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Abstract

RISC processors have approached an execution rate of one instruction per cycle by using
pipelining to speed up execution. However, to achieve an execution rate of more than one
instruction per cycle, processors must issue multiple instructions in each processor cycle. This
paper evaluates the architectural features of iHARP, a VLIW (Very Long Instruction Word)
processor with an instruction issue rate of four, which has been developed at the University of
Hertfordshire. A distinctive feature of iHARP is the provision of Boolean guards on all
instructions. Instructions are then only executed at run time if the attached Boolean guard is
true. A second distinctive feature is the use of a simplified addressing ORed indexing
mechanism to avoid load delays. This paper evaluates the benefits of both these features and
quantifies their performance advantage. Other architectural features evaluated include
instruction issue rate, code size, number of data cache ports, number of register file write ports,
number of branch units, instruction combining and loop unrolling. The evaluation uses RLS, a
resource limited instruction scheduler, specitically developed to statically reorder code for
parallel execution on iHARP.
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1. INTRODUCTION

iHARP is a multiple-instruction-issue (MI) processor which fetches a 128-bit long
instruction word from an instruction cache in each cycle. Each long instruction defines
four, 32-bit RISC primitives which are dispatched to four integer pipelines for parallel
execution. iHARP is therefore a VLIW processor which relies on a compile-time
instruction scheduling. The scheduler detects groups of instructions which can be executed
in parallel and places them into long instruction words for parallel execution at run time.
This approach contrasts with the superscalar [1] approach where it is left to the hardware to
detect instructions which can be executed in parallel at run time.

This paper describes the development of RLS, a resource limited instruction scheduling
system, and its use in the evaluation of the iHARP architecture [2]. The features considered
include instruction issue rate, code size, number of data cache ports, addressing
mechanisms, number of register file write ports and number of branch units. The
usefulness of the HARP guarded execution facility, which allows a Boolean guard to be
attached to every iHARP instruction, is also quantified.

The remainder of this paper is organised as follows: Sections 2 and 3 discuss the
fundamental limitations on instruction-level parallelism faced by all MII processors; section
4 reviews other research in the area of static instruction scheduling; section 5 describes the
compiler/scheduler software and the HARP models used in this research; section 6 contains
our evaluation of iHARP and section 7 offers some concluding remarks.

2. DATA DEPENDENCIES

Scheduling instructions for parallel execution can be viewed as a process in which each
instruction is successively moved or percolated [3] up through the code structure in an
attempt to ensure that it is executed at the earliest possible opportunity. Ultimately, further
code motion is blocked when a data dependency on an already scheduled instruction is
encountered.

Three classes of data dependencies can be identified: Read-after-write (RAW), write-after-
read (WAR) and write-after-write (WAW). WAR data dependencies are also known as anti-
dependencies while WAW dependencies are also called output dependencies. In the
following code fragment a read-after-write data dependency exists between the two
instructions:

ADD R1, R2,R3
ADD R4, R1,R5




Since no instruction scheduler can safely reverse the order of these instructions, RAW data
dependencies are true data dependencies which ultimately limit the performance of all MII
processors.

2.1 Register Renaming

In contrast, WAR and WAW data dependencies can both be removed using register

renaming. For example, in the fragment below the second instruction has an anti-
dependence on the first instruction.

ADD RS, R6, R7
SUB R6, RS, #256

This dependence can be removed by returning the result of the subtract to an unallocated
register, in this case R20. This renaming allows the subtract to be moved ahead of the add

in the instruction schedule:

SUB R20, R8, #256
ADD RS, R6, R7

MOV R6, R20
The MOV instruction is required to restore the new result to R6. This additional instruction
need not necessarily introduce further data dependencies since subsequent instructions
using R6 can equally well use R20.

2.2 Speculative Execution

An instruction is executed speculatively if it is executed before it is known whether the path
containing the instruction will actually be taken. Consider the following example:

NE B6, R1, R2 ;set B6OIFR1 <>R2
BT B6, Label ; it B6 is true goto Label

Label: LD R6, 8(SP)

The LD instruction could be moved ahead of the branch instruction and executed
speculatively giving the following code:




NE B6, R1, R2
LD R6, &§(SP)
BT B6, Label

However, if R6 is live immediately after the branch instruction, its value will have been
corrupted by the code motion. Register renaming can be used to avoid this problem:

NE B6, R1, R6
LD R20, 8(SP) ; R6 replaced by R20
BT B6, Label

Label: MOV R6, R20

As before, a MOV instruction is required to copy the contents of R2() into R6 if the branch
is taken.

An alternative solution is to use guarded instruction execution. On iHARP any of the eight
Boolean registers which are used to record the results of a relational instruction can also be
used as Boolean guards. In the above example B6 can therefore be used to guard the
execution of the LD instruction:

NE B6, R1, R2
TB6 LD R6, &(SP) ; Execute load if B6 is true
BT B6, Label

Label;

Now the Boolean guard ensures that the LD will only be executed if the branch is taken.
However, further percolation of the LD instruction will move it beyond the scope of the
Boolean guard. Now only register renaming can be used to avoid corrupting R6:

LD R20, 8(SP) ; R6 replaced by R20)
NE B6, R1, R6
BT B6, Label

Label: MOV R6, R20

The above code illustrates a further problem introduced by the speculative execution of
instructions. Suppose the load instruction in the previous example generates an invalid
memory address. If the path originally containing the load instruction is not actually
followed, the instruction will generate a spurious exception which will incorrectly terminate
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the program. To solve this problem, all non-branch instructions must exist in two forms.
In the first form, any exception generated by an instruction is immediately taken in the usual
way. In the second, speculative form, an exception will cause a polluted value to be loaded
into the instruction’s result register. For example, consider the code below:

BT B6, Label
LD R6, 8(SP)
SUB R8, R6, #1
NE B3, RS, #0

Now assume that both the load and subtract instructions are scheduled speculatively ahead
of the branch. For this code motion to be safe both R6 and R8 must be dead at Label.

LD! R6, 8(SP) ; speculative load
SUB! R&, R6, #1 ; speculative subtract
BT B6, Label

NE B3, RS, #0

If the load instruction generates an exception, R6 will be marked as polluted. Since the
subtract instruction is also executed speculatively, it will in turn mark R8 as polluted when it
attempts to use the polluted value in R6.  An exception will only be taken when the non-
speculative relational instruction attempts to use the polluted value held in R8. Note this is
the earliest point in the code where it is certain that the speculative load should be executed.
In contrast, if the branch is taken no exception will be taken.

To support speculative execution an extra bit must be added to all processor registers,
including the Boolean registers, to identify polluted values. This hardware support allows
loads and other instructions, such as adds which generate an exception on overflow, to be
executed speculatively. However, even with this additional hardware support, store
instructions can still not be executed speculatively. A store instruction can only be safely
percolated into a preceding basic block if it can be guarded.

2.3 Memory Disambiguation

Data dependencies may also involve memory locations. Memory disambiguation is used to
determine whether two instructions access the same memory location and are therefore
dependent. Consider the following code fragment:

ST 24(SP), R6
LD R4, 8(SP)




Clearly, the memory locations referred to in the ST and LD instructions are different and the
LD can be safely moved ahead of the ST. However, suppose the code is as follows:

ST &(SP), R6
LD R4, 8(RS)

Now it must be shown that registers SP and RS do not hold the same address before the LD
can be safely percolated ahead of the ST.

An instruction scheduler for a high-performance multiple-instruction-issue processor must
therefore include a module which attempts to disambiguate pairs of memory references.
Successful disambiguation then allows the scheduler to percolate loads ahead of stores.
However, to ensure correct program execution, the scheduler must always assume that two
references refer to the same memory location unless it can be shown otherwise.

3. AVAILABLE INSTRUCTION LEVEL PARALLELISM

A number of groups have attempted to quantify the amount of fine-grained parallelism
available in general-purpose code. Wall [4] used simulations based on instruction traces to
investigate the parallelism available to superscalar processors. Even with perfect renaming
and memory disambiguation, the parallelism realised rarely exceeded seven and was
typically only five. However, when Wall substituted perfect branch prediction for his
hardware branch prediction model, the amount of parallelism realised increased
spectacularly.  Yale Patt’s [5] group also used trace driven simulations to investigate
superscalar performance. The group concluded that current technology could achieve
execution rates of between two and six instructions per cycle and looked forward to
significantly faster execution rates in the future. By far the most spectacular upper bounds
on fine-grained parallelism were reported by Lam [6]. Lam recognised that superscalar
processors, which rely solely on hardware to exploit parallelism, can only extract
parallelism between successive branch mispredictions. This follows because after a branch
prediction fails any results which have been generated by the speculative execution of
instructions following the branch must first be discarded before execution is restarted at the
correct branch successor instruction. Avoiding this restriction significantly increases the
available parallelism. As a consequence, Lam’s results range from two instructions per
cycle for her basic model to an average of no fewer than 159 instructions per cycle for an
ORACLE model with perfect branch prediction.

All of the above studies emphasise that significantly more parallelism is available to MII
processors than is realised by current designs. This gap reflects both limited hardware
resources and the current early stage of development of instruction scheduling technology.
The role of accurate branch prediction is also emphasised, reflecting the inability of current
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superscalars to extract parallelism across mispredicted branches. Significantly the static
instruction scheduling approach used in iHARP removes this dependence on branch
prediction by percolating instructions across branches from both successor basic blocks.
Parallelism is then limited only by true data dependencies, unresolved memory ambiguities
and, of course, by resources and the instruction scheduling technology.

4. INSTRUCTION SCHEDULING

This section reviews current work on instruction scheduling. In general, global instruction
scheduling can be divided into low-level and high-level components. Low-level code
scheduling is concerned with packing individual instructions into long instruction words for
parallel execution at run time. High-level scheduling involves scheduling precedence,
transformations of the program graph and applications of low-level scheduling.

Low-level scheduling can follow two approaches. In the first approach each long
instruction word is filled in turn from a list of candidate instructions. This approach is
sometimes termed list scheduling [7]. Alternatively, individual instructions can be
percolated upwards through a data structure representing the current state of the partially
scheduled program. This approach builds on the pioneering work of Nicolau [3] who
defined a set of primitives which allow individual instructions to be safely moved, one step
at a time, through a program graph.

Whichever approach is followed, the full benefits of instruction scheduling can only be
realised if code is scheduled across multiple basic blocks. For example, in Trace
Scheduling [8] the scheduler attempts to identify likely paths or traces throu gh the code and
then schedules each trace as if it were a single basic block. Compensation code is then
added to off-trace paths to preserve the program semantics. As a result the execution time
of traces which are selected for early scheduling is optimised at the expense of less-
important traces which are scheduled later. Similarly, the IMPACT group at the University
of Illinois enlarges the scope of its instruction schedulers by combining basic blocks into
superblocks [9] and hyperblocks [10].

Ideally the scope for code motion should be a whole procedure or even a whole program.
Enlarging basic blocks to form traces or superblocks still leaves barriers to code motion
between these larger units. For example, in Trace Scheduling, since a trace cannot traverse
a loop back edge, no attempt is made to overlap code between successive iterations of a
loop body. Instead aggressive loop unrolling is used to extend the size of the loop body.
Inevitably, this unrolling results in excessive code size.

Software pipelining [11] is a method for overlapping the operations from successive loop
iterations without unrolling the loop. For example, consider the following code:
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fori=0ton
a
b;
G
end for;

Using loop unrolling, successive loop iterations might be overlapped as follows:

()

a by
a by ¢
ag by ¢]

ap byg cpn
[
Cn

Note that after the second line, a steady state is reached in which the same three instructions
are executed in each cycle. In software pipelining this steady state is identified and
transformed into a loop. For simplicity the loop iteration controls are omitted.

&)
ap b
loop: 842 bj 1 ¢ becloop ;where()<=i<=n-2
by cpag
Cn

Software pipelining therefore attempts to achieve the benefits of complete loop unrolling by
replacing an unrolled loop by a prologue, a steady-state loop body and an epilogue. In the
above example, during each iteration of the scheduled loop body, instructions from three
successive iterations of the original loop are always being executed in parallel. The
scheduling problem in software pipelining is to obtain a steady-state loop body which
minimises the initiation interval between successive loop iterations. This task becomes
increasingly difficult as the complexity of the loop is increased.

Enhanced Percolation Scheduling [12] is a particularly elegant method of achieving software
pipelining which has been developed by Ebcioglu’s team at IBM. Enhanced Percolation
Scheduling uses improved versions of Nicolau’s percolation primitives to schedule code
within a loop and to move code across loop back edges. This additional code motion
automatically realises software pipelining with loops of arbitrary complexity.




At IBM, Enhanced Percolation Scheduling is applied to an unconventional VLIW
architecture based on tree instructions. Excessive processor resources are also postulated,
and it is assumed that all branches can be resolved before the next instruction fetch is
initiated. The RLS scheduler can be viewed as a first step towards applying Enhanced
Percolation Scheduling to a more conventional processor architecture where resources are
limited and where branch instructions are only resolved after the immediately following
VLIW instruction has been fetched from the instruction cache.

S. THE HARP PROJECT

The aim of the HARP project was to develop an MII architecture which could sustain an
instruction execution rate significantly in excess of one instruction per cycle. As part of the
project iHARP [13], a VLIW processor with an instruction issue rate of four, was
designed, fabricated and tested.

5.1 iHARP Processor

The iHARP processor provides 32, general-purpose registers and eight, 1-bit boolean
registers. The four parallel pipelines share the general-purpose register file. iHARP uses a
four-stage pipeline. In the IF stage four instructions are fetched from the instruction cache;
in the RF stage register operands are accessed; in the ALU/MEM stage instructions are
executed or access the data cache; finally in the WB stage results are returned to the register
file. To allow the data cache to be accessed in the third pipeline stage, all addresses are
formed in the RF stage. The simplified ORed indexing addressing mechanism used on
iHARP makes this possible without extending the processor cycle time. Complete operand
bypassing then allows the results of ALU and load instructions to be used in the following
cycle. Since branch conditions are also resolved in the RF stage, the branch delay is one.

While all pipelines are able to support ALU, relational and a limited range of shift
instructions, the functionality of each pipeline is restricted by the need to conserve hardware
resources (Figl). As a result only two pipelines, one and three, support branch
instructions. Similarly memory reference instructions are restricted to pipelines zero and
two. However, while two branches can be executed in parallel, the single data cache port
precludes the parallel execution of two memory references instructions. Finally 32-bit
literals are introduced by providing 64-bit instructions which occupy two adjacent
instruction positions.

5.2 MII HARP Architectures

To evaluate the HARP architecture, a family of MII architectures with different instruction
issue rates was postulated. Each model has the same instruction set, addressing modes and
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pipeline stages as iHARP and provides hardware support for speculative instruction
execution. It is assumed that every pipeline will support ALU, relational and shift
operations. Also, in line with iHARP, a maximum of two branch instructions and one
memory reference instruction can be issued in each cycle. These base parameters were then
systematically varied to evaluate the architecture.

5.3 HARP Compiler and Instruction Scheduler

A HARP C compiler was generated using the GNU CC compiler generator [14]. The
sequential HARP code produced by the compiler was then scheduled for multiple
instruction issue using a Resource Limited Scheduler (RLS) developed by Liang Wang [2].
The HARP simulator [15] was used to execute both sequential and parallel code.

RLS is a resource limited scheduler which was developed specifically to exploit fine-
grained parallelism in iHARP. Since iHARP has only four pipelines, clearly the scheduler
has only limited resources at its disposal. RLS also aims to control the code expansion
usually associated with VLIW architectures by ensuring that the number of long instructions
generated never exceeds the original number of sequential instructions. The scheduler is
also ‘resource limited’ in this sense.

Conceptually RLS (Fig2) consists of a high level and a low level. The high level
transforms the sequential instructions of a procedure into a linked data structure, detects
basic blocks and constructs a flow graph. It then uses a set of heuristics to select the next
basic block for the low-level scheduler. The low-level scheduler percolates individual
instructions from a basic block into an instruction graph of previously scheduled
instructions. Guarded instruction execution, renaming and memory disambiguation are all
used to increase parallelism. Also after each loop body has been scheduled, an attempt is
made to move code across the loop back edge to reduce the size of the loop and to
implement software pipelining.

Finally after each procedure has been scheduled, a separate post-pass performs inter-
procedural instruction scheduling. During this phase RLS attempts to percolate the initial
LIW instructions from each procedure into the body of the calling routine. Only entire LIW
instructions are moved to allows RLS to preserve the program semantics by simply
adjusting the procedure entry points.

RLS is a research scheduler and as such no attempt was made to optimise the time taken to

schedule the benchmarks. Interestingly, however, the scheduling time was very similar to
the compilation time.
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6. iHARP EVALUATION

This section evaluates the HARP architecture using the well-known Stanford set of integer
benchmarks. The HARP model with an issue rate of one is used as a reference model and
is referred to as the HARP RISC. To ensure a fair comparison, a single pipeline scheduler
[2] was first used to fill the branch delay slots in the sequential HARP code. On average
filling the delay slots improved the performance of the HARP RISC by 7.3%. All the

speedup figures presented in this paper are relative to the HARP RISC after, and not
before, the branch delay slots have been filled.

6.1 Instruction Issue Rate

Fig3 shows the average speedups achieved by RLS as a function of instruction issue rate.
Each model is assumed to have an ALU per pipeline, two branch units and a single data
cache port.  The average speedups obtained for issue rates of two, three, four, five and
eight are 1.45, 1.66, 1.74, 1.76 and 1.77 respectively. RLS therefore performs well for
iHARP, its four-pipeline target processor, but fails to deliver significant additional
parallelism as further pipelines are added.

This performance gain was only achieved at the cost of significant code expansion. Code
size increased by 1.38, 1.86, 2.34 and 2.82 for issue rates of two, three, four and five
(Figd). Nonetheless, RLS comfortably achieves its design target of ensuring that the
number of long instruction words after scheduling never exceeds the initial count of
sequential instructions.

One of the main disadvantages of a VLIW processor is the disproportionate number of
NOPs introduced into the code. It is therefore instructive to compare HARP with a minimal
superscalar architecture executing scheduled HARP code from which all the NOPs have
been removed. Even with in-order instruction issue such a superscalar would, in the worst
case, simply reconstruct the long instruction word schedule generated for HARP.
Performance would therefore equal or exceed HARP at all issue rates. However, since all
the NOPs have been removed, code size would be dramatically reduced to the number of
operations in the HARP code. Code expansion is then only 15% for an issue rate of two,
rising to 18% for an issue rate of five (Fig4).

6.2 Number of Cache Memory Ports

Some of the benchmarks execute a high percentage of memory reference instructions. For
these programs a single data cache port represents an obvious performance bottleneck,
particularly as the instruction issue rate is increased. In spite of the high cost, it is therefore
useful to consider adding additional data cache ports. With two data cache ports, the
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average performance of a four pipeline processor is improved by approximately 10%. The
speedups now range from 1.51 with an issue rate of two rising to 1.97 with an issue rate of
eight (Fig5). With three cache ports, the average performance of a four pipeline processor
is improved by approximately 14%. Speedups here range from 1.84 with an issue rate of
three rising to 2.04 with an issue rate of eight (Fig5).

The improvements recorded varied widely between individual benchmarks. Four ‘memory
intensive’ programs, perm, bubble, queens and tower, all achieved significant gains. For
example, with an issue rate of four, the addition of a second port improved the execution
time of perm by 27%. In contrast, two ‘ALU intensive’ programs intmm and puzzle
obtained virtually no benefit from the additional data cache ports.

6.3 Interprocedural Scheduling

The speedups shown in sections 6.1 and 6.2 are further improved if the post-pass inter-
procedural scheduling phase is incorporated into RLS. With one data cache port and an
issue rate of four, inter-procedural scheduling improves the performance of the four pipeline
HARP model by 3.5%. The average speedups obtained with one data port are 1.51, 1.80
and 1.89 for issue rates of two, four and eight respectively (Fig6).

Performance with two and three data cache ports is also improved. With an issue rate of
four, interprocedural scheduling improves the performance of the two-port model by 5.8%
and the three port model by 4.6%. With two data cache ports, the speedups range from
1.59 with an issue rate of two rising to 2.13 with an issue rate of eight. With three data
cache ports, the speedups range from 1.92 with an issue rate of three rising to 2.21 with an
issue rate of eight (Fig6).

These improvements are relatively high given the modest nature of the RLS inter-procedural
scheduling algorithm and partially reflect the high proportion of recursive routines in the
Stanford benchmarks. They nonetheless encourage the belief that inter-procedural
scheduling will prove to be a fruitful source of low-level parallelism in the future.

The speedups obtained compare favourably with other groups working in the area. For
example, Horowitz’s group at Stanford has proposed the use of boosting [16] to support
speculative instruction execution in MII architectures. Boosting is an architectural
mechanism which uses shadow register structures to support code motion across branch
edges. An instruction is said to be boosted if it is percolated across one or more branch
edges. With issue rates of two, the Stanford group achieve speedups of 1.24 for their basic
model. This figure increases to 1.45 with one level of boosting and to 1.5 with three levels.
The comparable HARP model with an issue rate of two and one data port achieves a
speedup of 1.5, without the overhead of the complex shadow register structure required to

11




support boosting.

At Illinois the IMPACT group [9] use superblocks to achieve the following speedups with
an issue rate of four: 2.6 with no restrictions, 2.0 with one data port and finally 1.74 with
one data port and one branch unit. In comparison HARP achieves a speedup of 2.17 with
three data ports and numerous other scheduling restrictions. With only one cache port the
HARP speedup falls to 1.8, but this figure is maintained if only one branch unit is
available.

6.4 Guarded Instruction Execution

Guarded instruction execution has been proposed by a number of people including Hsu and
Davidson [17] and was implemented on the pioneering Acorn ARM processor [18].
Guarded instructions also form an integral part of the HARP architecture. RLS was
therefore designed to make full use of guarded instruction execution. However, to evaluate

their relative merits, RLS can also rely solely on either guarded execution or register
renaming.

Fig7 and 8 demonstrate the performance benefits of guarded instruction execution. With
onc memory port, the speedups obtained using both register renaming and guarded
execution range from 1.45 to 1.77. These figures fall to 1.45 and 1.68 if only guarded
execution is used and to 1.38 and 1.63 if only renaming is used (Fig7). Similar results are
recorded with two data cache ports (Fig8). With both renaming and guarded instruction
execution, speedups range from 1.51 to 1.97. These figures then fall to 1.51 and 1.84 with
guarded execution only and to 1.44 and 1.72 with renaming only. Since, in practice, there
is little point in using guarded execution on its own, these results suggest that guarded
execution will improve performance by 9.4% with one memory port and by 14.4% with
two memory ports.

Renaming and guarded execution have their different advantages and their corresponding
drawbacks. Renaming has two advantages: First, it is more flexible, since it supports code
motion across multiple branch edges; second, it can be used to remove WAR and WAW
dependencies. The disadvantage is that renaming introduces additional restoring code. As
well as consuming resources, these copy instructions introduce new data dependencies
which the scheduler may then not be able to remove.

Guarded instruction execution has three main advantages: First, it avoids restoring code and
therefore conserves resources; second, it avoids using additional registers for renaming;
third, it allows store instructions to be percolated across conditional branch edges. Sole
reliance on guarded execution also avoids live variable analysis and speculative execution.
There are two main disadvantages: First, guarded execution introduces a new data
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dependence between the instruction which defines the Boolean guard and the instruction

being moved; second, guarded execution can not be used to remove WAR and WAW data
dependencies.

When RLS scheduled the Stanford benchmarks, there were always sufficient registers
available to support renaming. Also the flat nature of the speedup curves at the higher issue
rates suggests that slots for additional copy instructions were not a problem. The advantage
of guarded execution over renaming has therefore three possible explanations. First, the
additional copy instructions added by renaming introduced further data dependencies which
the scheduler was unable to remove. Second, guarded instruction execution allowed store
instructions to be percolated across branch edges. Finally, since RLS was conceived as a
scheduler for iHARP, it is likely that RLS is biased towards guarded instruction execution.

6.5 ORed Indexing

A RISC processor typically requires five pipeline stages to execute a load instruction [19]:

IF: Instruction Fetch.

RF: Register Fetch.

ALU: Memory address calculation.
MEM: Data cache access.

WB: Write result to register file.

Since the data accessed from the cache is not available until the end of the MEM stage, it can
only be used by the next instruction if the pipeline is stalled for one cycle. The load delay is
therefore one.

In contrast, iIHARP uses a four stage pipeline as outlined in Section 5. 1:

IF: Instruction Fetch.

REF: Register Fetch.

ALU/MEM: Perform operation or access data cache.
WB: Write result to register file.

Two changes have been made to the original RISC pipeline. First, the address calculation
has been moved to the RF stage. Second, the ALU and MEM stages have been combined.
This second change is possible because loads and stores no longer use the ALU to compute
memory addresses. The major advantage is that the result of a load operation is now
available at the end of the ALU/MEM stage and can therefore be bypassed directly to the
next sequential instruction with no load delay.




The key to moving the address computation to the RF stage is to reduce the computation to
a bitwise logical OR between the two address components [20]. A logical OR is equivalent
to an addition if no carries are generated. This condition is met if the address components
never have a logical one in the same bit position. In order to use a logical OR in address
computations, the compiler ensures that the bottom n bits of the stack pointer are always
zero by aligning the stack pointer on a power of two memory address boundary. A stack
offset of n bits can then be added safely to SP using a logical OR. Glew [21] suggested the
term ORed indexing to describe this addressing mechanism.

To evaluate alternative addressing mechanisms for iHARP, the machine specification for the
GNUCC iHARP compiler [2] was modified to generate two further compilers. Apart from
the use of ditferent addressing modes, the iHARP instruction set was used throughout.
Only the second compiler, which uses an ALU stage to compute addresses, requires a load
delay. The other two compilers avoid a load delay by using simplified addressing
mechanisms.

The standard compiler uses the iHARP addressing mechanisms: offset(Ri) and (Ri,Rj)
where the two address components are logically ORed. Ri and Rj can be any general-
purpose register. Since register R0 is always zero, register indirect and direct addressing
are also available. The second compiler uses traditional RISC addressing modes: offset(Ri)
and (Ri,Rj) where the address components are now added. Since a five stage pipeline is
now required the load delay is one. Finally, the third compiler is restricted to register
indirect and direct addressing. Since neither addressing mode requires the ALU, the four
stage HARP pipeline can be used and a load delay avoided.

To use ORed indexing, the code generated on procedure entry must align the stack pointer
on a power of two memory address boundary. Local data can then be safely accessed
relative to the stack pointer using ORed indexing. The worst case code is shown below:

BSR RA, _proc ; return address in RA
_proc:

MOV SP’, SP ; save old stack pointer

AND SP, SP, #mask ; force SP to 2" boundary

SUB SP, SP, #frame_size ; allocate stack frame

ST 4(SP), SP’ ; save old SP

ST O(SP), RA ; save return address

LD RA, O(SP) ; load return address

LD SP, 4(SP) : restore old SP

MOV PC, RA ; return from procedure
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On entry into the procedure body the value of the old SP is saved. The AND instruction
then rounds down the stack pointer to the power of two boundary required by forcing the
bottom n bits to zero. The new stack frame is then allocated by subtracting the frame size
from SP. On exit from the procedure the old SP is restored.

In the worst case, all the above code is required. However, most iHARP procedures use a
standard minimum stack frame size of 128 bytes. Since SP is always aligned on a 128 byte
boundary, this removes the need to save the old stack pointer and to realign SP before
allocating a new stack frame. As a result the overwhelming majority of procedure calls
incur no additional overhead to support ORed indexing. The simplified code is shown
below:

_proc:
SUB SP, SP, #128  : allocated stack frame
ST O(SP), RA ; save return address
LD RA, O(SP) ; load return address
ADD SP, SP, #128 : deallocate stack frame
MOV PC, RA ; return from procedure

Each compiler was used to generate sequential code for the Stanford benchmarks. Where
possible, branch and load delays were filled with an average success rate of 73%. RLS was
then used to generate parallel code for the four pipeline iHARP processor.

For serial code, the best execution times were obtained with ORed indexing [Fig9]. Using
traditional RISC addressing modes degraded performance by 3%, while using register
indirect addressing degraded performance by 10%.

However, the move from serial to parallel code significantly changed the relative
performance. With parallel code, ORed indexing and register indirect addressing performed
equally well, while using traditional addressing mechanisms degraded performance by
10%. In both cases the performance advantage over traditional addressing mechanisms was
achieved by executing more instructions. Using ORed indexing 4% more instructions were
executed, while with register indirect addressing 14% more instructions were executed.

Traditional addressing modes perform relatively well in a single pipeline because the
compiler can usually hide the load delay by scheduling useful instructions in the load delay
slot. In contrast, in parallel code any instruction which could be used to fill load delay slots
can also be executed in parallel with the load instruction. As a result increasing the latency
of load instructions has a greater impact on the execution time of parallel code.

In contrast register indirect addressing performs significantly better in a parallel
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environment. This improved performance is a direct result of a VLIW processor’s ability to
precompute addresses in parallel with other instructions. While these address computations
increase the instruction count, the impact on performance is minimal.

Register indirect addressing is also used as the principal addressing mechanism on the
VIPER VLIW processor [23]. It is interesting that this group found that register indirect
addressing yielded a similar 8.4% performance improvement over more traditional
addressing mechanisms.

6.6 Number of Register Writeback Ports

Throughout this study it has been assumed that sufficient write ports were always provided
on the general-purpose register file to allow all results to be returned to a register in the final
pipeline stage. This is equivalent to assuming that the number of write ports is always
equal to the number of pipelines. In practice, multiple write ports can be costly to
implement. The performance impact of reducing the number of write ports in a four
pipeline model was therefore investigated. On average, reducing the number of write ports
from four to three degraded performance by a negligible 0.6%, while reducing the number
of ports to two reduced performance by only 4.6%.

The iHARP chip was implemented with only two write-back ports on the register file. This
design compromise therefore reduced performance by less than 5%. An additional
mechanism was provided on iHARP to enable results to be bypassed directly to the
following long instruction word without being written to the register file [13]. The
objective was to reduce the pressure on the register file write ports. RLS did not attempt to
use this facility, since the maximum possible gain is less than 5%.

6.7 Parallel Execution of Branch Instructions

This study has also assumed that two branch units were always available, allowing two
branch instructions to execute in parallel. Surprisingly, removing the second branch unit
has a negligible impact on performance, less than (0.25% on average. This result may be
partially attributed to the ability of RLS to schedule branches in branch delay slots.
Although such scheduling is unusual, it is easily achieved in iHARP by adding a Boolean
guard to the branch placed in the delay slot.

6.8 Combined Instructions

A further feature of iHARP is the availability of instructions which combine a shift
operation with an ALU operation. Since the shift units immediately precede the ALUs,
combined instructions are still executed in one cycle. For example, consider the following
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two instructions.

ASL R6, R7, #2 ; arithmetic shift left
ADD RS, R6, R2

Providing R6 is not live after the ADD instruction these two instructions can be combined in
a single instruction:

ADD RS, R7(ASL #2), R2
Alternatively if R6 is still live, the following two instructions can be generated:

ASL R6, R7, #2
ADD R5, R7(ASL #2), R2

While no code is saved, the two instructions can now be scheduled independently.

Combining is implemented wherever possible by the HARP GNUCC compiler, but has a
very small impact on execution time. Overall performance is improved by 2% with serial
code and 3% with an instruction issue rate of four. In general, the HARP instruction set
therefore allows too few instruction pairs to be combined to make a significant impact.

6.9 Loop Unrolling

Since RLS achieves software pipelining by percolating instructions across loop back edges,
loop unrolling has never played a major role in RLS scheduling stategy. Nevertheless since
HARP has a branch delay of one, no unrolled loop can ever start a new loop iteration more
frequently than once every two cycles. Therefore if a loop iteration interval of one is ever to
be achieved some loop unrolling is essential.

With these observations in mind, RLS unrolls simple loops, consisting of no more than two
basic blocks. This unrolling is performed only once. With an issue rate of four and a single
cache port, performance is improved by 3.7%. With two data cache ports this figure rises
slightly to 3.95%. Therefore, although loop unrolling improves the performance of two
benchmarks, quick and puzzle, by almost 10%, it has a relatively small overall impact on
HARP performance.

7. CONCLUSIONS

This paper has described RLS, a resource limited scheduler, which has been used to
evaluate iHARP, a VLIW processor with an instruction issue rate of four. With four
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pipelines a speedup of 1.80) was achieved using non-numeric benchmarks. Signiticantly,
this performance was based on an architecture which has been implemented in silicon, and
not on an abstract model. Also the speedup recorded is relative to optimised single pipeline
code where branch delay slots have been filled wherever possible.

This performance improvement was achieved by increasing code size by 134%.
Significantly, the increase could be reduced to only 18% by moving to an equivalent
minimal superscalar architecture.

A single memory port is an obvious bottleneck in a processor with an issue rate of four.
Providing two data ports improved performance by 10% while three data ports improved
performance by 14% and achieved a speedup of two.

The benefits of guarded instruction execution were also quantified. Our figures give
guarded execution an advantage of 9.4% with one memory ports, rising to 14.4% with two
memory ports. While these figures are encouraging, we feel that it is premature to come to
any firm conclusion regarding guarded execution. In particular, it will be interesting to see

how guarded execution performs with more aggressive scheduling algorithms and higher
instruction issue rates.

Comprehensive comparisons with alternative addressing mechanisms confirm that our
decision to incorporate ORed indexing in iHARP was fully justified and provided a 10%
boost in performance. Surprisingly, however, register indirect addressing performed
equally well, although requiring 10% more instructions. Given the complex stack
alignment requirements of ORed indexing, register indirect addressing is therefore a strong
candidate for future architectures, in spite of the additional code overhead.

Other results suggest that restricting the register file to two write back ports did not
significantly degrade iHARP performance, that RLS was not able to make significant use of
the two parallel branch units in iHARP and that instruction combining was not a critical
factor in iHARP processor performance. Finally, the limited loop unrolling performed by
RLS resulted in only modest performance improvements.
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Fig 1 Functionality of iHARP pipelines

Pipeline0 Pipelinel Pipeline2 Pipeline3
1. computational computational computational computational
2. relational relational relational relational
3. memory reference - memory reference -
4. - - boolean -
5. - branch & return - branch & return
6. - special purpose - -
7. - - - traps
L. - 32-bit literal - 32-bit literal
Note

Instructions in pipeline O and 2 can use a 32-bit literal from an adjacent
pipeline.




Fig 2 The RLS Algorithm

proc: RLS(program, options)
for each procedure in the program do
Read in the sequential code;
Construct a flow graph,;
Detect loops and unroll simple loops;
while unscheduled nodes do
Best-node := select(flow graph);
Perform bookkeeping;
Determine the schedule class for best-node;
/*low-level scheduling begins*/
for each instruction i in best-node do
Attempt to percolate instruction i into ‘window’ of already
scheduled instructions;
if percolation fails then
Append a new long instruction word to the ‘window’;
Insert 1 into the new long instruction word;
end if
end for;
end while;
end for;
output scheduled code;
end proc




Fig 3 Speedup versus Instruction Issue Rate
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Fig 4 Code Size versus Instruction Issue Rate

Code Size Increase

3.0
—&— Including NOPs
—O— Excluding NOPs
2.5
2.0
1.5
O —O— O O
1.0 1 ] ] 1
1 2 3 5

Issue Rate4




Fig 5 Speedup versus Number of Data Cache Ports
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Fig 6 Speedup versus Number of Cache Ports using
Inter-procedural Scheduling
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Fig 7 Impact of Guarded Execution using One Memory Port
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Fig 8 Impact of Guarded Execution using Two Memory Ports
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Fig 9 Relative Performance of Addressing Mechanisms

1.2

_
08.64.20.
— o o o o o
eouewW.I0lIdd OAlle|eY

Trad. Modes Reg. Indirect

Addressing Mechanisms

ORed Indexing

Parallel Code Size

Parallel Execution Time

B serial Execution Time




