a non-empty and finite set X, of states. Given a subset A, the configurations in A are
the elements of the set X4 :=[] X,, and one has the canonical projections X4 : Xy — Xy,

vEA
x = (Ty)vev = T4 = (2y)peca. We now describe the mechanisms of the nodes v by Markov
kernels
Po - Xpa(u) X X, — [07 1]7 (xpa(v)axv) = p'u(x'u‘xpa(u))

Given a DAG G, we call a family of local kernels p,,, v € V', a G-causal model. The corresponding
joint distribution is then given by

(1) p(’l") = Hp1)(-7"v|-7f'pa(u))

veV

We have the following central theorem by Verma and Pearl (Pearl, 2000):
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Theorem 1 (Verma & Pearl, 1988). Let G = (V,E) be a DAG, and let A, B,S be three
disjoint subsets of V.. Then B is d-separated from A by S if and only if for all G-causal models
X4 and Xp are stochastically independent given Xg (with respect to the joint distribution (1)).

This theorem establishes the connection between the underlying graphical structure of a causal
model and the corresponding stochastic independence structure with respect to the joint distri-
bution. The deviation from stochastic independence can be quantified by information-theoretic
measures like mutual information, conditional mutual information, or multi-information. This
way, the qualitative nature of stochastic independence is embedded in a quantitative theory,
which allows for the identification of stochastic interdependencies among the nodes. In appli-
cations this is often misinterpreted as identification of causal relationships. In this paper we
present a quantitative theory of causal dependence that is based on our notion of ud-separation
instead of d-separation. Theorem 2, our main result, will be an analogon to Theorem 1. In what
follows we need the notion of causal effects (Pearl, 2000), which is based on the possibility to
intervene in causal models. For didactical reasons we define causal effects in two steps.

Step 1: Basically, we split the node set V into a subset C of nodes that are intervened and
the subset D of remaining nodes which are observed. Let zc be a configuration in C'. Setting
Xc = zc means replacing all mechanisms p,, v € C, in (1) by the constants z,, v € C. A
transparent representation of the corresponding post-interventional distribution is obtained by
considering the probability of observing a configuration zp in the complement D := V' \ C of C
after having set z¢.

(2) p(zplic) = Hpv(xv|$pa(v))
veD

Compared with the pre-interventional distribution (1), the post-interventional distribution (2)
is obtained just by neglecting all factors p, where v is an element of C' (truncated factorization).
Note that this interventional conditioning, in contrast to observational conditioning, is defined
for all z¢ € Xo. The map (z¢,zp) — p(xpl|ic) is called direct causal effect C — D as indicated
in the following figure:

For a subset A of C' and a configuration z¢c\ 4 € X¢\ 4, we call the map (z4, 2p) = p(zp|Ea, £o\a)
direct causal effect A — D imposing T\ a-

Step 2: In order to deal with causal effects that are mediated by some uncontrolled variables we
consider an arbitrary subset B of D as shown here:
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The probability of observing Xp = x5 after having set X¢ = z¢ by intervention is given by

p($B|§30) = Zp(waTD\BL’iC) = Z Hp(x’u‘xpa(v))

"I;D\B fI?D\B veED

The corresponding map (z¢,xzp) — p(zp|c) is called causal effect C — B. Similar to the
direct effects of the first step we consider a subset A of C' and a configuration zc\4 € X\ a-
The map (7a,75) = p(v|Ta,2c\4) is the causal effect A — B imposing x4

4. CAUSAL INDEPENDENCE

We want to study causal independence. To this end, first let us have look at stochastic in-
dependence: Let A, B,S be three disjoint subsets of V. Then X4 and Xp are stochastically
independent given Xg if for all x4, g with positive probability p(z4,2g) and all zg

(3) p(esloa,ss) = Y p(@hlzs) plenles,os) (= plasles))

This condition means that observing x4 after having observed g does not change our expecta-
tion of observing xp. An interventional version of this would be: Setting x4 after having set =g
does not change the probability of observing . This corresponds to the following condition:

(4) pleslia, gs) = > paalds) p(zpldy, is)
'y

Unlike the conditional probability p(zg|z4,zs), the interventional probability p(zp|Za,Zg) is
defined for all pairs zg, x4 rather than being limited to those with positive probability. This is
due to the fact that interventional probabilities are defined via mechanisms rather than obser-
vations. Being able to formulate this stronger condition allows us to define that Xpg is causally
independent of X 4 imposing Xg, written

Xp 1L X4 | Xg

if condition (4) is fulfilled for all pairs zg,z4. Note that this specifically includes situations
of “unseen” or “unprobed” causal dependence, which is induced by the network mechanisms.
Furthermore, note that the causal independence property is not symmetric. This is consistent
with our intuitive understanding of causality as a directional concept. In particular, this notion
of independence is governed by rules that are different from those underlying a graphoid structure
(Pearl, 2000).
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Now we are ready for our main result of the paper, which, in analogy to Theorem 1, relates the
ud-separation property associated with the graphical structure of a causal model to the causal
independence relation, which depends on the specification of the local conditional probabilities.

Theorem 2. Let G = (V,E) be a DAG, and let A, B, S be disjoint subsets of V.. Then B is
ud-separated from A by S if and only if for all G-causal models Xp is causally independent of
XA tmposing Xg.

Proof:
“only if”: We assume that B is ud-separated from A by S, and set D :=V \ (AU S). We are
going to prove that p(zp|%a,%s) does not depend on z 4. To this end we define

A" := {v eV : there exists a directed path from A to v that doesn’t meet S}, B':=V\ A"

>
Qe

By definition one has A C A’ and S C B’. Furthermore, B 1,4 A|S implies B C B’. Thus, we
can decompose D into a disjoint union of the sets A’\ A and B"\ S. Now we are ready to prove
that p(zp|Zg,Z4) does not depend on z 4:

p(rp|Ta,Ts) = Z p(zB, p\BlTa,Ts)

IpD\B

= Z Hpv(xv‘xpa(u))
Tp\BvED

= Z Z H pv($v|$pa(y)) H pv($v|$pa(u))
TAn A TN (suB) VEA'\A veEB'\S

= Z H pv($v|$pa(y)) Z H pv($v|$pa(u))
Tgi\(suB) vEB'\S TpnaveA\A

~~

=1

= Z H pv(mv|mpa(v))

Tgi\(suB) vEB'\S

The definition of A" and B’ implies that for all v € B'\ S one has pa(v) C B'. Therefore all the
expressions py (Ty|Tpa(y)) of the last line, and therefore also p(zp|%a,Zs), do not depend on z 4,
which implies equation (4).

“if”: We assume that Xp is causally independent of X 4 imposing Xg for all G-causal models
and want to prove that B is ud-separated from A by S. We define X, := {0,1} for all v € V.
Assume that there is a directed path (vy,...,v5) from A to B not intersecting S. Without
restriction of generality we can assume v; ¢ AU B for all 1 <i < k. Every node v;, 1 = 2,...,k,
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just copies the state of v; 1, which is contained in the set pa(v;):

pv,— (xv,- |$pa(v,—)) = {

L, if Ty; = Ly;_4
0, otherwise

All other nodes are assumed to choose their state completely randomly according to p, (7, |Tpa()) ==
1

5-

p(zp|Ta,Ts) = Z Hpv($v|xpa(1;))

Tp\BvED

k
= Z HpUi (-7/'1)1‘ |mpa(1)i)) H p’u(m'n‘mpa(v))

TD\B 1=2 ’UED\{’Uz,...,’Uk}

k
1
B W Z Hpvi(xvi‘xpa(vi))

Tp\B =2

1
- 9ID[—k+1 Z 5%1 (xUZ)(SIUQ (Zug) - 6‘1"%71 (x“k)
ID\B
1
= 5B %au (Tu)

Thus p(xp|Za,2s) clearly depends on z 4, and therefore Xp is not causally independent of X 4
imposing Xg. O

Combined with Theorem 1 this result directly implies the following corollary.

Corollary 1. Let G be a DAG, and let A, B, S be three disjoint subsets of V. If for all G-causal
models Xp is stochastically independent of X4 given Xg, then for all G-causal models Xp s
causally independent of X 4 imposing Xg .

Proof: Stochastic independence for all (G-causal models is, according to Pearl, equivalent to
d-separation. On the other hand, according to Proposition 1, d-separation implies ud-separation
and therefore causal independence. O

5. A DEFINITION OF INFORMATION FLOw

In order to quantify causal dependence we first have look at the stochastic dependence case.
Stochastic dependence is measured by deviation from independence, more precisely, the deviation
of the left-hand side of (3) from its right-hand side. In order to do so, we need to specify a measure
of deviation or distance between transition kernels. The application of the relative entropy as
such a measure turns out to be very consistent with information-theoretic concepts. With a
probability distribution p on X, the relative entropy of two transition kernels P and @) from
Xc to X is defined as

zp|z
D, (P Q) Zp’rp ZPTB\T(w log ———= Plap|zc)

Qzp|zc)
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Here we apply the usual convention that 010g% = 0 and slog§ = oo for all > 0 and all
s > 0. Throughout the paper log stands for the binary logarithm log,. Using this deviation
measure the stochastic dependence of X 4 and Xpg given zg is quantified as the deviation from
independence.

p(zglra, z5)
o, P(#hlTs) pleslr)y, 5)

(5) L(Xa:Xplzs) = > plwalzs) ) plzplza,zs)log
T A TB Z

Taking the mean with respect to p(zg), xs € Xg, gives us

(6) I(Xa: Xp|Xs) = > plas) [,(Xa: Xp|xs)

This is called the conditional mutual information of X, and Xp given Xg. In the case where
S is the empty set, this quantity reduces to the mutual information I,,(X4 : Xg). One has the
following property

XBJ_LXA|X5 =4 Ip(XA:XB|X5) = 0.

Now let us come back to causal dependence. Similarily to (5) we define it as deviation from
causal independence, which is given by equation (4): The causal contribution of X4 to Xp
imposing zg is measured by

p(zB|Ea, Ts)

th p(r'y|2s) p(xp|Ey, T5)

I,(XA — Xplig) = ZP($A|~”??S) ZP(-’I/’BW?A,-’??S) log
T A TB

By taking the mean, we obtain the information flow from X4 to Xp imposing Xg:

L(Xa— Xp|Xs) == Y plzs) [,(Xa — Xp|is)
Ts

It has the same structure as (6), and it is a measure for the “visible” contribution of a causal
effect. In the extreme case where S is empty the information flow quantifies the total causal
effect which is mediated by all variables in V' \ (A U B), and we simply write I,(X4 — Xp) in
analogy to the mutual information. In the other extreme case where S is the complement of A
and B in V the information flow quantifies the direct causal effect A — B.

Proposition 3.
(7) Xpl X4 Xg = I,(Xa— Xp|Xs) =0

If Xs exhausts Xg, i.e. all outcomes xg € Xs have a nonvanishing probability p(xs), then
implication (7) becomes an equivalence.

Proof: Follows directly from the properties of the relative entropy. O
A combination of this statement with Theorem 2 directly implies the following:
Corollary 2. If [,(X4 — X5 |5(:q) > 0 then there exists a directed path from A to B that does

not meet S.

Example 3 (Diamond Structure). Consider the following graph with the nodes V = {W, X, Y, Z}
and edges E = {(W, X), (W, Y), (Y, Z), (X, Z)}.
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®

We assume that all nodes have as state set {0,1}. Node W generates a state w with probability
p1(w) = %, which is then copied by the nodes X and Y. Finally, node Z generates the XOR
value of the two states z and y, which, in this case, is always 0. These mechanisms give us the

following joint distribution:
1
p(wa €T,Y, Z) = 9 511)(7/') 511}(?/) 5XOR.(m,y) (Z)

By straightforward calculations we obtain the following quantities which illustrate that, in gen-
eral, our measures of correlation and causation express different aspects of the system:

| Correlation | Causation |
I(X:Y)=1 I(X—=Y)=0

L(X:YW)=0|L(X—-Y|W)=0

IL,(W:Z|Y)=0|L(W—=Z|Y)=1

Example 4 (Channel Splitting). Consider three nodes X = (X1, Xy), Y, and Z = (7, Z3).
Node X generates a pair (z1,z9) € {0,1} x {0,1} with probability px(z1,z2). One entry, say
x1, is copied by Z;. The second entry z, first goes to Y and then to Z;. This gives the joint
distribution

p(x1,22,Y,21,22) = px($1,$2)5m(y) 5:1:1(21)5,1;(22)

Y

X = (X1, Xo9) Z = (Zy,7Z5)

An easy calculation shows that the information flow from X to Z imposing Y coincides with
the entropy H,(X;) of X;:

L(X = Z|Y) = Hy(X))

If Y were not imposed, then the total flow from X to Z would just be H,(X), i.e. the full entropy
of the input node X.
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Example 5 (Mediated Flow). Consider the graph shown in Example 3 with the nodes W, XY,
and Z. Again, W generates a symbol w € {0, 1} with probability %, which is then copied by the
nodes X and Y. For the node Z we consider two cases:

Case 1: Z is assumed to copy the state fom X, and we have the joint distribution

(8) p(w,z,y,z) = % O () 00y (y) 02(2)

The conditional mutual information I,,(X : Z|Y’) vanishes, because X and Y provide the same

information for Z. On the other hand, our information flow measure I,(X — Z| }7) has the
maximum achievable value of 1 bit. Note that this is equal to the unintervened information flow
I,(X — 2).

Case 2: We modify the machanism of Z for the counterfactual situation where X and Y are
different. In that situation Z is now assumed to generate a symbol z € {0, 1} with probability %
The mechanism for identical z and y remains as in the first case. We have the joint distribution

1 0x(2), ifx=y
(9) p(w,m,y,z) = 5511)(-7;)511)(?/)'{ % : lf’I';é’l/

which coincides with the joint distribution (8) of the first case. But here, Y determines to some
extent whether X can control the outcome of Z. More precisely, one has

- 3. 4
(X = Z|Y) = Jlogy ~ 031

The result lies significantly below the maximum achievable information flow of 1 bit due to the
mediating effect of the imposed variable Y.

6. INFORMATION FLOWS IN MARKOV CHAINS

Consider a chain X7, Xo,..., X,, that is generated by an intitial distribution p; and a (fixed)
transition kernel px. In this case we have the joint distribution

P(-’I?U,flf'la e aTn) = po(flio)px(-’m\-’ﬂl) s px(-’ﬂn\-’ﬂnq)
X, X, X1 Xn
® @ >@ >@ >@

There is a field of research (Shaw, 1981, 1984; Matsumoto and Tsuda, 1988), which is not
restricted to this simple setting, but also deals with more general dynamical systems, that
aims at relating the qualitative characteristics of a given dynamics to its information flow in
time. Hereby, information flow is usually quantified by the mutual information between a time
interval [4,j] = {i,7 + 1,...,j} of the past and a time interval [k,l] = {k,k + 1,...,[} of the
future. Applied to our simple example, this would correspond to the mutual information

(10) Ip(X[i,j} :X[k,l})a 1<1<y <k<Il<n
Within the context of the present paper, it is natural to ask whether our definition of information
flow is consistent with the definition (10). Indeed, a small calculation proves
Lp(Xjig) = Xka) = Ip(Xiig) 2 Xie)
This consistency breaks down if one wants to quantify information flows among the elements

of a composite dynamical system. To make clear in what sense this is meant we consider two
processes X and Y as shown in the following figure:
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Y; e Y1 Y,

(X0, Y0) @

X an] Xn

The processes are assumed to be generated by an initial distribution py and kernels px and py
as follows

p(x()a'--axnuy()a"'uyn)
= po(wo,y0) px (w2|z1,y1) py (2|21, 91) - Px(Zn|Tn—1,Yn—1) Py YnlTn—1,Yn—1)

Schreiber (Schreiber, 2000) has proposed a measure, called transfer entropy, that, applied to
this situation, is intended to be capable of quantifying the information transfer from Y to X.
For 1 <k < n, it is defined as the conditional mutual information I,,(Y} 4 : Xg11 | X[1 ) The
following simple but instructive example proves that the tranfer entropy does not necessarily
coincide with the information flow I, (Y} x) — X1 | f“ Pk

Example 6 (Information Exchange). We consider two observationally equivalent cases:
Case 1: Assume that both nodes have states 0 and 1, and assume that at each time step k they
just copy the state of the other node. If we start with a configuration (z,y) according to the
distribution % (5(0’1) + 6(170)), we would observe a sequence --- — (0,1) — (1,0) — (0,1) — ....
The transfer entropy vanishes in this case for all times k. This contradicts the intuition that by
copying the other node’s state, clearly there is a flow of information. In consistence with this
intuition, our measure of information flow has the maximal value of one bit in this case.

Case 2: Consider now the case that X is the inversion of Xj for all k£ (i.e. 0 becomes 1, and
1 becomes 0) and, likewise, Y1 is the inversion of Yj. In particular, there is no interaction
between X and Y after their initial generation. This is observationally equivalent to the first
case and thus the transfer entropy remains (. However, its interventional dynamics is different,
and the information flow I,(Y[; 4 — Xg11 | )?[1’,9}) becomes 0 in this case. Thus information flow
is able to distinguish the case of information being actively exchanged between the chains X
and Y and the case where there is no such exchange.

In Examples 3 and 4 we imposed nodes lying between the “sender” and the “receiver” node. The
examples show that imposing such nodes can both reduce (Example 4) or increase (Example 3)
an information flow. The reduction of the flow by imposing intermediate nodes naturally fits
intuition. However, the increase of the flow by imposing a node is a typical example of how
the rules governing information flow differ from naive material flow. The fact that information
flow can both increase or decrease by imposing nodes is closely related to the fact that synergy
I,(Xa: Xp|Xg) —I,(X4 : Xg) or triple mutual information quantities can be both positive
and negative (Schneidman et al., 2003; Adami, 1998; Bell, 2003).

7. APPLICATION SCENARIOS

In Section 1, we have briefly mentioned some useful applications for the concept of information
flow. The usefulness of the concept extends beyond that. We believe that the above measure of
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the causal flow of information allows one to qunatify a number of phenomena. Here we wish to
give a glimpse into possible perspectives for its future use.

Physics: Via the unambiguous causal interpretation of the information flow it is possible
to enhance the identification of causal relations and mechanisms in general physical sys-
tems by a measure of their impact. This provides a new tool for quantitative studies of
dynamical and complex systems. It would be interesting to pursue in how far above con-
cept of information flow could be applied to the computational mechanics / causal states
framework (Crutchfield and Young, 1989; Shalizi and Crutchfield, 2002).

Synchronization: Synchronization is a phenomenon of great interest in the context of self-
organization (Strogatz, 2004). The information flow formalism can help elicit which in-
formation flows between the different components of a system are involved to create the
effects of global synchronization.

Game Dynamics: Often one encounters game-theoretic scenarios with a dynamic compo-
nent, i.e. two players that adapt their strategies over time or two populations where the
distribution of available strategies changes during evolution (Sato and Ay, 2006; Sato et al.,
2005). Here, one often encounters dynamics moving towards cooperative or antagonistic
player behaviour. Using information flow would allow one to attribute how much a given
player is “responsible” for the emergence of a particular cooperative or antagonistic out-
come.

Models for the Perception-Action Loop: In Section 1 some work using information flow-
type quantities has been briefly mentioned. Information-theoretic principles, long believed
to be relevant for the understanding of biological information processing (Barlow, 1959;
Atick, 1992) now begin to receive renewed attention (Linsker, 1988; Baddeley et al., 2000).
Related to that, Bayesian and prediction-based concepts of the self-organization of the
perception-action loop prove themselves increasingly successful (Kording and Wolpert,
2004; Der et al., 1999; Porr et al., 2006). The family of information flow methods thus
promises to provide a calculus by which principles guiding biological (and artificial) percep-
tion-action loops can be identified and formulated (Klyubin et al., 2004).

The concept of information flow, with its causal character, provides an additional tool in
this arsenal of methods and could help to elucidate further issues relevant to the information
processing dynamics in biological and artificial agents.

8. CONCLUSIONS

The present work was motivated by the need for a systematic quantification of the “flow of
information”. In developing this concept, we desired to capture, on the one hand, essential
properties of a Shannon-type quantity measurable in bits, while, on the other hand, realizing a
flow-like philosophy different from the correlative nature of the notion of mutual information.

This required us to deviate from the computation of mutual information which is based on
purely observational quantities. An adequate modification of the formalism requires us to take
into account the causal nature of the systems under study. For this, we used the interventional
formalism from (Pearl, 2000) which provided an appropriate framework for the causal mecha-
nisms in the given system. The classical mutual information can be introduced by quantifying
the deviation of two random variables from stochastic independence. Analogously, we intro-
duced information flow as the deviation of two random variables from causal independence by
appropriately adapting the quantities involved in establishing probabilistic independence.

In a number of examples we have shown that our measure for information flow is indeed different
from other notions such as transfer entropy or other quantities related to mutual information;
in particular, our information flow is indeed able to distinguish cases in an intuitive way which
observational methods cannot distinguish (Example 6).
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Together with information flow, we have developed an appropriate modification of well-established
formalisms to fit the framework of causal Bayesian networks. Thus, we have shown how the no-
tion of information flow comes together with a broad and robust set of conceptual tools.

The concept of causality and information flow shows nicely how the possibility for intervention
(or “experiment”) modifies our understanding about the world. Particularly striking is the fact
that, while observational quantities are easier to obtain (no experiments are needed), the causal
concept of ud-separation seems more intuitive than the observational concept of d-separation;
this is consistent with Pearl’s philosophy insofar as causal knowledge seems to be less brittle
than observational (probabilistic) knowledge (Pearl, 2000).

New notions are typically introduced as generalizations or adaptations of existing and established
concepts, driven by theoretical considerations. However, one of the strongest justifications for
introducing a new notion is the practical need for a notion with suitable properties. This exactly
was the case for information flow. If well constructed, such a notion can not just help covering
the cases that motivated its introduction, but also open up pathways towards novel insights into
systems not previously considered. The conceptual framework and the scenarios studied in the
present paper indicate that information flow may be a promising candidate to achieve this.
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