
4. Computations
The single core loop performance

Shallow performs ten array update loops each timestep. The time to
complete each one depends on the operations to be performed (adds,
multiples, memory loads and stores), the location of data in the cache or
memory system, and factors such as the compiler and processor hardware.
It is possible to estimate the relative performance of each loop from a
simple analysis of the source code and compiler transformations.

Experiments were performed on HECToR Phase2b with the PGI compiler.
The Phase2b was a Cray XE6 comprising Magny-Cours processors with 16
KB of L1 cache, 512 KB ofL2 and 5 MB of L3.

To derive actual performance values requires some level of machine
benchmarking. In this case the entire loops are measured for a series of
exponentially increasing problem sizes. The predicted performance for any
problem size is then based on a linear interpolation from this data.

1. Performance modelling

A performance model is an equation for the time
to run an application on a given machine, based
on software and hardware characteristics.

Performance models can be used to:

• understand current behaviour;
• make predictions about future behaviour;
and
• inform design choices when developing or
updating code, for example in Gung-Ho!

2. Shallow water model

The application studied here is a simple program
shallow, based on the NCAR shallow water model:

http://www.cisl.ucar.edu/docs/hpc_modeling/

Shallow mimics key parts of more complex
climate model applications such as the UK Met
Office Unified Model, particularly:

• time-step iterations;
• loop-based calculations to update array
values based on other arrays;
• exchanges of boundary data between cores.

3. A performance model of shallow

Our performance model takes the form:

 Ttotal = Tcomp + Tcomm ,
where:

• Tcomp is the time spent in computational
loops updating array values, and

• Tcomm is the time spent performing MPI
data exchanges between cores.

The times for each part are derived from code
analysis and benchmarking.

5. Communications
The performance of boundary exchanges

Communication experiments were performed on the HECToR Phase 3, a
Cray XE6 with Gemini interconnect and Interlagos processors. Nodes are
comprised of 4 dies each containing 8 integer cores. So far tests have only
been run on an empty test and development system identical to the main
machine to avoid network interference from other jobs.

At each timestep seven fields perform boundary exchanges. These are
done in two directions only – with one row and one column being sent and
received each time. The major factors affecting the boundary update time
are:

• The MPI transfer time: Based on an MPI_Sendrecv operation, this
depends on whether the transfer takes place between nodes, or within
a node, and the number of concurrent transfers taking place along the
link.
• The data access time: This depends on the data location in cache or
memory, and whether the access is contiguous or non-contiguous.

A model was developed to take a given domain decomposition and work
out the halo sizes, where the transfers take place and the data access
pattern. Times were then taken from a set of benchmark data.

6. Next steps
Finishing the performance model

• Include multi-core loop performance with shared cache effects.
• Update computation model to Phase 3 with Interlagos processor.
• Put computation and communication models together.

Future work

• Communications benchmark on the main HECToR system for some
measure of run time variability.
• Evaluate model process on a different machine.

Modelling the Performance of a
Shallow Water Code

a.osprey@reading.ac.uk Annette Osprey1, Graham Riley2, Bryan Lawrence1 and Muniyappa Manjunathaiah3

1 Department of Meteorology, University of Reading, 2 School of Computer Science, University of Manchester
3 Department of Computer Science, University of Reading

Theoretical estimates versus measured performance.

a) Peak performance
(optimal problem size for cache).

b) Performance in memory
(very large problem size).

Predicted time to complete halo exchanges (dashed lines) and measured
times (solid lines) for different problem sizes, cores per node and total
number of cores.

http://www.cisl.ucar.edu/docs/hpc_modeling/

