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Progress in technology not only results in tools of improved capabilities, but also pushes towards integration to create larger 
systems with unprecedented capabilities. Building such systems with safety-relevant services demands appropriate system 
interfaces and algorithmic concepts. In this paper we list examples of ingredients to build large resilient and predictable systems. 
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1 Introduction 

Building large systems is always a trade-off between the requirements and the available resources. 
One the rather large scale system examples is the internet, with more than one Billion websites. The 
internet has proven to be relatively resilient to different types of system faults or attacks. However, 
C.Hall et al. have  analysed the resilience  of the internet interconnection ecosystem in more  detail,  and 
concluded  that the dependability  of the  internet has its limits [1]: 

“The economics do not favour high dependability of the system as a whole as there is no incentive 
for anyone to provide the extra capacity that would be needed to deal with large-scale failures.” 

While this is a valid design choice for the classical applications of the internet based on 
information exchange and data retrieval, there are an increasing number of large systems that 
would demand higher resilience than that provided by the internet interconnection ecosystem. For 
example, remote surgery would need communication lines with high availability between the hospital 
and the remote surgeon. Another example are smart cities, where we just stand at the beginning to 
envision what services are possible to make peoples’ life more convenient and safe. In particular, 
safety-critical services are also envisioned, like the health monitoring and alerting for elderly people. 
To build such large systems with sufficient degree of resilience and predictability, we need to use 
adequate system interfaces and concepts. In this paper we provide some examples of what that 
can be. 
2 Design Patterns for Large and Resilient Predictable Systems 

In the following we introduce examples for systems design patterns that help to make systems for 
resilient and predictable. 

2.1 Nearly Autonomous Systems 
To design large systems, it is important to subdivide the system into subsystems, i.e., building a system 

of systems. To support resilience and predictability of critical services, it is important to design the 
corresponding subsystems providing that services as a nearly autonomous system.  A nearly autonomous 
system is a subsystem with external communication that is able to provide its service even in the event of 
failure on the external communication channels. At the same time, it is recommended to use interfaces 
and algorithms that provide resilience against faulty data received on the external communication 
interface. 
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Figure 1. Push-Pull Communication Interface 

 
An example for a resilient interface is the data exchange via a shared buffer, with decoupled write and 

read access. The sender controls when to write the data via an information push and the receiver 
controls when to read the data via an information pull [4]. This push-pull interface provides a temporal 
isolation between two subsystems. Such a communication interface supports composability as well as 
compositionality [7]. 
2.2 Interfaces for Mixed-Criticality Systems 

Large systems tend to provide services of different criticality, where services of higher criticality have a 
higher weight for the overall system utility.  To design such systems in a resilient and predictable way,  it is 
also important  to consider the message types and the type of message propagation [5]. For example, 
information exchange can be via event messages, state messages,  or semi-state messages.  State 
messages are preferred as they help to provide an immediate return to a consistent system state in case 
of erroneous failed communication.  Communication channels of the system model have to be mapped 
to the physical communication medium. To provide fairness to the individual communication channels, 
approaches like bounded or time-triggered interfaces. 
2.3 Lock-free Communication via the RNBC Protocol 

Realising a push-pull communication as described in Section 2.1, it is also important to realise the 
access to the shared communication buffer with temporal decoupling. A way to achieve this is the Rate-
bounded Non-Blocking Communication (RNBC) protocol [6]. The core principle of RNBC is to have lock-
free communication with one writer and an arbitrary number of readers. RNBC is rather simple, with the 
implementation shown in Figure 2.a. However, the important property of RNBC is to have a formal 
schedulability criterion that ensures correct communication.  As shown in Figure 2.b, RNBC uses a double 
buffer to ensure the reading of consistent data. With cr, cw being the worst-case execution time of the 
reader and writer code, and mint being the minimum inter-arrival time between two messages, the 
following schedulability criterion guarantees lock-free and consistent communication via RNBC: 

cw + cr ≤ mint 
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a) RNBC implementation b) RNBC double buffering 
Figure 2. RNBC: Rate-bounded Non-Blocking Communication Protocol 

 
2.4 Utility-based Service Optimisation 

To design systems in a resilient way, we model the utility of individual services. Instead of using 
single design requirement limits like maximum delay or minimum throughput, we model these 
parameters via a utility function [3]. Figure 3 shows an example for modelling the utility of the 
throughput of a service. Using these utility values of the individual services, we can optimise the 
overall system utility in case of a situation that causes a resource shortage [2]. 
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Figure 3. Service Utility Optimisation based on Throughput 

3 Summary and Conclusion 
In this research, we have made the case towards adequate system interfaces and concepts to 

achieve resilient and predictable large systems. We also listed a few examples of such system 
interfaces and concepts. 
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