
TOWARD A LOCALISATION OF

TRUST FRAMEWORK FOR
PERVASIVE ENVIRONMENTS

Jun Li

School of Computer Science

Thesis submitted to

the University of Hertfordshire

in partial fulfilment of the requirements

of the degree of

Doctor of Philosophy

11 March, 2008.

Abstract

Pervasive computing envisions an environment in which we are surrounded by

many embedded computer devices. The existence of those networked devices

provides us with a mobile, spontaneous and dynamic way to access various

resources provided by different (security policy) domains. In recent years, we

have witnessed the evolutionary development of numerous multiple domain

applications. One of the richest examples is pervasive environments. Typi-

cally, the conventional approach to secure access over multiple domains is to

implement a unique trusted infrastructure, extending local identity or capa-

bility based security systems and combining them with cross-domain authen-

tication mechanisms. However, this does not adequately meet the security

requirements of communicating with unknown players in pervasive environ-

ments. Moreover, it is infeasible to define a global trust infrastructure and a

set of assumptions that every player will trust in the multiple domain context.

A powerful design technique to address those new security challenges posed

by pervasive environments is to understand them from a domain perspective.

This thesis presents Localisation of Trust (LoT), an architectural frame-

work designed to address the security need of how to talk to correct strangers

in pervasive environments. Based on the localising trust security principle,

LoT provides a generic platform for building access control over multiple do-

mains from two ends: authentication and authorisation. Firstly, LoT proposes

a two-channel authentication protocol to replace traditional (strong) identity-

based authentication protocols by exploring desirable contextual information

for different pervasive applications. Then, delegation and localised authenti-

cation are deployed to achieve authorisation in pervasive environments. The

heart of this different semantic is to let the right domain get involved with its

local players’ interactions by helping them to convert a “token” to a usable

2

access capability, whilst keeping revocation in mind. This is done by introduc-

ing a domain-oriented Encryption-Based Access Control method, using ideas

borrowed for Identity-based Encryption.

The second part of this thesis describes several specific mechanisms and

protocols including a Dual Capabilities Model to achieve the required anti-

properties for LoT. Although novel, they are intended primarily as an existence

proof rather than being claimed to be ideal. Depending upon the precise

application and context, other mechanisms may be better. Most importantly,

the architecture-focused LoT provides such a flexibility by introducing multiple

domains as a primary concern but leaving untouched the security protocols

underlying each single domain and system implementation. Finally, a single

domain scenario, guest access, is examined with the light of LoT. The purpose

of doing so is to enhance the understanding of domain and other concepts

described in LoT and demonstrate the effectiveness and efficiency of LoT for

the scenarios chosen.

3

To my parents Si-De Huang and Xiao-Li Li

4

Acknowledgements

Foremost I would like to express my greatest appreciation to my supervisor,

Prof. Bruce Christianson, for not only giving me this most wonderful opportu-

nity to study for a Ph.D, but also for his continuous support, advice, guidance

and tireless encouragement throughout the period of my research life. He has

been exceptionally understanding, allowing me to challenge myself from differ-

ent perspectives in addition to academic research. While completing my Ph.D,

I finally understand what he told me in our first meeting, “Ph.D is a different

animal”. What I have learnt from my Ph.D research including commitment,

dedication, self-motivation and the ability to keep intellectual curiosity are

priceless.

I am also grateful to James Malcolm, who has provided me with constant

critical discussion on this work regularly. Many thanks are also due to the

fellow research students in the STRI to whom I have numerous intellectual,

interesting and enjoyable discussions.

As always, I owe a special debt to my parents, Si-De Huang and Xiao-Li Li

for not only allowing me to pursuit my dreams freely, but more importantly

for their care, support and endless love.

5

Contents

Abstract 2

Acknowledgements 5

Contents 6

List of Figures 10

1 Introduction 11

1.1 Single Domain vs. Multiple Domains 13

1.2 Definition . 14

1.3 New Challenges . 15

1.4 My Approach . 18

1.5 Contribution . 19

1.6 Dissertation Outline . 21

2 Background 24

2.1 Authentication . 25

2.1.1 What Authentication Protocols Are 25

2.1.2 Authentication in Conventional Environments 27

2.1.3 Authentication On The Fly 29

2.1.4 Authentication . 32

2.2 Authorisation . 33

2.2.1 Access Control List . 34

2.2.2 Role-based Access Control 34

2.2.3 Capability-based Access Control 35

2.3 Delegation . 38

6

2.3.1 Certificate-based Delegation Schemes 39

2.3.2 Delegation of Responsibility 40

2.3.3 Trust and Policy Based Delegation Schemes 43

2.4 Revocation . 45

2.4.1 The Principle of Trust 45

2.4.2 Various Revocation Schemes 46

2.5 A Short History of Public Key Cryptography 48

2.6 Conclusions . 53

3 The Need for Localisation-of-Trust 54

3.1 Paradigm Shift in Security . 54

3.2 Overview of the LoT Framework 57

3.3 The Correct Strangers Problem 61

3.4 Localising the Trust Security Principle 63

3.5 Security Countermeasures/Mechanisms 66

3.6 Conclusions . 69

4 Spontaneous Authentication for Pervasive Environments 70

4.1 Basic Security Requirements in Pervasive Environments 71

4.1.1 Talking to Correct Strangers 71

4.1.2 Motivating Threat Model - Public Meeting 1 73

4.2 Significant Human Context in Pervasive Environments 75

4.2.1 Positive Human Context 75

4.2.2 Minimise The Reliance Upon Trustworthiness 77

4.3 Two Channel Authentication Protocols 78

4.3.1 Leave Strong Authentication Behind 78

4.3.2 Spontaneous Authentication with Two Channels Protocol 79

4.4 Example Protocols . 82

4.4.1 Basic Approach . 83

4.4.2 Generic Approach with two Channel Protocol 86

7

4.5 Conclusions . 89

5 The Domain-Oriented Approach for Access Control Over Mul-

tiple Domains 90

5.1 Domain-Oriented Access Control Method 91

5.1.1 Access Control over Multiple Domains 91

5.1.2 Domain-Oriented Approach 93

5.2 Profile Certificates . 96

5.3 Delegation and Access Control over Multiple Domains 100

5.3.1 Remote Authorisation - Delegation of Rights 101

5.3.2 Localised Authentication 102

5.4 Architecture for Encryption-based Access Control 105

5.5 Revocation . 110

5.6 Conclusions . 114

6 Semi-Trusted Agent Mediated Protocols for Access Control 115

6.1 The Overview of the Semi-Trusted Agent Mediated Protocol

(STAMP) . 116

6.2 Strangers Access from Friendly Domains 119

6.2.1 Motivating Threat Model - Public Meeting 2 119

6.2.2 Confining an Insider 120

6.3 Dual Capabilities Model (DuCaM) 121

6.4 Discrete-Logarithm based Scheme for Localised Authentication 124

6.5 The Guest Access Scenario . 129

6.5.1 The Definition of Guests 130

6.5.2 Common Approaches for Guests Access 131

6.5.3 Motivating Threat Model - Guest Printing 132

6.5.4 Introducing Guests . 133

6.6 Conclusions . 135

8

7 Conclusions and Future Work 136

7.1 Summary of Contributions . 136

7.2 Directions for Future Work . 137

7.2.1 Authentication and Expiration 138

7.2.2 Capability-based Access Control 139

7.2.3 Context-Awareness Applications in Pervasive Computing 141

7.2.4 Work that We Do Not Want To See 142

7.3 Conclusions . 142

Bibliography 144

9

List of Figures

2.1 Access Control List . 34

2.2 Role-based Access Control . 35

2.3 Capability-based Access Control 36

2.4 Public Key Distribution Problem 49

2.5 Public Key Infrastructure . 50

2.6 Identity-based Cryptography 51

3.1 The LoT Framework Overview 59

3.2 Access For Local Players . 61

3.3 Access For Remote Players . 62

3.4 Triangle Trust Diagram . 63

3.5 Trust over Multiple Domains 66

5.1 Trust Triangle . 92

5.2 Access Across Domain Boundaries 94

5.3 Remote Authorisation - Different Delegation Semantics 103

5.4 Localised Authentication . 104

5.5 The Overview of Encryption-based Access Control 107

6.1 STAMP Overview . 117

6.2 Dual Capabilities . 123

6.3 Localised Authentication in STAMP 126

10

Chapter 1

Introduction

As computing resources become increasingly pervasive, human users discover

that they can access more and more resources spontaneously and dynamically.

These resources in pervasive environments are usually provided by a variety of

different suppliers, for instance, organisations, companies, universities, shops,

even other human users, and so on. While much past research on security

protocols for distributed systems has addressed the issues arising in conven-

tional networking environments, today’s spontaneous and highly decentralised

pervasive environments applications have raised a number of new challenges

in a considerably underexplored territory, security over multiple domains.

A number of security systems have been developed previously to apply

traditional, well-studied schemes, including secret key exchange, public key

certificates, access control lists and capabilities, etc., to satisfy the security

needs of conventional environments (e.g. distributed systems). However, I am

not aware of much work that attempts to clarify and focus on the security

concern over multiple domains as the primary setting. In fact, most existing

works target the security problems in a single domain first, then lift a security

system (that is being successfully implemented in a single domain) to the mul-

tiple domain context. Usually, this is done by the implementation of a unique

trusted infrastructure, extending (local) identity or capability based security

11

systems and combining them with cryptographic (cross-domain) authentica-

tion mechanisms. However, this approach will be cumbersome in pervasive

environments due to the spontaneous and dynamic nature of pervasive inter-

actions. More significantly, this is not what we really want. There is typically

a lack of a global trust infrastructure which every player will trust. More-

over, it is infeasible to force each domain to implement the same (or even

compatible) security infrastructure and mechanisms.

As a result, this dissertation presents my research on security over multi-

ple domains, particularly the pervasive computing environment. I argue that

security for the pervasive environment can only be partially solved, if security

for multiple domains cannot be solved first. Based upon some current state-

of-the-art of research works in the security filed, I am proposing a new security

framework, called LoT (Localisation of Trust). LoT presents a conceptually

simple idea 1 in spite of the considerably tricky protocol implementation. It is

not a system implementation, as most underlying mechanisms adopted in LoT

are not (purely) new. However, we intend to change the way of conventional

thinking on security, particularly for pervasive environments. Consequently,

in essence, LoT is an architectural security framework.

This chapter describes the motivation and outlines the contributions of

this work. It begins with a brief discussion of single and multiple domains.

This is followed by some definitions in section 1.2. Section 1.3 examines new

challenges posed by multiple-domain oriented pervasive environments. Section

1.4 illustrates the approach that is adopted in this dissertation to guide the

development of LoT. Section 1.5 outlines the contribution of this research.

This chapter ends with the description of the structure of the rest of this

dissertation.

1Although I have to admit that it took me three versions of draft to describe it simply.

12

1.1 Single Domain vs. Multiple Domains

The concept of domain is not entirely new in the security field, but may be used

differently in different contexts. In conventional environments (e.g. distributed

systems), administrative domains have been used to organise resources into

domains. Often, the conventional administrative domains are based upon the

geographic location (i.e. in the same machine, in the same building, attached

to the same network) of resources for the purpose of easy administration and

security.

Conversely, the concept of domain used in this dissertation is not based

upon physical geography. Instead, it implicitly means a security (policy) do-

main which may span over several administrative domain boundaries (or ge-

ographic locations). As a consequence, if the same security policies apply to

numerous (conventional) domains, those (conventional) domains are actually

in a single domain. For example, two (administrative) domains (i.e. com-

pany A in London and company B in Cambridge) decide to implement the

classic Kerberos [122] system and both reply upon one particular Kerberos

server KSe. From the security policy administration perspective, it is not sur-

prising that both (administrative) domains are actually in the same (security)

domain under domain server KSe.

Thus, the term multiple domains will be used when resources are subject

to different security policies, even though some of them may be residing in the

same geographic location. The richest case of the multiple domain context

is pervasive environments, when many players from different domains wish to

interact with each other spontaneously and more openly. A concrete definition

of the term domain will be given in the following section.

To access resources in a single domain, local players need to contact the

domain servers, such as use of a pre-defined userID and password to log in,

a shared key proof or a certificate. Those local players can be physically

13

located either within the geographical boundary of conventional domain, or

outside the geographical boundary. Some attempts have been made to address

the security issues in the later case recently, as witness mobile computing

applications wishing to access resources over an unreliable link. From our

viewpoint, this is not the big problem. Instead, the most central issue here

is, how to access resources in other domains. This is much more difficult

than to access resources in a user’s own domain, because one player from

a domain A has to struggle to understand another domain B’s policy or its

own players’ roles. Hence, if an interaction involves a number of domains, it is

hard to convince communicating players whether they are communicating with

correct players (coming from different domains), or with an insider attacker

who is equipped with local knowledge of remote domains. In other words,

communicating players (e.g. human users, devices) from different domains,

cannot easily trust each other.

1.2 Definition

Before discussing the issues further, some definitions that will be frequently

used in this dissertation are given in this section, as some of these terms may

be defined differently in other works.

Domain : unless a specific indication is given, by the term domain in this dis-

sertation, we denote the scope of security policy rather than geographic

location. It acts like a security domain.

Local/Localisation/Localised : by “local/localised/localisation” to a user,

we mean being part of the user’s domain, not geographic locality. For

instance, a client Alice and the bank have different local domains.

Strangers : the definition of strangers is based upon the understanding of

domain. Compared with a localised user, communicating principals (e.g.

14

human users, devices) will be considered as “strangers” from a user Al-

ice’s perspective, if they are not known before and have not established

any prior security relationship (with Alice). Most likely, in this disserta-

tion, strangers are usually from different domains to Alice. In this case,

strangers’ domains are described as remote or foreign domains for Alice.

Multiple domains and pervasive environments : the term multiple do-

mains and pervasive environments are used interchangeably in this dis-

sertation. It includes (but is not limited to) any pervasive computing

applications that genuinely involve many different domains.

Confinement : in the multiple domain context, this term describes the prob-

lem of confining an attack from a domain within that domain (the anal-

ogy is similar to the confinement problem discussed in Lampson’s paper

[76]), particularly for the interactions between two distrusted users. Usu-

ally, when an insider attack occurs, confinement is needed to ensure that

damage in one domain will not result in the damage in other domains.

1.3 New Challenges

With the rapid development of pervasive computing [104, 108, 128, 129], mul-

tiple domain applications are increasingly commonplace. Some of their ma-

jor characteristics which challenge the conventional security paradigm are de-

scribed below:

• Cross boundaries: in pervasive environments, an individual (security)

domain often spans several organisational or geographical boundaries.

It is important that the proposed security framework can support cross

boundary management.

• Open surroundings and spontaneous interaction: pervasive users are go-

ing to interact with resources, or with each other, whenever and wherever

15

they would like to. Such a highly spontaneous nature brings openness

to most pervasive interactions, for instance, access an on-line shop in a

public cafe, or a peer-to-peer mobile ad-hoc file transfer. This requires

the proposed security framework to deal with some previously unknown

devices or human users, i.e. strangers.

• Transient associations: the associations among pervasive users are nor-

mally only for a (really) short period of time. For instance, Bob uses

his PDA to withdraw cash from a ATM in a street that he has not

been in before. The secure association between his PDA and this ATM

will be terminating as soon as the completion of this cash withdrawal.

Thus, the proposed security framework should be sufficiently flexible to

support transient (cross domain) associations.

• High levels of decentralisation and heterogeneity: different domains have

different assumptions, and implement different security systems. It is

infeasible to place a globally unique infrastructure in practice. To do so

essentially forces every domain to use the infrastructure’s assumptions.

The proposed security framework must give every domain the freedom

to choose the detailed security implementation (for their own domain)

according to their own security policy.

Above all, we can see that our target computing environment will be large-

scale, highly decentralised, pervasive and more importantly span multiple do-

main boundaries. As a result, the security problems will become more complex

and be infeasible to be addressed in a single step. A swiss army knife 2 secu-

rity approach which takes protocols developed for the single domain case as

attempts to apply them to the pervasive environment will be unlikely to suc-

cessfully address the different threats imposed by different domains or different

2In paper [92], Needham pointed out that a swiss army knife protocol may not always
be a good approach for security.

16

applications.

When interactions involve two untrusted users (or strangers) from differ-

ent domains, an old paradigm to address this problem is to create a trusted

environment by employing a global unique trusted infrastructure. A typical

example is many Trusted Third Parties (TTP) based approaches, such as Pub-

lic Key Infrastructures (PKIs). They let the infrastructure pre-define a set of

assumptions that a trusted environment should meet. Thus, a security system

or protocol implemented successfully in one domain can be migrated to differ-

ent domains involved in the communications, combining with both important

and necessary cross-domain authentication mechanisms. Explicitly, this is

to invite and recruit many different domains into a big single domain. In a

conventional network environment, the security resources and policy are stat-

ically configured within domain boundaries, no matter whether the network is

inter-connected in a wired or wireless way. Thus, such a security understand-

ing (“big single domain”) has arguably addressed the security concern when

many different domains are involved.

However, this is not a good idea even if we could do it. To have global trust

is actually distracting us from what is more important in our own domains.

In the multiple domain context, information and resources are provided by

different organisations and other human users, even in a single physical en-

vironment. Interacting players from different domains are not likely to know

each other, or have communicated before. It is not only infeasible to create

a trusted environment to which those players can connect; more importantly,

it is not what we want. We do not want the infrastructure to deter us from

our own local policy, as far as security over multiple domains is concerned.

Thus, a guarantee from a TTP may compromise security, and cross-domain

authentication is not something that we should build on top of.

17

1.4 My Approach

In contrast, I would like to focus upon security over multiple domains as a

starting point. I argue that security in a single domain is best seen as a

special case of security over multiple domains. The richest case of security

over multiple domains is the revolutionary pervasive computing environment.

In pervasive environments, we are going to talk to stranger 3 users/domains

frequently in a dynamic and spontaneous manner.

An interesting threat which emerges now is, how to talk to the correct

stranger, particularly without the presence of a global fixed long-term trust

infrastructure. I am motivated by the problem of talking to correct strangers

in the context of pervasive environments from the beginning of this research.

Explicitly, I would like to design a security countermeasure that is independent

of any global universal trust infrastructures. More significantly, the approach

has to be extremely efficient and easily implemented, considering heteroge-

neous single domains in the multiple domain context.

Thus, I introduce an important concept of localising trust design princi-

ple in security policy, which encourages domains (precisely, domain servers or

administrative authorities) to get involved with their local users’ communica-

tion. In essence, the Localisation of Trust (or LoT) security framework is the

result of this principle. I consider security from the system architecture per-

spective, and system implementation is out of the scope of this dissertation.

Thus, LoT is an architectural framework rather than the implementation of

specific security systems. There are plenty of systems available in the market

which can be used to implement the architecture. More importantly, I argue

that the architectural issue is really important for the security in pervasive

environments.

3Recall section 1.2, users or domains are said to be strangers if a secure knowledge (e.g.
crypto-key information) or trust relationship has not been established previously among
them.

18

The central part of the LoT framework is the novel dual capabilities model

(or DuCaM) and encryption-based access control method. Moreover, a new

form of certificate, Profile Certificate, is embedded into the dual capabilities.

Profile certificates are used only for conveying information between players

and their local domains, but not for making a final commit/abort decision for

players. Instead, the ultimate security (commit/abort) decision is controlled

by local domains, as inferred from the encryption-based access control. Even-

tually, a player in one domain can make a correct security decision without

the struggle of understanding the precise semantics of security mechanisms in

other domains.

1.5 Contribution

The primary contribution of this thesis is the design of a novel, localisable

security framework, Localisation of Trust, or LoT, for multiple domains. LoT

is designed to address many of the emerging research issues described previ-

ously. The essential concern is to convince readers that the LoT framework is

an efficient and effective approach, when talking to correct strangers (under

different assumptions) is desired.

Briefly, as a matter of principle, each domain in the LoT framework is

encouraged to deal with their own security explicitly, rather than messing

around with that of other domains. Conventionally, most security systems

heavily rely upon foreign authorities’ final commit/abort decision-making even

when this was designed for a completely different purpose. In contrast to

those systems, in the LoT framework the security decision-making for each

particular transaction is ultimately controlled locally. A significant benefit

of doing this is that users will not need to understand precise semantics of

security mechanisms in other domains.

The key contributions are described below together with the chapters where

19

the relevant work can be found.

• Identifying the incorrect strangers problem in the multiple domain con-

text, and proposing a design principle in security policy that guides the

design of security countermeasures. A principle called localising the trust

is presented, with the intention to serve as a general foundation for the

design of future security systems, including (but not limited to) LoT.

(Chapter 3)

• Designing a generalised model and basic infrastructure for the LoT frame-

work. Another important part of this work is to design a tool-kit like set

of security mechanisms, examining LoT from both authentication and

access control ends. (Chapter 3)

• Proposing the concept of taking advantage of the positive human con-

text to solve security issues in pervasive environments, and developing

a human-centred authentication scheme with 2-channel approach to re-

place conventional (strong) ID-based authentication. (Chapter 4)

• Designing a new form of certificate, profile certificate, to support the con-

cept of domain-oriented access control approach for multiple domains.

Its purpose is only to convey (potentially incorrect, but probably cor-

rect) information between users and their associated domains. (Chapter

5)

• Designing the basic architecture for Encryption-Based Access Control

(EBAC) to achieve domain-oriented approach with flexible delegation,

and evaluating the advantages of revocation brought by EBAC. This is

the essential model for the LoT framework, and a novel application of

Identity-based Encryption techniques. (Chapter 5)

• Designing a Dual Capabilities Model, an extension of traditional capability-

based access control models (e.g. I-CAP), and developing a detailed

20

protocol to fulfill the EBAC method. (Chapter 6)

The LoT framework does not intend to address the following challenges:

• Providing context-awareness services, for instance, (physical) location

information. This results from the different aspect from which the per-

vasive computing environment is understood in this dissertation. As in-

dicated above (see section 1.1), I focus upon the multiple domain context

which appears in most pervasive applications rather than their “smart-

ness”.

• Designing specific security mechanisms for a single domain (or a local

domain). This area has been considered by much past research work

and is now considerably matured. Moreover, LoT intends to give every

individual domain freedom to choose appropriate security mechanisms

to fulfill their own security requirements. Thus, our purpose is rather to

ensure that the heterogeneity challenge for the multiple domain context

can be met.

• Supporting privacy. For some applications, confidential personal infor-

mation can be gathered and provided by pervasive environments. Al-

though privacy is also one of the new challenges for pervasive environ-

ments, the discussion on this is out of the scope of this research.

1.6 Dissertation Outline

In this dissertation, I will describe the research work (essential process towards

to the design of the LoT framework) that has been done in past years. My

description will be focused upon the problem of security over multiple domains

with some example cases (which will be introduced gradually from chapter 4

to chapter 6) from pervasive environments.

The rest of this dissertation is organised as follows:

21

Chapter 2 provides a structured overview of some related work. Most of

them have made significant direct impact on the outcome of my re-

search, and the rest have provided indirect inspiration upon which this

dissertation depends. This chapter begins with a review of the authen-

tication problem in both conventional environments and pervasive en-

vironments, followed by descriptions of various authorisation (or access

control) schemes. Then, it gives an overview of conventional revocation

systems but understood from the delegation perspective. The chapter

ends with a brief review of public key cryptography with a focus on

identity-based cryptography.

Chapter 3 introduces the notion of localisation of trust and the overall in-

frastructure for LoT. The intention here is not only to form a solid foun-

dation for the following chapters, but more importantly to explain why

LoT is needed for security over multiple domains. The LoT framework

is briefly described in a logical diagram, threat, policy and countermea-

sure, that follows the classic wisdom of designing a successful security

system. Prior to this description, the paradigm shift in security for the

multiple domain context is discussed in detail.

Chapter 4 describes a security mechanism for one end of LoT, authenti-

cation. This chapter includes a discussion of the essential unnecessity

of having a strong ID-based authentication for pervasive environments.

It also argues that the unique property of pervasive environments, hu-

man context, can be used positively to leverage the effectiveness of

mechanisms achieving authentication. Finally, this chapter presents a

two-channel authentication scheme and gives details of two protocols to

demonstrate the usefulness of the scheme.

Chapter 5 illustrates a domain-oriented approach for the other end of LoT,

authorisation. It provides descriptions of several concepts, including

22

profile certificates, remote authorisation, and localised authentication,

that our domain-oriented access control mechanism builds on. More-

over, this chapter describes an architecture for Encryption-based access

control (EBAC) that is used to achieve LoT’s domain-oriented approach

for access control over multiple domains.

Chapter 6 extends the concepts proposed in chapter 5, and describes an im-

plementation (in the protocol level) of the domain-oriented EBAC ap-

proach using dual capabilities and partially trusted agents. The second

part of this chapter discusses a guest access scenario that can easily be

mis-regarded as a case of access control over multiple domains.

Chapter 7 concludes this dissertation by providing a critical evaluation of

this research against the thesis goals described in chapter 1 (see section

1.4 and 1.5). Then, it summarises the main contributions, identifies

various interesting features of LoT, and briefly discusses some potential

future research work. This chapter also gives some examples of other

areas that may benefit from deploying the techniques generated from

this research.

23

Chapter 2

Background

In this chapter, we will present some previous works that are related to this

research. However, it is not our intention at all to provide a general sur-

vey of the state-of-the-art of those related works. Essentially, we will review

them regarding the problem that we are looking at in this dissertation. Thus,

we would like to focus only upon the aspects affecting this work, and fur-

ther to identify the problems of previous works. Note that, when the word

problem is mentioned in the rest of this chapter, it is by no means for the

purpose of criticism or negative implication. In fact, most of security systems

shown in this chapter work perfectly in their own contexts and assumptions

to solve the problems they are designed to solve. Nonetheless, those security

systems/mechanisms cannot be simply copied to other contexts, although a

lot of people do so in practice. In fact, it is also not those original system

designers’ intention to do this.

For most security systems, authentication, authorisation1, delegation and

revocation are the usual security mechanisms that are used to achieve desirable

security services (i.e. confidentiality, integrity and availability). Thus, we

will describe the conventional view of these major mechanisms, and start an

argument why the underlying implicit assumptions behind them may not be

1Authorisation here refers to the final stage of access control. We shall return to this
point later in section 2.2.

24

the right ones for pervasive environments, where the multiple domain concept

in this dissertation is focused.

We will start by reviewing authentication from both conventional environ-

ments and the mobile context. Next, the concept of authorisation is described

with the focus upon the capability-based distributed systems, followed by a

review of delegation from the perspective of delegating both rights and re-

sponsibilities. We will then describe various schemes of revocation. Finally,

the major relevant work on public key cryptography including Identity-based

cryptography will be reviewed.

2.1 Authentication

In most literature, authentication is very often used to denote identity au-

thentication, that is, to answer the question “who said this” [19, 74]. It is

traditionally measured by one of three things, “something you know”, “some-

thing you are” or “something you have”, [109], depending upon the type of

identification being used. In recent years, however, a broader understanding

of authentication has emerged with the paradigm shift in the mobile context,

i.e. mobile ad-hoc network and pervasive computing. Hence, we are going to

review some works related to providing authentication in both conventional

environments and the mobile context.

2.1.1 What Authentication Protocols Are

Authentication is conventionally an important process to guarantee that prin-

cipals are who they claim to be [19, 82, 93]. It is normally accomplished by

verification at the other end of the communication from the claimant. Thus,

loosely speaking, an authentication protocol contains two major steps in the

real-time implementation. One is to construct a credential, something you

need to prove your identity explicitly. Most likely, a digital identity will be

25

represented in some form involving cryptographic keys [96]. The second step,

known as verification, is to check the correctness of the credential provided by

the claimant, to avoid impersonation.

• Authentication credentials: in real life, the credential used to prove our-

selves can be many things, e.g. an ID-card or an officially signed docu-

ment, or a set of pre-arranged secret codes or phrases. Similarly, in the

digital world, the credential can be a shared key, a digital signature, or

a capability2. Thus, when a client requests a service, such as file access,

establishing a communication, and so forth, the client has to prove to

the verifier in some way, that they are in possession of those creden-

tials, and expects the recipient to recognise such credentials (which is

the verification step) so that the request can be granted.

• Verification: in most cases, this means to verify credentials. Typically,

verification is based upon sufficient knowledge which is frequently pre-

obtained. For instance, if using a digital signature as the authentication

credential, a verifier has to make sure that the correctness of the asso-

ciated public key has been validated already (also that it is still valid

when the request is committed). If a hash chain is employed to construct

authentication credentials, the hash pre-image ought to be delivered to

the verifier first (as shown in paper [5]).

For authentication protocols, it is important that the verifier is able to recog-

nise those credentials correctly, particularly when the claimant and the verifier

are in different domains. In conventional environments, it is usual to rely on

2The word capability here is different from the capability-based security systems that we
are going to introduce later in section 2.2.3. The capability here is a more general term,
and can be achieved by using certificates, one-way hash functions [56], hash chains [5] or
observations from the communications in secret societies [17].

26

a unique trusted infrastructure implemented in every domain, when the au-

thentication has to cross domain boundaries. Nevertheless, the nature of au-

thentication is different when the communication is on the fly. The difference

will be discussed in section 2.1.3.

2.1.2 Authentication in Conventional Environments

Authentication in conventional environments has been considerably well-developed

for decades, from the early Needham-Schroeder authentication protocol [93] to

public key certificates [65]. It always involves some form of proof of identity.

For the purpose of simplicity, here, we categorise those typical (conventional)

authentication techniques into two scenarios, Storable scenario and Delegable

scenario.

• Storable authentication

This scenario includes password, biometrics, and secret key systems

such as Kerberos3 [86]. Basically in these approaches, it is necessary

to keep a centralised database of information based upon users’ secrets

(e.g. hash value of passwords, users’ secret keys) and of personal bio-

metric data. The decision of authentication is based on the results of

required input information computationally matching pre-stored infor-

mation in the centralised database. Thus, strong security assumptions

for both challenge-response identification communication paths and re-

mote servers are required. One problem of many storable authentication

schemes (i.e. the password or biometrics applications) is the infeasibility

to terminate authentication. For many Internet authentication systems

for e-commerce, we need to register at the site with our carefully chosen

username/password and input our credit card information for the au-

thentication purpose. As argued in [110], there is no way to terminate

3In terms of the “ticket” element, Kerberos can also be considered under the second
scenario.

27

the authentication if we no longer want an ongoing relationship with

the e-commerce site. We cannot revoke our username/password because

they never end (no expiration date associated with them). Also, the site

will have our credit card information in their database, which we really

do not want. In addition, the confinement problem emerges, particularly

when users in one domain attempt to interact with other users from other

domains. The compromise of one assumption (for example some attacks

on poorly chosen passwords [58]), or one domain (for example secret user

data in one domain is leaked) can bring about the collapse of trust in

the entire architecture. Thus, the second scenario has been considered

to address such problems.

• Delegable authentication

Compared with the storable scenario, delegable authentication has earned

much wider application due to its strong authentication performance

with the assistance of public key cryptography. This approach includes

public key certificates (as applied in PKIs [65] and PGP [132]), and to-

kenisation (or smart cards). Furthermore, we also lump capability-based

systems [89, 69, 57] into this scenario just for now, due to their crucial

relation between authentication and access control. Capability systems

were originally oriented towards access control rather than authentica-

tion, to the point that many papers do not regard them as authentication

mechanisms at all. We shall return to this point below (see section 2.2.3).

For the delegable scenario, the output of the authentication process is

justified by the input of authorised delegated capabilities being recog-

nised. It scales the proof of capability (e.g. certificate chain) from the

dedicated Trusted Third Parties (TTPs) or authorities in a transitive

way. The “triangle” of trust, among prover, verifier and global TTPs in

28

one domain, is usually required during the authentication process. Con-

sequently, the Trust Transitivity problem [16, 25] arises. If Alice from

domain A trusts Bob from domain B on a particular event, and Bob

trusts Claire from domain C, then, the meaning of trust transitivity is

to allow us conclude that, Alice from domain A trusts Claire from do-

main C. Inevitably, this results in implementation difficulty (e.g. global

TTPs topology) and uncontrolled imposition of trust (e.g. the unfair

compulsion to fully trust arbitrary TTPs), particularly with the com-

munication crossing different domains in a manner which may be hard

for users to predict (which domains will a communication go through?).

In short, most conventional authentication schemes intend to construct a

binding between human users’ identities and their electronic identities, for in-

stance, a binding “people → key → capability” described in [27] (and usually

deployed in the delegable scenario, e.g. SPKI [43]). Such a binding is essen-

tially a task of a local domain in the first place, e.g. issuing a credential to

guarantee this kind of binding. Thus, when users attempt to interact with

some other users outside his (or her) own local domain, many TTPs present,

and are chained together to negotiate the recognition of, those credentials (e.g.

certification path in the PKI). However, there is no guarantee that the suc-

cess of security policy checking in one domain will be propagated across other

domains. Moreover, it is infeasible to deploy such an approach to some highly

decentralised applications, e.g. mobile ad-hoc communication.

2.1.3 Authentication On The Fly

Research for the security of mobile ad-hoc networks provides a different way to

understand authentication, particularly with the development of many perva-

sive computing applications. Increasingly, authentication is required between

two stranger entities (e.g. human users, devices) that are physically co-located

but without prior trust relationships. Such a highly decentralised, mobile and

29

spontaneous mode of communications ensures the infeasibility of having a

TTPs approaches (e.g. Kerberos) to achieve authentication.

Authentication in decentralised circumstances is frequently referred to the

key exchange problem. This has been notably clarified by the Diffie-Hellman

protocol [41]. Two communicating parties self-generate an identical fresh ses-

sion key that is mathematically relevant to exchanged random bit-patterns be-

tween them. The preliminary of DH key agreement protocol is the assurance

of integrity in the message exchange channel, otherwise Man-in-the-Middle

attack will take place. However, such an assumption can barely be met in the

mobile ad-hoc context when the wireless radio channel is used. Many pro-

tocols [28, 9, 8, 50] have been approved to thwart Man-in-the-Middle attack

by manually involving a prior context (e.g. typing password or nonce value).

These key exchange protocols provide a good way to consider authentication

in circumstances that do not involve TTPs. Nevertheless, to exchange a prior

context securely will be cumbersome, when interactions intend to move to

many open and public locations. Peek-over-shoulder or relay attack can occur

in a similar way identified in “Chip and Spin” [6].

Efforts to secure pervasive computing and fundamental communication

structure (mobile ad-hoc networks) have received increasing attention in the

security research field, and are described in many papers from different per-

spectives. Many researchers have raised the possibility to design additional

security protocols which involve another physically independent secure chan-

nel (apart from the wireless radio channel). Some necessary cryptographic

materials (e.g. sharing the same session key, the knowledge of public key cer-

tificates) can be transferred via this secondary channel, and be verified later

on in the communications.

In their novel “Resurrecting Duckling” security model [120, 121], Stajano

and Anderson mark a physical contact idea as the second channel to bootstrap

trust between strangers. Moreover, based upon this approach, Balfanz et al.

30

[13] introduce a pre-authentication process to exchange some relevant cryp-

tographic material in a demonstrative identification (physical recognition),

authentic and secure location-limited channel (such as infrared, ultrasound or

a short-wire). The image recognition from cameras [29], or a small token [31]

can also be regarded as such a channel. Then, the cryptographic information

(e.g. symmetric key, public key or other types of secrecy) exchanged via such a

channel will be deployed to authenticate or verify the following communication

in the open wireless medium.

In the spontaneous networking proposed by Feeney et al. [45], ad-hoc

network users retrieve a session key via IR (infrared) channel and use it to

secure the subsequent communications occurred in the insecure wireless RF

(radio frequency) channel. Given a simple example, a project team coming

from a number of organisations, gather together in a meeting room, the host

uses a PDA to generate a session key (s) for this meeting and distributes

it to each present meeting participant in a short-range IR communication

among each PDAs. Consequently, the session key s is shared by every meeting

participant and ready to encrypt the communication in the wireless radio

channel.

A similar idea can be obtained from Capkun et al. [22]. The authors intend

to use a short range connectivity mechanism, e.g. infrared or wire, as a secure

channel to exchange some cryptographic material (a binding of user’s name,

public key and node address in cleartext or in the form of hash value) and then

verify the signature or hash value of these prior-context submitted in the radio

channel. Furthermore, they extend their approach by introducing a “friends”

scenario to help establish a security association even between two strangers,

employing the same philosophy. One person (i) can require the binding (name,

public key and node address) of another person (j) from a “friend” f (who has

already established communication with j) signed by f , vice versa. Potentially,

they attempt to link the public keys with corresponding devices but avoid

31

hierarchical or chained trust transitivity from trusted authorities. Despite the

situation that the authors consider central authority to be on-line only at the

initialisation phase and kept off-line afterwards, the involvement of unique

identity assigned by authority and (traditional) digital signature makes key

freshness and revocation cumbersome.

2.1.4 Authentication

A twin-channel threat model for ubiquitous computing is also suggested in

Creese et al.’s papers [34, 35] with the sampled protocols involving public

key certificates. One channel is the communication medium channel with

unreliable security, and the other is a more costly channel with higher security.

Meanwhile, Wong and Stajano [130] propose multi-channel protocols between

two wireless devices (at least one of which has camera ability) to perform

authentication. They pinpoint the fact that a single protocol may get benefits

from the use of different channels. The number and choice of channels that a

protocol can employ should depend upon the nature of different applications.

Consequently, as far as authentication is concerned in the mobile context,

we understand from the review of those works that its primary purpose is to

bootstrap the trust between two strangers. When the communications are on

the fly, such trust can be easily established from the deployment of additional

channels, rather than from knowledge of strangers’ identities. Moreover, it is

considerably more convenient to have those secondary channels because mobile

ad-hoc communications normally occur when the end points are in the vicinity

of each other.

Thus, in this dissertation, the term authentication is enlarged to a more

generic and broader term providing the authenticity of some necessary infor-

mation, instead of conventional identity authentication. For instance, it may

refer to authentication of a public key 4, or authentication of a credential. I

4From this perspective, I also regard the access-control oriented certificate-based systems

32

will analyse this point more fully in chapter 4.

The security requirements in conventional environments and mobile con-

text are different in terms of authentication. Moreover, authentication needs

to be regarded as an end in itself, because for many cases authentication on

its own is the security requirement (e.g. bootstrapping the trust). However,

more often, authentication serves as a foundation to achieve access control.

2.2 Authorisation

Access control is essentially used to prevent unauthorised users from reading,

modifying or consuming information or resources, in addition to giving access

permissions to authorised users. Conceptually, the access control systems

firstly authenticate users using the appropriate authentication tools, then grant

their access if the requests correspond to their access rights 5. In this section,

we mainly focus upon the final stage of access control, which is also very often

described as authorisation.

Authorisation is usually regarded as the synonym of access control. The

process of authorisation (the access permissions process) is managed by the

access control matrix, that was introduced by Lampson [75] as a generalised

concept to protect operating systems originally. An access control matrix

contains rows that represent the active subjects, i.e. users in the system, and

columns that represent the passive objects, i.e. information or resources of

the system. In practice, thus, it appears in two separate forms, Access Control

List (ACL) that views the matrix by columns, and Capabilities that view the

matrix by rows. The access rights are specifically determined by an entry in

both cases.

to achieve authentication as a goal (in section 2.1.2).
5Alternatively, it can be achieved by encrypting data in a way that only authorised

recipients can decrypt it.

33

In this section, we will give a brief discussion of ACL and extended role-

based access control. Then, we will focus upon capability-based access control.

2.2.1 Access Control List

A simple example of ACL is illustrated in figure 2.1. When a user requests

Figure 2.1: For each object, e.g. information data, resources, an ACL contains
a list of users and their associated access rights.

an access on a particular object, the system will look up the ACL for that

object to check whether the user has the appropriate access rights. ACL is

easy to implement because the access policy is managed centrally. However, as

explained in [4], it is less suited for the environment when the user population

is large and constantly changing, because every user needs an entry in the

ACL.

2.2.2 Role-based Access Control

The idea of Role-based Access Control (RBAC) is familiar from the implemen-

tation of the user groups described in UNIX. When we look at the user pool

more closely, we shall find that a large number of users can be categorised into

a small number of roles. We can think of those roles like the job functions

within a big organisation, e.g. directors, managers, secretaries or technicians.

Thus, only roles are needed in a system, and the necessary privileges can be

assigned to a user via those roles. Privileges here are a collection or a set of

access rights that a role is permitted to carry.

34

Many different systems based upon RBAC [11, 53, 95, 106] have been

proposed since the 90’s. As illustrated in figure 2.2, however, the essential

components in RBAC are users, roles and privileges. A RBAC system first

assigns a user one (or more) pre-defined roles. Then, these roles will be checked

to see whether the access request is under the privileges associated with those

roles. For a single domain, RBAC has its own administrative advantage. For

Users Roles Privileges

Assigning
Roles

Defining
Privileges

Figure 2.2: RBAC systems map users to roles, and then roles to privileges.

instance, when a user just joins the domain (or changes his job function),

it is considerably easier to assign this user a role than directly assign access

privileges to each object. However, it will be a struggle for a domain to

understand a stranger’s role (assigned by the other domains) in the multiple

domain context.

2.2.3 Capability-based Access Control

Alternatively, the access control matrix can be stored by rows, which is called

capability. As shown in figure 2.3, a pure capability is more flexible and can

be passed from one user to another user, compared with ACLs.

However, the pure capability is vulnerable to forgery, copying or modifica-

tion. Particularly, if a user possesses a capability, he/she is entitled to exercise

the access rights that are associated with this capability. It is hard to check

if the possession of this capability is genuine, or this user just simply steals or

forges this capability.

35

Figure 2.3: For each user, a capability specifies what access rights are granted
to the possessor of this capability on each object.

Thus, the early Amoeba capability system described by Mullender [89]

deploys a protection mechanism, a tamper resistant and trusted F-box, to

address this problem 6. The purpose is to transform a port name into a

capability using the F-box at the network level. The port name is kept secret

from the user due to the one-way function of the F-box. Thus, when the

capability is presented by a user, Amoeba inputs the port name though the

F-box and compares the output result with the user’s capability. Moreover,

the capability in Amoeba can be passed from one user to another user freely,

and Amoeba does not regard this form of propagation as a threat. However,

the free propagation makes it problematic to enforce the confinement property

[60], as a capability is both necessary and sufficient to access resources within

the system, for example, the capability may be passed to a malicious user.

As a consequence, a secure capability is often deployed to ensure confine-

ment. It is normally achieved by two general methods.

1. One technique is to check the ID of the user (who presents the capability)

at the time of using the capability, e.g. Karger’s S-CAP [69] or Gong’s

I-CAP [57]. In S-CAP, a capability is necessary but not sufficient to gain

access. The system checks the current access control policy, whenever a

6Mullender did not actually implement his conceptual model as described. F-box still
uses ID in the implementation and consequently Amoeba does not enforce security policies
as Mullender originally intended.

36

capability is used. For instance, the system will check the identity of the

user (who presents the capability), and look up the ACL to determine

whether or not to grant an access. This approach is not flexible and

requires the entire system apply the same security policy. S-CAP, how-

ever, was not designed for multiple domain applications. It is infeasible

to assume every domain will, or can, adopt the same security policy.

2. The propagation of capabilities can be restricted, for example by limiting

the delegation of capabilities to other users [115]. Note that I-CAP also

uses this second technique to address capability propagation between

domains and the capability revocation problem by constructing a prop-

agation tree. In I-CAP, when a user Alice wishes to delegate her rights

on a resource to another user Bob, Alice needs to submit this request

to the resource server S (who issued her the capability). The resource

server would generate a proper (external) capability for Bob. More im-

portantly, the server can draw a tree to monitor the propagation of the

access rights associated with this capability.

In contrast to some capability-based systems introduced previously, Gong’s

I-CAP [55] is designed keeping multiple domains in mind. Potentially, the do-

main in an I-CAP system is not geography-based. To clear the concern of

capabilities being stolen or lost, it introduces two forms capabilities, exter-

nal and internal capabilities. The resource server generates a random number

R0 for a resource Object. The internal capability (Object,R0) is only known

by the server. Then, the servers computes R1, which is the hashed value of

the group (IDuser,Object,AccessControl,R0) for a local user in the system.

The external bit-pattern (IDclient,Object,AccessControl,R1) is delegated to

the corresponding user. As a result, different users hold different bit-pattern

which corresponds to capabilities for the same object. Unfortunately, I-CAP

suffers from the freshness problem because the value R1 is put within the

37

(external) capability instead of being constructed at the time when the ac-

cess is requested. Essentially, the I-CAP system requires a good underlying

authentication mechanism to address the freshness problem.

Nonetheless, a sound idea of I-CAP is the definition of two forms of ca-

pabilities, external and internal representation. Only one internal capability

need be generated for each object in the resource domain. For different do-

mains, distinct external capabilities are computed for the same object based

upon the internal capability, domain ID and corresponding access rights. The

internal capability is always kept secret in the resource’s local domain. The

external capability is forced to have different bit patterns for different domains

for the “same” capability. If the external capability is considered as the ac-

cess credential between domains, the compromise of one domain does not help

the attacker to gain any information of usable forms of external capabilities

in other domains. The collusion of some misbehaving domains still cannot

help the attacker. Moreover, by separating capabilities, I-CAP actually solves

the confinement problem implicitly. Also, it can avoid the domino effect of

security compromise to the other relative domains.

The logic of delegation has been considered in many authorisation systems,

particularly the capability-based access control scenario. It is an important

concept abstracted from access control, and we are going to review it separately

in the next section.

2.3 Delegation

When a resource is shared across domain boundaries, the access requests from

users are not always local. By using delegation, a user can allow some other

users, possibly in another domain, to do some operations.

38

2.3.1 Certificate-based Delegation Schemes

With the intention to support authorisation in PKI, SPKI [43] associates users’

public keys with their access rights rather than their identities. In principle,

every entity (e.g. a server, a user) has its own public/private key pair. They

can sign a certificate for any other users to whom they would like to transfer

some rights. The signed authorisation certificates bind the proper rights with

the owner. Hence, when the certificate is verified by the service owner or

other users, the attributes embedded in the certificate are checked against

the access request. Authorities (access rights) performing some actions are

delegated flexibly among public keys. Based upon the SPKI certificates, Aura

[10] introduces some concepts of delegation certificates. It also delegates access

rights with signed certificate, but provides a useful discussion for certificate-

based delegation.

Another mechanism that has been used to achieve delegation is proxies

[94, 118]. A proxy 7(sometimes called token) contains the information identi-

fying both its delegator and the delegatee. Thus, these schemes require a user

to prove its identity. This requirement is often strongly linked to the deploy-

ment of public key certificates. For instance, a delegator signs a proxy with

its private key and hands over to a delegatee. When this proxy is presented to

a third party (i.e. the service provider), this third party needs to contact the

authentication server to verify the proxy. SAProxies [81, 80] cleverly address

this problem by letting the delegator bind his public key certificate (PKC)

with the proxy token. A digest (only the signature part) of the delegator’s

PKC is included in the proxy instead of the delegator’s ID or name. By doing

so, the proxy becomes a Self Authenticating Proxy (SAProxy). It contains a

delegatee’s name, (the digest of) the delegator’s PKC, the resource (or object)

identifier, and delegated access rights (on this particular object), in addition

7The term “proxy” used in this context is not related to proxy servers/services.

39

to the expiry date. The delegator signs this proxy before handing over to

the delegatee. When the delegatee intends to initiate an access request, he

needs to include this proxy into his signed request. Since the PKC contains

the delegtor’s public key that can be used to verify the proxy itself, a verifier

can check in his local area without retrieving any information from on-line au-

thentication servers for verification. This feature seemingly makes SAProxies

a desirable candidate to solve cross-domain authentication problem.

Nevertheless, like other certificate-based delegation schemes, inevitably, a

common problem for SAProxies is the inherent revocation problem, when the

access requests cross domain boundaries. If a user in the chain stops trusting

something, it is hard to stop the proxy chain of trust. Thus, the system still

requires a unique trusted infrastructure to be deployed in every domain that

has been involved in the chain of delegation, to update revoked certificates or

tokens. This is not what we really want for the case of multiple domains.

2.3.2 Delegation of Responsibility

Differing from the delegation of rights that have been discussed above, Crispo

proposes a neat idea of delegation of responsibility in his Ph.D dissertation

[36]. In his viewpoint, delegation is not merely defined as delegation of rights.

He points out that it may be necessary not only to delegate rights but also

the responsibilities associated with these rights for some applications (where

the sharing of responsibility would result in accountability problems). When a

user Alice delegates some rights, e.g. open the shop’s safe while she is away, to

another user Bob, it is important to distinguish whether the access (“opening

the safe”) is performed by Alice, or by Bob acting on her behalf. This is where

delegation of responsibility comes to play.

Delegation of responsibility may or may not imply that the associated

rights are transferred from Alice to Bob. However, in this example Alice

should not be able to open the shop’s safe any more, while she is away. This

40

essentially reduces the amount of trust that is required to enhance the security

policies.

Both delegation of rights and delegation of responsibility show the im-

portance of trust between delegators and delegatees. The basic principle in

delegation is delegators have to trust delegatees who will act on their behalves.

We will look at this trust issue next.

As a concept, the notion of trust has been defined differently depending

upon the context of applications. It is important to understand trust not only

because many security systems are actually constructed from it (implicitly or

explicitly), but more importantly because of its relationship to the need for

revocation. A typical example is the trust management approach (see section

2.3.3), which is essentially delegated access control with the extended relation

to trust.

In this dissertation, we are going to follow a simple definition of trust

from Christianson and Harbison [25] to explain the principle of trust. Note

that it only focuses upon some necessary principles of trust in the context of

this dissertation. We do not by any means intend to discuss a concrete trust

management infrastructure or trust model here.

In their work [25], Christianson and Harbison argue that trust can be

considered as the conjunction of Honesty and Competence. Thus, “A trusts B

on a statement of some knowledge X (in short, A trusts B)”, can be unpacked

as:

If (A believes (B says X)), then,

A believes X.

This statement can be further translated to the conjunction of,

• trust in honesty :

If (A believes (B says X)), then,

A believes (B believes X).

41

• trust in competence:

If (A believes (B believes X)), then,

A believes X.

Thus, the belief generated from trust has to come from both honesty and

competency statements. One statement alone cannot produce the belief. For

instance, if only “A believes (B believes X)” is stated, it does not necessarily

mean that “A believes X”. Alice and Bob may have different security re-

quirements based upon different threat models. This results in the fact that

Alice and Bob may have different beliefs even for the same thing, e.g. Bob

believes this program is running safely in his computer because of his faith in

his updated anti-virus software. Alice does not know this. Alice may not trust

the anti-virus software. Or simply, she may not have the anti-virus software

installed at all. Moreover, neither of those two statements is reversible. If “A

believes (B believes X)” is stated, it does not necessarily mean “A believes

(B says X)”.

Roughly speaking, a belief (on something) can be generated from either

knowledge or trust. Knowledge (in the sense of true justified belief) is in

principle transferable: we can pass knowledge over to other people 8. However,

in practice transferring knowledge is problematic in a distributed environment.

Consequently, in protocol analysis, trust is often used to provide a substitute

for knowledge (for instance, to justify taking the next step in the protocol).

Statements of trust are not transitive, even in principle: Bob cannot transfer

his trust in Carol to Alice. In other words, if Alice trusts Bob about something

and Bob trusts Carol about the same thing, it does not necessarily mean that

Alice will trust Carol about the same thing. Moreover, trust is non-monotonic

8In real life, the definition of knowledge can be more complicated than that which I have
described here. Some “knowledge” may be abstracted from some “trust” statements. For
those cases, knowledge cannot be passed on (similar to trust). However if A knows that B
knows X, then A knows X.

42

which explains the importance of revocation (see section 2.4).

2.3.3 Trust and Policy Based Delegation Schemes

The root of trust and policy based delegation can be traced back to the idea of

a trust management scheme. Trust management is first introduced by Blaze et

al. in their PolicyMaker [16] and KeyNote system [15]. It provides a framework

for specifying and interpreting users’ security policies, security credentials and

their trust relationships.

Policies in trust management systems are purely for local use, and creden-

tials are usually signed certificates. These certificates are similar to SPKI,

binding public keys to assertions delegating authorisation to perform actions

(that they are trusted to sign for). A programmable language that is easy

for humans to read is usually implemented in trust management systems. In

practice, the resource owner (S) obtains certificates from users who request

actions. After verifying the signatures on certificates as well as the validity

of the certificates, S submits a user request, certificates and local policy de-

scription (of this particular action) to the local trust management engine (e.g.

PolicyMaker). Then, the access decision will be made if approved.

From our perspective, a fruitful point is what Blaze called “locality of

control” [16]. By supporting local control of trust relationships, a globally

known hierarchy of certificate authorities can be avoided. This useful remark is

being extended by many works [20, 38, 48, 62, 67, 114, 131] to construct a trust-

based or policy-based system (mostly associated with the RBAC mechanism)

in different contexts. For instance, Trust Establishment (TE) from Herzberg

et al. [62] is designed to assign roles to strangers. The Trust Policy Language

(TPL) is presented to map stranger users to predefined roles, based upon

certificates that are issued by a third party (e.g. a TTP or a user). A TPL

rule defines some requirements, such as the issuer needs to belong to a specific

group, and conditions for joining a role. In his Ph.D dissertation [38], Das

43

Chowdhury looks at trust management from a different aspect and applies

it in the context of privacy. His approach separates ID management from

trust management and therefore delegation can be done anonymously. This is

achieved by the use of a surrogate, which is constructed from the ring signature

scheme [102]. A surrogate does not unveil a delegatee’s ID but implies the

delegatee is trusted by a delegator for this particular transaction. Thus, trust

is localised within the system.

Kagal et al. [67, 68] target the security challenges which have arisen from

lack of central control and rarely predetermined users in the pervasive com-

puting environment. Their systems are also built from XML language to form

distributed trust rather than just user authentication and access control. It is

impossible for a security manager to understand a foreign user Bob’s role in

accessing some resources. Hence, Bob requests permission from a local user

Alice, who can delegate access rights to anyone she trusts, according to local

security policy. Alice hands over to Bob a signed delegation certificate that

implies the proper access rights are delegated to Bob. Then, Bob’s request

will be granted after he sends the security manager this delegation certificate

along with his identity certificate. The trust-based systems will make the final

decision based upon the policy check, e.g. whether Alice’s rights are revoked.

Also, this final decision-making process can be based upon recommendations

(as described in [114]) or history (see paper [48] 9).

These trust-based schemes, do not themselves implement certificate distri-

bution or revocation services. Instead, they have to rely upon some external

programs because signed certificates for delegation are frequently used.

An urgent problem for most delegation schemes is how to revoke the del-

egated tasks, particularly for the chain of delegation. Again, when delegation

occurs, the system needs to consider stopping the chain of trust once a user

9Following the social impact of the small world phenomenon [85], Galice et al. argue
that two users can find the common users they have met before, when they meet for the
first time. Those history-based elements are seen as a bond to manage trust.

44

stops trusting something. Hence, from our perspective, delegation has to be

considered closely with revocation.

2.4 Revocation

The term revocation has frequently been limited to certificate revocation. In

essence, an issued public key certificate (for identification or access control) has

to be invalidated before its defined expiry date, perhaps due to a compromise

of a user’s private key, affiliation change, withdrawal of operations and other

unpredictable reasons [47, 65, 90]. However, it is also sometimes necessary to

revoke some specific delegated privileges, for instance, a capability, or a role

in most access control systems. In this dissertation, consequently, by means

of revocation, I mean the revocation of access in addition to (conventional)

certificates revocation.

2.4.1 The Principle of Trust

Following the notion of trust discussed on page 41, there are three essential

principles for trust as far as this dissertation is concerned,

• Trust is subjective: for the same statement, different users will have dif-

ferent viewpoints of trust based upon their own assumptions and threat

model. It is infeasible to have global trust.

• Trust is context-dependent : the statement of trust is dependent on the

specific context of applications. Interestingly, we can say, for example,

“I may trust A to introduce a car sales assistant to me, however, I may

not trust A to introduce a mortgage representative to me”.

• Trust is non-monotonic: the statement of trust may (and most likely

will) change dynamically over the time. For instance, “I trust A at time

t1”, however, at time t2 (where t2 > t1), I may not trust A, and I may

trust A again at time t3 (where t3 > t2). Thus, trust is not permanent.

45

Thus, some trust assumptions may no longer exist under some circumstances,

particularly when users cannot tell the future. That is where revocation is

needed.

2.4.2 Various Revocation Schemes

Consider (public key) certificates, it is revocation which makes certificates

non-monotonic [79]. Conventionally, certificate revocation policies are usually

decided by the CAs that issue the certificates. A typical implementation is the

periodically published off-line Certificate Revocation Lists (CRLs) [65], either

containing a positive (listing certificates which are still validated at the time

of issue) or negative (the certificates which are expired or revoked) statement.

Alternatively, on-line revocation authorities, which were introduced by Crispo

and Lomas [37], are used in OCSP [91] to respond to users’ queries regarding

the validity of certificates. However, these approaches are not suitable for

decentralised multiple domain environments. In fact, even in the conventional

environment, significant expense is required to solve the revocation problem

by using these conventional mechanisms [14], such as the transmission costs

and the infrastructural costs.

A much more promising revocation mechanism is designed by Micali in his

Novomodo system [83, 84]. Micali’s revocation system involves a CA, one or

more (publicly semi-trusted) directories. The basic scheme is based upon the

use of hashed chains. For each user, the CA chooses a random number X0,

and repeatedly calculates its hashed value n times by using a public one-way

hash function H{},

Xn, where Xi = H{Xi−1}

The value of n is subject to the revocation policies defined by the CA. For

example, it can be total days of the month (e.g. “30”), if the CA checks the

validity of certificates on a daily basis. Xn is included in the (traditional)

46

certificate along with other information. On the ith day after issuing the

certificate, the CA sends H{Xn−i} to the directories if the user’s certificate

is still valid. Otherwise, it does not send this value. Thus, when a user Bob

submits his certificate to a resource server Carol on the ith day, Carol retrieves

Xn from Bob’s certificate, then queries a directory for obtaining H{Xn−i}. The

verification is done once Carol finds whether the following equation stands,

H i{Xn−i} = Xn,

where H i{} is to hash the value repeatedly i times.

If it is held, Bob’s certificate is still validated, otherwise, the certificate is

revoked (at least for that day). It is an efficient revocation approach, because,

• The verifiers do not need to trust the directories, as only CAs can pro-

duce the hashed pre-image of Xn. Thus, those directories are semi-

trusted.

• CAs do not need to be on-line all the time. More importantly, Micali’s

revocation system can revoke users’ certificates selectively. If a user’s

certificate is only invalidated temporarily, the CA can just stop sending

the value of H{Xn−i} for the “frozen” duration. Once a user is back into

action, the CA can simply start to generate the proper H{Xn−i} from

this instance, without re-setting the system from the beginning.

Gentry [51] also adopts this neat idea but implements it using pair-based

cryptography to address the third-party queries problem, when users use their

public key pairs for encryption/decryption rather than signature.

Moreover, Rivest [98] suggests that the revocation policies should be set

by the “acceptor” (for instance, the service provider or a third party verifier)

rather than CAs. The “signer” (i.e. the certificate holders) should supply the

necessary recent information (with the assistance from CAs, e.g., short-lived

certificates or some recent statements as described in [123]) as the evidence

47

of its validity instead of another way around. He also argues that revocation

should have different semantics with respect to different reasons to revoke. For

example, for (private) key compromise, it is unnecessary to get CAs involved

at all. The certificate-holder can simply sign a suicide note declaring the key

has been compromised or dead and publish it. The idea of suicide is also

used by Moore et al. [30, 88] recently to address node revocation problems in

ad-hoc networks 10.

Revocation has always been viewed as a both difficult and complex fea-

ture to implement, particularly in a capability-based system [70]. It is hard

to grasp, although some previous works have examined it from different per-

spectives. The revocation of access privileges has been discussed by Khurana

and Gligor in [73] (using attribute certificates as the example). They propose

that it is necessary to do selective revocation, when both attribute certificate

and identity certificate are implemented in the system. Meanwhile, transitive

revocation is needed to revoke delegation chains.

One interesting way to fulfill revocation in the context of confidentiality

can be observed from ID-based Cryptography (IBC) which will be reviewed

in the next section.

2.5 A Short History of Public Key Cryptog-

raphy

In this section, we will give an (over-brief) history of public key cryptography

(PKC) with the attention on IBC, which is a twist of PKC. Additionally,

following the development track of PKC, we have also observed that many

PKC systems (unfortunately) produce another problem to replace the one

which they successfully resolve.

10Basically, when an ad-hoc networking node believes or perceives another (neighbouring)
node has misbehaved, their “radical” strategy is to let this node publish a suicide note
announcing both the misbehaving node and himself are dead.

48

It seemed that all security problems go away when public key cryptography

appeared in 1976. In the PKC scenario, e.g. RSA [101], ElGamal [42] system

and other variants including Schnorr’s scheme [111], a user Alice keeps her

private key secret as well as “broadcasting” associated public key to the others.

It is (mathematically and computationally) hard to retrieve private keys based

upon the knowledge of corresponding public keys. As a consequence, the other

users are “guaranteed” that the message encrypted under Alice’s public key

can only be seen by Alice herself. In addition, any messages that can be verified

by Alice’s public key are “truly” signed by Alice. However, the great concern

is the problem of public key distribution, that is, how to associate a public

key with the correct participant as discussed by Christianson and Malcolm in

[27], particularly in a multiple domain case. As illustrated in figure 2.4, it is

not convincing for Bob from domain B that a public key claimed by “Alice”

(from domain A) is really the one associated with Alice, not another public

key “owned” by Evil.

Key Server

(PK, SK) What is Alice’s Public Key?

PK is Alice’s Public Key

Cross domain reference

Key Server

(PK, SK)

What is Alice’s Public Key?

PK’ is "Alice’s" Public Key

Cross domain reference

(PK’,SK’)

??? PK’

Figure 2.4: Evil can interfere with the public key distribution channel and
simply do “man-in-the-middle” attack.

As a consequence, PKIs have introduced dedicated (trusted) authorities.

These reside in each domain, and their sole role is to issue a fresh certificate

associating public keys with the legitimate participants (mostly in the form of

49

their identities). Inevitably, trust transitivity [25] (from the chain of certifi-

cates) has to be required when the communication is taking place over multiple

domains. This solves the public key distribution problem after involving an

underlying trusted infrastructure. However, as shown in figure 2.5, it becomes

problematic to revoke certificates. Moreover, a unique trusted infrastructure

spanning every domain require every player to understand a lot about foreign

domains.

CA in Domain A

CA in Domain B

Chain or Hierarchy

(PK, SK)

Cross domain reference

What is Alice’s Public Key?

Certs

Certs

CAs say PK is Alice’s Public Key

CA in Domain A

CA in Domain B

Chain or Hierarchy

(PK, SK)

Cross domain reference

What is Alice’s Public Key?

Certs
Certs_new

CAs ’say’ (said) PK is Alice’s Public Key

??? say or said

??? who are ’authorities’

Figure 2.5: Bob believes PK is Alice’s public key only because authorities say
so.

The PGP scheme [132] provides a different way to target the public key

distribution problem. It is a more decentralised approach than a typical PKI

system. In practice, a PGP user can submit her public key to some well-known

public keys repositories on the Internet. Then, she may employ another dif-

ferent channel over which she has most control (e.g. her personal webpage),

to publish the fingerprint (hashed value of the public key) of her current pub-

lic key. Thus, the third party can verify the authenticity of her public key

obtained from a public repository. However, PGP does not really solve some

inherent problems of PKC (such as certificate revocation requiring transmis-

sion of trust along key chains).

50

In 1985, Shamir proposed a different public-key cryptosystem, Identity-

based cryptography [113]. IBC had not received enough attention until some

schemes based upon pairing [18, 24, 52, 64] were proposed after 2000. Shamir’s

novel approach is for any pair of users to communicate with each other in a

secure way without cryptographic key exchange, key repositories or directories,

or services from a third party in a remote domain. In principle (as shown in

figure 2.6), IBC associates a user’s identification with key pairs by defining

public keys as the ID (with some redundancies).

Private Keys
 Generation
 Locally

PK for Alice=ID_Alice

Alice’s ID is

Requests SK

Issues SK
Local domain reference

Alice@herts.ac.uk

Figure 2.6: Bob does not require any prior crypto-knowledge about Alice to
construct her public key. Moreover, public key freshness is met by putting in
some extra information, e.g., IDAlice = h(Alice@herts.ac.uk, currentdate)

Based upon the description in paper [18], some cryptographic requirements

for IBC are (briefly) highlighted below,

• Each domain has a local and (only) locally trusted third party, Private

Key Generator (PKG). It sets up publicly known system parameters

(Params) including the domain’s public key, and a privately master

secret, s (randomly chosen). More importantly, the PKG is also respon-

sible for extracting a private key K−
Alice for Alice. It is associated with her

public key, K+

Alice = IDinfoAlice by inputting Params, s and IDinfoAlice.

For the underlying algorithm,

– Given a seed s, it is easy to compute a K− for any possible K+.

51

– Given any pair of (K+,K−), it is infeasible to compute s.

• When Bob needs to encrypt a message (M) using IDinfoAlice, he does,

Inputting Params, IDinfoAlice and M → Ciphertext(C)

In IBC systems, a user, Alice, only needs to trust her local PKG for is-

suing her the right private key. From our perspective, this feature is really

important for the multiple-domain context because trust is established locally.

An additional authentication mechanism is required to be in place before the

private key issuing process, however, it is not difficult to achieve this in a local

domain. It is also a flexible approach, as the PKG does not need to generate

a private key for local users beforehand. A player, Alice, can choose any arbi-

trary bit-patten as her ID regarding her local domain’s policies. The PKG will

be happy to issue her the private key associated with the IDinfo she submits,

as long as she can pass the local authentication process.

In recent years, many other works have also been developed based upon

the basic principle of IBC, including certificate-based [51] and certificateless

[2] schemes targeting the inherent key escrow problem in the basic IBC setting

11, authenticated key agreement protocols [12, 116] and access control oriented

schemes [61, 117].

A problem for IBC is that a malicious user Alice can set up a fake domain.

Like other domains, this fake domain’s public key is known to all players. Bob

would expect Alice’s domain to have a control over her misbehaviour by not

issuing her the proper private key. However, since the domain is fake, Alice’s

private key is always available to her. IBC does not have an extra mechanism

to stop this happening. However, the importance of IBC for our work is the

mechanism of localising the trust.

11A basic IBC system allows the PKG to generate a user’s private key and every user’s
private key is known by the PKG.

52

2.6 Conclusions

This chapter has presented an overview of the research on which this thesis is

built, from authentication, authorisation, delegation and revocation aspects.

It has also briefly reviewed the development of public key cryptography. We

opt to describe only the semantics of those works rather than illustrating

protocols in detail. Also, some of those researches are essentially overlapping

and provide different security services.

In the succeeding chapters we will show how some of these works can

be adapted for the design of our work in the multiple domain context. The

next chapter will describe the basic infrastructure of our work based upon the

nature of relationships, threat modeling, security policy and security counter-

measures, for secure systems design.

53

Chapter 3

The Need for
Localisation-of-Trust

This chapter introduces Localisation-of-Trust (or LoT), a security framework

to provide necessary services in the multiple domain context. It begins with

a description of the contextual change for security in pervasive environments.

Then, in section 3.2 I illustrate an overview of the LoT framework, pinpointing

the basic infrastructure and key concepts. These concepts serve as a basis for

LoT. Section 3.3 explains a major issue concerned with LoT, talking to correct

strangers. In section 3.4, the localising of trust security principle is described

and the need of it for the multiple domain context is discussed. This chapter

ends with the outline of the exampled security mechanisms provided by LoT.

LoT examines them from two ends, authentication and authorisation, and

proposes a tool-kit of security countermeasures for pervasive environments.

3.1 Paradigm Shift in Security

Security in the multiple domain context has not been highly researched as a

whole in conventional environments (i.e. distributed computing, mobile com-

puting 1). A major argument is that a successful protocol targeting one domain

can “easily” be lifted to multiple domains. This is mainly fulfilled with the

1Arguably, the mobile computing environment is not usually considered to be “conven-
tional”. However, from the domain perspective described in this dissertation, most mobile

54

necessary assistance from a globally trusted infrastructure. In essence, the

same protocols are unconsciously being used for different context. A Swiss

Army Knife like protocol has already been viewed with alarm [92]. It will be

more dangerous to implement it in pervasive environments in particular be-

cause pervasive users are more likely from different domains that have different

assumptions and threats. Moreover, many pervasive interactions may occur

in several different environments. However, with the development of pervasive

environments, the paradigm of security for multiple domains has shifted.

The most obvious change for pervasive environments is the basic wireless

connection, frequently in the ad-hoc manner. If a pervasive environment only

replaces wires with wireless RF media, then to secure pervasive environments

is not too hard, considering the well developed cryptosystems described in

chapter 2. However, the new challenges [35, 45, 121], for instance, poorly de-

fined network boundaries, dynamic enrollment, no pre-configuration, transient

association and decentralised infrastructure, have entailed a massive qualita-

tive change in security requirements.

Most of all, as far as this dissertation is concerned, the primary change in

pervasive environments is the need to provide necessary security requirements

over multiple domains. Again, by means of domains, I emphasise the difference

of security policies rather than geographic locations. Those requirements are

different from what we have experienced in conventional environments (i.e.

distributed computing or mobile computing). It is mainly manifest in the

following respects:

• Prior knowledge for interactions. In conventional environments, we have

pre-obtained knowledge about the communication which is going to oc-

cur. Hence, most security protocols heavily involve the necessary process

of identifying communicating entities by their names (or their attributes)

computing applications are still based on access in a single domain, which could be consid-
ered a conventional scenario.

55

directly, or some ID-proof forms indirectly. The information used to

prove identities explicitly could be, e.g. a password, a shared secret

key or a digital signature. In a pervasive environment, we are most un-

likely to know in advance the communication we are going to interact.

Thus, it is cumbersome to retrieve those identity related proofs before

interactions occur, or even to find out how to do it.

• Filtering bad guys in the network protocol level. Conventionally, differ-

ent networks are physically distinguished and therefore network bound-

aries are clearly defined. It is feasible to place a properly configured

gateway between two networks, analysing the incoming/outcoming data

streams throughout the network. Any suspicious or unexpected infor-

mation from outside of the network will be blocked if necessary. Most

pervasive applications take place in a unpredictable way and are man-

aged without any external configuration. Explicitly, such a self-organised

network infrastructure implies the absence of sharp network boundaries.

It results in the fact that the inside and outside of the network are

not clearly distinguishable. As a consequence, a conventional gate-

way/firewall approach to secure the network protocol level cannot secure

a pervasive environment, because the network boundary is not clear and

well-defined [45]. In addition, to block unwanted traffic cannot address

an internal attack. A malicious user in a pervasive environment can

roam among many networks so that the attacker may already be inside

network gateways.

• Dependence on a pre-established or centralised trust infrastructure. A

conventional approach is to have some trusted third parties (TTPs) on

a global scale, for instance, symmetric-key based Kerberos systems [86],

early X.509 Public Key Infrastructure (PKI) [65] and SPKI/SDSI system

[99, 43]. The security decision-making for a certain purpose is handled

56

by the presence of those TTPs, and we hope that they will be properly

configured within a domain. This does not suit a pervasive environment

due to the decentralised character of pervasive communications. More

significantly, neither TTPs, e.g. Certificate Authorities (CAs), nor a

global infrastructure is always accessible when a particular security de-

cision has to be made on a specific communication session. This leads

to the problem of delegation and revocation as stated early in chapter 2.

Also, it seems to be unrealistic to require every pervasive user to carry

their own infrastructures around, because of the computational resource

limitations on those daily objects.

Considering these security impacts, the multiple domain context (in particular,

a pervasive environment), requires a contextual change of nature for security.

We must guarantee that we can identify the correct user and its properly

associated access rights in order to achieve desirable levels of security. These

security requirements are usually achieved by two ends, authentication 2 and

authorisation. With the paradigm shift in the multiple domain context, those

two security ends are changing when we intend to routinely talk to significant

numbers of stranger human users or devices spontaneously and dynamically.

We have no prior knowledge about the names/IDs, or roles of those to whom

we are going to talk, or which kind of privilege a user needs to access resources.

In the meanwhile, we cannot totally rely upon the infrastructure to make the

right decision for us. In order to address those classic security problems but

in a new context, I propose a Localisation-of-Trust (or LoT) framework.

3.2 Overview of the LoT Framework

LoT is a framework to provide necessary security requirements involving mul-

tiple domains, a pervasive environment for instance. It can also be used to

2In this dissertation, the term authentication is mainly used for user authentication if no
specific meaning is given.

57

advantage in conventional environments (i.e. distributed system, mobile com-

puting). However, the focal interest of my work is pervasive environments, as

pervasive computing is the richest case of security over multiple domains. The

LoT framework intends to investigate the security problems over multiple do-

mains from the two logical ends, authentication and authorisation, due to the

inevitable difference with the single domain case for the nature of bootstrap-

ping trust. In a conventional meaning, authentication is to determine “who

is speaking?” or, “who is making statements?” and authorisation is usually

about “who is trusted?” or, “the statements made by whom are trusted” [1].

Generally speaking, authentication is mainly used to bootstrap access control.

In this dissertation, by means of authentication, I mean this generic meaning

of bootstrapping access control. I do not (just) mean conventional ID-based

authentication. Thus, access control is essential and authentication is not

primary.

In the rest of this dissertation, it will be noticed that most statements in

LoT are heavily towards access control, or trust establishment. This is because,

firstly, bootstrapping trust naturally requires something different; secondly, it

is a harder problem to establish trust with variations. Last, authentication (the

generic term) is essentially the minimal level of access control. Consequently,

I focus more upon the access control problem, and the LoT framework will be

“deliberately” presented in a more access-control-like style and expressions for

the discussion.

The LoT framework is delivered as a result of acknowledging the signifi-

cance of the local domain’s knowledge. It is based upon a systematic policy

of localising trust. As matter of principle, each domain in the LoT frame-

work intends to deal only with their own security policy explicitly, rather than

messing around with that of other domains. Most currently existing security

systems tend to force a user to understand other domains’ policies when he/she

intends to access some resources in those domains. From security’s viewpoint,

58

it is difficult and, I will argue, unnecessary to do so. Therefore, I would like

to provide an alternative in this dissertation and propose the LoT framework.

LoT is based upon the localising the trust security design principle, which en-

courages domains (precisely, domain servers or administrative authorities) to

get involved with their local users’ communication. In LoT,

• A user may be a human, a computer, a portable computerised device, a

program, or a process, etc.

• A domain is very flexible depending upon the context and its own policy.

A user can set up one domain or several domains for different security

purposes and fitting into different environments.

Figure 3.1 gives an overview for the LoT framework. This infrastructure is

designed to minimise trust assumptions, and provide desirable security services

in an effective and efficient way.

Security Policy

Threat

Countermeasures /
Mechanisms

Talking to the wrong strangers

Localising the Trust

Two Channels Authentication

Encryption-based
Access Control Guests Access

Strangers Access

Figure 3.1: The LoT framework overview

1. Threat: In pervasive environments, we intend to talk to strange users

frequently in a dynamic and spontaneous manner. Generally speak-

ing, the main threat for pervasive environments is to talk to incor-

rect strangers. Those strangers are usually from many different do-

mains. They may be a strange user from a friendly domain, or a friendly

59

user from a strange domain. Amongst them, most likely, secure pre-

knowledge (e.g. crypto-key information) or trust relationships have not

been established. For solving this, conventionally, an infrastructure, such

as Kerberos [122], PKI, etc. is introduced to help users to determine

correct strangers usually by verifying their IDs, names, long-term public

keys, or roles. The trusted infrastructure has its required assumptions.

Thus, inevitably, users have to set up their own assumptions and secu-

rity policy in accordance with those of the infrastructure. However, the

semantics of the threat model will be different due to the nature of appli-

cations, particularly in pervasive environments. The threat is specific to

the requirements from different pervasive applications and assumptions

which will not be known to the infrastructure. As a consequence, it must

not let infrastructure decide local policy.

2. Security Policy: the main security design guideline in security policy

is localising trust principle. It is difficult to establish trust in a pervasive

environment, if users have to struggle to understand a foreign domain’s

policy and precise semantics of security mechanisms. Thus, we have to

seek significant assistance from external TTPs. However, it becomes a

harder problem as soon as a user has to trust any arbitrary external

authorities. In LoT, by localising the trust, a user is able to put trusting

things in his/her own domain, or some places that the user already has

stable connection with.

3. Countermeasures/Mechanisms: Unlike most security frameworks

that usually propose a static set of countermeasures, arguably, LoT em-

ploys a tool-kit, which contains several countermeasures for different con-

texts. I suggest three main examples that are used to target the threats

and contexts considered in this dissertation. Consider the unique prop-

erty of pervasive environments, namely, positive human context, that is,

60

human users have clear intention about what they are doing. I reason

that it would be extremely efficient and effective, if the security frame-

work allows users to choose a suitable mechanism from a tool set with

respect to their own assumptions and the changing environments that

they are facing.

3.3 The Correct Strangers Problem

To understand the main threat concerned in this dissertation, let us look at

a more generic case first. In figure 3.2, a local player (let us say Carol) can

access some resources in her own domain in two ways. Carol may locate

herself inside her domain boundary. Or, she may locate outside of her own

domain (usually in another remote domain). This is OK for one single domain,

because a security manager is present to make sure all local users are clear

about the local policy. Unfortunately, it is a different story in the multiple

 Domain A

Resources

Carol

Carol

request
request

OK

a
b

Figure 3.2: Assume that Alice is the domain server for domain A. A local
player Carol can use a pre-defined userID, a password, or a shared key proof
to log in, and further access some resources in her own domain A.

domain case due to the lack of knowledge and reliable resources about other

domains. Thus, a domain’s server has no local knowledge of players from other

domains, as illustrated in figure 3.3. Users or domains are said to be strangers

if prior security knowledge (e.g. crypto-key information) or trust relationships

have not been established among them. Users are most likely to be strangers

if they are from remote (friendly or strange) domains. A common resolution

61

 Domain A

Resources

Domain B"Who is Bob??"

a stranger Request

Figure 3.3: Alice is again assumed to be the domain server for domain A. Bob
is from a different domain B. Since Bob is unknown to domain A, Alice will
regard Bob as a stranger. The request will be refused.

adapted from conventional environments is to lift a security system/protocol

implemented successfully in one domain to the multiple domain case. Two

techniques 3 have been typically deployed to solve this strangers problem when

communications involve different domains.

1. “Let you become one of us” approach. Alice treats Bob as a local user.

She gives Bob the local user’s privileges by setting up a new log-in ac-

count or assigning a role to him.

2. “Let you become my apprentice” approach. This is usually known as

the delegation scheme. Alice delegates some of her rights to Bob, and

authorises him to access some certain resources on her behalf but with

some necessary restrictions.

For accomplishing these approaches, a universal global trust infrastructure is

needed, as simply highlighted in figure 3.4. It is doubtful whether this can be

achieved in pervasive environments.

3The question about whether it is appropriate to do either is out of the scope of this
discussion here.

62

 Domain A

Domain B

"Who is Bob??"

TTPs (e.g. Certificate Authorities)

: the direction
 of trust

Figure 3.4: Triangle trust diagram

3.4 Localising the Trust Security Principle

Depending upon threats, different domains may have different assumptions.

Consequently, they will have different local security policies, and correspond-

ingly implement different security countermeasures. A foreign domain’s policy

is not always clear or available to local users. When the communication crosses

domain boundaries, it is not only hard but (we shall argue) also unnecessary

for a user from one domain to understand the precise security policy and mech-

anisms from other domains. As explained in section 2.3.2, trust is subjective,

context-dependent and non-monotonic. Hence, when a lot of conventional sys-

tems use the term trusted, most of them really mean trustworthy. A TTP, e.g.

the CA in a PKI system, is a typical example. However, trust is not trustwor-

thiness [25], trust is subjective4 but trustworthiness is a matter of objective

fact. In other words, doing things right is not the same as doing the right

thing. For example, a TTP may do things right (“trustworthiness”); however,

even when it is obvious that this is so (and unfortunately it usually is not), it is

still hard to convince every player that this is always a right thing to do in the

first place. This is because different players may have different assumptions,

probably because of their local domains’ security polities.

The problem of this confusion is,

• “How do I know that you are doing your job properly”. Users have no

4By subjective, I mean subject dependent or (in this dissertation’s context) domain
dependent.

63

idea if TTPs do their jobs responsibly. Even TTPs make a decision re-

sponsibly, users still have doubts whether this decision is for the right

purpose or not, by the standard of their own domains. It is difficult for

users to verify the decision during the communication if external CAs

have not done their job properly by the standards of the local domain.

Inevitably, trust transitivity problem [16, 25], the uncontrolled imposi-

tion of trust (e.g. the unfair compulsion to fully trust arbitrary CAs),

surfaces. To rely upon foreign standards is a considerably irrelevant con-

cern in the pervasive context. The primary issue is that external CAs

have made a decision responsibly but unfortunately for a different pur-

pose. Users cannot know whether it is right or not for their purpose

from their viewpoint.

• “I do not consider A as a threat, because I trust A”. The notion of

trust is used here to rule out some threats. However, different users will

look at a system from different perspectives. A trust assumption that

is applied in one place cannot be passing freely over to all places in the

loop.

Thus, we need a different 5 security design principle to guide security policy

establishing trust for pervasive environments. This principle should be inde-

pendent of any long-term stable and fixed trust infrastructure. I intend to lay

to rest the assumption of relying upon external TTPs to achieve the users’

security goal when the communication crosses multiple domains.

In the real world, we are most likely willing to trust ourselves. A local

third party is also involved, mainly for efficiency reasons, e.g. buying tickets

from a local travel agency. As this third party is local, we can easily verify

their trustworthiness on a certain transaction. Similarly, a localising the trust

security policy is proposed here for security over multiple domains. In terms

5Different in the sense of changing the way of thinking on current security policies. The
policies themselves may be perfectly adequate in some cases.

64

of localising the trust for users, I specifically mean that the trust decision for a

particular security purpose should be coming from users’ own domains. This

trust decision can certainly be delegated to some others users (from the same

domain or from different domains) in different forms at some point. However,

it has to be rooted from users themselves. We do not like external TTPs to

make any final commit/abort decision for us. If we have to trust, we would

rather trust a local authority’s decision making or someone to whom we have

freely chosen to delegate.

In the multiple domain context, it is difficult to pre-know the pervasive in-

teractions that are going to occur. Hence, purely key-oriented or role-oriented

security approaches will not work very well. A domain-oriented scheme is sug-

gested here. As a matter of principle, a cross-domain security protocol should

not force users to explicitly know precise semantics of security mechanisms

in remote/foreign domains. Conversely, it ought to encourage each domain

to be responsible for its own domain’s security, further clearing up their own

mess if necessary (as described in the transcript discussion for [39]). The ob-

jective of localising the trust security policy is a logical consequence of this

understanding, particularly applied in the context of pervasive environments.

In figure 3.5, a user A and a user B are in different domains. The data

flow will go through the user A, the user B, domain B’s server and domain

A’s server. The domain is not just limited to a company, an organisation, a

university or a department, which administrates many attached end-users. A

user can also be regarded as a domain, particularly in the pervasive context.

Furthermore, he/she can set up several domains according to the context of

applications. More explicitly, for e-business applications, we can think of

domain A server as a main e-business server (e.g. “www.amazon.co.uk”) and

User A as some image servers that are dealing with current purchase requests;

domain B server can be some applications software running at users’ home

desktop and User B is more likely an agent, e.g. some trusted applications

65

Domain A’s Server Domain B’s Server

User A User B

Domain A Domain B

Figure 3.5: Trust over multiple domains

running at a PDA or laptop carried around. For the bank system, domain

A server can be regarded as main bank servers and User A is existing bank

client terminals (e.g. ATMs or credit card readers), domain B server and User

B, still, can be home desktop and PDA respectively.

3.5 Security Countermeasures/Mechanisms

After identifying the threat and policy, a security tool-kit is deployed in the

LoT framework. As explained above, I investigate the security issue in the

multiple domain context from two ends, authentication and authorisation. As

a consequence, LoT provides some example security mechanisms.

Authentication: authentication is also referred to as the bootstrapping of

trust. It is traditionally a fundamental building block for security, support-

ing other security properties (e.g. confidentiality, integrity and availability)

[119]. For most pervasive applications, there is usually no prior knowledge

between pervasive users because they are most likely from different domains.

In addition, another challenging difficulty to bootstrap trust here is the un-

known environment. Numbers of hostile devices and other people may move

around in the same environment where some pervasive interactions take place.

66

Therefore we need to be able to authenticate each other spontaneously (but

not based upon our IDs) without a fixed trust infrastructure. Two channel

authentication protocol is a quite straightforward example to achieve this, as

it mimics the positive human context in the real world. The protocol takes

advantage of the fact that it is easy to establish a low bandwidth but high data

origin authenticity channel when participants are all in the vicinity 6. Also, it

explicitly demonstrates that mobility can somehow be useful to leverage the

security [22] if we know what we are doing.

Authorisation: Authorisation is a significant method to establish trust,

or achieving access control. Most resources or services in pervasive environ-

ments are provided by many different organisations and human users, even

in one physical environment. Hence, it is infeasible to know which kind of

access rights are required to access those resources in advance. In addition,

pervasive environments require a flexible access control mechanism that does

not rely upon the same centralised infrastructure fixed for each domain. In-

stead of the conventional identity-oriented [65], key-oriented [10] or role-based

[106] approaches, a domain-oriented encryption-based access control (EBAC)

is introduced by the LoT framework (see chapter 5). This primarily targets

two typical scenarios when the access is over multiple domains.

1. Firstly, I will consider a scenario that two domains have established a

trust relationship in some ways, or we can describe them as “friendly”

domains. That is, domain B may be already known to domain A. For

instance, the partners company A/company B are working on a joint-

project. But nevertheless, a new assigned team member, Bob from Com-

pany B, would be a stranger to any team members from company A.

2. The second scenario is based upon the assumption that two domains

6Some applications may require further knowledge to establish the policy to determine
whether it is appropriate to share a key with a device nearby. This is actually achieved by
the authorisation end in LoT.

67

have not established any trust relationship or shared crypto-knowledge

before (see section 6.5). However, a player needs to access some resources

on a purely temporary basis, such as, a guest who would like to access

some resources in the host’s house. The guest has to be introduced to

those resources by the host in order to access them. Thus, the user is

“friendly” in spite of the fact that he/she is from a stranger domain.

Consider a simple multiple domain case, a player Bob from domain B

wishes to access some resources in a remote domain A. Hence, Bob tries to

get access permission from Alice (we can consider Alice as domain A’s server).

For most conventional approaches, for instance, Kerberos, Bob has to get a

ticket from his own domain server before the interaction. Then, he submits

this ticket to Alice. If Alice recognises Bob’s ticket, she checks the access rights

associated with the ticket to determine if Bob has the correct rights to access

(compared with his access request). If so, Alice grants Bob’s access request.

Otherwise, Bob’s access will be refused.

For LoT’s EBAC, briefly speaking, Bob also needs to submit a form of

credential to Alice. However, this credential is not used for Alice to make a final

access decision. Instead, it contains sufficient (but just enough) information to

tell Alice which domain Bob is from. This is achieved by a Profile Certificate.

Bob submits his profile certificate to Alice during the interaction. Alice checks

whether Bob’s domain already has permission to access those resources. If

so, Alice gives Bob an encrypted token which can be converted to a useful

access capability only by the correct domain. Dual capabilities are being used

to complete this conversion. Most importantly, Bob can only decrypt this

token by authenticating himself to his own domain in accordance with his own

domain’s policy. If domain B is willing to delegate Bob that access, domain

B’s server will help Bob to decrypt the token. If domain B does not want

Bob to access those resources in domain A, Bob cannot decrypt the token.

Thus, Bob’s access is granted only if the token issued by Alice is converted by

68

Bob’s domain to a useful access information. As well as being authenticated

by his own domain, Bob must also prove to Alice that he is in control of the

hardware to which Alice has given the token. This process is described as

domain-oriented Encryption-based access control.

Note that the discussion above is only conceptual. Specific mechanisms

and protocols to achieve the required anti-properties (i.e. to guard against the

threat) will be described in the remaining chapters. I am not claiming that

those security countermeasures and mechanisms are ideal. Although novel,

they are intended primarily as an existence proof. Other mechanisms may be

better depending upon the precise application and context.

3.6 Conclusions

The LoT framework is a security infrastructure targeting the major concern of

talking to correct strangers in the multiple domain context. It is based upon

the concept of localising the trust. In LoT’s world, every player is affiliated

with its local domains. More significantly, domain security services/servers

are urged to participate in local players’ communications. LoT is designed

to question the security issues in the multiple domain context from two ends,

authentication and authorisation, and re-examine them in the light of the

paradigm shift for security in multiple domains, i.e. pervasive environments.

Thus, I will examine the authentication end first in the next chapter. I will

show the reason why a conventional meaning of authentication, i.e. ID-based

authentication, is not what we want in pervasive environment, and propose a

new two-channel protocol for authenticating strangers in LoT.

69

Chapter 4

Spontaneous Authentication for
Pervasive Environments

Authentication is traditionally the fundamental building block to support

other security properties. It is conventionally required to involve some form

of proof of identity directly or indirectly. However, such strong (ID-based)

authentication targets the wrong security requirements for pervasive environ-

ments, when humans are admitted into the loop.

Thus in this chapter, I focus upon the classical authentication problem,

and argue that the desirable contextual information for different pervasive

applications can be exploited to replace unnecessary strong (ID-based) au-

thentication. First, I outline the basic security requirements for talking to

correct strangers in the authentication context. Secondly, I consider how to

positively re-frame the significant human context as a desirable security ser-

vice for pervasive environments. Then, a two-channel authentication scheme

involving using two-level protocols and human interactions is proposed. Fi-

nally, I describe two approaches from the DH-S3P protocol to address the

public meeting threat model.

70

4.1 Basic Security Requirements in Pervasive

Environments

The paradigm of pervasive computing [128, 129] introduces a new vision of

an environment where users can communicate with resources regardless of the

limitations of time and space. Human users are in the centre of this envi-

ronment and are surrounded by numerous computing-capable devices. Those

devices are embedded in daily objects of the environment, such as, Personal

Digital Assistants (PDAs), cars, refrigerators, clothes, pens, etc., seamlessly

pervading all parts of everyday life. They interact with each other spon-

taneously and (highly) dynamically, following human intension but without

human awareness.

4.1.1 Talking to Correct Strangers

Authentication is originally introduced to guarantee that the communicating

users are who they claim to be [19, 82, 93], implicitly or explicitly. It involves

some form of identity directly or indirectly in most cases, as illustrated in

2.1.1. In conventional environments, the semantics of the human interactions

that it supports have been largely ignored. Conventional ID-based authenti-

cation is always required to be strong enough to distinguish legitimate users

from unauthorised users as a result. This is achieved mostly by relying upon

challenge-response identification or interactive proofs involving TTPs. How-

ever, strong (ID-based) authentication is an inefficient, heavyweight task. It

largely requires standardised infrastructures. As a result, to achieve strong

(ID-based) authentication is hard.

We have seen a number of costly scenarios and systems being designed

to authenticate communicating participants’ identities, either universal names

or logical identities. These aim to secure the association between legitimate

users’ identities and their resources. This kind of association attempts to

71

secure the entire communication from very beginning but is always subject to

threats, such as ID-theft and spoofing. Generally, Bob masquerades as Alice

not because Bob really fancies being Alice. Bob is rather interested in the

resources or access rights associated with Alice’s identity. Thus, my belief is

that involvement of heavyweight identity-based authentication into protocols

does not make them as secure as initially expected. Instead, such an approach

opens attacks unnecessarily on identities in addition to incurring expensive

costs.

An obvious cause of the difficulty to secure a pervasive environment is the

spontaneous interactions between devices that meet for the first time in an ad-

hoc manner. Very often, those devices are strangers to each other. In other

words, they have not established any previous security association or crypto

knowledge. They may not share a fresh secret key, or the corresponding public

keys are unknown to each other, for instance. Arguably, traditional public key

certificates could be implemented here. But this demands an accessible path

to TTPs whensoever the protocol needs, not just to obtain the corresponding

participants’ certificates, but also to cope with more serious certificate revoca-

tion circumstances. Moreover, the communicating participants are most likely

coming from different domains. Even if the recognition of certificates crossing

domains is solved by chained negotiation among TTPs, there is no guarantee

that the success of security policy checking in one domain will be propagated

to other domains. It is increasingly frustrating for them to understand each

other’s security policy and further adopting the appropriate security mecha-

nism. The unfair Trust Transitivity problem [16, 25] also indicates that the

traditional pre-issued certificate-like authentication approaches have their own

weaknesses for dynamic pervasive environments.

Thus, the security requirement in pervasive environments differs from the

one addressed by conventional strong (ID-based) authentication schemes. Those

72

schemes deliver subtly the wrong security requirement for pervasive environ-

ments. The primary objective for pervasive users is not to find out the identity

of another communicating participant to whom they are talking, “are they re-

ally who they claim to be”. Instead, they intend to learn or validate whether

the communicating participants have certain desirable contextual information

for the particular interaction. Consider an example that Alice is going to print

a document residing in her PDA to a printer nearby. She does not really care

what the nearby printer’s name is. The essential concern in terms of the au-

thentication is if the document is sent from Alice’s PDA to the printer she is

looking at 1. Here, nearby is the contextual information for the printing job

required by Alice, “I do not care who you are, but I do care you are the one

just next to me” 2. Alice does not want her private document sent to any

other printers in the same room, or worse, further away, without her notice,

as the result of intentional attacks or unintentional misconfiguration.

I am motivated by the context of talking to correct strangers in pervasive

environments from the beginning of this research. A typical example applica-

tion is given below in this chapter. It is important to pinpoint that the name

or ID of the user (e.g. a person, a device or a process) is meaningless as far

as this form of authentication is concerned.

4.1.2 Motivating Threat Model - Public Meeting 1

Company A and company B are doing a joint business project together. Al-

ice and Bob are the marketing managers for company A and B respectively.

They meet each other for the first time in a public conference room, which

contains many other people with many computer devices. Alice wishes to send

1It is assumed that Alice trusts this nearby printer will not pass the document to other
printers or devices, perhaps because she sees a particular manufacturer’s tamper-evident
seal on the printer.

2Again, we should also take the “local” security policy into consideration, particularly if
Alice and the printer are in the same domain. For example, the local security policy may
restrict Alice to print sensitive document only on authorised printers.

73

a private project plan document m to Bob in some wireless way, for instance,

the mobile ad-hoc communication established between their personal devices

DRDalice and DRDbob. In this dissertation, DRDx, as Digital Representative

Devices, refers to a personal computer device with wireless communications

capability and reasonable computational resources for a human user x. Notice

that, for the purpose of spontaneous authentication, I assume that Bob is the

person who Alice has already known to be the correct stranger in this example.

Thus, the correct stranger here explicitly means their personal devices have

not established any secure association before. A more complex scenario will

be discussed in the next chapter.

A major security concern in this case is numbers of hostile devices and

other people moving around in the same conference room. Alice does not want

the private document sent to another device called DRDbob (intentionally or

unintentionally) held by someone else in this room, instead of by Bob who is

standing next to her. Thus, the main threat here is whether the document

is sent from the DRDalice held by Alice to the DRDbob held by Bob who is

standing next to Alice.

Notice that DRDalice and DRDbob have not set up a security association

before this public meeting. It is well understood that the wireless communi-

cation channel is vulnerable to both passive attacks and active attacks. An

attacker within a wireless radio range can easily eavesdrop or modify the doc-

ument. Furthermore, the attacker can even masquerade as Alice (precisely

DRDalice) or do a man in the middle attack. Another threat in the public

meeting model is that the document transmitted between the DRDalice and

DRDbob can be overheard and possibly modified.

Alice and Bob might intuitively choose an arbitrarily reasonably long value3

as a shared key phrase to encrypt the transmitted document. This only works

if the surrounding area is guaranteed to be secure, e.g. in a locked private

3It should be long enough to be invulnerable to exhaustive search.

74

meeting room, in a Faraday cage. Otherwise, for circumstances like the public

conference room, an attacker Moriarty can easily obtain the key by either

peeking over shoulder or a hidden CCTV, enabling him to violate the secure

communication between Alice and Bob’s devices. This is similar to what we

have experienced in the current Chip & PIN credit card approach deployed in

the UK.

Consequently, the ultimate security goal is to establish a spontaneous se-

cure communication between DRDs being held by Alice and Bob, who are

standing next to each other, respectively. I will give my approaches in 4.3.

4.2 Significant Human Context in Pervasive

Environments

Nowadays, pervasive environments are characterised by the achievement of

computer-invisibility, people communicating by means of the presence of phys-

ical visible devices but without noticing their existence. It is very clear that the

human context is the distinctive property for pervasive environments. Explic-

itly, it is desirable to transform security techniques into the new human-based

philosophy for pervasive environments.

4.2.1 Positive Human Context

Among the more serious threats which make cryptosystems fail in the real

world are human implementation errors and management failures [3]. Superfi-

cially, limiting human influences on computing systems is usually a basic disci-

pline to guide security protocols design, especially for authentication protocols

in conventional environments. This is considered reasonable because of hu-

man unpredictability, including dishonest or incompetent behaviours. Hence,

we always worry that the involvement of human context would mess up the

security dramatically as many cases witnessed in Mitnick’s book [87]. Humans

75

are invisible in conventional communication contexts such as Internet-based

computing. Computer devices follow human instructions, but ignore whether

these instructions are appropriate to the tasks or come from the right human.

Thus, strong (ID-based) authentication is always required to ensure that a

tracing step can be followed if something is going wrong.

Michael Roe in his Ph.D thesis [103] shows that what is regarded as a

security threat in one context may become a mechanism providing a desired

security service in a different context. We have to look at the context to decide

whether something is a threat or a security service. Human influences are usu-

ally negatively considered as threats. But nevertheless, the communications

in pervasive environments always occur in a highly dynamic and spontaneous

way. This results in the infeasibility to have proper pre-computational re-

sources configured for a particular interaction. For those interactions between

human and human, human and devices, only the human has the contextual

knowledge about the forthcoming interactions. For instance, we often have

pre-decision (“This is the one to whom I am willing to talk”), and physico-

spatial knowledge (“Yes, I can see this is the one I am going to talk to”) for

pervasive applications. Thus, the human context cannot be simply considered

as a threat because it is the distinctive property for pervasive environments.

I shall attempt to positively re-frame knowledgeable human influence as a de-

sirable security mechanism in the pervasive context. On the one hand, human

users will not worry about the details of pervasive interactions. On the other

hand, they ought to be encouraged to interact with the devices and environ-

ments more positively, leveraging the ultimate security goal.

Thus, in a similar manner to Roe’s threat/service duality, I argue that

the positive human context is the distinctive security service for pervasive

environments. Conversely, failing to recognise the positive human context is

a threat in the pervasive context.

76

4.2.2 Minimise The Reliance Upon Trustworthiness

A maltrust problem is defined if humans abuse trust gained from other hu-

mans. Most conventional schemes are built upon computed credentials 4 from

computing devices, intending to solve the maltrust problem. A typical example

in the real world is the current Chip and PIN credit card approach. It intends

to shift the final jurisdiction from human verification (signature recognition)

to computed authentication (system verifying PIN matching). These schemes,

however, have not achieved better security performance because the essential

maltrust problem has not been solved as it was expected to be. Instead, it is

simply reproduced from the human-human domain to the human-device do-

main. Consequently, increasing human reliance upon computer devices with

the seamless interactions between humans and devices in pervasive environ-

ments is in fact compounding the problems caused by maltrust.

The principle of my proposal is based on a Need-to-Know policy 5. This

policy is not new, and was originally produced in a military context and clas-

sically applied in access control systems via minimising access rights. Note

that in this approach it is critical to relate authentication explicitly to access

control, because the primary purpose of authentication in a Need-to-Know con-

text is precisely to determine (minimal) access rights. Here, we transfer this

idea to authentication protocols and introduce a minimise the reliance upon

trustworthiness principle to balance trust coming from human and computer

device domains.

For DRDs, it is a high-cost and complicated job to deal with unpredictable

confusions by depending only on computational results. Likewise, each DRD

cannot simply be assumed honest, competent, and willing to perform expensive

4Computed credentials are bit-pattern which are solely calculated by computing algo-
rithm behind the scene.

5Regardless of how freely we wish to make resources available, it is dangerous (from the
integrity and audit dimensions of security) for users to hold capabilities which they do not
even intend to use, as explained in the principle of least privilege [40, 105]

77

tasks strictly. So it is unfair to establish trustworthiness from authorities’

assurances (due to an obvious trust transitivity problem) and it is worse to rely

entirely on the results of computations performed by computer devices with

no human interaction (another expression of trust transitivity). For instance,

when customers withdraw money from an ATM, they cannot ensure (or even

verify) that the ATM will implement security policy checking correctly (but

interestingly, both banks and customers usually assume ATMs will do so).

As I pointed out above, positive human involvement is necessary to the

security of pervasive computing. Introducing human context into security

protocols has the potential to guide pervasive computer devices to deal with

complex security requirements effectively. I have always been inspired by a

comment of Mark Weiser, the father of ubiquitous computing, in his well-

known paper [128]:

“There is more information available at our fingertips during a

walk in the woods than in any computer system, yet people find

a walk among trees relaxing and computers frustrating. Machines

that fit the human environment, instead of forcing humans to enter

theirs, will make using a computer as refreshing as taking a walk

in the woods.”

4.3 Two Channel Authentication Protocols

4.3.1 Leave Strong Authentication Behind

Strong (ID-based) authentication does not do us any favours when we attempt

to secure pervasive environments. It is hard, introduces unnecessary attacks,

and more significantly, it is not what we want to solve the problem, as ex-

plained in 4.1.1. Hence, I intend to ask a logical question, “why not just

break the association between identities and authorised resources or access

rights?” In other words, “Strong authentication is not always necessary in all

78

circumstances”. Breaking this link can enable us to achieve:

• Privacy and Identity Protection: one desirable consequence is that a

raw identity will not be valuable any more so that ID-theft or spoofing

makes no sense at all. Hence, it protects identity indirectly. Moreover,

excluding identity information in the protocols will satisfy human privacy

requirements.

• Data Uncorrelation: another exciting gain is to erase correlation among

all input/output data streams with respect to entities. Such uncorrela-

tion makes many active attacks more difficult.

Some may disagree, and argue that unacceptable risks arise by dropping strong

(ID-based) authentication from protocols, particularly in the sense of talking

to strangers in pervasive computing 6. It is indeed risky to talk to strangers;

however, such risks do not arise from whether protocols are equipped with

strong authentication or not. Instead, these risks are coming from the re-

quirements of the applications themselves, i.e. talking to strangers. A similar

philosophy applies in human daily life. If Alice trusts Bob whom she has

not met or trusted before, then Alice has to risk the possible consequences.

Protocols without strong authentication will not necessarily weaken security

performance compared with the ones which have. Conversely, they can elimi-

nate the threats accompanied with unnecessary strong authentication.

4.3.2 Spontaneous Authentication with Two Channels
Protocol

Despite the feasibility of leaving conventional strong authentication behind

in pervasive environments, distinguishing legitimate users from unauthorised

6Another likely concern is how to provide an audit trail without requiring communicating
parties’ identities as part of authentication protocols. Although a discussion on audit trails
is out of the scope of this dissertation, I also briefly highlight a possible way to support an
audit trail in the LoT framework (see the footnote 3 on 107).

79

users is still an issue. Here, I propose my mechanism Spontaneous Authentica-

tion or human thinkable authentication 7. Thinking is a distinctive ability in

human behaviours, which is unlikely to be exhibited by any computational de-

vice8. The spontaneous “thinkable” authentication protocols with the human

self-determination contrast with the traditional “computable” authentication

protocols which involve no distinctively human agency.

In order to achieve this goal, it is expected to impose necessary tolerances

to executed protocols. There is no entirely transparent trust in most cases for

pervasive applications. Transparent trust in this dissertation means that two

entities have established a trust relationship before (e.g. share a secret key) or

have been introduced by knowledgeable authorities (e.g. holding correspond-

ing certificates). The tolerance property should be understood differently de-

pending upon applications. For instance in pervasive environments, the basic

wireless RF channel does not have high data origin authenticity. Instead of

expending too much cost on making an RF channel with that characteristic,

it is desirable to make the protocols tolerant of this limitation. More pre-

cisely, another out of band channel is assumed with the required characteristic

(high data origin authenticity in this case). Semantically, such an out of band

channel is quite similar to a location-limited [13], or empirical [33] channel.

It is a relatively low bandwidth channel compared with high bandwidth RF

channel. It is subject to passive attack but not to active attack. Therefore,

the ad-hoc communication participants can be assured that the data on this

channel does really come from their counterparts. It could be realised in many

ways between human-human and human-device, for instance, physical contact

between the devices, a close range infra-red link, or one device displaying a

number on the screen which is typed into another device by the human user,

7Consider the human thinking ability, this is to put human in the authentication loop.
8The possibility of devices which can pass the Turing test [125] is beyond the scope of

this dissertation, but arguably such devices should be regarded as human users rather than
as DRDs from the cyber rights perspective.

80

and so on. Essentially, the human context (e.g. hearing, monitoring) is re-

quired at this level. We call these human contexts human self-determination.

Knowledge is said to be human self-determination if the knowledge is acquired

via necessary human contexts, such as, hearing a tune or seeing a display.

Thus, two levels of security mechanism are introduced to incorporate hu-

man self-determination knowledge into authentication protocols due to the

existence of two channels. It allows tradeoff between trustworthiness in both

sectors (human-human and human-device).

1. A Plausible (but unreliable) trust (or PT) protocol is used in the high

bandwidth channel with the necessary security tolerances. The RF chan-

nel is subject to both passive attacks and active attacks. Thus, tolerances

here explicitly means that the main purpose of this protocol is to stop

passive attacks. Trust gained from the PT protocol run is plausible, but

not reliable for active attacks which occur in the high bandwidth RF

channel. I will give an example to explain what I mean by this form of

trust in 4.4.1 below.

2. A Reliable trust (acquired through human self-determination) (or RT)

protocol is called to achieve higher levels of assurance (e.g. high data

origin authenticity) with the assistance of the out-of-band channel. This

comes with the mandatory interaction of human context, e.g. moni-

toring, hearing, recording, etc., depending upon the choice of out-of-

band channel. This is expected to gain an equivalent outcome to that

which strong authentication schemes achieve in conventional environ-

ments. The protocol’s run is completed as success of a human trust-based

decision process [77].

These two protocols work together to support the Spontaneous Authentica-

tion with two channel protocol argument. Some existing protocols (some of

them are listed in section 2) can be substantially adapted to the Spontaneous

81

Authentication hypothesis, e.g. physical contact authentication in Stajano’s

Resurrecting Duckling [120, 121, 13], entity recognition module [112], authen-

tication starting from weak secret agreement protocols and applications, and

other contextual attributes (i.e. time, temperature, services, locations, specific

transactions) stated in [32].

After implementing the PT and RT protocol, eventually, the human users

must further be assumed that a fresh session key has been shared between the

correct ad-hoc devices. More significantly, no other device or person can know

this session key.

4.4 Example Protocols

The Diffie-Hellman (DH) key exchange protocol [41] is the classic solution

to the key agreement problem in a decentralised environment. However, the

traditional DH key exchange protocol relies upon the assurance of integrity

in the high bandwidth message exchange channel. Such an assumption can

barely be achieved in the pervasive context when the wireless RF channel is

deployed. Correspondingly, a prior context (e.g. a password or a nonce) has

been involved in many protocols [8, 9, 28, 50], mainly targeting the man-in-the-

middle attack. It is still a problem for most pervasive applications, for instance,

the public meeting threat model (in the 4.1.2) which I am investigating in this

chapter. The prior context exchanged between Alice and Bob, or their hand-

held devices, is vulnerable in an open (even hostile) environment (e.g. the

public conference room). Anyone who successfully obtains the prior context

can break the entire authentication protocol.

I will give two approaches built upon a basic DH-S3P protocol [28]. They

require both significant human context and two channel authentication to

address the problem. Consider the public meeting scenario, assume that,

DRDalice, DRDbob: two private DRDs held by Alice and Bob respectively,

82

which have monitor screens (e.g. PDA) and sufficient computational resources;

a, b: random numbers generated by DRDalice, DRDbob respectively. They

have to be strong enough to be the discrete logarithm (DL) exponent.

Also, we assume generator g, large prime modulus q = 2p + 1 for prime

p, and one-way hash function h are publicly known. Random numbers a and

b generated by DRDs must be strong (i.e. long enough to be invulnerable to

exhaustive search) as well as hard to predict. A full discussion of assumptions

as preconditions not specific to the mobile ad-hoc context is given in [28].

4.4.1 Basic Approach

The first basic approach is based upon our early work [78]. We assume that

Alice and Bob agree a shared weak secret k in the meeting. It may, for instance,

be a password which might be reasonably short. Alice could choose a value of

k and secretly tell Bob before the following processes take place.

• Setup Phase in PT protocol:

1. Alice initiates request by inputting k into DRDalice, generating a

random number a and demanding DRDalice to set up mobile ad-

hoc communication with DRDbob,

DRDalice → DRDbob: XA

where, XA = ga + k mod q.

2. Bob inputs the same k which he obtains from Alice, into DRDbob.

DRDbob generates random number b and responds,

DRDbob → DRDalice: YB

where, YB = gb + k mod q.

• Marking Phase in RT protocol:

After the setup phase, neither Alice nor Bob has sufficient knowledge to

determine whether messages are coming from a genuine device or from

83

malicious ones.

However, DRDalice and DRDbob both generate,

g2ab mod q = (s|n),

where, s is a session key and n is a nonce (with reasonable length)

Then, both devices calculate,

n1 = h{n}

and show n1 on the screens in some graphic form9. Here, I use a slightly

different message exchange sequence from the one described in [28].

Now, note that in addition to the RF channel, a human visual checking

channel is deployed as an out of band channel in this phase. Thus, Alice

and Bob have to check the hash images displayed on both DRDalice

and DRDbob’s screens. Mutual authentication is eventually completed

only by Alice and Bob observing matching hash images. By then, Alice

agrees to send m encrypted under the session s which is only known by

DRDbob. Both of them will abort the interaction otherwise, if the hash

images are not matching.

Developing positive human context into an authentication protocol allows

weak confidentiality to be boosted into strong confidentiality, which is pro-

vided by subsequent session key use. In contrast with the original DH-S3P

protocol, the security of this approach only partially depends on the continuing

secrecy of the shared password k.

Admittedly, it is very difficult to guarantee that no human nearby Alice

and Bob will peek at the process in order to get password k. An attacker

Moriarty may obtain the weak secret k. He would, however, need to get

9Perhaps similar to those used in CAPTCHA [126, 127]. Such graphics are sufficiently
easy for humans to distinguish, but hard for computer devices to spoof, to replace hash
function bit-values.

84

k early enough (before the message 1) in order to perform the man-in-the-

middle attack. Note that the final hash value n1 used for human verification

is essentially truncated from the h{g2ab}. Hence, if the bit length of n1 is too

short (say 16 bits only), Moriarty (his personal device DRDM) can actively

intercept the wireless communication (as shown in [50]),

1. Moriarty replaces the message 1 with ga′

+ k mod q, for some random

value a′ chosen by himself.

DRDalice → DRDM : ga + k mod q,

DRDM → DRDbob: ga′

+ k mod q,

2. Bob generates his DH value (gb) and sends,

DRDbob → DRDM : gb + k mod q,

At this point, Bob computes g2a′b mod q = (s|n) and hashes the last 16

bits (n′
1 = h{n}) as the image;

3. Moriary computes the X ′ = g2a′b mod q as well. Then, he chooses a

set of random values b′. For each b′, he computes the Y ′ = g2ab′ mod q

and compares the last 16-bit of h{X ′} and h{Y ′} until the matching is

found. Moriarty sends this particular b′ to Alice,

DRDM → DRDalice: gb′ + k mod q,

4. Alice computes g2ab′ mod q = (s′|n) and hashes the last 16 bits (n′
1 =

h{n}).

5. Finally, Alice and Bob will find the matching images displayed in the

screens although they do not share a session key. Moriarty will get the

m when Alice encrypts the message with the key s (the head of X ′),

which is in fact shared with Moriarty. Bob encrypts any message with

s′ (the head of Y ′) which is also shared with Moriarty. It is feasible to

do so in a short time if the attacker has significant (pre-)computational

resources.

85

Thus, the bit value of n needs to be long enough (at least 48 bits according to

[50]).

However, this approach requires the attacker to engage in the protocol early

enough. If the attacker only gets the k after the messages 1 and 2 transmission

between A and B. The attacker cannot get the value of g2ab, because he cannot

solve the DL problem. Thus, devices which behave as “man-in-the-middle”

still cannot know the private message m. Even if, Moriarty obtains one of

the DL exponents (namely, a or b) as well somehow, which means he might

be able to re-produce the hash image. However, the k is used to calculate

the decryption key for the message decipher. In other words, the k is used to

calculate subsequent protocol values. Moriarty has to commit this exponent

value before he learns the k. Hence, it would be too late for Moriarty to

interfere with the communication between Alice and Bob. One possibility

to attack this approach is to repeat the message (1) and send it to DRDbob,

particularly when Alice and Bob would like to exchange another company plan

m2 (after a short period) but from DRDbob to DRDalice. To block such a replay

attack, necessary freshness can be provided using a nonce. More significantly,

this change addresses the man-in-the-middle attack for the short truncated

hash value described above. This will be examined in the next approach.

4.4.2 Generic Approach with two Channel Protocol

I will show a generic approach using nonces. We assume that, na and nb are

the nonces generated by DRDalice and DRDbob respectively. It is assumed

that both nonces are generated by the crypto-modules inside the devices. The

attacker cannot see what it is going on inside the crypto-modules even if

spyware is running inside the DRDs. Thus, those nonces are invisible to the

attacker when the interaction occurs.

Two physically different channels are used in this approach. The notation,

X →C Y : Z represents the data Z is transmitted from X to Y in the

86

channel C.

In the public meeting model, two channels, one of which is RF channel and

the other is an out-of-band channel (OoB), an infrared link for instance, are

deployed.

1. DRDalice generates a random number a and a weak nonce na, setting up

mobile ad-hoc communication with DRDbob,

DRDalice →RF DRDbob: XA,

where, XA = ga + na mod q,

2. DRDbob also generates a random number b and a weak nonce nb, re-

sponding with,

DRDbob →RF DRDalice: YB,

where, YB = gb + nb mod q;

3. At this point, the second, out of band, channel (denoted OoB) is used,

DRDalice →OoB DRDbob: na,

DRDbob →OoB DRDalice: nb,

4. The final stage is similar to the one in the basic approach, using nec-

essary human self-determination. DRDalice and DRDbob both generate,

g2ab mod q = (s|n),

where s is a session key and n is a nonce. Both devices show the hash

images in the screens. Alice and Bob have to check if the hash images

are matching.

For the final stage, alternatively, we can assume that DRDalice and

DRDbob both compute, g2ab mod q = (s|n1|n2),

where, s is still a session key. The nonce n1 and n2 generated from the

calculation (g2ab mod q) have the same constant bit-length (let us say 50

bits). Hence, instead of checking hash images, Alice and Bob are doing

the following step,

87

• DRDalice →RF DRDbob: n1,

• DRDbob →RF DRDalice: n2,

Now, the crypto-modules inside the devices DRDalice and DRDbob check

whether the received value (n1 or n2 respectively) matches the one ob-

tained from (g2ab mod q). If both crypto-modules can find the match,

Alice will send the message encrypted under s. Otherwise, they an-

nounce an error 10.

The attacker Moriarty cannot influence na and nb during the communica-

tion. As explained previously, the OoB channel is subject to passive attacks

but not for active attacks. It is possible for the attacker Moriarty to learn

na and nb but only after step 3. In other words, it is too late for Moriarty

to attack truncated values, even he has sufficient pre-computation resources.

Hence, the man-in-the-middle attack is infeasible. Moreover, na and nb are

revealed via the out-of-band channel after the stranger devices are committed

to the messages transmitted over the RF channel. This approach is similar

to some authentication protocols (for mobile ad-hoc or pervasive computing)

introduced in chapter 2. However there is a major difference in terms of the

security semantics. In this two channel approach, the messages transmitted

via the second channel are required to calculate subsequent security values,

rather than simply to do equality verification. Hence, a lazy or unauthenti-

cated player will not cause a security breach.

Both approaches enhance the conventional DH key exchange protocol, par-

ticularly for the purpose of talking to the correct strangers in pervasive en-

vironments. Essentially in both approaches, the conventional DH protocol

consists of the first two messages (with k or na, nb set to zero). The signifi-

cant human context is introduced to complete the authentication process for

pervasive environments.

10This alternative step was suggested during a discussion with Prof. Bruce Christianson.
For detail refer to the paper [26].

88

4.5 Conclusions

The protocols in this chapter highlights the usefulness of exploiting contextual

information in pervasive environments instead of replying upon conventional

strong (ID-based) authentication scenarios. The concept of utilising out of

band channels can promote significant human context to pervasive environ-

ments. This approach is spontaneous and independent of the infrastructure.

Moreover, it implies an efficient solution to the puzzle of talking to the cor-

rect strangers for most pervasive applications. But what authentication has

to achieve depends upon what can go wrong.

For the threat model targeted in this chapter, human users Alice and Bob

are assumed to be known to each other as the correct strangers already. The

main concern is the spontaneous authentication between devices held by the

human users. In the next chapter, I will relax this assumption and investigate

the security requirements under the absence of human trust (e.g. Alice and

Bob do not know each other). Correspondingly, I will explicitly relate this

problem to the classical access control scenario because the major purpose of

authentication is to determine (minimal) access rights.

89

Chapter 5

The Domain-Oriented Approach
for Access Control Over
Multiple Domains

The most important aspect of the LoT framework is the authorisation end.

The concept of achieving access control in the multiple domain context is

syntactically similar to the one witnessed in conventional environments. Se-

mantically, however, access control over multiple domains is different because

it requires an effective approach that does not rely upon the same fixed trust

infrastructure for each domain. The conventional approach to this problem

is to introduce a globally trusted TTPs. However, I wish to encourage local

domains to take part in their users’ interactions as a result of the localising

the trust security policy. Thus, I propose a domain-oriented encryption-based

access control scheme in this chapter. This scheme is the basic foundation

underpinning the LoT access control mechanism.

This chapter is focused on an architectural description and some associated

issues (i.e. delegation, revocation) for encryption-based access control (EBAC)

in the multiple domain context. It provides a conceptual basis for the following

chapter. This chapter begins with the highlight of the advantage of developing

a domain-oriented viewpoint for access control in the multiple domain context.

Section 5.2 describes a new form of certificate, Profile Certificate, which is used

90

only for conveying information between users and their associated domains,

but not for making a final commit/abort decision for users. When a user from

one domain attempts to access some resources in other domains, delegation

and localised authentication will occur to achieve authorisation. This will

be analysed in Section 5.3. Section 5.4 presents the architecture of EBAC

constructed in a novel way. This chapter ends with a discussion on some key

features of achieving revocation in the EBAC scheme.

5.1 Domain-Oriented Access Control Method

5.1.1 Access Control over Multiple Domains

The trust establishment problem is a derived form of the classic Access Control

problem [62]. This can be seen from the simplest example, “can Server S allow

User U performing operation E on resource R”. From the resource server’s

(S) perspective, a typical solution to this problem involves two logical steps.

1. Step 1: Authenticating the user U . Conventionally, this step is achieved

via the verification of the user’s ID, cryption-key (i.e. public key), or

a role. These approaches are (very often) referred to the ID-oriented,

Key-oriented or Role-oriented methods for access control. Inevitably,

the association between a user and a crypto-key, the crypto-key and

access rights, a user and a role is guaranteed by the presence of TTPs,

because the user U may be “unknown” to the resource server S. This

idea can simply be illustrated as a triangle diagram in figure 5.1. The

resource server has to reply upon TTPs to make a security decision, in

order to achieve its own security goals.

It is fair to say that the resource server totally depends upon a fixed

trust infrastructure [44], such as CAs and directory servers, to make a

correct decision here. Relying upon TTPs to make a final commit/abort

security decision is sound and workable for one single domain because

91

User Resource
Server

TTPs (e.g. CAs)

: the direction
of trust

Figure 5.1: Trust triangle

the local security policy and resources are clear to all entities.

However, pervasive interactions almost always involve users from many

possible different domains spontaneously. A foreign domain’s policy is

not always clear or available to all users. Therefore, it is difficult for

users to verify the access decision during communications if external

TTPs have not done their job consistently with the standards of the

local domain.

2. Step 2: Authorising the access request for U according to the access

control policy, if step 1 is completed.

Access control policies can be controlled by either external authorities

or resource servers themselves1. If external authorities manage access

control policies, they need to know if any access control policy change

occurred in the resource domain because they are unlikely to be resource

owners. However, this mandatory type of access control faces additional

challenges in any genuinely multiple domain context. It is problematic

to obtain those observations without the support from a global fixed

trust infrastructure in pervasive environments. Moreover, a pervasive

user might not know which kind of access right is needed to access a

certain resource. Most of all, imposed by the localising of trust security

1These scenarios are also known as Mandatory Access Control and Discretionary Access
Control [95, 107] respectively.

92

design principle in this dissertation, access control policies ought to be

administrated by the resource owner. Unlike mandatory access control,

LoT does not have a central administrator to monitor the distribution

of access rights. The proper access rights will instead be delegated to

other users freely. I shall discuss delegation in detail in section 5.3

The syntax of the access control mechanism in LoT is similar to the one for

most conventional access control systems. I will still look at access control

in multiple domains from these two steps, authentication and authorisation.

However, due to the different requirement, specifically for the authentication

step, the semantics of achieving access control changes. Thus, for the autho-

risation end in LoT, I will pay more attention to step 1 in the access control

process and argue that the multiple domain context requires a more effective

way to achieve it.

5.1.2 Domain-Oriented Approach

Access requests across domain boundaries, i.e. pervasive environments, require

a flexible access control mechanism that is independent of a long-term stable

and fixed trust infrastructure [35, 45, 121]. As indicated in chapter 3, LoT’s

view of the world is domain-oriented. Explicitly, domains are responsible to

make the security decisions for their local users with respect to local policies.

For achieving access control over multiple domains, I argue that the user

should be essentially authenticated by his/her local domain, rather than being

authenticated by a remote resource server’s domain. To explain this, I develop

my argument by analysis of the three statements below.

As illustrated in figure 5.2, assume a Ph.D student, Bob, from university

B, intend to use the service S (e.g. fax machine, the Internet) in a public

conference centre.

1. Statement 1:

93

Owner of Service
 Alice

Service
S

Bob

University B’s
Server

Resources Servers Domain Users Domain

Figure 5.2: Alice is the owner of the service S, and she will not let Bob access
S unless Bob proves he is a current Ph.D student from university B. We can
regard Alice as a resource domain and university B as a users domain for
instance.

Bob: “my name is Bob, a Ph.D student from University B.” handing

over the student card possibly;

Alice: “who is Bob? is this credential (i.e. the student card) from Bob

really belonging to you?”

2. Statement 2:

Bob: “This key K has the right proving I am a Ph.D student from

University B.” We also can substitute K with a capability (e.g. [55, 71]),

or a delegation token (e.g. [49, 118]).

Alice: “is K still valid? has it been revoked by university B already?”

3. Statement 3:

Bob: “I am a Ph.D student from University B, and I would like to access

the service S.”

Alice: “OK, this is a capability to access S, however, it is locked and

can only be unlocked by University B.”

Bob calls university B to get an appropriate ticket to unlock the access

capability by authenticating him to his own university as an valid Ph.D

94

student.

For both statement 1 and 2, the association between the user Bob and its ID or

key is essentially defined by the authentication mechanism in University B. It is

frustrating for Alice to understand the precise semantics of the authentication

mechanisms used by University B. Thus, inevitably, external authorities have

to get involved here.

Statement 3 is different 2 as Alice does not care who Bob is, or what Bob’s

key is. The only thing she wants to know is whether university B considers

this access requester as a Ph.D student or not at this moment. For this

requirement, the administrative server from university B (rather than Alice

herself) is the most suitable place to make a decision. Hence, essentially, Bob

is required to authenticate himself to his own domain, university B. The term

authenticate is used here at a more generic level. This form of authentication

can be done by using either a classic user authentication-focused mechanism

or a more access control-focused tool.

To allow domains to authenticate their local users is more efficient than

implementing authentication across domains. Alice does not need to know the

precise semantics of security mechanisms, such as authentication, in University

B. In essence, the domain-oriented approach for access control in LoT intends

to reduce the difficult problem (access control over multiple domains) to two

considerably easier problems (user authentication in a single local domain and

remote authorisation between two domains) that we are more confident to deal

with.

This domain-oriented approach for access control is well suited for the

LoT’s world because it ties a user’s claim closely with his/her affiliated local do-

main. It follows the localising the trust policy by letting domains authenticate

2This approach may seem “unappealing” in practice. However, I intend to build up from
this simple statement to show the semantics of the domain-oriented approach for access
control over multiple domains.

95

their local users if authentication is necessary. More significantly, it encourages

domains to get involved with their local users’ interactions. Hence, we need

to have a form of information showing which domain the user is from. The

association between a user and its domain is quite straightforward for an email

system. Interestingly, most Identity-based Encryption systems use the email

system to explain their semantics. A user’s email address clearly indicates the

association between a domain and a user, for instance, LJ@herts.ac.uk, which

contains the knowledge that “the user LJ is coming from domain herts.ac.uk”.

It is another issue to verify the authenticity of the domain, “is there really a

domain named herts.ac.uk (and is it the university or not)” or the relationship,

“is LJ really AT herts.ac.uk”. Whether such an association between users and

domains is true or not is actually controlled by the encryption-based access

control mechanism which will be introduced in section 5.4. For now, let us

focus on the mechanism for relating users to corresponding domains.

5.2 Profile Certificates

For PKI and other similar schemes involving TTPs, an advantage is that

authenticating a domain is easy (compared to authenticating a large number of

individual end users) [24]. Early Identity Certificates (i.e. X.509 [65] and PGP

[132]) operated to guarantee the authenticity of a certain user’s public key by

associating it with a user’s ID. However, global identity (i.e. globally unique

user IDs) is a strong assumption and more significantly it does not really

solve the correct problem (that we would like to be solved).Thus, SPKI/SDSI

systems [99, 43] have defined a more flexible and security sensitive form of

certificate, the Attribute Certificate. It breaks unnecessary binding between

identities and public keys. It works with an access control policy by embedding

key holders’ privileges into certificates.

For the Identity-based Cryptography (or IBC), it is easy to authenticate

96

an individual user, as the users’ IDs are the significant component for their

public keys. Most IDC systems do not require any forms of certificates by

assuming that each domain’s validated public key is always available. I intend

to relax this assumption a little bit more.

I will re-define traditional certificates and introduce a new form of certifi-

cate, Profile Certificate (PC), for implementing the Encryption-based Access

Control mechanism. By way of contrast to existing certificates, the PC here

does not act in a decision making role for users. I do not mind having CAs

in a security system, but they shall be utilised correctly for the right purpose

instead of effectively acting as users’ decision makers. The sole purpose of

having PC here is to attach a user to a domain for a particular purpose (note

that users may have a presence in several different domains for different pur-

poses.). Semantically, it is analogous to an email address for a user. It is not

necessary to have CAs in each domain or hierarchical/chained infrastructure.

Instead, a certain number of (optimistically) trusted authorities called Profile

Certificate Authorities (or ProCAs), are available distributively, and no trust

transitivity subsists among them.

A ProCA’s responsibility is not to supply any crypto knowledge. They

intend to provide the information that a certificate holder is from a certain

domain. Whether such information is correct or not is subsequently controlled

by the domain itself rather than the ProCA. We know that the entire security

of the user domain can be compromised if the traditional CAs make a wrong

decision. On the other hand, if the ProCA certify the wrong relationship be-

tween users and domains, it does not matter (except for performance) because

the decision is ultimately managed by the local domain. It is an efficient ap-

proach as the ProCA do not need to understand the semantics of the requests

from users. The ProCA only provides hints of where to get started.

Public keys of those ProCAs are assumed to be always available. Again,

the IDs or names of domains or users do not have any security-related meaning

97

in the system. The core elements for Profile Certificates (PC) are,

1. Owner’s public key: instead of naming an entity, the owner is identi-

fied by the public key.

2. Issuer’s public key: identifier of the issuing ProCA. The ProCA

embeds its own public key into the owner’s profile certificate. Hence,

all verifiers of a profile certificate are able to check if a correct ProCA’s

public key is used.

3. Profile: the outlined security view for the owner, associating the owner

with corresponding domain. The way of profiling domains/users will

vary with respect to the context of applications, in addition to the do-

main’s local policy. It can depend upon the role, the location, the date,

and so on. Likewise, if a local domain’s security policy is really satisfied

with having a local unique identity/name as a profile, it is not that bad

as long as the policy can be kept locally. However, I will not encourage

to do so considering the significant expense on the practical implemen-

tation. Taking revocation as an example, additional inputs are required

as we cannot revoke a person’s identity in practise.

4. Security Responsibility: implication of domain information, “who is

responsible for the holder on a certain matter”, or “where to get started”.

A profile certificate, PCS, for S is two identifier fields, profile and security

responsibility parameters, signed by the issuing ProCA’s private key. For

instance, assume that the public key for a ProCA and for a company B is

K+

ProCA and K+

B respectively. The different roles within company B are de-

ployed to profile its employees, e.g. CompanyB.Marketing.Manager, Compa-

nyB.Financial.Clerk, or CompanyB.IT.Engineer, and so on. A typical profile

certificate PCB for a company B will be,

Owner’s Public Key Issuer’s Public key Profile Security Responsibility
K

+

B K
+

ProCA Role CompanyB

98

“CompanyB” is used as the security responsibility in the PCB. It is not an

identity/name but an indication, “where to get started”. It can be e.g. an

on-line website, a mobile number, an email address, or a location based upon

the context of different applications.

In terms of its function, the role used as the profile in company B’s profile

certificate differs from the one in the role-based access control systems [53,

106]. A role does not help verifiers to make an access control decision based

upon which role company B’s employees have. Instead, it intends to give the

verifiers a clue what to expect in the employees’ profile certificates. Specifically,

a verifier will not expect to see an employee’s profile certificate use “Main

Building” as his/her profile when company B profiles its employees by role

rather than geography. Thus, PCBob for the company B’s marketing manager

Bob will be

Owner’s Public Key Issuer’s Public key Profile Security Responsibility
K

+

Bob K
+

ProCA CompanyB. PCB

Marketing.
Manager

Note that the profile for a local user is specific within a domain. Also, the

domain’s profile certificate is embedded into its local users’ profile certificates.

For the profile certificate, note that there are two arguments here.

1. In the domain-oriented approach for access control over multiple do-

mains, it is important that a malicious user cannot set up a false/bad

domain at the beginning. Consequently, I argue that it is a fair as-

sumption that ProCA will be unlikely to certify an association between

a malicious user and its own established false/bad domain. This can

be realised mainly via some social responsibilities probably gained from

other channels. For instance, to set up a legitimate company, we have

to register with some business registration authorities; or a university

99

has to pass the higher education commission’s assessment before it can

recruit overseas students.

2. It also appeals that profile certificate authorities do not need to main-

tain any kind of certificate revocation mechanisms due to the impact

from the domain-oriented approach for access control. The social re-

sponsibilities can also be applied here to revoke a domain’s certificate,

such as, a company has to withdraw its registration before its closure.

The basic assumption is every player (i.e. domains, ProCAs) should be

able to know if a domain is not here any more. For instance, a company

“suicides” itself by broadcasting its closing down message. It is trivial to

revoke a user’s profile certificate because the final commit/abort decision

comes from their local domains.

In conclusion, differing from the conventional semantics of certificates, the

profile certificate is used here to give all verifiers an indication, where to get

started. Purpose of the profile certificate is to improve performance, and the

certificate needs to be “mostly right”. This form of certificate is not used to

make a final commit/abort decision. Instead, the access control decision is

managed by the classical authentication and authorisation steps but with a

new notion of delegation.

5.3 Delegation and Access Control over Mul-

tiple Domains

As described above in section 5.1, the domain-oriented approach for access

control in the LoT framework is to reduce the (hard) access control across

domains problem to two (easier) problems, remote authorisation between do-

mains, and localised authentication in a single domain. As in figure 5.2 (on

page 94), I assume Alice and university B as a resource domain and a users

100

domain respectively, Bob is a user from university B who intends to access the

resource S owned by Alice.

5.3.1 Remote Authorisation - Delegation of Rights

Delegation is a natural consideration for making access control decisions [1].

Arguably, in terms of semantics, the conventional public key certificates are

generally synonymous to most delegation systems. A public key certificate is

deployed to delegate the belief on the association of a public key with other nec-

essary information (e.g. access privileges). In the domain-oriented approach,

the access control rights are managed by the resource domains, for instance

Alice. Thus, when resources are shared between domains, the resource domain

intends to delegate some access rights (on a particular resource) to the possi-

ble users’ domains, very often with some necessary restrictions. Usually, Alice

generates some forms of access credentials depending upon different delegation

mechanisms that are deployed within her own domain. Then, she hands over

the access credentials to the university B. In the multiple domain context, the

requirements for defining such access credentials are:

• Domain dependent: credentials should be domain relative. It is im-

portant that different user domains should have different values of access

credentials for the same access right on the same resource. For exam-

ple, to delegate the “allow to make domestic faxes” right to university B

and university C, Alice will generate two different bit patterns for these

two universities. In this way, the compromise of one user domain does

not help an attacker to gain any information of usable forms of access

credentials for other user domains. Moreover, the delegation mechanism

deployed in the resource domain needs to ensure that the collusion of

some misbehaving user domains still cannot assist the attacker in terms

of constructing a usable access credential.

101

• Presentation restriction: in most delegated access control systems,

the possession of a delegated access credential is both necessary and

sufficient to gain access, e.g. a secure capability. For the multiple domain

context, on the contrary, I reason that the (direct) presentation of the

domain-relative credentials is neither necessary nor sufficient for a user

to access a certain resource. Actually, this presentation is extremely

restricted after being issued. Alice will not be expected to grant the

access request to Bob who naively submits the university B’s access

credential. Instead, Alice will regard university B to be compromised and

revoke university B’s access right because university B must explicitly

delegate the credential to Bob.

Remote authorisation is done when access rights are delegated across domain

boundaries from Alice to university B. Interestingly and in contrast with con-

ventional approaches, university B does not delegate any conventional forms

of access credentials to its local user Bob before the access. It may seem that

re-delegation is being restricted. LoT does appreciate the importance of allow-

ing free re-delegation but understands the semantical meaning of re-delegation

from a different viewpoint. This is due to the domain-oriented nature for the

access control mechanism in LoT.

As shown in figure 5.3, Alice does not care who Bob is as long as Bob’s

domain has the correct access credential and Bob has his domain’s permission

to use them. Hence, Alice will ask Bob to authenticate himself/herself to the

correct university B.

5.3.2 Localised Authentication

Thus, the user Bob is essentially authenticated by his local domain, university

B. We notice that the place to do authentication is different. It changes from

the receipt’s domain (i.e. the resource owner, Alice) to the sender’s domain

(i.e. the user domain, university B), as indicated in figure 5.4.

102

Alice

Bob

University B’s
 server

Access Credentials

Delegating
Access Credentials

"Can you recognise this
access credentials?"

University B’s
 server

Access Credentials

Alice

Bob
"Let your university help you to
solve this puzzle"

Delegating
Tasks

Figure 5.3: The concept of the conventional approaches is briefly described in
the left diagram. University B delegates the access credential (in some form) to
its student Bob. Bob then submits this delegated access credential and expects
Alice to be able to recognise them. As illustrated in the right diagram in our
alternative scenario, university B does not delegate the access credentials in
any form before Bob’s request for access. Alice will ask Bob to authenticate
himself to the correct university.

The authentication step only occurs locally (within the users domain). A

local authentication channel will be established between players and their local

domains.

Local Authentication Channel: a communication channel is said to

be an authentication channel, if it can sufficiently provide both the authen-

ticity and confidentiality of any information exchanged between local users

and their associated domains. This channel can be realised by many existing

mechanisms, e.g. classic Kerberos like protocols [46, 122], policy-based trust

management [16], or more pervasive security protocols [13, 45, 121], etc.

I do not intend to discuss those mechanisms in great detail in this dis-

sertation. Instead, I encourage domains to choose a proper authentication

mechanism freely and be responsible for their choice, in accordance with their

own domain policies. The only requirement is that the authentication channel

103

Alice
 Bob

Sender Recipient

Conventional Access Control
Approaches:

Authentication

 Alice Bob

Sender Recipient

Domain-oriented Approach:

Authentication

University B

Figure 5.4: For Alice, it is undoubtedly frustrating and difficult to authenticate
someone from other domains. By allowing university B to authenticate Bob
locally, Alice will not have to spend resources to understand the semantics of
the authentication mechanism in a different domain, university B.

established in the local domains will not be compromised in the future. Both

users and local domains can be guaranteed that they are talking to the one

whom they think they are.

For the localised authentication step, note that university B’s server need

not necessary be on-line all the time (I will explain this a little bit more in the

next section, see page 110). From Alice’s perspective, it is Bob’s problem to

authenticate himself/herself to not only university B, but the correct university

B.

The basic idea of localised authentication has been hinted in the Identity-

based Encryption cryptosystem (IBE). The IBE system does not require a

chained or transitive trust relationship along the transmission path. Instead,

trust is only established between end-users and a local trusted party, e.g.

Private Key Generator (PKG) in the user’s local domain. But nevertheless,

to my best knowledge, this idea has not previously been explored significantly

in the way that I will describe in this dissertation.

104

As a resource owner, Alice should not be forced to “contact” different

possible universities every time their students come to request access. Hence,

it is desired to have a mechanism connecting remote authorisation and localised

authentication steps in the domain-oriented approach for access control over

multiple domains. This can be realised by encryption-based access control.

5.4 Architecture for Encryption-based Access

Control

Encryption-based access control (EBAC) is a relatively new concept, but it has

been rapidly developed in pairing-based cryptosystems [18, 61, 117]. From the

perspective of encryption, the encryption-based access control sketched here is

analogous to some existing Identity-based encryption (IBE) schemes [2, 51, 63].

For instance, in figure 5.2 on page 94, it lets Alice encrypt a message in a way

that Bob can only decrypt with the necessary assistance from some security

services in his/her own domain (university B). As a consequence, it is Bob’s

responsibility to convince his (or her) local authority to issue the corresponding

decryption keys (precisely a partial decryption key). Moreover, the partial

decryption key can only be generated and supplied by correct university B.

From my perspective, pairing-based IBE is not suitable for the multiple do-

main context. In those systems, every domain’s public key has to be available,

at least at the time when a user requests the access. If the authenticity for

the domain’s public key is certified by some external certificates authorities,

the certificate revocation and trust transitivity problems re-emerge.

The basic construction for encryption-based access control proposed in this

dissertation is converted from Goldreich et al.’s self-delegation scheme [54]. In

Goldreich et al.’s original system, their purpose is to delegate certain rights

from a user to a user himself without risking the compromise of his long-term

private/public key pair (primary public/private key). Accordingly, secondary

105

key pairs (skℓ, pkℓ) are created by the user. They can only be validated with

a validation tag (valℓ) based upon a certain limitation (the limitation index

ℓ). Given a triple (skℓ, valℓ, pkℓ), the player is able to convince a verifier

that a certain public key pkℓ can be used on behalf of the primary key (given

the limitation index ℓ, a primary public key and the necessary system set up

parameters). I take advantage of the fact that a private/public key pair can

also be applied to do decryption/encryption operations. Assume that PK∗ is

the full encryption key and SK∗ is the full decryption key.

If the full decryption key SK∗ can be computed by university B, restricting

misbehaving domains and users in EBAC will be hard. Two specific problems

are considered here,

1. The denial-of-service attack from university B. University B may ma-

liciously do a denial-of-service attack and claim that the access comes

from one of its students.

2. Corruption from Bob. If Bob decides to collude with another student

Moriarty from very beginning, he can just simply “hand over” SK∗ to

Moriarty after the key is issued from university B.

To address those two threats, thus, the technique used in EBAC is to separate

SK∗ into two parts, partial decryption key (PDK) and R generated by the

user’s domain and the user itself, respectively.

The overview for encryption-based access control described above is illus-

trated in figure 5.5. Those steps will be describe in detail in next chapter.

Briefly speaking, Alice delegates a domain-based access credential (ACB) to

university B (i.e. its domain server). When a student Bob from university

B requests to access a particular resource owned by Alice, she will give Bob

an access “token” based upon Bob’s access request. This “token” can only

be converted to a usable access capability if the correct university B issues a

106

Alice BAC_B

Bob

Resources

E

PDK

R

Access "Token"

PK_l

SK_E

SK_R

Accessable
 capability

(1)

(2)

(3)

Access request

(4)

Figure 5.5: To access Alice’s resources, a student Bob has to retrieve the a
partial decrytion key (PDK) from university B.

PDK at the time of Bob’s access. Thus, it is Bob’s job to convince univer-

sity B that he is entitled to access this particular resource. As far as Alice is

concerned, she does not care how Bob authenticates himself to his own uni-

versity. She is happy to grant Bob’s access once the conversion is completed

successfully 3.

For PDK generated by user domains: PDK can be provided by

university B. It is based upon the access credential (ACB) delegated from

Alice to university B during the remote authorisation step. As described

above, however, the presence of ACB is extremely restricted. Therefore, the

requirements for defining PDK are to be,

• Session-dependent: for every access request from its students, the PDK

issued from university B will be different. This is mainly to avoid Bob’s

dishonest behaviour or the replay attack. In addition, similar to the case

of environmental key generation [97], university B may restrict Bob to

allow access only if certain classes of environmental conditions are true,

for instance, on a certain date, at a certain time, and so on. University B

can take those local restrictions, environmental requirements and Bob’s

personal information, and denote them by access index ǫ.

3If audit trail is one of the concerns for some applications, another “audit token” can
be provided by university B (and embedded in the access token). Alice cannot decrypt this
audit token, nor re-produce it. However, if something is going wrong, Alice can present the
audit token issued by university B simply for the purpose of the audit trail.

107

• The second requirement is quite straightforward. Given any collections

of issued PDKs from a set of students in university B, an attacker cannot

compute the value of ACB.

In EBAC, SKǫ is added to generate a PDK. It is the secret part of the key

pair (SKǫ, PKǫ) generated by university B after inputting the access index ǫ.

Moreover, the use of SKǫ is to guarantee that the ACB will be kept secret to

university B (the users domains). Also, this key pair (SKǫ, PKǫ) is called the

Endorsement Pair in EBAC.

For R generated by users: the generation of R is based upon the idea

of delegation of responsibility [36] (see the brief review in section 2.3.2 on

page 40). In the domain-oriented access control approach in LoT, users are

organisationally affiliated with their local domains. EBAC lets Bob contribute

a secret component R. R is the secret part of the key pair (SKr, PKr)

generated by Bob. It plays two important roles here. First of all, the existence

of R prevents a misbehaving university B to masquerade as Bob. Secondly

and more importantly, if Bob decides to collude with another student Moriarty

from the very beginning, Bob has to give SKr to Moriarty. This will force Bob

to compromise his personal secret to an attacker, in order to breach security.

We can consider for example that this (SKr, PKr) pair is associated with

some form of digital cash [7, 23, 100, 124] for Bob. Thus, Bob is not willing to

give up SKr by any means. The key pair (SKr, PKr) is called Responsibility

Pair in EBAC.

For ACB generated by resource owners: as discussed in section 5.3.1

(see page 101), ACB is required to be domain-dependent. Thus, Alice generates

a master secret SK firstly in her own domain and computes a pair (SKℓ,PKℓ)

for university B. This pair is called the access rights pair, where PKℓ is ACB.

From the requirements of being domain-dependent, we know,

• Given any single value from PKℓ, it is (computationally) infeasible to

108

compute the corresponding SKℓ.

• Given a set of values from a set of PKℓ, it is still (computationally)

infeasible to compute any SKℓ or the master secret value SK.

The construction of the access rights pair will be highly dependent on the

mechanism that Alice chooses to use to delegate access rights, e.g. a secure

capability, a public key pair, and so forth.

Encryption/Decryption: now, we will have,

• The Partial Decryption Key (PDK)

PDK = ACB ∪ SKǫ = PKℓ ∪ SKǫ, (1)

• A full encryption/decryption key pair,

Encryption key: PK∗ = SKℓ ∪ PKr ∪ PKǫ, (2)

Decryption key: SK∗ = PDK ∪ SKr = PKℓ ∪ SKǫ ∪ SKr, (3)

• Two algorithms, Encrypt{} and Decrypt{}.

1. Encrypt{}: this algorithm is used to encrypt a message M under

the encryption key, PK∗, after inputting SKℓ, PKr, PKǫ.

2. Decrypt{}: correspondingly, it is called by Bob to recover the mes-

sage M by taking the full decryption key, SK∗, after inputting

PDK and SKr.

Note that “∪’ here is only a symbol. The mathematical meaning varies depend-

ing on the underlying cryptographic algorithm chosen in the implementation.

More practical approaches will be given in next chapter.

Thus, for EBAC,

1. By having a secret input R from a user, e.g. a student Bob, two threats,

the denial-of-service attack from university B and the corruption from

Bob can be addressed as discussed above.

109

2. By having a secret input SKǫ in PDK from a user domain, e.g. univer-

sity B, university B does not have to be on-line all the time. University

B can send the PDK for Bob to a directory for example. Bob only needs

to get this PDK from the directory.

Generally speaking, revocation works closely with access control, the del-

egation semantics in particular. Revocation discussed in access control con-

text is mainly subject to the various delegation relationship among resources

servers domains, users domains and associated local users. We cannot discuss

delegation without having revocation in mind.

5.5 Revocation

From a security perspective, revocation is a way to prevent unauthorised access

resulting from the use of some invalidated statements. But meanwhile revoca-

tion is one of the main difficulties for many security systems. A notorious case

is the (public key) certificate revocation problem that has been witnessed in

many PKI-based systems. Conventionally, the revocation problem has been

dealt with separately and some ad-hoc mechanisms have been provided for

managing revocation information [59]. However, there are two problems of

doing so,

1. From the infrastructure’s perspective, users will have to understand the

semantics of revocation separately. Unfortunately, it is difficult to be-

lieve that users will understand and check the detached revocation mech-

anisms at all. For most conventional revocation schemes, it is up to one

communication participant to check if the information is revoked. For

simplicity or performance reason, users may be more likely to choose not

to use additional revocation mechanisms, particularly if this request is

forced by the infrastructure. In pervasive environments, it is infeasible

and unnecessary to require a user from one domain to understand the

110

semantics of the revocation mechanisms in other domains. Moreover,

if the infrastructure pushes applications to check revocation by default,

each domain has to make sure their own security policies satisfy the in-

frastructure’s requirements and assumptions. This is not what we want,

particularly in the multiple domain context.

2. For the semantics of revocation itself, a more serious problem is the time-

liness of revocation information. In short, revocation requires users to

obtain necessarily real-time revocation information. For the conventional

approaches, both pull and push by (revocation information) providers

suffer from this problem. This timeliness concern is more significant for

pervasive environments. As pervasive communications usually involve

multiple domains, a domain may not always be aware of any security

policy changes in other domains. Again, the conventional approach to

this is to let the infrastructure play a crucial role. The infrastructure is

responsible for collecting the relevant revocation information from dif-

ferent domains. Then, the users from the other domains can check with

the infrastructure, if they need. It is doubtful to have in place such an

infrastructure always accessible by remote domains in pervasive envi-

ronments. Also, the extra cost to manage revocation will be significant

because most pervasive applications may be taking place on a purely

temporary basis.

Here are the two main issues I understand for revocation in EBAC in the

LoT framework.

• Revoking local users’ access request: this is the primary issue in this

dissertation as far as revocation is concerned. The domain-oriented ap-

proach, particularly the EBAC method, brings many advantages in terms

of addressing the revocation problem. Under some circumstances, uni-

versity B may want to revoke a student Bob’s access rights on accessing

111

the shared resources owned by Alice. It may be the long-term case, e.g.,

Bob is not a Ph.D student any more. Or, it may be for a temporary

invalidation, e.g. Bob takes one day’s leave from the university. For

both cases, providing the real-time revocation information is crucial but

unfortunately most revocation mechanisms fail to do so efficiently.

In contrast, the EBAC method deployed in the domain-oriented ap-

proach manifests the efficiency of revoking the users’ access request. It

is considered to be part of normal transaction. As shown in figure 5.5

(on page 107), Bob cannot generate a full decryption key without ac-

quiring a current PDK from university B. Moreover, Bob is not able

to compute the correct PDK on his/her own. Consequently, the PDK

can be considered as the revocation factor created by university B. To

revoke Bob’s access request, the only thing university B needs to do is to

simply stop issuing the PDK, when Bob requests the necessary crypto

key materials in the real-time interactions. Once B drops its pointer to

the PDK, the access from Bob immediately stops forwarding. All the

access statements Bob has become useless.

• Revoking delegated access rights across domains: In EBAC, access rights

are managed by resource servers domains. The rights are delegated only

at the domain level, from a resource servers domain (Alice) to a users

domain (university B). Alice may not want any students from univer-

sity B to access a certain resource any more, for instance, the contract

expires. For the domain-oriented approach, she just needs to revoke

the proper access rights for university B. Since revoking access rights

takes place within her own domain, Alice can maintain a domain-based

access control list locally 4. If she wants to revoke a domain’s access

4Having a local access control list is not a step backward. Like Karger’s S-CAP [69], an
access control list is adequate here as long as it can be kept local to Alice’s own domain.

112

rights, she deletes this domain’s profile certificate from the domain ac-

cess control list. To compose a user’s profile certificate, the domain’s

profile certificate has to be included. As a result, if a requester’s PC

contains a revoked domain’s information (more precisely, the domain’s

profile certificate), Alice will abort the communication.

Advantages: the domain-oriented approach for access control over mul-

tiple domains, particularly the EBAC method, has the following properties in

terms of revocation.

• Integration: instead of being treated separately, revocation is (partially)

integrated into the normal transaction. The principle is rather simple.

University B releases the PDK if its local students’ access requests are

still validated from its own perspective. Otherwise, university B stops

the issue of the PDK. This scheme essentially reduces the cost that is

used to establish additional revocation mechanisms.

• Immediateness : Alice will know Bob’s access statement has been revoked

immediately, if Bob cannot successfully decrypt the message encrypted

by Alice. Revocation occurs in real-time.

• Seletiveness : under some circumstance, university B may just want to

revoke Bob’s access temporarily, e.g. for one interaction or one day.

Using the EBAC method, university B does not need to (“physically”)

revoke anything. Instead, university B stops issuing PDK to Bob for

this instance. When Bob resumes his job next day, domain B starts to

issue the PDK again.

• Revocation Transitivity : domains’ profile certificates are cascaded into

their own users’ ones. Thus, once university B’s certain access right

has been revoked, access requests from any students from university B

will be denied automatically. Again, a player’s profile certificate does

113

not have to be accurate because the finally decision will go back to the

player’s local domain.

Thus, the PDK is like a freshest certificate, however,

• A player, Bob, has to have it to access a resource.

• It is domain B’s problem if issuing a correct PDK to correct Bob goes

wrong.

5.6 Conclusions

The entire design of the Encryption-based access control scheme is motivated

by the domain-oriented viewpoint in the LoT framework. It is based upon

the concept of localising the trust. More specifically,in LoT the commit/abort

security decision is ultimately managed by the local domain, rather than ex-

ternal authorities. This is an efficient approach because a user does not need

to understand the semantics of security mechanisms in other domains. More-

over, the EBAC scheme effectively solves the inherent revocation bottleneck

in most delegation focused access control systems. The most difficult aspect

in terms of the revocation problem is addressed by treating revocation as part

of the normal transaction in the EBAC scheme.

The domain-oriented EBAC scheme is the central stone for LoT. In the

next chapter, I will investigate two access control scenarios, stranger access

and guest access. Also, I will describe the details of implementing the EBAC

scheme enabling them in pervasive environments.

114

Chapter 6

Semi-Trusted Agent Mediated
Protocols for Access Control

Two different scenarios will be examined in this chapter, as highlighted in

section 3.5 (see page 67). A player who intends to access some shared resources

from other domains may be a stranger to the resource domain. Or, a player can

be from a domain who is unknown to the resource domain, however, the player

is friendly (most likely on a purely temporary basis) to some of local players

from the resource domain. Those two scenarios are referred to, strangers access

from friendly domains, and guests access respectively. My attention will be

focused upon the strangers access from friendly domains because arguably the

guests access scenario is indeed a case of access control for a single domain (I

will explain this later on in section 6.5).

This chapter begins with an overview of the Semi-Trusted Agent Mediated

Protocol for achieving access control in pervasive environments. Then, I il-

lustrate an example threat model for strangers access from friendly domains

in section 6.2. Section 6.3 describes a Dual Capabilities Model, which is used

for domain-based access control. Detailed protocol implementation for achiev-

ing localised authentication in encryption-based access control is proposed in

section 6.4. This chapter ends with a brief analysis of the guest access scenario.

115

6.1 The Overview of the Semi-Trusted Agent

Mediated Protocol (STAMP)

STAMP in the LoT framework is designed to provide necessary access control

in the multiple domain context, and has been optimised to work in pervasive

environment. Essentially, it has three primary components: resources, agents

and (domain) servers. A resource is any type of resources or services within a

domain that are potentially accessible by users, or shared with other domains.

It could be either hardware, e.g. a DVD player, a fax machine, a wireless

camera, or some software programs running on some devices.

The architecture for STAMP is based upon domains. Each domain is

controlled by a domain server whose responsibility is to manage its local users

and resources. It allows users and services/resources to register, and provide

appropriate profile certificates 1 to them, for instance. In addition, two types

of agents have been employed by STAMP, capability agents and semi-trusted

agents (or STAs).

• Capability agents: the capability agent maintains a User Domain-level

Access Control List for any shared services/resources owned by the do-

main. When a user requesting the access (on a particular resource)

is from other (user) domains, the capability agent will firstly check if

the domain this requester belongs to has the appropriate access right.

Moreover, the capability agent is responsible for delegating the access

rights between domains during the remote authorisation process (that

is, cross-domain delegation phase). The details are described in section

6.3.

• STAs: STAMP introduces semi-trusted agents to extend the domain-

oriented approach for access control over multiple domains. Those agents

1As indicated in section 5.2, the profile certificates for both domains and their affiliated
users ought to be issued by a local profile certificate authority.

116

are trusted only by their own associated domain servers. More specif-

ically, the communication channels between domain servers and those

agents are assumed to be secure, i.e. authenticated, non-repudiated and

confidential. However, neither local users nor domain servers from the

other domains need to trust those agents at all. For instance, a player

may not have accessed a particular local resource before and therefore

has not talked to a particular STA at all. Thus, those agents are con-

sidered to be semi-trusted. They can be in different forms with respect

to the nature of multiple-domain applications, such as hardware devices,

software running at a personal device, or a website, and so forth.

Figure 6.1 shows an overview of the STAMP architecture from one domain

viewpoint. Note that multiple semi-trusted agents may exist for one domain.

Domain
Server

Resource A

Capability
Agent

Semi-
Trusted
Agent

Domain level
access control

local users pool

user A

user BPartial Decryption
Keys Retrieval

resources pool

Resource B

Figure 6.1: STAMP Overview
The overview of STAMP

Roughly speaking, the STAs’ major purpose is for users to retrieve partial de-

cryption keys (PDK) that are deployed in the encryption based access control

method. As a consequence, localised authentication is accomplished.

117

Semantically, STAMP follows the description of the domain-based ap-

proach for access control over multiple domains. Users’ own domains are

responsible to make the final commit/abort decision for their local users via

supplying the necessary partial decryption key (PDK). The success of the user

retrieving the correct PDK will convince the remote resource owner that the

access requester has the proper authorisation to access some shared resources

across domain boundaries.

Semi-Trusted Agents: The semi-trusted agents have a vital role in the

STAMP architecture. There are three major reasons to have such agents here.

1. An advantage of the domain-oriented approach for access control is that

the domain server controls the necessary PDK for its local users. How-

ever, it also means that the domain server has to be on-line all the time

for issuing the PDK, and more important dealing with real-time revoca-

tion. By employing local agents, domain servers can be kept off-line after

sending PDKs to agents at the beginning of every period of time (let us

say every day). Domain servers only need to be on-line if they would

like to change their local users’ states (e.g. revoking or re-validating).

2. The STAs from one domain may be geographically located in different

places. However, they are based upon domains and therefore local to

their own domain servers. In other words, parts of them act like lo-

cal agents. Thus, it is fair to assume that the secure channel between

STAs and their associated domain servers is always available. Generally,

to jam this channel is both difficult and expensive in practice. More

importantly, the responsibility to keep the channel open rests entirely

within one domain.

3. Moreover, having an agent brings the potential benefit of keeping the

resource devices themselves simple. In pervasive environments, those

118

resources devices can be wearable gadgets, DVD players, kitchen ap-

pliances or any lightweight devices. If the resource device has limited

computational power, they can communicate with nearby agent(s), al-

lowing agent(s) to run some complicated tasks for them 2.

6.2 Strangers Access from Friendly Domains

6.2.1 Motivating Threat Model - Public Meeting 2

I again focus upon a simple but interesting (in the security protocol sense)

pervasive application, the public meeting. It has already been described in

section 4.1.2. The company A’s marketing manager Alice meets company B’s

marketing manager Bob for the first time in a public conference room. She

would like to securely transfer a private project plan m from DRDalice to Bob’s

hand-held device DRDbob this time. I assume that the context of human trust

between Alice and Bob is missing in this scenario, for instance, Alice does

not know Bob in person. In other words, Bob is a stranger to Alice although

company B is known to Alice. Thus, Alice has to be convinced that she is

talking to the right Bob as well as talking to the right device.

Considering the basic approach in chapter 5, the computations might be the

same. The semantics, however, are totally different with respect to the change

of context in this threat model. Previously, the weak secret k is generated

randomly and agreed by Alice and Bob. Now, it has to be shared between

two friendly domains, company A and company B, for this meeting’s purpose

first. Both Alice and Bob are delegated this secret value from their own

company. It is also necessary that Alice and Bob load this pre-shared secret

into their devices respectively. They have no chance to observe each other’s

inputs during the meeting. If this secret is leaked to an insider attacker (e.g.

2A secure communication channel between a device and a agent in a either wired or
wireless network can be established by using many existing security protocols that have
been widely developed in conventional environments. The discussion on this issue is out of
the scope of this dissertation.

119

a bad guy from company B) somehow, he (or she) can masquerade as Bob

without Alice’s awareness. Hence, the security is being provided in the wrong

place from the very beginning, as Alice talks to the wrong Bob.

It does not get better if security protocols require Bob to show some proof

(conventionally somehow relating to IDs again), e.g. traditional personal ID

card issued by company B, or a signed letter from the company B 3. Alice may

not be able to recognise those proofs issued by the company B because she is

from a different company A. Even if she may, it is still difficult and frustrating

for her to be aware of any policy changes which have occurred in the company

B.

Thus, the main threat I try to address in this example is the confinement

problem associated with the stranger access from a friendly domain, in contrast

to the man-in-the-middle attack in the public meeting 1 scenario.

6.2.2 Confining an Insider

I (deliberately) associate the stranger access scenario with the classic confine-

ment issue here. The confinement problem is defined by Lampson [76] in the

early 70s. It is to determine whether a series of operations will pass informa-

tion to an unauthorised process or not. Access control policy is an important

security policy to address the confinement problem. It is fairly straightforward

to prevent an outsider from gaining access to unauthorised resources for most

access control systems. However, the problem is the unsuspecting insiders.

Particularly, in the case of stranger access (from friendly domains), Alice may

not be aware of the semantic difference between a stranger authorised by the

stranger’s own domain and an inside attacker who is from the same domain

as the stranger.

Loosely speaking, in this dissertation,

3We can think of this signed letter as the form of traditional public key certificates in
the cyber-world.

120

Confinement : to confine potential damage from an insider within the local

domain. We can take the public meeting as an example, Alice should be

informed to abort at time of interaction, if a usable access credential has been

leaked to another unauthorised user in company B.

Moreover, confinement is a mechanism to restrict an insider’s wrongdoing.

We do not expect to see that an insider Moriarty could masquerade as Bob

by, for instance, stealing the secret credential on Bob’s personal device. On

the other hand, if Bob is misbehaving, he should be the one who suffers the

most.

STAMP can be deployed here to confine an insider. The delegation of

rights is achieved by the remote authorisation step through capability agents,

as discussed in the previous section. Consider spontaneous and dynamic per-

vasive interactions, we need a flexible mechanism to delegate access rights

between domains in STAMP. This naturally leads us to a capability-based

access control method.

6.3 Dual Capabilities Model (DuCaM)

Dual capabilities deployed in DuCaM are similar to the idea in I-CAP [55] and

split capability proposed in [72]. The dual capabilities heavily borrow Gong’s

novel idea of having internal and external capabilities. However, the basic

system infrastructure for DuCaM is built from the domain-oriented approach

for access control (over multiple domains), which is completely different to

I-CAP. As pointed out in section 2.2.3 (see page 35), an additional authen-

tication mechanism is required in the I-CAP system to check the user’s ID

at time of using the external capability. In DuCaM, restricting the presen-

tation of (external) capabilities is utilised to secure the capabilities instead

of requiring a reliable authentication mechanism across domains. In DuCam,

121

authentication occurs only locally within the user domain. From this signif-

icant semantic difference, capabilities used in DuCaM are not simply access

control oriented tokens only. In fact, their primary task is to let (remote) users

authenticate themselves to their own domains, and more importantly to the

correct domains.

Going back to the public meeting case (on page 119), assume Alice (the

resource owner), company B (a user domain) and Bob (a stranger from a user

domain) have their issued profile certificate, PCA, PCB and PCbob respectively.

Note that some notions used below have been explained in section 5.4.

I only consider one direction of trust, in which Alice would like to make

sure Bob is the right stranger from company B, purely for simplicity. If mutual

trust is required (e.g. the meeting for two secret societies), the same protocol

will be used but changing the direction.

Dual capabilities: the capability agent managed by Alice generates dual

capabilities for some possible organisations, for instance company B, on a

shared resource, the project document obm in the public meeting case.

• Internal Capability : this keeps the same form as the one in I-CAP. The

capability agent generates a random secret r, for some resources owned

by Alice, e.g. the document obm.

IntCap= (obm, r),

where, r is only known to Alice’s capability agent as a master secret.

• External Capability : company B initiates a service request by sending

the profile certificate (PCB) to Alice. Alice checks her own local access

control policy, and inform her capability agent to delegate appropriate

access right to company B. The capability agent updates the domain-

level access control list (on obm) by inserting an new entry of PCB, then

produces an external capability for company B,

122

(ExtCapB),

where,

ExtCapB = h{obm, r, AccessRights, PCB}

h{} is an one-way hash function. Eventually, the external capability will

be handed over to university B via Alice.

The basic diagram is illustrated in the figure 6.2,

Alice
Company B’s
Server

External Capability

Internal Capability
Profile Certificate

Capability
Agent

External
Capability

Figure 6.2: The resource owner Alice’s capability agent generates a domain-
dependent credential, external capability, for a user domain company B.

We can think of the internal capability as a master secret SK, and the

access rights pair (SKℓ, PKℓ) introduced in previous chapter are,

SKℓ=obm, r, AccessRights, PCB,

PKℓ=ExtCapB=h{SKℓ},

The possession of an external capability in STAMP is not sufficient to gain

access to a certain object. The main purpose of having a domain-specific

external capability is not for the (conventional) access control purpose only.

Essentially, it is used for the localised authentication step. Within company

B, the external capability will not be delegated to any employees in any form

123

before the access. Instead, it will be stored in a safer place (than carrying

around), e.g. the company B’s server, or some other places that company B’s

server has a stable connection with.

Access process: when Bob requests access on objm, Alice will respond

to Bob with a form of “token” (using the encryption-based access control

method). Essentially, whether Bob can use the information encrypted in this

way by Alice is not Alice’s concern at all. It is Bob’s job to convert the “token”

to a usable material. Moreover, Alice knows the right company B has to get

involved to accomplish this conversion successfully. Hence, if this can be done

by Bob, it is good enough to convince Alice that the person she intends to

talk to is from the correct company B for the current meeting’s purpose. In

other words, from Alice’s perspective, authentication takes care itself.

6.4 Discrete-Logarithm based Scheme for Lo-

calised Authentication

In this section, I will describe a practical implementation to achieve localised

authentication in the context of EBAC. The underlying cryptographic scheme

of this example approach is based on discrete logarithms. More precisely, I

assume a generator g, large prime modulus q = 2p+1 for prime p, and one-way

hashing function h are publicly known. Also, random numbers generated from

the underlying algorithm must be strong (i.e. long enough to be invulnerable

to exhaustive search) as well as hard to predict.

For a chosen decryption/private key SK, the corresponding encryption key

(public key) is PK = gsk mod q. A typical DL-based Encryption/Decryption

example is ElGamal scheme [42]. Roughly speaking, for example, if C wishes

to encrypt a message m for D with D’s public key, gd (where d is the corre-

sponding private key for D), C should do the following,

• Select a random integer k, where 1 ≤ k ≤ q − 2.

124

• Compute C1 = gk mod q and C2 = m × (gd)k mod q.

C sends C1, C2 to D. D can recover the m from C1, C2 using the private key d

by calculating C1
−d × C2. The Encrypt{} and Decrypt{} in this section will

use these steps.

Some procedures described later stem from the approach in section 4.4.2

(see page 86). They are mainly used to establish a two-channel protocol for

authenticating the right device. Briefly, the two channels introduced previ-

ously, one the RF channel and the other an out-of-band channel (OoB), will

be deployed here as well. I assume that DRDalice is a device for Alice, B is

a server for company B and DRDbob is a personal device for Bob. STAB is

the semi-trusted agent for company B, for instance, a website accessible from

DRDbob. Again, the channel between company B’s server (B) and this website

(STAB) is secure, and it is difficult and expensive to jam such a secure channel

in practice.

The Profile Certificates for company B and Bob are PCB and PCBob re-

spectively, where,

PCB is (K+

B , K+

ProCA, Role, CompanyB) signed by ProCA,

and,

PCBob is (K+

Bob, K+

ProCA, CompanyB.Marketing.Manager, PCB) signed by

ProCA.

The basic protocol is highlighted in figure 6.3, which follows the overall

infrastructure of encryption-based access control introduced previously (see

figure 5.5 on page 107).

Responsibility and Endorsement Pair: company B delegates the task,

“access a shared project document owned by Alice”, to its employee Bob.

STAMP recalls the encryption-based access control method here and requires

125

Alice Company B’s
Server

Bob

Decrypt{}

Verification

 Encrypt{}

Access Request

 PDK Generation

STA_B

PDK Retrieval

External Capability

Capability
Agent

Domain-level
Access Control

(1)
(2)

(3)

(4)

Figure 6.3: Localised Authentication in STAMP

the generation of the responsibility pair and the endorsement pair for a user

domain, i.e. company B.

Bob (DRDbob) generates a responsibility pair, (SKr, PKr) from the under-

lying discrete algorithm, where,

PKr = gSKr mod q,

In the meanwhile, a local authenticated channel (LAC) is established as well

between the company’s server B and DRDbob. The purpose of LAC is for

localised authentication. DRDbob submits PKr to B,

DRDbob →LAC B: PKr,

Company B inputs a certain local restriction index (ǫ) along with PKr to

compute a endorsement pair (SKǫ, PKǫ). That is,

PKǫ = gSKǫ mod q.

Then, the delegation of task, accessing Obm, is issued from company B to Bob,

B →LAC DRDbob: PKǫ, Obm, AccessRequest, PKr,

Access Request: Bob meets Alice in a public conference room. DRDbob

generates a random number b and a weak nonce nb, then requests the access

on the project plan (Obm),

126

DRDbob →RF DRDalice: PKr, PKǫ, Obm, AccessRequest, PCBob,

(gb + nb mod q),

At the same time, DRDbob sends the nb to A via the infrared link,

DRDbob →OoB DRDalice: nb,

Encryption Phase:

Alice obtains the domain information PCB from PCBob and sends it to

her capability agent. The capability agent will have to look up the (local)

domain-level access control list to make sure company B’s access rights on Obm

are still validated and appropriate. If so, the capability agent re-constructs

a permissible 4 external capability from the internal capability (Obm, r) and

access request committed by DRDBob,

ExtCapB
ℓ = h{Objm, r, AccessRequest, PCB},

Alice (DRDalice) receives ExtCapB
ℓ from the capability agent. Then, she

also generates a random number a and picks a weak secret na. Alice runs the

Encrypt{} algorithm by inputting the value of ga + na mod q,

Encrypt{}: C = EPK∗ [ga + na mod q],

where the encryption key (recall the fomula (2) on page 109) ,

PK∗ = SKℓ ∪ PKr ∪ PKǫ = (PKǫ)
h{SKℓ} · PKr =

(gSKǫ)ExtCapB
ℓ

· gSKr mod q,

Alice sends this encrypted information to Bob.

DRDalice →RF DRDBob: C,

Also, DRDalice sends na via the second channel,

DRDalice →OoB DRDbob: na,

4Bob may request some access rights to which he is not entitled.

127

If Bob is who he claims to be, he/she is now able to decrypt this message.

Furthermore, Alice computes,

g2ab mod q = (s|n1|n2)

where s is the (potential) session key, and n1 and n2 are nonces.

Partial Decryption Key Generation Phase: After authorising Bob to

access the document obm, company B’s server B computes appropriate PDKB

(recall fomula (1) on page 109),

PDKB = PKℓ ∪ SKǫ = ExtCapB · SKǫ(mod(q − 1)),

Then, B updates the STAB with this appropriate PDKB for the user Bob.

Bob retrieves PDKB from STAB via the established local authentication

channel. Assume that the link to the website (STAB) is also embedded in

the crypto-module of DRDBob. Thus, the input (the link to the STAB) and

the output (the PDKB) may be observed by the attacker if a spyware is

successfully installed in DRDB. However, the attacker cannot change the

values.

STAB →LAC DRDbob: PDKB,

Decryption Phase:

DRDbob runs the Decrypt{} algorithm by taking the PDKB and the secret

SKr. The full decryption key is (recall fomula (3) on page 109),

SK∗ = PDKB + SKr = ExtCapB · SKǫ + SKr(mod(q − 1)),

if Bob is the right stranger from a friendly company B, we should have

ExtCapB
ℓ = ExtCapB,

Thus, DRDbob would be able to get the correct decryption key (SK∗) and

further to decrypt C. DRDbob computes g2ab mod q = (s|n1|n2) as well.

Verification Phase:

Both DRDalice and DRDbob do the following step,

128

• DRDalice →RF DRDbob: n1,

• DRDbob →RF DRDalice: n2,

If the crypto-module from DRDA finds they match, then Alice considers the

current access requester is from the correct company B for this current meeting

purpose.

Thus, Bob is authenticated by his local domain, company B. If an inside

attacker Moriarty comes to meet Alice, he has to compromise the localised

authentication mechanism in company B. Otherwise, he cannot retrieve the

correct PDK from STAB. From this, we can see that STAMP provides an

efficient solution to enforce the confinement for access control over multiple

domains.

6.5 The Guest Access Scenario

The second scenario considered here is friendly access from strange domains.

Among numerous pervasive applications, increasingly, human users intend to

access some resources that are provided by other domains, e.g. organisations,

schools or other human users, on a purely temporary basis. For instance, an

external consultant tries to access a client’s Smart Spaces [68, 21] services, a

guest wants to use the host’s TV or refrigerator, or a visiting researcher would

like to connect to the university B’s secure wireless network for a short period

of time during his visit, and so forth. Those examples indicate the necessity

of requiring guest access in pervasive environments.

The guest access scenario can easily be mis-regarded as a case of access

control over multiple domains, as the guests are from other foreign domains.

However, it is really a single domain case from the domain definition in LoT.

The intention of discussing this single domain example here is to enhance the

correct understanding of domain employed throughout this research. It does

129

not, however, exploit the possible protocols to address the security issues in

the guest access scenario in detail.

I will explain this argument in detail in the rest of this section. First of

all, let us understand the characteristics of guest access.

6.5.1 The Definition of Guests

The scenario of guest access is different from the problem of talking to strangers

(which has been discussed early in this chapter), as explained in [66]. An essen-

tial characteristic of guest access is that guests can only access resources with

the necessary permission from authorised users, e.g. a family member from

the host, the local office employee. A guest has to get the host’s permission, in

order to play a video clip stored in his/her DRD on the host’s TV. However,

the guest may not be permitted to access the host PC at all depending upon

the host’s preference. Thus, three facts about guests are described as follows,

• Guests are not strangers. Guests are usually invited by hosts and they

are not strangers. An interesting observation is that guests may have

different access policies or restrictions in their own local domains, e.g.

not allowed to play a video clip on the TV in her/his own home, or a

university does not want its researchers to connect to the other universi-

ties’ wireless network. However, as guests, they are permitted to access

those resources from other users who have such authorisation. Note that

this is particularly significant. I will explain more about this later on.

• Guests are not local users. They do not have access to everything in

foreign domains. An external consultant is not an employee from the

client’s organisation. Hence, the requests for accessing Smart Space

services would be refused because the consultant’s role in this client’s

organisation is not recognisable. We may give guests the right to access

a DVD player in the living room but not for the PC in the studying area.

130

• Guests are not pre-authorised users. The requirements from guests are

highly flexible. Consequently, it is infeasible to pre-define a general or

individual guest user account, a role or a capability for them beforehand.

In addition, the guests’ permission may be changed dramatically under

the hosts’ willingness. We may allow adult guests to access DVD player

but not for some under-14 years old guests. Even for the same guest,

the host may change his/her permission on the access of some resources

depending upon the nature of different contexts.

Thus, the scenario of guest access is defined as follows,

Guest Access: the access on some resources is said to be guest access

only if the request is under the permission from authorised users, i.e. resource

owners or other users who have corresponding access rights. Compared with

guests, I will use a more general term, authorised users in the rest of this

chapter. They are the users who have been authorised to access some resources

either in their own domains or in other foreign domains.

6.5.2 Common Approaches for Guests Access

An essential concern for guest access is about how to give the appropriate per-

missions to guests. For authorised users, the “easiest” (unfortunately also the

naive) way is to hand over to the guests their own capabilities. Semantically,

it is similar to giving guests the door key for the house. It has major difficulty

to revoke. It is important that the system can prevent guests from making

their own copy of capabilities. Otherwise, the expensive process of changing

the door lock has to be fulfilled every time after each guest’s access. Also, it is

cumbersome if the host wants to revoke the guest’s access right immediately

after the hand-over process completes.

Allowing the central system to set up a temporary credential in some form

is another commonly used approach for guest access, e.g. a system account

with a user name/password associating with the appropriate access rights. The

131

temporary credential will be de-activated as a result of the guest completing

the necessary access. However, this approach does not address the essential

problem for guest access in pervasive environments. In pervasive environments,

guests are most likely from stranger domains (or foreign domains), and they

may need different access rights to access some resources. This fact makes it

more difficult for authorised users to assign different guests with appropriate

access rights. This may end up with the problem that a guest may obtain a

totally inappropriate right.

6.5.3 Motivating Threat Model - Guest Printing

Consider the following example. Darren is a professor from the University of

Dolls. He is invited by Ellis, a senior lecturer in Computer Science School at

East University, to give a seminar. Darren realises that he needs to print the

presentation slides from his “DRDD” when he notices a printer on the way to

the seminar theatre.

The printer, P , cannot understand Darren’s role in computer science, and

therefore it denies his access. I assume that the printer P accepts the printing

job from Ellis’s “DRDE” 5 according to the security policy in the school

(e.g. ‘any senior staff can access printers in the school’). Thus, the basic

requirements of the security in this example are,

• The server in the Computer Science school (the owner of the printer P)

will allow the guest, Darren, to access P , under the temporary permission

from the authorised user, Ellis.

• For Darren, the right of printing is from Ellis and for the period that

Ellis specifies.

• For the server in the Computer Science school, Darren’s access is granted

if,

5The DRDE may be a stranger, or may not, from the printer viewpoint.

132

– Ellis has the appropriate access right to print;

– Ellis has the right to delegate her right (i.e. printing);

– Ellis’s printing right is not revoked.

6.5.4 Introducing Guests

Instinctively, the guest printing is another example of access control over multi-

ple domains. Hence, as learned from the domain-oriented approach, it naively

appears Darren’s local domain, the university of Dolls, ought to be involved to

make the final decision. However, guests are not strangers. Instead, they are

very often invited by some authorised users. In other words, guests are usually

friendly players although they come from strange domains. The major task

here is to make sure that Darren has the appropriate rights to do the printing

job only.

Considering the specific requirements for granting the guest printing access

listed above, the guest’s (i.e. Darren) own local domain university Dolls is ac-

tually not responsible for his/her access. Ellis is responsible to introduce the

guest to the resources, i.e. the printer P . Hence, Ellis makes the final decision

in the guest printing example. In fact, it does not matter that Psychology

school at the University of Dolls is saying “no” to the server of the computer

science school at East University, perhaps because Darren just retired. The

printer does not care as long as Ellis is happy to give Darren the permission

to access the printer temporarily at this moment. Hence, knowing Darren’s

domain information does not help the printer to grant the guest access request.

In other words, the printer does not concern itself with the domain Darren is

from at all, “I do not care where the guest is from as long as he/she is intro-

duced by Ellis.”. Since the printer is managed by the server of the computer

science school as well, thus, essentially, this guest printing scenario is more a

case of access control for a single domain 6. Thus, I argue that conventional

6The case where Ellis is a stranger from a friendly domain ca also be dealt with, by

133

access control methods can be used to address most guest access scenarios in

pervasive environments. These methods have been described in section 2.2,

and I do not intend to discuss the implementation in great detail here because

this research mainly focuses upon the multiple domain context.

As a visiting professor, the guest Darren is explicitly trusted by Ellis. Con-

sequently, Ellis is willing to let Darren access the printer P on a temporary

basis as long as she knows what he is doing. This may be controversial in

conventional environments. As described in Chapter 4, however, a pervasive

environment is human-centred and more importantly the human context is the

most significant consideration for pervasive environments. As human users,

we have clear intention about what we are trying to accomplish or to avoid.

A pervasive system should track human intent and the correct choice ought

to depend upon this human context [108].

According to the school’s security policy, Ellis can delegate access rights

(“permission to print on the printer P”) to anyone she trusts. Thus, she

delegates to the guest Darren the right to use the printer P . Ellis’s personal

device DRDE can send a signed delegation (e.g. the delegation certificates

[10]) to Darren’s PDA DRDD. The two channel authentication mechanism

can be implemented here to guarantee the signed delegation goes to Darren’s

device rather than that of anyone else in the proximity. Then, DRDD sends

his access request and the delegation to the printer P . The service owner,

e.g. the server of the Computer Science school, will check the school’s security

policy, i.e. if Ellis’s access right on P is still validated, and if Ellis is allowed

to delegate this rights to the guests. If the delegation conforms to the policies,

the server will send the “request to verify” (RTV) message to Ellis’s DRDE

instead of granting Darren’s access immediately,

“Are you aware that you are delegating permission to print on the printer P

to a guest who is next to the printer P?”

combining the protocols in section 6.4 and section 6.5.

134

Note that the notification should include the name given to the guest by Ellis

at the time of delegation.

The printer P allows Darren to print only after Ellis responds with the pos-

itive reply. Darren’s access is on a temporary basis because this re-delegation

is managed by Ellis. Hence, Ellis can revoke this re-delegation anytime by

replying a negative message to the RTV message. Meanwhile, Darren cannot

access services other than the printer P . When he needs to access other ser-

vices, e.g. the digital projector at the seminar room, Darren must ask Ellis

for another delegation. This scenario allows Darren, a guest, to access cer-

tain services in other domains without creating a pre-defined account, role, or

identity for him.

6.6 Conclusions

This chapter provides a critical discussion for access control in LoT. It reflects

the domain-based access control method proposed previously, and examines

some issues relating to access control in pervasive environment in depth (both

from multiple domain oriented and single domain oriented perspective). The

crucial point is that this chapter gives the details of mechanisms to meet some

of the requirements identified in earlier chapters.

The next chapter concludes this dissertation by providing a summary of

contributions and some directions for future research.

135

Chapter 7

Conclusions and Future Work

Future pervasive computing applications will be of vast scale, and often in-

tended to deal with complexly collaborative interactions from many human

users or different organisations. A powerful design technique is to examine

them from the domain perspective. Thus, trust can be reduced to a local level.

This dissertation reviewed some previous work in a number of related areas,

and examined and identified research issues that were yet to be addressed.

A novel security framework for pervasive environments, LoT, has been devel-

oped. This chapter concludes this dissertation. It begins with the highlights

of the main contributions of this work. Then, some future research directions

are suggested. Finally, it provides a closing remark of this dissertation.

7.1 Summary of Contributions

The main contribution of this thesis is the proposal of a localisable, fully

decentralised security framework – LoT. It is better suited to an open and

heterogeneous environment, such as a multiple-domain-oriented pervasive en-

vironment, than a centralised computing environment. As a recapitulation of

section 1.5, the following contributions have been made,

• Proposing the localising the trust security paradigm, serving as a simple

guideline to design future security systems for multiple domains.

136

• Proposing the LoT framework as a generic model, thus providing a basic

platform on which a tool-kit like set of security mechanisms from both

authentication and access control ends can be built.

• Developing a 2-channel authentication protocol for pervasive environ-

ments instead of conventional (strong) ID-based authentication.

• Designing profile certificate as a important tool, realising the domain/local

user related information conveyance.

• Designing an architecture for a domain-oriented Encryption-based Ac-

cess Control approach, which enables flexible delegation and effective

revocation in the multiple domain context.

• Designing an extended capability-based access control model, DuCaM,

supporting the Encryption-based Access Control method.

7.2 Directions for Future Work

This thesis has developed a useful and “simple” framework for enabling sponta-

neous interactions, cross-domain authorisation and localised decision-making

in the multiple domain context, i.e. pervasive environments. However, mul-

tiple domain for pervasive computing is a relatively new concept, and thus,

this LoT framework presents an excellent basis for further exploration in this

area, particularly for providing security services in many pervasive computing

applications.

The detailed approaches and protocols demonstrated in this dissertation

are techniques which can be generalised. LoT only gives the example of two

layers, i.e. domains (domain server) and local users. This technique can be

generalised recursively, or in a more hierarchical way, with respect to differ-

ent applications. Moreover, it can also be more flexible by allowing different

137

domains having different layers. This will be decided by specific security re-

quirements for particular applications. A player Alice may be required to get

the access permission not only from her own department, but also from the

financial department for example. Thus, the LoT framework will be adjusted

to require two pieces of partial decryption key. One of them is supplied by

Alice’s department server, and the other need to be provided by the server for

the financial department.

Some selected future work is suggested in this section. As pointed out in

the beginning of chapter 2 (see page 24), we cannot just simply copy the LoT

framework to address problems in different contexts. As a result, we discuss

not only a number of potential extensions built from the platform of LoT,

but most importantly some areas that would potentially benefit (to solve the

problems that they target) from generalising the techniques that have been

deployed in the development of this research. In addition, we shall be pointing

out some work that we would not want to be seen done.

7.2.1 Authentication and Expiration

The need of terminating authentication has been raised by Schneier in [110]

(see a brief discussion in section 2.1.2, page 27). On-line shopping is a typical

example. On one hand, users worry about the leakage of their personal details

(i.e. address, credit card details) which are stored in a database somewhere.

On the other hand, users will have to make relevant change in every single

website that they have an account with, when their details change (e.g. moving

house, expired credit card).

One way addressing this problem is to allow users to manage their own

information, following the “localising the trust” security paradigm. Briefly

speaking, a trusted user domain server is introduced to the loop. Based upon

users’ self-defined policy, it can be a desktop PC, home server (used to control

all the pervasive devices at home), or a trusted website. A user Alice put

138

her (encrypted) details in this domain server. When she intends to purchase

some books on-line using her PDA or public computer in a local cafe, she

only sends a request to amazon.com. This request should contain information

which is enough for the server from amazon.com to know where (i.e. which

user domain server) to contact. Essentially, Alice is authenticated by her own

domain. The transaction is completed when amazon.com receives a positive

reply from Alice’s domain server 1.

Thus, Alice only needs to change details, such as the expiry date of her

new credit card, stored in her own domain server. More importantly, if she

has a transaction with a malicious website, this website will not retrieve her

secret personal details in any way.

7.2.2 Capability-based Access Control

Capability-based access control has been one of our major interests throughout

this research. Surprisingly, the research on capability-based access control has

earned little attention after the many capability-based access control systems

developed before the middle 90s. Arguably, it is probably because capability-

based access control has been fully-investigated and well-developed for a single

domain. Now, the challenging multiple domain applications have opened a new

opportunity for many early capability-based systems, for instance, Tanenbaum

and Mullender’s Amoeba [89]. For the original F-boxes in Amoeba, they

shared the same information. Hence, once an attacker breaks into one F-

box, the security for the entire Amoeba is broken. Amoeba is not alone on

this matter, unfortunately, this is a typical security problem for other early

capability-based systems (even for Gong’s multi-domain I-CAP [57]).

In this dissertation (see section 5 and 6), we showed the techniques to

adapt I-CAP [57] using the domain-oriented encryption-based access control

1For the purpose of simplicity, the bank’s server is not considered here. In practice,
however, the involvement of a bank’s server will not necessarily complicate the protocol
run.

139

method. We also use the domain-level ACL and localised authentication,

which shares with S-CAP [69] a common understanding that being in an access

control list is necessary but not sufficient to gain access, and users have to

authenticate themselves again. Those techniques used in the LoT framework

can also be applied to Amoeba. We may think of placing those (tamper

resistant and trusted) F-boxes in each domain. Capabilities that are output

from an F-box should provide sufficient (but just enough) domain information

(i.e. which domain or F-box the capability holder is from) to another F-box.

User authentication, again, ought to be localised within a domain. A potential

benefit of doing so is the damage control. If one domain is broken, for example

because its F-boxes are compromised, it is not the end of the world.

When a player intends to access some resources in a remote domain, he

submits his capability to the remote domain’s domain server. The remote

domain server generates a token by inputting the player’s capability to the

remote domain’s F-box. Then, the remote F-box gives the player this token.

If the player is from the correct domain, the player should be able to convert

this token to the useful access information by satisfying his local domain’s

authentication mechanism. Specifically, a piece of information needs to be

retrieved from the player’s local domain server. Moreover, if a domain would

like to revoke its local players’ capabilities, the only thing the domain server

needs to do is to stop issuing this piece of information to its local players at

the time when transactions occur. Consequently, breaking into one F-box in

one domain does not help an attacker to subsequently break the entire system.

Each capability is constrained within one domain, and ease of revocation is

achieved by implementing domain-based encryption techniques.

Similarly, those techniques can also be deployed in classical Kerberos [86]

system. Differing from conventional Kerberos tickets, a new type of ticket is

defined to indicate which Kerberos server the ticket holder (let us say Alice)

140

is from. Resource servers will hand over Alice a token based on domain infor-

mation in Alice’s ticket. If Alice is from correct domain and delegated with

correct access right, the token can be converted to a useful access capability

with her domain Kerberos server’s assistance. Thus, Alice is thought to be a

correct stranger if the conversion is completed.

7.2.3 Context-Awareness Applications in Pervasive Com-
puting

Some existing security systems have made use of the context-awareness side

of pervasive computing. Kagal’s trust-based system [67] is one of them, which

addresses security issues for pervasive computing by adding location-aware

technology. But it does not solve the inherent certificate revocation problem.

LoT could be used to address this problem by separating (conventional) certifi-

cates from final access decision-making. Ultimately, the access decision would

be made by local domains, following the localising trust design principle.

Moreover, it is noted that context is not just limited to physical location.

In fact, the context-awareness service is the awareness of the physical envi-

ronment, such as, location, audio, images or any other physical conditions in

surrounding environments. The authentication protocols described in chap-

ter 4 represent an attempt at applying different contexts (rather than just

location) to deal with situations where stranger devices are involved. This

attempt may be worthwhile to be extended to other security systems which

use context-awareness as a key security parameter.

LoT does not currently address the privacy issue. However, privacy is

an important factor for many context-awareness applications. This may be

an area that can be explored further. Again, localising trust can play an

important role in the privacy-oriented pervasive applications. A player’s per-

sonal information is only visible and available to his own domain. Foreign

domains/players do not need to know this information, because the final

141

decision-making is controlled by the player’s local domain. They even do

not care about those personal information, “who you are”, “where you are”,

as long as domains are happy with their local players’ request.

7.2.4 Work that We Do Not Want To See

LoT introduces different tools to provide different security services, particu-

larly for authentication and authorisation, unlike the swiss army knife. The

methods and approaches in this tool-kit should not be treated separately. How-

ever, I do not want to see the integration of those tools into a single tool. As

witnessed from many existing security systems, a security protocol designed

for providing one security service may be less than helpful when deployed for

a totally different security purpose.

Thus, having a tool-kit in a security framework will avoid such a misuse

by enforcing security countermeasures to answer correct questions. More im-

portantly, this approach will include human users into the loop, particularly

in pervasive environments as described in chapter 4. The positive human con-

text (“we know what we are doing”) will significantly leverage the security in

pervasive environments

7.3 Conclusions

This dissertation has presented LoT, a fully localised security framework de-

signed for fast growing pervasive environment applications. It is independent

of any global trust infrastructure. Arguably, some (heavy)setup work is in-

volved at the beginning, (this is the cost of doing business) i.e. delegation

between domain servers and local users. However, once this is configured,

LoT is extremely efficient and effective to address some security issues in per-

vasive environments.

The crucial novelty of LoT lies in its architectural innovation. It

142

changes the way of thinking about security by introducing multiple domains

as a primary concern, but leaving the basic underlying security protocols (for a

single domain) and system implementation untouched. Although much future

research remains to be done, as studied and demonstrated in this dissertation,

the techniques developed by LoT is a fruitful way forward in future research

for security in pervasive environments.

143

Bibliography

[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A Calculus for
Access Control in Distributed Systems. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 15(4):706 – 734, September
1993.

[2] S.S. Al-Riyami and K.G. Paterson. Certificateless Public Key Cryptog-
raphy. In C.S.Laih, editor, Proc. ASIACRYPT 2003, LNCS 2894, pages
452 – 473. Springer, 2003.

[3] R. Anderson. Why Cryptosystems Fail. Communications of the ACM,
37(11):32 – 40, November 1994.

[4] R. Anderson. Security Engineering. John Wiley & Sons, Inc., 2001.

[5] R. Anderson, F. Bergadano, B. Crispo, J. Lee, C. Manifavas, and
R. Needham. A New Family of Authentication Protocols. ACM SIGOPS
Operating Systems Review, 32(4):9 – 20, October 1998.

[6] R. Anderson, M. Bond, and S. J. Murdoch. Chip and Spin.
http://www.chipandspin.co.uk/, 2005.

[7] R. Anderson, C. Manifavas, and C. Sutherland. Netcard – A Practical
Electronic Cash System. In 4th Cambridge Security Protocols Workshop,
1996.

[8] J. Arkko and P. Nikander. Weak Authentication: How to Authenticate
Unknown Principals without Trusted Parties. In Security Protocols:
10th International Workshop, Cambridge, UK, LNCS2845, pages 5 – 19.
Springer - Verlag Berlin Heidelberg, 2004.

[9] N. Asokan and P. Ginzboorg. Key Agreement in Ad-hoc Networks.
Computer Communication Review, (23):1627 – 1637, 2000.

[10] T. Aura. Distributed Access-Rights Managements with Delegations Cer-
tificates. In Secure Internet Programming, pages 211–235, 1999.

[11] J. Bacon, K. Moody, and W. Yao. A Model of OASIS Role-Based Access
Control and Its Support for Active Security. ACM Transactions on
Information and System Security (TISSEC), 5(4):492–540, November
2002.

144

[12] D. Balfanz, G. Durfee, N. Shankar, D. Smetters, J. Staddon, and Hao-
Chi Wong. Secret Handshakes from Pairing-Based Key Agreements.
In 24th IEEE Symposium on Security and Privacy, Oakland, CA, May
2003.

[13] D. Balfanz, D. Smetters, P. Stewart, and H. Wong. Talking to Strangers:
Authentication in ad-hoc Wireless Networks. In Symposium on Nework
and Distributed Systems Security (NDSS’02), February 2002.

[14] S. Berkovits, S. Chokhani, J. A. Furlong, J. A. Geiter, and J. C. Guild.
Public Key Infrastructure Study. Mitre technical report, National Insti-
tute of Standards and Technology, April 1994.

[15] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The Keynote
Trust Management System Version. Internet RFC 2704, September
1999.

[16] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust Management.
In Proc. IEEE Conference on Security and Privacy, pages 164–173, Oak-
land, CA, May 1996.

[17] M. Bond and G. Danezis. The Dining Freemasons (Security Protocols for
Secret Societies). In 13th International Workshop on Security Protocols,
April 2005. To appear.

[18] D. Boneh and M. Franklin. Identity based Encryption from the Weil
Pairing. In Advances in Cryptology - ASIACRYPT 2001, pages 213–
229. Springer-Verlag, 2001.

[19] M. Burrows, M. Abadi, and R. Needham. A Logic of Authentication.
ACM Transactions on Computer Systems, 8(1):18–36, 1990.

[20] V. Cahill, E. Gray, J.-M. Seigneur, C.D. Jensen, Y. Chen, B. Shand,
N. Dimmock, A. Twigg, J. Bacon, C. English, W. Wagealla, S. Terzis,
P. Nixon, G. Di Marzo Serugendo, C. Bryce, M. Carbone, K. Krukow,
and M. Nielsen. Using Trust for Secure Collaboration in Uncertain
Environments. Pervasive Computing, 2(3):52–61, September 2003.

[21] G. Candea and A. Fox. Using Dynamic Mediation to Integrate Cots En-
tities in a Ubiquitous Computing Environment. In Second International
Symposium on Handheld and Ubiquitous Computing, pages 248 – 254,
2000.

[22] S. Capkun, J. Hubaux, and L. Buttyan. Mobility Helps Security in Ad
Hoc Networks. In MobiHoc’03, June 2003.

145

[23] D. Chaum, A. Fiat, and M. Naor. Untraceable Electronic Cash. In
Advances in Cryptology - Crypto ’88, pages 319 – 327. Springer, 1990.

[24] L. Chen, K. Harrison, A. Moss, D. Soldera, and N. P. Smart. Certifi-
cation of Publik Keys within an Identity Based System. In A. H. Chan
and V. Gligor, editors, ISC 2002, volume 2433/2002, pages 322–333.
Springer-Verlag Heidelberg, 2002.

[25] B. Christianson and W. S. Harbison. Why Isn’t Trust Transitive? In
Proceedings of the International Workshop on Security Protocols, LNCS
1189, pages 171–176. Springer-Verlag, 1997.

[26] B. Christianson and J. Li. Multi-channel Key Agreement using En-
crypted Public Key Exchange. In 15th Security Protocols Workshop,
April 2007. To appear.

[27] B. Christianson and J. A. Malcolm. Binding Bit Patterns to Real World
Entities. In Proceedings of the 5th International Workshop on Security
Protocols, LNCS 1361, pages 105–113. Springer-Verlag, 1998.

[28] B. Christianson, M. Roe, and D. Wheeler. Secure Sessions from Weak
Secrets. In Proceedings of the 11th International Workshop on Security
Protocols, LNCS 3364. Springer-Verlag, 2003.

[29] D. Clarke, B. Gassend, T. Kotwal, M. Burnside, M. van Dijk, S. De-
vadas, and R. Rivest. The Untrusted Computer Problem and Camera-
Based Authentication. In F.Mattern and M.Naghshineh, editor, Perva-
sive 2002, pages 114 – 124. Springer - Verlag Berlin Heidelberg, 2002.

[30] J. Cluclow and T. Moore. Suicide for the Common Good: a New
Strategy for Credential Revocation in Self-Organizing Systems. ACM
SIGOPS Operating Systems Reviews, 40(3):18–21, July 2006.

[31] M. D. Corner and B. D. Noble. Zero-Interaction Authentication. In
The 8th ACM Conference on Mobile Computing and Networking (Mo-
biCom’02), pages 1–11, September 2002.

[32] M. J. Covington, M. R. Sastry, and D. J. Manohar. Attribute-Based
Authentication Model for Dynamic Mobile Environments. In Security
of Pervasive Computing (SPC 2006), LNCS 3934, pages 227–242, 2006.

[33] S. Creese, M. Goldsmith, B. Roscoe, and M. Xiao. Bootstrapping Multi-
Party Ad-Hoc Security. In Proceedings of the 2006 ACM symposium on
applied computing (SAC’06), pages 369 – 375. ACM Press, 2006.

146

[34] S. Creese, M. Goldsmith, B. Roscoe, and I. Zakiuddin. The Attacker in
Ubiquitous Computing Environments: Formalising the Threat Model.
In In Proc. of the 1st International Workshop on Formal Aspects in
Security and Trust, pages 83 – 97, 2003.

[35] S. Creese, M. Goldsmith, B. Roscoe, and I. Zakiuddin. Authentication
for Pervasive Computing. In D. Hutter et al., editor, Security in Per-
vasive Computing 2003, LNCS 2802, pages 116 – 129. Springer-Verlag
Berlin Heidelberg, 2004.

[36] B. Crispo. Delegation of Responsibility. Ph.D thesis, Wolfson College,
the University of Cambridge, May 1999.

[37] B. Crispo and T. M. A. Lomas. A Certification Scheme for Electronic
Commerce. In Proceedings of the 3rd International Workshop on Security
Protocols, pages 19 – 32, 1996.

[38] P. Das Chowdhury. Anonymity and Trust in Electronic World. Ph.D
thesis, University of Hertfordshire, February 2005.

[39] P. Das Chowdhury, B. Christianson, and J. Malcolm. Anonymous Con-
text Based Role Activation Mechanism. In Proceedings of the 13th Inter-
national Workshop on Security Protocols. Springer-Verlag, April 2005.

[40] P. J. Denning. Fault Tolerant Operating Systems. ACM Computing
Surveys (CSUR), 8(4):359–389, December 1976.

[41] W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE
Transactions on Information Theory, IT-22(6):644–654, November 1976.

[42] T. ElGamal. A Public-Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms. In Advances in Cryptology: Proceedings of
CRYPTO 84’, pages 10–18. Springer-Verlag, 1985.

[43] C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M. Thomas, and
T. Ylonen. SPKI Certificate Theory. Internet RFC 2693, October 1999.

[44] L. Eschenauer, V. D. Gligor, and J. Baras. On Trust Establishment in
Mobile Ad-Hoc Networks. In Security Protocols Workshop 2002, volume
LNCS 2845, pages 47–66. Springer-Verlag, 2004.

[45] L. M. Feeney, B. Ahlgren, and A. Westerlund. Spontaneous Network-
ing: An Application-Oriented Approach to Ad Hoc Networking. IEEE
Communications Magazine, pages 176–181, June 2001.

147

[46] A. Fox and S. D. Gribble. Security on the Move: Indirect Authentication
using Kerberos. In Procceedings of the 2nd Annual International Con-
ference on Mobile Computing and Networking, pages 155 – 164. ACM
Press, 1996.

[47] B. Fox and B. LaMacchia. Certificate Revocation: Mechanics and Mean-
ing. In Financial Cryptography 98, LNCS 1465, pages 158–164. Springer
Berlin / Heidelberg, 1998.

[48] S. Galice, V. Legrand, M. Minier, J. Mullins, and S. Ubeda. The KAA
Project: a Trust Policy Point of View, 2006.

[49] M. Gasser and E. McDermott. An Architecture for Practical Delegation
in a Distributed System. In IEEE Symposium on Security and Privacy,
pages 20 – 30, 1990.

[50] C. Gehrmann, C.J. Mitchell, and K. Nyberg. Manual Authentication
for Wireless Devices. Cryptobytes, 7(1):29 – 37, 2004.

[51] C. Gentry. Certificate-based Encryption and the Certificate Revocation
Problem. In E. Biham, editor, Proc. EUROCRYPT 2003, LNCS 2656,
pages 272–293. Springer, 2003.

[52] C. Gentry and A. Silverberg. Hierarchical ID-based Cryptography. In
Y. Zheng, editor, Proc. ASIACRYPT 2002, LNCS 2501, pages 548–566.
Springer, 2002.

[53] L. Giuri. Role-based Access Control: A Natural Approach. In Pro-
ceedings of the first ACM Workshop on Role-based access control, pages
33–37, 1996.

[54] O. Goldreich, B. Pfitzmann, and R. L. Rivest. Self-delegation with Con-
trolled Propagation — or — what if you lose your laptop. Lecture Notes
in Computer Science, 1462:153–168, 1998.

[55] L. Gong. A Secure Identity-based Capability System. IEEE symposium
on security and privacy, pages 56–65, 1989.

[56] L. Gong. Using One-Way Functions for Authentication. ACM Computer
Communication Review, 19(5):8–11, October 1989.

[57] L. Gong. Cryptographic Protocols for Distributed Systems. Ph.D thesis,
University of Cambridge, 1990.

[58] L Gong, T. M. A. Lomas, R. M. Needham, and J. H. Saltzer. Protect-
ing Poorly Chosen Secrets From Guessing Attacks. IEEE Journal on
Selected Areas in Communications, 11(5):648–656, June 1993.

148

[59] C. A. Gunter and T. Jim. Generalized Certificate Revocation. In POPL
’00: Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 316–329, 2000.

[60] S. Halevi, P. A. Karger, and D. Naor. Enforcing Confinement in Dis-
tributed Storage and a Cryptographic Model for Access Control. Eprint
archive, eprint.iacr.org/2005/169.

[61] U. Hengartner and P. Steenkiste. Exploiting Hierarchical Identity-Based
Encryption for Access Control to Pervasive Computing Information. In
Proc. of SecureComm 2005, pages 384–393, September 2005.

[62] A. Herzberg, Y. Mass, J. Mihaeli, D. Naor, and Y. Ravid. Access Control
Meets Public Key Infrastructure, Or: Assigning Roles to Strangers. In
IEEE Symposium on Security and Privacy 2000 (S&P 2000), pages 2 –
14. IEEE Computer Society, 2000.

[63] J. Holt, R. Bradshaw, K. Seamons, and H. Orman. Hidden Credentials.
In 2nd ACM Workshop on Privacy in the Electronic Society, pages 1 –
8. ACM Press, October 2003.

[64] J. Horwitz and B. Lynn. Toward Hierarchical Identity-Based Encryption.
In L. R. Knudsen, editor, EUROCRYPT 2002, pages 466 – 481. Springer
- Verlag Berlin Heidelberg, 2002.

[65] R. Housley, W. Ford, W. Polk, and D. Solo. RFC2459: Internet X.509
Public Key Infrastructure Certificate and CRL Profile. Internet RFCs,
1999.

[66] M. Johnson and F. Stajano. Usability of Security Management: Defining
the Permission of Guests. In Security Protocols Workshop 2006, 2006.
To appear.

[67] L. Kagal, T. Finin, and A. Joshi. Trust-based Security in Pervasive
Computing Environment. Computer, 34(12):154 – 157, December 2001.

[68] L. Kagal, J. Undercoffer, F. Perich, A. Joshi, T. Finin, and Y. Yesh.
Vigil: Providing Trust for Enhanced Security in Pervasive Systems.
Technical report, University of Maryland Baltimore County, August
2002.

[69] P. A. Karger. Improving Security and Performance for Capability Sys-
tems. Ph.D thesis, University of Cambridge, 1988.

[70] P. A. Karger. New Methods for Immediate Revocation. In IEEE Sym-
posium on Security and Privacy, pages 48–55, 1989.

149

[71] P. A. Karger and A. J. Herbert. An Augmented Capability Architecture
to Support Lattice Security and Traceability of Access. In the IEEE
Symposium on Security and Privacy, pages 2 – 12, 1984.

[72] A. H. Karp, G. J. Rozas, A. Banerji, and R. Gupta. Using Split Capa-
bilities for Access Control. IEEE Software, 20(1):42–49, January 2003.

[73] H. Khurana and V. D. Gligor. Review and Revocation of Access Privi-
leges Distributed with PKI Certificates. In the 8th International Security
Protocols Workshop, volume LNCS 2133, pages 100–112. Springer, April
2000.

[74] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication
in Distributed Systems: Theory and Practice. ACM Trans. Computer
Systems, 10(4):265 – 310, November 1992.

[75] B. W. Lampson. Protection. ACM SIGOPS Operating Systems Review,
8(1):18–24, January 1974.

[76] B.W. Lampson. A Note on the Confinement Problem. Communications
of the ACM, 16(10):613 – 615, 1973.

[77] M. Langheinrich. When Trust does not Compute – The Role of Trust in
Ubiquitous Computing. Workshop on Privacy at Ubicomp 2003, October
2003.

[78] J. Li, B. Christianson, and M. Loomes. Fair Authentication in
Pervasive Computing. In Secure Mobile Ad-hoc Networks and Sen-
sors (MADNES’05), volume LNCS 4074, pages 132 – 143. Springer
Berlin/Heidelberg, August 2006.

[79] N. Li and J. Feigenbaum. Nonmonotonicity, User Interfaces, and Risk
Assessment in Certificate Revocation (Position Paper). In Proceedings of
the Fifth International Conference on Financial Cryptography (FC’01),
volume LNCS 2339, pages 166–177. Springer, February 2001.

[80] M. R. Low. Self Defence in Open Systems: Protecting and Sharing
Resources in a Distributed Open Environment. Ph.D thesis, University
of Hertfordshire, September 1994.

[81] M.R. Low and B. Christianson. Self Authenticating Proxies. Computer
Journal, 37(5):422–428, October 1994.

[82] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of
Applied Cryptography. CRC Press, Florida, 1997.

150

[83] S. Micali. Efficient Certificate Revocation. Technical Report TM-542b,
M.I.T., Cambridge, MA, USA, 1996.

[84] S. Micali. NOVOMODO: Scalable Certificate Validation and Simplified
PKI Management. In 1st Annual PKI Research Workshop, pages 15–25,
April 2002.

[85] S. Milgram. The Small World Problem. Psychology Today, 1:61, 1967.

[86] S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H. Saltzer. Kerberos
Authentication and Authorisation System. Project Athena Technical
Plan, section e.2.1, M.I.T, October 1988.

[87] K. Mitnick. The Art of Deception: Controlling the Human Element of
Security. Wiley, October 2002.

[88] T. Moore, J. Cluclow, R. Anderson, and S. Nagaraja. New Strategies for
Revocation in Ad-Hoc Networks. In the Fourth European Workshop on
Security and Privacy in Ad Hoc and Sensor Networks (ESAS), volume
LNCS 4572, pages 232–246. Springer, July 2007.

[89] S. J. Mullender. Principles of Distributed Operating System Design.
Ph.D thesis, Vrije Universiteit te Amsterdam, 1985.

[90] M. Myers. Revocation: Options and Challenges. In FC ’98: Proceed-
ings of the Second International Conference on Financial Cryptography,
pages 165–171. Springer-Verlag, 1998.

[91] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. X.509
Internet Public Key Infrastructure Online Certificate Status Protocol -
OCSP. IETF RFC 2560, June 1999.

[92] R. Needham. Keynote Address: Security Protocols and the Swiss Army
Knife. In B.Christianson, B.Crispo, and J.A.Malcolm et al., editors,
Security Protocols: 8th International Workshops, volume 2133, pages
1–4. Springer-Verlag, January 2001.

[93] R. M. Needham and M. D. Schroeder. Using Encryption for Authenti-
cation in large Networks of Computers. Communications of the ACM,
(21(12)):993–999, 1978.

[94] B.C. Neuman. Proxy-Based Authorisation and Accounting for Dis-
tributed Systems. In the 13th International Conference on Distributed
Computing Systems, pages 283–291, May 1993.

151

[95] S. Osborn, R. Sandhu, and Q. Munawer. Configuring Role-based Access
Control to Enforce Mandatory and Discretionary Access Control Poli-
cies. ACM Transactions on Information and System Security, 3(2):85 –
106, 2000.

[96] S. Pancho. Paradigm Shifts in Protocol Analysis. In Proceedings of the
1999 Workshop on New Security Paradigms, pages 70–79, 1999.

[97] J. Riordan and B. Schneier. Environmental Key Generation Towards
Clueless Agents. In Mobile Agents and Security, volume LNCS 1419,
pages 15 – 24. Springer-Verlag Berlin Heidelberg, 1998.

[98] R. L. Rivest. Can We Eliminate Certificate Revocation Lists? In Pro-
ceedings of Financial Cryptography 98, volume LNCS 1465, pages 178–
183, February 1998.

[99] R. L. Rivest and B. Lampson. SDSI - A Simple Distributed Security
Infrastructure. Presented at CRYPTO’96 Rumpsession, 1996.

[100] R. L. Rivest and A. Shamir. PayWord and MicroMint: Two Simple
Micropayment Schemes. In 4th Cambridge Security Protocols Workshop
1996, pages 69 – 87, 1996.

[101] R. L. Rivest, A. Shamir, and L. M. Adleman. A Method for Obtaining
Digital Signatures and Public-key Cryptosystems. Communications of
the ACM, v. 21(n. 2):120–126, February 1978.

[102] R. L. Rivest, A. Shamir, and Y. Tauman. How to Leak a Secret. In
Advances in Cryptology - ASIACRYPT 2001, volume LNCS 2248, pages
552–565, December 2001.

[103] M. Roe. Cryptography and Evidence. Ph.D thesis, University of Cam-
bridge, 1997.

[104] D. Saha and A. Mukherjee. Pervasive Computing: A Paradigm For The
21st Century. IEEE Computer, 36(3):25 – 31, March 2003.

[105] J. H. Saltzer and M. D. Schroeder. The Protection of Information in
Computer Systems. In Proceedings of the IEEE, volume 63, pages 1278–
1308, September 1975.

[106] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-
based Access Control Models. Computer, 29(2):38 – 47, February 1996.

[107] R.S. Sandhu and P. Samarati. Access Control: Principles and Practice.
IEEE Communications Magazine, 32(9):40 – 48, 1994.

152

[108] M. Satyanarayanan. Pervasive Computing: Vision and Challenges.
{IEEE} Personal Communications, (10-17), August 2001.

[109] B. Schneier. Secrets & Lies. Wiley Computer Publishing, 2000.

[110] B. Schneier. Authentication and Expiration. IEEE Security and Privacy,
3(1):88, 2005.

[111] C. P. Schnorr. Efficient Signature Generation by Smart Cards. Journal
of Cryptology, 4(3):161–174, January 1991.

[112] J. M. Seigneur, S. Farrell, C. D. Jensen, E. Gray, and Y. Chen. End-to-
End Trust Starts with Recognition. In D. Hutter et al., editor, Security
in Pervasive Computing 2003, LNCS 2802, pages 130 – 142. Springer -
Verlag Berlin Heidelbery, 2004.

[113] A. Shamir. Identity-based Cryptosystems and Signature Schemes. In
Lecture Notes in Computer Science, volume 196, pages 47–53. in Ad-
vances in Cryptology - CRYPTO ’84, Springer-Verlag, 1984.

[114] B. Shand, N. Dimmock, and J. Bacon. Trust for Ubiquitous, Transparent
Collaboration. Wireless Networks, 10(6):711–721, 2004.

[115] J. S. Shapiro. EROS: A Capability System. Ph.D thesis, University of
Pennsylvania, 1999.

[116] N. P. Smart. An Identity Based Authenticated Key Agreement Protocol
Based on the Weil Pairing. Electronic Letters, (38(13)):630–632, 2002.

[117] N.P. Smart. Access Control Using Pairing Based Cryptography. In
M. Joye, editor, Proceedings CT-RSA 2003, volume 2612 of LNCS, pages
111–121. Springer, 2003.

[118] K. R. Sollins. Cascaded Authentication. In Procceeding of the 1988
IEEE Symposium on Security and Privacy, pages 156–163, 1988.

[119] F. Stajano. Security for Whom? The Shifting Security Assumptions of
Pervasive Computing. In Proceedings of International Security Sympo-
sium, volume 2609. Springer-Verlag, 2002.

[120] F. Stajano and R. Anderson. The Resurrecting Duckling: Security Is-
sues for Ad-hoc Wireless Networks. In B. Christianson, B. Crispo, and
M. Roe, editors, Security Protocols, 7th International Workshop Pro-
ceedings, Lecture Notes in Computer Science, LNCS 1296, pages 172 –
194, 1999.

[121] F. Stajano and R. Anderson. The Resurrecting Duckling: security issues
for ubiquitous computing. IEEE Computer, 35(4):22–26, April 2002.

153

[122] J.G. Steiner, C. Neuman, and J.I. Schiller. Kerberos: An Authentication
Service for Open Network Systems. In Proceedings of the Winter 1988
Usenix Conference, February 1988.

[123] S.G. Stubblebine. Recent-secure authentication: enforcing revocation
in distributed systems. In IEEE Symposium on Security and Privacy,
pages 224–235, 1995.

[124] Y. S. Tsiounis. Efficient Electronic Cash: New Notions and Techniques.
Ph.d thesis, Northeastern University, June 1997.

[125] A.M. Turing. Computing Machinery and Intelligence. MIND, 49:433 –
460, 1950.

[126] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford. CAPTCHA: Using
Hard AI Problems for Security. In Advances in Cryptology, Eurocrypt
2003, volume 2656, pages 294 – 311, May 2003.

[127] L. von Ahn, M. Blum, and J. Langford. Telling Humans and Computers
Apart Automatically. Communications of the ACM, 47(2):56 – 60, 2004.

[128] M. Weiser. The Computer for the Twenty-First Century. Scientific
American, 265(3):94 – 104, September 1991.

[129] M. Weiser. Some Computer Science Issues in Ubiquitous Computing.
Communications of the ACM, 36(7):75–84, July 1993.

[130] F.L. Wong and F. Stajano. Multi-Channel Protocols: Strong Authen-
tication Using Camera-Equipped Wireless Devices. In Proceedings of
the13th International Workshop on Security Protocols, April 2005.

[131] W. Yao. Trust Management for Widely Distributed Systems. Ph.D thesis,
University of Cambridge, 2004.

[132] P. R. Zimmermann. The Official PGP User’s Guide. MIT Press, Cam-
bridge, MA, 1995.

154

