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ABSTRACT
The cratering record on the Earth and Moon shows that our planet has been exposed to high
velocity impacts for much or all of its existence. Some of these craters were produced by
the impact of long period comets (LPCs). These probably originated in the Oort cloud, and
were put into their present orbits through gravitational perturbations arising from the Galactic
tide and stellar encounters, both of which are modulated by the solar motion about the Galaxy.
Here we construct dynamical models of these mechanisms in order to predict the time-varying
impact rate of LPCs and the angular distribution of their perihelia (which is observed to be
non-uniform). Comparing the predictions of these dynamical models with other models, we
conclude that cometary impacts induced by the solar motion contribute only a small fraction
of terrestrial impact craters over the past 250 Myr. Over this time scale the apparent cratering
rate is dominated by a secular increase towards the present,which might be the result of the
disruption of a large asteroid. Our dynamical models, together with the solar apex motion,
predict a non-uniform angular distribution of the perihelia, without needing to invoke the
existence of a massive body in the outer Oort cloud. Our results are reasonably robust to
changes in the parameters of the Galaxy model, Oort cloud, and stellar encounters.

Key words: Earth — Galaxy: kinematics and dynamics — methods: statistical — solar-
terrestrial relations — comets: general — Oort Cloud

1 INTRODUCTION

1.1 Background

Comet or asteroid impacts on the Earth are potentially catastrophic
events which could have a fundamental effect on life on Earth.
While at least one extinction event and associated crater iswell
documented – the K-T impact from 65 Myr ago and the Chicxulub
crater (Alvarez et al. 1980; Hildebrand et al. 1991) – a clearcon-
nection between other craters and extinction events is lesswell es-
tablished. Nonetheless, we know of around 200 large impact craters
on the Earth, and doubtless the craters of many other impactshave
either since eroded or are yet to be discovered.

Many studies in the past have attempted to identify patternsin
the temporal distribution of craters and/or mass extinction events.
Some claim there to be a periodic component in the data (e.g.
Alvarez & Muller 1984; Raup & Sepkoski 1984; Rohde & Muller
2005; Melott & Bambach 2011), although the reliability of these
analyses is debated, and other studies have come to other con-
clusions (e.g. Grieve & Pesonen 1996 Yabushita 1996 Jetsu & Pelt
2000 Bailer-Jones 2009 Bailer-Jones 2011a; Feng & Bailer-Jones
2013).

Of particular interest is whether these impacts are entirely
random, or whether there are one or two dominant mechanisms
which account for much of their temporal distribution. Suchmech-
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anisms need not be deterministic: stochastic models show charac-
teristic distributions in their time series or frequency spectra (e.g.
(Bailer-Jones 2012)). We are therefore interested in accounting not
for the times of individual impacts, but for the impact rate as a
function of time.

In doing this we should distinguish between asteroid and
comet impacts. Having smaller relative velocities, asteroid impacts
are generally less energetic. Asteroids originate from within a few
AU of the Sun, so their impact rate is probably not affected much
by events external to the solar system. Comets, on the other hand,
originate from the Oort cloud (Oort 1950), and so can be affected
by the Galactic environment around the Sun.

As the solar system orbits the Galaxy, it experiences gravi-
tational perturbations from the Galactic tide and from encounter-
ing with individual passing stars. These perturbations arestrong
enough to modify the orbits of Oort cloud comets to inject
them into the inner solar system (Wickramasinghe & Napier 2008;
Gardner et al. 2011). The strength of these perturbations isdepen-
dent upon the local stellar density, so the orbital motion ofthe Sun
will modulate these influences and thus the rate of comet injection
and impact to some degree (e.g. Brasser, Higuchi & Kaib (2010);
Kaib, Roškar & Quinn (2011); Levison et al. (2010)). As the Sun
shows a (quasi)-periodic motion perpendicular to the Galactic
plane, and assuming that the local stellar density varies inthe same
way, it has been argued that this could explain a (supposed) pe-
riodic signal in the cratering record. Here we will investigate the
connection between the solar motion and the large impact craters
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(i.e. those generated by high energy impacts) more explicitly. We
do this by constructing a dynamical model of the Sun’s orbit,the
gravitational potential, and the resulting perturbation of comet or-
bits, from which we will make probabilistic predictions of the time
variability of the comet impact rate.

The dates of impact craters are not the only relevant ob-
servational evidence available. We also know the orbits of nu-
merous long-period comets (LPCs). The orbits of dynamically
new LPCs – those which enter into the inner solar system for
the first time – record the angular distribution of the cometary
flux. This distribution of their perihelia is found to be anisotropic.
Some studies interpret this as an imprint of the originationof
comets Bogart & Noerdlinger (1982); Khanna & Sharma (1983),
while others believe it results from a perturbation of the Oort
Cloud. Under this perturbation scenario, it has been shown that
the Galactic tide can (only) deplete the pole and equatorialre-
gion of the Oort Cloud (Delsemme 1987) in the Galactic frame,
and so cannot account for all the observed anisotropy in the
LPC perihelia. It has been suggested that the remainder is gener-
ated from the perturbation of either a massive body in the Oort
Cloud (Matese, Whitman & Whitmire 1999; Matese & Whitmire
2011) or stellar encounters Biermann, Huebner & Lust (1983);
Dybczyński (2002).

1.2 Overview

Assuming a common origin of both the large terrestrial impact
craters and the LPCs, we will construct dynamical models of the
flux and orbits of injected comets as a function of time based on
the solar motion around the Galaxy. Our approach differs from pre-
vious work in that we (1) simulate the comet flux injected by the
Galactic tide and stellar encounters as they are modulated by the
solar motion; (2) use an accurate numerical method rather than av-
eraged Hamiltonian (Fouchard 2004) or Impulse Approximation
(Oort 1950; Rickman 1976; Rickman et al. 2005) in the simula-
tion of cometary orbits; (3) take into account the influence from the
Galactic bar and spiral arms; (4) test the sensitivity of theresult-
ing cometary flux to varying both the initial conditions of the Sun
and the parameters of the Galaxy potential, Oort Cloud, and stellar
encounters.

We build the dynamical models as follows. Adopting mod-
els of the Galactic potential, Oort Cloud and stellar encounters, we
integrate the cometary orbits in the framework of the AMUSE soft-
ware environment, developed for performing various kinds of astro-
physical simulations (Portegies Zwart et al. 2013; Pelupessy et al.
2013). The cometary orbits can be integrated with the perturba-
tion from either the Galactic tide, or stellar encounters, or both. All
three are investigated. In principle, we can build a three-parameter
dynamical model for the variation of the impacting comet fluxas
a function of time, Galactic latitude, and Galactic longitude. In
practice we reduce this three-parameter model to a 1-parameter
model of the variation of the comet impact rate over time, anda
2-parameter model of the angular distribution of the perihelia of
LPCs. A further simplification is achieved by replacing the full nu-
merical computations of the perturbations by separating proxies for
the tide-induced comet flux and for the encounter-induced comet
flux. These are shown to be good approximations which accelerate
considerably the computations.

We combine the predictions of the comet impact history with a
(parameterized) component which accounts for the crater preserva-
tion bias (i.e. older craters are less likely to be discovered) and the
asteroid impact rate. We then use Bayesian model comparisonto

compare the predictions of this model over different rangesof the
model parameters to the observed cratering data, using the crater
data and statistical method presented in Bailer-Jones (2011a).

We obtain the 2-parameter model for the angular distribution
of the perihelia of LPCs by integrating the full 3-parametermodel
over time. Because we no longer need the time resolution, we ac-
tually perform a separate set of numerical simulations to build this
model. We then compare our results with data on 102 new comets
with accurately determined semi-major axes (the “class 1A”comets
of Marsden & Williams (2008)).

This paper is organized as follows. We introduce, in section2,
the data on the craters and LPCs. In section 3 we define our models
for the Galactic potential, the Oort cloud, and for stellar encounters,
and describe the method for the dynamical simulation of the comet
orbits. In section 4 we summarize the Bayesian method of model
comparison. In section 5 we use the dynamical model to construct
the 1-parameter model of the cometary impact history. In Section
6, we compare our dynamical time series models of the impact his-
tory with other models, to assess how well the data support each.
In section 7 we use the dynamical model again, but this time to
predict the distribution of the perihelia of LPCs (the 2-parameter
model), which we compare with the data. A test of the sensitivity
of these model comparison results to the model parameters ismade
in section 8. We discuss our results and conclude in section 9.

The main symbols and acronyms used in this article are sum-
marized in Table 1.

2 DATA

2.1 Terrestrial craters

The data of craters we use in this work is from theEarth Impact
Database(EID) maintained by the Planetary and Space Science
Center at the University of New Brunswick. We restrict our analysis
to craters with diameter> 5 km and age< 250Myr in order to
reduce the influence of crater erosion (although an erosion effect is
included in our time series models). We select the followingdata
sets defined by Bailer-Jones (2011a)

• basic150(32 craters) age6 150 Myr,σt original
• ext150(36 craters) age6 150 Myr, original or assigned
• full150 (48 craters) ext150 plus craters withsup 6 150 Myr
• basic250(42 craters) age6 250 Myr,σt original
• ext250(46 craters) age6 250 Myr, original or assigned
• full250 (59 craters) ext250 plus craters withsup 6 250 Myr

The terms “basic”, “ext”, and “full” refer to the inclusion of craters
with different kinds of age uncertainties. “originalσt” means that
just craters with measured age uncertainties are included.“original
or assigned” adds to this craters for which uncertainties have been
estimated. The “full” data sets further include craters with just up-
per age limits (Bailer-Jones 2011a explains how these can beused
effectively). As the size of the existing craters is determined by
many factors, e.g. the inclination, velocity and size of theimpactor,
the impact surface, and erosion, we only use the time of occurrence
(sj) of each impact crater and its uncertainty (σj ). Figure 1 plots
the size and age of the 59 craters we use in the model comparison
in Section 6.

2.2 Long-period comets

The LPCs we use are the 102 dynamically new comets (i.e. class
1A) identified by Marsden & Williams (2008) and discussed by
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Table 1.Glossary of main acronyms and variables

Symbol Definition

PDF probability density function
LSR local standard of rest
HRF heliocentric rest frame
BP before present
LPC long-period comet
sj crater age
σt age uncertainty of crater
sup upper limit of the age of crater
~renc impact parameter or perihelion of encounter
~v⋆ velocity of a star in the LSR
~venc velocity of the stellar encounter relative to the Sun
b⋆ Galactic latitude of~v⋆
l⋆ Galactic longitude of~v⋆
benc Galactic latitude of~venc
lenc Galactic longitude of~venc
bp Galactic latitude of the perihelion of a stellar encounter
lp Galactic longitude of the perihelion of a stellar encounter
bc Galactic latitude of cometary perihelion
lc Galactic longitude of cometary perihelion
q perihelion distance
a semi-major axis
e eccentricity
Menc mass of a stellar encounter
venc speed of a star at encounter
renc distance of a star at encounter
fc injected comet flux relative to the total number of comets
f̄c averagedfc over a time scale
γ parameter of impact intensityMenc

vencrenc
γbin normalized maximumγ in a time bin
G1, G2 coefficients of radial tidal force
G3 coefficient of vertical tidal force
ρ stellar density
η ratio between the trend component andfc
ξ ratio between the tide-induced flux and encounter-induced flux
κ angle between~renc and the solar apex
Ms mass of the Sun

Matese & Whitmire (2011). Figure 2 shows the distribution over
the Galactic latitude (bc) and longitude (lc) of the cometary per-
ihelia. 1 The two peaks in the longitude distribution suggest a
great circle on the sky passing throughl = 135◦ and l = 315◦

(Matese, Whitman & Whitmire 1999; Matese & Whitmire 2011).
We explain this anisotropy in Section 7.

3 SIMULATION OF COMETARY ORBITS

We now build dynamical models of the Oort cloud comets and their
perturbation via the Galactic tide and stellar encounters by simulat-
ing the passage of the solar system through the Galaxy. We first
introduce the Galactic potential, which yields a tidal gravitational
force on the Sun and Oort Cloud comets. Then we give the initial
conditions of the Oort cloud and the distribution of stellarencoun-
ters. Then we outline the numerical methods used to calculate the
solar motion and the comet orbits.

1 Note that our angular distribution is different from the onegiven in
Matese & Whitmire (2011) because the direction of perihelion is opposite
to that of aphelion.
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Figure 1. The diameters and ages of the 59 craters with (bottom) and with-
out (top) age uncertainties plotted. The blue points/linesindicate the craters
with assigned age uncertainties. The red lines/brackets indicate the upper
ages of the craters without well-defined ages. Adapted from Bailer-Jones
(2011a).
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Figure 2. The distribution ofsin bc (left panel) andlc (right panel) of peri-
helia of the 102 LPCs.

3.1 Galactic potential

We adopt a Galactic potential with three components, namelyan
axisymmetric disk and a spherically symmetric halo and bulge

Φsym = Φb + Φh + Φd (1)

(this is same model as in Feng & Bailer-Jones (2013)). The com-
ponents are defined (in cylindrical coordinates) as

Φb,h = − GMb,h
√

R2 + z2 + b2b,h
, (2)

Φd = − GMd
√

R2 + (ad +
√

(z2 + b2d))
2

, (3)

whereR is the disk-projected galactocentric radius of the Sun and
z is its vertical displacement above the midplane of the disk.M
is the mass of the component,b anda are scale lengths, andG is
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Table 2. The parameters of the Galactic potential model for the symmet-
ric component (Garcı́a-Sánchez et al. 2001), the arm (Cox &Gómez 2002;
Wainscoat et al. 1992), and the bar (Dehnen 2000).

component parameter value

Bulge Mb = 1.3955× 1010 M⊙
bb = 0.35 kpc

Halo Mh = 6.9766× 1011 M⊙
bh = 24.0 kpc

Disk Md = 7.9080 × 1010 M⊙
ad = 3.55 kpc
bd = 0.25 kpc

Arm ζ = 15◦

Rmin = 3.48 kpc
φmin = −20◦

ρ0 = 2.5× 107M⊙kpc−3

r0 = 8 kpc
Rs = 7 kpc
H = 0.18 kpc
Ωs = 20 kms−1/kpc

bar Rb/RCR = 0.8
α = 0.01
RCR = R⊙(t = 0 Myr)/2
α = 0.01
Ωb = 60 kms−1/kpc

the gravitational constant. We adopt the values of these parameters
from Garcı́a-Sánchez et al. (2001), which are listed in Table 2.

In Section 8 we will add to this non-axisymmetric and time-
varying components due to spiral arms and the Galactic bar, to give
the new potential

Φasym = Φsym + Φarm + Φbar , (4)

where Φarm is a potential of two logarithmic arms
from Wainscoat et al. (1992) with parameters given in
Feng & Bailer-Jones (2013), andΦbar is a quadrupole poten-
tial of rigid rotating bar from Dehnen (2000). These components
are used in the potential for the calculation of the solar orbit, but
not the stellar encounter rate discussed in section 3.3.

The geometry of the arm is

φs(R) = log(R/Rmin)/ tan(ζ) + φmin, (5)

whereζ is the pitch angle,Rmin is the inner radius, andφmin is the
azimuth at that inner radius. A default pattern speed ofΩp = 20
km s−1 kpc−1 is adopted (Martos et al. 2004; Drimmel 2000). The
corresponding potential of this arm model is

Φarm = −4πGH

K1D1
ρ0e

−R−r0
Rs

× cos(N [φ − φs(R, t)])

[

sech

(

K1z

β1

)]β1

, (6)

where

K1 =
N

R sin ζ
,

β1 = K1H(1 + 0.4K1H),

D1 =
1 +K1H + 0.3(K1H)2

1 + 0.3K1H
,

andN is the number of spiral arms. The parameters in equation 6
are given in Table 2.

The bar potential is a 2D quadrupole Dehnen (2000). Because
the Sun always lies outside of the bar, we adopt the potential

Φbar = −Ab cos[2(φ−Ωbt−φmin)]

[

(

R

Rb

)3

− 2

]

R > Rb(7)

whereRb andΩb are the size and pattern speed of the bar respec-
tively andφmin is the bar angle. We assume that the spiral arms
start from the ends of the major axis of the bar. We only consider
the barred state and ignore the evolution of the bar, so we adopt a
constant amplitude for the quadrupole potential, i.e.Ab = Af , in
equation (3) of Dehnen (2000).Af is determined by the definition
of the bar strength

α ≡ 3
Af

v2

(

Rb

R

)3

, (8)

whereR andv are the current galactocentric distance of the Sun
and the corresponding local circular velocity. The fixed barstrength
is given in Table 2, from which we calculateAf and henceAb.

3.2 Oort Cloud

We generate Oort cloud comets using two different models, one
from Duncan, Quinn & Tremaine (1987) (hereafter DQT) with the
parameters defined in Rickman et al. (2008), and another which we
have reconstructed from the work of Dones et al. (2004a) (hereafter
DLDW).

In the DQT model, initial semi-major axes (a0) for comets are
selected randomly from the interval[3000, 105]AU with a proba-
bility density proportional toa−1.5

0 . The initial eccentricities (e0)
are selected with a probability density proportional toe0 (Hills
1981), in such a way that the perihelia (q0) are guaranteed to be
larger than 32 AU. We generate the other orbital elements —cos i0,
ω0, Ω0 andM0 — from uniform distributions. Because the density
profile of comets is proportional tor−3.5, wherer is the sun-comet
distance, about 20% of the comets lie in the classical Oort Cloud
(a > 20 000AU).

In the DLDW model, the initial semi-major axes, eccentrici-
ties, and inclination angles are generated by Monte Carlo sampling
from the relevant distributions shown in Dones et al. (2004a). This
produces semi-major axes in the range 3000 to 100 000 AU and
ensures that the perihelia are larger than 32 AU. Unlike the DQT
model, there is a dependency of the cometary eccentricity and in-
clination on the semi-major axis, as can be see in Figures 1 and 2
of Dones et al. (2004b). We generate comet positions and velocities
relative to the invariant plane and then transform these into vectors
relative to the Galactic plane. In doing so we adopted valuesfor
the Galactic longitude and latitude of the north pole of the invariant
plane of98◦ and29◦ respectively.

The distributions of the cometary heliocentric distances
for the DQT and DLDW models are given in Figure 3. We
see that the DQT model produces more comets in the in-
ner Oort cloud (<20 000 AU) and the DLDW model more in
the outer Oort Cloud (>20 000 AU). Our distributions differ
slightly from those in Figure 3 of Dybczyński (2002) because
our initial semi-major axes have different boundaries, andbe-
cause our reconstruction of initial eccentricities and inclination an-
gles is slightly different from the approach used in Dybczy´nski
(2002). Many other Oort cloud initial conditions have been
constructed numerically (Emel’yanenko, Asher & Bailey 2007;
Kaib, Roškar & Quinn 2011). Given the inherent uncertaintyof the
Oort cloud’s true initial conditions, we carry out our work using
two different Oort cloud models and investigate the sensitivity of
our results to this (e.g. in section 7).
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Figure 3. The normalized distributions of initial heliocentric distances of
comets generated from the DQT model (solid line) and DLDW model
(dashed line) with a sample size of105.

3.3 Stellar encounters

The geometry of encounters is complicated by the Sun’s motion
relative to the local standard of rest (LSR). This solar apexmotion
could, by itself, produce an anisotropic distribution in the direc-
tions of stellar encounters in the heliocentric rest frame (HRF).
Any anisotropy must be taken into account when trying to ex-
plain the observed anisotropic perihelia of the LPCs. Nonetheless,
Rickman et al. (2008) simulated cometary orbits with an isotropic
distribution of stellar encounters which is inconsistent with their
method for initializing encounters. Here we use their method to
generate encounters, but now initialize stellar encounters self-
consistently to have a non-uniform angular distribution.

3.3.1 Encounter scenario

The parameters of stellar encounters are generated using a Monte
Carlo sampling method, as follows. We distribute the encounters
into different stellar categories (corresponding to different types
of stars) according to their frequency,Fi, as listed in Table 8 of
Garcı́a-Sánchez et al. (2001). In each stellar category, the stellar
massMi, Maxwellian velocity dispersionσ⋆i, and solar peculiar
velocityv⊙i, are given. The encounter scenario in the HRF is illus-
trated in Figure 4. The encounter perihelion~renc direction (which
has Galactic coordinatesbp and lp) is by definition perpendicular
to the encounter velocity~venc. The angleβ is uniformly distributed
in the interval of[0, 2π].

In this encounter scenario in the HRF, the trajectory of a stel-
lar encounter is determined by the encounter velocity~venc, the en-
counter perihelion~renc, and the encounter timetenc. In the fol-
lowing paragraphs, we will first find the probability densityfunc-
tion (PDF) of encounters for each stellar category as a function of
tenc, renc, andvenc, and then sample these parameters from this us-
ing the Monte Carlo method introduced by Rickman et al. (2008)
(hereafter R08). Then we will samplebenc andlenc using a revised

Figure 4. Schematic illustration in the heliocentric rest frame of stellar en-
counters. The circle is the impact plane which is defined by its normal, the
encounter velocity~venc. β is the angle in the impact plane measured from
the reference axis to the stellar perihelion (i.e. the encounter). The vector
in this plane from the Sun to the position of the encounter (i.e. the stars
perihelion) is defined asrenc. benc and lenc are the Galactic latitude and
longitude of~venc, respectively.(x, y, z) is the Galactic coordinate system.
~renc is defined as the shortest distance from the Sun to the approximate
trajectory which is a straight line in the direction of~venc. The approximate
trajectory of an encounter is used for the definition of encounter perihelion
~renc while the real trajectory is integrated through simulations.

version of R08’s method. Finally,bp andlp can be easily sampled
because~renc is perpendicular to~venc.

3.3.2 Encounter probability

The probability for each category of stars is proportional to the
number of stars passing through a ring with a width ofdrenc and
centered on the Sun. The non-normalized PDF is therefore just

Pu(tenc, renc, venc) = 4πnivencrenc ∝ ρ(tenc)vencrenc, (9)

whereni is the local stellar number density of theith category
of stellar encounters, andρ(tenc) is the local stellar mass density,
which will change as the Sun orbits the Galaxy.2 Thus the en-
counter probability is proportional to the local mass density, the
encounter velocity and the encounter perihelion. We use a Monte
Carlo method to sampletenc, venc, andrenc from this.

In different application cases, we sample the encounter time
tenc over different time spans according to equation 9, where thelo-
cal mass density is calculated using Poisson’s equation with the po-
tentials introduced in section 3.1. Although we may simulate stellar
encounters over a long time scale, we ignore the change of theso-
lar apex velocity and direction when simulating the time-varying
comet flux (in section 5) and the angular distribution of current
LPCs (in section 7). We selectrenc with a PDF proportional torenc

2 We assume that the mass densities of different stellar categories have the
same spatial distribution.
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with an upper limit of4 × 105 AU. However, the sampling pro-
cess ofvenc is complicated by the solar apex motion and the stellar
velocity in LSR, which we accommodate in the following way.

The encounter velocity in the HRF,~venc, is the difference be-
tween the velocity of the stellar encounter in the LSR,~v⋆, and the
solar apex velocity relative to that type of star (categoryi) in the
LSR,~v⊙i, i.e.3

~venc = ~v⋆ − ~v⊙i . (10)

We can consider the above formulae as a transformation of a stellar
velocity from the LSR to the HRF. The magnitude of this velocity
in the HRF is

venc = [v2⋆ + v2⊙i − 2v⊙iv⋆ cos δ]
1/2 , (11)

whereδ is the angle between~v⋆ and~v⊙i in the LSR.
To samplevenc, it is necessary to take into account both the

encounter probability given in equation 9 and the distribution of
v⋆. We generatev⋆ using

v⋆ = σ⋆i

[

1

3
(η2

u + η2
v + η2

w)
]1/2

, (12)

whereσ⋆i is the stellar velocity dispersion in theith category, and
ηu, ηv , ηw are random variables, each following a Gaussian distri-
bution with zero mean and unit variance.

We then realize the PDF of encounters overvenc (i.e. Pu ∝
venc) using R08’s method as follows: (i) we randomly generateδ
to be uniform in the interval[0, 2π]; (ii) adoptingv⊙i from table 1
in R08 and generatingv⋆ from equation 12, we calculatevenc using
equation 11; (iii) we define a large velocityVenc = v⊙i + 3σ⋆i for
the relevant star category and randomly draw a velocityvrand from
a uniform distribution over[0, Venc]. If vrand < venc, we accept
venc and the values of the generated variablesδ, v⋆. Otherwise, we
reject it and repeat the process untilvrand < venc.

We generate105 encounters in this way. Figure 5 shows the
resulting distribution ofvenc. It follows a positively-constrained
Gaussian-like distribution with mean velocity of 53 km/s and a dis-
persion of 21 km/s, which is consistent with the result in R08. In
their modelling, R08 adopt a uniform distribution forsin benc, and
lenc. This is not correct, however, because encounters are more
common in the direction of the solar antapex where the encounter
velocities are larger than those in other directions (equation 9). We
will show how to find the true distribution ofsin benc, lenc, sin bp
andlp as follows.

3.3.3 Anisotropic perihelia of encounters

To complete the sampling process of encounters, we need to find
a 5-variable PDF, i.e.Pu(tenc, renc, venc, benc, lenc). We have used
R08’s original Monte Carlo method to generatetenc, renc andvenc
according to equation 9. However,benc andlenc are not generated
because R08 only use equation 11 to generate the magnitude of~venc
rather than the direction of~venc. To sample the directions of~venc,
we change the first and second steps in R08’s method introduced
in section 3.3.2 as follows: (i) we randomly generate{b⋆, l⋆} such
thatsin b⋆ andl⋆ are uniform in the interval of[−1, 1] and[0, 2π],
respectively; (ii) adoptingbapex = 58.87◦ andlapex = 17.72◦ for

3 We define a symbol without using the subscripti when the symbol is
derived from a combination of symbols belonging and not belonging to
certain stellar category.
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Figure 5. The histogram of the distribution ofvenc of all types of stars.
The total number of encounters is 197 906, which is the set of simulated
encounters over the past 5 Gyr.

the solar apex direction and generatingv⋆ according to equation
12, we calculate~venc according to equation 10.

Selected in this way,sin b⋆, l⋆, sin benc, andlenc all have non-
uniform distributions. The Galactic latitudebp and longitudelp of
the encounter perihelia are also not uniform. Like R08, we draw
197 906 encounters over the past 5 Gyr from our distribution of
encounters. The resulting histograms ofsin benc, lenc, sin bp, and
lp are shown in Figure 6. We see that the encounter velocity,~venc,
concentrates in the antapex direction, while the encounterperihe-
lion, ~renc, concentrates in the plane perpendicular to apex-antapex
direction. In addition, the distribution oflp is flatter than that oflenc
because~renc concentrates on a plane rather than along a direction.

In order to clarify the effect of the solar apex motion, we define
κ as the angle between the encounter perihelion~renc and the solar
apex. If there were no solar apex motion,cos κ would be uniform.
The effect of solar apex motion is shown in Figure 7. The solarapex
motion would result in the concentration of encounter perihelia on
the plane perpendicular to the apex direction. This phenomenon is
detected by Garcı́a-Sánchez et al. (2001) using Hipparcosdata, al-
though the observational incompleteness biases the data. The non-
uniform distribution overcos κ results in an anisotropy in the peri-
helia of LPCs, as we will demonstrate and explain in Section 7.

3.4 Methods of numerically simulating the comet orbits

3.4.1 AMUSE

Taking the above models and initial conditions, we construct an
integrator for the orbits of Oort cloud comets via a procedure sim-
ilar to that in Wisdom & Holman (1991), using the Bridge method
(Fujii et al. 2007) in the AMUSE framework4 (a platform for cou-
pling existing codes from different domains; Pelupessy et al. 2013;
Portegies Zwart et al. 2013). A direct integration of the cometary

4 http://www.amusecode.org
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Figure 6. The upper panels show the distributions of the directions ofthe
stellar encounter velocities in our simulations in Galactic coordinates as
sin benc (upper left) andlenc (upper right). The lower panels show the dis-
tributions of the directions of the corresponding perihelia assin(bp) (lower
left) and lp (lower right). The blue and red lines denote the apex and an-
tapex directions, respectively. The total number of encounters is 197 906,
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Figure 7. The distribution of the cosine of the angle between the encounter
perihelion and the solar apex.

orbits is computationally expensive due to the high eccentricity
orbits and the wide range of timescales involved. We therefore
split the dynamics of the comets into Keplerian and interaction
terms (following Wisdom & Holman 1991). The Keplerian part has
an analytic solution for arbitrary time steps, while the interaction
terms of the Hamiltonian consist only of impulsive force kicks. To
achieve this we split the Hamiltonian for the system in the follow-
ing way

H = HKepler +Hencounter +Htide (13)

whereHKepler, Hencounter, andHtide describe the interaction of
the comet with the dominant central object (the Sun), a passing
star, and the Galactic tide, respectively. Specifically, the Keplerian
cometary orbits can be integrated analytically according toHKepler

while the interactions with the Galactic tide and stellar encounters
are taken into account in terms of force kicks. For the time inte-
gration a second order leapfrog scheme is used, where the Keple-
rian evolution is interleaved with the evolution under the interaction
terms. The forces for the latter are calculated using directsumma-
tion, in which the comet masses are neglected. Meanwhile, the Sun
moves around the Galactic center under the forces from the Galac-
tic tide and stellar encounters calculated fromHencounter andHtide

in the leapfrog scheme.

We first initialize the orbital elements of the Sun and encoun-
tering stars about the Galaxy, and the Oort cloud comets about
the Sun. We treat the stellar encounters as a N-body system with
a varying number of particles, simulated using the Huayno code
Pelupessy, Jänes & Portegies Zwart 2012. The interaction between
comets and the Sun is simulated with a Keplerian code based on
Bate, Mueller & White (1971).

At each time step in the orbital integration we calculate the
gravitational force from the Galaxy and stellar encounters. The ve-
locities of the comets are changed according to the Hamiltonian in
equation 13 at every half time step. Meanwhile, each comet moves
in its Keplerian orbit at each time step. All variables are trans-
formed into the HRF in order to take into account the influence
of the solar motion and stellar encounters on the cometary orbits.

We use constant time steps in order to preserve the symplectic
properties of the integration scheme in AMUSE (although we note
that a symplectically corrected adaptive time step is used in some
codes, such as SCATR (Kaib, Quinn & Brasser 2011)). We use a
time step of 0.1 Myr for tide-only simulations because we findno
difference in the injected flux when simulated using a smaller time
step. The choice of time step size is a trade-off between computa-
tional speed and sample noise in the injected comet sample. We use
a time step of 0.01 Myr in the encounter-only and in the combined
(tide plus encounter) simulations when modelling the angular dis-
tribution of the LPCs’ perihelia (section 7). (In section 8 we repeat
some of these simulations with a shorter time step – 0.001 Myr– to
confirm that this time step is small enough.) We use a time stepof
0.001 Myr in all other simulations.

In the following simulations we adopt the initial velocity of
the Sun from Schönrich, Binney & Dehnen (2010) and the initial
galactocentric radius from Schönrich (2012). Other initial condi-
tions and their uncertainties are the same as in Feng & Bailer-Jones
(2013). The circular velocity of the Sun (atR = 8.27 kpc),
v = 225.06 km/s, is calculated based on the axisymmetric Galactic
model in Section 3.1. These values are listed in Table 3.
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Table 3. The current phase space coordinates of the Sun, representedas Gaussian distributions, and used as the initial conditions in our orbital model
(Schönrich, Binney & Dehnen 2010; Schönrich 2012; Majaess, Turner & Lane 2009; Dehnen & Binney 1998).

R/kpc VR/kpc Myr−1 φ/rad φ̇/rad Myr−1 z/kpc Vz /kpc Myr−1

mean 8.27 -0.01135 0 0.029 0.026 -0.0074
standard deviation 0.5 0.00036 0 0.003 0.003 0.00038

3.4.2 Numerical accuracy of the AMUSE-based method

To test the numerical accuracy of the AMUSE-based method, we
generated 1000 comets from the DLDW model and monitored the
conservation of orbital energy and angular momentum. As theper-
turbation from the Galactic potential and stellar encounters used in
our work would violate conservation of the third component of an-
gular momentum (Lz), we use a simplified Galactic potential for
this test, namely a massive and infinite sheet with

Φsheet = 2πGσ|z|, (14)

whereG is the gravitational constant,σ = 5.0 × 106 M⊙/ kpc2

is the surface density of the massive sheet andz is the vertical dis-
placement from the sheet. Because this potential imposes notidal
force on comets if the Sun does not cross the disk, it enables us to
test the accuracy of the bridge method in AMUSE by using the con-
servation of cometary orbital energy and the angular momentum
perpendicular to the sheet. To guarantee that the Sun does not cross
the plane during the 1 Gyr orbital integration (i.e. the oscillation pe-
riod is more than 2 Gyr), we adopt the following initial conditions
of the Sun:R = 0 kpc,φ = 0, z = 0.001 kpc,VR = 0 kpc/Myr,
φ̇ = 0 rad/Myr, Vz = 0.0715 kpc/Myr. Integrating the cometary
orbits over 1 Gyr with a constant time step of 0.1 Myr, we calcu-
late the fractional change of the comets’ orbital energiesE and the
vertical component of their angular momentaLz during the motion
(Figure 8). Both quantities are conserved to a high tolerance, with
fractional changes of less than10−6 for Lz and less than10−12

for E. The numerical errors are independent of the comet’s energy
(which is inversely proportional to the semi-major axis). Compared
to the magnitude of the perturbations which inject comets from the
Oort cloud into the observable zone, these numerical errorscan be
ignored during a 1 Gyr and even a 5 Gyr integration.

3.4.3 Comparison of the AMUSE-based method with other
methods

Our numerical method calculates perturbations from stellar en-
counters and the Galactic tide using dynamical equations di-
rectly, instead of employing an impulse approximation (e.g. CIA,
DIA, or SIA Rickman et al. (2005)) or the Averaged Hamiltonian
Method (AHM)(Fouchard 2004). In the latter the Hamiltonianof
the cometary motion is averaged over one orbital period. This can
significantly reduce the calculation time, but is potentially less ac-
curate. A more explicit method is to integrate the Newtonianequa-
tions of motion directly, e.g. via the Cartesian Method (CM)of
(Fouchard 2004), but this is more time consuming.

To illustrate the accuracy of the AHM, CM, and AMUSE-
based methods in simulating high eccentricity orbits, we integrate
the orbit of one comet using all methods. The test comet has a semi-
major axis ofa = 25 000AU and an eccentricity ofe = 0.996
(as used in Fouchard (2004)). Adopting the following initial con-
ditions of the Sun –R = 8.0 kpc, φ = 0, z = 0.026 kpc, VR =
−0.01 kpc/Myr, φ̇ = 0.0275 rad/Myr, Vz = 0.00717 kpc/Myr –
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Figure 8. Assessment of the numerical accuracy of the AMUSE-based
method through monitoring the conservation of energyE and angular mo-
mentumLz for 1000 comets generated from the DLDW Oort cloud model.
Upper panels: For each of the 1000 comets, the standard deviation (over its
orbit) of E (left) andLz (right) relative to the average value over the orbit,
plotted as a function of the initial energy (which is proportional to1/a0).
Lower panels: the fractional change over the orbit ofE andLz for the 20
comets (represented by different colours) with the highestnumerical errors.

and using the same tide model as described above, the solar or-
bit under the perturbation from the Galactic tide is integrated over
the past 5 Gyr. Figure 9 shows that the evolutions of the cometary
perihelia calculated using the CM and AMUSE-based methods are
very similar, whereas AHM shows an evolution which diverges
from these. As CM is the most accurate method, this shows that
the AHM cannot be used to accurately calculate the time-varying,
because it holds the perturbing forces constant during eachor-
bit. Because the AMUSE-based method computes a large sample
of comets more efficiently than CM does, we have adopted the
AMUSE-based method in our work.

3.4.4 Calculation of the injected comet flux

A comet which comes too close to the perturbing effects of thegiant
planets in the solar system will generally have its orbit altered such
that it is injected into a much shorter periodic orbit or is ejected
from the solar system on an unbound orbit. We regard a comet as
having been injected into the inner solar system in this way when
it enters into the “loss cone” (Wiegert & Tremaine 1999), i.e. that
region with a heliocentric radius of 15 AU or less (the same defini-
tion as in Dybczyński (2005) and R08). These are the comets which
can then, following further perturbations from the planets, hit the
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Figure 9.The variation of the perihelion of one comet calculated withthree
different integration methods: AHM (black solid), CM (red dashed), and
AMUSE-based method (blue dotted).

Earth. If injected comets enter an observable zone within< 5AU
then they may be observed as a LPC. Comets which are injected
into the loss cone or which are ejected from the solar system (i.e.
achieve heliocentric distances larger than4×105 AU) are removed
from the simulation.

The observable comets are only a subset of the injected comets
because some injected comets can be ejected again by Saturn and
Jupiter. But assuming that this is independent of the orbital ele-
ments over long time scales, we assume that the flux of injected
comets is proportional to the flux of LPCs. Inner Oort cloud comets,
in particular comets witha < 3000AU, may be injected into
the loss cone (q < 15AU) but not enter the observable zone
(q < 5AU) (Kaib & Quinn 2009). In our simulations we will ex-
amine the properties of comets injected into both types of target
zone, and we will refer to such injected comets as LPCs. Once we
have identified the injected comets, we calculate the Galactic lat-
itudesbc and longitudeslc of their perihelia. Because the orbital
elements of the class 1A LPCs are recorded during their first pas-
sage into inner solar system, we can reasonably assume that the di-
rection of the LPC perihelion is unchanged after entering the “loss
cone”. In Section 5 and 7, we will model the terrestrial cratering
time series and the anisotropic perihelion of LPCs based on the in-
jected comet flux. Specifically, in Section 5, we will show howwe
convert the simulations of the perturbations of the cometary orbits
into a model for the time variation of the cometary flux entering the
inner solar system.

4 BAYESIAN INFERENCE METHOD

We summarize here our Bayesian method for quantifying how well
a time series model can describe a set of cratering data (or in-
deed any other series of discrete time measurements with uncer-
tainties). A full description of the method and its application to the
cratering data for various non-dynamical models can be found in
Bailer-Jones (2011a,b).

4.1 Evidence

If we defineD as the time series of craters andM as some model
for these data, then the evidence of the model is defined as

P (D|M) =

∫

θ

P (D|θ,M)P (θ|M)dθ, (15)

where θ is the parameters of the model, andP (D|θ,M) and
P (θ|M) are the likelihood of the data and the prior distribution
over the parameters, respectively. The evidence is therefore the
prior-weighted average of the likelihood over the parameters. It
gives the overall ability of the model to fit the data, rather than
the power of any individual set of parameters. As is well known in
statistics, and further described in Bailer-Jones (2011a), this is the
appropriate metric to use in order to compare models of different
flexibility or complexity.

If tj is thetrue(unknown) time of the impact of craterjth, and
τj is themeasuredtime with corresponding uncertaintyσj , then an
appropriate error model for this measurement is

P (τj |σj , tj) =
1√
2πσj

exp[−(τj − tj)
2/2σ2

j ] . (16)

The likelihood for one crater measurement can then be calculated
by integrating over the unknown time

P (τj |σj , θ,M) =

∫

tj

P (τj |σj , tj , θ,M)P (tj |σj , θ,M)dtj

=

∫

tj

P (τj |σj , tj)P (tj |θ,M)dtj . (17)

The second term in the second equation describes the time series
model: it predicts the probability that an event will occur at time tj
given the parameters for that model. The likelihood for the whole
time series,D = {τj}, is the product of the individual likelihoods
(assuming they are measured independently), in which case

P (D|θ,M) =
∏

j

P (τj |σj , θ,M) . (18)

We use this in equation 15 to calculate the evidence for modelM
give the set of cratering dates. The absolute scale of the evidence
is unimportant: we are only interested in ratios of the evidence for
any pair of models, known as theBayes factor. As a rule of thumb,
if the Bayes factor is larger than 10, then the model represented in
the numerator of the ratio is significantly favoured by the data over
the other model (see Kass & Raftery (1995) for further discussion
of the interpretation).

4.2 Time series models

The time series model,M , is a model which predicts the variation
of the impact probability with time (the normalized cratering rate),
i.e. the termP (τj |σj , θ,M) in equation 18. The models we use in
this work, along with their parameters,θ, are defined in Table 4,
and described below

Uniform.Constant impact probability over the range of the data.
As any probability distribution must be normalized over this range,
this model has no parameters.

RandProb, RandBkgProb.Both models compriseN impact
events at random times, with each event modelled as a Gaussian.
N times are drawn at random from a uniform time distribution ex-
tending over the range of the data. A Gaussian is placed at each of
these with a common standard deviation (equal to the averageof
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the real crater age uncertainties). We then sum the Gaussians, add a
constant background,B, and normalize. This is the RandBkgProb
(“random with background”) model. RandProb is the special case
for B = 0. We calculate the evidence by averaging over a large
number of realizations of the model (i.e. times of the events), and,
for RandBkgProb, overB. For example, when we later model the
basic150 time series, we fixN = 32 and rangeB from 0 to∞ (see
Table 5).

SinProb, SinBkgProb.Periodic model of angular frequencyω
and phaseφ0 (model SinProb). There is no amplitude parameter
because the model is normalized over the time span of the data.
Adding a backgroundB to this simulates a periodic variation on
top of a constant impact rate (model SinBkgProb).

SigProb. A monotonically increasing or decreasing nonlinear
trend in the impact PDF using a sigmoidal function, characterized
by the steepness of the slope,λ, and the center of the slope,t0. In
the limit thatλ becomes zero, the model becomes a step function at
t0, and in the limit of very largeλ it becomes the Uniform model.
We restrictλ < 0 in our model comparison because the decreasing
trend in cratering rate towards the past seems obvious in thetime
series (see Figure 1; see also Bailer-Jones (2011a)). However, we
do include the increasing trend in our sensitivity test in Section 8.

SinSigProb.Combination of SinProb and SigProb.
TideProb, EncProb, EncTideProb.Models arising from the dy-

namical simulation of cometary orbits perturbed by either stellar
encounters (EncProb) or the Galactic tide (TideProb) or both (Enc-
TideProb). We describe the modelling approach which produces
these distributions in detail in Section 5.

EncSigProb, TideSigProb, EncTideSigProb.Combination of
EncProb, TideProb, EncTideProb (respectively) with SigProb.

Some of these models – those in the first five lines in Table
4 – are simple analytic models. The others are models based on
dynamical simulations of cometary orbits, which we therefore call
dynamical models. In the next section we will explain how we get
from a simulation of the perturbation of the cometary orbitsto a
prediction of the cratering rate. Table 4 also lists the parameters of
the models, i.e. those parameters which we average over in order to
calculate the evidence. The prior distributions for these parameters
are listed in Table 5.

5 MODELLING THE HISTORY OF THE COMETARY
IMPACT RATE

The terrestrial impact rate consists of two parts: the asteroid impact
rate and the comet impact rate. We are specifically interested in
only the latter in the present work. The background asteroidimpact
rate is proportional to the number of asteroids in the asteroid belt,
which is depleted by the impact of asteroids on planets and their
satellites. Over a long time scale (longer than 100 Myr), theback-
ground impact rate of asteroids would therefore decrease towards
the present. But we could also see variations in this due to the dis-
ruption of large asteroids into an asteroid family, which would pro-
duce phases of enhanced impacting (Bottke, David & David 2007).
In addition to the actual impact rate, the geological recordof all
impact craters (comet or asteroid) is contaminated by a selection
bias: The older a crater is, the more likely it is to have been eroded
and so the less likely it is to be discovered. This preservation bias
would lead to an apparent increase in the impact rate towardsto the
present. We model the combined contribution of these two compo-
nents (variable asteroid impact rate and the preservation bias) to the
measured impact rate using a sigmoidal function, which produces

a smoothly varying trend with time (model SigProb in Table 4). As
with the other models, this model has parameters which we average
over when computing the model evidence.

The cometary impact rate is determined by the gravitational
perturbations of the Oort cloud due to the Galactic tide and stel-
lar encounters. Both are modulated by the solar motion around the
Galactic center. Some studies suggest that their combined effect in-
jects more comets into the inner solar system than does each acting
alone (Heisler, Tremaine & Alcock 1987; Rickman et al. 2008).
This so-called synergy effect is difficult to model, however, and
will be ignored in our statistical approach.

We simulate the effects of the tide and encounters separately
(section 3). The resulting cometary flux from these is described by
the models TideProb and EncProb respectively. The cometaryflux
when both processes operate, the model EncTideProb, is the sum
of the fluxes from each (each being normalized prior to combina-
tion). To include the contributions from the asteroid impacts and
the crater preservation bias we can add to this the SigProb model
mentioned above. This gives the model EncTideSigProb. The pa-
rameters of all these models and their prior ranges are defined in
Tables 4 and 5.

5.1 Tide-induced cometary flux

The time variation as the Sun orbits the Galaxy of the tide-induced
cometary flux entering the loss cone is calculated using AMUSE-
based method (section 3.4). We definefc as the relative injected
comet flux in a time bin with width∆t

fc =
Ninj

Ntot∆t
, (19)

whereNinj is the number of injected comets in this bin andNtot is
the total number of the comets.

We could usefc directly as the model prediction of the comet
impact cratering rate,Pu(t|θ,M), for the model TideProb (sec-
tion 4.2) for that particular set of model parameters. However, as
the calculation of the cometary orbits is rather time-consuming, we
instead use a proxy forfc, i.e. the vertical tidal force.

The tidal force per unit mass experienced by a comet in the
Oort Cloud is

F = −GM⊙ r̂

r2
−G1x x̂−G2y ŷ−G3zẑ (20)

wherer is the Sun-comet vector of lengthr, M⊙ is the solar mass,
andG is the gravitational constant.5 The three tidal coefficients,
G1, G2, andG3 are defined as

G1 = −(A−B)(3A+B)

G2 = (A−B)2

G3 = 4πGρ(R, z)− 2(B2 − A2)

(21)

whereA andB are the two Oort constants, andρ(R, z) is the local
mass density which can also be denoted asρ(t) in the case of using
G3(t) to build models. Because the two componentsG1 andG2

in the Galactic(x, y) plane are about ten times smaller than the
vertical component (G3), it is the vertical tidal force that dominates
the perturbation of the Oort Cloud.

To find a relationship betweenfc andG3, we simulate the or-
bits of one million comets generated from the DQT model back to

5 We don’t use this equation in simulating cometary orbits in the AMUSE
framework.
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Table 4.The mathematical form of the time series models and their corresponding parameters. Timet increases into the past andPu(t|θ,M) is the unnormal-
ized cratering rate (probability density) predicted by themodel. In the dynamical models (EncProb, TideProb, EncTideProb, EncSigProb, TideSigProb, and
EncTideSigProb),~r⊙(t = 0Myr) and~v⊙(t = 0Myr) are Sun’s current position and velocity relative to the Galactic center. Note that the components in
the compound models are normalized before being combined. The quantitiesγbin(t), G3(t), andξ are defined in Section 5.η is a parameter which describes
the relative contribution of the two combined models.

model name Pu(t|θ,M) parameters,θ

Uniform 1 none

RandProb/RandBkgProb
∑N

n=1
N (t;µn, σ)+B σ, B,N

SinProb/SinBkgProb 1/2{cos[ωt+ φ0] + 1}+B ω, β, B
SigProb [1 + e(t−t0)/λ]−1 λ, t0
SinSigProb SinProb+SigProb T , β, B,λ, t0
EncProb γbin(t) ~r⊙(t = 0), ~v⊙(t = 0)
TideProb G3(t) ~r⊙(t = 0), ~v⊙(t = 0)
EncTideProb [γbin(t) + ξG3(t)]/(1 + ξ) ξ, ~r⊙(t = 0), ~v⊙(t = 0)
EncSigProb EncProb +η SigProb η, λ, t0, ~r⊙(t = 0), ~v⊙(t = 0)
TideSigProb TideProb +η SigProb η, λ, t0, ~r⊙(t = 0), ~v⊙(t = 0)
EncTideSigProb EncTideProb +η SigProb ξ, η, λ, t0, ~r⊙(t = 0), ~v⊙(t = 0)

Table 5. The prior distribution and range of parameters for the various time series models. For the non-dynamical models (i.e. all except the last five lines),
a uniform prior for all the parameters is adopted which is constant inside the range shown and zero outside.Nts andτmax are the number of events and the
earliest time of occurrence of the craters.σ̄i is the averaged age uncertainties of the craters. The prior PDFs over the parameters of the dynamical models (the
last five lines) are Gaussian, with means and standard deviations set by the initial conditions as listed in Table 3.

model name details of the prior over the parameters

Uniform no parameters
RandProb σ = σ̄i, N = Nts, B = 0

RandBkgProb σ = σ̄i, N = Nts, B = 1√
2πσ

b
(1−b)

with b ∈ [0, 1]

SinProb 2π/100 < ω < 2π/10, 0 < φ0 < 2π,B = 0

SinBkgProb 2π/100 < ω < 2π/10, 0 < φ0 < 2π, B = b
(1−b)

with b ∈ [0, 1]

SigProb −100 < λ < 0, 0 < t0 < 0.8τmax

SinSigProb Priors from both SinProb and SigProb
EncProb Initial conditions listed in Table 3
TideProb Initial conditions listed in Table 3
EncTideProb ξ = 1, Initial conditions listed in Table 3
EncSigProb 0 < η < 4, −100 < λ < 0, 0 < t0 < 0.8τmax, initial conditions listed in Table 3
TideSigProb 0 < η < 4, −100 < λ < 0, 0 < t0 < 0.8τmax, initial conditions listed in Table 3
EncTideSigProb ξ = 1, 0 < η < 4, −100 < λ < 0, 0 < t0 < 0.8τmax, initial conditions listed in Table 3

1 Gyr in the past under the perturbation of the Galactic tide (stel-
lar encounters are excluded). We use here the loss cone as thetar-
get zone when identifying the injected comets (LPCs). The two
quantities are compared in Figure 10. We see that the detrended
comet flux (red line) agrees rather well withG3 (blue line) over
the past 1 Gyr, albeit with an imperfect detrending over the first
100 Myr. We made a similar comparison for the DLDW model and
also find a very close linear relation. ComparingG3 with the flux
of the comets injected into the observable zone (i.e.q < 5AU) for
both the DLDW and DQT models, we find that the result is consis-
tent with what we have found for the loss cone. This confirms the
relationship between the tide-induced comet flux and the vertical
tidal force, which was also demonstrated by Gardner et al. (2011)
(their Figure 9) with a different approach. We are thereforejusti-
fied in usingG3 as a proxy for the tide-induced comet flux when
we build models of cometary impact rate to compare to the crater
time series.

5.2 Encounter-induced cometary flux

We define the encounter-induced flux entering the loss cone inthe
same way asfc in equation 19. We now investigate whether we can
introduce a proxy for this too. We postulate the use of the quantity

γ =
Menc

vencrenc
(22)

which is proportional to the change in velocity of the Sun (orequiv-
alently to the mean change in velocity of the comets) as induced
by an encounter according to the classical impulse approximation
(Oort 1950; Rickman 1976). This proxy has also been used in pre-
vious studies to approximate the LPC flux injected by stellaren-
counters (e.g. Kaib & Quinn (2009); Fouchard et al. (2011)).

The injected flux is dominated by those encounters which
can signifcantly change the velocity and thus the perihelion
of the comets (Hills 1981; Heisler, Tremaine & Alcock 1987;
Fouchard et al. 2011). Considering the important role of these en-
counters and the long time scale between them (about 100 Myr ac-
cording to Heisler, Tremaine & Alcock 1987), we divide the whole
time span of simulated stellar encounters into several timebins and
use the (normalized) maximum value ofγ in each bin to approxi-
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Figure 10. Comparison between the tide-induced injected comet flux (fc)
and the vertical Galactic tide (G3). The injected comet flux is shown as
a histogram with two different bins sizes: 1 Myr (black line)and 10 Myr
(white line). The red line is the detrended comet flux with a time bin of
10 Myr. The blue line shows the variation ofG3 (scaled, as it has a different
unit tofc).
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Figure 11. The time-varying probability density of the encounter-induced
injected comet fluxfc (red line) and the prediction of proxyγbin (blue
line), binned with a time bin of 1 Myr.

mate such comet showers. We define this binned proxy asγbin, and
normalize it over the whole time scale. In Figure 11, we compare
this proxy to the normalized encounter-induced flux which issim-
ulated with a time step of 0.001 Myr using a sample of105 comets
generated from the DLDW model over 100 Myr. We find that the
main comet showers can be properly predicted byγbin, although it
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Figure 12.Assessment of the comet shower prediction ability of the proxy
γ. The black points show peaks which are correctly reproduced, by plotting
their time of occurrence in the proxy,Tγ , against their true time of occur-
rence,Tf , in fc. Peaks missed by the proxy are shown as vertical red lines
and false peaks in the proxy are shown as horizontal blue lines.

may miss small comet showers and predict some non-existent small
showers.

To assess the reliability of the shower prediction of the proxy,
we evaluate the fraction of peaks infc which are correctly identi-
fied by γbin, and the fraction of peaks inγbin which have a cor-
responding true peak infc. For the former case, a peak infc is
counted as correctly predicted by the proxy when it occurs inthe
same time bin as a peak inγbin, or when thefc peak is one bin
earlier (because the shower can occur up to 1 Myr after the clos-
est approach of the encounter). We find that 23 out of 27 (0.85)
flux peaks are correctly predicted by the proxy, while 23 out of 33
(0.70) peaks inγbin have corresponding peaks infc (Figure 12).
This simple counting ignores the intensity of the comet showers.
To remedy this use the amplitude of eachγbin peak as a weight,
and count the weighted fractions. We find these to be 0.92 and 0.84
respectively. These results suggests thatγbin is a reasonably good
proxy for statistical purposes. Hence we useγbin as the measure
of Pu(t|θ,M) for the model EncProb. The linear relationship be-
tweenρ(t) andG3(t) (equations 9 and 21) indicates that the av-
eraged EncProb model over sequences ofγbin is equivalent to the
corresponding TideProb model for one solar orbit. We will see in
section 6 whether there is any significant difference between the
evidences for these two models.

5.3 Combined tide–encounter cometary flux

Having defined TideProb and EncProb, we can combine them to
make EncTideProb. We can further combine this sum with Sig-
Prob (scaled by the parameterη) in order to include a smoothly
varying component (see Table 4). Figure 13 shows examples ofthe
TideProb, EncTideProb and EncTideSigProb model predictions of
the cometary flux for specific values of their parameters. In the
upper panel, we see the TideProb model predicts an oscillating
variation on at least two time scales. In the middle panel, weadd



Exploring the role of the Sun’s motion in terrestrial comet impacts 13

0 50 100 150 200 250

0.
00

30
0.

00
40

Time BP/Myr

P
D

F

0 50 100 150 200 250

0.
00

5
0.

01
0

0.
01

5
0.

02
0

Time BP/Myr

P
D

F

0 50 100 150 200 250

0.
00

0
0.

00
2

0.
00

4
0.

00
6

Time BP/Myr

P
D

F

Figure 13. The prediction of the normalized cometary impact rate (i.e.
probability density function; black line) compared to the actual impacts in
the basic250 time series (red lines). The models from top to bottom are
TideProb, EncTideProb, and EncTideSigProb. A common solarorbit and
encounter sample is used in all three cases.

EncProb to TideProb. The amplitude of the background is reduced
due to the normalization effect – the encounters dominate – and the
high peaks characterize encounter-induced comet showers.In the
bottom panel, the SigProb model is added onto the EncTideProb
model withη = 3. A large value ofλ has been used in SigProb
here, such that the additional trend is almost linear. Meanwhile,
we also combine TideProb and SigProb to make TideSigProb. This
of course does not show the randomly occurring peaks which are
characteristic of the encounters model.

In Section 6, we will compare these models with other time
series models defined in Section 4.2 using Bayesian method.

6 MODEL COMPARISON

Now that we have a way to generate predictions of the comet
flux from our dynamical time series models, we use the Bayesian
method described in section 4 to calculate the evidences forthe var-
ious time series models defined in section 4.2 for different cratering
data sets. Because the solar orbit is more sensitive to the Sun’s ini-
tial galactocentric distance (R) and angular velocity (̇φ) than to the
other four initial conditions (Feng & Bailer-Jones 2013), we sam-
ple over only those two parameters when calculating the evidences
and Bayes factors (ratio of two evidences) for the dynamicalmod-
els. In order to make our model comparison complete, we will vary
all initial conditions individually and simultaneously insection 8.

To calculate the evidences we sample the parameter space of
the dynamical models and other time series models with104 and
105 points respectively. For the models of EncProb, EncTideProb,
EncSigProb and EncTideSigProb, each point represents an entire
simulation of the orbit of the Sun about the Galaxy and the corre-
sponding simulation of the comet flux as a function of time. For the
latter we use the proxies ofG3(t) andγ(t) (i.e. the time-varying
γbin) described in section 5.1 and section 5.2 respectively. Foreach
orbit of the Sun we just generate a single sequenceγ(t) for the
comet flux at random. (Becauseγ(t) is modulated by the verti-
cal tide coefficientG3(t), an average over many sequences ofγ(t)
would be smooth and lack the spikes corresponding to comet show-
ers which we see in the individual sequences.)

The Bayes factors of various models relative to the uniform
model are listed in Table 6. We see that the SigProb, EncSigProb,
TideSigProb and EncTideSigProb models are favoured by all the
data sets, sometimes marginally, sometimes by a significantamount
relative to certain models. In these favoured models, the negative
trend (a decreasing cratering rate towards the past) is favoured
much more than the positive trend. Such a negative trend can be
picked out in Figure 1. As the positive values are so clearly ruled
out, we only use negative values ofλ in all the trend models. This
would be consistent with the crater preservation bias or thedisrup-
tion of a large asteroid dominating over any recent increasein the
asteroid impact rate (see section 5).

The SinSigProb model is not favoured more than SigProb,
which means the periodic component is not necessary in explain-
ing cratering time series. This is consistent with the conclusion in
Bailer-Jones (2011a). Moreover, the pure periodic model isactu-
ally slightly less favoured than the uniform model for the “basic”
and “ext” data sets. The pure random model (RandProb) is slightly
more favoured than the random model with background (RandBkg-
Prob). Both are more favoured than the uniform model, but with
relatively low Bayes factors compared to the models with trend
components.

EncProb is slightly more favoured than the TideProb model.
This suggests that the stochastic component of EncProb is slightly
preferable to the smooth tidal component of TideProb in predict-
ing the cratering data, although the difference is small. Combining
them to make the EncTideProb models does not increase the evi-
dence.

The best overall model for explaining the data is SigProb, the
pure trend model. Adding the tide or encounters or both does not
increase the evidence by a significant amount for any of the data
sets. This suggests that the solar motion has little influence on
the total observed impact rate (i.e. comets plus asteroids and the
preservation bias) either through the Galactic tide or through stel-
lar encounters, at least not in the way in which we have modelled
them here. This minor role of the solar motion in generating terres-
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Table 6.Bayes factors of the various time series models (rows) relative to the uniform model for the various data sets (columns).The suffix numbers 1 and 2
in the model names, e.g. EncProb1 and EncProb2, refer to which different initial conditions are fixed. 1 meansR(t = 0) and 2 meanṡφ(t = 0).

Model basic150 ext150 full150 basic250 ext250 full250

RandProb 4.4 9.3 72 3.0 9.4 4.7×102

RandBkgProb 1.8 3.8 31 2.2 5.2 1.8×102

SinProb 0.34 0.62 1.2 0.43 0.76 1.5
SinBkgProb 1.0 1.2 1.6 1.0 1.2 1.5
SigProb 15 63 9.1× 103 2.0× 102 1.8× 103 5.8× 106

SinSigProb 10 36 1.6× 102 1.0× 102 6.0× 102 2.6× 105

EncProb1 1.5 3.9 26 1.7 5.2 1.1× 102

EncProb2 1.7 3.3 77 1.6 8.5 2.7× 102

TideProb1 0.73 0.87 6.7 0.81 0.91 1.1
TideProb2 0.79 0.86 10 0.69 0.76 0.94
EncTideProb1 1.0 1.6 18 1.3 2.1 10
EncTideProb2 1.2 1.8 25 1.2 2.1 24
EncSigProb1 11 41 4.6× 103 1.5× 102 1.5× 103 5.9× 106

EncSigProb2 12 52 8.7× 103 1.7× 102 1.5× 103 6.6× 106

TideSigProb1 11 38 4.6× 103 1.6× 102 1.4× 103 6.2× 106

TideSigProb2 10 37 4.5× 103 1.6× 102 1.4× 103 6.1× 106

EncTideSigProb1 11 40 5.0× 103 1.6× 102 1.4× 103 6.0× 106

EncTideSigProb2 11 40 4.7× 103 1.6× 102 1.5× 103 6.1× 106

trial craters weakens the hypothesis that the (semi-)periodic solar
motion triggers mass extinctions on the Earth through modulating
the impact rate, as some have suggested (Alvarez & Muller 1984;
Raup & Sepkoski 1984). We note that a low cometary impact rate
relative to the asteroid impact rate has been found by other studies
(Francis 2005; Weissman 2007).

The evidence is the prior-weighted average of the likelihood
over the parameter space. It is therefore possible that someparts of
the parameter space are much more favoured than others (i.e.there
is a large variation of the likelihood), and that this is not seen due to
the averaging. In that case changing the prior, e.g. the range of the
parameter space, could change the evidence. (We investigate this
systematically in section 8). In other words, the tide or encounter
models may play a more (or less) significant role if we had good
reason to narrow the parameter space. This would be appropriate if
we had more accurate determinations of some of the model param-
eters, for example. We now investigate this by examining howthe
likelihood varies as a function of individual model parameters (but
still be averaged over the other model parameters).

Figure 14 shows how the resulting likelihood varies as a
function of the four parameters in the TideSigProb1 model. The
most favoured parameters of the trend component areλ ≈
−60Myr and t0 ≈ 100Myr. This trend component represents
an increasing cratering rate towards the present over the past
100 Myr (Shoemaker 1998; Gehrels, Matthews & Schumann 1994;
McEwen, Moore & Shoemaker 1997), either real or a result of
preservation bias. In the upper left graph, the likelihood varies with
R slightly and varies a lot in the region whereR < 8 kpc and
R > 9 kpc. In the lower right panel, the likelihood increase withη,
which means that the trend component is important in increasing
the likelihood for the TideSigProb model.

To find the relationship between the likelihood for TideSig-
Prob and the Sun’s initial galactocentric distanceR and the scale
parameterη, we fix the parameters of the trend component to
λ = −60Myr andt0 = 100Myr. In Figure 15 we see that the like-
lihood for TideSigProb increases monotonically withη over this
range, but has a more complex dependence onR. The likelihood
is highest at aroundR = 7.0 andR = 9.5 kpc. In Figure 16 we
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Figure 14.The distribution of the likelihood over each of the parameters in
the TideSigProb1 model for the basic250 data set, sampling over all other
parameters in each case. The parameters are divided into 1000 bins. For
each bin, the likelihoods are averaged to reduce the noise generated by the
randomly selected sequence of stellar encounters. There are 100 000 sam-
ples in the parameter space.

compare the dates of the craters in the basic250 data set withthe
prediction of the cratering rate from TideProb withR = 7.0 kpc.
There are 7 craters within the first 30 Myr compared to 16 and 13
craters in the intervals [30,60] Myr and [60,90] Myr respectively.
This lack of craters in the first 30 Myr can be better predictedby
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Figure 15. The distribution of the likelihood over the parametersR andη
in the TideSigProb1 model relative to the Uniform model for the basic250
data set. The relative likelihood is shown as the colour scale indicated in the
legend. There are 100 000 samples in the parameter space.
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Figure 16. Comparison between the prediction of TideProb withR =
7.0 kpc (shown as a probability distribution function in black)and the times
of the impact craters in the basic250 data set (shows as vertical red lines).

TideSigProb than by the SigProb model with a negativeλ. While
this is small number statistics, it may suggest that even though we
have little evidence for the effect of the tide on cometary impacts in
the overall cratering data, it may have had more of an effect in se-
lected time periods. Other explanations are also possible,of course:
we cannot say anything about models we have not actually tested,
such as a more complex model for the asteroid impact rate varia-
tion.

7 MODELLING THE ANGULAR DISTRIBUTION OF
COMETARY PERIHELIA

In this section we predict the 2D angular distribution (latitude, lon-
gitude) of the perihelia of LPCs, the observed data for whichare
shown in Figure 2. To do this we need to identify from the simu-
lations comets injected over an appropriate time scale. Figure 11
shows that a comet shower usually has a duration of less than

10 Myr, something which was also demonstrated by Dybczyński
(2002) in detailed simulations of individual encounters. The Galac-
tic tide varies little over such a time scale, because the vertical com-
ponent of the tide, which dominates the total Galactic tide,varies
over the period of the orbit of the Sun about the Galaxy, whichis
of order 200 Myr. We may therefore assume that the solar apex is
also more or less fixed during the past 10 Myr, which is then an
appropriate time scale for constructing our sample.

We simulate cometary orbits over the past 10 Myr as follows:
(1) generate one million comets from the Oort cloud model (DLDW
or DQT), as well as a set of stellar encounters (about 400 over
10 Myr); (2) integrate the cometary orbits under the perturbations
of only the Galactic tide (tide-only simulations with a timestep of
0.1 Myr), only stellar encounters (encounter-only simulations with
a time step of 0.01 Myr), and both of them (combined simulations
with a time step of 0.01 Myr) back to 10 Myr ago; (3) identify the
injected comets and their longitudes and latitudes. We thenrepeat
steps (1)–(3) ten times (i.e. resample the Oort cloud and theset of
stellar encounters) and combine the results in order to increase the
number statistics.

7.1 Latitude distribution

The upper panels of Figure 17 compare the Galactic latitudesof the
LPC perihelia with our model predictions. In addition to showing
the model predictions for the comets injected into the loss cone, we
also show the predicted distributions for comets injected into the
observable zone (q < 5AU). The former contains more comets, but
the latter is of course closer to the observed sample. The small sam-
ple of comets within the observable zone have significant sample
noise in their angular distributions, so we will only compare model
predictions of the angular distribution of comets in the (larger) loss
cone.

The upper panels show that the injected LPCs in the pole and
equatorial regions are depleted for both DLDW and DQT models,
as also found by Delsemme (1987). According to theoretical pre-
diction, the tide-induced flux should be proportional to| sin b cos b|
(Matese, Whitman & Whitmire 1999), in very good agreement
with our tide-only simulations. The observed data broadly agree
with this, the main difference being that for negative latitudes the
peak is at around -0.4 rather than the model-predicted valueof -0.7.
This discrepancy was also noticed by Matese & Whitmire (2011),
for example, and could be a consequence of the small size of the
data set (note the errors bars in the figure).

We see in the figure that the PDF of the latitude distribution
predicted by the combined simulation always lies between those
predicted by the single perturbation simulations. Although the com-
bined simulation of comets injected into the loss cone predicts a
flatter distribution than the tide-only simulation does, the stellar en-
counters cannot entirely smooth out the peaks in the latitude distri-
bution. This is consistent with the results in Rickman et al.(2008).
Thus the observed non-uniform latitude distribution does not indi-
cate that the Galactic tide dominates at the present epoch, as was
claimed by Matese & Whitmire (2011).

We can attempt to make a more quantitative assessment of
how well our models predict the observed distribution. Using
model comparison techniques we can ask whether our dynami-
cal models (the combined tide plus encounters model) explain the
data better than a uniform distribution. We can do this crudely on
the binned data/simulations shown in the figure via a likelihood
test. The act of binning means that the model-predicted number of
events per bin is determined by the Poisson distribution, thus defin-
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Figure 17. Comparison between the observed distribution (histogram
blocks) and model-predicted distributions (points/lines) of the perihelia of
long-period comets (LPCs) with Galactic latitude (upper panels) and longi-
tude (lower panels) for the DLDW (left panels) and the DQT (right pan-
els) Oort cloud initial conditions. All distributions are normalized. The
error bars on the data have been calculated using a Poisson noise model
(arising from the binning) with a total of 102 class 1A LPCs. The model-
predicted distributions show the comets injected into the loss cone for three
modes of simulations, namely including only the Galactic tide (triangles),
only stellar encounters (squares), and both (circles). Thenumber of injected
comets in these simulations for the DLDW (DQT) models are 1858 (981),
1133 (1976), and 12 751 (2796), respectively. The red circles connected
by red lines show the number of comets injected into the observable zone
(q < 5AU), and comprise 449 comets for the DLDW model, and 112 for
the DQT model.

ing our likelihood. However, such a test is dependent on the choice
of binning, and we have tried out a range of bin widths and centres.
While we find that the combined model for the DQT Oort cloud
model is always more favoured than a uniform distribution, the sig-
nificance is marginal.

An alternative approach is to use the unbinned data and un-
binned model predictions, and to apply a kernel density estimate
(KDE) to each. This produces a non-parametric density function for
the data and for the model, the difference between which we quan-
tify using the (symmetrized) Kullback-Leibler divergence(KLD).
A value of zero divergence means that the two distributions are
identical; larger (positive/negative) values indicate larger differ-
ences. We find that our dynamical models give smaller KLD values
than do the uniform model (i.e. the former predict the data better),
for both the DLDW and DQT. Although the distributions formedby
the KDE are sensitive to size of the kernel adopted,6 we find that

6 This is analogous to the size of the histogram bins. A histogram is just a
particular type of kernel.

the KLD values are quite insensitive to this, and consistently favour
the dynamical models. This suggests that the dynamical models ex-
plain the data better than a flat distribution in latitude (although be-
cause calibrating KLD ratios into formal significances is not easy,
we leave this as a qualitative statement).

7.2 Longitude distribution

The perihelia of LPCs are not distributed uniformly on the celestial
sphere. It has been suggested (Matese, Whitman & Whitmire 1999;
Matese & Whitmire 2011) that they lie preferentially on a great cir-
cle, as evidenced by two peaks atlc ≃ 135◦and lc ≃ 315◦seen
in Figure 2. The comets on this great circle could be induced
by stellar encounters with preferred directions, thereby produc-
ing the apparent anisotropy. In the lower two panels in Figure 17,
we see that the model predictions do not produce any very large
peaks, although one aroundlc ≃ 135◦ is discernable. We also ob-
serve a peak aroundlc =0–60◦ which is proposed as a signal of
the “Biermann comet shower” (Biermann, Huebner & Lust 1983;
Matese, Whitman & Whitmire 1999). In our model, this peak is
probably the result of accumulated perturbations from several stel-
lar encounters with preferred directions.

The peak aroundlc = 135◦ is more prominent in the model
prediction for the comets injected into the observable zone(red
points/line in the figure). This peak is generated primarilyby one
or more massive stellar encounters. Hence, stellar encounters play
a more significant role in injecting comets into the observable zone
than just into the loss cone. This is consistent with the “synergy
effect” investigated by Rickman et al. (2008).

As with the latitude distribution, we also measured the KLD
for the model predictions (for the loss cone) and for a uniform dis-
tribution. The dynamical models predict the data little better than
a uniform distribution. (The likelihood test gives a similar result.)
One reason for this lack of support for our dynamical (combined)
model could be the fact that we are averaging the predicted dis-
tribution from the encounters over ten different realizations of the
stellar encounters. This will tend to smooth out individualpeaks,
which are probably produced by just a few encounters with mas-
sive stars.7 If we instead only used a single random realization of
encounters, we are unlikely to reproduce exactly the showers which
occurred. This is an inherent problem of modelling stellar encoun-
ters in a stochastic way. This does not affect our model prediction of
the latitude distribution nearly as much, however, becauseits shape
is dominated by the non-stochastic tide.

In order to investigate this we again use our encounter model
via the proxyγ (a proxy of comet flux) defined in equation 22,
but now as a function ofbp and lp, the direction toward the peri-
helion of the stellar encounter. Moreover, we now impose a min-
imum threshold,γlim, on the proxy: The larger the value ofγlim,
the larger the encounter perturbation must be for it to be included
in the model.

Using the encounter model described in section 3.3, we sim-
ulate 10 million encounters and calculateγ, bp, and lp for each.
The predicted direction of an LPC’s perihelion is opposite on the
sky to the direction of the encounter perihelion. Thus we cancal-
culatebc and lc accordingly and useγ(bc, lc) to predict the PDF
of bc and lc. Then we divide the range of the Galactic longitude

7 Such massive stars (or stars with relatively highγ) move slowly relative
to the Sun, and so would generate a relatively narrow peak in comet flux
with lc.
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Figure 18.Predictions of the enounter-induced cometary flux when adopt-
ing different lower limits,γlim, on the value ofγ required for an event to
have an influence on the Oort cloud. There are107 and108 encounters gen-
erated for the model predictions withγlim = 0 andγlim 6= 0 respectively.

into 12 bins and sumγ in each bin including only those encoun-
ters withγ > γlim. Normalizing this gives the angular PDF of the
encounter-induced flux, as shown in Figure 18. For larger values
of γlim we observe a larger variation in the flux with longitude, as
expected, because then fewer encounters contribute to the distribu-
tion. As we can see from equation 22, these are the more massive
and/or slower stars. These encounters may induce a series ofweak
comet showers rather than a single strong comet shower. Because
strong encounters are rare and extremely weak encounters cannot
induce enough anisotropic LPCs, the spikes in the longitudedistri-
bution can be caused by at least two weak encounters rather than
one strong or many extremely weak encounters. From Figure 17,
we see that the tide cannot completely wash out the anisotropy in
the longitude distribution induced by these encounters.

Consistent with our results, Matese & Whitmire (2011) found
that the two spikes in the longitude distribution result from weak
impulsive perturbations by analyzing the energy and angular mo-
mentum of dynamically new LPCs. Similar to the definition of
weak comet showers in Matese & Lissauer (2002) and Dybczyński
(2002), we define encounters withγ in the interval[1× 10−7, 5×
10−6]M⊙ km s−1 AU−1 as weak encounters. We do not find
strong peaks in the longitude distribution ofγ for these encoun-
ters in Figure 18, because we know thatγ can underestimate the
intensity of the shower (see Figure 11). Thus a small enhancement
of the two peaks in Figure 18 may correspond to a large enhance-
ment of the peaks in the longitude distribution as predictedby our
dynamical model in Figure 17.

Inspecting the catalogue of the frequencies of different types
of stellar encounters in table 8 of Garcı́a-Sánchez et al. (2001), we
see that there were at least eight encounters with masses equal to or
larger than one solar mass encountering the solar system in the past
10 Myr with perihelia less than 1 pc. These encounters can move to
a heliocentric distance much larger than 50 pc over that time, which
is the upper limit for their unbiased sample of stellar encounters
with MV < 5 – see Figure 13 of Garcı́a-Sánchez et al. (2001).

We also point out that GL 710 will have a close approach
with the solar system in about 1.4 Myr at a perihelion longitude
of around 135◦. According to studies, it will induce a weak comet
shower which is expected to increase the cometary flux by 40%-

50% (Garcı́a-Sánchez et al. 1999; Matese & Lissauer 2002).This
supports the suggestion that the solar apex motion induces the non-
uniform longitude distribution of the LPCs’ perihelia (seeFigure 6
and 17). In addition, Algol, a triple-star system with a total mass
of 5.8M⊙, encountered the solar system with a closest distance
of 2.5 pc 6.9 Myr ago (Garcı́a-Sánchez et al. 2001). The Galactic
longitude of Algol was also close to135◦.

Based on the above plausible scenario, we conclude that the
peaks in the longitude distribution of LPC perihelia could arise
from the perturbations of a few strong stellar encounters, the en-
counter directions of which depend on the solar apex motion.Con-
sidering the important role of the Galactic tide in generating a non-
uniform latitude distribution, and the role of stellar encounters in
generating a non-uniform longitude distribution, the synergy ef-
fect plays a role in maintaining – rather than smoothing out –the
anisotropy in the observed LPCs. In other words, we can explain
the anisotropy of the LPC perihelia based only on the solar apex
motion and the Galactic tide, without needing to invoke the Jupiter-
mass solar companion as proposed by Matese & Whitmire (2011).
To date there is no observational evidence for such a companion.
We note that a recent analysis of data from the WISE satellitehas
excluded the existence of a Jupiter-mass solar companion with a
heliocentric distance less than 1 pc (Luhman 2014).

8 SENSITIVITY TEST

8.1 Spiral arms and Galactic bar

The spiral arms and Galactic bar are non-axisymmetric, time-
varying components of the Galactic potential. These make only a
small contribution to the tidal force acting on the Sun and Oort
cloud (Binney & Tremaine (2008); Cox & Gómez (2002)). How-
ever, if their contribution is always in the same direction,the ef-
fect of their perturbation could accumulate. This can occurwhen
the Sun is near to the co-rotation resonance, when the rotation ve-
locities of the disk and of the spiral pattern coincide. To test this
hypothesis, we simulate the solar and cometary motion adopting
various constant pattern speeds of the spiral arms and the bar with
fixed Galactic density distributions (specified in Section 3.1).

We integrate the solar orbit in the Galactic potential both in-
cluding and excluding the non-axisymmetric components. The ini-
tial conditions of the Sun and potential parameters are given in Ta-
ble 2. We find that the gravitational force from the bar is always
much larger than that from the spiral arms. However, the difference
between the pattern speed of the Galactic barΩb and solar angu-
lar velocity is much larger than the difference between the pattern
speed of the spiral armsΩs and solar angular velocity, which re-
sults in a much lower accumulated perturbation due to the bar. To
see this effect, we integrate the solar orbit back to 5 Gyr in the
past. The variations of galactocentric radius and verticaldisplace-
ment of the Sun are shown in Figure 19. The arms have a stronger
effect on the solar orbit than does the bar. The spiral arms tend to
increase the galactocentric radius of the Sun as the integration pro-
ceeds (back in time), while the bar modulates the galactocentric
radius by a comparatively small amount. Neither the bar nor the
arms significantly affect the vertical displacement amplitude of the
Sun. Here the combined perturbation from the potential including
both the Galactic bar and spiral arms changes the solar motion the
same way as the perturbation from the bar alone.

We now simulate the tide-induced flux corresponding to these
different potential models. The lower panel in Figure 20 shows that
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Figure 19. The variation of Sun’s galactocentric radius (upper panel)and
vertical displacement from the disk (lower panel) as calculate for different
potentials: axisymmetric potential (black); potential including Galactic bar
(red); potential including spiral arm (blue); potential including both bar and
arm (green). To show different lines in the lower panel better, we plot the
variation of the Sun’s vertical displacement over a shortertime scale.

the non-axisymmetric components do not alter the flux very much.
Although the perturbation from the arms can change the solarorbit
slightly, the resulting change in the perturbation of the Oort cloud
is minimal. The changed tidal force may change some individual
cometary orbits, but has little effect on the overall injected comet
flux, because the effect of the tide depends also on the distribu-
tion of the comets, which is nearly isotropic. We also see that the
arms modify the cometary flux more than the bar, consistent with its
larger impact on the stellar density. (The limited number ofinjected
comets contributes to the sharp peaks in the relative flux difference,
∆fc/fc, after 3 Gyr.)

We also investigated the sensitivity of the solar motion and
comet flux to the pattern speed of the asymmetric components.We
find that the closer the pattern speed of the arms is to the angular
velocity of the Sun, the larger the perturbation from the arms is.
(We can understand this in terms of a resonance.) Meanwhile,the
perturbation from the bar is not sensitive to the bar’s pattern speed.

Finally, we also find that the distribution ofbc and lc of
the comet flux does not change very much for different non-
axisymmetric components of the Galactic potential.

In summary, we find that the model predictions of the tide-
induced cometary flux are generally insensitive to changes in the
non-axisymmetric components of the Galactic potential, except
when a resonance between the arms and the solar orbit occurs,
which increases the variation in the cometary flux.

8.2 Variations of the prior

As discussed earlier, the evidence depends on the prior distribution
adopted for the model parameters. As this prior frequently cannot
be determined with any certainty, it is important to investigate the
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Figure 20. The magnitude of the tide-induced flux,fc, generated by the
axisymmetric potential model (upper panel) and the relative flux difference,
∆fc/fc, generated by asymmetric Galactic potential models (lowerpanel)
over the past 5 Gyr with a sample of 3×104 comets. The potentials are:
axisymmetric potential only (black); including the arms (blue); including
the Galactic bar (red); including both the arms and the Galactic bar (green).

sensitivity of the evidence to changes in the prior.8 To complete
the calculation of evidences for dynamical models, we also vary
the other three initial conditions,VR(t = 0 Myr), z(t = 0 Myr),
andVz(t = 0 Myr), in the EncTideSigProb models, which we
previously kept constant. Together with SigProb, EncSigProb and
TideSigProb, this was previously the best favoured model (Table
6). We made numerous changes in the priors by altering their pa-
rameter ranges, and re-did all necessary Monte Carlo samplings,
numerical simulations, and likelihood calculations and recomputed
the Bayes factors. Some of our results are shown in Table 7.

The difference in Bayes factors for random models (Rand-
Prob, RandBkgProb) and periodic models (SinProb, SinBkgProb)
with different prior distributions is less than five. The Bayes factors
also remain less than ten so they remain no better explanations of
the cratering data than the Uniform model. Thus our former conclu-
sions about these models are not very sensitive to plausiblechanges
in the priors.

The TideSigProb models in which other parameters are varied
have nearly the same evidences as the TideSigProb models listed in
Table 6, so these too are insensitive to these changes in the priors.
We also see that the SigProb model with positiveλ has Bayes fac-
tors much lower than SigProb with negativeλ for both the basic150
and basic250 data sets.

The dynamical models have parameters of the Galaxy poten-
tial, Sun’s initial conditions and combination ratio parameters (η
and ξ) which are listed in Table 5). To keep things simple, we
change the fixed parameters and the ranges of the varying param-
eters individually, and then calculate the evidence by sampling the
prior defined by the changed parameter and other parameters shown

8 A more robust – but also more time-consuming – way of calculating the
evidence is presented in?.
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Table 7. The Bayes factors for various time series models (rows) relative to the uniform model for two different data sets (cf. Table 6). The second column
describes what change has been made to the range of which parameter in the prior. The other priors are kept fixed. TideSigProb3–6 refer to the TideSigProb
model in which different initial conditions are varied:VR(t = 0 Myr); z(t = 0 Myr); Vz(t = 0 Myr); all three (respectively)

models varied prior Bayes factor for basic150 Bayes factor for basic250

RandProb

none 4.4 3.0
σ = 2σ̄i 2.0 4.8
σ = 1/2σ̄i 2.2 4.7
N = 2Nts 1.9 1.8
N = 1/2Nts 2.4 7.6

RandBkgProb

none 1.8 2.2
σ = 2σ̄i 1.6 3.7
σ = 1/2σ̄i 1.8 2.6
N = 2Nts 1.5 1.5
N = 1/2Nts 2.4 2.9

SinProb

none 0.34 0.43
10 < T < 100 0.12 0.14
2π/300 < ω < 2π/10 0.34 0.39
10 < T < 300 0.88 5.4× 10−2

SinBkgProb

none 1.0 1.0
10 < T < 100 0.90 0.88
2π/300 < ω < 2π/10 1.0 1.0
10 < T < 300 1.8 1.4

SigProb

none 15 2.0× 102

0 < t0 < 1.2τmax 13 1.4× 102

−100 < λ < 100 7.7 1.0× 102

0 < λ < 100 1.3× 10−2 1.8× 10−3

SinSigProb
none 6.4 80
0 < t0 < 1.2τmax 8.3 71
2π/300 < ω < 2π/10 9.9 97

TideSigProb3 none 9.0 1.7× 102

TideSigProb4 none 9.1 1.7× 102

TideSigProb5 none 9.0 1.7× 102

TideSigProb6 none 11 1.6× 102

in Table 5. We calculate evidences for dynamical models withdou-
ble or half the disk mass (Md), halo mass (Mh), standard deviation
of the initial valueR (σR), and the range of the varying ratio be-
tween the EncTideProb (or TideProb) and SigProb models (η). In
addition, previous studies suggest that the number of tide-induced
LPCs is not identical to the encounter-induced LPCs, i.e.ξ 6= 1
(Heisler, Tremaine & Alcock 1987; Rickman et al. 2008). Thuswe
multiply the ratio between the tide-induced flux and the encounter-
induced flux (ξ) by a factor of 4 or 1/4 for the sensitivity test.

The resulting Bayes factors calculated for the basic150 data
set are shown in Table 8. In each row we see little variation: the
Bayes factors are relatively insensitive to these parameters. This
means that either the parameter space of the EncTideSigProb1
model is evenly favoured by the basic150 data set, or the dataare
unable to discriminate between the compound dynamical models.

The model prediction of the anisotropic LPCs (see Figure 17)
depends to a greater or lesser extent on the Galactic potential, the
Sun’s initial condition, the Oort Cloud model, and the modelof en-
counters. We vary the model parameters in the same way as we did
in Table 8 and simulate ten million orbits of DLDW comets per-
turbed by the tide and ten samples of stellar encounters backwards
to 10 Myr ago. We find that the latitude distribution of the LPCper-

ihelia is not sensitive to the change of the Galactic halo mass, the
initial conditions of the Sun, or the direction of the solar apex. The
amplitudes of the peaks in the latitude distribution are reduced if
we decrease the mass of the Galactic disk or increase the stellar
masses, which make the stellar encounters play a more important
role in injecting comets into the loss cone. However, the overall
profile of the peaks is not changed in the latitude distribution.

The peaks in the longitude distribution shift slightly if we
change the solar apex direction, the masses of the encounters, or
the mass of the Galactic disk. The longitude distribution isnot sen-
sitive to changes in the other model parameters.

Finally, we also tested the effect of changing the time step
in the (combined) simulations. We simulated four million comets
generated from the DLDW model perturbed by the tide and ten
samples of stellar encounters backwards to 10 Myr ago using atime
step of 0.001 Myr (as opposed to 0.01 Myr). We find little change
in either the latitude or longitude distributions. In addition, we see
only 4% more comets injected when using this smaller time step.

In summary, we find that the overall shape of the angular dis-
tribution of LPC perihelia in both longitude and latitude isnot very
sensitive to changes in the model parameters, in particularnot to
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Table 8.The Bayes factors for EncProb1, EncTideProb1 and EncTideProb1 for basic150 with different Galaxy parameters.

models none 2Md 1/2Md 2Mh 1/2Mh 2σR 1/2σR ξ = 4 ξ = 1/4 0 < η < 8 0 < η < 2

EncProb1 1.5 2.5 3.4 2.5 4.1 2.3 2.6 — — — —

EncTideProb1 1.0 2.1 2.3 2.6 3.5 1.8 1.0 1.5 0.73 — —

EncTideSigProb1 11 15 11 13 12 12 11 12 10 13 8.8

the initial distribution of Oort Cloud comets, not to the masses of
Galactic halo and disk, and not to the initial conditions of the Sun.

9 DISCUSSION AND CONCLUSION

We have built dynamical models for the impact rate and angular
distribution of comets induced by the Galactic tide and stellar en-
counters, as modulated by the solar motion around the Galaxy.
Without using the approximate methods (the averaged Hamilto-
nian or impulse approximation), we numerically simulate the tide-
induced flux and encounter-induced flux separately. We use these
to validate the use of proxies for tide-induced flux,G3, and for the
encounter-induced flux,γbin, in our models.

Using the Bayesian evidence framework, we find that the
pure trend model (SigProb) together with the dynamical mod-
els including a trend component (EncSigProb, TideSigProb and
EncTideSigProb) for the cratering record are better favoured than
other models we have tested. The trend component indicates ade-
creasing cratering rate (λ < 0) towards the past over the past
100 Myr (Shoemaker 1998; Gehrels, Matthews & Schumann 1994;
McEwen, Moore & Shoemaker 1997; Bailer-Jones 2011a). This
suggests that either the asteroid impact rate or the preservation
bias or both dominates the cratering record. Because the craters
in our data sets are larger than 5 km, the preservation bias may not
be very significant over this time scale. The disruption of a single
large asteroid could explain the trend in the data, as suggested by
(Bottke, David & David 2007). In addition, our models, whichin-
clude the solar apex motion, can properly predict the anisotropic
perihelia of LPCs without assuming a massive body in the outer
Oort Cloud or an anisotropic Oort Cloud.

The EncTideSigProb, EncSigProb and TideSigProb models
have Bayes factors of the same magnitude as the SigProb model,
which indicates that either the tide and encounter components are
unnecessary in modelling the temporal distribution of craters, or
the data cannot effectively discriminate between the models.

The stochastic component in the comet flux arising from en-
counters – as represented by the termγ – in the EncProb and Enc-
TideProb models can slightly increase their evidence relative to the
TideProb model. We have performed a sensitivity test by chang-
ing the prior PDF over the parameters in the dynamical modelsand
other time series models, and find only small changes of the Bayes
factors.

The asymmetrical components in the Galactic potential could,
in principle, increase the time-variation of the comet flux and
hence impact rate predicted by the dynamical models, by induc-
ing larger deviations of the Sun’s motion from a circular orbit and
thus larger changes in the local stellar density. It turns out that
the non-axisymmetric component has relatively little impact on the
predicted cometary flux, with the exception of when the Sun isin
co-rotation with the spiral arms. In that case the transientresonance
can produce large variations in the flux.

By including the solar apex motion, our dynamical models for
anisotropic LPCs can predict reasonably well the distribution of
Galactic latitude and longitude in a set of 102 dynamically new
comets. In this model, the asymmetry in the distribution of Galac-
tic latitudes caused by the Sun’s current location and its motion
over the past 10 Myr (comparable with the time scale of a comet
shower).

The two narrow peaks in the cometary perihelia atlc = 135◦

and lc = 315◦ could be caused by a handful of strong stellar en-
counters encountering the Sun with their encountering velocities
in the direction of antapex in the HRF. On the other hand, we
might also see something similar due to the periodic orbitalmo-
tion about the Sun of a massive body (such as a brown dwarf) re-
siding within the Oort cloud (Matese, Whitman & Whitmire 1999;
Matese & Whitmire 2011). However, our dynamical model, which
takes into account the solar apex motion, can predict the longitudi-
nal asymmetry without assuming the existence of such a body.In
addition, the latitude distribution of LPC perihelia predicted by our
simulations is consistent with the theoretical prediction, although
one peak in the observed distribution is not properly predicted by
our simulations. The synergy effect between the encountersand the
tide cannot entirely eliminate the anisotropy induced by either the
tide or the encounters.

A non-uniform distribution in the perihelion direction of en-
counters was found by Garcı́a-Sánchez et al. (2001), although the
signal is of questionable significance due to the incompleteness,
i.e. faint stars which high velocities being too faint after10 Myr for
Hipparcos to have observed.

An anisotropy in the longitude of LPCs will not correspond to
an anisotropy in longitudes of impacts on the Earth’s surface due to
the rotation of the Earth and its orbit about the Sun. Some latitude
variation may be expected, despite the long-term variationin incli-
nation and obliquity of the Earth’s orbit (Le Feuvre & Wieczorek
2008; Werner & Medvedev 2010). Disrupted comets generally re-
tain their original orbital plane (Bottke et al. 2002), so the resulting
asteroids would tend to impact in the plane perpendicular tosolar
apex. Yet these are all higher order effects which would be difficult
to convincingly detect and relate to the solar orbit in the analysis of
terrestrial impact craters.

Our modelling approach has, like any other, introduced vari-
ous assumptions and approximations. We have ignored the synergy
effect between the Galactic tide and stellar encounters highlighted
by Rickman et al. (2008). We instead simply sum the tide-induced
flux and the encounter-induced flux in the ratioξ to 1. Because
the cometary impact rate modulated by the solar motion around
the Galactic center seems to be unnecessary in order to explain the
data, the synergy effect, which is also influenced by the solar mo-
tion, may not change the result significantly. In addition, we use a
decreasing impact rate towards the past (negative trend component)
to model the combined effect of preservation bias and asteroid im-
pact rate. In modelling the angular distribution of the LPC perihelia,
the sample noise in the comets injected into the observable zone
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prevent us from building a more robust model, especially forthe
longitude distribution. This problem could be resolved by calcu-
lating perturbations based on a more accurately measured Galactic
tide and using an actual catalogue of encountering stars in the so-
lar neighborhood as opposed to our stochastic model of plausible
encounters.

In common with some other studies (e.g. Rickman et al.
(2008); Gardner et al. (2011); Fouchard et al. (2011);
Wickramasinghe & Napier (2008)), we have ignored the per-
turbing effect on comets from the giant planets, although we
acknowledge that the giants planets could influence the predicted
LPC flux in particular (Kaib & Quinn 2009). The planetary
perturbations can also change the fraction of the inner Oortcloud
comets among the injected LPCs (Kaib & Quinn 2009), which in
turn could change the angular distribution of the LPC perihelia.
However, these perturbations should not have a significant effect
over the relatively short time scale of 10 Myr which we use in the
simulations to generate the LPC distribution. As the main goal
of our work is to study the variable effect of the solar orbit on
the LPC flux and angular distribution, rather than to predictthe
absolute LPC flux precisely, our conclusions should not be overly
affected by neglecting the giant planets in this way.

In the future, the Gaia survey allow us to detect many more re-
cent stellar encounters down to fainter magnitude limits and larger
distances than Hipparcos, thereby allowing us to extend thetime
scale over which we can get a complete sample of recent stellar en-
counters. The Gaia magnitude limit of G=20 which is low enough
to cover the high velocity stars in a time scale of 10 Myr. For exam-
ple, a star with absolute magnitude of 10 and a velocity of 80 km/s
in the HRF would move 800 pc in 10 Myr and so have an apparent
magnitude of 19.5. Thus Gaia will be able to observe all starsmore
massive than early M dwarfs (and thus essentially all relevant stars)
encountering the solar system over the past 10 Myr. For more re-
cent timescales Gaia can observe even less massive objects.More-
over, the Gaia catalogue of more massive stellar encounters(stars
with absolute magnitudes larger than that of the Sun) may shed
light on the study of terrestrial craters over since the beginning of
the Phanerozoic era, some 550 Myr ago. Gaia can further improve
the measurement of Sun’s initial conditions and the potential of the
Galaxy (Lindegren et al. 2008; Koposov, Rix & Hogg 2010). After
including planetary perturbations, this would make the simulation
of cometary orbits accurate enough to trace the stellar encounter
back to the time when it generated comet showers and correspond-
ing terrestrial craters (Rickman et al. 2012).
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