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Abstract. We present AGB predictions for all heavy elements within a large range of
13C-pocket efficiencies for stars of different metallicities, and compare them in detail with a
number of spectroscopic observations of s-rich and lead-rich in the Galaxy. The current con-
cept of the s-process efficiency, specified by the [hs/ls] index, is shown to be inappropriate
for the metal poor AGB stars and a second independent index, [Pb/hs] or [Pb/ls], needs to
be introduced. The state-of-the-art concerning the interpretation of lead stars allows a very
large spread of [Pb/hs] in metal poor stars, as typically observed. We discuss agreements
and discrepancies for a large range of elements.
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1. Introduction

Spectroscopic detection of lead requires very
high-resolution spectroscopy. This is why lead-
rich stars have only been observed in the last
few years. As discussed in Travaglio et al.
(2001), the s-process can bring forth a large
production of lead in AGB stars at low metal-
licity. In fact lead and bismuth are at the termi-
nation points of the s-fluence. Using a primary-
like neutron source (like the 13C(α,n)16O reac-
tion in interpulse phases) and starting with a
very low initial metallicity, most iron seeds are
converted into 208Pb. So, when third dredge up
episodes mix the neutron capture products into
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the envelope, the star appears s-enhanced and
lead-rich.

2. The intrinsic index [Pb/hs]

Commonly s-rich stars are classified as either
intrinsic or extrinsic, with extrinsic being those
stars that become s-enhanced not because of
internal nucleosynthesis but through receiving
s-rich material from a companion in a binary
system by mass transfer. To characterize neu-
tron capture process efficiencies, without dis-
tinguishing between these two types of ob-
jects, usually the intrinsic index [hs/ls] is used
(where hs is the average abundance of the
heavy s-elements Ba, La, Nd, Sm, and ls of the
light s-elements Y, Zr). However, at low metal-
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Fig. 4. Fits of a large sample of s-rich and lead-rich stars with AGB model predictions.

licities, another intrinsic index is required.
In fact at decreasing metallicities [hs/Fe] and
[ls/Fe] converge within a small range, while
[Pb/Fe] always increases (see the figures in
Gallino et al. 2004 - hereafter Paper I). Here,
in Figure 1, [hs/ls] is plotted as a function of
metallicity for various choices of 13C-pockets.
The standard case (ST) is the one that for
[Fe/H]=−0.3 best reproduces the main compo-
nent of the solar system (Gallino et al. 1998).
Different 13C-pockets can provide very simi-
lar [hs/ls] indices, but still show a large range
of [Pb/ls] and [Pb/hs] values. These are plotted
respectively in Figure 2 and Figure 3; for in-

stance consider the cases ST*1.3 and ST/3 at
[Fe/H]=−2.

3. Comparison of models with
observations

Using AGB nucleosynthesis models with dif-
ferent 13C-pockets efficiencies, initial masses
and metallicities, we tried to fit the spectro-
scopic abundances of the s-rich and lead-rich
stars listed in the Table of Paper I. The fit
is made by comparing the element distribu-
tion observed in each star with the distribu-
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Fig. 3. [Pb/hs] versus [Fe/H] for different 13C-
pocket choices. Spectroscopic data of s-rich
and lead-rich stars are included for compari-
son.

Fig. 1. [hs/ls] versus [Fe/H] for different 13C-
pocket choices.

Fig. 2. [Pb/ls] versus [Fe/H] for different 13C-
pocket choices.

tion predicted by AGB models with different
13C-pocket efficiencies. Such a large spread is

justified by observation of MS, S, C(N), Ba
stars in the disk (see Busso et. al 2001; Abia
et al. 2002). In Figure 4 we report the fits of
lead stars not yet presented in Paper I. To com-
pare our predicted abundances with observa-
tions, in many cases we apply a dilution that
simulates the effect of mixing of s-rich ma-
terial in the envelope of extrinsic stars, us-
ing the rule: dil=log(Mini

env/Mtransf), where Mini
env

is the initial envelope mass and Mtransf is the
mass of transfered material. The choice of 13C-
pocket efficiency, the initial mass, the initial
[Eu/Fe] assumed (see below), the dilution fac-
tor and the metallicity are indicated in each
plot. In AGB stars of low metallicity, the s-
process feeds Eu at a consistent level, with
a constant ratio [Ba/Eu]s ∼ 0.7. For several
lead stars the spectroscopic observation indi-
cates a lower [Ba/Eu] ratio than predicted,
which may imply a different [Eu/Fe]ini in the
parent cloud. Indeed, unevolved halo stars in
the same range of metallicity show an average
[Eu/Fe] = 0.5, with a large spread ∆[Eu/Fe]
= ± 0.5 dex (see Travaglio et al. 2004). The
adopted [Eu/Fe]ini is indicated in each panel
of Figure 4. Notice that the rule adopted for
[Eu/Fe]ini has been applied also to other el-
ements of major r-process origin, e.g. for all
the elements from Eu to Tm. For the star CS
31062-050 (Johnson et al. 2004) lines of Cr
and Mn have been detected, and somewhat
negative [Cr/Fe] and [Mn/Fe] values have been
deduced. The s-process in AGB stars produces
very little Cr and Mn, however unevolved halo
stars in the same range of metallicity show a
depletion of both Cr and Mn, with an average
[Cr/Fe]= −0.2 and [Mn/Fe]= −0.4 (see e.g.,
François et al. 2004). As shown in Figure 4
for CS 31062-050, adopting these initial val-
ues a satisfatory agreement is reached. For
some stars, the observed [Ba/Fe] appears sig-
nificantly higher than [La/Fe], whereas AGB
models predict [Ba/Fe] ' [La/Fe]. This may
indicate difficulties in the determination of the
Ba abundance. In general, lanthanum is a more
representative element of the second s-peak at
neutron magic number, N = 82.

In several cases we need to attain high
[hs/ls] values without changing [Pb/hs]; ac-
cording to our AGB models, those values
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can be reproduced using lower initial masses
with respect to the standard mass of 1.5M�.
Reducing the initial mass corresponds to a de-
crease in the number of thermal pulses. From
the previous discussion it is clear that a gen-
eral comparison of AGB predictions with all
the elements detected provides a better method
rather than being restricted to the average ls
or hs values. Anyway, in Figure 5 the hs data
are compared with AGB predictions in the
[Pb/hs] versus [Fe/H], showing that the large
spread of spectroscopic data are well fitted
within the large spread of 13C-pocket efficien-
cies adopted.

4. Conclusion

A comparison is made of AGB model predic-
tions of low metallicity with spectroscopic data
of a large sample of s-rich and lead-rich stars.
Varying the initial mass and adopting a large
spread of 13C-pocket efficiencies for a given
metallicity a satisfactory reproduction of all
data is obtained.
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