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ABSTRACT

Tycho’s SNR is the remnant of the type Ia supernova explosion SN1572. In this work we present

new low-frequency radio observations with the LOFAR Low-Band and High-Band Antennae, centred at

58 MHz and 143 MHz, and with an angular resolution of 41′′ and 6′′ respectively. We compare these

maps to VLA maps at 327 MHz and 1420 MHz, and detect the effect of low-frequency absorption

in some regions of the remnant due to the presence of free electrons along the line-of-sight. We

investigate two origins for the low-frequency free-free absorption that we observe: external absorption

from foreground, and internal absorption from Tycho’s unshocked ejecta. The external absorption

could be due to an ionised thin, diffuse cavity surrounding the SNR (although this cavity would need

to be very thin to comply with the neutral fraction required to explain the remnant’s optical lines),

or it could be due to an over-ionised molecular shell in the vicinity of the remnant. We note that

possible ionising sources are the X-ray emission from Tycho, its cosmic rays, or radiation from Tycho’s

progenitor. For the internal absorption, we are limited by our understanding of the spectral behaviour

of the region at unabsorbed radio frequencies. However, the observations are suggestive of free-free

absorption from unshocked ejecta inside Tycho’s reverse shock.

Keywords: Supernova remnants, interstellar medium, Tycho, LOFAR

1. INTRODUCTION

Supernova remnants (SNRs) are the result of the in-

teraction of a supernova explosion with its ambient

medium. The X-ray and radio-bright shell characteristic

of young SNRs is composed of shocked ambient medium

and stellar ejecta. Internal to the reverse shock there

can be some stellar ejecta that have yet to encounter

the reverse shock (McKee 1974). These ejecta were ini-

tially heated by the passage of the blast wave inside the

star, but have since cooled due to adiabatic expansion.
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Because this material is internal to a shell bright in X-

rays and likely also in the UV, it can be photoionised.

Several hundreds of years after the supernova event, the

remnant still retains some imprint of the explosion; this

is particularly the case for the unshocked ejecta.

SNRs have an effect on their surroundings, not only

on the shocked ambient medium, but also on the still to-

be-shocked neighbourhood of the SNR. They are bright

X-ray sources, as well as likely the sites of cosmic ray

acceleration (Hillas 2005). Both the high-energy pho-

tons and the cosmic rays can deposit energy into the

surroundings of the SNR; for instance, heating and ion-

ising nearby molecular clouds. Furthermore, during its

lifetime and its pre-SN stage, the progenitor star sculpts
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its ambient medium; for example, through stellar winds

and ionising radiation. The environment of the SNR is

therefore a diagnostic of the star’s pre-SN life, and of

the SNR itself.

Tycho’s SNR (SN 1572, G120.1+1.4, hereafter Tycho)

is a young SNR, whose reverse shock might not have yet

heated all of the stellar ejecta from the explosion. It

is the result of a Type Ia event, as evidenced from the

historical records of the light curve (Baade 1943), and

from the optical spectrum as recovered from light echoes

(Krause et al. 2008; Rest et al. 2008). From comparison

of the X-ray spectra to hydrodynamical and spectral

models, Badenes et al. (2006) concluded that the sce-

nario that best fit the data is one in which 1.3 M� of

material were ejected at the time of the explosion into

an ambient density of ∼ 0.6−3 cm−3. There is evidence

that the density is higher in the north-east of the rem-

nant, from Hα (Ghavamian et al. 2000), molecular gas

(Lee et al. 2004; Zhou et al. 2016), and dust observations

(Williams et al. 2013). The work of Woods et al. (2017)

placed strict upper limits on the temperature and lumi-

nosity of Tycho’s progenitor from the observed fraction

of neutrals in the atomic gas, pointing to the merger of

a double white dwarf binary as the most viable scenario

for Tycho’s SN explosion. On the other hand, the molec-

ular shell found in Zhou et al. (2016) is more consistent

with a single-degenerate scenario.

The remnant has been studied extensively, including

at wavelengths that probe the unshocked ejecta. Lopez

et al. (2015) observed it with NuStar, but they did not

not detect any emission associated with the decay of

radioactive 44Ti, point-like or extended. Gomez et al.

(2012) observed it in the infrared with Herschel and

Spitzer, and did not detect a cool dust component in

the innermost region of unshocked ejecta, although they

did not specifically look for line emission from pho-

toionised, cold material. At low radio frequencies it

has been observed with the Very Large Array (VLA)

at 330 MHz (Katz-Stone et al. 2000), and several times

at 1.4 GHz (Reynoso et al. 1997; Katz-Stone et al. 2000;

Williams et al. 2016). It has also been observed at

660 MHz with the Westerbork Synthesis Radio Tele-

scope (WSRT, Duin & Strom 1975), and, at lower res-

olution, at 408 MHz as part of the Canadian Galactic

Plane Survey (CGPS, Kothes et al. 2006).

In this paper we present new observations of Tycho

with the LOw Frequency ARray (LOFAR, van Haar-

lem et al. 2013), both with the instrument’s High-Band

Antenna (HBA, 120−168 MHz) and the Low-Band An-

tenna (LBA, 40 − 75 MHz). We compare these maps

with higher frequency observations, and we detect lo-

calised free-free absorption from free electrons along the

line-of-sight, from foreground material, and possibly also

from material internal to the SNR reverse shock. We

cannot use the measured absorption value to estimate

how much mass there is in unshocked ejecta, although

our results suggest that if unshocked material is present,

it is in a combination of relatively highly ionised, cold,

and significantly clumped states. The ionised ambient

material could be either the diffuse cavity surrounding

Tycho or its neighbouring molecular clouds. Both sce-

narios have implications for the ionising source.

2. OBSERVATIONS AND DATA REDUCTION

2.1. Observations

We observed Tycho’s SNR with LOFAR under project

LC10 011. The Low-Band Antenna (LBA) observations

were centred at RA=00:25:21.5, Dec=+64:08:26.9, with

a time on-source of 10 hours. The data were taken on

2018/05/18, in the LBA-Outer configuration, using 8 bit

sampling, 1 second integration, and a frequency resolu-

tion of 64 channels per sub-band. The central frequency

was 53.2 MHz, and the total bandwidth was 43.6 MHz.

A second beam was placed on calibrator 3C48 for the

length of the observation.

For the High-Band Antenna (HBA) observations we

made use of the possibility of co-observing with the

LOFAR Two Metre Sky Survey (LoTSS, Shimwell

et al. 2017). We identified the LoTSS pointing clos-

est to Tycho, P007+64 (centred at RA=00:30:40.8,

Dec=+63:36:57.9), and requested that it be observed

during LOFAR cycle 10 as part of LC10 011. The obser-

vations were made with the standard LoTSS settings: 8

hours on-source, 48 MHz bandwidth, and an additional

10 minutes at the beginning and end of the observa-

tions to observe the calibrators (3C48 and 3C147, in

this case).

2.2. Low-Band Antenna

The LBA data were reduced with the LOFAR Low-

Frequency Pipeline (de Gasperin et al. 2019). The

pipeline calibrates the calibrator and transfers the so-

lutions to the target, taking into account the main

systematic effects in the LOFAR telescope, such as

clock drift, polarisation misalignment, ionospheric delay,

Faraday rotation, ionospheric scintillation, beam shape,

and bandpass.

Due to noise, we had to flag all the data at frequen-

cies less than 40 MHz, as well as two LOFAR stations,

CS013 and CS031. From the calibrator solutions we

knew that there were very good ionospheric conditions

during the observation, with almost no Faraday rota-

tion (the calibrator was observed for the full duration

of the observation, so we knew the ionosphere was good



Tycho SNR with LOFAR 3

throughout). This allowed us to perform one round of

self-calibration from our first image of the source, rather

than from a sky model made at a different frequency.

The pipeline split the data into two frequency chunks,

one centred at 48.3 MHz, and another centred at

67.0 MHz, which were imaged separately. We imaged

the data with wsclean (Offringa et al. 2014), which al-

lows for multi-scale, multi-frequency deconvolution with

w-projections, and for applying the LOFAR beam. The

visibilities were weighted with a Briggs parameter of zero

(Briggs 1995). In order to filter out large scale structure

and in order to ensure common resolution among the

maps, we used a u − v range of 30 − 5, 000 λ. The two

‘full-bandwidth’ LBA images centred at 48.3 MHz and

67.0 MHz are shown in Fig. 1.

In addition to the broadband maps, to search for spec-

tral curvature, we made a series of narrow-band images,

each 1.3 MHz wide, centred at 40.1, 42.5, 44.8, 47.1,

49.5, 51.8, 54.2, 56.5, 58.9, 61.2, 63.5, 65.8, 66.9, 68.1,

70.5, 72.8, and 75.1 MHz. These maps were also made

with a common u− v range of 30− 5, 000 λ.

2.3. High Band Antenna

The HBA data were reduced in a direction-

independent manner with the Pre-Facet Calibration

Pipeline (van Weeren et al. 2016), which obtains di-

agonal solutions towards the calibrator and then per-

forms clock-TEC separation, which distinguishes be-

tween clock offsets and drifts, and signal delays due to

the electron column density in the ionosphere, and trans-

fers the calibrator amplitudes and clock corrections to

the data.

The calibrated data products were then imaged with

the latest version of the ddf-pipeline1 (Shimwell et al.

2019; Tasse in preparation), which is the method

used for reducing data from the LoTSS. The pipeline

carries out several iterations of direction-dependent

self-calibration, using DDFacet for imaging (Tasse

et al. 2018) and KillMS for calibration (Tasse 2014a,b;

Smirnov & Tasse 2015). The resulting HBA image is

shown in Fig. 2. The pipeline also produced three

narrow-band images at 128, 144, and 160 MHz. The

LOFAR HBA in-band spectral index is unreliable, but

in order to use these narrow-band maps in our analysis

we bootstrapped the maps to the expected flux densi-

ties of neighbouring sources in the field, from the HBA

broadband map.

2.4. Archival data

1 Version 2.2, https://github.com/mhardcastle/ddf-pipeline/

We obtained the FITS files for the 327 MHz Very

Large Array (VLA) observation of Tycho carried out

in 1991-1993 (Katz-Stone et al. 2000), as well as for

the 1.4 GHz VLA observation carried out in 2013-2015

(Williams et al. 2016). Katz-Stone et al. (2000) note

that their map is sensitive to scales between 8′′ and 30′,

which corresponds to 114 − 25, 800λs. The Williams

et al. (2016) L-band map, combining the VLA A, B, C,

and D configurations, is sensitive to scales between 1.3′′

and 16′ (212− 15, 800λs).

The integrated flux density of the 1382 MHz map from

Williams et al. (2016) is 41.7 Jy, and this is the value

that we used for the analysis. However, if we directly

measure the integrated flux density of the 327 MHz im-

age, it is 121.8 Jy. This is 115% of the expected value

for S1GHz = 56 Jy and α = 0.58 (Green 2017), and 117%

for S1GHz = 52.3 Jy and α = 0.63, which are the best-

fit values we find from a compilation of literature results

(see discussion in section 3.1). We do not measure a level

of background in the FITS image that accounts for this

difference. Unfortunately, Katz-Stone et al. (2000) do

not report the integrated flux density for their 327 MHz

observation.

Our analysis relies on the localised deviation from

power-law behaviour at low frequencies due to free-free

absorption from ionised material along the line-of-sight

(we discuss the method in detail in section 3.2). The

327 MHz and 1382 MHz maps provide the fit with the

information about the spectral behaviour of the source

when no absorption is present. If we take the flux den-

sity at 327 MHz to be the 121.8 Jy that we measure

directly from the FITS file, we find it disproportion-

ately affects the measured absorption, by setting an ar-

tificially high spectral index value for any given pixel2,

which then requires a much larger mass of absorbing

material to account for the flux densities at LOFAR fre-

quencies. For this reason, we normalised the flux density

of the 327 MHz map to 105.7 Jy, according to the best-

fit power law results for the compiled literature values

as shown in section 3.1.

When comparing interferometric maps, it is impor-

tant to take into account the scales probed by the differ-

ent instruments. When the emission is perfectly decon-

volved, it is possible to compare higher resolution maps

with lower resolution maps by simply smoothing them

to a common resolution. However, the short-baselines

u − v coverage matters if interferometers do not probe

the same scales, especially for Galactic observations, for

2 The 121.8 Jy and 41.7 Jy values at 327 MHz and 1382 MHz
correspond to a spectral index α327/1382 = 0.74, much higher
than the overall spectral index of the source.

https://github.com/mhardcastle/ddf-pipeline/
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Figure 1. Tycho SNR as observed with the LOFAR Low-Band Antenna (LBA). The LBA bandwidth was split to make these
two images, centred at 48.3 MHz (left) and 67.0 MHz (right), each 18 MHz wide. The elliptical beam size is 41′′×31′′, with
position angle 56o, and the pixel size is 10′′for both maps. The local rms noise is 0.03 Jy bm−1 for the 67.0 MHz map and 0.08
Jy bm−1 for the 48.3 MHz map. The flux density scale in both maps is in Jy bm−1.
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Figure 2. Tycho SNR as observed with the LOFAR High-
Band Antenna (HBA). The central frequency is 144 MHz,
the bandwidth is 48 MHz, the beam size is 6′′, the pixel size
is 1.5′′, and the local rms noise is 1 mJy bm−1. The flux
density scale is in Jy bm−1.

which the sources might be embedded in large-scale dif-

fuse emission.

We summarise the u − v scales probed by the maps

used in our analysis in Table 1. Our LOFAR maps

are sensitive to large angular scales, which might re-

sult in additional large-scale continuum emission that

is resolved out by the VLA maps. This would result

in a spectral index steepening. We note this issue as a

possible source of error.

3. RESULTS

3.1. Total flux density

We report the total flux density of Tycho as seen

with the LOFAR telescope LBA and HBA in Table

1. We also include the values from the 327 MHz and

1382 MHz VLA observations (Katz-Stone et al. 2000;

Williams et al. 2016) which we relied on for the analy-

sis.

Table 1. Flux densities of Tycho SNR

Freq Flux density Error Year λ coverage

(MHz) (Jy) (Jy)

48.3 334 33 2018 30 − 5, 000 λ

67.0 275 27 2018 30 − 5, 000 λ

144.6 163 16 2018 50 − 50, 000 λ

327 105.7 10.5 1995 114 − 25, 800λ

1382 41.7 4.2 2013 212 − 15, 800λ

Note—Observations at 327 MHz and 1382 MHz were
taken with the VLA and are described by Katz-Stone
et al. (2000) and Williams et al. (2016), respectively.
See discussion in section 2.4 for 327 MHz flux density.

We compiled a series of radio flux densities in the

literature, and plotted the LOFAR values alongside

them (Fig. 3). Fitting a function of the form Sν =

S1GHz

(
ν

1GHz

)−α
gives a best-fit S1GHz = 52.3 ± 2.0 Jy
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Figure 3. Radio spectrum of Tycho, including measure-
ments from this work (in blue). The green line corresponds
to the power-law spectral index (PL SPX) of 0.58 reported in
Green (2017), and the yellow line is the best-fit (BF) power-
law spectral index from these data points. The literature (lit)
values in red are taken from: Klein et al. (1979), Green et al.
(1975), Hurley-Walker et al. (2009), Katz-Stone et al. (2000),
Kothes et al. (2006), Planck Collaboration et al. (2016), Gao
et al. (2011), Langston et al. (2000), Williams et al. (1966),
Scott & Shakeshaft (1971), Artyukh et al. (1969), Bennett
(1963), Fanti et al. (1974), Conway et al. (1965), Kellermann
et al. (1969), Horton et al. (1969).

and α = 0.63 ± 0.02, whereas the value listed in the

Green SNRs catalogue is S1GHz = 56 Jy and α = 0.58

(Green 2017).

The systematic calibration errors in the LOFAR flux

scale are of the order of 10%, which dominates the un-

certainties, rather than the noise. For this reason we

take 10% errors when we report the integrated flux den-

sities of Tycho in the broadband images in Table 1 and

in Fig. 3. However, the 10% errors are on the total

flux scale rather than the disagreement between in-band

measurements. They are therefore an over-estimate for
the purposes of our analysis (our fits result in residuals

that are much smaller than the error bars). The fact

that we do not know the statistical errors of the flux

densities presents an issue for the analysis.

In order to solve this problem, we artificially shrank

the error bars of the LOFAR images (see Fig. 4) until

the reduced χ2 of the best-fit power-law for these points

was 1. This provides us with a more meaningful estimate

of the errors in our pixel-by-pixel analysis.

The flux densities of the LBA narrow-band maps are

plotted in Fig. 4. If we only consider the LOFAR LBA

and HBA results, we measure a steeper spectral index

than when we take into account measurements at higher

frequencies (α = 0.67 instead of α = 0.58 or α = 0.63).

The best-fit value of α for the LOFAR points (α = 0.63)

102

Freq (MHz)

102

S v
(J

y)

BF PL spx=0.67
PL SPX=0.58

Figure 4. Radio spectrum of Tycho at LOFAR frequencies.
The magenta points correspond to the full bandwidth maps,
and the blue points correspond to the narrow band maps.
The green line corresponds to the power-law spectral index
(PL SPX) of 0.58 reported in Green (2017), and the blue line
is the best-fit (BF) power-law spectral index from the LO-
FAR data points. The errors bars have been normalised so
the reduced χ2 of the best-fit power-law (in blue) is equal to
1, but we note that the uncertainties in the LOFAR in-band
have not been systematically analysed and can be unreliable.
Our measurements agree with earlier reports that the radio
spectrum of Tycho steepens at low radio frequencies.

results in a ∆χ2 = 23.7 improvement over the fixed α =

0.58 scenario, for one additional degree of freedom.

3.2. Model parameters: external absorption

A synchrotron source with spectrum Sν ∝ ν−α that is

subject to free-free absorption from cold, ionised, ISM

material along the line of sight results in the following

radio spectrum:

Sν = S0

(
ν

ν0

)−α
e−τν,ISM , (1)

where (Rybicki & Lightman 1979):

τν = 3.014×104 Z

(
T

K

)−3/2 ( ν

MHz

)−2
(

EM

pc cm−6

)
gff ,

(2)

Ze is the charge of the free-free absorbing ions, T is

the temperature of the plasma, EM ≡
∫ s

0
n2

eds
′ is the

emission measure, ne is the number density of electrons,

and gff is a Gaunt factor, given by

gff =


ln
[
49.55Z−1

(
ν

MHz

)−1
]

+ 1.5 ln T
K

1 for ν
MHz >>

(
T
K

)3/2
.

(3)

We convolved all the images to a resolution of 41′′, and

performed a pixel-by-pixel fit (with a pixel size of 10′′)
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to equation 1. The results are plotted in Fig. 5. For

each pixel, we fitted for an amplitude S0, the spectral

index α, and the optical depth for the ISM material at

40 MHz τ40,ISM. As errors, we plot the diagonal term of

the covariance matrix corresponding to each parameter.

We also show the fit results for three integrated regions

that show external absorption (see Fig. 5, right panel):

the region towards the north-east, the absorbed region

in the centre, and the whole rim of the SNR. These

regions are labeled in Fig. 6, and their spectral energy

distribution (SED) along with the best-fit results are

shown. The parameters α and τ40,ext are correlated (see

contour plots in Fig. 7), but for two of the three regions

we require absorption at the 3σ level or higher.

3.3. Model parameters: internal absorption

A synchrotron source that is subject to internal free-

free absorption from its cold, ionised, unshocked ejecta

will have a dimming factor that goes as (f+(1−f)e−τν ),

where f is the fraction of the synchrotron emission that

is produced by the front side of the shell and, therefore,

cannot be absorbed by its internal material. This fac-

tor multiplies equation 1 resulting in the following radio

spectrum:

Sν = S0

(
ν

ν0

)−α
(f + (1− f)e−τν,int) e−τν,ISM . (4)

Internal free-free absorption can only occur in the region

inside the projected reverse shock, since there cannot be

unshocked absorbing material outside the reverse shock.

Warren et al. (2005) found the reverse shock in

Tycho’s SNR to have a radius of 183′′ and centre

RA=0:25:19.40, Dec=+64:08:13.98, from principal com-

ponent analysis of X-ray data. We measured the flux

density for each image for the region internal to the re-
verse shock, with the aim to look for internal absorption.

We do not find any external absorption in the region in-

ternal to the reverse shock, save for two clumps in the

center of the SNR (Fig. 5), and so, to simplify our fit,

we we removed the area of absorption in the centre (the

blue region in Fig. 6) from our area of internal absorp-

tion (the yellow region in Fig. 6), and just fitted for

an amplitude, the parameter f , and an internal optical

depth:

Sν = S0

(
ν

ν0

)−α
(f + (1− f)e−τν,int). (5)

As described in section 3.1, we rescaled the error bars

in such a way that the reduced χ2 of the best-fit power-

law (Sν = S0

(
ν
ν0

)−α
, with no absorbing component)

was 1. The best-fit power-law for this region corresponds

to α = 0.63. From here, we compared how including an

internal absorbing component improved the fit.

Setting f = 0.5 (that is, fixing the synchrotron emis-

sion such that half comes from the back and half comes

from the front of the shell) gives a best-fit α = 0.63,

τ40,int = 3×10−8. This means that the best-fit value for

internal absorption with f = 0.5 corresponds to no in-

ternal absorption. Setting f = 0.5, for τ40,int = 0.11 we

obtained a ∆χ2 = 4 (with respect to the best-fit result).

We take this to be the 2σ upper limit estimate on the

internal optical depth, and so in the internal emission

measure EMint (for T = 100, Z = 3).

Alternatively, if we fit a region that shows internal

absorption with a power-law, the spectral index flattens

due to the presence of absorption. Katz-Stone et al.

(2000) found α = 0.71, rather than α = 0.63 for this re-

gion, from a 330 MHz to 1.4 GHz spectral index study.

In fact, the higher frequency data points, where no ab-

sorption is present, should be the ones that determine

the spectral index. At low frequencies the original spec-

tral index should be recovered, but with the amplitude

dimmed by a factor of f . Hence, we fixed the spectral

index to α = 0.71 and fitted for the remaining param-

eters. This results in a very high value of the optical

depth, τ40,int = 61.

Table 2. Fits to region internal to the reverse shock

Fit α f τ40,int red χ2 ∆χ2

PL 0.63 − − 1.0 -

best-fit int abs 0.63 0.5* 3 × 10−8 1.1 0

UL in int abs 0.64 0.5* 0.11 1.3 4

Fixed α 0.71* 0.76 61.1 0.4 16

Note—The best-fit emission measure EM assumes T =
100 K and Z = 3. Parameterised, it corresponds to EM =

EMtable pc cm−6
(

gff (T=100,Z=3)
gff (T/100K,Z/3)

)
×

(
Z
3

) (
T

100K

)−3/2
. The

reduced χ2 to the power-law fit is 1 by definition. Val-
ues indicated with * are fixed, not fitted for. The ∆χ2

for the ‘Fixed α’ model is with respect to the power-law
model ‘PL’, corresponding to 2 additional degrees of free-
dom. The upper limit ‘UL’ was derived as discussed in the
text.

The results of our fits (power-law, internal absorption,

2σ upper limit in internal absorption, and α fixed to the

value given by Katz-Stone et al. 2000) are tabulated in

Table 2. We also plotted the results for the power-law

fit (in blue), the upper limit to the EM (for T = 100,

Z = 3, in green) and the fixed α (in magenta; dashed
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Figure 5. Results of fitting equation 1 to the maps. For each pixel we fitted for amplitude S0, the spectral index α, and the
optical depth for the ISM material at 40 MHz τ40,ISM. The units of the S0 map on the left are Jy bm−1. The errors are the
diagonal term of the covariance matrix corresponding to each parameter.

lines indicate the unabsorbed flux density) in Fig. 6,

bottom-left corner. Here we show the rescaled errors

rather than the original error bars.

From Table 2, fixing α = 0.71 and adding an absorb-

ing component does seem to significantly improve the fit

(the fact that the reduced χ2 is equal to 0.4 would nor-

mally suggest overfitting, but in this case the reduced

χ2 of the power-law fit was artificially set to 1). The

required emission measure is unphysical (see discussion

in section 4.4), but it is very sensitive to the choice of

α and f . We cannot confidently claim a detection of

unshocked ejecta in Tycho’s SNR because of our limited

knowledge of the errors in the flux densities, and because

of the degeneracy of the parameters, but our data are

suggestive that there is indeed some unshocked material

inside Tycho’s reverse shock3.

In order to better estimate the EM due to internal ab-

sorption we need more high-frequency data points in the

few GHz range that can unambiguously determine the

unabsorbed flux density and spectral index for this re-

gion. Additional observations in the few-hundred MHz

range would help better model the curvature due to the

free-free absorption, and, if it were ever possible, obser-

vations at even lower frequencies would further discrim-

inate between the different models. In this work we are

relying on only the points at 327 MHz and 1382 MHz

for information about the unabsorbed flux density and

3 In the conference Supernova Remnants: An Odyssey in Space
after Stellar Death II (Chania, Greece, June 2019) we pre-
sented preliminary results of a very high EM detection from Ty-
cho’s unshocked ejecta (http://snr2019.astro.noa.gr/wp-content/
uploads/2019/08/D3-0940-Arias.pdf). This was due to us not
noticing at first that the 330 MHz map had a very high flux den-
sity value, which steepened the best-fit spectral index, and thus
the required amount of absorbing material.

http://snr2019.astro.noa.gr/wp-content/uploads/2019/08/D3-0940-Arias.pdf
http://snr2019.astro.noa.gr/wp-content/uploads/2019/08/D3-0940-Arias.pdf
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Figure 6. HBA map with overlaid regions of analysis. The values of f , τ40 and α are unitless. For all regions, the errors were
rescaled in such a way that the best-fit power law has a reduced χ2 of 1. The top plots and the bottom-right plot (corresponding
to the green, red, and blue regions as overlaid on Tycho) are fitted including external absorption (in blue, the best-fit unabsorbed
power-law is in green), and in all cases including the absorption term improves the fit: with a ∆χ2 = 16 for ‘EXT ABS NORTH’,
a ∆χ2 = 4 for ‘EXT ABS CENTRE’, and a ∆χ2 = 10.5 for ‘RIM’ (in all cases, for an additional degree of freedom). The
bottom-left plot corresponds to the region of possible internal absorption. The mask of the reverse shock radius is plotted in
yellow over the map of Tycho. In the legends, ‘UL’ stands for ‘upper limit’ and ‘PL’ stands for ‘power-law’.

Figure 7. Contour plots for the three regions showing external absorption in Fig. 6: north (shown in red over Tycho in Fig.
6), centre (in blue), and rim (in red). Plotted are the 1σ, 2σ, and 3σ confidence intervals for the parameters α and τ40,ext for
each of the regions. Only for one region, centre, τ40,ext = 0 (no absorption) is not excluded at the 3σ. For the two other regions,
in particular for the northern region that we base our analysis on, we require the presence of absorption along the line-of-sight
at the 3σ level.
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spectrum, and the 327 MHz map was rescaled (see dis-

cussion in section 2.4). Moreover, the behaviour of the

LOFAR in-band seems to be pushing the data point in

a steeper spectral index direction. For this reason, ob-

servations that increase the leverage arm in frequency

would allow us to better constrain the amount of EM

due to unshocked material.

Having said that, the integrated flux densities as mea-

sured by LOFAR are in line with what we expect from

the literature. There are some regions where the maps

can have artefacts, but the flux densities that we are con-

sidering in this section are taken from the yellow region

in Fig. 6, which is much larger than the resolution of any

given map. Moreover, the LBA and the HBA data both

show the effect of absorption, even though the two LO-

FAR antennas are effectively different instruments, and

the data were reduced with two independent pipelines.

4. DISCUSSION

4.1. Spectral index

Katz-Stone et al. (2000) carried out a study of Tycho’s

spectral index at low radio frequencies (330 MHz and

1.5 GHz), and found that Tycho has localised spectral

variations with regions as flat as α = 0.44 and as steep

as α = 0.72. Our best-fit spectral index map (middle

panel in Fig. 5) shows values within this range, and, in

a few cases, slightly higher values, α . 0.8.

Duin & Strom (1975) reported a significant steepen-

ing of the spectrum near the centre of the SNR and

suggested that particles near the boundary might be ac-

celerated with a flatter spectrum, but Klein et al. (1979)

did not find steepening in their observations at 10 GHz.

We do not find a steepening coincident with the centre

of the remnant, but rather we find the spectrum of the

western and north-western region of the remnant to be

steeper than the rest.

The question of whether Tycho has a curved spec-

trum has been discussed in the literature. Roger et al.

(1973) modelled Tycho’s integrated radio spectrum with

two power-law components (which results in a locally

concave spectrum), Reynolds & Ellison (1992) modelled

it with a non-linear shock model of first-order Fermi

acceleration and found agreement with a concave-up

synchrotron spectrum, whereas Vinyaikin et al. (1987)

found that a single power-law can describe the radio

spectrum at these frequencies. As we discussed in sec-

tion 3.1, the LOFAR data points do show a steeper spec-

tral behaviour than expected, although the in-band re-

sponse of the LOFAR LBA has not been systematically

analysed, and is not yet reliable.

4.2. External absorption

In order to convert the value of optical depth in Fig. 5

into a quantity that allows us to derive physical proper-

ties of the gas we use equation 2, from which we obtain

an emission measure value, EMISM. The emission mea-

sure depends on the temperature and ionisation state

of the plasma. The ISM has a wide range of tempera-

tures, from ∼ 10 K in molecular clouds to ∼ 10, 000 K in

the warm ionised medium (Draine 2011). We therefore

provide three emission measure maps in Fig. 8, assum-

ing T = 10 K, T = 100 K, and T = 10, 000 K, to aid

our discussion in the current section. Since the ISM is

primarily composed of hydrogen, for all three maps we

assume Z = 1.

The region to the north-east with the high emission

measure value (the region in green in Fig. 6) seems

to match the position of a molecular cloud found in

Lee et al. (2004) and Zhou et al. (2016), seen most

clearly in Fig. 1 of the latter paper at velocities be-

tween −62 km s−1 and −66 km s−1. At these veloci-

ties there are also multiple structures that coincide in

position with the rim of the source, which our fit also

identifies as having free-free absorption. The region in

the north-east of the remnant where we find the high-

est values of the EMISM also coincides with the region

of high H I absorption seen in Reynoso et al. (1999).

The region in the centre of Tycho has some morpho-

logical coincidence with the molecular structure seen at

−56 km s−1 in Zhou et al. (2016), although the similarity

is not striking, and there does not seem to be any asso-

ciated neutral hydrogen structure. Our method traces

ionised material, which one does not expect in molecular

clouds but could be present at their outer boundary, so

it is not necessary that our measured EMISM matches

the structure of molecular/neutral material in detail.

The scale and distance of the ionised features are not

straightforward from these observations. Tycho is the

background synchrotron source, so the ionised material

must be in front of it, but in principle it could be local

to Tycho, unrelated ISM, or a combination of the two

(although it would be a big coincidence if one of the two

did not have a dominant effect).

We know from Zhou et al. (2016) that Tycho is likely

inside an expanding wind bubble that is sweeping up

molecular material. We depict the structure we assume

for our analysis in a cartoon in Fig. 9. The remnant is

surrounded by, but its shock is still not interacting with,

molecular clouds. This means that there is a cavity of

thickness l (and radius RSNR +l) of low-density material

(ρ = 0.1 − 0.2 cm−3, Williams et al. 2013), surrounded

by dense molecular material with an average density of

102 − 103 cm−3 (Zhou et al. 2016).
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Figure 8. Maps of external emission measure EMISM made from the measured optical depth τ40,ISM (right hand side map in
in Fig. 5) combined with equation 2, assuming Z = 1. We plot the results for three temperatures, 10 K, 100 K, and 10,000 K,
relevant for our discussions of molecular clouds, the diffuse, infrared-emitting medium around Tycho, and the ISM warm ionised
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Figure 9. Cartoon showing the geometry assumed for the discussion in section 4.2. Tycho is surrounded by a diffuse cavity of
length lcav, and the molecular clouds are in a ring-like shape around it.

We will consider three possibilities: (1) that the

ionised material we see in Fig. 5, right-hand side, is

due to ionised material along the line-of-sight, unrelated

to Tycho; (2) that it is the low-density cavity material

that is ionised; and (3) that the molecular clouds are

responsible for the free-free absorption. In section 4.3

we briefly mention possible ionising sources.

1. Ionised ISM

Hwang et al. (2002) tabulated the NH as measured

from Chandra data, towards Tycho, and found values

ranging from NH = (5.3− 7.5)× 1021 cm−2, depending

on the model employed.

For the region in green in Fig. 6 the optical depth

at 40 MHz is τ40,ISM = 0.65, which corresponds to an

emission measure of EM = 0.30 pc cm−6 for T = 10 K,

and EM = 2469 pc cm−6 for T = 10, 000 K. Since

EM = n2
e l, NH = nHl, and ne = χenH (where χe

is the ionisation fraction, 0 ≤ χe ≤ 1), then, us-

ing l = d, the distance to Tycho, we find that the

required ionisation fraction of the intervening ISM is
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χe =
√
EM l
NH

∼ 0.015
√

l
2.5 kpc for T = 10 K, or alter-

natively, χe ∼ 1.35
√

l
2.5 kpc for T = 10, 000 K. The

10,000 K assumption for the diffuse ISM gas is more

reasonable than the 10 K (Draine 2011), although, of

course, this gas does not extend evenly along the line-

of-sight to Tycho, but is likely in a patchy distribution

(which would lower χe to a more reasonable value). We

do not know the relative depths of these warm ionised

gas along the line-of-sight to Tycho, so unfortunately we

cannot constrain a χe for the case of this ISM.

Another point to note is that τ40,ISM = 0.65 corre-

sponds to an optical depth of τ30.9 = 1.2 at 30.9 MHz,

although this is for a very small area (3.6 arcmin2). Kas-

sim (1989) studied optical depths towards 15 Galactic

SNRs, and found only once source with τ30.9 > 1. The

integrated radio spectrum of Tycho (Fig. 3) shows no

indication of free-free absorption from the ISM kicking

in at frequencies lower than 100 MHz. There is a slight

drop visible in the spectrum from LOFAR narrow band

maps (Fig. 4), although this relies only on the data

point at 40 MHz. For the integrated spectrum of Ty-

cho’s SNR we measure a best-fit τ30.9 = 0.1, well on the

low side of the values measured by Kassim (1989).

The relatively high value of the optical depth in the

region in green in Fig. 6, and its small area suggest that

this is a small clump of ionised material. We cannot

know if the clump is relatively close to the source or

somewhere along the line-of-sight.

Finally, the low-frequency absorption is only seen in

a ring-like structure in the rim of the SNR and in two

clumpy regions in the SNR centre. In the remaining

regions in the interior we do not find any detectable ab-

sorption. It is unlikely, though, that the foreground ISM

gas has the shape we see over Tycho, with a clear ring

and a mostly empty interior. The regular morphology

seen in the maps in Fig. 8 does not favour the ionised

ISM scenario as the dominant source of absorption.

2. Ionised diffuse cavity surrounding Tycho

Consider that it is the cavity surrounding Tycho that

is responsible for the ionisation we see at LOFAR fre-

quencies.

The size of the ionised cavity may influence the distri-

butions of the foreground absorption. As shown in figure

9, the depth of the ionised materials l′ is as a function of

the projection radius r (r = 0 at the SNR center, r = R

at the SNR boundary), the radius of the SNR R and the

thickness of the cavity l (l′ =
√
l2 + 2lR), resulting in:

l′(R) ≈


√

2Rl, if l� R

l, if l� R
(6)

l′(0) = l. (7)

If the cavity size is much larger than the SNR radius, we

would see a uniform ionisation distribution as l′(r) = l.

The ring-like ionisation distribution suggests that the

cavity is small and might be close to the SNR radius.

Williams et al. (2013) found that the ISM density

around Tycho is only nH = 0.1 − 0.2 cm−3, and that

there is dust with temperature T = 100 K.

The optical depth value we report for the rim of Tycho

(the region in red in Fig. 6), τ40,ISM = 0.29, assuming

Z = 1 and T = 100 K, corresponds to an emission mea-

sure of EM = 2.1 pc cm−6 = n2
e lcav, where lcav is the

size of the cavity. This implies ne = 1.5
√

lcav
1 pc cm−3.

Recall that ne = χenH.

Woods et al. (2017) measured the ionisation fraction

of the ambient hydrogen ahead of the forward shock to

be χe < 0.2 (the ambient hydrogen is more than 80%

neutral). They obtained the ionisation fraction for the

atomic gas, which has a higher density; they used nH =

1 cm−3. Setting χe = 0.2 = ne

nH
means that the cavity

must be very small, lcav < 0.02 pc.

As mentioned above, a thin length for lcav is supported

by the geometry of the external absorption map, which

appears to be limb-brightened. However, this is a very

restrictive value, requiring that Tycho be almost but not

quite interacting with the molecular cloud, and not just

in one place but around its entire perimeter. This is

very unlikely.

3. Ionised dense molecular environment sur-

rounding Tycho

In this section we consider whether the ionised struc-

ture is related to the molecular cloud found by Lee et al.

(2004) and discussed in Zhou et al. (2016). The morpho-

logical coincidence of the molecular cloud in the north-

east with the region of highest absorption is suggestive

of such a relation.

Zhou et al. (2016) tabulate the molecular hydrogen

column density NH2
for several positions and find val-

ues around 7× 1020 cm−2 in the area where we measure

τ40,ISM = 0.65, implying EM = 0.30 pc cm−6 (here

the conditions Z = 1, T = 10 K do apply). Since

EM = n2
e l, NH2 = nH2 l, and χe = ne

nH2
, the value

EM
NH2

= χene = 4.3 × 10−4 cm−3 is independent of the

size of the molecular cloud.

If we take the size of the molecular clouds to be of the

order of Tycho ( lMC ∼ 5 pc , see Fig. 1, bottom-right

in Zhou et al. 2016), then ne = 0.25
√

lMC

5 pc cm−3, which

corresponds to χe = 2× 10−3
(
lMC

5 pc

)−1/2

.
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Generally, dense molecular cores have χe ∼ 10−8 −
10−6 (Caselli et al. 1998), while translucent and diffuse

molecular gas has typical χe . 10−4 (Snow & McCall

2006, figure 1). χe ∼ 10−3 requires an external ionising

source.

It is not possible to tell directly from our observations of

free-free absorption whether the ionised absorbing com-

ponent is in the environs of Tycho or far in the ISM along

the line-of-sight. However, the fact that the absorption

occurs where the remnant is brighter and expanding into

a higher density region (Reynoso et al. 1999; Williams

et al. 2013) is suggestive to us of a local effect, as is

the rimmed geometry. If the thin cavity surrounding

Tycho and separating the SNR shock from the molec-

ular ring were responsible for the absorption, then the

cavity would have to be very thin but at the same time

the shock could not have reached the molecular mate-

rial anywhere along its boundary —a contrived geome-

try. The high neutrals values inferred by Woods et al.

(2017), the clear presence of Balmer shocks (Ghavamian

et al. 2000), and the morphological coincidence with the

molecular cloud in the north-east all point towards the

molecular material being associated with the absorption.

Finally, the bubble-like distribution of the molecular gas

provides a natural explanation for the rimmed absorp-

tion morphology. We conclude that the absorption is

most likely due to the presence of over-ionised molecu-

lar clouds.

4.3. What mechanism is responsible for the ionisation

of Tycho’s surroundings?

A SIMBAD query towards the direction of Tycho gives

no OB associations or bright stars that could be re-

sponsible for the observed ionisation: Tycho itself is the

only likely ionising source towards this line-of-sight. The

sources of ionisation could be the X-ray emission from

Tycho, the cosmic rays accelerated in the SNR, or per-

haps the ionising radiation emitted by the supernova

progenitor or the event itself. A full discussion of the

different ionisation scenarios requires a detailed treat-

ment of ionisation and recombination in the modelling,

and is beyond the scope of this paper.

4.4. Internal absorption and mass in the unshocked

ejecta

The amount of mass in ionised material internal to the

SNR reverse shock is given by (see Arias et al. 2018):

M = ASl1/2mp
1

Z

√
EM, (8)

where A is the mass number of the ions, S is the area

of the region for which we measure the absorption, l

is the depth of the absorbing material, mp is the mass

of the proton, Z is the number of charges, and EM

is the emission measure. Making certain assumptions

about these values, one can derive a value for the mass

in unshocked material from our measured optical depth.

The easiest parameter to estimate is the mass number

of the ions A. Tycho is the result of a Type Ia explosion;

out of the ∼ 1.4 M� of ejecta it produced, 0.5−0.8 M� is

expected to be iron (Badenes et al. 2006). In a spectro-

scopic analysis of ASCA data Hwang et al. (1998) noted

that iron is in fact the most recently ionised element,

and so it is likely to compose the bulk of the unshocked

material. Hayato et al. (2010) also found segregation

of Fe in the inner ejecta from a study of the expansion

velocities of the X-ray emitting material. Moreover, the

X-ray emission from iron in Tycho is not as prominent

as in other type Ia SNRs (e.g. Kepler, Reynolds et al.

2007), suggesting that some of it is not visible in the

X-rays yet. For these reasons we take A = 56, corre-

sponding to Fe. We take Z = 3, for three-times ionised

Fe.

S is the surface area of the absorbing region (the area

in yellow in Fig. 6). We do not know the thickness of

the absorbing slab l, which is actually critical for the

mass determination, because we do not have a way of

probing the three-dimensional structure of the absorbing

material. For a homogeneous distribution of material

within the sphere of the reverse shock, the average depth

is l = 4
3R (where R, the radius of the reverse shock, is

2.25 pc for a distance of 2.5 kpc, Tian & Leahy 2011).

Finally, the value of the EM depends on Z and the

temperature T . We do not know what the temperature

conditions in the unshocked ejecta of Tycho are; an accu-

rate determination would require infrared observations

that could measure the ratios between different forbid-

den lines of the ionised material. To our knowledge, the

only time the temperature from the unshocked ejecta of

a SNR has been measured is in the case of Cas A, whose

unshocked ejecta has a temperature of 100 K (Raymond

et al. 2018). Although it is not clear that the radiation

from Tycho’s SNR could maintain its internal material

heated to 100 K, we will take this to be the value in our

mass estimate.

The EM values in Table 2 correspond to the following

mass estimates:

M =6.5± 2.1M�

(
A

56

)(
l

3.0 pc

)1/2(
Z

3

)−3/2

(
T

100 K

)3/4

×

√
gff(T = 100 K, Z = 3)

gff(T,Z)
,

(9)
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in the case of the upper limit with EM = 0.33 pc cm−6,

and in the case of EM = 179 pc cm−6, M = 146 ±
39 M�, with the same parametrisation.

4.5. What are the conditions and structure of the

ejecta internal to Tycho’s reverse shock?

Our upper limit above is not useful, and the mass

estimate for the α = 0.71 fit is completely unreason-

able, since the total amount of ejecta resulting from the

explosion of Tycho’s progenitor was ∼ 1.4 M�. As we

mention above, a determination of the EM depends very

much on the expected flux if no absorption were present,

but if there is indeed absorption noticeable at LOFAR

HBA frequencies (∼ 150 MHz), then the high mass es-

timate value implies that the conditions we assumed in

the section above do not describe the actual physical

conditions internal to the SNR reverse shock.

Lowering the temperature or invoking a higher ionisa-

tion state alone are not sufficient to arrive at a meaning-

ful mass estimate. A further way to reduce the mass esti-

mate for a given EMint is if not all unshocked material is

iron, but lighter elements are also present. Decourchelle

(2017) notes that the comparison of iron-L complex and

Si-K line images indicates good mixing of the Si and Fe

layers synthesised in the supernova. The mass number

of Si is half of that of Fe, so if silicon is present, the mass

estimate could be significantly reduced.

The effects of temperature, ionisation conditions, and

composition can be important if combined, but the sin-

gle effect that can have the largest contribution to the

high absorption value is the degree of clumping in the

unshocked material. The estimate in equation 9 assumes

that the ejecta are distributed homogeneously within the

sphere of the reverse shock. This is what one expects

for an ejecta density profile with a flat core and an ex-
ponential outer region (Chevalier 1982), if the reverse

shock has already reached the core.

Sato et al. (2019) analysed Chandra observations of

Tycho and found from its genus statistic that Tycho’s

X-ray ejecta structure strongly indicates a skewed non-

Gaussian distribution of the ejecta clumps, possibly

from initially clumped ejecta. The radioactive decay of

elements synthesised in the explosion could also cause

the ejecta to have a foamy distribution, as is the case

for Cas A (Milisavljevic & Fesen 2015). If the unshocked

ejecta in Tycho are heavily clumped it can be possible

to see absorption in the LOFAR HBA even for modest

amounts of unshocked mass.

5. CONCLUSIONS

In this work we have mapped Tycho’s SNR with the

LOFAR Low-Band and High-Band Antennae, centred

at 58 MHz and 143 MHz, respectively. These are the

lowest-frequency resolved observations of this source to

date, even though the angular resolution of our LBA

maps is modest (41′′). We compared these maps to

higher frequency VLA observations at 330 MHz and

1400 MHz (Katz-Stone et al. 2000; Williams et al. 2016),

and found that in some regions the LOFAR flux is lower

than expected for an unabsorbed synchrotron source.

We identify this effect as low-frequency free-free absorp-

tion due to foreground free electrons absorbing the back-

ground synchrotron radiation from Tycho.

It is unlikely, from the observed geometry, that the

low-frequency absorption is due to line-of-sight material

far away from Tycho, but rather it must be in the envi-

ronment of the SNR. There are two regions that could

be responsible for the ionisation: the diffuse, infrared-

emitting region immediately surrounding Tycho, or its

neighbouring molecular clouds. If the former is true, and

the absorption is due to an ionised cavity surrounding

Tycho, then this cavity must be very thin (< 0.02 pc), so

as to not contradict earlier results on the neutral frac-

tion ahead of the shock. Alternatively, if the molecu-

lar clouds are responsible for the absorption, then the

implied ionisation fraction requires an external ionising

source. Tycho itself is the only candidate, through its

X-ray emission, its cosmic rays, or possibly from the ion-

ising flux of its progenitor white dwarf or the supernova

explosion.

Finally, we tried to measure the free-free absorption

in the region internal to the SNR reverse shock from

its unshocked ejecta. However, we are limited by our

knowledge of the unabsorbed spectral behaviour of the

source at these frequencies: the amount of absorption

we measure depends on what is the spectral index in

the region, which is poorly constrained due to system-

atics error and an incomplete knowledge of the spectral

behaviour at high frequencies. According to our best-fit

scenario, the spectral index in the region internal to the

reverse shock is relatively high and a copious amount of

free-free absorption is required to explain the LOFAR

flux densities. If real, we attribute the absorption to

cold, ionised, unshocked stellar ejecta inside the SNR

reverse shock free-free absorbing the synchrotron emis-

sion from the back side of the shell. In order to account

for the high value of internal absorption we measure we

expect the ejecta to be colder than 100 K, be somewhat

highly ionised, and be heavily clumped.

Radio observations in the few GHz range could de-

termine the unabsorbed, resolved spectral index of the

source, and observations in the 200 − 1000 MHz range

would allow us to better model the parameters respon-

sible for the absorption, which result in a characteristic
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spectrum with curvature at these frequencies. Finally,

hyperfine structure infrared line observations of these

clumps would be necessary to better understand their

temperature and composition, both critical in determin-

ing the mass in unshocked ejecta.

ACKNOWLEDGMENTS

We thank N. Kassim for the 330 MHz VLA image,

and B. Williams for the 1.4 MHz VLA image.

This paper is based (in part) on data obtained with

the International LOFAR Telescope (ILT) under project

code LC10 011. LOFAR (van Haarlem et al. 2013) is

the Low Frequency Array designed and constructed by

ASTRON. It has observing, data processing, and data

storage facilities in several countries, that are owned by

various parties (each with their own funding sources),

and that are collectively operated by the ILT founda-

tion under a joint scientific policy. The ILT resources

have benefitted from the following recent major funding

sources: CNRS-INSU, Observatoire de Paris and Uni-
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