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Humans’ capacity for perpetual learning and adjustment in response to novel circumstances
throughout their lifespan is exceptional. This cognitive aptitude, known as Continual Learn-
ing (CL), involves the ongoing and progressive refinement of increasingly complex behaviors.
It entails the construction of advanced behavioral patterns that build upon pre-existing ones,
allowing for the utilization, adaptation, and generalization of previously acquired skills when
confronted with new situations [8]. For these reasons, open-ended learning systems can benefit
from CL to facilitate their progressive assimilation and integration of novel knowledge and skills
over extended periods of time, and ensuring the retention of formerly acquired information while
concurrently exploring.

While CL is a distinctive trait of human intelligence, it poses a substantial challenge within the
realm of Artificial Intelligence and, in particular, Reinforcement Learning (RL) [9], because most
of the employed strategies revolve around an agent that focuses on acquiring expertise in a specific
and limited task [5]. Achieving success in CL necessitates the constant incorporation of novel
information while preserving valuable past knowledge. Present-day incremental machine learning
methods have been unable to master this ability due to their lack of careful management of the
data they acquire, retain, or discard. The obstacles of implasticity (the failure to incorporate
useful new information) and catastrophic forgetting (the unintended loss of valuable information
from memory) are widely acknowledged as significant challenges [6]. A widely used measure to
assess CL agents evaluates their predictive accuracy on tasks encountered in the past, examining
how effectively an agent preserves previously learned information [10]. In the case of embodied
agents, their ability to store and process this past information is further restricted by their finite
available computational resources [7]. Furthermore, one of the primary hurdles encountered by
continual RL agents is the ability to extract and compress pertinent information from an immense
stream of sensory data. Hence, for effective CL, a trade-off must be achieved between the agent’s
computational limitations and its representations fidelity of the increasing volume of incoming
data.

In this paper, to start investigating how increasingly complex models are incrementally ob-
tained in CL, we specifically focus on the question of how an agent’s spatial representations
are refined as additional informational resources are made available. To this aim, we use the
information-theoretical notion of Successive Refinement (SR) [4], which we applied to a geomet-
ric instance of rate-distortion theory [2] called Geometric Rate-Distortion (GRD) [1]. Let us
consider an embodied agent with limited informational resources that needs to approximately
represent its location in a space S (e.g., a grid world-like environment). GRD optimally solves
the trade-off between minimizing the amount of Shannon information used to describe locations
in the space S and decreasing the location error arising from the resulting approximate spatial
representation. In particular, given two 2D positions a = (ax, ay) ∈ S and b = (bx, by) ∈ S, the
distortion function dL1(a, b) = |ax−bx|+|ay−by| measures the L1 distance between two locations
in the grid. In the GRD framework, this distance also quantifies the cost of representing the
location a with the location b. Given the distortion dL1, GRD constructs the most compressed
spatial representation of the agent location S1∗ with an average error from its true position no
larger than D. The minimum average number of bits necessary to represent the agent location in
S1∗, and incurring an average distortion no larger than D, is called the rate-distortion function
R(D). Let p(s∗1|s) be the conditional probability of representing the location s ∈ S with the
codeword s∗1. Formally, R(D) is defined as the solution of the following constrained optimization
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problem

R(D) = min
p(s∗1 |s):E[dL1(S,S∗

1 )]≤D
I(S;S∗1 ) (1)

where E[dL1(S, S∗1 )] =
∑

s,s∗1∈S
p(s)p(s∗1|s)dL1(s, s∗1) and I denotes the mutual information.

Let’s imagine the agent starting by operating with a GDR coarse representation S∗1 of its
environment at rate R1, resulting in an average distortion of D1. Let us assume that the situation
evolves and the agent now aims to improve the previous representation of the space towards a
finer description with rate R2 bits (i.e., R2 > R1). According to the aforementioned CL criteria,
instead of creating a new description S∗2 from the ground up, SR takes advantage of the already
existing coarser representation S∗1 refining it and combining it with an ”addendum” of information
∆S∗ with rate ∆R = R2−R1 bits. The two combined representations attain a total distortion of
D̂2. In line with the spirit of life-long adaptation, our ultimate goal is to maintain the same notion
of optimality for the refined description acquired in two incremental steps as if this was obtained in
only one step yielding directly the finer representation S∗2 with GRD at rate R2. We say that the
original space S is successively refinable if the following two conditions are satisfied: R1 = R(D1)
and R2 = R(D̂2). Hence, the first coarse representation and the refined one both achieve the best
rates for their respective distortions D1 and D̂2. In other words, using SR, agents can switch from
a coarse spatial representation to a more sophisticated one utilising minimum informational effort
and no information needs to be discarded for adapting the representation’s granularity. Starting
from the Markovian characterization S → S∗2 → S∗1 of SR [4], in [1] we provided an equivalent
information-theoretic characterization to determine whether SR is achievable, which is the case
if I(S;S∗1 |S∗2 ) = 0. Given that the relationship among the representation S, S∗1 and S∗2 is not
generally fully Markovian, the latter characterization allows, according to our knowledge for the
first time, to introduce a ”relaxed” version of successive refinement when I(S;S∗1 |S∗2 ) << 1, which
in this case quantifies the loss of information optimality induced by the two-stage refinement.
Here, by relaxed successive refinement we mean that rather than strictly insisting on the condition
R2 = R(D̂2), we also allow for R(D̂2) & R2, meaning refinements that are slightly suboptimal.
We have observed that in the case of the GRD setting described here, for certain pairs of rates
R1 and R2 the spatial representations can be optimally refined in a successive manner, while
for other pairs the representations can still be nearly optimally refined in a relaxed manner and
characterized by the aforementioned ”soft” form of Markovianity. In simpler terms, if minor
compromises are allowed, a fairly effective cascade of successive refinements, at least with one
intermediary step, can be realized.

While we are confident that the SR of GRD could pave the way for innovative and princi-
pled information-theoretic approaches to assimilating new information within existing knowledge,
there are still hurdles to overcome for its integration in continual Reinforcement Learning (RL).
First,in order to adapt our formalism to the full RL framework, the actions that were only im-
plicitly assumed in GRD as the operations enabling agents to directly transition from one state
to another, should be explicitly introduced. Beyond adding an action space, also incorporating
stochastic transitions would facilitate the integration with the RL framework, surpassing the
successor representation [3] lying behind the GRD formalism. Then, while here we have illus-
trated SR with only two stages of refinements, the introduced methodology could intuitively be
expanded to chains of multiple refinements, more in line with the spirit of CL. In upcoming re-
search, we aim to utilize the tree structure inherent in the successive refinement method to yield
a cascade of spatial refinements connected by Markovian or near-Markovian links. Consequently,
when sequences of refinements are implemented, the outlined formulation could potentially be
expanded towards a hierarchical model of refinement. We believe that implementing the SR for-
malism within the RL framework, and its extension towards multi-stage information processing,
could offer a fresh viewpoint on hierarchical planning and learning, where the information cost
of shifting from an abstract representation to a more detailed one could be minimized.
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