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Abstract

In the last 50 years computers have made dramatic progress in their capabilities, but at

the same time their failings have demonstrated that we, as designers, do not yet understand

the nature of intelligence. Chess playing, for example, was long offered up as an example of

the unassailability of the human mind to Artificial Intelligence, but now a chess engine on a

smartphone can beat a grandmaster. Yet, at the same time, computers struggle to beat amateur

players in simpler games, such as Stratego, where sheer processing power cannot substitute

for a lack of deeper understanding.

The task of developing that deeper understanding is overwhelming, and has previously

been underestimated. There are many threads and all must be investigated. This dissertation

explores one of those threads, namely asking the question “How might an artificial agent decide

on a sensible course of action, without being told what to do?”.

To this end, this research builds upon empowerment, a universal utility which provides an

entirely general method for allowing an agent to measure the preferability of one state over

another. Empowerment requires no explicit goals, and instead favours states that maximise

an agent’s control over its environment.

Several extensions to the empowerment framework are proposed, which drastically in-

crease the array of scenarios to which it can be applied, and allow it to evaluate actions in

addition to states. These extensions are motivated by concepts such as bounded rationality,

sub-goals, and anticipated future utility.

In addition, the novel concept of strategic affinity is proposed as a general method for

measuring the strategic similarity between two (or more) potential sequences of actions. It

does this in a general fashion, by examining how similar the distribution of future possible

states would be in the case of enacting either sequence. This allows an agent to group action

sequences, even in an unknown task space, into ‘strategies’.
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Strategic affinity is combined with the empowerment extensions to form soft-horizon em-

powerment, which is capable of composing action policies in a variety of unknown scenarios.

A Pac-Man-inspired prey game and the Gambler’s Problem are used to demonstrate this self-

motivated action selection, and a Sokoban inspired box-pushing scenario is used to highlight

the capability to pick strategically diverse actions.

The culmination of this is that soft-horizon empowerment demonstrates a variety of ‘intu-

itive’ behaviours, which are not dissimilar to what we might expect a human to try.

This line of thinking demonstrates compelling results, and it is suggested there are a couple

of avenues for immediate further research.

One of the most promising of these would be applying the self-motivated methodology and

strategic affinity method to a wider range of scenarios, with a view to developing improved

heuristic approximations that generate similar results. A goal of replicating similar results,

whilst reducing the computational overhead, could help drive an improved understanding of

how we may get closer to replicating a human-like approach.
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Introduction

We can only see a short distance ahead, but we can see plenty there that needs to be done.

— Turing (1950)

1.1 Introduction and Motivation

During the Dartmouth Conference in 1956, the attendees searched for the underlying princi-

ples that could be used to fully and completely describe the processes that form intelligence. It

was soon found that these underlying principles were far more complex, abstract and difficult

to identify than had been predicted. AI research has since helped in successfully conquering

many smaller problems, and has produced a variety of potent applications. These two branches

of research now work towards different goals; with Artificial General Intelligence (Strong AI)

working towards the original goals of broad ‘human like’ intelligence, and Applied AI (Weak

AI / Machine Learning) research working on applying AI to smaller, more specific tasks.

However, it seems that the original goal of finding underlying principles has sometimes

been pushed aside, and fails to be realised. The story is similar in the parallel field of Artificial

Life; the principles fundamental to adaptive behaviour continue to be of interest, but research

often adjusts an approach to fine tune it for a specific experiment or application. Such fine

tuning can work very well to produce results for a specific niche, but continues to evade the

necessary generality that is plausibly the key to simulating biological organisms.
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Introduction Introduction and Motivation

Artificial Life does have an area where this generality exists, namely universal utilities;

methods which can be used to evaluate a broad, or even complete, range of scenarios that a

would-be adaptive agent may encounter. Biological organisms excel at this, and can evalu-

ate and learn new and complex situations quickly and effectively. Learning more about how

universal utilities achieve their results is a pivotal part of understanding what drives adaptive

behaviour.

However, we recognise that using computers to dedicate their vast resources to any prob-

lem domain is beyond what a biological organism would be capable of doing, even if it some-

times produces similar results. A computer is unlikely to do things in the same way a biological

organism would do.

In this dissertation I chose to focus on discrete-world problems in which an agent or player

has no external goals but does have an explicit model of the dynamics of the world. The

assumption is made that most organisms have a reduced model of the physics of their world

and their own embodiment, and can understand the likely outcomes (allowing for a level

of included stochasticity) of the majority of their actions (with other organisms in the same

environment being modelled as part of that same stochasticity).

Scenarios with no predefined goals are of interest, because they demand generality and

furthermore tend to highlight the effect of an agent’s specific embodiment on how it behaves;

a scenario with explicit predefined goals means the pursuit of those goals tends to obfuscate

any ‘default’ behaviours of an agent. It is hypothesised that there is an intrinsic link between

an organism’s embodiment and the niche in which it has evolved (Pfeifer and Bongard, 2006;

Berger, 2003). My work is motivated by the extrapolation of this argument: that the embod-

iment of an organism can be assumed, from an evolutionary argument, to have been arrived

at in order to be well equipped to thrive in its appropriate environment, and that a suitably

embodied organism or agent gets both cognitive and metabolic advantages within that envi-

ronment.
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Introduction Game Playing and Generality

If we were to accept this premise, then it follows that having the appropriate embodiment

makes doing the right thing easier (via the reduction in cognitive effort and the increased

viability of engaging with relevant affordances). The complement of this argument is that

the embodiment of an organism itself can indicate available actions and thus help guide an

understanding of what that organism should do.

Put colloquially, an organism, or agent, that has the right anatomy for an environment

needs to think less and exert less effort in order to thrive, and its embodiment can give an

insight into what behaviours may help it to do so.

Note that the type of scenario discussed above, with an agent with an embodiment rele-

vant to its niche, which lacks specific goals but has an understanding of the dynamics of its

environment and the effect its own actions on that environment, is also modelled very well by

a variety of game-based scenarios.

1.1.1 Game Playing and Generality

A prominent field of research that provides a look at game-playing scenarios that may be rel-

evant to the outlined motivation is general game playing which, along with the wider research

into game playing, has made many advances in the last few years. Ever since Garry Kasparov’s

defeat at the metaphorical hands of Deep Blue (Campbell et al., 2002), there has been in-

creased public interest in the area. More recently, work into Monte-Carlo Tree Search (MCTS)

(Enzenberger et al., 2010; Coulom, 2007) has led to very promising results in games such as

Go (Silver et al., 2016), which had eluded previous efforts using more traditional tree search

algorithms, such as those employed by Deep Blue and similar systems.

A number of variations of MCTS (most notably UCT) have been applied with great success

in general game playing scenarios (Mehat and Cazenave, 2008), and the performance of these

algorithms is exceptional, especially when considering the limited domain knowledge they

require.
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Introduction Game Playing and Generality

However, whilst these algorithms excel performance wise (in terms of results), they are

not constrained in the same ways that biological organisms might be. Even in the very recent

victory of AlphaGo (Silver et al., 2016) over Go professional Lee Sedol and now Ke Jie, the

current world #1, the program made extensive use of MCTS, which the authors describe as

“tree search programs that simulate thousands of random games of self-play”.

So whilst game scenarios often form a good representation of the type of scenarios we are

interested in, the research into general game playing sits on one side of the division between

biological plausibility and generality.

On the other side of that division are a variety of proposed universal utility functions and

generalised methods (which increasingly include recent developments in ANNs, which Al-

phaGo also utilised). Of interest to the present research are those based on Shannon-type

information, such as excess entropy / predictive information (Prokopenko et al., 2006; Ay et al.,

2008; Bialek et al., 2001), homeokinesis (Der et al., 1999), and the concept of empowerment

(Klyubin et al., 2005b,a).

In the case of empowerment, previous results indicate that it works flexibly in a range

of scenarios with full generality, and that it performs in a way that appeals to an intuitive

understanding of how biological systems may approach tasks. However, it was not entirely

clear exactly how empowerment was working ‘below the surface’, and furthermore, the prior

research into empowerment also lacks many of the constraints which we would consider nec-

essary for a biologically plausible setting.

Therefore, I wanted to investigate and build upon the established work and research into

empowerment to investigate how it works at an underlying level. The hypothesis, also related

to the observations in the previous section, was that it is the embodiment of an agent or

organism that enables it to utilise the underlying structure within an environment to assess

the desirability of certain states. Furthermore, by helping develop a better understanding of

some of the mechanisms that allow such a parsimonious method of ‘general utility’ estimation,
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Introduction Considerations

I hoped that we may gain a better understanding of how it operates within the constraints that

it does.

It seemed clear that nature has better heuristics for achieving similar behaviours to those

generated by empowerment, and that it does so whilst operating under its own set of con-

straints. I hoped that further constraints on empowerment may move us towards a better

understanding of those heuristics, and help develop novel approaches for adaptive systems.

1.1.2 Considerations

Following from the above, my work is based on an assumption that in order to discover biolog-

ically plausible universal utilities, it is more important to operate within similar constraints to

those of biological organisms, rather than to focus on performance (both in terms of processing

and of results).

If the primary measure of early success in the field was performance, then there is an

incentive for any technique to both specialise in a specific niche, and to leverage the sheer

computational power available from computers.

In summary, the considerations within my thesis are:

• the agent should operate within constraints inspired by biological organisms;

• the utility function must arise from a generic model, and not be targeted towards any

specific problem;

• performance of the agent, both in terms of processing speed and of results, is less im-

portant than operating within the constraints above.

Of course, it is impossible to start with all the constraints of a biological system for several

reasons: they are often unknown and variable, and to do so would confine us to small domains

that would restrict our ability to evaluate any results. The aim here has to been to find a balance

6



Introduction Contributions

between some approximate constraints which would be broadly universal, and working with

sufficiently non-trivial scenarios to evaluate performance.

Furthermore, with a discussion of universal utilities, especially in unknown scenarios, in-

cluding games without explicit goals, we must quickly discuss the role of exploration versus

exploitation. Throughout my papers, whilst making some speculation about exploitation, the

focus is primarily on the exploration phase, where the environment is new and there is not yet

a clear goal.

It is clear that biological organisms learn and adapt to specific scenarios as a key part of

surviving and prospering, which is more akin to exploitation; the work presented serves as a

good basis for learning and adaptation but focuses on general methods rather than scenario

specific methods, more akin to exploration.

1.2 Contributions of the Dissertation

The work presented in this dissertation makes the following contributions:

Applying information bottleneck technique to perception action loop: Due to its nature,

calculating n-step empowerment previously required examining all possible action tra-

jectories for an agent through the state space. This made it computationally inviable to

calculate empowerment for sequences longer than a few steps in most scenarios. How-

ever, any method to overcome this needed to fit within the same information theoretic

framework and furthermore should be capable of retaining full empowerment (i.e. not

result in a reduction in empowerment). Presented initially in Paper 2, the method uses

the information bottleneck method, which is capable of entirely removing redundancy

from an action repertoire; this reduces the space required to retain a ‘fully empowered’

action repertoire, and combined with the ‘iterative extension of the empowerment hori-

zon’, provides a more tractable method of calculating empowerment.

7



Introduction Contributions

Iterative extension of the empowerment horizon: Building upon the improved empower-

ment methodology that uses the information bottleneck outlined above to reduce the

number of retained action sequences, a method was developed of iteratively extending

the retained action sequences such that the viable horizon for empowerment is extended

by orders of magnitude.

Applying empowerment to actions: Previously empowerment had provided a general utility

for evaluating states, and comparing them. Despite empowerment being about what an

agent or organism can do, there existed no method for evaluating actions, and which

actions were most responsible for providing empowerment. The ‘compression’ provided

by the application of the information bottleneck method to empowerment also provided

a method for evaluating which actions contributed towards empowerment. This method

helped drive self-motivated action selection, by selecting a subset of actions. The initial

work provided a naive approach to this but this was improved with the introduction of

soft-horizon empowerment.

Soft-Horizon Empowerment: In working to apply empowerment to actions it was recognised

that, after identifying redundancy amongst action sequences, the most important facet

of understanding which actions were more empowering was actually considering the

empowerment of the state or states the agent would reach should you enact that action

(i.e. did an action sequence lead somewhere good). To address this, the concept of

a second horizon within the same model was introduced, allowing the comparison of

actions with one another with regards to the future empowerment they might provide.

This improved the self-motivated action selection driven by constraining the retainable

action sequences towards selecting actions that led to ongoing future empowerment. In

addition, Soft-Horizon Empowerment also utilised the strategic affinity to diversify the

action sequences selected, as discussed below.
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Introduction Outline

Strategic Affinity: Having extended empowerment with a concept of compression to drive ac-

tion selection, iteratively extending the horizon to improve performance and generality,

and a second horizon to guide action selection toward more empowering actions, there

was a need to now drive towards selecting a richer and more diverse set of actions. I pro-

posed the novel concept of strategic affinity, which measures the similarity or ‘overlap’

of reachable future states between various action sequences. This allows those action

sequences to be clustered according to how similar the future looks should they be en-

acted. In Paper 3 I present this concept entirely within the framework of empowerment

and information theory, but the concept may be applicable to other methods.

1.3 Outline of the Dissertation

The body of this dissertation is built upon a set of published papers which have been peer

reviewed. Each paper makes a contribution to the thesis, building upon one another and lead-

ing the research from an analysis of environmental structures and how they indicate preferred

states (Paper 1), through to how to extend this from states to actions, and thus produce be-

haviours (Paper 2), and finally applying the novel concept of ‘strategic affinity’ to refine these

behaviours to produce strategically diverse repertoires of actions (Paper 3). Initially an in-

troductory chapter introduces empowerment. A final chapter discusses the contributions and

future work.

A short summary of each chapter:

Chapter 2 introduces empowerment, its links to other theories and some previous results. The

chapter identifies some problems with empowerment, discusses some hypothetical new

applications for it and describes how it seems to leverage underlying structures in an

environment.
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Introduction Outline

Chapter 3 presents Paper 1. To begin I present the motivation for the paper, focusing on the

hypothesis that an agent or organism’s embodiment can give indications to that agent or

organism’s preferred states in the world. Following the paper the main directions for the

work to follow are outlined: better differentiation of a state’s utility without requiring

prior knowledge of the best ‘horizon’, and determining how to evaluate empowerment

of actions.

Chapter 4 presents Paper 2. The paper is preceded by a discussion around the links between

compression and intelligence, and an extension of the hypothesis around embodiment

indicating preferred states applying to actions. These topics are linked together with the

previous paper as an introduction to the next. After the paper, the discussion looks at

addressing the weaknesses - namely finding a method of self-motivated identification of

strategically diverse actions.

Chapter 5 presents Paper 3. In addition to the results in the paper, additional results are also

presented from the Gambler’s Problem. The discussion section outlines how a second

horizon can help drive more salient action selection. Further, a comparison between

soft-horizon empowerment and greedy mobility climbing is analysed, and the surprising

kiting behaviour is discussed. Finally, the language around the methods presented in the

paper, including strategic affinity, is standardised.

Chapter 6 summarises the main contributions from the papers, and adds some additional

commentary. Finally, I present some ideas about the future direction of work, both in

regard to the specific results presented throughout the dissertation, and also the wider

goals that motivated the work.
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Background and Empowerment
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Background and Empowerment

I shall act always so as to increase the total number of choices.

— Von Foerster (2003)

2.1 Motivation

Most organisms cannot detect every facet of their environment, detecting only certain wave-

lengths of the electromagnetic spectrum, or certain frequencies of sound, but with better vi-

sion, hearing, or other senses (for ‘free’), they could likely perform better in their niche. There

is obviously a metabolic cost to sensing, and it seems intuitive that the process of evolution

drives successive generations of a species towards an advantageous trade off point between

minimum metabolic cost and maximum perception utility of relevant aspects of their environ-

ment.

Therefore it is interesting to determine which facets of the environment hold the most

utility, and understand why this might be. Gibson noted that organisms do not view their

environments as a geometric space but that “the theory of affordances implies that to see things

is to see how to get about among them and what to do or not do with them” (Gibson, 1979),

and so it is not unreasonable to hypothesise that this in turn implies that evolutionary pressures

would drive successive generations of an organism towards having sensory apparatuses that

detect as many observable affordances as is viable.

12



Background and Empowerment Motivation

However, this is still not a complete picture, because not all affordances are relevant to

an organism’s survival. If we consider again the metabolic cost of sensors, combined with

Gibson’s observations, then we could understand that the process of evolution has provided

an organism with those sensors that represent a trade-off between its perception of affordances

relevant to its survival and the metabolic costs of those sensors.

Put differently, organisms have sensory apparatus that allow them to see what they can do

in their environment, and those actions likely have some utility for the organism.

We can apply this same reasoning to an organism’s motor apparatus, and reach the con-

clusion that those too have evolved to allow the organism to perform the actions (or allow the

affordances) most relevant to its survival.

So let us work on the basis that an organism or agent’s sensorimotor apparatus has been

adapted for perceiving the environmental cues, and performing the actions, that are most

relevant to its success. Now we can postulate that, all else being equal, we might expect it to

perform better in situations that provide more opportunities to make use of that apparatus.

Likewise, if we remove an organism from the niche for which it evolved, and transferred

it to a dissimilar environment, we would expect the organism to perform poorly. This is the

principle that sets the foundation for the hypothesis of empowerment.

Introduced in Klyubin et al. (2005a, 2004a, 2008):

Empowerment is the perceived amount of influence or control the agent has over

the world. For example, if the agent can make one hundred different actions but the

result, as perceived by the agent, is always the same, the agent has no control over

the world whatsoever. If, on the other hand, the agent can reliably force the world into

two states distinguishable by the agent, it has two options and thus two futures to

choose from. Empowerment can be seen as the agent’s potential to change the world,

that is, how much the agent could do in principle.

13



Background and Empowerment Information Theory

Put succinctly, empowerment is a measure of an embodied agent’s perceived utility in an

undefined task space.

Empowerment uses Shannon’s information theory (Shannon, 1948) combined with the

perception-action loop formalism to model the interactions between an agent and its environ-

ment as a communications channel.

Empowerment does not (at least in its original form) suggest or imply which actions an

agent should necessarily perform, but rather provides a general measure of utility that could

be used to compare one state to another.

There are obviously a variety of possible ways in which the concept of ‘prefer states with

more options’ could be modelled and approached, but in choosing an information theoretic ba-

sis, Klyubin et al. ensured that the surrounding model stayed free of any semantic or symbolic

meaning (Klyubin et al., 2005a). This is important for several reasons:

• Shannon style information can model any environment in an entirely general fashion,

which extends to an agent’s interactions with that environment, which minimises the

chance of inadvertently introducing an assumption or bias into the model;

• in turn this highlights that empowerment does not rely on any facets of the underlying

framework on which it is built;

• the generality and the ‘toolbox’ provided by the information theoretic framework ensure

the model is accessible to analysis.

Empowerment is modelled upon the perception-action loop, an information theoretic model

first introduced in Klyubin et al. (2004b) and inspired by Touchette and Lloyd (2004), which

applied Shannon’s information theoretic model of communications to control theory.

14



Background and Empowerment Information Theory

2.2 Information Theory

Information theory was introduced by Shannon (1948), and is well suited for modelling and

processing an embodied agent’s perception of its environment and internal memory. In search-

ing for a formalism that is both biologically plausible and universal, and which can be well

understood, it is clear that Shannon’s model is a strong candidate.

Information has the advantage of being elementary in nature; Shannon’s model did away

with semantics and presented a ‘pure’ unit, which exists everywhere, and can record anything

that an organism, or agent, can perceive. Building adaptive behaviour from the ground up

using information theory will ensure formalisms which are general, and not specific to one

model or another.

To begin we introduce entropy, which is a measure of uncertainty:

H(A) = −
∑

a∈A

p(a) log p(a). (2.1)

where A is a discrete random variable with values a ∈ A and p(a) is the probability that A

assumes a. The logarithm can be taken to any chosen base; in this dissertation and the included

papers I consistently use 2, and accordingly the units of measurement are then called bits. If

S is another random variable jointly distributed with A, the conditional entropy measures the

remaining uncertainty about the value of S, if we know the value of A:

H(S|A) = −
∑

a∈A

p(a)
∑

s∈S

p(s|a) log p(s|a). (2.2)

Its relationship to entropy is shown in Fig. 2.1, which allows us to measure the mutual

information between two random variables:
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I(A;S)H(A|S) H(S|A)H(A) H(S)

Independent Variables Dependent Variables

Figure 2.1: Visualization of the primary information theory quantities and their relationships. H(A) is
the entropy of the random variable A, H(A|S) is the conditional entropy of the same variable conditioned
on knowing the value of S. Finally I(A; S) is the mutual information between these two variables, which
measures the amount of information that the two variables reveal about one another.

I(A; S) = H(S)−H(S|A)

=
∑

a∈A

∑

s∈S

p(a, s) log
�

p(a, s)
p(a) p(s)

�

(2.3)

Mutual information can be thought of as the reduction in uncertainty about the variable

A or S, given that we know the value of the other. The mutual information is symmetric, so

we could also use I(A; S) = H(A) − H(A|S) (Cover and Thomas, 1991). In Paper 3 we will

later also examine the mutual information between a single value of a random variable with

another random variable:

I(a; S) = p(a)
∑

s∈S

p(s|a) log
�

p(a, s)
p(a) p(s)

�

. (2.4)

Channel Capacity

Finally, we introduce channel capacity (Shannon, 1948; Cover and Thomas, 1991) for a dis-

crete memoryless channel, defined as the maximum mutual information over the channel for

all possible input distributions:
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Background and Empowerment Perception Action Loop

Rt Rt+1 Rt+2
St At St+1 At+1

Figure 2.2: Bayesian network representation of the perception-action loop.

C(p(s|a)) =max
p(a)

I(A; S). (2.5)

The random variable A represents the distribution of messages being sent over the channel,

and S the distribution of received signals. Clearly, the higher the mutual information between

the two variables, the higher the capacity of the channel. The channel capacity is measured

as the maximum mutual information taken over all possible input distributions, p(a), and

depends only on p(s|a), which is fixed. One algorithm that can be used to find this maximum

is the iterative Blahut-Arimoto algorithm (Blahut, 1972).

2.3 Empowerment

2.3.1 Perception Action Loop

Empowerment is a measure of the efficiency of a perception-action loop. The model of the

perception-action loop allows the flow and processing of information to be easily understood

and modelled, and has proven to be an effective foundation for modelling adaptive behaviour.

In Fig. 2.2 we can see the perception-action loop represented by a causal Bayesian network,

where the random variable Rt represents the state of the environment, St the state of the

sensors, and At the actuation selected by the agent at time t. Here we assume that Rt+1

depends only on the state of the environment at time t, and the action just carried out by the

agent.

This can be looked upon as the agent ‘injecting’ information into the environment through

its actuators, and receiving information from the environment through its sensors. So it
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can be thought of as a communication channel, and by modelling it as one we can employ

information-theoretic methods, which are the basis for empowerment.

2.3.2 Calculating Empowerment

It is likely that an agent performing an action in any moment is likely to change the state of

the world, and in this model, that is represented in Fig. 2.2 by a flow of information from At

into Rt+1. The state of the world has now changed, and this change can be perceived by an

agent’s sensors in the subsequent time step, represented by St+1, which completes the flow of

information throughout the loop.

It may be that the flow of information between any two of these variables may or not be

complete at any point; it might be that an agent’s action does not affect the environment, or

simply that the change is not wholly perceivable by the agent’s sensors (e.g switching a switch

that turns on a light in another room; the agent can perceive the new state of the switch but

not detect the changed state of the light).

Representing the relationship between an embodied agent and its environment in this way

allows an array of information-theoretic methods to be used in its analysis. Empowerment,

being based upon channel capacity, as a measure of the maximal flow of information over a

channel, is usually measured in bits. It can be defined as:

E= C(p(s|a)) =max
p(a)

I(A; S). (2.6)

In this way empowerment can measure an agent’s ability to ‘transmit’ information to itself

from its actuators, At , to its sensors,St+1, via the environment, and can identify the distribu-

tion of input signals that would maximise the potential flow of information over this channel.

This corresponds to an agent’s ability to cause observable change in its environment, and can

suggest to an agent the action policy that would maximise this potential to affect change.
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Background and Empowerment n-step Empowerment

Obviously, an agent’s ability to cause change in its environment is based on the agent’s

current state within that environment, and can be measured in various states in order to dis-

cover the most empowered. However, in a single time step it would normally be quite difficult

to distinguish a difference in utility between two quite different states, and so the concept of

n-step empowerment needs to be introduced.

2.3.3 n-step Empowerment

With n-step empowerment, rather than measure the potential flow of information from an

agent’s actuators back to its sensors via the environment in a single time step, we instead

measure the flow of information, aggregated over a sequence of actions, to the subsequent

time step. The length of this sequence, n, defines the horizon that we measure empowerment

for.

Formally, we first construct a compound random variable of the next n actuations (At , At+1,

At+2, ... , At+n)= An
t . We now maximise the mutual information between this variable and the

state at time t+n, represented by St+n. n-step empowerment is the channel capacity between

these:

En = C(p(st+n|an
t )) =max

p(an
t )

I(An
t ; St+n). (2.7)

Fig. 2.3 demonstrates using n-step empowerment to measure the utility of states in a

simple 2-d gridworld maze example; in this example the agent’s actions are simply to be able

to move in the 4 cardinal directions.

Using channel capacity, and based on the idea that ‘keeping your options open’ is good,

empowerment can be thought of allowing agents to understand which situations maximise its

potential to utilise its sensors and actuators. In a biological context, this could be justified by

the fact that empowerment has equipped an agent or organism with the sensorimotor appa-
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Background and Empowerment Underlying Environmental Structure

Figure 2.3: 1, 2, 5 & 10-step empowerment for a 10x10 maze (Klyubin et al., 2005a). Darker areas
represent higher empowerment.

ratus that allows it to succeed in its niche, and so maximising the use of those sensors is a

sensible, albeit naive, policy from an evolutionary point of view.

We note that n-step empowerment requires a ‘god view’ of the world, in that it requires

an understanding of the distribution if future outcomes; we will discuss this problem more in

Section 2.7.2.

Throughout this dissertation I will sometimes use ‘action’ in place of the more complete

‘action sequence’, where it is clear, for the sake of readability.

2.4 Underlying Environmental Structure

Empowerment provides a powerful and flexible method for guiding agents to preferential

points in an environment, and achieves this at a very low level. A variety of results corrobo-

rate its efficacy, and high empowerment states are anecdotally consistent with those somebody

would intuitively choose. For example, Fig. 2.3 shows a maze, with each cell shaded to show

n-step empowerment, with darker areas having higher empowerment. It is evident that areas

which allow access to most of the maze in the shortest number of steps should have higher

empowerment, and the diagram clearly demonstrates that to be true.

This tendency for empowerment to align with ‘native’ measures in any particular task

spaces was not unexpected, but it was not fully understood how empowerment was able to

correspond so well in unknown environments.
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Figure 2.4: The same maze as in Fig. 2.3, now coloured to show average shortest distance to all other cells
in the maze (Klyubin et al., 2005a).

It is easy to see that an environment or task space that is entirely random would be essen-

tially impossible to operate effectively within; if there is no underlying structure then nothing

can be manipulated in a predictable manner. The same logic applies to the specific processes

of learning, adaptation and evolution. For empowerment to achieve these empirical results, it

must be ‘in touch’ with this structure.

Empowerment operates solely by implicit analysis of the potential information flow through

the perception-action loop - information that we know represents an agent’s sensoric percep-

tion of the environment. This information encodes the state of the environment as it changes

over time, and will capture whatever aspects of the environment’s structure that are accessible

to the agent.

A motivating hypothesis of this thesis was that the underlying structure of an environment

is essential to empowerment’s success, and in looking to understand empowerment better and

how it might perform when constrained, it was important to understand how empowerment

interacted with this structure.

Chapter 3 looks at the structures that are underlying within certain environments, their

relationship to empowerment, and links to related types of structure.
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2.5 Links to Other Theories

There are a number of other theories which are interrelated with the theory of empowerment,

some of which are higher level principles related to biology and artificial life, and others which

are more specific but share similar motivations.

Here I present a few theories which are particularly relevant to this thesis. I have broadly

divided them into three groups: gameplaying and decision making, biologically grounded

methods, and information theoretic methods.

2.5.1 Gameplaying and Decision Making

Decision Theory / Game Theory

Normative decision theory deals with identifying the optimal decision for a rational agent in a

given scenario, where that scenario may involve a degree of uncertainty. Commonly the focus

is on the expected value (Hamming, 1991) of a certain decision or set of decisions. There are

obvious parallels here with empowerment which is also a utility measure and which can also

operate in stochastic scenarios.

However, decision theory deals with specific scenarios on a case by case basis, whereas

empowerment attempts to be fully general.

In game theory, the aims and methods are similar to decision theory, but with the introduc-

tion of other agents into a scenario, which are frequently antagonists of the decision maker.

Empowerment fully handles this extension without modification, as other agents can be mod-

elled within the channel with no other modifications to the algorithm required.

22



Background and Empowerment Links to Other Theories

Bounded Rationality

When considering biological constraints, decision theory introduces the concept of bounded

rationality, whereby an agent must make decisions under cognitive constraints. Bounded ra-

tionality is discussed further below, in Section 2.5.2.

St. Petersburg Paradox

The St. Petersburg paradox (Eves, 1990; Weiss, 1987) is a well known paradox in decision

theory & economics, where a player is offered the chance to take part in a coin-flipping game.

The game is simple: a coin is tossed and should it come up tails then the player wins $2, but

if it comes up heads then the prize is doubled to $4 and the game continues. The game goes

on like this doubling the prize for each heads until the first tails result is encountered.

The question is how much should a player choose to pay to take part in this game? A

straightforward mathematical analysis would suggest that the expected value is infinite:

E =
1
2
· 2+

1
4
· 4+

1
8
· 8+

1
16
· 16+ · · ·

= 1+ 1+ 1+ 1+ · · ·

=∞

(2.8)

However, whilst the expected value is infinite, any player who bet all they had to play

would end up bankrupt. The calculated expectation is contingent on an infinite sequence of

heads, which is where this discrepancy appears.

Various different proposals have been made as to how one can resolve the paradox, one of

which is the expected utility hypothesis introduced by Bernoulli (1738). Bernoulli’s argument is

that there is a diminishing marginal utility to money, and that each increase in wealth provides

fewer new opportunities. Therefore, he argues, the player should adjust the amount they are
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willing to pay based on their current wealth, and he proposed some formulas to calculate what

that amount should be.

We can identify that this principle is well aligned with empowerment, and that a theoretical

version of empowerment that could calculate over an infinite horizon, might identify that at

some point additional money provides no more empowerment, thus providing a hard cut-off

in the game beyond which additional winnings are of no benefit.

Such a theoretical empowerment does not exist, but a similar gambling problem was intro-

duced in Dubins and Savage (1976), in which a player must calculate the optimal bet to win

a similar coin-tossing game. In section 5.3.1 of Chapter 5 empowerment is used to calculate a

betting strategy for that scenario.

General Game playing

Since 2005 Stanford have sponsored a competition into General Game Playing (Genesereth

and Love, 2005), which they define as:

A general game playing system is one that can accept a formal description of a game

and play the game effectively without human intervention. Unlike specialised game

players, such as Deep Blue, general game players do not rely on algorithms designed

in advance for specific games;

The Stanford competition comes with a specific set of rules and constraints, but one may

consider the wider research into general game playing (with a definition essentially the same

as the quote above).

Much of the research into the GGP tournament has focused on Monte Carlo tree search

(Mehat and Cazenave, 2008; Bjornsson and Finnsson, 2009; Świechowski and Mańdziuk,

2015).
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General game playing is of interest to the current dissertation, as it has obvious links to

the idea of universal utility functions. Games offer a variety of well defined scenarios which

are usually easy to evaluate performance in, and therefore make for an attractive framework

within which we can research universal utility functions, such as empowerment.

2.5.2 Biologically Grounded Methods

Perceptual Learning

In general, the existing research around empowerment assumes that the sensory apparatus of

any agent has been selected over time by evolutionary pressures. We can imagine that in such

a long-term scenario that the principles of empowerment could be a useful method of partially

guiding such evolution.

Essentially, this would involve developing sensors by way of maximising the empowerment

achievable with them which, when combined with survival pressures, could lead to interesting

behaviours. Indeed this concept is touched upon in Klyubin et al. (2008), where sensors are

evolved in a gridworld scenario in order to maximise empowerment.

The field of perceptual learning is related, and deals with agents actively improving their

perceptual abilities by learning to better differentiate the inputs.

In perceptual learning, the physical sensor does not usually change, but instead an agent

learns to better understand the signal from that sensor. Essentially the cognitive layer of an

agent learns to better differentiate and interpret that signal.

The current research does not touch on this aspect, but I believe there are definitely inter-

esting avenues of research that could take some of the ideas presented here and apply them

as a driving mechanism in making those cognitive improvements.
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Affordances

Gibson introduced the concept of affordances in Gibson (1977) and expanded on it in Gibson

(1979). There is a clear link between the concept of affordances and that of empowerment,

in that they both encapsulate the relationship between an agent and its environment, and the

ways in which they can interact.

An affordance is a property not of an agent or the environment, but of the pair of both

agent and environment taken together, and recognises that affordances within an environ-

ment can differ for different agents. This is similar to empowerment which relies on both the

environment, and the embodiment and available actuators of an agent.

Gibson’s definition of affordances was considered incomplete and contradictory, and there

were several attempts to standardise the definition of affordance including Reed (1996). Reed

pointed out “at the general or abstract level, what counts as a given affordance does not have

to be the same from one species to another” and gave as an example, “the surface of a pond

affords walking-on for small insects, such as water boatmen, but not for any mortal human”.

Affordances should normally result in an increase in empowerment; for example, the water

boatman can move to many locations by walking on the surface of a lake whereas the mouse

is unable to do so. The mouse receives no affordance from the water, which is mirrored by a

limited increase in empowerment (albeit a slight one - from the ability to sink!) compared to

the water boatman.

However, there are also some important differences between the two theories. Empower-

ment requires that an agent is capable of observing the change in state that may come about

from a specific action in order for it to result in an increase in empowerment, whereas an affor-

dance exists independently of an agent’s ability to perceive its presence, or any change in state

that may result from it being used. An affordance, which is available to an agent, but for which

the outcome of being utilised cannot be observed (e.g. a button that opens a door in another

room which the agent is unaware of) would not provide any increase in empowerment.
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An interesting observation from Gibson (1977), which relates closely to empowerment,

is “I suggest that a niche is a set of affordances.”. This idea that a niche is defined by the

relationship between an agent, an environment, and their ability to interact with one another,

is related to the hypothesis that organisms have evolved to have the optimal set of sensors and

actuators for their niche, which allow them to effect the set of changes in their environment

that will potentially maximise their utility.

Furthermore, another observation from Gibson (1977) is that “The niche implies a kind of

animal, and the animal implies a kind of niche". The idea that “the animal implies a kind of

niche” is parallel to the hypothesis that an agent’s embodiment might indicate preferred states

or actions, which is present in Chapters 3 and 4.

Bounded Rationality

In determining what constraints might be reasonable to assume for a biological organism,

specifically those regarding memory and computation, there are obvious parallels to the con-

cept of bounded rationality (Simon, 1957; Williamson, 1981), which deals with decision mak-

ing when working with limited information, cognitive capacity, and time. Bounded rationality

is used as a model of human decision-making in economics (Tisdell, 1996).

There are various aspects of biological cognition which can be successfully described and

understood by assuming informational processing costs being imposed on organisms (Attneave,

1954; Barlow, 1959, 2001; Atick, 1992; Prokopenko et al., 2006; Bialek et al., 2001; Ay et al.,

2008; Ortega and Braun, 2011). Furthermore, there are reasons to suspect that the ability

of biological cognition to structure its decision-making process is driven by the necessity to

economise its information processing (Laughlin et al., 1998).

Applying suitable bounded rationality assumptions to universal utilities could introduce

such a necessity to economise information processing, and will not only make them more

feasible as models of biological systems, but drive them to generate structured behaviours.
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Within the framework of empowerment these types of constraints can be entirely represented

in terms of an information-theoretic framework, which is demonstrated in Papers 2 & 3.

2.5.3 Information Theoretic Methods

Infotaxis

Infotaxis is an information theoretic method of searching, that mimics how organisms may

conduct an olfactory search for a source that is dispersing sparsely in some medium (Vergassola

et al., 2007). Whereas chemotactic bacteria, conducting a similar task, are able to make use

of local concentration gradients to guide them towards the source of a nutrient, such a local

gradient is not available in many scenarios. In a flowing medium, such as air or water, regions

of high concentration are broken into random and disconnected patches.

In such examples, a searcher will only get intermittent and partial cues as to the presence

and possible location of the source, and from these local cues must make global conclusions.

There is a similarity here with some of my work presented in Paper 1, where an empowerment

approach is used to try to infer global structure from local information.

An instance from nature of such an example is the approach of a moth that searches for

a mate via an olfactory search for pheromones, which requires a search approach able to

operate based on sparse ‘hits’ in a turbulent medium. The search patterns of moths are well

understood, and they “are known to proceed upwind by way of counterturning patterns of

extended (‘casting’) or limited (‘zigzagging’) crosswind width” (Vergassola et al., 2007).

Infotaxis provides an information theoretic searching algorithm that produces similar be-

haviours to the moth searches, but is based on information theory.

Chemotactic searches are based on gradual acquisition of information on the source loca-

tion, which it does via concentration, which gets stronger as the gradient is followed. Infotaxis

works similarly, working to reduce the informational uncertainty by locally maximising the ex-

pected rate of information gain.
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Whereas the goals of infotaxis are clearly very different to those of empowerment, it high-

lights that information theoretic based methods can produce biologically plausible behaviours.

Whilst it is unlikely that moths are computing entropy as part of their search methodology, the

information theoretic approach can provide an approximation of the same behaviours, working

towards helping develop a better understanding. Through further study of such an approach,

it would perhaps be possible to produce heuristics that produce similar results with far less

computation required.

With empowerment we see a similar situation, the results seem to align well with intuitive

approaches and possibly biologically plausible methods, but it is unlikely that such a compu-

tationally heavy mechanism is used in nature. I believe that future work on empowerment

should also try to produce heuristics that provide similar behaviours. However, the paral-

lels between infotaxis and empowerment lend weight to the ability of an information focused

approach producing biologically plausible behaviours.

Predictive Information

Predictive Information, introduced in Bialek et al. (2001), is the mutual information between

the future and the past. Put informally, it measures how much can the past help you predict

about the future, and was presented as a measure of complexity for a time series.

It was first applied to robotics in Ay et al. (2008), where it was proposed as a method of

self-organisation for an agent’s behaviour. Whilst the agent’s interaction with the environment

impacts the complexity of the time series of the agent’s sensor values, it can then be used as a

utility function that can help drive the behaviour of the agent.

In Ay et al. (2008), the authors present a two-dimensional ‘maze’-type example with a

wheeled-robot and a set of obstacles. The robot has two-wheels, which are actuators, from

which it can detect rotational velocity and, importantly, it has no proximity sensor. It is capable

of detecting the objects only through collisions which change the the behaviour of the wheels.
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The results in Ay et al. (2008) demonstrate an interesting effect that, with correct param-

eter values, the robots develop an exploratory behaviour whereby they explore the space in a

self-motivted fashion.

Further work in Der et al. (2008), demonstrated a co-ordinated behaviour amongst a chain

of coupled robots, which enables an exploratory behaviour despite no central control.

The work has obvious parallels with Empowerment; it is based on an information theoretic

framework, and optimises over the sensorimotor loop of an agent as a form of channel, albeit

in a different fashion.

Furthermore, the mutual information between the past and the present has links to the

concept of maximising ones options, as per empowerment, but at the same time also runs

counter to it. Empowerment maximises the potential different states that one can reach, which

includes states that may be unexpected, or represent a dramatic change in state, which may

represent a reduction in predictive information.

Homeokinesis

Homeokinesis has the stated aim of helping develop a ‘curious and self-exploratory robot‘, that

uses two neural networks to control the robot and drive learning (Der et al., 1999; Der and

Martius, 2011). The first network is used directly as the controller, and the second is used to

build a model of the world such that it can predict sensor and motor states.

In many traditional setups the approach would involve optimising to minimise the pre-

dictive error of this second network, such that the world model most accurately predicts the

following state. However, that often leads to a scenario where the agent reverts to doing

nothing, such that the world is maximally predictable.

In homeokinesis the aim is drive exploration and curiosity, so the approach is slightly dif-

ferent, and is designed to drive action. So instead, the predictive error is replaced with the
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time-loop error, which is essentially the difference between the sensor values at the previous

time step and the sensor values at the previous time step as predicted from the current sensor

values by the world model. In Der and Martius (2011), the authors describe it as the ‘time

inverted counterpart’ for predictive error; the time-loop error can also be called the reconstruc-

tion error.

This approach drives an agent towards activity, as the authors explain:

When using a retrospective model the system is found to develop this drive for activity

by itself due to spontaneous symmetry breaking mechanisms known from the physics

of self-organizing systems. The reason is that the model now generates a dynamics

backward in time leading to fluctuation amplification which is a necessary prerequisit

for self-organization.

Whereas homeostasis regulates towards stability, the result of a homeokinesis approach is

that agents produce stable kinetic behaviours. Examples include wall following behaviours,

ball balancing, and navigation through corridors.

Homeokinesis drives towards self-motivated action, which aligns it with one of the moti-

vations of this dissertation. However, there are some key differences between the results of

homeokinesis and those presented here. One is that homeokinesis, after a period of adapta-

tion to a new set of sensory inputs (e.g. being moved), produces a single stable action which

changes only if the sensory values change. For example, in a circular world with a wall, the

agent will develop a wall following behaviour which is entirely stable until the agent is moved

farther from, or nearer to, that wall, at which point the robot will adapt to a new stable action.

Empowerment, on the other hand, is about managing a wealth of potential different actions.
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Figure 2.5: An example showing scaled empowerment values for n= 5 in a simple maze example. A darker
shade indicates higher empowerment, which correlates well with the average shortest path from each cell
to all others. Empowerment values in this example range from E=2.58 to E=4.64 bits.

2.6 Previous Results

Here I quickly recap some of the previous results of empowerment which are particularly

relevant to this dissertation.

Maze

This scenario consists of a typical maze scenario in a 2-D gridworld, through which the agent

can move horizontally or vertically with its movement constrained by walls. With one north,

east, south, west movement per time step, empowerment was measured for each cell in the

gridworld for empowerment horizons given by n (Klyubin et al., 2005a). The results showed

that by only considering a single time step (n = 1), the empowerment values are still quite

crude, but as the horizon is extended it can be seen that empowerment is increasingly able to

differentiate the preferable (in terms of mobility) states from the less preferable ones.

The important observation is that the empowerment values for a cell correlate well with

the length of the average shortest path from this cell to all others; more generally, it correlates

strongly with the graph-theoretic measure of closeness centrality (Anthony et al., 2008). This

is of interest, since the centrality measure has been designed specifically for graphs, while

empowerment can be used in a more general context of (possibly stochastic) actions of generic

agents in an environment.

32



Background and Empowerment Previous Results

Box Pushing

We consider an agent in a gridworld with the same action set, but with the walls removed.

Instead, a box is introduced which the agent is able to manipulate by pushing: when the agent

moves from a square adjacent to the box into the cell occupied by the box, it causes the box

to move in the same direction by one cell. The agent is able to detect the location of the box

and thus detect the state change when it moves, but all states are equal and thus there is no

explicit reward associated with moving the box.

Here, empowerment indicated a preference for the agent to be closer to the box. Far

from the box, the actions of the agent caused only the latter to move, but close to the box,

the agent’s actions could additionally manipulate the box’s position, leading to a significant

increase in empowerment. The bottom line of this experiment is that empowerment identifies

manipulable objects, or, more generally, manipulable degrees of freedom (within the state

space).

Pole Balancing

As another class of scenarios, empowerment was considered in the pole-balancing task often

encountered in control theory (Klyubin et al., 2008). The scenario describes a pole balancing

upright upon a cart, which moves on an even surface. The agent in this scenario has two

actions: applying an always equal force to either move the cart forwards or backwards. Tra-

ditionally, the aim is to move the cart forwards and backwards as necessary to keep the pole

balanced, starting from some initial angle. Should the pole move too far in one direction, then

it will exceed a threshold making it impossible to recover and will fall flat.

In the empowerment-based approach, no external reward was used; instead, empower-

ment, which derives directly from the intrinsic system dynamics, was utilised to guide the

system’s behaviour. Empowerment identified the pole being perfectly upright as amongst the
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most empowered states, and at progressively steeper angles, empowerment drops, until it falls

to 0 when the pole becomes utterly uncontrollable.

Using an action selector that greedily maximises predicted empowerment in the follow-

ing time step, leads to pole-balancing. This observation generalises to other, more complex

balancing scenarios (Jung et al., 2011).

2.7 Problems with Empowerment

Empowerment provides an alternative, biologically motivated, method that was shown to do

well in various problem domains using a very generic approach. However, there were some

notable limitations with the framework that had previously prevented it being suitable for all

situations.

2.7.1 Metabolic Cost

In looking to develop a more biologically plausible model for adaptive agents, an area of

specific interest is that of metabolic cost. All of an agent’s actuation, cognitive processing, and

body processes come with a metabolic cost. Evolutionary pressures lead organisms towards

advantageous trade-off points between sensorimotor apparatus and the metabolic cost of that

apparatus, but for artificial agents it can be easy to overlook this aspect.

This is especially true for the cognitive cost, where the processing requirements of a simu-

lation, or of the algorithms used by an agent, are easy to overlook. In nature we know that the

human brain uses over 20% (Clark and Sokoloff, 1999) of consumed energy, and more recent

research confirms that the majority of this energy is spent on cerebral processing (Du et al.,

2008).

Empowerment has previously not accounted for metabolic cost, but the work presented

in Papers 2 & 3 introduce some cognitive constraints. However, these constraints are not
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intended to necessarily deal with metabolic costs, but rather with the concepts of bounded

rationality (see section 2.5.2). Therefore, metabolic costs remain largely unaddressed in the

present work, but are discussed in more detail in Chapter 3.

2.7.2 God View

Empowerment requires what might be called a ‘God view’ of the world, meaning that in order

to calculate the empowerment value for a state, it is necessary to know the distribution of

outcomes for every possible sequence of moves from that state.

Stochasticity can be introduced into the world in various ways, and must be represented in

the channel, p(s|a), on which empowerment is calculated. When that world includes stochas-

ticity it is necessary to measure multiple samples of the outcomes for each action or action

sequence.

Examples of stochasticity include the presence of any noise in the environment or the

presence of other agents that can only be modelled non-deterministically (they may be acting

deterministically, but with data not available to the empowerment agent).

Being able to sample the dynamics of the world in an idempotent fashion is neither plau-

sible in a biological setting or feasible in a game scenario.

However, we note that other techniques suffer from similar problems; in looking at rein-

forcement learning we can see near identical shortcomings and, in fact, we could make such

a criticism of almost any supervised model.

It is worth noting that empowerment does not require a channel representation that per-

fectly aligns to the real dynamics, and is capable of operating on imperfect representations of

the world (albeit with an impact in utility). In biological scenarios we would hypothesise that

evolution has equipped an organism with some domain knowledge, and in games scenarios

the player knows a lot about the transition table. In both scenarios an agent can build models

of the other agents based upon experience, and refine this representation.
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So whilst having an internal model of the world dynamics allows an agent to use an em-

powerment based approach, it does mean that previously un-encountered options in an envi-

ronment represent a level of risk. In order to incorporate them into a model, the agent has

to test them out, which may lead to irrevocable negative situations, thus introducing a risk to

exploration.

In Chapter 6, I discuss the impact of some of the work in this dissertation on improving

the options for explorative behaviour in a fashion that identifies it as a risk but allows for an

agent to incorporate it into any action policy.

2.7.3 Horizon

With the introduction of n-step empowerment above, we can see that empowerment intro-

duces a ‘horizon’. The n parameter specifies the number of discrete time steps into that the

future the algorithm should consider when calculating empowerment.

The introduction of such a horizon, whilst drastically improving the efficacy of the empow-

erment approach, introduces a necessity to select the n value. It is difficult to know in advance,

even with knowledge of the agent’s embodiment and the dynamics of the world, what values

for n may be appropriate. A key hypothesis of empowerment is that the agent’s embodiment

should help identify preferred states (and with the introduction of this work, actions) but the

horizon parameter can have an external effect on that.

In many scenarios, be they biological or game based, it is likely that there is an appropriate

or natural horizon which maximises performance. In biological scenarios this would probably

be encapsulated within the embodiment, by way of the cognitive abilities of the organism.

Furthermore, it is probably that different aspects of a niche lend themselves to a different

horizon, and depending on what task an agent or organism is undertaking the horizon must

adapt accordingly.
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In the framework of empowerment, I will highlight how different horizon values can lead

to various effects such as ‘boredom’ or ‘blindness’ (Paper 1), and identify initial methods for

extending the horizon value iteratively (Paper 2).

2.7.4 All States are Equal

In a discrete scenario, empowerment provides a measure of utility based upon evaluating states

by measuring the observable number of new states that can be reached from each starting state

within a given time horizon. However, prior to the work presented in this dissertation there

was nothing built into the model that accounted for any differences in utility of the states

reachable in that time.

For example, two starting states would have the same 3-step empowerment if from each an

agent could reach an identical number of unique states within that 3-step horizon. However,

it may be that the future states reachable from one of those starting states have no ongoing

empowerment (i.e. the agent then has no ongoing moves available to them), and the other

starting state reaches states that have, themselves, a higher empowerment than the starting

state.

In this case empowerment would not distinguish between the two initial states, yet one

has a far higher, and perhaps increasing, ongoing utility, while the other is a ‘dead end’. In

such a scenario, empowerment would fail to reflect this important difference, which seriously

impairs it as a method for producing a sustainable action policy.

Without being addressed otherwise, it means that picking an appropriate horizon can be

critical to the success of using empowerment in different scenarios.

In order to migrate from using empowerment solely for evaluating states to suggestion

actions, there needed to be a method of measuring future empowerment, and incorporating

it into the established framework. Proposals for such methods are introduced in Papers 2 & 3.
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2.7.5 States versus Actions

In Section 2.7.4, we identified how some future states may be more empowering than others

and how this current work enables empowerment to identify those, which is a critical step

towards extending empowerment towards actions.

Previously empowerment could be used as a general utility measure for comparing the

utility of one state with another, and in order to do this it would produce a distribution over the

available actions for each state which would maximise that utility. However, that distribution

of actions represented the potential for the agent to controllably change its current state to

another, but indicated nothing about maintaining that control.

The work in Paper 2 introduces methods for differentiating future states, as discussed

above, such that the action distributions become empowering, and then Paper 3 extends this

further to introduce an understanding of strategies.

2.7.6 Simulation versus Reality

In theory there is no difference between theory and practice; in practice there is.

— Unknown

With many methods that developed inside simulations, where the world is well structured

with controlled noise, and few peripheral features, attempts to then transfer those learnings

to ‘the real world’ are often fraught with obstacles.

The real world is far more complex than any simulation, with variable noise (including

noise in the sensors) and is continuous.

Empowerment has had limited applications to real world scenarios, and it is likely that

attempts to apply empowerment in such scenarios will face many challenges related to these

differences between simulation and reality. This is especially true given the relative computa-

tional complexity of empowerment.
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The present dissertation does not attempt to address this issue, but I would highlight that

we recognise that empowerment, being modelled by information theory, lends itself well to

insight. Empowerment is designed to help guide research into this space, but (at least in its

current form) is unlikely to be the ‘answer’ (if such a thing exists).

It is unlikely that organisms are calculating entropy, and more likely that heuristics for

similar concepts are being used - therefore empowerment being a framework to investigate

that inside simulations does not preclude the underlying hypothesis from being true in the

real world.
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Chapter 3

Structure and Preferred States
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Nature uses only the longest threads to weave her patterns, so that each small piece of her

fabric reveals the organization of the entire tapestry.

— Feynman (1965)

3.1 Structure and Preferred States

In many environments it is often easy for an observer to identify structures within that environ-

ment, whether it be natural or created; the slope on the side of a hill, the viscosity of sand at

the bottom of an ocean, or the checked pattern on a chessboard. These types of environmental

structure are clear.

It is well understood that over time, evolution adapts successive generations of organisms

to thrive in the niche in which they exist (Mayr, 1942). There are various definitions of niche,

in the ecological sense (Grinnell, 1917; Elton, 1927; Hutchinson, 1957). However, in each

of these definitions the specifications of a niche are entirely encapsulated by the structure

of the environment, the presence of other organisms within that same environment, and the

behaviour of the organism.

This evolutionary process drives an organism’s embodiment towards an advantageous

trade-off of actuation abilities and metabolic cost, bestowing it with motor structures that

provide the best chance of success at the lowest energetic cost.
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These principles can be seen across the natural world. One of the earliest examples was

Darwin’s observations of the various finches across the Galápagos islands (Darwin, 1859);

Darwin observed that the different finches had, amongst other differences, differing sizes and

shapes of beak, with each species having adapted according to the available food sources.

Another example would be spiders, and their methods of hunting; only approximately half

of spiders hunt using webs. Scytodidae (Spitting Spiders) also spin silk but weave no webs

(perhaps because they were not effective in a new environment (Callaway, 2017)), and instead

they spit the gluey substrate at their prey.

A final example, first recorded by Aristotle in Historia Animalium (Aristotle, 1910), and

studied extensively since (Kwak and Kim, 2010) is that of gecko feet. Geckos’ feet have chem-

ical and physical structures providing powerful adhesive capabilities allowing geckos to walk

on vertical surfaces and even upside down. The leg structure of the gecko also ensures that

geckos can ‘peel’ their foot off of surfaces, so whilst they can adhere with minimal effort, thanks

to their adhesive feet, they are not stuck.

Following from the observation that biological organisms are under an evolutionary pres-

sure to modify their physiology towards the most efficient form for movement/actuation, there

would be a corresponding pressure on perception. In this instance, it follows that organisms

have an evolutionary pressure to adapt the physiology such that they can perceive the perti-

nent aspects of their environment for their survival, whilst minimising metabolic cost. Once

again, this adaptation is based on the structure of their environment.

In this case, examples would include how certain species of fish living in darkness evolved

away from eyes (Rétaux and Casane, 2013), and often developed alternative sensory capabil-

ities, such as larger olfactory pits and higher chemosensory capabilities, to compensate.
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3.1.1 Physiology, Preferred States and Empowerment

Having identified an evolutionary pressure on the physiology of organisms to adapt towards

maximum efficiency according to the structure of their environment, it follows that we could

examine the physiology of an organism and draw some conclusions about its likely habitat

or niche (such study is part of ecomorphology). Biologists do this regularly when examin-

ing fossils or remains of extinct or un-encountered species (Janis and Thomason, 1995), or

retroactively when studying species (Bauer et al., 1998; Kappelman, 1988).

If we return to our gecko feet example, if we were to study a gecko without previous

knowledge of its habitats or behaviours, we could conclude from physiology alone that it has

evolutionary reasons to be able to walk on vertical and inverted surfaces, indicating some of

its preferred states.

Correspondingly, if we examine an organism in its environment, which has been equipped

by evolution with the most appropriate sensorimotor apparatus, it follows that we could predict

its success by measuring its potential to utilise that sensorimotor apparatus. This is exactly

what empowerment measures.

Looking from this perspective we can understand that empowerment and the structure

of the environment are very closely related, and we can begin to understand why it is that

empowerment might demonstrate the successes that it has.

However, empowerment remains unencumbered by the metabolic costs of processing ev-

ery potential future, which would be a significant cost for any biological organism or artifi-

cial agent. So, whilst empowerment seems to leverage the ‘evolutionary knowledge’ of the

environmental structure embedded in an organism’s physiology, it seems unlikely that naive

empowerment is a realistic model of such organisms.

Yet, the means by which empowerment functions, by looking to maximise the potential

use of their sensorimotor apparatus and thus maximise the available affordances, does seem
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to be plausible; this could lead to improved understanding of these behaviours in nature, and

help development of improved methods for artificial agents.

3.1.2 Highlighting Hidden Structures

In order to test the hypothesis that the structure of the world contains lower level, unseen,

structures that would be accessible to algorithms like empowerment, I conducted a simple set

of initial experiments to highlight this.

These experiments were based in a simple gridworld, as introduced in Klyubin et al. (2005a).

In Klyubin et al. (2004a), the mutual information between an agent’s chains of actuations and

their starting positions relative to the centre was investigated. Automatons were produced

which encoded information about an agent’s starting position relative to the centre of the

world, given a chain of actions (simple cardinal direction movements).

The initial experiment in Klyubin et al. (2004a) utilises mutual information, which is at

the core of empowerment, and thus provided a good starting point. The experiments were

replicated, to form the basis for additional experiments to investigate the structures that might

be playing a role, and to begin to understand how the algorithm might be leveraging them.

The experiments took place in an infinite gridworld, within which an agent was embodied.

The agent had a sensor able to return 4 values, and an actuator also with 4 values. At any time

step, the sensor value would be the cardinal direction in which the agent must head in order

to return to the centre of the world, akin to a gradient follower. The 4 available actuations

were movement in one of these directions into an adjacent cell in the gridworld. The agent

has a controller, which maps sensor values to actions: (St) 7→ (At).

In its original configuration, as described in Klyubin et al. (2004a) the mapping of sensor

values to actuations performed was a simple identity mapping, to produce a gradient following

behaviour. When the maximum gradient was equal in more than one direction (on a diagonal,

or in the very centre), the sensor would return a random value from the available choices.
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Figure 3.1: Visual representation of structure for behaviour 27 (identity behaviour). Thicker lines show
more popular paths/routes for the agent.

To then investigate what structure of the world remained invariant of the sensor-actuator

mapping, and which structures were revealed by various mappings, all possible 256 such map-

pings, or behaviours, were created. Each behaviour had a unique mapping of sensor value

received to actuation performed, and were numbered 0 to 255. The mapping key begins with

the four actions (indexed on the 4 sensor values in the order NSEW ) set to be NNNN for

behaviour 0, NNNS for behaviour 1, NNSN for behaviour 4; always working from right to

left rotating through the 4 cardinal directions and incrementing the behaviour number.

For each behaviour, the agent’s initial position was set in turn to each of all 121 cells within

an 11 by 11 area centred on the centre square, and was then run for 10 time steps. For all 121

runs of each behaviour, a probability distribution of the average number of transitions from

one cell to another was constructed, and a visual representation was produced. Fig. 3.1 shows

the original gradient follower behaviour, and it can be seen that the agent quickly reaches the

centre cell and then spends the remaining time moving in and out of the centre randomly.

Even though the scenario was in a basic environment and used a limited set of possible

actions and sensor values, some interesting and rich results were observed. For example,

behaviour 78 is a gradient-repeller, which moves in the opposite direction given by the sensor.
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Figure 3.2: Visual representation of structure for behaviour 78, the gradient repeller. The results clearly
show the 4 primary quadrants being grouped.

Figure 3.3: Behaviour 180 would rotate clockwise.

The results, shown in Fig. 3.2, were surprisingly perspicacious; the world has been neatly

categorised into the 4 primary quadrants separated by the 4 cardinal directions.

A couple of other illustrative behaviours are 180 and 40. Behaviour 180 resulted in a

circling behaviour, with the agent rotating continually clockwise around the source of the gra-

dient. Behaviour 40 is an example of an asymmetric behaviour, where the sensor mapping was

not a simple rotation or mirroring, and the behaviour can be seen in Fig. 3.4. The behaviour

tends to the South-West corner, but when the agent starts in the North-East quadrant it always
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Figure 3.4: Behaviour 40 was an asymmetric behaviour which sent all agents to the South-West. Note
that agents beginning North-East of the centre always passed through the centre square - which could be
thought of as a subgoal.

travels through the centre pointer before proceeding South-West, which looks akin to a sub-

goal. Important to note, regarding behaviour 40, is that the output is different to a gradient

ascent to the South-West most cell, which would not display the same sub-goal behaviour.

The results of the experiment were not conclusive evidence of any particular structural

observation, but successfully highlighted that a variety of structures / patterns are encoded in

even simple scenarios. Further work in similar scenarios (Polani, 2011) has highlighted that

agents have a higher cost to encode optimal action policies for path finding scenarios in these

types of world when these structures are disrupted (i.e the cardinal directions for each specific

tile are in different directions, similarly to the change in the presented scenario).

Although there is an argument that, in the experiment presented, the structure was a

result of the hand-coded embodiment for our agent, the sensors and actuators we chose, it is

important to realise that this type of structure (the kind the agent can detect at some low level)

is precisely the type of structure that empowerment can exploit. In this case the ‘concept’ of

quadrants emerged, and this type of concept could be possibly used advantageously were the

agent to be given a task.
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3.2 Paper 1: Introduction

3.2.1 Empowerment and Centrality

From these initial experiments, I wanted to examine further types of structure, and more

directly link them with empowerment. In order to do this, and in contrast to the previous

experiment, I looked to draw a parallel between empowerment and another measure of utility.

The goal of the experiments would be to further understand how empowerment could

detect structure, and how such a generalised mechanism would compare to something that

was hand crafted to explicitly examine the structure, both in terms of how the structure was

detected, and whether the two measures would see any correlation.

I believed it was best to select a utility that was designed to work in highly structured

environments, and that was hand crafted to measure some element of fitness or utility in that

environment.

The domain I identified as having good properties was graph theory, which has been re-

searched in depth and provides a rigorous set of tools with which to measure structure and

utility in a variety of ways. Furthermore, graphs can be used to relatively neatly represent the

state space of deterministic scenarios, with the vertices representing a given state and the edges

between them representing actions that would change the state to that represented by the des-

tination vertex. In simple geographical scenarios where the state of the world is represented

by nothing more than the position of a single agent, such as that represented by the gridworld

scenarios used above, this representation also works very neatly as a graph representation can

be conveniently overlaid onto the geographical representation.

Graphs can take on a variety of forms, with their degree distribution and topologies allow-

ing them to fall into a variety of categories based on their structure. One very interesting case

is that of scale-free networks, in which the degree distribution follows a power law, in which

there are a few vertices with a high degree, but most vertices have a far lower degree. Their
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Random Graph Scale-Free Graph

Figure 3.5: Examples of random and scale-free graphs, each with 32 nodes (Castillo, 2004).

typical structure is independent of the graph’s size; with fewer or more vertices, the graph

would still exhibit similar properties. The exact distribution of edges per vertices follows a

power law distribution (Barabási and Albert, 1999):

P(k)∼ k−γ. (3.1)

where P(k) is the probability that a vertex connects with k other vertices, and decreases

exponentially according to the coefficient γ.

In recent years scale-free graphs have received a lot of attention since it was identified that

the network formed by the world wide web was such a graph (Barabási and Albert, 1999).

Scale-free graphs can also be seen in many real world situations, including protein interaction

networks (Jeong et al., 2001), and social networks (Barabási, 2003).

Scale-free graphs provided an abundance of structure, and also neatly indicated a measure

which could be used as a comparison to empowerment: centrality. The group of measures

known as centrality are well established measures, used to measure the relative importances

of different vertices in a given graph. There are various centrality measures which suit different

scenarios and which measure importance in varying ways.

The measure that most closely resembles empowerment is closeness centrality (Bavelas,

1950), which for any vertex in a graph measures the average distance from that vertex to
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all other vertices in the graph. The measure is commonly inverted, so that higher values

represented an improved level of centrality.

Closeness centrality is similar in spirit to n-step empowerment; both measure how many

new states you can reach from your current state, and can be compared to the same measure

at other states in the space. However, one fundamental difference between the two measures

is that closeness centrality is a global measure, that takes the complete graph into account,

whereas n-step empowerment has a horizon which may be large enough to encapsulate the

total state space, but usually is not.

This apparent disparity between a global measure and a local measure became an inter-

esting aspect of the results, following two experiments comparing the measures.

3.2.2 Experimental Setup

In Paper 1, I conducted the initial experiments by creating a graph that represented the familiar

2D gridworld scenario; in this instance a box was added to the scenario. In any given time-

step the agent moved as before, by either staying still or by moving by a single cell in any of

the four cardinal directions. This scenario was first introduced in an empowerment context in

Klyubin et al. (2005a).

Should the agent be in a cell adjacent to the box, and move towards the box then the box

would move one cell in the same direction and the agent would move into the cell that was

occupied by the box.

A graph representation of the scenario was created, in which each vertex represented a

state of the world, given by the position of the agent and the box, and the edges between the

vertices representing an action by the agent that moves the agent and possibly the box.

In the original experiment the world was infinite, and the agent ‘preferred’ (as indicated by

higher empowerment) to be near the box, which provided an affordance and thus increased

empowerment by allowing the agent to potentially reach a wider variety of future states.
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This setup allowed me to use established results for empowerment, and apply closeness

centrality to the same problem to draw direct comparisons between the two utilities. I con-

ducted additional experiments that utilised the scale-free property of graphs as a second com-

parison between an established and understood results (in this instance based on the non-

empowerment utility).

Paper 1 was published in Artificial Life XI: Proceedings of the Eleventh International Confer-

ence on the Simulation and Synthesis of Living Systems and presented at the Artificial Life XI

conference (Anthony et al., 2008).
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Abstract

We investigate the correlation between the information theo-
retic measure of empowerment and the graph theoretic mea-
sure of closeness centrality, to better understand the struc-
tural conditions that must exist in a world for learning and
adaptation. We examine both measures in both a simple grid-
world scenario, represented as a graph, and on a scale-free
graph. We show a strong correlation between the two mea-
sures, and discuss the strengths and weaknesses of both. We
go on to show how the local measurement of empowerment
can in many cases predict a measure for the global measure-
ment of closeness centrality.

Motivation
”Nature uses only the longest threads to weave her patterns,
so that each small piece of her fabric reveals the organiza-
tion of the entire tapestry.” - Richard Feynman

Learning and adaptation are central themes to artificial
life, and it is our hypothesis that a better understanding of
the conditions that must exist to make learning, adaptation
and evolution possible will help to guide future research.
It is plausible to assume that an arbitrary or random world
would be extremely difficult, if at all possible, to learn. We
know there is significant structure in the world, and believe
that learning takes advantage of this structure. In this paper
we begin to investigate what conditions, embedded within a
world through some underlying structure, are necessary for
certain types of adaptation problems.

It has been hypothesised that embodied agents receive an
adaptive and evolutionary advantage by optimising their sen-
soric and neural configurations for their environment. Spe-
cific attention has been paid to processing and optimising of
Shannon-type information they receive from their environ-
ment (Attneave, 1954; Barlow, 1959, 2001; Atick, 1992).
Similar work includes the concept of homeokinesis, pro-
posed by Der et al. (1999), where a homeokinetic system,
or agent, learns to improve the predictive capabilities of its
future perceptions.

A specific flavour of this view suggests that such
informational predictive princiles could provide organ-
isms/agents with intrisic motivation. Examples include that
by Prokopenko et al. (2006) and Bialek et al. (2001), which
use similar approaches based on excess entropy / predictive
information.

In this paper we have chosen to use empowerment (Klyu-
bin et al., 2005b,a), an information theoretic measure for the
efficiency of a perception-action loop. Essentially empow-
erment uses the channel capacity for the external aspects of
a perception-action loop to identify areas that are advanta-
geous for an agent embodied within an environment.

It assumes areas with a high efficiency of the perception-
action loop should be favoured by an agent. Based entirely
on the sensors and actuators of an agent, empowerment en-
capsulates an evolutionary perspective; namely that evolu-
tion has selected which sensors and actuators a successful
agent should have, which in turn suggests which parts of the
world should be visited.

This hypothesis was tested in a variety of different sce-
narios (Klyubin et al., 2005b,a; Capdepuy et al., 2007),
and notwithstanding the quite different scenarios it coin-
cided surprisingly well with an intuitive understanding of
favourable behaviours or of natural solutions to particular
challenges of adaptation. Furthermore, it correlated well in
some scenarios that had been hand crafted to evaluate the
results.

Notwithstanding the successful performance, we do not
currently have a strong understanding of why this may be.
What are the properties of the world that make empower-
ment such a universal measure. Why should it work at all?
This is the question we are going to study in this paper.

Locating Structure

We hypothesise that an agent that optimises its sensorimotor
apparatus improves its ability to detect the underlying struc-
ture of the world, and that this is an important aspect of such
optimisation. We further hypothesise that a better under-
standing of this structure would improve such optimisation,
and thus allow for better adaptation and learning.
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To investigate this we set out to start identifying the basic
properties of the world, and how they are detected by em-
powerment. We selected to go about this by investigating
a representation for an environment that manifests its struc-
ture in an easily observable manner, is well understood, and
has established methods for measuring preferable states.

We chose to represent the state space using graphs, which
fit all these criteria; they are well understood through graph
theory and social network analysis, and they have accessible
methods for identifying certain aspects of their structure. As
a measure to identify preferred states we chose to use cen-
trality, a measure of a node’s importance from graph theory,
which is a well established method (Wasserman and Faust,
1994). There are varying measures for centrality; in this
paper we use closeness centrality, which most closely cor-
responds with the spirit of empowerment.

Most stationary worlds, containing an embodied agent,
can be viewed of as the current state of the world connected
to neighbouring states by the actions the agent would need
to take to arrive at them; this can be modelled as a graph.
This same representation of the world was used by Şimşek
and Barto (2007) in investigating skill development among
agents.

Preferred states

Clearly, for two measures to be able to correlate they must
be measuring a similar property, and a quick overview of the
measures should convince the reader.

Empowerment, a local measure, quantifies the changes
that an embodied agent can make on its environment, and
observe the effects of, in a given time period. In reducing
ourselves to a simple representation of the world which is
entirely deterministic, we have created a special case for
empowerment. However, it can work in both entirely de-
terministic and probabilistic environments, which may even
be non-stationary (Capdepuy et al., 2007).

The closeness centrality of a node in a graph is calculated
by adding the distance of the shortest paths from that node to
every other node in the network, and then inverting this value
so that a shorter total path to all other nodes has a higher
value. To calculate the closeness centrality of a signal node
requires viewing the whole graph; it is a global measure.
Klyubin et al. (2005a) showed an example where a similar
measure, the average shortest distance in the case of mazes,
correlated with empowerment.

We will examine two scenarios, and will employ both em-
powerment and closeness centrality in each for identifying
and measuring states that an embodied agent would find ‘in-
teresting’ or ‘preferential’ to be in. When we use the word
‘state’ we refer to the state of the whole system, including
both the environment and the agent.

Rt Rt+1 Rt+2
St At St+1 At+1

Figure 1: Bayesian network representation of the
perception-action loop.

Information Theory
The notion of empowerment is based on information theory,
introduced by Shannon (1948). To introduce this, the first
important measure is entropy, which is a measure of uncer-
tainty:

H(X) = −
∑

p(x) log p(x). (1)

WhereX is a discrete random variable with values x ∈ X
and p(x) is the probability mass function such that p(x) =
Pr{X = x}. The logarithm can be taken to any chosen
base; in our paper we consistently use 2, and accordingly the
units of measurement are then called bits. If Y is another
random variable jointly distributed with X the conditional
entropy is:

H(Y |X) = −
∑

x

p(x)
∑

y

p(y|x) log p(y|x). (2)

This measures the remaining uncertainty about the value
of Y , if we know the value of X . Finally, this also allows
us to measure the mutual information between to random
variables:

I(X;Y ) = H(Y )−H(Y |X). (3)

Mutual information can be thought of as the reduction in
uncertainty about the variable X or Y , given that we know
the value of the other. The mutual information is symmetric,
so we could also use I(X;Y ) = H(X) −H(X|Y ) (Cover
and Thomas, 1991).

Empowerment
Empowerment is based on the information theoretic
perception-action loop formalism introduced by Klyubin
et al. (2005a, 2004), as a way to model embodied agents and
their environments. The model views the world as a com-
munication channel; when the agent performs an action, it is
injecting Shannon information into the environment, which
may or may not be modified, and subsequently the agent re-
acquires part of this information from the environment via
its sensors.

In Fig.1 we can see the perception-action loop represented
by a Bayesian network, where the random variableRt repre-
sents the state of the environment, St the state of the sensors,
andAt the actuation selected by the agent at time t. It can be
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seen that Rt+1 depends only on the state of the environment
at time t, and the action just carried out by the agent.

By modelling this as a communication channel, we can
employ information-theoretic methods, which are the basis
for empowerment. First, we must introduce channel capac-
ity (Shannon, 1948; Cover and Thomas, 1991) for a discrete
memoryless channel:

C(p(y|x)) = max
p(x)

I(X;Y ). (4)

The random variableX represents the distribution of mes-
sages being sent over the channel, and Y the distribution of
received signals. Clearly, the higher the mutual informa-
tion between the two variables, the higher the capacity of
the channel. The channel capacity is measured as the max-
imum mutual information taken over all possible input dis-
tributions, p(x), and depends only on p(y|x), which is fixed.
One algorithm that can be used to find this maximum is the
iterative Blahut-Arimoto algorithm (Blahut, 1972).

Empowerment can be intuitively thought of as a measure
of how many observable adjustments an embodied agent can
make to his environment, either immediately, or in the case
of n-step empowerment, over a given period of time. An al-
ternative way to view empowerment is that it guides agents
to places in the world where they get the most benefit from
their sensors and actuators. Using the above perception-
action loop formalism and the Blahut-Arimoto algorithm,
this can be directly quantified. We remind the reader that
sensors and actuators implicitly encode evolutionary knowl-
edge of the type of information to perceive and ‘create’.

In the case of n-step empowerment, we first construct a
compound random variable of the last n actuations, labelled
Ant . We now need to maximise the mutual information be-
tween this variable and the sensor readings at time t + n,
represented by St+n. Here we consider empowerment as
the channel capacity between these:

E = C(p(st+n|ant )) = max
p(ant )

I(Ant ;St+n). (5)

An agent that maximises its empowerment will position
itself in the environment in a way as to maximise its options
for influencing its relationship with the environment (Klyu-
bin et al., 2005a).

Note that in this paper we are use empowerment in a de-
terministic scenario, within a discrete world, but that em-
powerment is defined in full generality for non-deterministic
probabilistic environments and does not assume perfect in-
formation.

In this paper we can use a shorthand method for calculat-
ing empowerment; we are able to do this for several reasons.
All the scenarios we examine are deterministic and feature
no non-stationary elements, and so do not require the proba-
bilistic elements of empowerment. Additionally, as they are
all represented as a graph, we are able to further simplify the

formula. We can calculate n-step empowerment for a node
vi on the graph thus:

En(vi) = log




g∑

j=1

d(vi,vj)≤n

1


 (6)

Where d(vi, vj) is the geodesic distance between the
nodes vi and vj . Note that this is a shorthand method we are
able to use as we have complete knowledge of the scenar-
ios and the representation; without such knowledge Eq. (5)
would work just as well in the same scenarios, using the
perception-action loop formalism.

Closeness Centrality
Graph Theory and Network Analysis have long had a
requirement for identifying important nodes in a graph
(Wasserman and Faust, 1994). The simplest methods for
this have been to count the edges leaving or entering a node,
known as outdegree and indegree respectively. This is very
simplistic and is normally inadequate for complex graphs.
Therefore, the primary method for measuring node impor-
tance is a group of various measures collectively known as
centrality. There have been several methods of centrality
suggested over time, but one of the most popular is close-
ness centrality, which can be presented in various ways. As
mentioned in Wasserman and Faust (1994), and reviewed by
Freeman (1979), the simplest formula for closeness central-
ity is that suggested by Sabidussi (1966):

CC(vi) =




g∑

j=1

j 6=i

d(vi, vj)




−1

. (7)

For a given node vi, in a graph with g nodes, this gives
a measurement of the sum of the shortest paths to all other
nodes, which is then inverted to give a higher centrality to
those with shorter total paths to the rest of the graph. In-
tuitively, this can be closely linked to the average distance
from all other cells that empowerment was anti-correlated
with, from the maze scenario used in Klyubin et al. (2005a).

To calculate the closeness centrality on the graphs en-
countered throughout this paper, we used the network anal-
ysis software Pajek (Batagelj and Mrvar, 1998). Pajek
uses a modified version of closeness centrality, suggested
in Beauchamp (1965):

C ′C(vi) =
(g − 1)[∑g
j=1 d(vi, vj)

] = (g − 1)CC(vi). (8)

This formula is used simply to normalise the closeness
centrality figures to the graphs size in order to allow com-
parison of the figures between graphs of different sizes.
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Figure 2: View of the empowerment distribution for the
gridworld scenario, with the box positioned at the center.
A darker shade means higher empowerment. Empowerment
scales from 5.92 to 7.79 bits.

Scenarios
In order to compare these two measurements we apply them
to the same two agent scenarios to identify the correla-
tion between them, and any areas of disparity. In order to
construct the first scenario, it is necessary to observe that
most state spaces encompassing an agent in a stationary
world can be naturally represented as a graph of nodes; each
node/vertex represents a specific state in the world and the
edges between them corresponding to the actions of an agent
that change the state of the world.

Box pushing
Consider the box pushing scenario from Klyubin et al.
(2005a) as a graph. The scenario consists of a gridworld
of infinite size, within which there exists an agent and a box,
each of which occupy a single cell. The box is visible to
the agent; his view of the world consists of his position and
the position of the box (and given the world is infinite, the
relative position of the box and agent defines the state of the
world). The agent has 5 actions available to it at any time;
it can stand still, or move to one of the four neighbouring
cells. If the agent moves into a cell that is occupied by the
box then the box is pushed, in the same direction, into the
adjacent cell.

In Klyubin et al. (2005a) it was shown that for any n-step
empowerment, the agent prefers being near the box, which
gives it more influence on the state of the world. It most ‘en-
joyed’ beginning on top of the box, where moving in and of
the 4 directions would allow it to fall down next to the box,
from where it could start pushing it like normal; this could
be used as a starting position but was a position impossible
for it to return to.

In translating this world into a graph representation, we
needed to limit our originally infinite world to a finite graph.
We investigate the influence of this finiteness by examining
the growth of centrality. We show that beyond a certain hori-
zon it can be seen that the centrality increases in a continu-
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Figure 3: Correlation of closeness centrality for 25-step and
30-step graph approximations against a 20-step approxima-
tion. Each point on the graph represents a different starting
state of the world (relative position of the agent to the box).

ous fashion and that the centrality for the nodes represented
in previous approximations grows proportionately. Whilst
we do not offer a proof of this fact, in Fig.3 we demonstrate
the point by showing the correlation between graph repre-
sentations of increasing diameters.

Results
Klyubin et al. (2005a) had previously shown how empower-
ment worked in the box pushing gridworld experiment, and
so it made for a good environment in which to run our initial
experiments. We generated a unweighted directed graph to
represent the world. Note that we are using a non-classical
view of graphs; rather than viewing them as comprised of
units, with connecting links between them, we are view-
ing each node as a possible state of the world, including the
agent itself, (of which, only one can be the real state at any
moment) and the edges as transitions between these states.

To do this, we initialised the world with the box in the
center, and the agent standing upon the box, as described
earlier. We then let the agent run through every possible
trajectory of 30 actuations, generating a graph of states and
actions; the final graph had 419,121 nodes. Using Pajek, we
calculated the closeness centrality for all nodes in the graph.

We next measured empowerment for every state with the
box positioned in the center of the world, and the agent
positioned at each location that it could reach within 30
timesteps from the center. This was sufficient as the dy-
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Figure 4: Correlation plot between Empowerment and
Closeness Centrality (20-step graph). The horizon effect of
empowerment can be seen clearly.

namics of the world comes from the agent’s initial position
relative to the box, and thus moving the box was unneces-
sary. Our empowerment measurements were run to measure
3-step, 5-step and 7-step empowerment.

In order to correlate empowerment and centrality, we col-
lated the results, removing the centrality results for nodes
where the box was not positioned in the center of the world;
this gave us a state for state comparison of each measure
against the other for different initial positions of the agent.

We additionally ran the same experiment for graphs pro-
duced for both 20 and 25 timesteps, to identify the influence
of representing the infinite gridworld as a finite graph did not
skew the results. We found that the correlation of centrality
for the overlapping nodes of these varying size graphs indi-
cates a close to linear relationship and finite graphs work as
a good approximation.

Note that closeness centrality is a global property, calcu-
lated it for any given node requires seeing all other nodes
in the graph, while empowerment is local and looks only at
neighbouring nodes within a given distance.

Local Structure
As hypothesised, we found a very strong correlation be-
tween the closeness centrality and empowerment, which can
be seen in Fig.4. The graph shows clearly the horizon effect
of empowerment; it can be seen to be constant whenever the
box is outside of the agent’s reach. For n-step value with
larger values of n the horizon can be seen to extend further

from the box. Once the box is within it’s reach, according to
n, the empowerment grows as the agent increases its influ-
ence over the world by getting closer to the box.

The horizon effect emphasises that empowerment is a lo-
cal measure; it cannot see the whole world. However, when
the agent is within an area where it can improve it’s ability to
manipulate the state of the world, this local measure corre-
lates with the global measure of the world given by closeness
centrality.

This highlights that in an infinite, or an unexplored, world
where centrality cannot be employed, empowerment pro-
vides a measure that can be used. Whilst empowerment is
limited by the horizon effect, exploring the world (which
would be necessary to use closeness centrality) would allow
our agent to also overcome the horizon.

In addition, this correlation also confirms our hypothesis
that empowerment, within its horizon, does see global as-
pects of a system at a local level within this world. What
structure or prerequisites that must exist for this effect to
take place are yet to be determined.

It is important to note that the results from empowerment
can be computed by the formula in Eq. (6), or equally by
that in Eq. (5), without modelling the world as a graph at all.

Scale-free Graphs
The second scenario uses scale-free networks (graphs); a
very important subclass of graphs, in which there are a few
nodes with a high degree, and most nodes have a far lower
degree. Their typical structure is independent of the graph’s
size; with fewer or more nodes, the graph would still ex-
hibit similar properties. The exact distribution of edges per
node follows a power law distribution (Barabasi and Albert,
1999):

P (k) ∼ k−γ . (9)

Here P (k) is the probability that a node connects with k
other nodes, and decreases exponentially according to the
coefficient γ.

As discussed in Barabasi (2003), scale-free graphs can be
seen in many real world situations, including protein inter-
action networks (Jeong et al., 2001), social networks, and
even the world wide web (Barabasi and Albert, 1999).

We hypothesise that the scale-free property of graphs can
work to synthesise an underlying structure that may be found
in real world task spaces, and can be used as a good platform
for initial investigation of such structure.

Results
Using preferential attachment algorithm introduced by
Barabasi and Albert (1999) we constructed a scale-free undi-
rected graph with 400,000 nodes to run our measures on.
Our graph was built using an initial complete graph of 3
nodes, and adding additional nodes one at a time. Each
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Figure 5: Correlation between closeness centrality and 2-
step to 7-step empowerment.

new node would create 3 new edges connected to 3 differ-
ent nodes on the existing graph, chosen using a probability
according to their current degree.

For all nodes in the graph we calculate both the n-step
empowerment (for a range of values of n) and the closeness
centrality. To calculate the closeness centrality, we again use
the Pajek analysis software.

Our results here corroborate those from our first experi-
ment with regard to the correlation between closeness cen-
trality and empowerment. Here, we see the inverse of the
horizon effect; given too much time, empowerment can
reach any part of the graph (analogous to being able to do
anything within a world) and assigns almost all nodes equal
value. This is an interesting point for empowerment; given
too high of a ’budget’, where an agent can do everything
possible within the world (or reach every node in a graph)
then it does not differentiate between them. This is the
type of world we would describe as ’boring’; one where
and agent can do anything it wants from any position of the
world.

Again though, empowerment sees at a local level aspects
of the global property of the world. In this scenario, this is
maybe not surprising given the nature of a scale-free graph;
but it is important to see that empowerment was not told
anything of the structure of the world, and that still this fact
comes through.

In Fig.5 we show the correlation between closeness cen-
trality and n-step empowerment for n=2 to n=7. Note that
even 2-step empowerment has a strong correlation at the
higher centrality nodes, and 3-step even more so. As n
increases it can be seen that the small-world property of
the graph results in an empowerment ceiling being reached
which results in a reduced correlation for high centrality
nodes.

Discussion
Both of our experiments highlight the strong correlation be-
tween empowerment and closeness centrality, and that even
n-step empowerment with a low value for n will normally
serve a a strong predictor for centrality. This is significant
given that individual node centrality is a global property of
a graph, but we can use a local measure to give similar rel-
ative values to nodes. Note that empowerment doesn’t see
any more than centrality, but in the ’interesting’ parts of the
world it does see, the two measures agree.

In both scenarios the correlation is strong provided that
the n chosen for n-step empowerment is suitable. We be-
lieve a simple method for overcoming this in an unknown
world is for an agent to select the lowest n value possible;
if the horizon of this n does not allow the agent to observe
any degrees of freedom it can then increase n incrementally
to overcome this (or embark on a random exploration).

With empowerment, selection of a suitable n is interest-
ing in another regard; a low value of n can mean encounter-
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ing the horizon effect, and possibly not seeing ’interesting’
parts of the world, whilst a too high value of n can result
in the agent being able to do anything and not needing to
distinguish between different states. The result of this is a
particular world having an n value with the correct balance
between these two effects, which we hypothesise may reflect
one aspect of the underlying structure which is important for
learning and adaptation.

Closeness centrality is limited to deterministic task spaces
that can be completely represented by either a directed or
undirected graph, which constricts the space of problems it
can be used to measure. In the space of problems in which
both measures can be used, these results indicate not only
empowerment correlates well with centrality, but it does so
without complete knowledge of the world. Furthermore, it
can work in non-deterministic, non-stationary, environments
which cannot be represented as a graph, including infinite
worlds.

A comparison could have been drawn between the global
measure of closeness centrality, and some local version of
centrality that worked on a local subset of the graph, and
probably a similar correlation would have been found. How-
ever, any such localised version of centrality would suffer
from many of the same restrictions that centrality does com-
pared to empowerment. Empowerment has been chosen as
part of a much more general picture, and as well as includ-
ing an evolutionary aspect, will allow us to extend the re-
search into non-deterministic environments in future work.
Essentially we are using centrality as a ‘sanity check’ that
empowerment does something sensible in these scenarios.

Overall, we believe that these results show a strong in-
dication of certain global aspects of various worlds being
’coded’ at a local level, and an appropriate sensory config-
uration can not only detect this information, but can also
use it. Such uses could include learning and adaptation, and
uses for evolution between generations. There are indica-
tions that understanding which aspects of global structure
are visible at a local level would allow improved adaptation
and learning for agents embodied within the corresponding
world.

Future work
Vergassola et al. (2007) drew a parallel between the be-
haviour of biological organisms and search methods that
use local informational cues to draw conclusions about the
global structure of the world. It is our belief that further
study of this area will allow us to not only draw further par-
allels with the learning and adaptation methods employed
by biological organisms, but will also allow a better under-
standing of these processes leading to improved methods.

Further work needs to be done to extend these results into
other worlds and task spaces, and to better understand in
which scenarios they hold true. This should include worlds
with various elements providing opportunities for agents

to manipulate their environment, and even non-stationary
worlds.

Attention needs to be paid to how to choose an initial
strategy when presented with a completely unknown task
space (such as choosing an initial n for empowerment) and
conversely, how much of this information is embedded with
an agent or organisms embodiment.
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Figure 3.6: Correlation plot between Empowerment and Closeness Centrality. On the left for the agent
starting in position 3, 3 (relative to the central box), and on the right for the agent starting in 6, 1.

3.4 Paper 1: Supplemental Result

In the paper, a box pushing scenario was presented in which a correlation between empow-

erment and closeness centrality was demonstrated. The scenario compared multiple relative

starting positions of the agent to the box for multiple empowerment horizons against close-

ness centrality for the same position. The graph for closeness centrality was generated from

the default position of having the agent stood atop of the box, and allowing the agent to

run for 20 time steps; the states discovered were then used as the starting position for three

empowerment runs (for 3, 5 and 7 time steps).

Because what matters is the relative position of the agent to the box (as the world away

from the box is homogenous), it seems intuitive that generating the graph from an alternative

default state should not have change the nature of the correlation between the two metrics.

However, in order to confirm that this is indeed true, and to add clarity to the result as pre-

sented in the paper, I ran the experiment again from different initial configurations to verify.

In Fig. 3.6 we can see results for two additional starting configurations, demonstrating

that the centrality range shifts but the the pattern of correlation remains.
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3.5 Paper 1: Discussion

3.5.1 Horizon and Local Structure

The paper discusses the challenges of selecting a suitable value of n for the number of steps

available to empowerment. This ‘horizon’ is an interesting aspect of empowerment for several

reasons.

Perceptual horizon vs Temporal Horizon

Note that the scenarios presented in the paper have discrete time steps and a discrete per-

ceptual boundary. Such a model is common for game playing scenarios, but for biological

scenarios both of these would be continuous.

The scenarios are based on previous experiments and the ‘horizon’ discussed simply refers

to the temporal horizon, defined by the value of n. We recognise that the optimal value for n

(for the success of an agent in a survival scenario) must account for the embodiment of the

agent, which includes an implicit understanding of its perceptual boundaries, which indicates

likely trade-offs between these two values.

This thesis does not attempt to reconcile the potential interplay between these two facets;

it may be that there is an interesting set of experiments to do to understand how the value n

changes given improved or reduced perceptual abilities for an agent. This question would also

play to the metabolic cost of those capabilities (both perceptual and cognitive with regards to

planning temporally).

Global vs Local Structure

The paper discusses the relationship between a ‘global’ (centrality) metric and a ‘local’ one

(empowerment), and discusses how empowerment can correlate with the global metric within

the range of empowerment’s horizon value.
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Figure 3.7: Correlation plot between Empowerment and Closeness Centrality. The horizon effect of em-
powerment can be seen clearly.

Returning to Fig. 3.7, we can see that as the centrality value increases we reach a point

where empowerment begins to increase relative to the increase in centrality. The point where

this correlation between centrality and empowerment begins to take effect is a function of the

horizon length of empowerment, and there is a hard cut-off point. We can see that with 7-step

empowerment, the correlation begins the soonest, and in every case the correlation continues

for the remainder of the vertices in the graph.

This correlation between local measurements and global measurements would break down

in larger, more complex scenarios where there were a variety of features that provided affor-

dances to the agent. If we imagine a similar gridworld, but one in which there are dozens

of boxes spaced out equally in the centre of the world, then it is immediately intuitive that

the position of highest centrality would be that in which the agent started in the centre of the

boxes. However, for empowerment, we might see many small peaks of utility, all deemed to

have equal empowerment, where the agent is positioned such that within his time horizon he

can only manipulate the closest box.
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Blindness Boredom

Figure 3.8: On the left we can see that 2-step empowerment has ‘blindness’ for low-centrality values,
whereas the right shows that 7-step empowerment suffers from ‘boredom’ for high-centrality values. These
are two types of inability to differentiate states.

Such a scenario highlights the trade-off that evolution must face in deciding what sensory

physiology an organism requires vs the metabolic cost. Being able to select a position, with

certainty, that is the exact centre may not be worth the metabolic cost of the sensory apparatus

required to do so.

The important observation is that when local structure gives an indication into global struc-

ture, empowerment is capable of ‘detecting’ it and using it. Its capability to detect such struc-

ture is entirely a function of the horizon.

Boredom vs Blindness

In the previous section, we have discussed the problem of potential ‘blindness’ when the em-

powerment horizon is too short to detect certain structures in the environment. The opposite

of this is horizon values that lead to ‘getting bored’, or seeing no differences anymore. These

are both a form of being unable to differentiate states from one another. The former (discussed

in the previous section) underestimates the utility of some states, and the latter overestimates

the relative utility of states.
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This problem of ‘boredom’ demonstrates that, even if we could ignore issues around metabolic,

cognitive or processing cost, simply picking the longest possible horizon for empowerment

would not overcome the issue of state differentiation.

3.5.2 Generality

We have seen that empowerment correlates well with hand-picked metrics that are designed

for the scenario. Whilst correlation is perhaps not surprising retrospectively, what is important

is that empowerment is totally general, and ‘knows’ nothing about these scenarios.

The empowerment models for the paper could be represented as graph, but empowerment

was calculated purely on the state transitions, and thus were not in any fashion tuned towards

a graph scenario rather than some other model.

Furthermore, we note that many scenarios could not be transformed into a graph repre-

sentation and so centrality could not be applied to such a scenario. The most obvious class of

scenario is anything non-deterministic where the transitions between states are in some way

stochastic.

Thus we see that empowerment is entirely general and can apply to complex scenarios

without needing domain specific knowledge, and can deal with non-deterministic situations.

In looking to build upon the work of this paper, it was important that this aspect of empower-

ment remained intact.

3.5.3 Conclusions and Direction

Following this paper, there were several aspects that I concluded needed to be addressed in

order to leverage the strengths of empowerment for a wider range of scenarios, based upon

my motivation to develop a universal utility which was capable of helping to drive intelligent

behaviours:
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• Address the issue of a hard ‘cut off’ beyond which empowerment cannot differentiate

states. Selecting the ‘perfect’ horizon is not only going to be probably intractable in many

environments, but is also unlikely to be static across states in the same environment, and

should also be capable of being adaptive depending on available time/resource.

• Certain states appear identical in terms of utility, but the hard horizon applies equally to

the reachable future states that contribute to the calculation of that empowerment. The

presence of this hard horizon means that any sort of utility hill-climbing is not viable.

• In the conclusion of the paper, I touched on the need to better understand how to ‘choose

an initial strategy when presented with a completely unknown task space’. This fitted

with my broader motivations and meant moving from evaluating only states to also being

able to not only evaluate actions, but pick sets of actions in a self-motivated manner

which could drive behaviours.
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Action Selection: Self-Motivation
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Knowing is not enough; we must apply. Being willing is not enough; we must do.

— von Goethe (1870)

4.1 Empowerment and Compression

An equivalency between compression and intelligence has been suggested in various forms in

the field of Artificial Intelligence (Hutter, 2005, 2001; Mahoney, 1999; Schmidhuber, 1992;

Dowe et al., 2011; Dowe and Hajek, 1997; Chaitin, 1982; Hernández-Orallo and Minaya-

Collado, 1998) for many years; since 2006 the Hutter Prize has been running, offering $50,000

for improvements in lossless natural language compression directly motivated by this belief.

Opinion is divided on how lossless or lossy compression affects improved intelligence, but

the competition organisers acknowledge human-like compression is lossy (Hutter, 2006; Ma-

honey, 2006); it seems clear that compression of some sort is necessary for intelligence to

emerge. It is not clear whether there are restrictions on how that compression is manifested,

and various solutions have been proposed (Hutter, 2001; Dowe et al., 2011); of particular in-

terest to this work might be those focused on Kolmogorov complexity (Ryabko and Reznikova,

1996; Hernández-Orallo and Dowe, 2010).

Compression is useful for applications to intelligence in various ways: compression can

lead to abstraction, draw attention to underlying structures, help differentiate relevant and
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irrelevant portions of its input, and can be a means of increasing processing speed. These are

all inherent facets of what we understand of intelligence, and are obviously all interconnected

(with the first three points all being methods of achieving increased processing speed).

Furthermore, they are all directly applicable as candidate solutions to some of the weak-

nesses and limitations of empowerment that were identified in Section 2.7 of Chapter 2 and

Section 3.1.1 of Chapter 3:

• All potential future states are considered equal by empowerment.

• It is unclear how to select an appropriate horizon for n-step empowerment.

• Furthermore, it is unclear how to extend the horizon further without hitting the ‘bore-

dom’ problem or it becoming computationally inviable (let alone biologically plausible).

In Paper 2, I use the information bottleneck method as a form of lossy compression which

fits perfectly within the information theoretic framework of empowerment.

4.2 ‘Outsourcing’ to Embodiment and Environment

In Chapter 3 we reviewed how evolution equips an organism with the sensorimotor apparatus

to thrive in its niche; specifically, organisms have the perceptual capabilities to detect relevant

facets of their environment, and the motor apparatus to manipulate their environment in ways

necessary for their success.

However, it may be that this concept actually goes even further, and that the embodiment

of an agent or organism can, via its interactions with the environment, not only dictate what

actions are available to that agent, but also offset some necessary cognitive processing required

for those actions. It seems likely that evolution drives an agent or organism to leverage these

structures whenever possible in order to reduce their own metabolic cost and increase fitness.
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To illustrate, we can look at the case of a human walking down an incline; a task which

mankind has done countless times over the course of its evolution. The physics of the task are

quite complex, and yet any healthy adult human can do it without conscious effort. To explain

this apparent disparity we could examine Collins et al. (2001), in which a three dimensional

walking robot was built without using any electronics; the robot walks down stairs and inclines

under the pull of gravity, using only the mechanics in its joints to ascertain the appropriate gait.

A simulated robot, or one using electronics, would need to calculate a variety of non-

trivial computations in order to successfully complete such a task. It would need to ascertain

the angle of the incline, the angle of each component of its legs and feet, and the relative

forces and torque being applied to them, along with a variety of other factors. It is clear to

us that humans are not doing any of these calculations, yet they complete the task with ease.

The robot in Collins et al. (2001) can also be seen to be completing the task with relative ease.

Essentially the walkbot robot is ‘outsourcing’ this complex computation to the dynamics

and structure of its environment by way of its own embodiment; the robot does not need

to do any cognitive processing itself. Usually there is a evolutionary trade-off between the

capabilities provided by additional sensorimotor apparatus, and its metabolic cost.

In Pfeifer and Gómez (2009), a similar robot, named Puppy, is demonstrated to achieve

robust locomotion without the need for sensory feedback from the legs, by the introduction

of an artificial ‘muscle’ (a simple spring). There was a clear distinction between standing and

running states, but the controller did not distinguish between them; likewise, it also did not

distinguish acceleration or inclination, but a stable gait was observed in this situations. Again,

in this instance the ‘physiology’/embodiment of Puppy, via its interaction with the environ-

ment, reduces the computation or processing the agent must do itself, across different phases

of action and environmental states.

This concept is sometimes called embodied cognition (Varela et al., 1992), and constructs a

similar argument whereby the sensorimotor apparatus of an organism is also responsible for
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some of the processing. The related idea of extended cognition (Clark and Chalmers, 1998)

dates back to the 1990s, and proposes a very similar concept whereby the environment itself

can play a part of the cognitive process.

We should note that the ability for an embodiment to assist in this way is not only a function

of the embodiment, but of that embodiment being in the correct context (i.e. specific part of

the correct environment). The walkbot would not help a human kneeling to start a fire, and

would be likely less cognitively advantageous if walking down an incline that was submerged

in water.

If we follow the hypothesis that sensorimotor adaptations that outsource to the environ-

ment reduced metabolic cost, and thus provide an improved trade-off (more ‘bang for your

buck’), and knowing that evolutionary adaptation would drive biological organisms towards

improved adaptedness, we can hypothesise that there is an evolutionary pressure for organ-

isms to ‘outsource’, where possible, to the environment.

This furthers the hypothesis that an agent or organism’s embodiment can indicate not only

preferred states, but also preferred actions.

4.3 Paper 2: Introduction

In the conclusion of Paper 1, I discussed the need to better understand how to ‘choose an initial

strategy when presented with a completely unknown task space’ and discussed the selection

of a value of n for empowerment.

We can now tie this together with the idea of using compression and the observation that

embodiments can encapsulate a degree of cognitive facilities. In Paper 2, I hoped that com-

pression would help empowerment differentiate states from being equal to one another, and

indicate states which represented more empowerment than others, and that I could utilise

this to help select action sequences. This approach also reduces the processing requirement,
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allowing the horizon to be extended further than was previously computationally viable, with

the hope that I could address the ‘blindness’ problem where the horizon was too short to detect

salient parts of the environment.

An additional aspect I identified as important when considering which action sequences are

more empowered was the presence of noise, specifically any environmental stochasticity that

meant transitions between states are not deterministic given an action. This can be an aspect

of the environment (e.g wind), part of a game design (e.g. dice rolls), or the presence of other

agents (antagonistic or otherwise). When an agent or organism encounters noise they lose a

degree of control; such a loss stands in direct contrast to empowerment, so it seems natural

than an agent or organism should try to avoid noise in order to maximise empowerment. This

aspect felt especially relevant when seeking to impose any sort of compression or bandwidth

limitation on empowerment, where a agent must choose between preferred states or action

sequences, as there is an obvious pressure to avoid noise.

Paper 2 was published in Proc. European Conference on Artificial Life 2009 and presented

at the European Conference on Artificial Life conference (Anthony et al., 2011).
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Impoverished Empowerment:
‘Meaningful’ Action Sequence Generation

through Bandwidth Limitation

Tom Anthony, Daniel Polani, Chrystopher L. Nehaniv

Adaptive Systems Research Group, University of Hertfordshire, UK

Abstract. Empowerment is a promising concept to begin explaining
how some biological organisms may assign a priori value expectations to
states in taskless scenarios. Standard empowerment samples the full rich-
ness of an environment and assumes it can be fully explored. This may
be too aggressive an assumption; here we explore impoverished versions
achieved by limiting the bandwidth of the empowerment generating ac-
tion sequences. It turns out that limited richness of actions concentrate
on the “most important” ones with the additional benefit that the em-
powerment horizon can be extended drastically into the future. This in-
dicates a path towards and intrinsic preselection for preferred behaviour
sequences and helps to suggest more biologically plausible approaches.

1 Introduction

Methods to provide an agent embodied in an environment with strategies to
behave intelligently when given no specific goals or tasks are of great interest
in Artificial Life. However, to do this embodied agents require some method by
which they can differentiate available actions and states in order to decide on
how to proceed. In the absence of no specific tasks or goals it can be difficult to
decide what is and is not important to an agent.

One set of approaches examines processing and optimising the Shannon in-
formation an agent receives from its environment (Attneave, 1954; Barlow, 1959,
2001; Atick, 1992), following the hypothesis that embodied agents benefit from
an adaptive and evolutionary advantage by informationally optimising their sen-
sory and neural configurations for their environment.

Information-based predictions could provide organisms/agents with intrin-
sic motivation based on predictive information(Prokopenko et al., 2006; Bialek
et al., 2001; Ay et al., 2008). In this paper we will concentrate on empowerment
(Klyubin et al., 2005b,a), an information theoretic measure for the external ef-
ficiency of a perception-action loop.

One shortcoming of empowerment is that whilst it provides behaviours and
results which seem to align it with processes that may have resulted from evo-
lution the algorithms used to calculated it tend not to operate using an equally
plausible process. It implicitly requires a notion of the richness and full size of
the space it searches whatever algorithm is used to determine it. In this paper we
thus introduce the assumption of a limit on the richness of the action repertoire.

Action Selection: Self-Motivation Paper 2
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1.1 Information Theory

First we give a very brief introduction to information theory, introduced by
Shannon (1948). The first measure is entropy, a measure of uncertainty given by
H(X) = −∑

x p(x) log p(x) where X is a discrete random variable with values
x from a finite set X and p(x) is the probability that X has the value x. We use
base 2 logarithm and measure entropy in bits.

If Y is another random variable jointly distributed with X the conditional
entropy is H(Y |X) = −∑

x p(x)
∑

y p(y|x) log p(y|x). This measures the remain-
ing uncertainty about the value of Y if we know the value of X. Finally, this
also allows us to measure the mutual information between two random variables:
I(X;Y ) = H(Y )−H(Y |X).

Mutual information can be thought of as the reduction in uncertainty about
the variable X or Y , given that we know the value of the other.

1.2 Empowerment

Essentially empowerment measures the channel capacity for the external compo-
nent of a perception-action loop to identify states that are advantageous for an
agent embodied within an environment. It assumes that situations with a high
efficiency of the perception-action loop should be favoured by an agent. Based
entirely on the sensors and actuators of an agent, empowerment intrinsically en-
capsulates an evolutionary perspective; namely that evolution has selected which
sensors and actuators a successful agent should have, which in turn implies which
states are most advantageous for the agent to visit.

Empowerment is based on the information theoretic perception-action loop
formalism introduced by Klyubin et al. (2005b,a, 2004), as a way to model
embodied agents and their environments. The model views the world as a com-
munication channel; when the agent performs an action, it is injecting Shannon
information into the environment, which may or may not be modified, and sub-
sequently the agent re-acquires part of this information from the environment
via its sensors.

Rt Rt+1 Rt+2
St At St+1 At+1

Fig. 1. Bayesian network representation of the perception-action loop.

In Fig.1 we can see the perception-action loop represented by a Bayesian
network, where the random variable Rt represents the state of the environment,
St the state of the sensors, and At the actuation selected by the agent at time t.
It can be seen that Rt+1 depends only on the state of the environment at time
t, and the action just carried out by the agent.
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Empowerment measures the maximum potential information flow, this can
be modelled by the channel capacity (Shannon, 1948) for a discrete memoryless
channel: C(p(s|a)) = maxp(a) I(A;S).

The random variable A represents the distribution of messages being sent
over the channel, and S the distribution of received signals. The channel capacity
is measured as the maximum mutual information taken over all possible input
distributions, p(a), and depends only on p(s|a), which is fixed. One algorithm to
find this maximum is the iterative Blahut-Arimoto algorithm (Blahut, 1972).

Empowerment can be intuitively thought of as a measure of how many ob-
servable modifications an embodied agent can make to his environment, either
immediately, or in the case of n-step empowerment, over a given period of time.

In the case of n-step empowerment, we first construct a compound random
variable of the last n actuations, labelled An

t . We now need to maximise the
mutual information between this variable and the sensor readings at time t+ n,
represented by St+n. Here we consider empowerment as the channel capacity
between these: E = C(p(st+n|ant )) = maxp(an

t )
I(An

t ;St+n).
An agent that maximises its empowerment will position itself in the envi-

ronment in a way as to maximise its options for influencing the environment
(Klyubin et al., 2005a).

2 Empowerment with limited action bandwidth

2.1 Goal

We wanted to introduce a bandwidth constraint into empowerment, specifically
n-step empowerment where an agent must look ahead at possible outcomes for
sequences of actions, and even with a small set of actions these sequences can
become very numerous.

An agent’s empowerment is bounded by that agent’s memory; empowerment
measures the agent’s ability to exert influence over it’s environment and an
agent that can perform only 4 distinct actions can have no more than 2 bits of
empowerment per step. However, there are two factors which normally prevent
empowerment from reaching this bound:

– Noise - A noisy / non-deterministic / stochastic environment means that
from a given state an action has a stochastic mapping to the next state.
This reduces an agent’s control and thus its empowerment.

– Redundancy - Often there are multiple action (or sequences) available which
map from a given state to the same resultant state. This is especially true
when considering multi-step empowerment: e.g Moving North then West, or
moving West then North.

Due to redundancy there are many cases where bandwidth for action se-
quences can be reduced with little or no impact on achievable information flow.
Beyond this there may be scenarios with a favourable trade off between a large
reduction in action bandwidth only resulting in a small reduction in empower-
ment (or utility).

Action Selection: Self-Motivation Paper 2

74



2.2 Scenario

To run tests we constructed a simple scenario; an embodied agent is situated
within a 2-dimensional infinite gridworld and has 4 possible actions in any single
time step. The actions the agent can execute are North, South, East and West
each moving the agent one space into the corresponding cell, provided it is not
occupied by a wall. In the scenario the state of the world is solely the position
of the agent, which is all that is detected by the agent’s sensors.

2.3 Algorithm

The agent to examines all possible sequences for n-step empowerment for small
values of n (typically n < 6) and then selects a subgroup of the available se-
quences to be retained.

To do this we use the information bottleneck method (Tishby et al., 1999).
Having calculated the empowement we have two distributions: p(ant ) is the ca-
pacity achieving distribution of action sequences and p(st+n|ant ) is the channel
that represents the results of an agent’s iteractions with the environment.

We now look for a new “compact” distribution p(g|ant ), where g are groups
of ‘alike’ action sequences with g ∈ G where |G| ≤ |An

t | and the cardinality of
G corresponds to our desired bandwidth limit. A colloquial, though not entirely
accurate, way to think of this is as grouping together action sequences that have
similar outcomes (or represent similar ‘strategies’). The information bottleneck
works by first choosing a cardinality for G and then maximising I(G;St+n) (the
empowerment of the reduced action set) using St+n as a relevance variable.

This results in a conditional distribution p(g|ant ), from which we must derive
a new distribution of our action sequences (with an entropy within the specified
bandwidth limit). In order to end up with a subset of our original action se-
quences to form this new action policy for the agent, we must use an algorithm
to ‘decompose’ the conditional distribution into a new distribution p(ânt ) which
has an entropy within the specified bandwidth limit (and usually contains only
a subset of the original action sequences).

In the spirit of empowerment, for each g we want to select the action se-
quences which are most likely to map to that g (i.e the highest value of p(g|ant )
for the given g) and provide the most towards our empowerment (i.e the high-
est value of I(ant ;St+n)). This results in collapsing strategies to their dominant
action sequence and maximises an agent’s ability to select between strategies.

2.4 Results

Fig. 2 shows three typical outcomes of this algorithm; in this example we have
a bandwidth constraint of 2 bits, operating on sequences of 6 actions. The walls
are represented by patterned grey, the starting position of the agent is the light
center square, and the selected trajectories by the dark lines with a black cell
marking the end location of the sequence. The result that emerges is of interest;
the sequences chosen can immediately be seen to be non-trivial and a brief
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examination reveals that the end points of each sequence each have only a single
sequence (of the available 4,096) that reaches them.

Fig. 2. Typical behaviours where 4 action sequences were selected from 46 possibilities.

In section 2.1 we discussed redundancy as one factor which should be elim-
inated first in order to maintain empowerment whilst reducing bandwidth. If
we extrapolate this process of eliminating trajectories to ‘easier to reach’ states
then it follows that, exactly as in Fig. 2, the last states the agent will retain are
the entirely unique states that have only a single sequence that reaches them.

It appears that choosing to retain a limited number of explored sequences
and this tendency for the agent to value ‘unique’ sequences indicates a first step
towards a solution for extending the sequences beyond what was computationally
possible before and may point to a plausible process for a biological organism to
undertake. We discuss this in section 3.

2.5 Noise induced behaviour modifications

A B C D

Fig. 3. Randomly selected behaviours; 4 steps with a 2 bit bandwidth constraint. A &
B have no noise, C & D have 5% noise per step.

Figures 3 A & B, a 4-step scenario with a bandwidth constraint of 2 bits
corresponding to 4 action sequences, show there is not always a neat division of
the world into what we would probably recognise as the 4 main ‘strategies’ (one
trajectory into each of the 4 rooms). However, there is no pressure for the agent
to do this or to consider the geographical distinctions between states, only for it
to select unique end points.
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However, with the introduction of noise this changes. Figures 3 C & D show
two more randomly selected behaviours from the same scenario but with the
introduction of noise, where each action in the sequence has a 5% probability of
being replaced with a random action. In order to maintain as much empowerment
as possible, the agent must ensure that in attempting one strategy it does not
accidentally employ another, and in this environment that translates to being
‘blown off course’ and adds a drive for a geographical distinction between end
states.

Note that some of the sequences appear to be only 3 steps long. This is a
strategy employed by the agent, and what is actually happening is the agent uses
an action to push against the wall while passing through the doorway, possibly
as a way to minimise the effect of noise.

3 Building long action sequences

The current formulation for n-step empowerment utilises an exhaustive search
of the action space for n − steps. It can be seen that this is a highly unlikely
approach for biological organisms to employ, especially for large values of n and
in rich environments.

We hypothesise, given that for short sequences of actions it is manageable
to cheaply examine all sequences, that we could approach an agent’s bandwidth
divided into two parts. In section 2.3 we evaluated all possible short sequences
in a ‘working’ memory, then retained only a subset for the agent’s ‘long term’
memory according to our bandwidth constraint.

Following the result above from bandwidth-limited empowerment it became
apparent that retaining only a small subset of investigated action sequences lends
itself to the idea of then searching further from the final states of such sequences.

This is obvious when applied to the cases where the bandwidth has been
constrained just enough to retain empowerment but eliminate all redundancy. It
is essentially realising the Markovian nature of such sequence based exploration:
when arriving at a state to explore, how you arrived is not of consequence to
further exploration. The results, however, seem to suggest that even beyond
this point of retained empowerment, where the bandwidth severely limits the
achievable empowerment and selection of sequences, the iterative approach still
produces noteworthy behaviours.

The approach was to set a target length for a sequence, for example 15-
step empowerment, then the problem is broken down in to i iterations of n-step
empowerment where n · i = 15. Standard n-step empowerment is performed, and
then the above presented bandwidth-reduction algorithm is run to reduced the
action set to a small subset. Each of these action sequences is then extended
with n additional steps. These are then again passed through the bandwidth-
reduction algorithm and this repeated a total of i times. If we select n = 5, i = 3
and a bandwidth limit of 4 bits (16 action sequences) then the total sequences
evaluated in our gridworld scenario is reduced from 415 to 33, 792, which is a
search space more than 3 · 104 times smaller.
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Fig. 4. Iteratively built sequences of 15 steps, with a bandwidth constraint of 4 bits.

Figure 4 shows the results of such a scenario with the selected action se-
quences and there are several important aspects to note. Firstly, the agent con-
tinues to reach certain states that are of obvious consequence, most notably the
4 cardinal directions, but also over half of the furthest reachable corner points.
Furthermore the pattern of trajectories has a somehwat ‘fractal’ nature and ap-
pears to divide the search space up systematically. These results are of interest
because these states and behaviours are far beyond the horizon of a single itera-
tion of standard n-step empowerment. Space does not permit us to give details
but initial results also indicate that interesting locations of the environment,
such as door and bridges, are also handled by such iterative sequence building.

4 Discussion

We have identified several challenges to the recently introduced concept of em-
powerment which endows an agent’s environmental niche with a concept distin-
guishing desirable from less desirable states. Empowerment essentially measures
the range in environmental change imprinted by possible action sequences whose
number grows exponentially with the length of the sequence. It is virtually im-
possible to compute it algorithmically for longer sequences, and, likewise, it is
implausible that any adaptive or evolutionary natural process would be able to
indirectly map this whole range.

Therefore, here we have, consistently with the information-theoretic spirit of
our study, applied informational limits on the richness of the action sequences
that generate the empowerment. In doing so, we found that: 1. the information
bottleneck reduces redundant sequences; 2. in conjunction with the complexity
reduction through the collapse of action sequences, particularly “meaningful”
action sequences that explore important features of the environment, e.g. prin-
cipal directions, doors and bridges, are retained, and finally, that significantly
longer action sequences than before can be feasibly handled. This in itself already
suggests insights for understanding the possible emergence of useful long-term
behavioural patterns. Note that in this study we have relinquished the com-
putation of empowerment as measure for the desirability of states in favour of
filtering out desirable action patterns.
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Action Selection: Self-Motivation Discussion of Paper 2

4.5 Paper 2: Discussion

4.5.1 Iterative Action Sequence Extension

The paper introduced an iterative process for extending the empowerment horizon which, from

a practical perspective, is appealing in that it drastically reduces the computation needed for

empowerment calculations to more distant horizons. This allowed us to investigate scenarios

that were previously not viable due to the computational requirements.

In order to achieve this, I introduced a ‘bandwidth constraint’ whereby the agent can con-

sider the full richness of options over a few time steps, before retaining only a subset of them

as interesting, from which it can then extend the horizon to investigate more deeply. These

concepts are similar to the idea of having a ‘working memory’ and a ‘long-term memory’.

From a theoretical perspective it is interesting that when an agent has to think about re-

taining only a handful of possible initial action sequences from which to then iteratively build

on, that a concept of ‘sub-goals’ can be seen to emerge. Essentially, because the agent has to

discard all but a few sequences, it tends to select sequences that are bottleneck points between

two separate areas of the state space.

Unfortunately, the algorithm falls short of doing these sub-goals justice, in that due to

the absence of any sort of ongoing strategic differentiation (beyond an action sequence being

unique, discussed below) action sequences that start off different initially can later converge.

This leads to multiple, different, action sequences taking different routes to the same final

state.

Whilst identifying different routes to a goal is actually an interesting emerging phenom-

ena, in this instance it would be more appealing (given the limited bandwidth) to instead

retain additional sequences that are more strategically differentiated from one another. In the

scenarios from the paper, strategic differentiation would be equivalent to the final states being

geographically differentiated.
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Figure 4.1: Partial Fig. 4 from Paper 2, showing that an iteratively built sequences of 15 steps, with a
bandwidth constraint of 4 bits. Note that there are sets of sequences where the end states are very close to
one another, meaning that the collective empowerment of all these states is not as high as it may be were
these states more distant from one another.

When a higher bandwidth was available, meaning less compression and the retention of

more available action sequences, then alternative paths to similar states would be appealing.

Looking forward, I established that this iterative approach was promising and potentially

powerful, but required an improved method of selecting strategically differentiated states in

order to maximise the collective empowerment of the states reachable via the retained action

sequences.

Collective empowerment is the concept of what the aggregate empowerment would be

from multiple positions, measured as a union of the reachable states. It is not actively used,

and thus lacks a formal definition, but is a useful conceptual utility to use in analysis and

discussion.

Returning to the iterative empowerment approach, in simple deterministic scenarios I

wanted to select action sequences that took me to a set of states that, with additional time

steps, would allow me to reach a greater set of final states. If two action sequences retained

by the agent are geographically nearby then they would share more reachable future with one

another, and thus not have such a high collective empowerment. This can be seen in Fig. 4.1.
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4.5.2 Redundancy and Unique Sequences

In order to select the most empowering sequences, I applied the information bottleneck method

to select a subset of action sequences according to a specified bandwidth, given in bits. The

information bottleneck method essentially selects the actions that have the highest mutual in-

formation, or the largest ‘contribution’ towards the channel capacity. This seems an intuitive

approach but, as seen in the paper, it leads to an interesting but non-optimal (for our goals)

behaviour.

Informally, and in the limited context of this deterministic gridworld scenario, we can

imagine each state in the world contributes an equal quantity of empowerment toward the

total empowerment value. From there, if we were to assess the empowerment contribution

of an action sequence, then each sequence would provide a share of empowerment inversely

proportional to the number of other action sequences leading to the same final state.

This leads to some appealing behaviours, such as where the cardinality of retainable action

sequences is equal to the number of possible end states, where redundant action sequences

are removed and total empowerment maintained. However, when the bandwidth for retaining

action sequences is further reduced, such that not all end states can continue to be reachable

from a retained action sequence, then the algorithm discards action sequences starting with

those with the most number of other action sequences that lead to the same end state. The

final action sequences to be retained are therefore those which are entirely unique, in that no

other action sequence reaches the same end state.

This has the effect of preferring actions sequences that lead to ‘extremes’ (geographically

or otherwise, depending on the scenario), which inherently has some shortcomings. States

that are more ‘central’ are not represented, which has an effect of narrowing the the strategic

breadth of the set of action sequences; this specific effect is offset with iterative extensions

where some action sequences then turn back towards these centre states.
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A B C D

Figure 4.2: Fig. 3 from the paper, showing a set of selected behaviours, highlighting the effect of noise.
The agent was given 4 time steps with a 2 bit bandwidth constraint. A & B have no noise, C & D have 5%
noise per step.

Secondly, the algorithm may choose multiple sequences that lead to unique end states, but

these states may not be very different strategically - a point discussed in Section 4.5.1 above.

4.5.3 Noise

The presence of noise has some interesting effects on results of this approach; one might expect

that introducing noise into a scenario would adversely effect results. However, if we again

look at collective empowerment, then the presence of noise actually improves performance;

this comes about because empowerment handles stochasticity ‘natively’ and proves robust to

the presence of noise. In order to prevent that noise from impairing empowerment it selects

multiple action sequences that are least likely to end up at the same state, which can be seen

in Fig. 4.2, repeated from the paper.

If we look at this in terms of a channel, as per Shannon, then it continues to make sense. In

selecting an alphabet, where each signal is a short sequence of primary ‘symbols’, for commu-

nication over a noisy channel, it seems clear that maximally distancing the alphabet sequences

in terms of similarity is likely an optimal way to avoid noise turning one valid message into

another.

The result of sending one each of the 4 available actions through the 4 available doors

seems to represent a Schelling point (Schelling, 1960) - a natural or intuitive solution that

humans will converge on.
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Furthermore, empowerment demonstrates an additional, unexpected, behaviour in a noisy

environment, that aligns with its principle of maintaining as much control as possible. When

passing through doorways in a gridworld, the agent would commonly choose to deliberately

‘nudge’ against a doorway. If such a move went as intended (i.e. noise did not replace the

intended action with another) then the agent would remain in the same place, but if the move

was affected by the noise then there was an increased chance that the desired state would still

be reached.

In the scenario presented in the paper, there is a 5% chance per movement that the intended

action is replaced with a randomly selected action from those available. This would sometimes

(25% of the time, given the 4 possible actions) be the same action as intended, meaning

that the chance of the action being replaced with an alternative is 3.25%. However, when in

the doorway then there is a chance the replacement action selected is the opposite cardinal

direction (e.g. north instead of south, or east instead of west) which would also push against

the door frame and result in the intended state still being reached. This behaviour thereby

reduces the effective noise rate from 3.25% to 2.5%.

This result was completely unanticipated, but demonstrates that empowerment is capable

of producing non-trivial behaviours, which adapt to circumstances, in a general fashion.

4.5.4 Conclusions and Direction

Essentially, the approach presented in the paper produces self-motivated action selection, but

does not do a sufficient job of producing a strategically diverse selection of actions (to maximise

future collective empowerment). Furthermore, whilst iterative extension of sequences in a

fashion mimicking ‘working memory’ and ‘long-term memory’ allows for significantly deeper

planning it amplifies the issue of a lack of strategic differentiation.

Those results that included noise demonstrated that empowerment is robust to noise, and

also induced an improvement in collective empowerment. This result seeming to be a Schelling
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point made it a particularly attractive behaviour, given my motivation. I wanted to find a way

to induce this type of behaviour in a more intuitive fashion which wouldn’t introduce artificial

noise into an environment, which negatively impacts the utility (as empowerment has to also

produce behaviours to minimise the effect of that noise).

From here my work focused on improving on the methodology that produced self-motivated

action sequence selection, by way of introducing some aspect of strategic planning with-

out compromising the generality or robustness to stochasticity provided by an information-

theoretic empowerment based approach.
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Action Selection: Strategies
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Tactics involve calculations that can tax the human brain, but when you boil them down, they

are actually the simplest part of chess and are almost trivial compared to strategy.

— Kasparov (2010)

5.1 Paper 3: Introduction

Paper 2 introduced a method of drastically extending the empowerment horizon, and intro-

duced a form of compression which allowed the empowerment framework to extend to actions.

However, whilst I could evaluate how much of a contribution towards my current empow-

erment an action was providing, I had no method of evaluating how empowering an action

sequence would be as a measure to whether that action was preferable to another. The ability

to measure the contribution of empowerment reduced essentially to uniqueness, which drove

interesting behaviours and piqued my interest, but which was not optimal at driving behaviour.

Paper 3 was focused on improving this self-motivated action evaluation to drive viable

action sequence policies (in terms of future utility), whilst maintaining the ability to use an

iteratively extended horizon model. As part of this, I was motivated to understand the impact

that noise was having on the results, as it demonstrated a capacity to help the agent under-

stand that certain future states were ‘nearby’ one another (in the examples I addressed, this

translated neatly to being geographically nearby), but in an uncontrolled fashion.

87



General Self-Motivation and Strategy Identification:
Case Studies based on Sokoban and Pac-Man

Tom Anthony, Daniel Polani, Chrystopher L. Nehaniv

Abstract—We use empowerment, a recently introduced biologi-
cally inspired measure, to allow an AI player to assign utility val-
ues to potential future states within a previously un-encountered
game without requiring explicit specification of goal states. We
further introduce strategic affinity, a method of grouping action
sequences together to form ‘strategies’, by examining the overlap
in the sets of potential future states following each such action
sequence. Secondly, we demonstrate an information-theoretic
method of predicting future utility. Combining these methods, we
extend empowerment to soft-horizon empowerment which enables
the player to select a repertoire of action sequences that aim to
maintain anticipated utility.

We show how this method provides a proto-heuristic for non-
terminal states prior to specifying concrete game goals, and
propose it as a principled candidate model for “intuitive” strategy
selection, in line with other recent work on “self-motivated agent
behaviour”. We demonstrate that the technique, despite being
generically defined independently of scenario, performs quite
well in relatively disparate scenarios, such as a Sokoban-inspired
box-pushing scenario and in a Pac-Man-inspired predator game,
suggesting novel and principle-based candidate routes towards
more general game-playing algorithms.

Index Terms—Artificial intelligence (AI), information theory,
Games

I. INTRODUCTION

A. Motivation

“Act always so as to increase the number of choices.”
- Heinz von Foerster

In many games, including some still largely inaccessible
to computer techniques, there exists for many states of that
game a subset of actions that can be considered ”preferable”
by default. Sometimes it is easy to identify these actions, but
for many more complex games it can be extremely difficult.
While in games such as Chess algorithmic descriptions of the
quality of a situation have led to powerful computer strategies,
the task of capturing the intuitive concept of the beauty of
a position, often believed to guide human master players,
remains elusive (1). One is unable to provide precise rules for
a beauty heuristic, which would need to tally with the ability
of master Chess players to appreciate the structural aspects of
a game position, and from this identify important states and
moves.

Whilst there exist exceedingly successful algorithmic so-
lutions for some games, much of the success derives from
a combination of computing power with human explicitly

T.Anthony, D. Polani and C.L.Nehaniv are with the Adaptive
Systems Research Group, School of Computer Science, University
of Hertfordshire, Hatfield, Herts, AL10 9AB, U.K. e-mail:
(research@tomanthony.co.uk,{D.Polani,C.L.Nehaniv}@herts.ac.uk).

designed heuristics. In this unsatisfactory situation, the core
challenge for AI remains: can we produce algorithms able
to identify relevant structural patterns in a more general way
which would apply to a broader collection of games and
puzzles? Can we create an AI player motivated to identify
these structures itself?

Game tree search algorithms were proposed to identify good
actions or moves for a given state (2; 3; 4). However, it
has since been felt that tree search algorithms, with all their
practical successes, make a limited contribution in moving us
towards ‘intelligence’ that could be interpreted as plausible
from the point of view of human-like cognition; by using
brute-force computation the algorithms sidestep the neces-
sity of identifying how ‘beauty’ and related structural cues
would be detected (or constructed) by an artificial agent. John
McCarthy predicted this shortcoming could be overcome by
brute-force for Chess but not yet Go 1 and criticising that with
Chess the solutions were simply ‘substituting large amounts
of computation for understanding’ (5). Recently, games such
as Arimaa were created to challenge these shortcomings (6)
and provoke research to find alternative methods. Arimaa is a
game played with Chess pieces, on a Chess board, and with
simple rules, but normally a player with only a few of games
experience can beat the best computer AIs.

At a conceptual level, tree search algorithms generally rely
on the searching exhaustively to a certain depth. While with
various optimizations the search will not, in reality, be an
exhaustive search, the approach is unlikely to be mimicking a
human approach. Furthermore, at leaf nodes of such a search
the state is usually evaluated with heuristics hand-crafted by
the AI designer for the specific game or problem.

These approaches do not indicate how higher-level concepts
might be extracted from simple rules of the game, or how
structured strategies might be identified by a human. For
example, given a Chess position a human might consider two
strategies at a given moment (e.g. ‘attack opponent queen’
or ‘defend my king’) before considering which moves in
particular to use to enact the chosen strategy. Tree search
approaches do not operate on a level which either presupposes
or provides conceptual game structures (the human-made AI
heuristics may, of course, incorporate them, but this is then an
explicit proviso by the human AI designer).

More recently, Monte Carlo Tree Search (MCTS) algorithms
(7) have been developed which overcome a number of the
limitations of the more traditional tree search approaches.

1Recent progress in Go-playing AI may render McCarthy’s pessimistic
prediction concerning performance moot, but, the qualitative criticism stands.
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MCTS algorithms represent an important breakthrough in
themselves, and lead us to a better understanding of tree
searching. However, whilst MCTS has significantly extended
the potential ability of tree search algorithms, it remains
limited by similar conceptual constraints as previous tree
search methods.

In the present paper we propose a model that we suggest
is more cognitively plausible and yet also provides first steps
towards novel methods which could help address the weak-
nesses of tree search (and may be used in alongside them).
The methods we present have arisen from a different line of
thought than MCTS and tree search in general. As this is - to
our knowledge - the first application of this train of thought
to games, at this early stage it is not intended to out-compete
state-of-the-art approaches in terms of performance, but rather
to develop qualitatively different, alternative approaches which
with additional research may help to improve our understand-
ing and approach to game playing AIs.

The model we propose stems from cognitive and biological
considerations, and for this purpose we adopt the perspective
of intelligence arising from situatedness and embodiment (8)
and view the AI player as an agent that is ‘embodied’ within
an environment (9; 10). The agent’s actuator options will
correspond to the legal moves within the game, and its sensors
reflect the state of the game (those parts available to that player
according to the relevant rules).

Furthermore, we create an incentive towards structured
decisions by imposing a cost on the search/decision process;
this is closely related to the concept of bounded rationality
(11; 12) which deals with decision making when working
with limited information, cognitive capacity, and time and
is used as a model of human decision-making in economics
(13). As natural cost functionals for decision processes, we use
information-theoretical quantities; there is a significant body
of evidence that such quantities have not only a prominent
role in learning theory (14; 15), but also that various aspects
of biological cognition can be successfully described and
understood by assuming informational processing costs being
imposed on organisms (16; 17; 18; 19; 20; 21; 22).

Thus, our adoption of an information-theoretic framework
in the context of decisions in games is plausible not only
from a learning- and decision-theoretic point of view, but also
from the perspective of a biologically oriented high-level view
of cognition where pay-offs conferred by a decision must be
traded off with the informational effort of achieving them.

Here, more specifically, we combine this “thinking in
informational constraints” with empowerment (23; 24), an-
other information-theoretic concept generalising the notion
of ‘mobility’ (25) or ‘options’ available to an agent in its
environment. Empowerment can be intuitively thought of as a
measure of how many observable changes an embodied agent,
starting from its current state, can make to his environment via
its subsequent actions. Essentially, it is a measure of mobility
that is generalized as it can directly incorporate randomness
as well as incomplete information without any changes to the
formalism. If noise causes actions to produce less controllable
results, this is detected via a lower empowerment value.

This allows one to treat stochastic systems, systems with in-

complete information, dynamical systems, games of complete
information and other systems in essentially the same coherent
way (26).

In game terms, this above technique could be thought of
as a type of ‘proto-heuristic’ that transcends specific game
dynamics and works as a default strategy to be applied,
before the game-specific mechanics are refined. This could
prove useful either independently or as heuristics from genesis
which could be used to guide an AI players behaviour in
a new game whilst game-specific heuristics were developed
during play. In the present paper we do not go as far as
exploring the idea of building game-specific heuristics on top
of the proto-heuristics, but focus on deploying the method
to generate useful behaviour primitives. We demonstrate the
operation of proto-heuristics in two game scenarios and show
that intuitively ‘sensible’ behaviours are selected.

B. Information Theory

To develop the method, we require Shannon’s theory of
information for which we give a very basic introduction. To
begin we introduce entropy, which is a measure of uncertainty;
the entropy of a variable A is defined as:

H(A) = −
∑

a∈A
p(a) log p(a). (1)

where p(a) is the probability that A is in the state a. The
logarithm can be taken to any chosen base; in our paper we
always use 2, and the entropy is thus measured in bits. If
S is another random variable jointly distributed with A, the
conditional entropy is:

H(S|A) = −
∑

a∈A
p(a)

∑

s∈S
p(s|a) log p(s|a). (2)

This measures the remaining uncertainty about the value of
S, if we know the value of A. This also allows us to measure
the mutual information between two random variables:

I(A;S) = H(S)−H(S|A)

=
∑

a∈A

∑

s∈S
p(a, s) log

(
p(a, s)

p(a) p(s)

)
(3)

Mutual information can be thought of as the reduction in
uncertainty about one random variable, given that we know
the value of the other. In this paper we will also examine the
mutual information between a particular value of a random
variable with another random variable:

I(a;S) = p(a)
∑

s∈S
p(s|a) log

(
p(a, s)

p(a) p(s)

)
. (4)

This can be thought of as the ‘contribution’ by a specific
action a to the total mutual information, and will be useful for
selecting a subset of A that maximises mutual information.

Finally, we introduce the information-theoretic concept of
the channel capacity (27). It is defined as:

C(p(s|a)) = max
p(a)

I(A;S). (5)
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Fig. 1: Bayesian network representation of the perception-
action loop.

Channel capacity is measured as the maximum mutual
information taken over all possible input (action) distributions,
p(a), and depends only on p(s|a), which is fixed for a
given starting state st. This corresponds to potential maximum
amount of information about its prior actions an agent can later
observe. One algorithm that can be used to find this maximum
is the iterative Blahut-Arimoto algorithm (28).

C. Empowerment

Empowerment, based on the information-theoretic
perception-action loop formalism introduced in (24, 29), is a
quantity characterizing the “sensorimotor adaptedness” of an
agent in its environment. It quantifies the ability of situated
agents to influence their environments via their actions.

For the purposes of puzzle-solving and game-play, we
translate the setting as follows: consider the player carrying
out a move as a sender sending a message, and observing
the subsequent state on the board as receiving the response
to this message. In terms of Shannon information, when
the agent performs an action, it ‘injects’ information into
the environment, and subsequently the agent re-acquires part
of this information from the environment via its sensors.
Note that in the present paper, we discuss only puzzles and
games with perfect information, but the formalism carries over
directly to the case of imperfect information game.

For the scenarios relevant in this paper, we will employ
a slightly simplified version of the empowerment formalism.
The player (agent) is represented by a Bayesian network,
shown in Fig. 1, with the random variable St the state of the
game (as per the player’s sensors), and At a random variable
denoting the action at time t.

As mentioned above, we consider the communication chan-
nel formed by the action, state pair At, St+1 and compute
the channel capacity, i.e. the maximum possible Shannon
information that one action At can ‘inject’ or store into
the subsequent state St+1. We define empowerment as this
‘motori-sensor’ channel capacity:

E = C(p(s|a)) = max
p(a)

I(A;S). (6)

If we consider the game as homogenous in time, we can
for simplicity ignore the time index, and empowerment only
depends on the actual state st.

Instead of a single action, it makes often sense to consider
an action sequence of length n > 1 and its effect on the state.
In this case, which we will use throughout most of the paper,
we will speak about n-step empowerment. Formally, we first
construct a compound random variable of the next n actuations
(At, At+1, At+2, ... , At+n) = An

t . We now maximize the
mutual information between this variable and the state at time

t+n, represented by St+n. n-step empowerment is the channel
capacity between these:

E = C(p(st+n|ant )) = max
p(ant )

I(An
t ;St+n). (7)

It should be noted that E depends on St (the current state
of the world) but to keep the notation unburdened, we will
always assume conditioning on the current state St implicitly
and not explicitly write it.

In the present paper we will present two extensions to the
empowerment formalism which are of particular relevance
for puzzles and games. The first, discussed in section IV, is
impoverished empowerment; it sets constraints on the number
of action sequences an agent can retain, and was originally
introduced in (30). The second, presented in section VI,
introduces the concept of a soft horizon for empowerment
which allows an agent to use a ‘hazy’ prediction of the future
to inform action selection. Combined these present a model
of resource limitation on the actions that can be retained
in memory by the player and corresponds to formulating a
‘bounded rationality’ constraint on empowerment fully inside
the framework of information theory.

Prior to the present paper, and (30), empowerment as a
measure has solely been used as a utility applied to states
but in the present paper we introduce the notion of how
empowered an action is. In this case empowered corresponds
to how much a particular action of action sequence contributes
towards the empowerment of a state.

Note that we use the Bayesian network formalism in its
causal interpretation (31), as the action nodes have a well-
defined interventional interpretation — the player can select
its action freely. The model is a simpler version of a more
generic Bayesian network model of the perception-action
loop where the state of the game is not directly accessible,
and only partially observable via sensors. The empowerment
formalism generalizes naturally to this more general case of
partial observability, and can be considered both in the case
where the starting state is externally considered (“objective”
empowerment landscape) or where it can only be internally ob-
served (i.e. via context, i.e. distinguishing states by observing
sensor sequences for which empowerment values will differ
see 32; 26). In fact, the empowerment formalism could be
applied without change to the more generic Predictive State
Representation formalism (PSR, see 33)2.

Here, however, to develop the formalism for self-motivation
and strategy identification, we do not burden ourselves with
issues of context or state reconstruction, and we therefore
concentrate on the case where the state is fully observable.
Furthermore, we are not concerned here with with learning
the dynamics model itself, but assume that the model is given
(which is, in the game case, typically true for one-player
games, and for two-player games one can either use a given
opponent model or use, again, the empowerment principle to
propose a model for the opponent).

2Note that this relies on the actions in the entries of the system-dynamics
matrix as being interpreted interventionally (i.e. as freely choosable by the
agent) in PSR.
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Previous results using empowerment in Maze, Box Pushing,
and Pole Balancing scenarios demonstrate that empowerment
is able to differentiate the preferable (in terms of mobility)
states from the less preferable ones (24), correlates strongly
with the graph-theoretic measure of closeness centrality (34)
in compatible scenarios, and successfully identified the pole
being perfectly upright as amongst the most empowered states
in various balancing scenarios (26; 35).

II. RELATED WORK

The idea that artifical agents could derive “appropriate”
behaviour from their interaction with the environment was
implicit already in early work in cybernetics. However, con-
crete initiatives on how to make that notion precise arose as
a consequence of renewed interest in neural controllers, for
instance, in the first modern model of artificial curiosity (36).
The idea that AI could be applied to generic scenarios with
the help of intrinsic motivation models has led to a number of
approaches in the last decade. The autotelic principle aims at
identifying mechanisms which balance skill and challenge as a
mechanism for an agent to improve intrinsically (37). Concrete
realizations of that are incarnated as learning progress, where
the progress in acquiring a model of the environment is
considered as the quantity to maximize (38); Schmidhuber’s
compression progress framework (39) which bases its mea-
sure directly on the progress in compression efficiency in a
Kolmogorov-type framework as actions and observations of
an agent proceed through time, and which has been extended
towards Reinforcement Learning-like frameworks (AIXI, 40).

In (41), the model of intrinsic rewards emerging from
saliency detectors is adopted (which, in turn, may arise
in biological agents from evolutionary considerations), and
the infotaxis exploration model (considered in a biologically
relevant scenario) uses (Shannon) information gain about a
navigation target as driver for its exploratory behaviour (42).

The notion of predictive information is used in (43) to drive
the behaviour of autonomous robots; it is an information-
theoretic generalization of the homeokinesis principle as to
maintain a predictable, but rich (i.e. non-trivial) future be-
haviour. An overview over a number of principles important
for intrinsic motivation behaviours can be found in (44).

Most of the above principles for intrinsic motivation are
process-oriented, i.e. they depend both on the environment as
well as on the trajectory of the agent through the environment.
The latter, in turn, depends on the learning model. In the case
of compression progress and AIXI, the prior assumptions are
relatively minimal, namely a Turing-complete computational
model, but true independence from the learning model is only
achieved in the asymptotic case.

Infotaxis, as an explorational model, only relies on a model
of the environment to induce a locally information-optimal
behaviour. Similarly, empowerment does not require any as-
sumptions about learning models; it is not process-oriented,
but state-oriented: assume a particular world and agent em-
bodiment, and assume a given empowerment horizon; then,
a given state in the world has a well-defined empowerment
value, independently of how the agent travels through the

world. In particular, empowerment is emphatically not an
world exploration model. Though there are some exploration
algorithms for model building which are suitable to be plugged
into the empowerment computation, the model acquisition
phase is conceptually disparate from the empowerment prin-
ciple at present and we are not aware of a combined treatment
of both in a single coherent framework.

In this paper, we generally assume the world and world
dynamics to be essentially known. Similar to the intrinsic
reward principle by (41), there is the core assumption of
an evolutionary “background story” for the relevance of em-
powerment for a biological organism, but, different from it,
empowerment does not assume dedicated saliency detectors,
but works on top of the regular perception-action cycle.

III. GENERAL GAME PLAYING

In summary, the scenarios reviewed above indicate that
empowerment is able to provide a default utility which 1.
derives only from the structure of the problem itself and not
from an external reward 2. identifies the desirability of states
in way that matches intuition and 3. carries over between
scenarios of apparently different character.

This makes it a promising candidate to assign a proto-utility
to states of a given system, even before a utility (and a goal)
have been explicitly specified.

Importantly, empowerment is more than a naive mobility
measure; in calculating empowerment for a given state, it
incorporates the structure and dynamics of the agent’s world
and embodiment. In an abstract game scenario, it would be
in principle possible to attribute arbitrary labels to actions in
different states. However, in biology, there is some evidence
that available actions of an organism evolved to match the
ecological niche of the organism and simplify its interaction
with its environment (8; 45). We propose that a similar match
of action set and game dynamics may also be typical for games
that humans find attractive to play (similar to the issue of
predictability of games (46)); this hypothesis is the basis for
us transferring the empowerment formalism from biological
models to game-playing.

We believe that empowerment can help move towards a
method that could be used for game playing in general 3, there
are three primary issues we must first address:

1) There are reasons to suspect that the ability of biological
cognition to structure its decision-making process is
driven by the necessity to economize its information
processing (48). In other words, we postulate that suit-
able bounded rationality assumptions are necessary to
generate structured behaviour. We will represent these
assumptions entirely in terms of the language of our
information-theoretic framework, in terms of limited
‘informational bandwidth’ of actions. For games this
cognitive cost to processing the environment is espe-
cially true where we desire an AI player to play in real-
time or at least as fast as a human player.

3The problem of “game playing in general” might include, but is not limited
to the Stanford AAAI General Game Playing competition (47)
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2) For n-step empowerment to be effective in most sce-
narios, including games, the reliance on a strict horizon
depth is problematic and needs to be addressed.

3) The action policy generated by empowerment should
identify that different states have different utilities. Naive
mobility-like empowerment does not account for the
fact that being able to reach some states can be more
advantageous that being able to reach others.

In sections IV we will address the first issue. As for issue
2 and 3, it turns out that they are very related to one another;
they will be discussed further in sections V and VI.

Finally, in section VII we will bring together all consider-
ations and apply it to a selection of game scenarios.

IV. IMPOVERISHED EMPOWERMENT

In the spirit of bounded rationality outlined above, we
modified the n-step empowerment algorithm to introduce
a constraint on the bandwidth of action sequences that an
agent could retain. We call this modified concept ‘impover-
ished empowerment’ (30). This allows us to identify possible
favourable trade-offs, where a large reduction in the bandwidth
of action sequences has little impact of empowerment.

While in the original empowerment definition, all possible
action sequences leading to various states are considered, in
impoverished empowerment, one considers only a strongly
restricted set of action sequences. Therefore, we need to
identify action sequences which are most empowering, i.e
those contributing most to the agent’s empowerment; how one
action sequence can be more empowering than another is a
function of the action sequence’s stochasticity (does it usually
get where it wanted to go), and whether other action sequences
lead to the same state (are there other ways to get there).

A. Scenario

To investigate the impoverished empowerment concept we
revisited the scenario from (24); a player is situated within a 2-
dimensional infinite gridworld and can select one of 4 actions
(North, South, East, and West) in any single time step. Each
action moves the agent by one space into the corresponding
cell, provided it is not occupied by a wall. The state of the
world is completely determined by the position of the agent.

B. Impoverished Empowerment Algorithm

This bandwidth reduction works by clustering the available
action sequences together into a number of groups, from which
a single representative action sequence is then selected. The
selected action sequences then form a reduced set of action
sequences, for which we can calculate the empowerment.

Stage 1
Compute the empowerment in the conventional way, obtain-

ing a empowerment-maximizing probability distribution p(ant )
for all n-step action sequences a (typically with n < 6).

Having calculated the empowerment we have two distribu-
tions: p(ant ) is the capacity achieving distribution of action
sequences and p(st+n|ant ) is the channel that represents the
results of an agent’s interactions with the environment. For
conciseness we will write A to represent action sequences.

Stage 2
In traditional empowerment computation, p(ant ) is retained

for all n-step sequences a. Here, however, we assume a
bandwidth limitation on how many such action sequences can
be retained. Instead of ‘remembering’ p(ant ) for all action
sequences a, we impoverish p(ant ). i.e. we are going to ‘thin
down’ the action sequences to the desired bandwidth limit.

To stay entirely in the information-theoretic framework, we
employ the so-called information bottleneck method (49; 50).
Here, one assumes that the probability p(st+n|ant ) is given,
meaning you need a model of what will be possible outcomes
for a given action by a player in a given state. In single player
games this is easily determined, whereas in multiplayer games
we need a model of the other players (we discuss this more
in section IX-A).

We start by setting our designed bandwidth limit by select-
ing a cardinality for a variable G where |G| ≤ |An

t |; we now
wish to find a distribution p(g|ant ), where g is a group of
action sequences with g ∈ G.

The information bottleneck algorithm (see appendix B) can
be used to produce this mapping, using the original channel
as an input. It acts to minimise I(G;An

t ) while keeping
I(St+n;G) constant; it can be thought of ‘squeezing’ the
information An

t shares with St+n though the new variable
G to maximize the information An

t shares with St+n whilst
discarding the irrelevant aspects. By setting a cardinality for
G and then running the information bottleneck algorithm we
obtain a conditional distribution p(g|ant ), which acts as a
mapping of actions to groups.

The result of this is action sequences that usually lead to
identical states are clustered together to into groups. However,
if the number of groups is less than the number of observed
states then beyond the identical state action sequences, the
grouping is arbitrary, as seen in Fig. 2. This is because there
is nothing to imply any relation between states, be it spatial
or otherwise - states are only consistently grouped with others
that lead to the same state.

Contrary to what might be expected, introducing noise into
the environment actually improves the clustering of actions to
those that are more ‘similar’ (in this case spatially). This is
due to the possibility to be ‘blown off course’, meaning the
agent sometimes ends up not in the expected outcome state but
in a nearby one which results in a slight overlap of outcome
states between similar action sequences. However, it is clear
that relying on noise for such a result is not ideal and a better
solution to this problem is introduced in section VI.

Stage 3
Because our aim is to select a subset of our original action

sequences to form the new action policy for the agent, we must
use an algorithm to ‘decompose’ this conditional distribution
p(g|ant ) into a new distribution of action sequences, which has
an entropy within the specified bandwidth limit.

We wish to maximize empowerment, so for each g we
select the action sequence which provides the most towards
our empowerment (i.e. the highest value of I(ant ;St+n|g)).
However, when selecting a representative action sequence for
a given g we must consider p(g|ant ) (i.e. does this action
sequence truly represent this group) so we weight on that;
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Fig. 2: Visualization of action sequence grouping using Im-
poverished Empowerment in an empty gridworld with 2-steps;
each two character combination (e.g. NW) indicates a 2-
step action sequence that leads to that cell from the center
cell. Lighter lines represent the grid cells, darker lines the
groupings.

Fig. 3: Typical behaviours where 4 action sequences were
selected from 46 possibilities. The agent’s starting location
is shown in green, and its various final locations in pink.

however in most cases the mapping between g and ant is a
hard partitioning so this is not normally important. This results
in collapsing groups to their ‘dominant’ action sequence.

C. Impoverishment Results

Figure 3 shows three typical outcomes of this algorithm;
in this example we have a bandwidth constraint of 2 bits
corresponding to 4 action sequences, operating on sequences
with a length of 6 actions; this is a reduction of 46 = 4096
action sequences down to 4. The walls are represented by
black, the starting position of the agent is the green center
square, and the selected trajectories by the thin arrowed lines
with a pink cell marking the end location of the sequence.
The result that emerges consistently for different starting
states is a set of ‘skeleton’ action sequences set extending
into the state space around the agent. In particular, note that
stepping through the doorway which intuitively constitutes an
environmental feature of particular salient interest is very often
found amongst the 4 action sequences.

Inspection reveals that a characteristic feature of the se-
quences surviving the impoverishment is the end points of
each sequence usually each have a single unique sequence (of
the available 46) that reaches them.

This can be understood by the following considerations: In
order to maintain empowerment whilst reducing bandwidth,
the most effective way is to eliminate equivalent actions first
since these ‘waste’ action bandwidth without providing a
richer set of end states. States reachable by only one action
sequence are therefore advantageous to retain during impov-
erishment; in Fig. 3, the last action sequences the agent will
retain are those leading to states that have only a single unique
sequence that reaches them. This is a consequence of selecting

the action from each group by I(ant ;St+n), and may or may
not be desirable; however, in the soft-horizon empowerment
model to follow we will see this result disappears.

V. THE HORIZON

Identifying the correct value for n, for n-step empowerment
(i.e. the empowerment horizon depth) is critical for being able
to make good use of empowerment in an unknown scenario.
A value of n which is too small can mean that states are not
correctly differentiated from one another as some options lie
beyond the agents horizon. By contrast a value of n which is
too large (given the size of the world) can allow the agent to
believe all states are equally empowered (30).

Furthermore, it is unlikely that a static value of n would be
suitable in many non-trivial scenarios (where different parts
of the scenario require different search horizons), and having
a ‘hard’ horizon compounds this.

A. Softening the horizon

We understand intuitively that, when planning ahead in
a game, a human player does not employ a hard horizon,
but instead probably examines some moves ahead precisely,
and beyond that has a somewhat hazy prediction of likely
outcomes.

In the soft-horizon empowerment model we use a similar
‘softening’ of the horizon, and demonstrate how it also helps
identify relationships between action sequences which allows
the previously presented clustering process to operate more
effectively. It allows us to group sets of action sequences
together into ‘alike’ sequences (determined by the overlap in
their potential future states), with the resulting groups of action
sequences representing ‘strategies’ . This will be shown later
to be useful for making complex puzzles easier to manage for
agents. Furthermore, we will show that this horizon softening
can help to estimate any ongoing utility we may have in future
states, having followed an action sequence. We acknowledge
that some future states may be more ‘empowered’ than others
(i.e. lead on to states with more empowerment).

VI. ‘SOFT-HORIZON’ EMPOWERMENT

Soft-horizon empowerment is an extension of the impov-
erished empowerment model and provides two significant
improvements: the clustering of action sequences into groups
is enhanced such that the clusters formed represent strategies,
and it allows an agent to roughly forecast future empower-
ment following an action sequence. We will show that these
features also suggest a solution to having to pre-determine the
appropriate horizon value, n, for a given scenario.

A. Split the horizon

Again, we designate a set of actions A, which an agent can
select from in any given time step. For convenience we label
the number of possible actions in any time step, |A|, as c.

We form all possible action sequences of length n, repre-
senting all possible action ‘trajectories’ a player could take in
n time steps, such that we have cn trajectories.
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From here, we can imagine a set of cn possible states the
agent arrived in corresponding to the trajectory the agent took,
St+n. It is likely that there are less than cn unique states,
because some trajectories are likely commutative, the game
world is Markovian and also because the world is possibly
stochastic, but for now we proceed on the assumption that cn

trajectories leads to cn states (we show how to optimize this
in section (30)).

Next, we consider from each of these cn states what the
player could do in an additional m time steps, using the same
action set as previously.

We now have for every original trajectory cn, a set of cm

possible ongoing trajectories. From the combination of these
we can create a set of states that represents the outcomes of
all trajectories of n+m steps, and label this St+n+m.

We can form a channel from these states and actions;
traditional empowerment’s channel would be p(st+n|ant ), cor-
responding colloquially to ‘what is the probability of ending
up in a certain state given the player performed a certain
action’. With the two trajectories we could form the channel
p(st+n+m|an+m

t ), which would be equivalent to if we had
simply increased n by m additional steps.

Instead, we create a channel p(st+n+m|ant ), corresponding
colloquially to ‘what is the probability of ending up in a certain
state in n+m steps time if the player performs a given action
sequence in the first n steps’. Essentially we are forecasting
the potential ongoing future that would follow from starting
with a given n-step action sequence.

To do this we need to aggregate and normalise the various
distributions of St+n+m for those which stem from the same
original n-step action sequence, ant (their common ‘ancestor
sequence’). We can calculate this channel:

p(st+n+m|ant ) =

∑
Amt+n

p(st+n+m|ant , amt+n)

∣∣Am
t+n

∣∣ (8)

where

p(st+n+m|an+m
t ) ≡ p(st+n+m|ant , amt+n) (9)

The result of this ‘folding back’ to ancestor sequences is
that the channel now incorporates two important aspects of
the initial n-step sequences:

1) each value for ant now has a rough forecast of its future
which can be used to approximate a ‘future empower-
ment’ value, i.e. what is a players empowerment likely
to be after completing the given n-step action sequence,
ant .

2) the distribution of potential future states, St+n+m|ant ,
for different values of ant can be used to compare the
potential overlap in the possible futures that follow from
those values of ant . This corresponds to how similar they
are in terms of strategy, which we call strategic affinity.

Point 1 empowers us to differentiate between possible action
sequences in terms of utility; naive empowerment is simply
counting states whereas this model acknowledges that some
potential states will not be as empowered as others. We show

Fig. 4: An example grouping of action sequences, shown here
by the colouring of their final states.
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Fig. 5: Visualization of the action sequence grouping from
Fig. 2 when the grouping is performed with soft-horizon
empowerment. The action sequences now cluster together into
‘strategies’ formed of similar action sequences that could
potentially lead to the same future states.

how to calculate this forecast of ongoing empowerment in
section VI-C.

B. Strategic Affinity

The overlap between the potential futures of each n-step
sequence of actions causes them to be grouped together when
this channel is fed into the impoverishment algorithm outlined
in section IV-B, which brings about the emergence of strategies
instead of arbitrary groups previously seen.

The effect of this clustering of action sequences, by their
strategic affinity, can be illustrated easily in a gridworld as
in such an scenario it corresponds closely to geographically
close states (see Fig. 5); with more complex worlds such a
visualization breaks down but the effect of clustering ‘nearby’
states remains. An example of such a mapping can be seen in
Fig. 4. For many games, this grouping already gives an insight
into how tasks may be simplified; either by acting as a coarse
representation of the problem or as a tool to identify separate
local sub-problems that could be dealt with separately.

Selecting an appropriate bandwidth limit (cardinality) for
the number of strategies to be selected is a question not
explored in the current paper; we suggest there is rarely
a ‘correct’ answer as selecting a different granularity of
strategies will have various different trade-offs.

While soft-horizon empowerment neatly encapsulates strate-
gic affinity, we note that the concept of strategic affinity can be
incorporated into other game-playing models, such as MCTS,
outside of the empowerment formalism. Combined with a
method such as k-means clustering, which does not specify the
number of cluster, we hypothesise it would also be possible
to use strategic affinity to identify ‘natural’ strategies.
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Fig. 6: End states of the 4 action sequences selected to
represent the ‘strategies’ seen in Fig. 4; each is distant from
the walls to improve their individual ongoing empowerment.

C. Reducing strategies to actions

We wish to retain only a subset of actions and will use this
clustering of action sequences into strategy groups to select
a subset of our original action sequences to form the new
action policy for the player. To reduce these strategy groups
to single action sequences, we select an action sequence from
each strategy group that we predict will lead to the most
empowered state. We will roughly approximate this forecasted
empowerment without actually fully calculating the channel
capacity that follows each action sequence.

Earlier we formed the channel p(st+n+m|ant , amt+n) from
two separate stages of action sequences, the initial n-steps and
the subsequent m-steps. We calculate the channel capacity of
this channel which provides a capacity achieving distribution
of action sequences p(an+m

t ). We now break this channel up
into separate channels based on all those where ant is identical,
i.e. one channel for each case in which the first n steps
are identical. We now have a set of channels, corresponding
to each set of m-step sequences that stem from common
ancestor sequences. For each of these ‘sub-channels’ we sum
the mutual information for each sequence an+m

t in this sub-
channel with St+n+m, using the capacity achieving distri-
bution of action sequences calculated above. More formally,∑

amt+n∈Amt+n I(a
n
t , a

m
t+n;St+n+m) where an+m

t ≡ ant , a
m
t+n.

This gives us an approximation of the (n +m)-step empow-
erment for each sequence of n-steps; we can now select, from
within each strategy group, those that are most empowered.

As before we must weight this by their likelihood to map
to that g (i.e. the highest value of p(g|ant ) for the given g),
although once again usually these mappings are deterministic
so this is unnecessary.

For the mapping shown in Fig. 4 this leads to the selection
of action sequences with the end states shown in Fig. 6.

It can be seen that this results in collapsing strategies to
the action sequences which are forecast to lead to the most
empowered states. Without any explicit goal or reward, we
are able to identify action sequences which represent different
strategies, and that are forecast to have future utility. The
complete soft-horizon empowerment algorithm is presented
appendix A.

D. Single-step iterations to approximate full empowerment

One major problem of the traditional empowerment com-
putation is the necessity to calculate the channel capacity
in view of a whole set of n-step actions. Their number

Fig. 7: A Sokoban inspired gridworld scenario. Green repre-
sents the player, and purple represents the pushable box, which
is blocking the door.

grows exponentially with n and this computation thus becomes
infeasible for large n.

In (30), we therefore introduced a model whereby we itera-
tively extend the empowerment horizon by 1 step followed by
an impoverishment phase that restricts the number of retained
action sequences to be equal to the number of observed
states. Colloquially this is summed up as ‘only remember
one action sequence to reach each state’. This is usually
sufficient to ensure the player retains full empowerment whilst
significantly improving the computational complexity. With
this optimisation the computational bounds on empowerment
grow with the number of states (usually linear) instead of with
the number of action sequences (usually exponential). Space
restrictions prevent us from including the algorithm here, but
we have used it for the n-phase of empowerment calculations.

E. Alternative Second Horizon Method

An alternative approach, not explored in the present paper,
to using the second horizon to predict the future empowerment
is to use an equi-distribution of actions over the m-steps
forming the second horizon, as opposed to calculating the
channel capacity (step in appendix sec:algoappendix). This ap-
proximation is algorithmically cheaper, but at the usually at the
expense of a less accurate forecast of future empowerment, as
well as a less consistent identification of strategies. However,
it may prove to be one path to optimising the performance of
soft-horizon empowerment.

VII. GAME SCENARIOS AND RESULTS

A. ‘Sokoban’

Many puzzle games concern themselves with arranging
objects in a small space to clear a path, towards a ‘good’
configuration. Strategy games often are concerned with route
finding and similar such algorithms, and heuristics for these
often have to be crafted carefully for a particular game’s
dynamics.

As an example of such games, we examine a simplified
box-pushing scenario inspired by Sokoban. In the original
incarnation, each level has a variety of boxes which need to be
pushed (never pulled) by the player into some designated con-
figuration; when this was completed, the player completes the
level and progresses to the next. Sokoban has received some
attention for the planning problems it introduces (51; 52), and
most pertinent approaches to it are explicitly search-based and
tuned towards the particular problem.

We are changing the original Sokoban problem insofar as
that in our scenario there are no target positions for the boxes,
and in fact there is no goal or target at all. As stated, we
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(a) 48.1% (b) 47.2%

(c) 2.0% (d) 2.7%
m=3

(e) 92.7% (f) 4.4%

(g) 1.4% (h) 1.5%
m=5

Fig. 8: The distribution of final game states following the
selected 4-step action sequences selected by an AI player
constrained to 2 action sequences, aggregated from 1000 runs.
The pink cells indicate the player’s final position.

postulate a critical element for general game playing is self-
motivation that precedes the concretization of tasks, thus we
adapted the game accordingly.

Figure 7 shows the basic scenario, with a player and a
pushable box. Similarly to the earlier gridworlds, the player
can move North, South, East and West in any timestep (there
is no ‘stand still’ option). Should the player move into a
neighbouring cell occupied by the box, then the box is pushed
in the same direction into the next cell; should the destination
cell for the box be blocked then neither the player or the
box move and the time step passes without any change in the
world.

Our intuition would be that most human players, if presented
with this scenario and given 4 time steps to perform a sequence
of actions on the understanding that an unknown task will
follow in the subsequent time steps, would first consider moves
that move the box away from blocking the doorway. Humans,
we believe, would understand instinctively from observing the
setup of the environment, that the box blocks us from the other
room and thus moving it gives us more options in terms of
places (states) we can reach.

However, it is not obvious how to enable AI players, without
explicit goals and no hand-coded knowledge of their environ-
ment, to perform such basic tasks as making this identification.
Here we approach this task with the fully generic soft-horizon
empowerment concept. We use the following parameters: n=4
and m=3, and a bandwidth constraint limiting the player to

selecting 2 action sequences from amongst the 4n = 44 = 256
possible. This constraint was originally selected to see if the
AI player would identify both choices for clearing a pathway
to the door, and to allow for a possible contrast in strategies.

In Fig. 8 we can see the distribution of final states that were
reached. We represent the final states rather than the action
sequences that were selected as there are various paths the
player can take to reach the same state.

In Fig.8.(a) and Fig.8.(b) we can see the cases that result the
majority of the time (95.3%); in one case the box is pushed
to the left or right of the door and in the other case the
box is pushed into the doorway. The variants in Fig.8.(c) and
Fig.8.(d) are almost identical, just the player has moved away
from the box one cell.

We can see that two clear strategies emerged; one to clear
the path through the door for the player, and a second to push
the box through the door (blocking the player from using the
doorway). The two options for clearing a path to the doorway
(box pushed left or right of the door) are clustered as being
part of the same strategy.

However, it is clear that the types of strategy that can arise,
and the ways that action sequences are clustered together, is
dependent upon the horizon. If we revisit the same scenario
but now adjust the second horizon to be longer, setting m = 5
then we can see the results change.

The second row of Fig. 8 show the altered results, and in
Fig. 8.(e) we can see that there is a single set of results states
that now form the majority of the results (92.7%). We can see
that clearing the box to the left or right of the door no longer
is part of the strategy; now the player has a horizon of 5 steps
it prefers to retain the option of being able to move the box to
either the left or the right of the door, rather than committing
to one side from the outset. Inspection reveals that occupying
the cell below the (untouched) box provides the player with
an empowerment of E = log238 = 5.25 bits rather than E =
log231 = 4.95 bits that would be achieved by clearing the
door (in either direction) immediately. The choices that clear
the door continue to be clustered together, but the scenario
is now ‘represented’ by the higher empowerment option that
emerges with the increased horizon.

Figure 9 shows a more complex scenario, with multiple
boxes in the world, all ‘trapped’ in a simple puzzle. Again,
there is no explicit goal; for each of the 3 boxes there exists
a single unique trajectory that will recover the box from
the puzzle without leaving it permanently trapped. Note that
trapping any box immediately reduces the player’s ability to
control its environment and costs it some degrees of freedom
(in the state space) afforded by being able to move the box.

The scenario is designed to present multiple intuitive
‘goals’, which are attainable only via a very sparse set of
action sequences. With a horizon of 14 steps there are 268
million possible action sequences (leading to 229 states), of
which 13 full retrieve a box. Note that box 2 (top right) cannot
be fully retrieved (pass through the doorway) within 14-steps,
and that box 1 (top left) is the only box that could be returned
to its starting position by the player.

Table I shows the results when allowing the AI player to
select 4 action sequences of 14-steps with an extended horizon
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(a) Scenario (b) Box 1 (c) Box 2 (d) Box 3

Fig. 9: A second Sokoban scenario, with multiple boxes in purple and the player’s starting position in green. Solutions shown
represent the fullest possible recovery for the 3 boxes, along with example action-sequences for recovery. Being 1-step short
of these solutions is considered partial recovery (not shown).

Box 1 Box 2 Box 3

Full 81% 43% 69%

Partial/Full 93% 53% 82%

TABLE I: Percentage of runs in which each of the boxes
was recovered. We can see the importance of a long enough
horizon; box 2 (which cannot be retrieved completely from
the room) is recovered less often than the other boxes.

of m=5 steps, averaged over 100 runs. An explicit count of
the different paths to the doorway for each box’s puzzle room
reveals that there are only 6 action sequences that fully retrieve
the box to the main room for each of the top 2 boxes, and
only one still for the bottom box.

The results indicate the ability of soft-horizon empowerment
to discover actions that lead to improved future empowerment.
Furthermore, in every run all 3 boxes were moved in some
way, with 35% of cases resulting in all 3 boxes are retrieved,
and in 58% at least two boxes are retrieved, leading to indica-
tions that the division of the action-sequences into strategies
is a helpful mechanism towards intuitive goal identification.

B. Pac-Man-inspired Predator-Prey Maze Scenario

Pac-Man and its variants have been studied previously,
included using a tree search approach (53), but the aim of
the current paper is not to attempt to achieve the performance
of these methods but rather to demonstrate that, notwithstand-
ing their genericness, self-motivation concepts such as soft-
horizon empowerment are capable of identifying sensible goals
of operation in these scenarios on their own and use these to
perform the scenario tasks to a good level.

Thus, the final scenario we present is a simplified predator-
prey game based on a simplified Pac-Man model; rather than
having pills to collect, and any score, the game is simplified
to having a set of ghosts that hunt the player and kill him
should they catch him. The ‘score’, which we will measure, is
given simply by the time-steps that the player survives before
he is killed; however it is important to note that our algorithm
will not be given an explicit goal, rather the implicit aim is
simply survival. If humans play the game for a few times, it is

plausible to assume (and we would also claim some anecdotal
evidence for that) that they will quickly decide that survival
is the goal of the game without being told. Choosing survival
as your strategy is a perfectly natural decision; assuming no
further knowledge/constraints beyond the game dynamics, and
a single-player game, anything that may or may not happen
later has your survival in the present as its precondition.

In the original Pac-Man game, each ghost uses a unique
strategy (to add variation and improve the gameplay) and they
were not designed to be ruthlessly efficient; the ghosts in our
scenario are far more efficient and all use the same algorithm.
Here, in each timestep, the player makes a move (there is
no ‘do nothing’ action, but he can indirectly achieve it by
moving towards a neighbouring wall), and then the ghosts,
in turn, calculate the shortest path to his new location and
move. Should multiple routes have the same distance, then
the ghosts randomly decide between them. They penalise a
route which has another ghost already on it by adding d
extra steps to that route; setting d = 0 results in the ghosts
dumbly following one another in a chain which is easy for
the player. Increasing the value makes the ghosts swarm the
player more efficiently. For the present results we use d = 8
which is a good compromise between ghost efficiency and
giving the player sufficient chance to survive long enough to
allow different values for n and m to differentiate.

The maze setup we used is shown in Fig. 10, and the
location of the 3 ghosts can be seen. Having only 3 ghosts
is another compromise for the same reasons as above; using
4 ghosts usually resulted in the player surviving not long
enough to get meaningful variance in the results generated
with different parameter sets.

The player has a model of the ghosts’ algorithm and thus can
predict their paths with some accuracy, and is being allowed 4
samples of their possible future positions (which are stochastic
given the possibility that for one or more ghosts the path
lengths coincide) for a given move of his. However, once no
equal routes are present then 1 sample is perfect information,
but once one or more ghosts has one or more equal length
paths, then the sampling becomes less accurate and may lose
information about the possible future ghost moves.

The game begins with the player’s first move, and continues
until he is caught by any of the ghosts; at this point the player
is ‘dead’ and is no longer allowed to move. However, there is
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Fig. 10: Pac-Man-inspired scenario, showing the three possible
starting positions of the player (yellow) in the center, and of
the starting positions of each of the 3 ghosts (red).

n Value

Ti
m

e 
St

ep
s 

Su
rv

iv
ed

 (S
co

re
)

0

10

20

30

40

50

1 2 3 4

0
1
2
3
4

m Values:

Fig. 11: The player’s ‘score’ for different parameter sets,
averaged over 3 different starting positions for the player, and
100 games per data point. It highlights that with no second
horizon (m=0) performance does not improve as the first
horizon (n) increases.

no special ‘death’ state in our model; once caught, the player
is no longer allowed to move but can still observe the game
state (which quickly stops changing anyway, as the ghosts,
having swarmed the player, no longer move).

Using the above algorithm, with a cardinality of strategies
set to 1 to pick a single action sequence, we observe that
the player flees from the ghosts once they come into his
horizon; this result from the fact that his future control over
the state of the game would drop to zero should he be caught.
Death translates directly into the empowerment concept by a
vanishing empowerment level. Figure 11 shows the results for
various parameter sets, for 3 different starting positions; for
each combination of starting position, n value and m value
we ran 100 games, then averaged the number of time steps
survived over the starting positions for a final average ‘score’
for each combination of n and m.

Firstly, it can be seen that for m = 0, which is equivalent
to ‘standard’ empowerment (23; 24) and does not make use
of any features of the algorithm presented that increasing the
value of n has no impact on the player’s performance. Without
a second horizon and thus some measure of his control over
the game in the future (beyond the first horizon) there is no
pressure to maintain that control. Colloquially, we could say
the player only cares about his empowerment in the present

moment, not at all about the future. Being able to reach a
future state in which he is dead or trapped seems just as good
as being able to reach a future state in which he still has a
high empowerment; the result is he does not even try to avoid
the ghosts and is easily caught.

Once the player has even a small ongoing horizon with
m = 1 it is easy to see the increase in performance, and
with each increase in m performance improves further as
the player is better able to predict his future state beyond
what action sequence he plans to perform next. For all cases
where m > 0 it can be seen there is a general trend that
increasing n is matched with increasing performance, which
would be expected; planning further ahead improves your
chances to avoiding the ghosts and finding areas of continued
high empowerment.

Note that n = 2 performs well and outside of the fit of the
other results; this seems, from inspection of individual runs,
to be an artefact of the design of the world and the properties
of one of the three starting positions, and does not persist that
strongly when the starting position is changed. This highlights
how a given structure or precondition in a world, which is not
immediately observable, could be exploited by specific, hand-
crafted AI approaches unique to that exact situation but would
be difficult to transfer to other scenarios. The results are shown
again, separately for each m value in Fig. 12.

One interesting non-trivial behaviour that consistently
emerged from the soft-horizon empowerment algorithm in this
scenario was a kiting technique the player would use to ‘pull
ghosts in’; his employed strategy favoured having a ghost
in the immediate cell behind him (this makes that particular
ghosts behaviour completely predictable and not only reduces
the players’s uncertainty about the future but also increases
his ability to control it - this includes having a persistent
option to commit suicide in a controlled manner at any point).
Therefore, the player could often be observed moving back
and forth between two cells waiting for a nearby ghost to get
to such a position; however, in our observations this did not
happen when other ghosts are nearby which would result in
the danger of the player being surrounded. This behaviour is
not something that would seem intuitive to a human player in
this scenario (but humans employ kiting as a method in other
games), and whether skirting danger in such a way is desirable
in other scenarios is hard to predict.

VIII. COMPARISON TO MOBILITY

In order to highlight some important differences between
soft-horizon empowerment and a greedy mobility algorithm
of similar complexity, we present a brief example from the
gridworld scenario seen earlier. We created a simple algorithm
that samples the world in the same way, and operates with the
same goal as soft-horizon empowerment: to select a specified
number of actions to maximise utility. The algorithm works
thus:

1) Sample the results of performing all possible n-step
actions sequences to produce p(st+n|ant )

2) From all reachable states (St+n), calculate the average
mobility (denoted U(St+n)) (by sampling) from that
state achievable in m-steps
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Fig. 12: Boxplot showing quartiles,medians, maximum and minimums for scores across 100 games per pair of horizon values
(n,m) for the starting position indicated in Fig 10. The whiskers show 1.5x the interquartile range. It can be observed that a
combined horizon of 3-4 is necessary to survive, and then there is a trend towards improved scores as m increases, but as n
becomes larger this trend plateaus as performance no longer significantly improves.

Fig. 13: Gridworld scenario. The green cell represents the
starting position of the player; the player starts atop a wall.

3) For each value of ant , calculate the average mobility the
player would achieve, p(st+n|ant ) · U(St+n)

4) Select, according to a specified cardinality, those actions
with the highest expected mobility (where there are mul-
tiple actions with equally maximal expected mobility,
pick a subset randomly)

This results in a set of n-step actions sequences that have an
expected mobility over n+m-steps in a similar fashion to soft-
horizon empowerment, and like empowerment can operate in
stochastic scenarios.

A. Gridworld scenario

This gridworld scenario we present here, shown in Fig. 13,
operates identically to the gridworld scenarios earlier, but in
this instance there is no box for the agent to manipulate. The
player starts on a wall along which it cannot move; the player
can move east or west and ‘fall’ into the room on either side,
but it cannot then return to the wall. Whilst on the wall the
player can effectively stay still by trying to move north or
south.

We ran both soft-horizon empowerment and the greedy
mobility algorithm with n = 2, m = 2 and an target
action sequence cardinality of 1, such that the output of
each algorithm would be a 2-step action sequence selected to
maximise empowerment or mobility. For each method, 1000
runs were performed and the results are shown in table II.

All of the actions selected by the greedy mobility algorithm
have an expected mobility of 9 moves, and all those moves
also lead to a state where E = 3.17 bits. However, due to

Action Empowerment Greedy Mobility

EE 51.8% 7.4%

WW 48.2% 7.7%

NN/SS/NS/SN - 34.2%

EN/ES - 25.0%

WN/WS - 25.7%

TABLE II: Distribution of action sequences selected by each
method (each over 1000 runs). Action sequences leading to
the same state have been grouped. No noise.

Action Empowerment Greedy Mobility

EE - 7.4%

WW 100.0% 8.8%

NN/SS/NS/SN - 35.5%

EN/ES - 18.1%

WN/WS - 30.2%

TABLE III: Distribution of action sequences selected by each
method (each over 1000 runs), with noise in the eastern room.

the way in which the soft-horizon empowerment algorithm
forecasts future empowerment (in the second horizon), it
favours moving away from the wall.

We now introduced some noise into the environment; mak-
ing it so in the eastern room there was a 50% chance that,
for any run, all directions are rotated (N→S, S→E, E→W,
W→N). Again, 1000 runs were performed and the results are
shown in table III.

The change can be seen clearly; empowerment immediately
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adapts and switches to always favouring the western room
where it has more control, whereas greedy mobility does
not significantly change the distribution of actions it selects.
This behaviour is a critical advantage of empowerment over
traditional mobility; the rotation of actions does nothing to
decrease mobility as each action within a specific run is
deterministic. When beginning a new run it is impossible
to predict whether the actions would be inverted or not, so
whilst there is no decrease in mobility, there is a decrease in
predictability which negatively impacts empowerment.

Whilst empowerment can be intuitively thought of as a
stochastic generalization of mobility, it is actually not ex-
actly the case in many instances; it is possible to encounter
stochasticity with no reduction in mobility, but stochasticity
is reflected in empowerment due to its reducing of a players
control (over their own future).

IX. DISCUSSION

The presented soft-horizon empowerment method exhibits
two powerful features, both of which require no hand-coded
heuristic:
• the ability to assign sensible ‘anticipated utility’ values to

states where no task or goal has been explicitly specified.
• accounting for the strategic affinity between potential

action sequences, as implicitly measured by the overlap in
the distribution of their potential future states (naively this
can be thought of as how many states that are reachable
from A are also reachable from B within the same
horizon). This allows a player to select a set of action
sequences that fit within a specific bandwidth limit whilst
ensuring that they represent a diversity of strategies.

This clustering of action-sequences allows strategic prob-
lems to be approached with a coarser grain; by grouping sets
of actions together into a common strategy, different strategies
can be explored without requiring that every possible action
sequence is explored. We believe that such a grouping moves
towards a ‘cognitively’ more plausible perspective which
groups strategies a priori according to classes of strategic
relevance rather than blindly evaluating an extremely large
number of possible moves. Furthermore, by modifying the
bandwidth, the concept of having strategies with differing
granularities (i.e. ‘attack’ versus ‘attack from the north’ and
‘attack from the south’ etc.) emerges; it has previously been
shown that there is a strong urge to compress environments
and tasks in such a way (54).

Before, however, we go into a more detailed discussion of
the approach in the context of games, some comments are
required as to why a heuristic which is based only on the
structure of a game and does not take the ultimate game
goal into account, can work at all. This is not obvious
and seems, on first sight, to contradict the rich body of
work on reward-based action selection (grounded in utility
theory/reinforcement learning etc.).

To resolve this apparent paradox, one should note that for
many games, the structure of the game rules already implicitly
encodes partial aspects of the ultimate tasks to a significant
degree (similarly to other tasks (55)). For instance, Pac-Man by

its very nature is a survival game. Empowerment immediately
reflects survival, as a ‘dead’ player loses all empowerment.

A. Application to Games

In the context of tree search, the ability to cluster action-
sequences into strategies introduces the opportunity to imbue
game states and corresponding actions with a relatedness
which derives from the intrinsic structure of the game and is
not externally imposed by human analysis and introspection
of the game.

The game tree could now be looked at from a higher
level, where the branches represent strategies, and the nodes
represent groups of similar states. It is possible to foresee
pruning a tree at the level of thus determined strategies rather
than individual actions, incurring massive efficiency gains.
More importantly, however, these strategies emerge purely
from the structure of the game rather than from an externally
imposed or assumed semantics.

In many games, it is reasonable to assume having perfect
knowledge of transitions in the game state given a move.
However, note that the above model is fully robust to the
introduction of probabilistic transitions, be it through noise,
incomplete information or simultaneous selection of moves
by the opponent. The only precondition is is the assumption
that one can build a probabilistic model of the dynamics of the
system. Such opponent or environment models can be learned
adaptively (35; 56). The quality of the model will determine
the quality of the generated dynamics, however, we do not
investigate this here further.

We illustrated the efficacy of this approach using two scenar-
ios. Importantly, the algorithm was not specifically crafted to
suit the particular scenario, but is generic and transfers directly
to other examples.

In the Pac-Man-inspired scenario, we demonstrated that act-
ing to maintain anticipated future empowerment is sufficient to
provide a strong generic strategy for the player. More precisely,
the player, without being set an explicit goal, made the ‘nat-
ural’ decision to flee the ghosts. This behaviour derives from
the fact that empowerment is by its very nature a ‘survival-
type’ measure, with death being a ‘zero-empowerment’ state.
With the second horizon’s forecast of the future, the player
was able to use the essential basic empowerment principle to
successfully evade capture for extended periods of time.

We presented several Sokoban-inspired scenarios; the first,
smaller, scenario presented a doorway that was blocked by a
box, with human intuition identifying clearing the doorway
as a sensible idea. We saw that soft-horizon empowerment
identified clearing the doorway as a good approach for max-
imising future utility, and also selected an alternative strategy
of pushing the box through the doorway. It was interesting
to see that soft-horizon empowerment identified clearing the
door with the box to the left or to the right as part of the
same strategy, as opposed to pushing the box through the door.
This scenario also highlighted how the algorithm differently
differentiates strategies based on its horizon limitations.

The second scenario presented 3 trapped boxes each requir-
ing a 14-step action sequence to ‘retrieve’ from the trap. A
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human introspecting the problem could deduce the desirable
target states for each box (freeing them so they could be moved
into the main room). With a total of 268×106 possible action
sequences to choose from, and lacking the a priori knowledge
determining which states should be target states, the algorithm
reliably selects a set of action sequences which includes an
action sequence for retrieving each of the boxes. Not only are
the target states identified as being important but the possible
action sequences to recover each of the different boxes are
identified as belonging to a different strategy.

The importance of this result lies in the fact that, while
again, the approach used is fully generic, it nevertheless
gives rise to distinct strategies which would be preferred also
based on human inspection. This result is also important for
the practical relevance of the approach. The above relevant
solutions are found consistently, notwithstanding the quite
considerable number and depth of possible action sequences.
We suggest that this may shed additional light on how to
construct cognitively plausible mechanisms which would allow
AI agents to preselect candidates for viable medium-term
strategies without requiring full exploration of the space.

The final Sokoban example introduced noise into the en-
vironment and compared empowerment to a simple mobility
algorithm. It highlighted a distinct advantage of empowerment
over mobility in that empowerment identifies a reduction in
control and is able to respond appropriately.

B. Relation to Monte-Carlo Tree Search

The presented formalism could be thought of, in certain
circumstances as just dividing a transition table into two halves
and using forecasts of probabilities of encountering states in
the second half to differentiate those states in the first half and
assign them some estimated utility. The information-theoretic
approach allows this to be quantifiable and easily accessible to
analysis. However, we believe the technique presented would
work using other methodologies and could be combined with
other techniques in the medium-term. One important example
of where it could be applied would be in conjunction with
a Monte-Carlo Tree Search approach, and we would like to
discuss below how the formalism presented in this paper may
provide pathways to address some weaknesses with MCTS.

MCTS has been seen to struggle with being a global search
in problems with a lot of ‘local structure’ (57). An example
for this is a weakness seen in the Go progam Fuego, which
is identified as having territorially weak play (58) because of
this problem. Some method which clusters of action sequences
into strategies, where the stategic affinity ‘distance’ between
the subsequent states is low, might allow for the tree search
to partially operate at the level the strategies instead of single
actions and this could help in addressing the problem.

The second aspect of MCTS which has led to some criticism
is that it relies on evaluating states to the depth of the terminal
nodes they lead to in order to evaluate a state. It is possible
that the ‘folding back’ model of empowerment presented in
this paper could be used as a method to evaluate states in
an MCTS, which may operate within a defined horizon when
no terminal states appear within that horizon. In this way the

search could be done without this terminal state requirement,
and this might allow a better balance between the depth of the
search versus its sparsity. This, of course, would make use of
the implicit assumption of structural predictability underlying
our formalism.

C. Computational Complexity

We are interested in demonstrating the abilities of the soft-
horizon method, but in the present paper we did not aim yet
for an optimization of the algorithm. As such, the unrefined
soft-horizon algorithm is still very time-consuming.

Previously the time complexity of empowerment was expo-
nential with respect to the horizon, n, until the impoverish-
and-iterate approach was introduced in (30) (which is linear
with the respect to the number of states encountered).

The present paper introduces soft-horizon empowerment
and a second horizon m, and currently the time complexity
of the soft-horizon algorithm is exponential with respect to
m. We have not yet attempted to apply the iterative im-
poverishment approach to soft-horizon empowerment, but we
expect that this or a similar approach would provide significant
improvements.

In continuous scenarios, where early empowerment studies
used to be extremely time-consuming, recently developed
approximation methods for empowerment allowed to reduce
computation time by several orders of magnitude (59).

X. CONCLUSION

We have proposed soft-horizon empowerment as a candidate
for solving implicit ‘problems’ which are defined by the envi-
ronment’s dynamics without imposing an externally defined
reward. We argued that these cases are of a type that are
intuitively noticed by human players when first exploring a
new game, but which computers struggle to identify.

Importantly, it is seen that this clustering of action sequences
into strategies determined by their strategic affinity, combined
with aiming to maintain a high level of empowerment (or naive
mobility in simpler scenarios) brings about a form of ‘self-
motivation’. It seems that setting out to maximize the agent’s
future control over a scenario produces action policies which
are intuitively preferred by humans. In addition, the grouping
of action sequences into strategies ensures that the ‘solutions’
produced are diverse in nature, offering a wider selection
of options instead of all converging to micro-solutions in
the same part of the problem at the expense of other parts.
The philosophy of the approach is akin to best preparing the
scenario for the agent to maximize its influence so as to react
most effectively to an as yet to emerge goal.

In the context of general game-playing, to create an AI that
can play new or previously un-encountered games, it is critical
to shed its reliance on externally created heuristics (e.g. by
humans) and enable it to discover its own. In order to do this,
we propose that it will need a level of self-motivation and a
general method for assigning preference to states as well as
for identifying which actions should be grouped into similar
strategies. Soft-horizon empowerment provides a starting point
into how we may begin going about this.
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APPENDIX A
SOFT-HORIZON EMPOWERMENT COMPLETE ALGORITHM

The soft-horizon empowerment algorithm consists of two
main phases. This appendix presents the complete algorithm.
In order to make it somewhat independent and concise, it
introduces some notation not used in the main paper.

Phase 1 is not strictly necessary, but acts as a powerful op-
timization by vastly reducing the number of action sequences
that need to be analysed. The main contributions presented in
this paper are within phase 2.

A. Setup

1) Define a set A as the list of all possible single-step
actions available to the player.

2) Set n = 0. Begin with an empty set containing a list of
action sequences, An.

B. Phase 1

Phase 1 serves to create a set of action sequences An that,
most likely, will reach all possible states within n-steps, but
will have very few (0 in a deterministic scenario) redundant
sequences. In stochastic scenarios that have heterogeneous
noise in the environment it may be that those areas are avoided
in preference to staying within more stable states, and in these
cases you will find there may be some redundancy in terms
of multiple action sequences to the same state.

In a deterministic scenario phase 1 can be entirely skipped;
the same optimization can be achieved by selecting at random
a single action sequence for each state reachable within n-
steps (i.e. for each state s select any single action sequence
where p(s|ant ) = 1).

3) Produce an extended list of action sequences by forming
each possible extension for every action sequence in An

using every action in A; the number of resultant action
sequences should equal |An| · |A|. Replace An with this
new list and increment n by 1.

i. Using the channel/transition table, p(st+n|ant ),
note the number of unique states (labelled σ)
reachable using the action sequences in An, always
starting from the current state.

4) Produce p(ant ) from An, assuming an equi-distribution
on An. Using this, combined with p(st+n|ant ), as inputs
to the Information Bottleneck algorithm (we recommend
the implementation at (50), pp. 30, see Appendix B).
For G, our groups of actions (labelled T in (50)),
we set |G| to be equal to σ, such that the number of
groups matches the number of observed states. This will
produce a mapping, p(g|ant ), which will typically be a
hard mapping in game scenarios. Select a random value
of a from each G (choosing argmaxant p(g|ant ) in cases
where it is not a hard mapping). Form a set from these
selected values, and use this set to replace An.

5) Loop over steps 3 and 4 until n reaches the desired
length.

C. Phase 2
Phase 2 extends these base n-step sequences to extended

sequences of n+m-steps, before collapsing them again such
that we retain only a set of n-step sequences which can forecast
their own futures in the following m-steps available to them.

6) Produce a list of action sequences,M, by forming every
possible m-step sequence of actions from the actions in
A.

7) Produce an extended list of action sequences, An+m,
by forming each possible extension for every action
sequence in the final value of An using every action
sequence in M.

8) Create a channel p(st+n+m|an+m
t ) (where an+m

t ∈
An+m) by sampling from the environmental dynamics
for our current state (using the game’s transition table).
For environments with other players, one can use any
approximation of their behaviour available and sample
over multiple runs or, lacking that, model them with
greedy empowerment maximisation based on a small
horizon.

9) Calculate the channel capacity for this channel using the
Blahut-Arimoto algorithm, which provides the capacity
achieving distribution of action sequences, p(an+m

t ).
10) Now collapse p(st+n+m|an+m

t ) to p(st+n+m|ant ) by
marginalizing over the equally distributed extension of
the action sequences:

p(st+n+m|ant ) =

∑
amt+n

p(st+n+m|ant , amt+n)

∣∣Am
t+n

∣∣
where

p(st+n+m|an+m
t ) ≡ p(st+n+m|ant , amt+n)

11) Apply the Information Bottleneck (as in (50), pp. 30,
see Appendix B) to reduce this to a mapping of action
sequences to strategies, p(g|ant ) where G are our groups
of action sequences grouped into strategies. Cardinality
of G sets how many strategy groups you wish to select.

12) We now need to select a representative action, a(rep),
from each group g that maximises approximated future
empowerment (and weight this on how well the action
represents the strategy, p(g|ant ), which is relevant if
p(g|ant ) is not deterministic):

a(rep)(p(st+n+m|ant , amt+n), g
)
=

argmax
ant


p(g|ant ) ·

∑

amt+n∈Amt+n

I(ant , a
m
t+n;St+n+m)




Where an+m
t ≡ ant , a

m
t+n, and using the capacity

achieving distribution of action sequences, p(an+m
t ),

calculated in step 9 above. Note that the mutual infor-
mation there requires the full channel, but sums over
those parts of the channel with the identical n-steps, so
algorithmically it is advisable to calculate and store these
mutual information values as whilst doing the channel
collapse above.
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We can now form a distribution of n-step action sequences
from the set of values of a(rep) from each action group; these
represent a variety of strategies whilst aiming to maximise
future empowerment within those strategies.

APPENDIX B
INFORMATION-BOTTLENECK ALGORITHM

The Information Bottleneck algorithm is a variation of rate-
distortion, in which the compressed representation is guided
not by a standard rate-distortion function but rather through
the concept of relevancy through another variable. We wish
to form a compressed representation of the discrete random
variable A, denoted by G, but we acknowledge that different
choices of distortion would result in different representations
but it is likely that we have some understanding of what
aspects of A we would like to retain and which could be dis-
carded. The Information Bottleneck method seeks to address
this by introducing a third variable, S, which is used to specify
the relevant aspects of A.

More formally, we wish to compress I(G;A) while main-
taining I(G;S). We are looking to retain the aspects of A
which are relevant to S, whilst discarding what else we
can. We introduce a Lagrange multiplier, β, which controls
the trade-off between these two aspects, meaning we seek a
mapping p(g|a) which minimises:

L = I(G;A)− βI(G;S)

The iterative algorithm we present here is from (50).
Input:

1) Joint distribution p(s, a)
2) Trade-off parameter β
3) Cardinality parameter σ and a convergence parameter ε

Output:

A mapping p(t|a), where |G| = σ. For the scenarios in this paper
this typically a hard mapping, but it is not necessarily so.

Setup:

Randomly initialise p(g|a), then calculate p(g) and p(s|g) using
the corresponding equations below.

Loop:

1)P
(m+1)

(g|a) ←
P (m)(g)

Z(m+1)(a, β)
e
−βDKL[p(s|a)‖p(s|g)]

, ∀ g ∈ G, ∀ a ∈ A.

2)P
(m+1)

(g) ←
∑

a
p(a)P

(m+1)
(g|a), ∀ g ∈ G.

3)P
(m+1)

(s|g) =
1

P (m+1)(g)

∑

a
P

(m+1)
(g|a)p(a, s), ∀ g ∈ G, ∀ s ∈ S.

Until:

JS(P (m+1)(g|a), P (m)(g|a)) ≤ ε

Where JS is the Jensen-Shannon divergence, based on D,
the Kullback–Leibler divergence:

JS(P ‖ Q) =
1

2
D(P ‖M) +

1

2
D(Q ‖M)

A. Parameter Values

In the present paper, for all scenarios β = 3, and ε =
0.0000001.

The algorithm is based on a random initialisation of p(t|a),
so it is usually beneficial to use multiple runs of the algorithm
and select that with the best result. Throughout the present pa-
per we used 200 runs of the Information Bottleneck algorithm
in each instance it was used.
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5.3 Paper 3: Additional Result

5.3.1 Gambler’s Problem

An additional scenario had to be excluded from the paper due to space constraints; it is in-

cluded here prior to a discussion of the paper.

The Gambler’s Problem, which was, to our knowledge, first studied in Dubins and Savage

(1976), has been addressed several times before, notably in Sutton and Barto (1998) where

Reinforcement Learning is used to solve it. The scenario, as presented here, is one in which a

gambler, with some current balance of money given by a positive integer, b, with b < t where

t is a target balance, must repeatedly make bets until he is either bankrupt or reaches (or

exceeds) the target balance, t.

In each betting round, the gambler wagers some positive integer value w where w≤ b and

has a probability of winning given by p; here we only examine the case p=0.4 (as in Sutton

and Barto (1998)). If the bet is won, then the gambler’s balance is increased by the amount

wagered, and if the bet is lost, then their balance is decreased accordingly. Thus, the new

balance becomes:

b′ = b+w with probability p

b′ = b−w with probability 1− p

The objective is to find the optimal betting policy: the best bet possible for all possible

balances (i.e. those that maximise the probability of reaching the target balance).

A general property of the problem is that for p > 0.5, the gambler will try to prolong

the game as much as possible. In our case, where p < 0.5, the situation is more interesting,

and the optimal strategies (which are not unique in general) will strive to make as few bets
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Figure 5.1: The results for the Gambler’s Problem from Sutton and Barto (1998), with p=0.4 and a target
balance of 100.

as possible. This makes sense given that each bet is more likely to lose than to win and so

prolonging the betting is a bad proposition.

This problem is an exception to those addressed in Paper 3, as it includes an explicit goal

state as an integral part of the scenario. Because of that it works to demonstrate one way in

which an explicit goal state, if necessary, can be incorporated into the soft-horizon empower-

ment formalism.

I handle this by creating a ‘paradise’ state; a winning bet that carries you past the target

balance puts the agent into this paradise state. In this state the agent begins with a balance

equal to the target balance and any bets placed whilst having a balance above the target

threshold would be a winning bet. This paradise state does not explicitly define higher balances

to be better, but by allowing a player to exactly predict the outcome of any move the player’s

empowerment is increased.

Furthermore, an increased budget provides for an increased set of possible moves (you

have more options what to bet), which also increases empowerment. So the attraction to this

paradise state comes from the elimination of stochasticity, and the increase in the number of

available moves.

Fig. 5.2 shows the results of applying soft-horizon empowerment to the Gambler’s Problem

using soft-horizon empowerment, where n=1 and m=2. Fig. 5.3 shows the results for n=1,

and m=3. The algorithm was run for each starting balance, and then a bandwidth constraint
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Figure 5.2: The betting policy produced by soft-horizon empowerment where n=1, m=2, sampled over
100 runs with identical results. The probability to win a bet p=0.4, with a target balance t = 16. It can
be seen that, in general, the strategy is a naive ’bet it all’ policy, but there are points of interest at a starting
balance of 6, 9 and 15. The bets at starting balances 9 and 15 represent (non-unique) optimal bets - the
smallest single bet that can reach the target balance.

was applied to select a single action, which would be the action contributing the most to the

empowerment. This process produced a betting policy for what amount, w, to bet for each

starting balance, b, shown by the graph. In both instances we took 100 runs, and in both

instances the results were identical across all the runs.

The channel p(st+1+m|a) gives a probability of ending in each of the possible states based

on an approximation of the capacity achieving distribution across the future m actions that

would follow for the bet a.

The target balance was set at t = 16. Key states to pay attention to are the pivot balance

values of 4, 8, and 12; these are points where there is an obvious best bet to make. At 12, it is

clear to see you should bet 4, and you either win, or fall back to the next pivot point of 12. At

8, where the player’s balance matches exactly the amount it needs yet to win, it seems clear

that a single bet of the entire balance is the best strategy (there is no advantageous ‘fall back’
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Figure 5.3: The betting policy produced by soft-horizon empowerment where n=1, m=3, sampled over
100 runs with identical results. The probability to win a bet p=0.4, with a target balance t = 16. The
betting policy equates to the bold play strategy proved optimal in Dubins and Savage (1976).

position as with the case of 12). The case of 4 can be thought of, in this instances, as a ‘sub

game’ where the player first needs to get to the immediate goal of 8; again there is no fallback

and betting our entire budget makes sense and in the case of success, one reaches b = 8 with

the opportunity to win with the next move.

In particular, for the Reinforcement Learning Gambler’s problem solution from Sutton and

Barto (1998), it is the pivot points that stand out in the policy space. These results are shown

in Fig. 5.1, with a target of t = 100.

Returning to empowerment, the results for m=2 in Fig. 5.2 show an inconsistent and

sub-optimal betting strategy, with the general trend being the ‘bet it all’ approach. However,

the bets at starting balances 9 and 15 represent (non-unique) optimal bets; they are, in each

case, the smallest single bet that can reach the target balance. Below the halfway point, at a

balance of 8, one optimal approach is to bet your entire balance which is what is seen for all

cases other than a starting balance of 6. In total 9 of the 15 values for w are optimal.
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When we increase m to m=3 in Fig. 5.3, we see a dramatic shift in the policy and an

improvement in results. The results for m=3 show a betting strategy that equates to the bold

play policy that was proven to be (non-uniquely) optimal in Dubins and Savage (1976).

These two results show how an insufficient horizon can lead to dramatically different be-

haviour. In contrast to the changes in horizon observed in the scenario with the blocked door

shown in Fig. 8 of the paper, where the change in horizon resulted in a change in a tactical

change that was still sensible, here we can see that in some scenarios an inappropriate horizon

can simply result in a move away from optimality.

This example shows that the principles of maximising control and ‘folding back’ future

states in order to anticipate and maintain future control extend beyond the realm of deter-

ministic gridworld scenarios and into non-deterministic scenarios in other spaces. It also

demonstrates possible strategies to incorporate explicit goals seamlessly into the empower-

ment framework when this is required.

5.4 Paper 3: Discussion

The paper introduced soft-horizon empowerment which provides a method of anticipating

future utility, and a way of using that to generate rich action policies. Furthermore, it encap-

sulates a novel method of grouping actions into strategies; this strategy clustering method is

presented within the framework of empowerment but generalises more widely.

The scenarios of ‘Pac-Man’ and the Gambler’s Problem highlight the aspect of anticipating

future utility and acting in order to maintain it, and the Sokoban inspired box-pushing scenar-

ios highlight the general method of strategy clustering and worked as a convenient method to

compare against standard mobility measures.
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5.4.1 Anticipated Utility

The paper introduced soft-horizon empowerment, which introduces a second horizon, with the

goal being to embed a method of anticipating future utility into the empowerment framework.

This allows empowerment to generate action policies which aim to maintain utility and thus

enable empowerment to drive behaviour, rather than solely evaluate states.

From States to Actions

With a second horizon, the channel on the perception-action loop changes from p(st+n|an
t ) to

p(st+n+m|an
t ). Previously the channel (p(st+n|an

t )) could be informally described as ‘what is

the distribution of states I will end up in after n time steps if I spend those time steps enacting

the action sequence an
t . However, the new channel (p(st+n+m|an

t )) changes this to be ‘what is

the approximate distribution of states I may be in after n+m time steps, if I spent the next n

time steps enacting the action sequence an
t .

The channel now has baked into it, in a manner consistent with the pre-existing informa-

tion theoretic scaffolding, an understanding of anticipated future utility, and can now use that

to change the capacity achieving distribution of actions.

With this change, empowerment now shifts from state-centric (how many actions available,

regardless of the resulting states they reach) to action-centric (what actions are available, such

that the resulting states maintain maximum anticipated control). This is an important change

as it allows empowerment to drive behaviour in a fashion that is entirely consistent with both

the existing framework and with the ‘spirit’ of empowerment.

Comparison with Greedy Mobility

Another aspect highlighted in the paper, is the comparison of empowerment against naive

greedy mobility; previously it was possible to compare empowerment against mobility, but
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the move towards action-oriented empowerment now allows also comparing the change in

behaviours.

In Section VIII of the paper, I introduced a simple scenario with an agent on a wall which

could ‘jump’ down into either room (shown in in Fig. 13 in the paper).

To compare greedy mobility algorithm to empowerment, each algorithm was to select a

single action sequence of 2 steps, with a second horizon of 2 additional steps. The scenario

was designed such that most initial 2-step action sequences the agent can perform (stay on

the wall, go one step away from it, or stand next to it without moving north/south) lead to a

mobility of 9 moves (E = 3.17). Moving off the wall then north or south results in a mobility

of 8 moves (E= 3.00).

Initially, the experiment was run without any noise, such that it was entirely deterministic.

Soft-horizon empowerment selected only from 2 moves (EE & WW ) with equal probability,

whereas greedy mobility chose from all action sequences approximately equally. In this in-

stance, empowerment chose always to move away from the wall as an artefact of the way it

forecasts future empowerment.

Interestingly, when the scenario was run a second time, after the introduction of noise in to

one of the two chambers (in the form of a 50% probability that in any given run the actuation

of a direction would result in its opposite being picked). This type of noise has no impact on

mobility, but does impact the ability for an agent to control what states it visits.

In this instance, empowerment immediately favoured the room that was constantly deter-

ministic, whereas naive mobility only had a slight shift towards favouring that room.

This comparison with mobility is helpful, especially within the context of games, where

mobility is established as standard heuristic (Clune, 2011), as it demonstrates the applicabil-

ity of a general utility, yet also allows us to highlight how such a utility can be more effective.

Empowerment and mobility are clearly very aligned, with standard empowerment and mobil-

ity being directly equivalent in deterministic games of perfect information.

112



Action Selection: Strategies Discussion of Paper 3

However, as we have seen, empowerment is more general in that it can not only recognise

the presence of noise and adapt accordingly, but it can also quantifiably measure the effect of

that noise on the utility score.

Kiting

In the Pac-Man scenario I highlighted a particular behaviour known as kiting, which is seen

and used in a variety of games (Uriarte and Ontanón, 2012), where a player runs closely ahead

of an enemy player such as to ‘drag’ them along behind them in a predictable fashion.

This behaviour emerged from soft-horizon empowerment, and was initially hard to inter-

pret (I originally thought it was an error and ‘debugged’ it for sometime!). Further analysis

showed it to be a sophisticated behaviour. As explained in the paper, it is a method of reducing

the stochasticity of the environment and affords the agent more control over its environment

(including the option of suicide at any point, which does increase empowerment).

I was previously unaware of kiting as a term, but had employed the tactic myself in various

games. It was encouraging that a recognised tactic, across multiple different games, emerged

from the framework in a self-driven fashion; one of the motivations for my work was to try to

drive ‘human-like’ intuitive behaviours.

5.4.2 Clustering by Strategic Affinity (CLUSTA)

In the paper I introduced a novel method of clustering multiple action sequences together into

strategies according to their strategic affinity. I introduced strategic affinity entirely within

the information-theoretic framework of empowerment, but discussed how I believe it could

extend beyond that framework.

In the hopeful anticipation of future work taking this concept further, it would be helpful

to standardise the terminology around this concept.
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Any approach of clustering actions according to their strategic affinity may be designated

as Clustering by Strategic Affinity (CLUSTA), which allows for a flexible definition of strategic

affinity.

Strategic affinity should refer to any method which provides a pairwise ‘distance’ metric

between any two action sequences indicating how strategically aligned they are. This distance

measure should be based on how much potential overlap there is in the future states that

could be reached should each of these action sequences be enacted (in some additional time

window).

A broader definition allows for the strategic affinity measure to be either general or more

customised to a specific game/scenario (which may be learned and refined during the lifetime

of an agent in method parallel to learning game specific heuristics).

I would encourage fully general methods where possible, however, it need not be based

upon a search of states into the future and may be heuristically constructed by some analysis

of the current state.

This may mean that some games or scenarios may need some context-specific processing.

For example, in measuring the overlap of states in Go, it may be that exact duplicate states are

too sparse to drive clustering, such that it is necessary to first process states somehow (e.g. by

dividing the board into different regions and comparing those).

In Chapter 6, I offer some further discussion around strategic affinity.
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Discussion

Imagination is more important than knowledge. Knowledge is limited.

— Einstein (1929)

6.1 Summary

Garry Kasparov has stated that he believ es the reason a human, with access to an ordinary

PC and chess engine, can often beat the strongest specialised chess computers is that humans

have a better understanding of what moves deserve the most focus (Kasparov, 2017).

Thought of in the tree search terms of a chess computer, essentially humans are better at

pruning the game tree from the outset, which serves to highlight the difference in approaches

between humans and computers that play chess. Humans have powerful heuristics and do not

need to do the vast processing and evaluation of millions of potential action sequences (which

they would be poor at anyway) in order to make potent deductions about what moves might

be best.

In other games humans, who may have never played the game before, can often make intu-

itive decisions and outperform computers - a fact highlighted by design in the game of Arimaa

(Syed and Syed, 2003). Whilst the Arimaa challenge was beaten in 2015 (Syed, 2015), the

principle is still demonstrated still in Stratego. There are obviously some complex processes at

work, likely rooted in pattern matching, that allow humans to do this, and those processes are
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almost certainly very different than the exhaustive search based methods that drive computer

algorithms.

For this dissertation, I was motivated to understand how we might help develop artificial

agents generate ‘intuitive’ action policies. I was specifically interested in methods that seemed

to drive biologically plausible behaviours, such that we might move in the direction of a better

understanding of how biotic ‘heuristics’ can outperform traditional computer algorithms.

With supervised learning methods and reinforcement learning methods, a fitness function

or reward is necessary for the learning processes to work. Such rewards or fitness functions

require that someone explicitly defines the criteria for success. We might find that such an

approach means that the possible paths to ultimate success are constrained by the biases of

the entity crafting that fitness function. If our learning approach is capable of recognising

patterns or structures at either the local or global levels, it may fail to do so due to a feedback

mechanism that is incomplete or only locally optimal. Furthermore, for any system that has

any sort of self-learning or adaptation, these explicit rewards will limit the degree to which it

might adapt, and any imperfect assumptions may be compounded.

Universal utilities, and specifically methods that require no pre-determined goal, provide a

starting point whereby the algorithm retains maximum freedom to select actions, unburdened

by any biases from their authors.

In selecting a goalless utility method, empowerment stands out as a method that requires

no external reward and, being based in information theory, provides a robust framework for

understanding its interactions with the environment. In biology, organisms are (in general)

primarily motivated by survival, and any ‘fitness’ function has that as its ultimate goal. Em-

powerment generalises this to maintaining control of one’s own destiny.

With the empowerment framework as the foundation for the work, several important ad-

ditions have been made, which I summarise here.
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6.1.1 Empowerment

Horizon

Requiring a pre-determined knowledge of an appropriate horizon for any task is not only

difficult, but is also in direct contradiction to the goal of trying to develop an approach that is

more human-like, intuitive and flexible.

Previously, empowerment needed a pre-selected static horizon, which made it more diffi-

cult to utilise in various scenarios without some work to tune it to that scenario, which detracts

from the generality of the method.

Ultimately, I suggest that horizons should be entirely dynamic, and extended as necessary

based upon context, which may mean different aspects of the same scenario are explored

to different depths. However, as an initial approach, I developed the concept of iteratively

extending the horizon, which has some attractive traits:

• It is akin to how humans solve problems; it can be flexible based upon the amount

of available time. The longer you have the deeper you can explore and think about a

problem.

• An iterative approach could provide for adaptively adjusting the horizon based on ob-

servable features in the world. For example, an agent may be able to identify an af-

fordance in the distance, and be able to estimate the number of time-steps to reach it.

It may then select the initial horizon based upon the time steps needed to reach that

affordance, essentially asking ‘I could go and manipulate that box over there, which will

take me 8 time steps to reach, so before I decide, let me think what else I might do in

that time’.

• The idea of sub-goals is very related to the idea of operating within certain time con-

straints, before then considering what might be done from that point.
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However, there are also drawbacks to such an approach as presented in this dissertation.

The iterative ‘extend and compress’ approach is not totally dissimilar to a tree search with

aggressive pruning, which does not seem to be a biologically grounded approach. Nonetheless,

this criticism is based around the necessity to ‘sample’ the world in order to construct the

channel for empowerment to operate, rather than the iterative approach itself.

I later introduced the idea of having a second horizon, which was less precise but allowed

for a forecast of what the future may look like for an agent; I discuss this further below.

Actions & Self Motivation

‘Traditional’ empowerment provided a general utility for comparing the preferability of states

with one another in a goalless scenario. In order to calculate the channel capacity, the Blahut-

Arimoto algorithm is used to calculate capacity achieving input distribution (the distribution

of actions or action sequences).

However, this distribution of actions has two shortcomings:

1. No understanding of how much empowerment is provided by any of those actions.

2. No concept of how empowering (i.e. by providing future empowerment) these actions

may be.

Initially, in Paper 2, I presented an approach which addresses the first of these and, by

calculating the mutual information between single actions and destination states, can pre-

cisely measure how much of a states empowerment is provided by a specific action in both

deterministic and stochastic scenarios.

This was used as the basis of a self-motivated method of action selection, by constraining

the number of action sequences the agent may retain, and thus forcing it to select a subset of

actions. When used to drive action selection, it turns out this is broadly equivalent to selecting
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actions according to a combination of the inverse of the redundancy (i.e. action sequences

that lead to the same state as others are less empowering) and the inverse of noise (i.e. action

sequences with more predictable outcomes).

That empowerment prefers action sequences with less noise is useful, as is the the drive

towards unique action sequences which tends to produce exploratory behaviours.

However, the resulting action policies may include multiple action sequences to states that

are nearby one another in the state space (be that geographically or otherwise), and further-

more the destination states may not have much (if any) empowerment.

This, of course, relates to the second point above about how we may produce action policies

that provide future empowerment, which was addressed by soft-horizon empowerment.

Soft-Horizon Empowerment

In Paper 3, I presented soft-horizon empowerment, which introduced the concept of a second

horizon. This second horizon fits neatly into the information theoretic framework of empow-

erment, and provides a method of anticipating what an agent’s future empowerment may be

following an available action. This anticipated empowerment is not separate from the cur-

rent empowerment, and instead refines the measure of the agent’s current empowerment to

account for anticipated future empowerment.

Furthermore, this anticipated future empowerment of actions is encapsulated within the

capacity fulfilling action distribution, meaning that the method previously introduced of con-

straining the retainable actions in order to drive self-motivated actions, takes advantage of

this. Previously actions that ‘contributed’ the most empowerment were those that led to unique

states, but in the new model the actions that contribute the most empowerment are those that

themselves are most empowering. Compression now leads to selecting action sequences that

looks like they maximise future empowerment.
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In the previous iterative model, we observed that the actions selected to make up the

policy may be very similar, and lead to almost identical (albeit empowering) states. This is a

limitation both for selecting a final action, but also for interim action selections when using

the iterative approach of selecting and extending action sequences.

Soft-horizon empowerment overcomes this, because the second horizon provides a method

of anticipating how ‘nearby’ to one another the distribution of states would be, following the

enactment of any of the available actions. This strategic affinity ensures, in the soft-horizon

empowerment model, strategic diversity amongst the retained action sequences.

6.1.2 Strategic Affinity and Strategically Diverse Action Repertoires

Soft-horizon empowerment encapsulates the concept of strategic affinity within it. However,

the concept is important enough and, I believe, significant enough to warrant attention as a

concept on its own. The realisation of strategic affinity in soft-horizon empowerment is only

one possibly formulation, and I believe the concept could apply more broadly.

Thinking in strategic terms is more like we find ourselves thinking, and is demonstrated in

game playing. People will usually discuss the various higher level options (strategies) before

selecting a specific action in order to enact that higher level plan. For example, in chess we

might discuss ‘taking control of the centre’ or ‘defending the queen’, before deciding on one

and then picking a specific action to enact that strategy.

Thus, in order to generate action policies in a similar fashion, an agent must identify the

higher level options. Strategic affinity allows us to do that in a very general fashion.

Having an understanding of the higher level strategies is helpful for a number of reasons:

• It can help to ensure the agent does not leave some areas unexplored or inaccessible. An

action policy that naively selected a set of the ‘best’ actions (as determined by anticipated

future utility) might select only actions that represent the dominant strategy.
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• When dominant or obvious strategies exist, it is useful to be able to think ‘outside the

box’ and strategic affinity can help with this; I discuss this more in the Section 6.2.

• For explorative behaviours it is useful to be able to understand the task space, such that

it can be explored most thoroughly. This sort of grouping can help.

• As demonstrated in the Sokoban inspired scenarios, this approach seems to drive intu-

itive behaviour. In some situations, such as ‘pick 4 actions in this grid world’, the actions

seem to align very well with Schelling points (Schelling, 1960).

If the guiding principle of empowerment is around maximising ones options, then it is

noteworthy that maximising the controllable enactment of strategies is born from the same

concept, but operates at a higher level.

Most importantly, I believe this sort of strategic identification is a necessary step in mim-

icking human approaches. Strategic affinity may not be the final solution, but is helpful for

guiding research in that direction.

6.2 Future Research and Possible Applications

The work presented in this dissertation provides a novel approach towards generating action

policies that produce ‘intuitive’ behaviours, which are not dissimilar to what we might expect

a human to try.

On the one hand, the information theoretic basis allows introspection of the behaviours,

and provides a strong framework for improving our understanding. However, on the other

hand it is clear that, whilst we are motivated to replicate biologically grounded behaviours,

the information theoretic approach is very unlikely to be how such behaviours are driven in

nature.
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Future research can, therefore, likely be broken into two main threads. The work, as it

stands, has possible immediate applications in various areas, such as game-playing, with a

view to making the model more viable as a model for deeper applications.

The second approach would be attempting to further extend the framework, and apply it

to a broader array of scenarios, with a long-term view of improving biological plausibility. This

might help us drive towards more heuristic based models, which would better mimic biology,

perhaps be more computationally efficient, and possibly help produce models capable of more

complex cognitive tasks.

6.2.1 Possible Applications (Short Term)

General Game Playing

There is a lot of exciting research in game playing at the moment, with the application of ANNs

as a layer on top of Monte-Carlo Tree Search methods.

There are compelling reasons to think that the ability to identify strategies, in a general

fashion, may prove an interesting method for helping to guide such tree search methods. This

may be as a method of pruning the search tree, or could simply apply as a weighting mechanism

in a fashion similar to the UCT variation of MCTS.

There is potential that this may improve performance in the short term, whilst also being

a step towards moving toward a more human-like approach to considering moves.

In addition, empowerment may provide the basis for an interesting heuristic for general

game playing, both as a standalone heuristic for evaluating and comparing states, but also

potentially as a method to guide systems that attempt to learn domain-specific heuristics.
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Swarm Robotics

Examining multi-agent systems within the framework of empowerment has already been the

focus of research (Capdepuy et al., 2007, 2012), with some interesting results.

Swarm robotics could be an area that would potentially benefit from the strategic affin-

ity. Swarms could co-ordinate their efforts by dividing the work between them according to

strategies.

How well this might work outside of a simulated environment though is hard to know

without further research.

6.2.2 Possible Applications (Long Term)

Medical Applications

There are a couple of aspects of this work which, in the longer term, may provide some value

as a tool with medical applications. Prosthetic technologies have made great strides forward

with regard to the degree of control that they provide; note that they fit nearly within the

perception-action loop formalism. An empowerment-like approach of maximising the channel

capacity of future prosthetics is an interesting concept.

A second idea might be as a method of guiding development of such devices, by providing

a measure to the degree to which actuation is ‘outsourced’ to the design of the device. If we

consider, again, walkbot (Collins et al., 2001) which was capable of walking down inclines

alone, a framework which measures the degree to which such actuation can be baked into the

design of prosthetic devices could be helpful.
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Search and Rescue

Search and rescue robots, by their very nature, are likely to encounter situations which have

not been considered or which are difficult to plan for. In these situations, a method for driving

sensible behaviours is obviously useful. In order to use an empowerment-like model, such

a robot would the require ability to model the dynamics of its environment, but could then

make sensible decisions without needing to await further instructions (which may or may not

be possible).

Exploratory Robots

In addition to search and rescue, robots are being used increasingly for exploration. This

ranges from drones being used to explore small, hard to reach, areas of terrain through to

various crafts and robots involved with interplanetary exploration.

Again, unforeseen circumstances are more likely for robots tasked with these sort of jobs,

and methods of making sensible decisions in those cases are key to survival. In addition, there

is scope that being able to evaluate the various options and group them into broad strategies

may help, both with fully automated decision making and also when working in tandem with

human controllers.

6.2.3 Future Research

Strategic Affinity

Strategic Affinity is a key result from this dissertation, and is an aspect of the work that might

also be applicable outside of the context of empowerment.

However, like other aspects of the work, it produces intuitive and understandable results,

but the mechanism by which it arrives at them is unlikely to be how we might do so. The
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concept of the overlapping futures is a coherent with our view of what a strategy is; however,

calculating this overlap using any sort of well defined distribution over future states is not

coherent with how we might imagine ourselves forming strategies.

An interesting line of research would be applying pattern-recognition to the task. It would

likely need to be somewhat context specific, but could also be general, and may provide an

alternative approach to approximating a strategic affinity like measure.

One possible approach, which I frame here in the context of games, would be to ‘blur’ the

playing board and compare it with other blurred states. In Go, for example, this would equate

to understanding the broad territory distribution across the board.

An alternative approach may be simply to break a game into sub-games and evaluate a

change of state in any of them. In Go, again, this could be to simply consider separate areas

of the board in isolation.

I believe that not only would such work help us understand new facets of intelligence, but

could also have immediate applications in games playing (see applications section above).

Finally, there is an opportunity for strategic clustering methods to drive ‘out of the box’

thinking. Sometimes a strategy is so dominant that most of the high utility actions are all vari-

ations of it, which means that alternative approaches may not be considered. This is limiting in

a variety of ways, especially in dynamic environments or scenarios with an antagonist, where

the dominant strategy could become inviable, and having alternative options is essential.

Heuristics

As demonstrated by the parallels between Infotaxis and the search behaviours of moths, it

is clear that nature has an extremely potent ability to develop heuristics. Biological organ-

isms are able, with astounding ease, to spot salient features of environment and can also act

instinctively in the face of (mathematically) complicated tasks.
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For example, a child can catch a ball with relative ease, whereas a computer needs the

equations for calculating the parabola of flight.

The empowerment framework is a good candidate for helping guide research into devel-

oping general heuristics. That may be as a reward system applied to another adaptive learning

approach, or possibly as a tool to compare against.

If we were able to improve our heuristics generation, the applications for artificial agents

would be plentiful.

Context Recognition

Most multi-cellular organisms, as well as most artificial agents, find themselves in various dif-

ferent scenarios, which demand different behaviours. This can range from changes in internal

state, such as homeostatic drives, or from the external state of the world, such as location

within the environment.

Many areas of the work in this dissertation are related to this concept of ‘contexts’:

• It could be advantageous to introduce the concept of ‘directed empowerment’ which

relates to the specific goals of an agent. Thus empowerment could change depending

on context, which may mean only relevant parts of the sensorimotor apparatus are used,

and thus different behaviours come about.

• Different contexts could indicate different default horizons are appropriate, which could

mean an agent is more efficient in its processing (an evolutionary advantage).

• A context may indicate different sub-goals, which could mean that only some identified

strategies are relevant and need to be considered. This would be especially useful for

homeostatic contexts, and where there is a metabolic cost to assessing options.
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